pmc logo imageJournal ListSearchpmc logo image
Logo of jmedgeneJournal URL: redirect3.cgi?&&auth=0FCVGBYWYwZlnDx3gQCEEqkaa8t4D4hM7pnPCskWW&reftype=publisher&artid=1735643&article-id=1735643&iid=139709&issue-id=139709&jid=169&journal-id=169&FROM=Article|Banner&TO=Publisher|Other|N%2FA&rendering-type=normal&&http://jmg.bmj.com/
J Med Genet. 2004 December; 41(12): 908–915.
doi: 10.1136/jmg.2004.023184.
PMCID: PMC1735643
Detection of aneuploidies by paralogous sequence quantification
S Deutsch, U Choudhury, G Merla, C Howald, A Sylvan, and S Antonarakis
Department of Genetic Medicine and Development, University of Geneva Medical School, GE 1211, Geneva, Switzerland. Email: Stylianos.antonarakis/at/medecine.unige.ch
Abstract
Background: Chromosomal aneuploidies are a common cause of congenital disorders associated with cognitive impairment and multiple dysmorphic features. Pre-natal diagnosis of aneuploidies is most commonly performed by the karyotyping of fetal cells obtained by amniocentesis or chorionic villus sampling, but this method is labour intensive and requires about 14 days to complete.
Methods: We have developed a PCR based method for the detection of targeted chromosome number abnormalities termed paralogous sequence quantification (PSQ), based on the use of paralogous genes. Paralogous sequences have a high degree of sequence identity, but accumulate nucleotide substitutions in a locus specific manner. These sequence differences, which we term paralogous sequence mismatches (PSMs), can be quantified using pyrosequencing technology, to estimate the relative dosage between different chromosomes. We designed 10 assays for the detection of trisomies of chromosomes 13, 18, and 21 and sex chromosome aneuploidies.
Results: We evaluated the performance of this method on 175 DNAs, highly enriched for abnormal samples. A correct and unambiguous diagnosis was given for 119 out of 120 aneuploid samples as well as for all the controls. One sample which gave an intermediate value for the chromosome 13 assays could not be diagnosed.
Conclusions: Our data suggests that PSQ is a robust, easy to interpret, and easy to set up method for the diagnosis of common aneuploidies, and can be performed in less than 48 h, representing a competitive alternative for widespread use in diagnostic laboratories.
Full Text
The Full Text of this article is available as a PDF (166K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • LEJEUNE, J; GAUTIER, M; TURPIN, R. Etude des chromosomes somatiques de neuf enfants mongoliens. C R Hebd Seances Acad Sci. 1959 Mar 16;248(11):1721–1722. [PubMed]
  • JACOBS, PA; BAIKIE, AG; COURT BROWN, WM; STRONG, JA. The somatic chromosomes in mongolism. Lancet. 1959 Apr 4;1(7075):710. [PubMed]
  • Hultén, Maj A; Dhanjal, Seema; Pertl, Barbara. Rapid and simple prenatal diagnosis of common chromosome disorders: advantages and disadvantages of the molecular methods FISH and QF-PCR. Reproduction. 2003 Sep;126(3):279–297. [PubMed]
  • Kuo, WL; Tenjin, H; Segraves, R; Pinkel, D; Golbus, MS; Gray, J. Detection of aneuploidy involving chromosomes 13, 18, or 21, by fluorescence in situ hybridization (FISH) to interphase and metaphase amniocytes. Am J Hum Genet. 1991 Jul;49(1):112–119. [PubMed]
  • Verma, L; Macdonald, F; Leedham, P; McConachie, M; Dhanjal, S; Hultén, M. Rapid and simple prenatal DNA diagnosis of Down's syndrome. Lancet. 1998 Jul 4;352(9121):9–12. [PubMed]
  • Pertl, B; Yau, SC; Sherlock, J; Davies, AF; Mathew, CG; Adinolfi, M. Rapid molecular method for prenatal detection of Down's syndrome. Lancet. 1994 May 14;343(8907):1197–1198. [PubMed]
  • Mann, K; Fox, SP; Abbs, SJ; Yau, SC; Scriven, PN; Docherty, Z; Ogilvie, CM. Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis. Lancet. 2001 Sep 29;358(9287):1057–1061. [PubMed]
  • Adinolfi, M; Pertl, B; Sherlock, J. Rapid detection of aneuploidies by microsatellite and the quantitative fluorescent polymerase chain reaction. Prenat Diagn. 1997 Dec;17(13):1299–1311. [PubMed]
  • Lander, ES; Linton, LM; Birren, B; Nusbaum, C; Zody, MC; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, JP; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, N; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, JC; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, RH; Wilson, RK; Hillier, LW; McPherson, JD; Marra, MA; Mardis, ER; Fulton, LA; Chinwalla, AT; Pepin, KH; Gish, WR; Chissoe, SL; Wendl, MC; Delehaunty, KD; Miner, TL; Delehaunty, A; Kramer, JB; Cook, LL; Fulton, RS; Johnson, DL; Minx, PJ; Clifton, SW; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, JF; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, RA; Muzny, DM; Scherer, SE; Bouck, JB; Sodergren, EJ; Worley, KC; Rives, CM; Gorrell, JH; Metzker, ML; Naylor, SL; Kucherlapati, RS; Nelson, DL; Weinstock, GM; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, DR; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, HM; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, RW; Federspiel, NA; Abola, AP; Proctor, MJ; Myers, RM; Schmutz, J; Dickson, M; Grimwood, J; Cox, DR; Olson, MV; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, GA; Athanasiou, M; Schultz, R; Roe, BA; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, WR; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, JA; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, DG; Burge, CB; Cerutti, L; Chen, HC; Church, D; Clamp, M; Copley, RR; Doerks, T; Eddy, SR; Eichler, EE; Furey, TS; Galagan, J; Gilbert, JG; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, LS; Jones, TA; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, WJ; Kitts, P; Koonin, EV; Korf, I; Kulp, D; Lancet, D; Lowe, TM; McLysaght, A; Mikkelsen, T; Moran, JV; Mulder, N; Pollara, VJ; Ponting, CP; Schuler, G; Schultz, J; Slater, G; Smit, AF; Stupka, E; Szustakowski, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, YI; Wolfe, KH; Yang, SP; Yeh, RF; Collins, F; Guyer, MS; Peterson, J; Felsenfeld, A; Wetterstrand, KA; Patrinos, A; Morgan, MJ; de Jong, P; Catanese, JJ; Osoegawa, K; Shizuya, H; Choi, S; Chen, YJ; Szustakowki, J. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. [PubMed]
  • Venter, JC; Adams, MD; Myers, EW; Li, PW; Mural, RJ; Sutton, GG; Smith, HO; Yandell, M; Evans, CA; Holt, RA; Gocayne, JD; Amanatides, P; Ballew, RM; Huson, DH; Wortman, JR; Zhang, Q; Kodira, CD; Zheng, XH; Chen, L; Skupski, M; Subramanian, G; Thomas, PD; Zhang, J; Gabor Miklos, GL; Nelson, C; Broder, S; Clark, AG; Nadeau, J; McKusick, VA; Zinder, N; Levine, AJ; Roberts, RJ; Simon, M; Slayman, C; Hunkapiller, M; Bolanos, R; Delcher, A; Dew, I; Fasulo, D; Flanigan, M; Florea, L; Halpern, A; Hannenhalli, S; Kravitz, S; Levy, S; Mobarry, C; Reinert, K; Remington, K; Abu-Threideh, J; Beasley, E; Biddick, K; Bonazzi, V; Brandon, R; Cargill, M; Chandramouliswaran, I; Charlab, R; Chaturvedi, K; Deng, Z; Di Francesco, V; Dunn, P; Eilbeck, K; Evangelista, C; Gabrielian, AE; Gan, W; Ge, W; Gong, F; Gu, Z; Guan, P; Heiman, TJ; Higgins, ME; Ji, RR; Ke, Z; Ketchum, KA; Lai, Z; Lei, Y; Li, Z; Li, J; Liang, Y; Lin, X; Lu, F; Merkulov, GV; Milshina, N; Moore, HM; Naik, AK; Narayan, VA; Neelam, B; Nusskern, D; Rusch, DB; Salzberg, S; Shao, W; Shue, B; Sun, J; Wang, Z; Wang, A; Wang, X; Wang, J; Wei, M; Wides, R; Xiao, C; Yan, C; Yao, A; Ye, J; Zhan, M; Zhang, W; Zhang, H; Zhao, Q; Zheng, L; Zhong, F; Zhong, W; Zhu, S; Zhao, S; Gilbert, D; Baumhueter, S; Spier, G; Carter, C; Cravchik, A; Woodage, T; Ali, F; An, H; Awe, A; Baldwin, D; Baden, H; Barnstead, M; Barrow, I; Beeson, K; Busam, D; Carver, A; Center, A; Cheng, ML; Curry, L; Danaher, S; Davenport, L; Desilets, R; Dietz, S; Dodson, K; Doup, L; Ferriera, S; Garg, N; Gluecksmann, A; Hart, B; Haynes, J; Haynes, C; Heiner, C; Hladun, S; Hostin, D; Houck, J; Howland, T; Ibegwam, C; Johnson, J; Kalush, F; Kline, L; Koduru, S; Love, A; Mann, F; May, D; McCawley, S; McIntosh, T; McMullen, I; Moy, M; Moy, L; Murphy, B; Nelson, K; Pfannkoch, C; Pratts, E; Puri, V; Qureshi, H; Reardon, M; Rodriguez, R; Rogers, YH; Romblad, D; Ruhfel, B; Scott, R; Sitter, C; Smallwood, M; Stewart, E; Strong, R; Suh, E; Thomas, R; Tint, NN; Tse, S; Vech, C; Wang, G; Wetter, J; Williams, S; Williams, M; Windsor, S; Winn-Deen, E; Wolfe, K; Zaveri, J; Zaveri, K; Abril, JF; Guigó, R; Campbell, MJ; Sjolander, KV; Karlak, B; Kejariwal, A; Mi, H; Lazareva, B; Hatton, T; Narechania, A; Diemer, K; Muruganujan, A; Guo, N; Sato, S; Bafna, V; Istrail, S; Lippert, R; Schwartz, R; Walenz, B; Yooseph, S; Allen, D; Basu, A; Baxendale, J; Blick, L; Caminha, M; Carnes-Stine, J; Caulk, P; Chiang, YH; Coyne, M; Dahlke, C; Mays, A; Dombroski, M; Donnelly, M; Ely, D; Esparham, S; Fosler, C; Gire, H; Glanowski, S; Glasser, K; Glodek, A; Gorokhov, M; Graham, K; Gropman, B; Harris, M; Heil, J; Henderson, S; Hoover, J; Jennings, D; Jordan, C; Jordan, J; Kasha, J; Kagan, L; Kraft, C; Levitsky, A; Lewis, M; Liu, X; Lopez, J; Ma, D; Majoros, W; McDaniel, J; Murphy, S; Newman, M; Nguyen, T; Nguyen, N; Nodell, M; Pan, S; Peck, J; Peterson, M; Rowe, W; Sanders, R; Scott, J; Simpson, M; Smith, T; Sprague, A; Stockwell, T; Turner, R; Venter, E; Wang, M; Wen, M; Wu, D; Wu, M; Xia, A; Zandieh, A; Zhu, X. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. [PubMed]
  • Alderborn, A; Kristofferson, A; Hammerling, U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res. 2000 Aug;10(8):1249–1258. [PubMed]
  • Deutsch, Samuel; Rideau, Alexandra; Bochaton-Piallat, Marie-Luce; Merla, Giuseppe; Geinoz, Antoine; Gabbiani, Giulio; Schwede, Torsten; Matthes, Thomas; Antonarakis, Stylianos E; Beris, Photis. Asp1424Asn MYH9 mutation results in an unstable protein responsible for the phenotypes in May-Hegglin anomaly/Fechtner syndrome. Blood. 2003 Jul 15;102(2):529–534. [PubMed]
  • Hochberg, Ephraim P; Miklos, David B; Neuberg, Donna; Eichner, Daniel A; McLaughlin, Stephen F; Mattes-Ritz, Alex; Alyea, Edwin P; Antin, Joseph H; Soiffer, Robert J; Ritz, Jerome. A novel rapid single nucleotide polymorphism (SNP)-based method for assessment of hematopoietic chimerism after allogeneic stem cell transplantation. Blood. 2003 Jan 1;101(1):363–369. [PubMed]
  • Qiu, Ping; Soder, George J; Sanfiorenzo, Vincent J; Wang, Luquan; Greene, Jonathan R; Fritz, Mary Ann; Cai, Xiao-Yan. Quantification of single nucleotide polymorphisms by automated DNA sequencing. Biochem Biophys Res Commun. 2003 Sep 19;309(2):331–338. [PubMed]
  • Neve, B; Froguel, P; Corset, L; Vaillant, E; Vatin, V; Boutin, P. Rapid SNP allele frequency determination in genomic DNA pools by pyrosequencing. Biotechniques. 2002 May;32(5):1138–1142. [PubMed]
  • Armour, JAL; Barton, DE; Cockburn, DJ; Taylor, GR. The detection of large deletions or duplications in genomic DNA. Hum Mutat. 2002 Nov;20(5):325–337. [PubMed]
  • Armour, JA; Sismani, C; Patsalis, PC; Cross, G. Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res. 2000 Jan 15;28(2):605–609. [PubMed]
  • Slater, HR; Bruno, DL; Ren, H; Pertile, M; Schouten, JP; Choo, KHA. Rapid, high throughput prenatal detection of aneuploidy using a novel quantitative method (MLPA). J Med Genet. 2003 Dec;40(12):907–912. [PubMed]
  • Pertl, B; Kopp, S; Kroisel, PM; Tului, L; Brambati, B; Adinolfi, M. Rapid detection of chromosome aneuploidies by quantitative fluorescence PCR: first application on 247 chorionic villus samples. J Med Genet. 1999 Apr;36(4):300–303. [PubMed]
  • Veltman, Joris A; Schoenmakers, Eric F P M; Eussen, Bert H; Janssen, Irene; Merkx, Gerard; van Cleef, Brigitte; van Ravenswaaij, Conny M; Brunner, Han G; Smeets, Dominique; van Kessel, Ad Geurts. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am J Hum Genet. 2002 May;70(5):1269–1276. [PubMed]
  • Snijders, AM; Nowak, N; Segraves, R; Blackwood, S; Brown, N; Conroy, J; Hamilton, G; Hindle, AK; Huey, B; Kimura, K; Law, S; Myambo, K; Palmer, J; Ylstra, B; Yue, JP; Gray, JW; Jain, AN; Pinkel, D; Albertson, DG. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001 Nov;29(3):263–264. [PubMed]