STS-109 FLIGHT READINESS REVIEW

February 14, 2002

Ground Operations

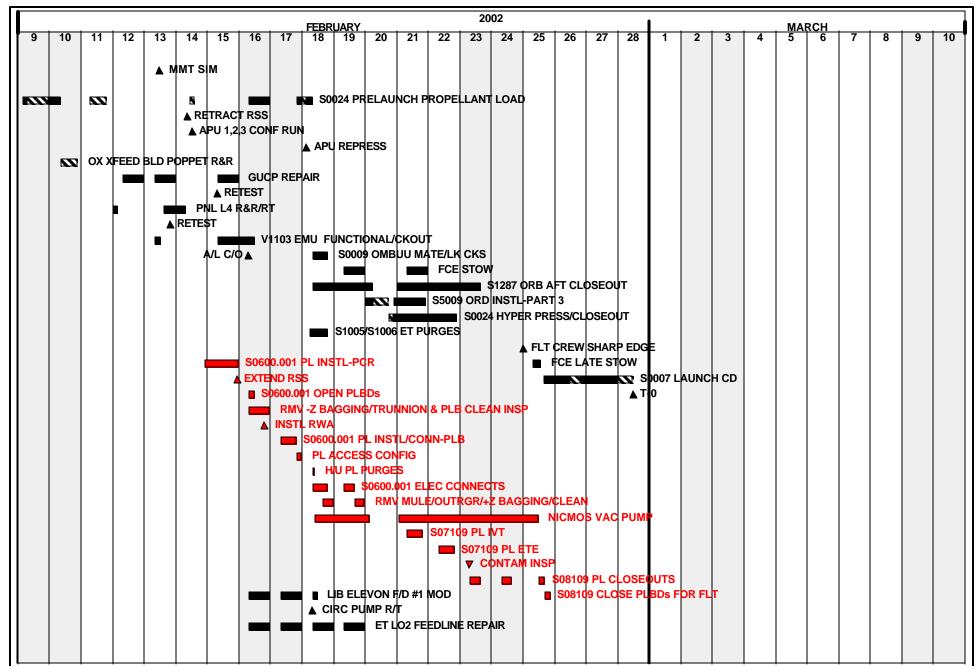
AGENDA	

- Shuttle Processing
 - Integrated Operations J. Vevera
 - Shuttle Engineering G. Crews
 - Launch and Landing M. Leinbach
 - Summary

- D. King A. Allen C. Murphy

PROCESSING DIFFERENCES	Presenter:
	Jim Vevera
	Organization/Date:
	Ground Ops/02-14-02

Processing Differences - VAB / Pad


- Planned
 - APU 1/2/3 Confidence Run
 - Late Payload Delivery
 - Payload Bay Cleaning
- Unplanned
 - Panel L-4 Repair
 - APU #3 Lube Oil Pressure Transducer Replacement
 - 7" GH2 GUCP QD Replacement
 - Crawler Transporter Steering Anomaly
 - ET LO2 Feedline TPS Eval/Repair
 - MD326 OMS Ox Fill Air-half QD R&R
 - MD568 OMS X-Feed Bleed Air-Half QD R&R
 - LIB Elevon F/D #1 Blade Seal Eval/Repair
 - MMU #1 R&R
 - Hyd Pump Bolt Eval

STS-109 / OV-102 Operations Summary

OPR: USA - J. Vevera, INT FM(1-2567) NASA - E. Mango, PH-A2 (1-9221)

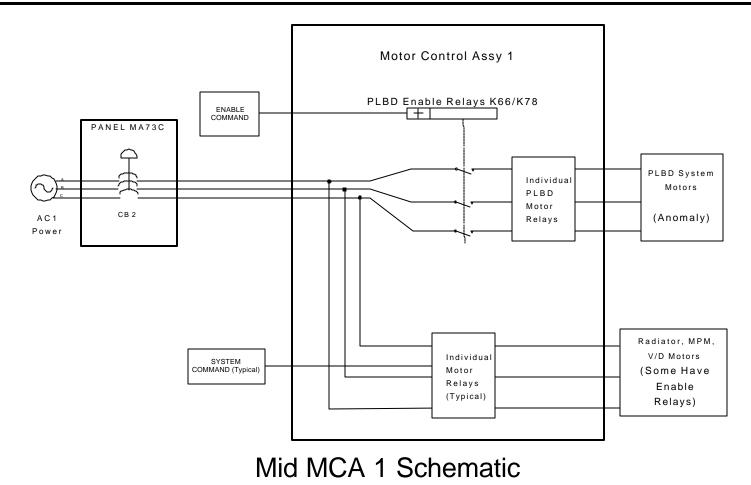
12FEB02 12:12

STS-109 FLIGHT READINESS REVIEW

SHUTTLE ENGINEERING OVERVIEW	Presenter: Greg Crews
	Organization/Date: Ground Ops/02-14-02

The following Topics have been reviewed:

•	Requirements Status – OMRS	No Issues
•	TOPS Status	No Issues
•	LCC/GLS Status	No Issues (in Backup)
•	Software, SCAN, and Configuration Status	No Issues
•	Vehicle/GSE Modification Status	No Issues
•	In-Flight Anomaly Status	No Issues
•	Lost Item Problem Reports	No Issues (in Backup)
•	Time/Life Cycle	No Issues
•	Critical Process Changes	No Issues
•	Unexplained Anomalies	To Be Presented
•	Safety, Quality, and Mission Assurance	No Issues
•	Engineering Topic	To Be Presented
•	Nonstandard Work Summary	No Issues



- Observation
 - While closing Payload Bay Doors (PLBD's) at the Pad, Midbody AC1 Phase-A was not received at several latch/door drive motors (Phases B & C were nominal)
 - The anomaly was present on motors common to Mid Motor Control Assembly 1 (MCA 1)
- Concerns
 - A repeat of the anomaly during the mission
 - Affected motor-set (MCA-1) operation would still occur on 2 of 3 AC phases
 - Redundant motor-set is unaffected

- Discussion
 - There have been prior occurrences of this nature
 - Caused by dirty circuit breaker contact, subsequently cleared
 - Mid MCA 1 receives AC 1 power from Panel MA73C, Circuit Breaker 2 (CB 2)
 - This isolates the anomaly to MCA 1, Panel MA73C, or the path between components
 - A repeat of this anomaly during the mission would only be visible on the ground through motor current draw data
 - Motors would operate on 2 phases

- Actions Taken
 - Four different motors, fed by the PLBD Enable Relays K-66/78, were operated immediately following the anomaly Phase A not present on any of the motors
 - Enable relays cycled once
 - Isolates problem to be upstream of individual motor relays (Enable relays, copper path or CB 2)
 - CB 2 on Panel MA73C was cycled 5 times, and anomaly repeated
 - Cycled an additional 5 times anomaly still present
 - CB 2 left open at end of shift

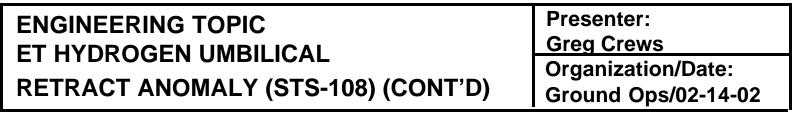
- Actions Taken (Cont'd)
 - CB 2 closed and R/H Vent Door 3 was cycled the following shift with no anomaly
 - Verifies nominal operation of CB 2
 - PLBD Enable Relays K-66/78 not in this path
 - PLDB Latches operated on subsequent shift with no anomaly
 - Anomaly has not repeated since

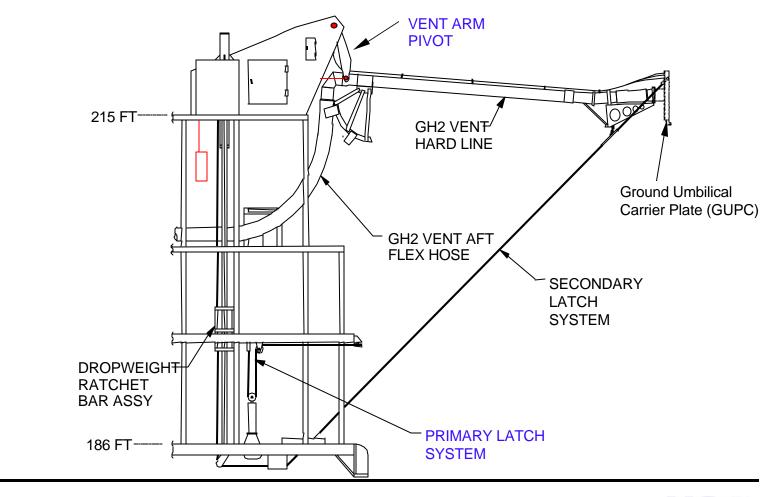
- Possible Causes
 - Intermittent failure of copper path between Panel MA73C and Mid MCA 1
 - Highly unlikely no activity outside of breaker switch operation
 - No current draw signature indicating intermittent open/short
 - Dirty Phase A contact on one of the Mid MCA 1 Enable Relays (K-66/78), subsequently cleared with relay cycle
 - Unlikely not a common failure
 - Dirty contact on Phase A of CB2 on Panel MA73C
- Most Probable Cause
 - Dirty contact on Phase A of CB2 on Panel MA73C
 - This condition has been seen multiple times on same configuration breakers

- Flight Rationale
 - The loss of Phase A (2 of 3 good phases) will not prevent the operation of the PLBD motors
 - Three phase AC motors have a sub-level of redundancy by design
 - A redundant set of motors for all PLBD operations are unaffected by this anomaly
 - Different circuit breakers, MCA and copper path
 - PLBD latches will be cycled 10 times to exercise enable relays
 - PLBD and V/D motor current draw will be monitored through remainder of door operations at the Pad
 - All MCA AC circuit breakers paths will be verified after final launch count positioning with V/D operations
 - CB 2 will be left closed for remainder of ground processing, and is only opened during the mission for contingency starboard radiator deploy ops

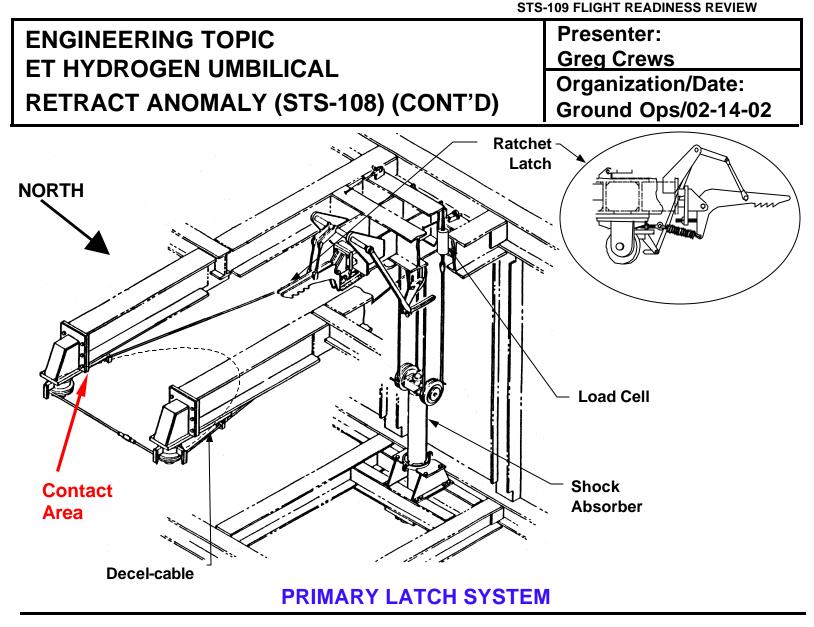
- Risk Assessment
 - No risk to Flight and Crew's safety or Mission success

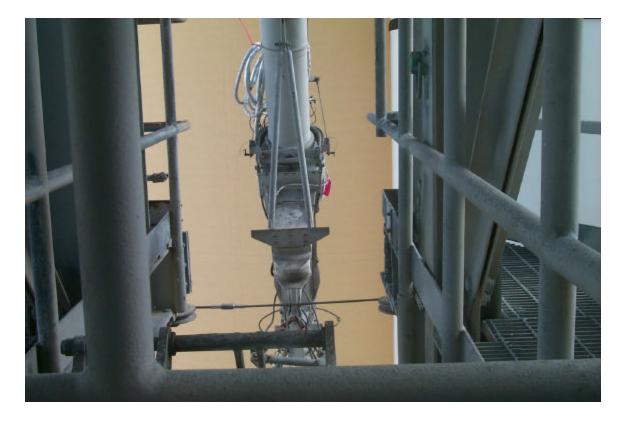
ENGINEERING TOPICS	Presenter: Greg Crews
	Organization/Date: Ground Ops/02-14-02


- External Tank Hydrogen Umbilical Retract Anomaly (IFA STS-108K-01)
- Hazardous Gas Detection System (HGDS) 2000 (Information)

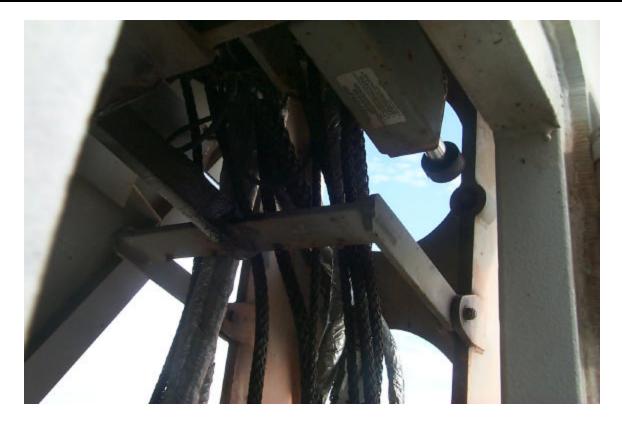


ENGINEERING TOPIC ET HYDROGEN UMBILICAL RETRACT ANOMALY (STS-108)


- Observation
 - During STS-108 (Pad B), the Hydrogen Vent Arm contacted the Fixed Support Service Structure (FSS) just prior to engaging the primary latching system, causing hardware damage to the vent arm and FSS
 - The vent arm was captured by the secondary capture feature as designed
- Concern
 - Potential debris impact with vehicle
 - Damage to Ground Support Equipment



ENGINEERING TOPIC ET HYDROGEN UMBILICAL RETRACT ANOMALY (STS-108) (CONT'D)	Presenter: Greg Crews
	Organization/Date: Ground Ops/02-14-02


View of STS-109 Vent Arm Prior to Lift and Mate

ENGINEERING TOPIC ET HYDROGEN UMBILICAL RETRACT ANOMALY (STS-108) (CONT'D)	Presenter: Greg Crews
	Organization/Date: Ground Ops/02-14-02

Pivot Arm Shocks

- RETRACT ANOMALY (STS-108) (CONT'D)
 - Discussion
 - No prior occurrences of Vent Arm contact with structure
 - Pivot Arm Withdrawal Weight reduced from 2000 to 1500 lbs prior to 'Return-to-Flight' (STS-26R)
 - To increase GUCP Pyro bolt margin
 - Vent arm has been contacting the deceleration cable south of center since withdrawal weight change
 - A USA/NASA team composed of Operations, SR &QA and Engineering was formed to perform investigation
 - Fault Tree generated and addressed
 - 86 items addressed
 - 2 open items remaining

- RETRACT ANOMALY (STS-108) (CONT'D)
 - Actions Taken / Fault Tree Analysis
 - Previous launch film and data analyzed
 - STS-108 stack position was nominal
 - STS-108 GUCP release time and angle in-family
 - Tank movement nominal
 - Ice build-up on GUCP was less than normal
 - Wind data showed little to no correlation with vent line drop trajectory
 - Vent arm has been contacting deceleration cable south of center since Withdrawal Weight Modification (STS-26R)
 - More pronounced at Pad B

ENGINEERING TOPIC ET HYDROGEN UMBILICAL RETRACT ANOMALY (STS-108) (CONT'D)

- Actions Taken / Fault Tree Analysis (Cont'd)
 - Survey data taken of both Pads
 - Pad A and B vent arm centerline positioning is within specification
 - Pad A is 1.36 inches north of centerline
 - Pad B is 0.66 inches south of centerline

ENGINEERING TOPIC ET HYDROGEN UMBILICAL RETRACT ANOMALY (STS-108) (CONT'D)

- Actions Taken / Fault Tree Analysis (Cont'd)
 - Fault Tree open items
 - Pivot Arm Shocks (1.11.1)
 - Pad B pivot arm shocks sent to lab for testing
 - High load required to compress north shock
 - Could decrease centering capability and cause arm to drop south
 - Pad A shocks to be removed/tested ECD 2/22
 - No constraint to Pad A pending nominal shock installation

- RETRACT ANOMALY (STS-108) (CONT'D)
 - Actions Taken / Fault Tree Analysis (Cont'd)
 - Fault Tree open items
 - Aft Flex Hose Stiffness (1.6)
 - Hastelloy hose at Pad B (4 flights) slightly stiffer than stainless hose at Pad A, based on material properties
 - Actual hose stiffness desired no spares to test
 - Team determined withdrawal weight reduction contributes to pivot arm forward motion
 - Not a constraint to Pad A (STS-109)
 - Original stainless hose installed at Pad A
 - Pad B Analysis remains I/W
 - Not a constraint to STS-109

Presenter: Greg Crews Organization/Date: Ground Ops/02-14-02

RETRACT ANOMALY (STS-108) (CONT'D)

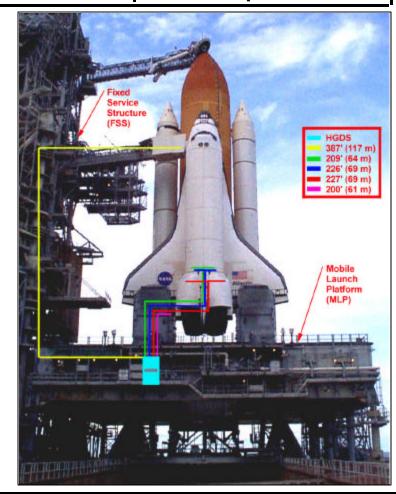
- Most Probable Causes
 - Pad B structure off-set is causing the vent line to contact the deceleration cable more to the south as compared to Pad A
 - Decreased centering capabilities of the vent arm during retraction
 - Aft flex hose is stiff enough to raise the (reduced) withdrawal weight and rebound the pivot arm forward
 - High north pivot arm shock compression load

Presenter: Greg Crews Organization/Date: Ground Ops/02-14-02

RETRACT ANOMALY (STS-108) (CONT'D)

- Actions Taken For STS-109 (Pad A)
 - Gained additional clearance on south side of deceleration cable structure (STS-108 contact area)
 - Removed 1 $\frac{1}{4}$ inch from bracket on structure
 - Pad A south deceleration structure is ³/₈ inch further south than Pad B
 - Removed vent line lifting bracket debris source during STS-108
 - Pivot arm shocks to be tested for nominal operation
 - Deceleration cable painted to help determine contact point
 - Additional cameras (4) installed to better evaluate system dynamics
 - Bright tape added to structure and vent line in previous contact area to aid in film analysis

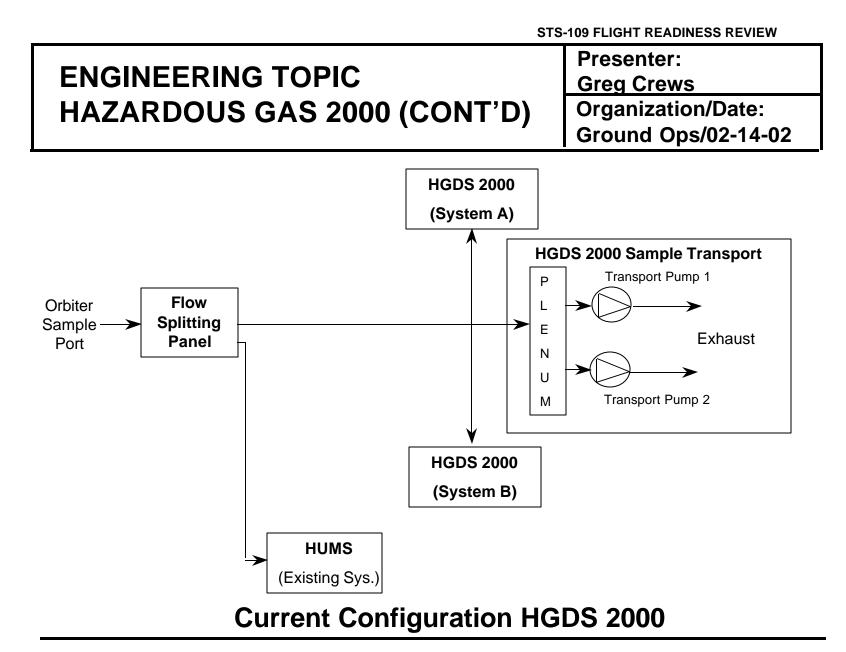
Presenter: <u>Greg Crews</u> Organization/Date: Ground Ops/02-14-02


RETRACT ANOMALY (STS-108) (CONT'D)

- Flight Rationale
 - Fault Tree analysis is complete no constraint for Pad A
 - Due to Pad A vent arm north off-set, Pad A vent arm has more clearance to the deceleration structure
 - Additional clearance obtained at previous contact area
 - Material removed from south side structure bracket
 - Lifting bracket (sheared off during STS-108) removed to mitigate debris risk
 - Pivot arm shocks will be tested (open work brief at L-2)
- Risk Assessment
 - No risk to Flight and Crew's safety or Mission success

ENGINEERING TOPIC HAZARDOUS GAS 2000

- Purpose
 - The HGDS provides realtime gas analysis for the Orbiter, ET, and Hydrogen Umbilicals
 - Five sample lines monitor for H2, O2, He and Ar
 - ET inter tank area
 - LH2 Tail Service Mast (TSM)
 - Payload Bay
 - Midbody
 - Aft

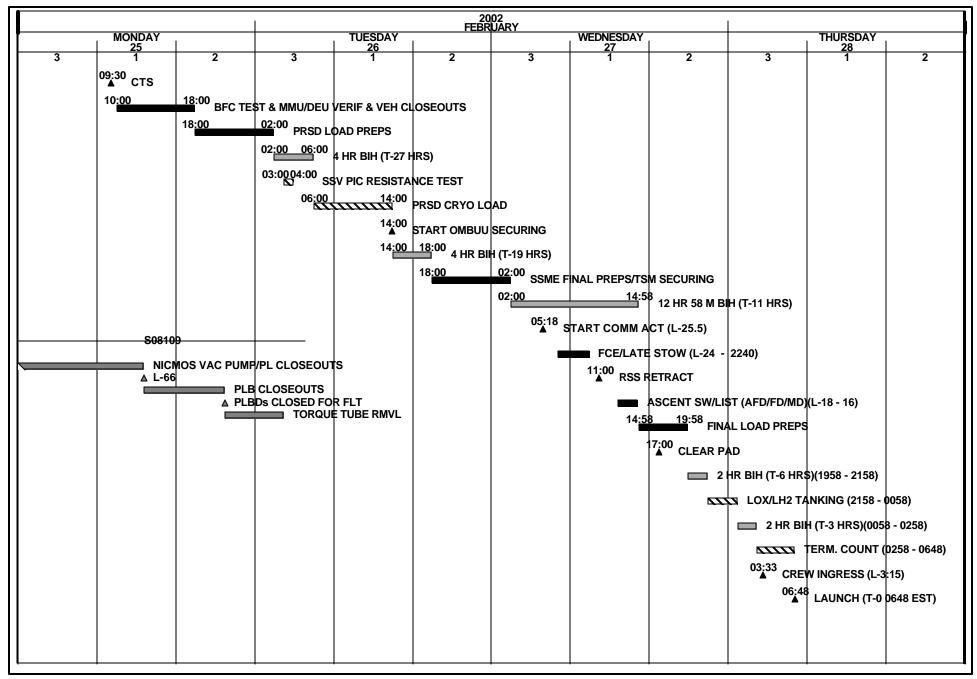


ENGINEERING TOPIC HAZARDOUS GAS 2000 (CONT'D)

- Previous HGDS Configuration
 - Prime HGDS in use since STS-1
 - Backup HGDS in use since Return-to-Flight
 - Hydrogen Umbilical Measurement System (HUMS) in use since 1990
 - Prime and Backup HGDS hardware had become aged and extremely labor intensive to maintain and operate

ENGINEERING TOPIC HAZARDOUS GAS 2000 (CONT'D)

- HGDS 2000 Technology Improvement
 - Turbo Pump replaces Ion Pump
 - Exhausts sampled gas away from Mass Spec
 - Eliminates "Burping" phenomenon (STS-93)
 - More robust system
 - Remotely adjustable Mass Spectrometer
- HGDS 2000 Reliability Improvements
 - Reduces single failure Points
 - Redundant Sample Transport pumps
 - Redundant air data supply paths systems A/B

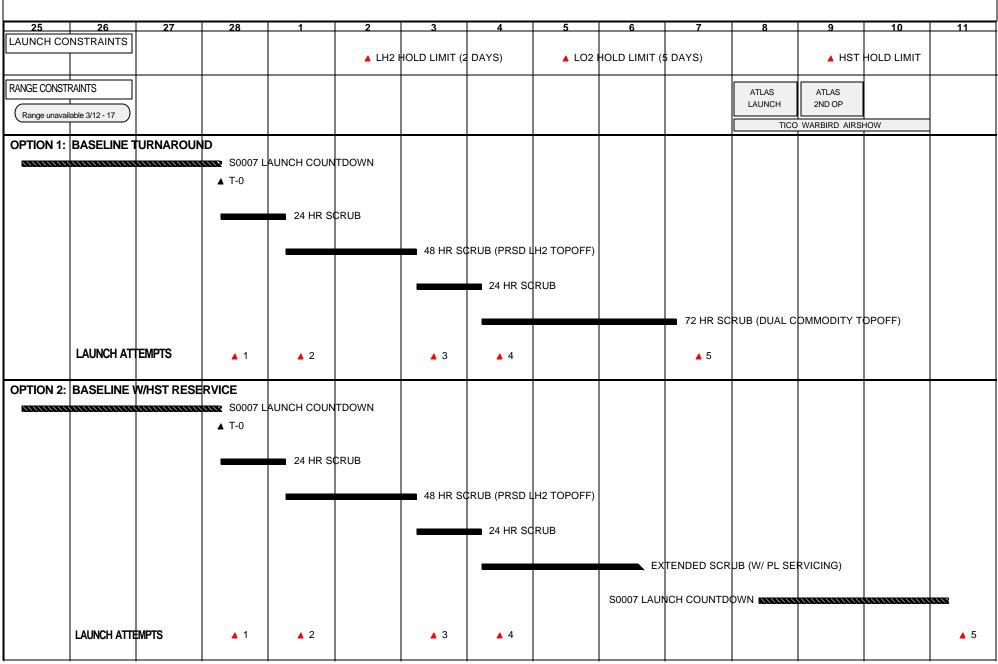

ENGINEERING TOPIC HAZARDOUS GAS 2000 (CONT'D)

- System Integration
 - Design Certification completed per NSTS-07700 requirements
 - LCC changes involve nomenclature only
 - System has been successfully operated as a prototype for 5 previous flows
 - Users trained on new system
- STS-109 Readiness
 - System certification and validation has been completed
 - Ready to support STS-109

STS-109 / OV-102 Launch Countdown Summary

OPR: S. Altemus (1-9303) 07FEB02 07:36

NOTE:


Actual scrub turnaround timelines will be determined realtime based on specific conditions encountered.

STS-109

LAUNCH COUNTDOWN TURNAROUND OPTIONS

OPR: S. Altemus 1-9302

07FEB02 07:24

United Space Alliance

Presenter: Steve Altemus LANDING OPERATIONS STATUS **Organization/Date:** Launch & Landing/02-14-02

- Launch Support
 - RTLS: KSC
 - TAL:
 - Ben Guerir (Alt) •
 - AOA:
 - EDW (Prime) WSSH (Alt)

Deploy at L-7 days, Feb 21, 2002

Deploy at L-2 days, Feb 26, 2002

- Mission Support KSC (Prime EOM) DFRC/EDW

 - WSSH
- Site Status

Deploy at L-2 days, Feb 26, 2002

Kennedy Space Center Shuttle Processing Team

STS-109 Readiness Statement

This is to certify that appropriate CoFR items from NSTS-08117 Appendices H and Q, Flight Preparation Process Plan, have been reviewed and dispositioned. Subject to completion of planned work and resolution of any identified constraints, KSC Shuttle Processing and Supporting Organizations are ready to support Launch Operations.

S/J. Presnell for

Charlie W. Murphy APM, Integrated Logistics, USA. S/Andrew A. Allen

Andrew A. Allen APM, Ground Operations, USA.

S/David A. King

David A. King Director of Shuttle Processing, NASA