
Fast Encryption and Authentication:

XCBC Encryption and XECB Authentication Modes

Virgil D. Gligor� Pompiliu Donescu

VDG Inc
6009 Brookside Drive

Chevy Chase, Maryland 20815
fgligor, pompiliug@eng.umd.edu

March 30, 2001
April 20, 2001 (revision)

Abstract

We present the eXtended Ciphertext Block Chaining (XCBC) schemes or modes of encryption
that can detect encrypted-message forgeries with high probability even when used with typical non-
cryptographic Manipulation Detection Code (MDC) functions (e.g., bitwise exclusive-or and cyclic re-
dundancy code (CRC) functions). These modes detect encrypted-message forgeries at low cost in per-
formance, power, and implementation, and preserve both message secrecy and integrity in a single pass
over the message data. Their performance and security scale directly with those of the underlying block
cipher function. We also present the XECB message authentication modes. These modes have all the
operational properties of the XOR-MAC modes (e.g., fully parallel and pipelined operation, incremental
updates, and out-of-order veri�cation), and have better performance. They are intended for use either
stand-alone or with encryption modes that have similar properties (e.g., counter-based XOR encryption).
However, the XECB-MAC modes have higher upper bounds on the probability of adversary's success in
producing a forgery than the XOR-MAC modes.

1 Introduction

No one said this was an easy game !
Paul van Oorschot, March 1999.

A long-standing goal in the design of block encryption modes has been the ability to provide message-
integrity protection with simple Manipulation Detection Code (MDC) functions, such as the exclusive-or,
cyclic redundancy code (CRC), or even constant functions [5, 7, 9]. Most attempts to achieve this goal in
the face of chosen-plaintext attacks focused on di�erent variations of the Cipher Block Chaining (CBC)
mode of encryption, which is the most common block-encryption mode in use. To date, most attempts,
including one of our own, failed [8].

�This work was performed while this author was on sabbatical leave from the University of Maryland, Department of
Electrical and Computer Engineering, College Park, Maryland 20742.

1

In this paper, we de�ne the eXtended Ciphertext Block Chaining (XCBC) modes that can be used with
an exclusive-or function to provide the authentication of encrypted messages in a single pass over the data.
These modes detect integrity violations at a low cost in performance, power, and implementation, and
can be executed in a parallel or pipelined manner. They provide authentication of encrypted messages in
real-time, without the need for an additional processing path over the input data. The performance and
security of these modes scale directly with the performance and security of the underlying block cipher
function since separate cryptographic primitives, such as hash functions, are unnecessary.

We also present the XECB modes for message authentication (i.e., XECB-MAC modes) and their salient
properties. These message authentication modes have all the operational properties of the XOR message
authentication (XOR-MAC) modes (e.g., they can operate in a fully parallel and pipelined manner, and
support incremental updates and out-of-order veri�cation [2]), and have better performance; i.e., they use
only about half the number of block-cipher invocations required by the XOR-MAC modes. However, the
XECB-MAC modes have higher bounds on the adversary's success of producing a forgery than those of
the XOR-MAC modes. The XECB modes are intended for use either stand-alone to protect the integrity
of plaintext messages, or with encryption modes that have similar properties (e.g., counter-based XOR
encryption [1] a.k.a \counter mode") whenever it is desired that separate keys be used for secrecy and
integrity modes.

2 Integrity Modes for Encryption

Preliminaries and Notation. In de�ning the encryption modes we adopt the approach of Bellare et
al. (viz., [1]), who show that an encryption mode can be viewed as the triple (E;D;KG), where E is the
encryption function, D is the decryption function, and KG is the probabilistic key-generation algorithm.
(Similarly, a message authentication (MAC) mode can be viewed as the triple (S; V;KG), where S is the
message signing function, V is the message veri�cation function, andKG is the probabilistic key-generation
algorithm.) Our encryption (and authentication) modes are implemented with block ciphers, which are
modeled with �nite families of pseudorandom functions (PRFs) or pseudorandom permutations (PRPs).

In this context, we use the concepts of pseudorandom functions (PRFs), pseudorandom permutations
(PRPs), and super-pseudorandom permutations (SPRPs) ([1], [14]). Let Rl;L the set of all functions
f0; 1gl ! f0; 1gL. We use F to denote either a family of pseudorandom functions or a family of super-
pseudorandom permutations, as appropriate (e.g., for the encryption schemes, F will be a family of super-
pseudorandom permutations, while for our MAC schemes, F can be a family of pseudorandom functions).

Given encryption scheme � = (E;D;KG) that is implemented with SPRP F , we denote the use of the key

K
R
 KG in the encryption of a plaintext string x by EFK (x), and in the decryption of ciphertext string

y by DFK (y). The most common method used to detect modi�cations of encrypted messages applies a
MDC function g (e.g., a non-keyed hash, cyclic redundancy code (CRC), bitwise exclusive-or function [15])
to a plaintext message and concatenates the result with the plaintext before encryption with EFK (x). A
message thus encrypted can be decrypted and accepted as valid only after the integrity check is passed;
i.e., after decryption with DFK (y), the concatenated value of function g is removed from the plaintext, and
the check passes only if this value matches that obtained by applying the MDC function to the remaining
plaintext [5, 7, 15]. If the integrity check is not passed, a special failure indicator, denoted by Null herein,
is returned. This method1 has been used in commercial systems such as Kerberos V5 [17, 21] and DCE

1Note that other methods for protecting the integrity of encrypted messages exist; e.g., encrypting the message with a
secret key and then taking the separately keyed MAC of the ciphertext [15, 3]. These methods require two passes over the

2

[6, 21], among others. The encryption scheme obtained by using this method is denoted by �-g = (E-g,D-
g,KG), where � is said to be composed with MDC function g. In this mode, we denote the use of the key
K in the encryption of a plaintext string x by (EFK -g)(x), and in the decryption of ciphertext string y by
(DFK -g)(y).

A design goal for �-g = (E-g, D-g, KG) modes is to �nd the simplest encryption mode � = (E,D,KG) (e.g.,
comparable to the CBC modes) such that, when this mode is composed with a simple, non-cryptographic
MDC function g (e.g., as simple as a bitwise exclusive-or function), message encryption is protected against
existential forgeries. For any key K, a forgery is any ciphertext message that is not the output of EFK -g.
An existential forgery (EF) is a forgery that passes the integrity check of DFK -g upon decryption; i.e., for
forgery y0, (DFK -g)(y') 6= Null, where Null is a failure indicator. Note that the plaintext outcome of an
existential forgery need not be known to the forgerer. It is su�cient that the receiver of a forged ciphertext
decrypt the forgery correctly.

Message Integrity Attack: Existential Forgery in a Chosen-Plaintext Attack. The attack is
de�ned by a protocol between an adversary A and an oracle O2 as follows.

1. A and O select encryption mode �-g = (E-g,D-g,KG), and O selects, uniformly at random, a key K
of KG.

2. A sends encryption queries (i.e., plaintext messages to be encrypted) xp, p = 1; � � � ; qe, to the encryp-
tion function of O. Oracle O responds to A by returning yp = (EFK -g)(xp), p = 1; � � � ; qe, where x

p

are A's chosen plaintext messages. A records both its encryption queries and O's responses to them.

3. After receiving O's encryption responses, A forges a collection of ciphertexts y0i; 1 � i � qv where
y0i 6= yp;8p = 1; � � � ; qe, and sends each decryption query y0i to the decryption function of O. O
returns a success or failure indicator to A, depending on whether of (DFK -g)(y0i) 6= Null.

Adversary A is successful if at least one decryption query y0i such that (DFK -g)(y0i) 6= Null for 1 � i � qv;
i.e., y0i is an existential forgery. The mode �-g = (E-g,D-g,KG) is said to be secure in a message-integrity
attack if the probability of an existential forgery in a chosen-plaintext attack is negligible. (We use the
notion of negligible probability in the same sense as that of Naor and Reingold [16].)

Attack Parameters. A is allowed qe encryption queries (i.e., queries to EFK -g), and qv decryption
queries (i.e., queries to DFK -g) totaling �e + �v bits, and taking time te + tv.

Parameters qe; �e; te are bound by the parameters (q0; �0; t0; �0) which de�ne the chosen-plaintext security
of � = (E,D,KG) in a secrecy attack (e.g., in the left-or-right sense [1], for instance), and a constant c0

determined by the speed of the function g. Since parameters (q0; �0; t0; �0) are expressed in terms of the
given parameters (t; q; �) of the SPRP family F , the attack parameters can be related directly to those of
the SPRP family F .

Parameters qe; �e; te; qv; �v; tv are also bound by the parameters (t; q; �) of the SPRP family F , namely
�e + �v � ql, and te + tv � t. (The parameters qe; qv are determined by �e; �v.) These parameters can be
set to speci�c values determined by the desired probability of adversary's success. Note that qv > 0 since
A must be allowed veri�cation queries. Otherwise, A cannot test whether his forgeries are correct, since A
does not know key K.

message data, require more power, and are more complex to implement than the modes we envision for most common use.
Nevertheless these methods are useful whenever key separation is desired for secrecy and integrity.

2O can be viewed as two oracles, the �rst for the encryption function of O and the second for the decryption function of O.

3

The message-integrity attack de�ned above is not weaker than an adaptive one in the sense that the
success probability of adversary A bounds from above the success probability of another adversary A0 that
intersperses the qe encryption and qv veri�cation queries; i.e., the adversary is allowed to make his choice
of forgery after seeing the result of legitimate encryptions and other forgeries. (This has been shown for
chosen-message attacks against MAC functions [2], but the same argument holds here.) To date, this is
the strongest of the known goal-attack combinations against the integrity (authentication) of encrypted
messages [3, 10].

3 De�nition of the XCBC and XCBC-XOR Modes

We present three XCBC modes, namely (1) stateless, (2) stateful-sender, and (3) stateful modes, and
some implementation options. In general, the fewer state variables the more robust the mode is in the
face of failures (or disconnections) and intrusion. This might suggest that, in practice, stateless modes
are preferable. However, this may not always be the case because a good, high-performance, source of
randomness that can be used for each message may be unavailable or may be hard to protect in terms of
con�dentiality, integrity and availability. Further, the new random number used in each message encryption
by the sender must be securely transmitted to the receiver, which usually costs at least an additional block-
cipher invocation. The stateful-sender mode (e.g., a counter-based mode) eliminates the need for a good
source of randomness but does not always eliminate the extra block-cipher invocation and the need to
protect the extra sender state variables; e.g., the source of randomness is replaced by the enciphering of
a message counter but the counter must be maintained and its integrity must be protected by the sender
across multiple message authentications. (The other advantage of counter-based modes, namely the ability
to go beyond the \birthday barrier" when used with pseudo-random functions, does not materialize in the
context of the Advanced Encryption Standard (AES) since AES is modeled as a family of pseudo-random
permutations.)

Maintaining secret shared-state variables, as opposed to just sender-state, helps eliminate the extra block-
cipher invocations. Extending the shared keying state with extra, per-key, random variables shared by
senders and receivers is a fairly straight-forward matter; e.g., these shared variables can be generated and
distributed in the same way as the shared secret key, or can be generated using the shared key (at some
marginal extra cost per message) by encrypting constants with the shared key. However, maintaining the
shared state in the face of failures (or disconnections), and intrusion presents an extra challenge for the
mode user; e.g., enlarging the shared state beyond that of a shared secret key may increase the exposure
of the mode to physical attacks. The above discussion suggests that none of the three types of operational
modes is superior to the others in all environments, and hence all of them should be supported in a general
mode de�nition.

In the encryption modes presented below, the key generation algorithm, KG, outputs a random, uniformly
distributed, k-bit string or key K for the underlying SPRP family F, thereby specifying f = FK and
f�1 = F�1K of l-bits to l-bits. If a separate second key is needed in a mode, then a new string or key
K 0 is generated by KG identifying f 0 = FK0 and f 0�1 = F�1K0 . The plaintext message to be encrypted is
partitioned into a sequence of l-bit blocks (padding is done �rst, if necessary), x = x1 � � � xn. Throughout
this paper, � is the exclusive-or operator and + represents modulo 2l addition.

Stateless XCBC Mode (XCBC$)
The encryption and decryption functions of the stateless mode,
E�XCBC$FK (x) and D�XCBC$FK (y), are de�ned as follows.

4

function E�XCBC$f (x)
r0 f0; 1g

l

y0 = f(r0); z0 = f 0(r0)
for i = 1; � � � ; n do f
zi = f(xi � zi�1)
yi = zi + i� r0 g
return y = y0jjy1y2 � � � yn

function D�XCBC$f (y)
Parse y as y0jjy1 � � � yn
r0 = f�1(y0); z0 = f 0(r0)
for i = 1; � � � ; n do f
zi = yi � i� r0
xi = f�1(zi)� zi�1 g
return x = x1x2 � � � xn

Stateful-Sender XCBC Mode (XCBCC)
The encryption and decryption functions of the stateful-sender mode,
E�XCBCCFK(x; ctr) and D�XCBCCFK(y), are de�ned as follows.

function E�XCBCCf (x; ctr)
r0 = f(ctr); z0 = f 0(r0)
for i = 1; � � � ; n do f
zi = f(xi � zi�1)
yi = zi + i� r0 g
ctr0 ctr + 1
y = ctrjjy1y2 � � � yn
return y

function D�XCBCCf (y)
Parse y as ctrjjy1 � � � yn
r0 = f(ctr); z0 = f 0(r0)
for i = 1; � � � ; n do f
zi = yi � i� r0
xi = f�1(zi)� zi�1 g
return x = x1x2 � � � xn

Note that in the XCBCC mode the counter ctr can be initialized to a known constant such as �1 by
the sender. ctr0 represents the updated ctr value. In both of the above modes the complexity is n + 2
block-cipher invocations, where n in the length of input string x in blocks.

Stateful XCBC Mode (XCBCS)
Let IV be a random and uniformly distributed variable that is part of the keying state shared by the sender
and receiver.
E�XCBCS$FK (x) and D�XCBCS$FK (y), are de�ned as follows.

function E�XCBCS$f (x)
r0 f0; 1g

l

y0 = f(r0); z0 = IV + r0
for i = 1; � � � ; n do f
zi = f(xi � zi�1)
yi = zi + i� r0 g
return y = y0jjy1y2 � � � yn

function D�XCBCS$f (y)
Parse y as y0jjy1 � � � yn
r0 = f�1(y0); z0 = IV + r0
for i = 1; � � � ; n do f
zi = yi � i� r0
xi = f�1(zi)� zi�1 g
return x = x1x2 � � � xn

Note that in the XCBCS mode the shared IV value can be generated randomly by KG and distributed
to the sender and receiver along with key K thereby saving one block cipher invocation, or can be can
be generated using key K by standard key-separation techniques thereby requiring an additional block
encryption operation per key. In the former case, the complexity of the mode is exactly n+1 block-cipher
invocations and, in the latter, is asymptotically n+ 1 block-cipher invocations.

Chaining Sequence. The block chaining sequence is that used for the traditional CBC mode, namely
zi = f(xi � zi�1), where z0 is the initialization vector, xi is the plaintext and zi is the ciphertext of

5

block i; i = 1; � � � ; n. In contrast with the traditional CBC mode, the value of zi is not revealed outside
the encryption modes, and, for this reason, zi is called a hidden ciphertext block. The actual ciphertext
output, yi, of the XCBC modes is de�ned using extra randomization, namely yi = zi + i � r0, where
i � r0 is the modulo 2l addition of the random, uniformly distributed, variable r0, i times to itself; i.e.,

i� r0
def
= r0 + � � �+ r0| {z }

i times

.

Examples for why the randomization is necessary include those which show that, without randomization,
the swapping of two zi blocks of a ciphertext message, or the insertion of two arbitrary but identical blocks
into two adjacent positions of a ciphertext message, would cause the decryption of the resulting forgery
with probability one whenever an bitwise exclusive-or function is used as the MDC (which is what we
intend to use, since these functions are among the fastest known). Correct randomization sequences, such
as i � r0, ensure that, among other things, collisions between any two zi values is negligible regardless of
whether these values are obtained during message encryption, forgery decryption, or both. Note that this
probability is negligible even though the randomization sequence i�r0 allows low-order bits of some zi's to
become known. (A detailed account of why such collisions contribute to an adversary's success in breaking
message integrity is provided in the proof of the XCBC$ mode; viz., Appendix A.) Examples of incorrect
randomization sequences can be readily found; e.g., the sequence whereby each element i is computed as
an bitwise exclusive-or of i instances of r0.

Initialization. In stateless implementations of the XCBC modes r0 f0; 1g
l ; i.e., r0 is initialized to

a random, uniformly distributed, l-bit value for every message. The value of r0 is sent by the sender
to the receiver as y0 = f(r0). In contrast, in stateful-sender implementations, which avoid the use of a
random number generator, a counter, ctr, is initialized to a new l-bit constant (e.g., -1) for every key K,
and incremented on every message encryption. In stateful implementations, a random initialization-vector
value IV that is shared by the sender and receiver is generated for every key K, and used to create a
per-message random initialization vector z0.

In all XCBC modes, the initialization vector z0 is independent of r0. While non-independent z0 and r0
values might yield secure initialization, simple relationships between these values can lead to the discovery
of r0 with non-negligible probability, and integrity can be easily broken.3 Since we use z0 in the de�nition
of function g(x) (see below), z0 should also be unpredictable so that g(x) has a per-message unpredictable
value.

The choice of encrypting r0 with a second key K 0 to obtain z0 (i.e., z0 = f 0(r0)) is made exclusively
to simplify the both the secrecy [1] and the integrity proofs; e.g., such a z0 is independent of r0 and is
unpredictable. To eliminate the use of the second key and still satisfy the requirements for z0 suggested
above, we can compute z0 = f(r0+1) in stateless and stateful sender implementations, whereas in stateful
implementations we compute z0 = IV + r0, where the per-message r0 can be generated as a random value,
or as an encryption of ctr in the XORC mode. This eliminates the additional block-cipher invocations
necessary in the stateless and stateful-sender modes at the cost of maintaining an extra shared state variable
(IV). This choice still satis�es the requirements for z0.

Generalization. The above method for protecting message integrity against existential forgeries in chosen-
plaintext attacks can be generalized as follows. Let the output ciphertext yi be computed as yi = zi op Ei,
where op is the randomization operation, Ei are the elements of the randomization sequence, and zi the
hidden ciphertext. The encryption mode � (1) must be secure in adaptive chosen-plaintext attacks with
respect to secrecy, and (2) must use the input plaintext blocks xi to generate the input to f . The PCBC

3As a simple example illustrating why this is the case, let z0 = r0+1, choose x1 such that z0�x1 = r0 with non-negligible
probability, and then compute y1 � y0 = r0. With a known r0, one can cause collisions in the values of zi and break integrity.

6

[12, 15], and the \in�nite garble extension" [5] modes are suitable, but counter-mode/XORC and XOR$
are not (since they fail condition (2)). Operation op must be invertible, so �, modular 2l addition and
subtraction are appropriate. Elements Ei must be unpredictable such that collisions among zi's (discussed
above) could only occur with negligible probability. Other sequences can be used. For example Ei = ai�r0
can be used, where Ei is a linear congruence sequence with multiplier a, where a can be chosen so that
the sequence passes spectral tests to whatever degree of accuracy is deemed necessary. (Examples of good
multipliers are readily available in the literature [11].)

XCBC-XOR Modes. To illustrate the properties of the XCBC modes in integrity attacks, we choose
g(x) = z0 � x1 � � � � � xn for plaintext x = x1 � � � xn, where z0 is de�ned as the initialization vector of the
mode. In this example, block g(x) is appended to the end of a n-block message plaintext x, and hence
block xn+1 = z0 � x1 � � � � � xn. For this choice of g(x), the integrity check performed at decryption
becomes z0 � x1 � � � � � xn = f�1(zn+1)� zn, where zn+1 = yn+1 � (n+ 1)� r0; and zn = yn � n� r0.

Message Padding. Standard padding methods (e.g., ASN.1), which typically require that a bit pattern
and its length be added to the last block of a message to obtain an integer number of (padded) plaintext
blocks, have the undesirable consequence that an additional block cipher invocation is required for the extra
block of padding added for plaintexts of an integer number of blocks. Alternatives that avoid standard
padding are known [4], but they require use of an extra (shared secret) key { a somewhat less desirable
alternative when maintaining the unpredictability of the redundant padding information added by a mode
is not an operational goal.

Known Padding Pattern. The goal of the �rst padding option for the XCBC modes is two-fold: (1)
avoid extra block-cipher invocations, and (2) avoid the use of extra keying material. Padding with a
known pattern is performed as follows: (1) use a pattern that always starts with a \1" bit followed by
the minimum number of \0" bits necessary to �ll the last block of plaintext [4]; (2) if the last block of a
message is unpadded, use block g0(x) = z0 � x1 � � � � � xn as the xn+1 plaintext block, where z0 is the
bitwise complement of z0; otherwise, use g(x) = z0 � x1 � � � � � xn.

At decryption, the integrity check performs the exclusive-or of f�1(zn+1) � zn with x01 � � � � � x0n, where
x01; � � � ; x

0
n are the plaintext blocks obtained at decryption, and then compares the result with the z0

computed during decryption; if this check fails, the result is compared with z0, the complement of z0
computed at decryption, and only if this second comparison for equality fails the ciphertext-message
decryption returns failure. If the the comparison check with z0 passes, meaning that the message was
padded at encryption, the padding pattern is checked, extracted (providing some extra con�dence, if
found) and removed. It follows that the decryption of unpadded (but unforged) messages would fail �rst
the �rst equality check but not the second. Of course, the extra check would be required only for unpadded
messages and forgeries. This padding scheme satis�es our goals at a modest cost; i.e., that of including
padding bits in the ciphertext and an extra check for equality.

Unpredictable Padding Pattern. The goal of the second padding option for the XCBC modes, in addition
to (1) above, is to retain the unpredictability of the redundant information added by these modes to user
input. This goal is set for pragmatic reasons, since these modes are secure with respect to chosen-plaintext
attacks. It stems from the long-standing belief that a mode of encryption should avoid adding redundant
information that provides an adversary additional conditions to verify the success of his attacks (e.g.,
key guessing) beyond those already available to him from knowledge of user input; e.g., in a ciphertext-
only attack, the adversary who knows nothing about the plaintext would bene�t from added predictable
redundancy by padding and integrity checks.

In the XCBC modes, padding with an unpredictable pattern is performed as follows. Let Mask be a

7

random and uniformly distributed block that that is part of the keying state shared by the sender and
receiver. The Mask can be generated and distributed along with the key or is can be generated by any
of the available standard methods (e.g., encrypt a constant with the shared secret key to initialize Mask).
For each plaintext input whose last block is incomplete, �ll the last block with the known bit pattern used
in the Known-Padding-Pattern option above (i.e., the pattern that always starts with a \1" bit followed by
the minimum number of \0" bits necessary to �ll the last block of plaintext) Perform the bitwise exclusive-
or operation between the Mask and the �lled last plaintext block. Use the result as the plaintext block
xn in the computation of the xn+1 = g(x) block. Use z0 to compute g(x) for padded messages and z0
for unpadded ones as in the Known-Padding-Pattern option above. At decryption, use the same integrity
check as that used in the Known-Padding-Pattern option (de�ned above), and if the check for padded
messages passes, perform the bitwise exclusive-or of the Mask and the recovered block x0n, and check and
extract the known padding bit pattern from x0n before returning the plaintext to the user.

The stateless and stateful encryption modes �-g obtained by the use of schemes � = XCBC$, � = XCBCC,
or � = XCBCS with function g(x) = z0�x1�� � ��xn are denoted by XCBC$-XOR, XCBCC-XOR, and
XCBCS-XOR respectively.

Examples of Other Encryption Modes that Preserve Message Integrity.

Recently, C.S. Jutla [13] proposed an interesting scheme in which the output blocks zi of CBC encryption
are modi�ed by (i.e., bitwise exclusive-or operations) with a sequence Ei of pairwise independent elements.
In this model, Ei = (i � IV1 + IV2)mod p, where IV1; IV2 are random values generated from an initial
random value r, and p is prime, and the complexity is n+ 3, where n is the length of the plaintext input
in blocks. In contrast with C.S. Jutla's scheme, the elements of the XCBC sequence, Ei = (i� r0)mod 2l,
are not pairwise independent, and the complexity is n+ 2 for the stateless and stateful-sender cases, and
n + 1 for the stateful case. Also, the performance of the required modular 2l additions is slightly better
than that of mod p additions, where p is prime. However, the pairwise independence of C.S. Jutla's Ei

sequence should yield a slightly tighter bound on the probability of successful forgery illustrating, yet again,
a fundamental tradeo� between performance and security. (The bound is tighter by a fraction of a log2
factor depending on the value of p, which would mean that the attack complexity is within the same order
of magnitude of the XCBC bound { viz., Section 5).

More recently, P. Rogaway [19] has proposed other schemes that use interesting variations of non-independent
and pairwise-independent elements for the Ei sequence, similar to the sequences presented in this paper
and C.S. Jutla's, to achieve n+1 complexity. Under the same assumptions regarding stateful and stateless
implementations, C.S. Jutla's modes require an extra block enciphering over the XCBC and P. Rogaway's
modes. We note that all modes for authenticated encryption include an extra block cipher operation for
the enciphering of the exclusive-or MDC.

Interleaved-Parallel or Pipelined Encryption. The choice of g(x) = z0 � x1 � � � � � xn, allows
the interleaved-parallel or pipelined implementation of the XCBC modes. Other non-cryptographic MDC
functions g(x) would also allow such implementation, since they be executed in a parallel or a pipelined
manner (by de�nition). This mode is useful when the number of processors available for encryption and
decryption in parallel is a priori known or negotiated. For example, for interleaved-parallel execution using
g(x), each plaintext message x is partitioned into L segments, x(1) � � � x(L) each of length ns, s = 1; � � � ; L,
after customary block-level padding (n.b., this L should not be confused with the output length of a PRF,
which is typically denoted by L, also). Each segment, x(s); s = 1; � � � ; L, consists of one or more l-bit blocks,

and if g(x(s)) = z
(s)
0 � x

(s)
1 � � � � � x

(s)
ns is used, then an additional l-bit block is included in each segment.

Each segment is encrypted/decrypted in parallel on a separate processor.

8

In interleaved-parallel or pipelined implementations of the XCBC modes, the initialization and computation
of the block chaining sequence is performed on a per-segment basis starting with a common value of r0,
which is a random, uniformly distributed, l-bit value for every message. Also, the per-message value
y0 is computed as y0 f(r0) in stateless implementations. The initialization of the block chaining

sequence for message segment s can be r
(s)
0 = r0 + s; z

(s)
0 = f 0(r

(s)
0), and the encryption sequence can be

z
(s)
i = f(x

(s)
i � z

(s)
i�1); y

(s)
i = z

(s)
i + i� r

(s)
0 . In stateful implementations ctr is updated to ctr + L after the

encryption of each message. (Other functions, not just addition modulo 2l, can be used for the computation

of the per-segment, block chaining sequence, and initialization sequence can be used for r
(s)
0 and z

(s)
0 .)

The encrypted segments of a message are assembled to form the message ciphertext. Segment assembly
encodes the number of segments L, the length of each segment ns and, implicitly, the segment sequence
in the message (e.g., all can be found in the ASN.1 encoding). If the segments of a message have di�erent
lengths, segment assembly is also synchronized with the end of each segment encryption or decryption
within a message.

At decryption, the parsing of the message ciphertext yields the message length, L, segment sequence
number, s, and the length of each segment, ns. Message integrity is maintained both on a per segment
and per message basis by performing the per-segment integrity check; if g(x) = z0 � x1 � � � � � xn, the

per-segment check is z
(s)
0 � x

(s)
1 � � � � � x

(s)
ns = f�1(z

(s)
ns+1) � z

(s)
ns where z

(s)
ns+1 = y

(s)
ns+1 � (ns + 1) � r

(s)
0

and z
(s)
ns = y

(s)
ns � ns � r

(s)
0 . Failure of any per-segment integrity check, which also detects out-of-sequence

segments and message-length modi�cations, signals a message integrity violation.

We illustrate an interleaved- parallel implementation of the stateless XCBC mode below. Stateful parallel
schemes can be implemented in a similar manner, using the same methods as those illustrated for the
sequential implementation.

Stateless Parallel XCBC Mode (ipXCBC$)
The encryption and decryption functions of the stateless mode,
E�ipXCBC$FK (x) and D�ipXCBC$FK (y), are de�ned as follows.

function E�ipXCBC$f (x)
partition x into L segments x(s)

each of length ns;
r0 f0; 1g

l ; y0 = f(r0) ;
for segment s; s = 1; � � � ; L; do f

r
(s)
0 = r0 + s; z

(s)
0 = f 0(r

(s)
0)

for i = 1; � � � ; ns do f

z
(s)
i = f(x

(s)
i � z

(s)
i�1)

y
(s)
i = z

(s)
i + i� r

(s)
0 g

y(s) = y
(s)
1 � � � y

(s)
ns g

assemble y = y0jjy
(1) � � � y(L);

return y.

function D�ipXCBC$f (y)
parse y into y0 and L segments y(s)

each of length ns;
r0 = f�1(y0)
for segment s; s = 1; � � � ; L do f

Parse y(s) as y
(s)
1 � � � y

(s)
ns

r
(s)
0 = r0 + s; z

(s)
0 = f 0(r

(s)
0)

for i = 1; � � � ; ns do f

z
(s)
i = y

(s)
i � i� r

(s)
0

x
(s)
i = f�1(z

(s)
i)� z

(s)
i�1 g

x(s) = x
(s)
1 � � � x

(s)
ns g

assemble x = x(1) � � � x(L);
return x.

Incremental Updates of Encrypted Data. The segmentation of a message used for parallel and pipelined
implementation of the XCBC modes can also be used in sequential encryption of data structures (e.g.,
a �le, a message) whenever incremental updates of data structures are anticipated. Such segmentation
enables the localization of the decryption, plaintext update, and encryption to single segments saving the

9

decryption and encryption of other segments una�ected by the updates. Note that message integrity is
retained after such incremental updates.

Architecture-Independent Parallel Encryption. C.S. Jutla's recent parallel mode [13] requires that both the
input to and output of the block cipher are randomized using a sequence of pairwise-independent random
blocks. Our fully parallel modes achieve the same e�ect without using a sequence pairwise-independent
random blocks. For these modes, it is su�cient to randomize the input and output blocks of f using the
same type of sequence. In this case, the probability of input or output collisions, which would be necessary
to break security and integrity respectively, would remain negligible. An example is the stateful Extended
Electronic Codebook-XOR encryption (XECBS-XOR) mode, in which for index i; 1 � i � n+ 1; n = jxj,
the ciphertext block yi is obtained through the formulae:

yi = f(xi + ctr �R+ i�R�) + ctr �R+ i�R�; 8i; 1 � i � n; ctr � qe

yn+1 = f(xn+1 + ctr �R) + ctr �R+ (n+ 1)�R�;

where R;R� are two random, uniformly distributed and independent blocks each of l bits in length that
are part of the keying state shared by the sender and receiver, and ctr is the counter that serves as message
identi�er. The counter ctr is initialized to 1 and increased by 1 on every message encryption up to qe,
which is the bound of the number of allowable message encryptions (viz., Theorem 5 below). Note that the
sequence of elements Ei = ctr � R+ i� R� can be precomputed for multiple messages, can be computed
incrementally, and in an out-of-order manner.

To provide authentication, the last block is computed using the following formula for the function g:

xn+1 = g(x) = x1 � � � � � xn:

This authenticated encryption mode achieves optimal performance, i.e., n+1 parallel block cipher invoca-
tions, and has a throughput of a single block cipher invocation. The security of the XECBS-XOR mode
with respect to con�dentiality in an adaptive chosen-plaintext attack can be demonstrated in the same
manner as that used for the CBC mode [1].

For the XECBS-XOR encryption scheme proposed above, padding follows the similar conventions as those
the XCBC-XOR modes to distinguish between padded and unpadded messages; i.e., use the following
formula for the enciphering of the last block.

yn+1 = f(xn+1 + ctr � Z) + ctr �R+ (n+ 1)�R�;

where Z = R is the bitwise complement of R and is used for unpadded messages and Z = R for padded
messages.

Stateless architecture-independent parallel modes and stateful-sender architecture-independent parallel
modes can be speci�ed in the same manner as those for the XCBC modes; for example, R and R� can be
derived from the l-bit random number number r0 (e.g., R = f(r0 + 1) and R� = f(r0 + 2)), and, in the
stateful-sender r0 = f(ctr), where ctr is an l-bit counter initialized to a constant such as �1.

In the modes thus obtained (and other related variants), there would not be any ciphertext chaining, and
a priori knowledge of the number of processors would be unnecessary.

As noted earlier, the sequence Ei = ctr�R+i�R� does not completely hide the low order bits of xi thereby
enabling veri�cation of key guesses by an adversary. Resistance to such attacks can be implemented in
a similar manner as that of DESX [18], if deemed necessary. However, adoption of modern block ciphers
with long keys should reduce the need for this.

10

4 De�nition of the XECB Authentication Modes

In this section, we introduce new Message Authentication Modes (MACs) that counter adaptive chosen-
message attacks [2]. We call these MACs the eXtended Electronic Codebook MACs, or XECB-MACs. The
XECB-MAC modes have all the properties of the XOR MACs [2], but they do not waste half of the block
size for recording the block identi�er thereby avoid doubling the number of block cipher invocations. Many
variants of XECB-MACs are possible, and here we present stateless version, XECB$-MAC, a stateful-sender
version XECBC-MAC, and a stateful version, the XECBS-MAC.

Message Signing. In both the stateless and stateful-sender implementation, we generate a per-message
random value y0 that is used to randomize each plaintext block of a message x, namely xi; 1 � i � n; n = jxj,
before it is fed to the block cipher function f , where f = FK is selected from a PRF family F by a key
K, which is random and uniform. The result of the randomization is xi + i � y0, and the result of
block enciphering with f is yi = f(xi + i � y0). The stateless mode initialization requires a random
number generator to create the random block r0; i.e., r0 f0; 1g

l. Then y0 = f(r0). Stateful-sender
implementations avoid the use of the random number generator, and instead, uses a counter ctr, to create
y0 directly, namely y0 = f(ctr). The counter ctr is initialized by the sender on a per-key basis to a constant,
such as �1, and is maintained across consecutive signing requests for the same key K.

For the purposes of simplifying the proofs, we made the following choices for the generation and use
of random vector z0 in both implementations: (1) an additional per-message unpredictable block z0 is
generated and treated as an additional last block of the message plaintext before it is also randomized and
enciphered by f , namely xn+1 = z0 and yn+1 = f(z0 + (n + 1) � y0); and (2) we set z0 = f 0(r0), where
f 0 = FK0 is a PRF selected with the second key K 0. Clearly, the generation of z0 can be performed with
the same key, K, by block enciphering a simple function of r0 (e.g., f(r0 + 1)), and use of K 0 becomes
unnecessary.

The block cipher outputs, y1; � � � ; yn; yn+1, are exclusive-or-ed to generate the authentication tag w =
y1�� � ��yn�yn+1. Alternative implementation options include the ones whereby the block cipher outputs,
y1; � � � ; yn; yn+1, are added modulo 2l � 1, or subtracted modulo 2l � 1, to generate the authentication tag.
The modes output the pair (r0; w) in the stateless mode, and (ctr; w) in the stateful-sender mode.

We include the stateless version and the stateful-sender version of the XECB modes below.

Stateless XECB-MAC Mode (XECB$-MAC)

function Sign-XECB$-MACf (x)
r0 f0; 1g

l

y0 = f(r0); z0 = f 0(r0)
xn+1 = z0
for i = 1; � � � ; n+ 1 do f
yi = f(xi + i� y0) g
w = y1 � � � � � yn � yn+1

return (r0; w)

function Verify-XECB$-MACf (x; r0; w)
y0 = f(r0); z0 = f 0(r0)
xn+1 = z0
for i = 1; � � � ; n+ 1 do f
yi = f(xi + i� y0) g
w0 = y1 � � � � � yn � yn+1

if w = w0 then return 1
else return 0.

Stateful-Sender XECB-MAC Mode (XECBC-MAC)

11

function Sign-XECBC-MACf (ctr; x)
y0 = f(ctr); z0 = f 0(y0)
xn+1 = z0
for i = 1; � � � ; n+ 1 do f
yi = f(xi + i� y0) g
w = y1 � � � � � yn � yn+1

ctr0 ctr + 1
return (ctr; w)

function Verify-XECBC-MACf (x; ctr; w)
y0 = f(ctr); z0 = f 0(y0)
xn+1 = z0
for i = 1; � � � ; n+ 1 do f
yi = f(xi + i� y0) g
w0 = y1 � � � � � yn � yn+1

if w = w0 then return 1
else return 0.

Note that ctr0 represents the updated ctr value.

The following stateful variant of the XECB modes (whose proof is presented in Appendix C) comes close to
the optimal performance of any parallel MAC, namely n parallel block-cipher invocations and throughput
equivalent of a single block-cipher invocation.

Stateful XECB-MAC Mode (XECBS-MAC)
Let R;R� be two random, uniformly distributed and independent blocks that are part of the keying state
shared by the sender and receiver.

function Sign-XECBS-MACf (ctr; x)
for i = 1; � � � ; n do f
yi = f(xi + ctr �R+ i�R�) g
w = y1 � � � � � yn
ctr0 ctr + 1
return (ctr; w)

function Verify-XECBS-MACf (x; ctr; w)
if ctr > qs then return 0
for i = 1; � � � ; n do f
yi = f(xi + ctr �R+ i�R�) g
w0 = y1 � � � � � yn
if w = w0 then return 1
else return 0.

Note that ctr is initialized to 1, and ctr0 represents the updated ctr value.

Message Tag Veri�cation. For veri�cation, an adversary submits a forgery x = x1 � � � xn and a forged
pair (r0; w) or (ctr; w) depending upon the mode.4 Message x is then signed and an authentication tag
w0 = y1 � � � � � yn � yn+1 is generated. The algorithm outputs a bit that is either 1, if the forged
authentication tag is correct, namely w = w0, or 0, otherwise.

Message Padding. For the stateless and stateful-sender XECB-MAC schemes, padding follows the same
conventions as those the XCBC-XOR modes to distinguish between padded and unpadded messages; i.e.,
the authentication tag generation and veri�cation use z0 for unpadded messages and z0 for padded messages.
For the stateful XECB-MAC scheme, padding follows the similar conventions as those the XCBC-XOR
modes to distinguish between padded and unpadded messages; i.e., the authentication tag generation and
veri�cation use R for unpadded messages and R for padded messages. For all schemes, the padding pattern
is the typical one; i.e., the pattern that always starts with a \1" bit followed by the minimum number of
\0" bits necessary to �ll the last block of plaintext.

Properties of the XECB Authentication Modes

1. Security. The XECB authentication modes are intended to be secure in adaptive chosen-message
attacks [2], and Theorems 3 and 4 below show the security bounds for the stateful-sender mode. The

4The forgery (x; r0; w) or (x; ctr; w) are not a previously signed queries. Note also that the length n of the forged message
need not be equal to the length of any signed message.

12

XECB modes, as well as all the other modes that use similar types of randomization sequences, have
higher, but still negligible, upper bounds on the adversary's success in producing a forgery than those of
the XOR-MAC modes.

2. Concurrent Block-Cipher Invocations and Mode Throughput. The goal of the XECB-MAC modes is
to allow the block-cipher (e.g., AES) computations on di�erent blocks to be made in a fully parallel or
pipelined manner; i.e., to exploit any degree of parallelism or pipelining available at the sender or receiver
without apriori knowledge of the number of processors available.

We note that despite the fact that the throughput of a mode depends on the number of block cipher
invocations, and hence on the availability of enough parallel processing units, throughput also depends on
how a mode uses those units. For example, the number of block-cipher invocations in the stateless and
stateful-sender XECB modes can be reduced from n + 3 to n + 2 simply by eliminating the enciphering
of block xn+1; e.g., the enciphering of the last plaintext block (i.e., n-th block) can be changed to yn =
f(xn � z0 + n � y0) (without a�ecting the proofs signi�cantly). Nevertheless, the throughput of these
modes is close to that of two sequential block cipher invocations, since the enciphering of y0 precedes the
parallel enciphering of the input plaintext blocks. In contast, in the stateful XECB mode, the number of
block-cipher invocations is n, just as in the case of the PMAC [20] which is also a stateful mode. However,
the throughput of the XECB modes is close to that of a single block-cipher invocation, as opposed to that
of PMAC, which corresponds to that of two sequential block-cipher invocations since the tag is computed
after n � 1 block cipher invocations regardless of the number of processors available. The performance
goal of n block-cipher parallel invocations and a throughput equivalent of a single block-cipher invocation
appears to be a achievable with stateful MAC modes.

3. Incremental Updates. The XECB-MAC modes are incremental with respect to block replacement; e.g.,
a block xi of a long message is replaced with a new value x0i. For instance, let us consider the stateful-
sender mode. Let the two messages have the same counter ctr; hence, the authentication tag of the new
message, w0, is obtained from the authentication tag of the previous message, w, by the following formula:
w0 = w� f(xi+ i� y0)� f(x

0
i+ i� y0). The replacement property can be easily extended to insertion and

deletion of blocks, and to the modes that use modular 2l � 1 addition or subtraction in the place of the
exclusive-or of the block cipher outputs.

4. Out-of-order Veri�cation. The veri�cation of the authentication tag can proceed even if the blocks of
the message arrive out of order as long as each block is accompanied by its index and the �rst block has
been retrieved.

5 Security Considerations

In this section, we provide evidence for the security of the XCBC modes against both adaptive chosen-
plaintext and message-integrity attacks. We also present the security of the XECB modes in adaptive
chosen-message attacks.

We �rst address the security (i.e., secrecy) of the XCBC$ mode against adaptive chosen-plaintext attacks.
The theorems and proofs that demonstrate that the stateful mode (XCBC) and the two-key variations are
secure in a left-or-right sense [1] are similar to that for the XCBC$ mode and, therefore, will be omitted.

The Lemma and Theorem below, which establish the security (i.e., secrecy) of the XCBC$ mode are
restatements of Lemma 16 and Theorem 17 respectively, which are presented for the CBC mode in the full
version of the Bellare et al. paper ([1]). The proof of the Lemma and Theorem are similar to those for the

13

CBC mode and hence are omitted.

Lemma 1 [Upper bound on the security of the XCBC$ mode in random function model]
Let XCBC$R be the implementation of the XCBC$ mode with the family of random functions R(l; l).
Let A be any adversary attacking XCBC$R in the left-or-right sense, making at most q0 queries, totaling
at most �0 bits. Then, the adversary's advantage is

AdvlrA � �XCBC$
def
=

�02

l2
�
�0

l

!
1

2l
:

The following theorem de�nes the security of the XCBC$ mode against an adaptive chosen-plaintext
attack when the XCBC$ mode is implemented with a (q; t; �)-pseudorandom function family F . F is
(q; t; �)-pseudorandom, or (q; t; �)-secure, if an adversary (1) spends time t to evaluate f = FK at q input
points via adaptively chosen queries, and (2) has a negligible advantage bounded by � over simple guessing
in distinguishing the output of f from that of a function chosen at random from R.

Theorem 1 [Security of XCBC$ in Adaptive Chosen-Plaintext Attacks]
Suppose F is a (t; q; �)-secure PRF family with block length l. There is a constant c > 0 such that for any
number of queries qe totaling �

0 bits of memory and taking time t0, the XCBC$(F) is (t0; q0; �0; �0)-secure

in the left-or-right sense, for �0 = q0l, t0 = t� c�0, and �0 = 2�+ �XCBC$ where �XCBC$
def
=
�
�02

l2
� �0

l

�
1
2l
.

The XCBC$ and XCBC modes can easily be analyzed assuming F is a SPRP family (not a PRF family),
since AES is an intended block cipher for these modes. Hence only needs to apply the results of Proposition
8 of Bellare et al. [1] to the result of Theorem 1. A similar lemma and theorem hold for chosen-plaintext
attacks in a real-or-random sense, as de�ned by Bellare et al. [1].

In establishing the security of the XCBC$ mode against the message-integrity attack, let the parameters
used in the attack be bound as follows: qe � q0, since the XCBC$ mode is also chosen-plaintext secure,
te + tv � t, and �00 = �e + �v � ql. Let the forgery veri�cation parameters qv; �v; tv be chosen within the
constraints of these bounds and to obtain the desired Pr

f
R
 F

[Succ].

Theorem 2 [Security of XCBC$-XOR in a Message-Integrity Attack]
Suppose F is a (t; q; �)-secure SPRP family with block length l. The mode XCBC$-XOR is secure against
a message-integrity attack consisting of qe + qv queries, totaling �e + �v � ql bits, and taking at most
te + tv � t time; i.e., the probability of adversary's success is

Pr
f
R
 F

[Succ] � �+
�v(�v � l)

l22l+1
+
qe(qe � 1)

2l+1
+

(qe + 1)�v
l2l

+
�v
l2l+1

(log2
�v
l
+ 3) +

qv�e
l2l

(log2
�e
l
+ 3):

(The proof of Theorem 2 can be found in Appendix A.) Note that parameters qe; �e; te can be easily stated
in terms of secrecy parameters (t0; q0; �0; �0) above by introducing a constant c0 de�ning the speed of the
XOR function.

Theorem 2 above allows us to estimate the complexity of a message-integrity attack.5 In a successful attack,

Pr
f
R
 F

[Succ] 2 (negligible; 1]. To estimate complexity, we set the probability of success when f
R
 P l to

5Technically, the complexity of a successful integrity attack, and the bound of Theorem 2, should account for the success of
a secrecy attack; i.e., the secrecy bound shown of Lemma 1 above (adjusted for the use of PRPs) should be added to the bound
in Theorem 2. This is the case because, in general, in modes using the same key for both secrecy and integrity, a successful
secrecy attack can break integrity and, vice-versa, a successful integrity attack can break secrecy. (This can be shown using the
secrecy and integrity properties of the IGE mode; viz., http://csrc.nist.gov/encryption/modes/proposedmodes.) As suggested
below, the addition of the secrecy bound would not a�ect the complexity of a successful integrity attack.

14

the customary 1=2, and assume that the attack parameters used in the above bound, namely �e
l
; �v
l
, are of

the same order or magnitude, namely 2�l, where 0 < � < 1. Also, since the shortest message has at least
three blocks, qe; qv � b

2�l

3 c.

In this case, by setting

qe(qe � 1)

2l+1
+
�v(�v � l)

l22l+1
+

(qe + 1)�v
l2l

+
�v
l2l+1

(log2
�v
l
+ 3) +

qv�e
l2l

(log2
�e
l
+ 3) = 1=2;

we obtain (by ignoring the b:c function) the equation 22�l 6�l+34
9 + 2�l 3�l+11

3 = 2l, which allows us to
estimate � for di�erent values of l. (In this estimate, we can ignore the term in 2�l since it is insigni�cant
compared to the other term of the sum.) For example, for l = 64; � � 29

64 , for l = 128; � � 61
128 , and for

l = 256; � � 124
256 . Hence, this attack is very close to a square-root attack (i.e., � ! 1

2 as l increases),
and remains this way even is the secrecy bound of Lemma 1 (adjusted for PRPs) is added to the integrity
bound. Thus the security payo� of improved bounds is limited when using families of SPRPs.

A variant of Theorem 2 can be proved for the stateful modes. Furthermore, similar theorems hold for
single-key stateless modes. The statement and proof for such theorems are similar to the statement and
proof for the integrity theorem for the stateless mode, and hence, are omitted.

The XECB-MAC modes are intended to be secure against adaptive chosen-message attacks [2] consisting of
up to qs signature queries totaling at most �s bits and using time up to ts, and qv veri�cation queries totaling
at most �v bits and using time at most tv. The security of the XECBC-MAC mode, when implemented
with a PRF family, is established by the following theorem. (The restatement of this theorem in terms of
a family of PRPs, such as AES, and the corresponding proof modi�cations are pretty much standard.)

Theorem 3 [Security of XECBC-MAC in an Adaptive Chosen-Message Attack]
Suppose F is a (t; q; �)-secure PRF family with block length l. The message authentication mode (Sign-
XECBCf , Verify-XECBCf , KG) is secure against adaptive chosen-message (qs; qv) attacks consisting of
qs + qv queries totaling �s + �v � ql bits and taking at most ts + tv � t time; i.e., the probability of
adversary's success is

Pr
f
R
 F

[Succ] � �+
�v
l2l

(log2
�v
l
+ 3) +

qs�v
l2l

+

�
qs + 2qv +

�s
2l

�
�s
l2l+1

(log2
�s
l
+ 3):

The proof of this theorem is similar to that of Theorem 2 and is presented in Appendix B.

We also present a theorem for the security of the XECBS-MAC mode. (The restatement of this theorem
in terms of a family of PRPs, such as AES, and the corresponding proof modi�cations are pretty much
standard.)

Theorem 4 [Security of XECBS-MAC in an Adaptive Chosen-Message Attack]
Suppose F is a (t; q; �)-secure PRF family with block length l. The message authentication mode (Sign-
XECBCf , Verify-XECBCf , KG) is secure against adaptive chosen-message (qs; qv) attacks consisting of
qs+ qv queries (qv � qs) totaling �s+�v � ql bits and taking at most ts+ tv � t time; i.e., the probability
of adversary's success is

Pr
f
R
 F

[Succ] � �+
qv
2l

+
�v
l2l+1

(log2
�v
l
+ 3) +

�
qv +

�s
l

�
qs
2l+1

(log2 qs + 3) +�
qv +

�s
l

�
�s
l2l+1

(log2
�s
l
+ 3):

The proof of this theorem is similar to that of Theorems 2 and 3 and is presented in Appendix C.

15

A similar theorem can be provided for the stateless message authentication mode. The complexity of an
attack against XECB-MAC modes can be determined in a similar manner as that of an attack against the
XCBC$-XOR mode.

The security of the XECBS-XOR mode in a message-integrity attack is shown by the theorem bellow.

Theorem 5 [Security of XECBS-XOR in a Message-Integrity Attack]
Suppose F is a (t; q; �)-secure SPRP family with block length l. The mode XECBS-XOR is secure against
a message-integrity attack consisting of qe + qv queries (qv � qe), totaling �e + �v � ql bits, and taking at
most te + tv � t time; i.e., the probability of adversary's success is

Pr
f
R
 F

[Succ] � �+
�v(�v � l)

l22l+1
+
qv
2l

+
�v
l2l+1

(log2
�v
l
+ 3) +�

qv +
�e
l

�
qe
2l+1

(log2 qe + 3) +

�
qv +

�e
l

�
�e
l2l+1

(log2
�e
l
+ 3) +

�e(�e � l)

l22l+1
:

(The proof of Theorem 5 can be found in Appendix D). Note that maximum allowable values for qs and
qe in Theorems 4 and 5 can be determined by setting the probability of successful forgery to a desired value.

Acknowledgments

We thank David Wagner for pointing out an oversight in an earlier version of Theorem 2, Tal Malkin for
her thoughtful comments and suggestions, Omer Horvitz and Radostina Koleva for their careful reading
of earlier versions of this paper.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, \A Concrete Security Treatment of Symmetric
Encryption," Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE, 1997,
(394-403). A full version of this paper is available at http://www-cse.ucsd.edu/users/mihir.

[2] M. Bellare, R. Guerin, and P.Rogaway, \XOR MACs: New methods for message authentication using
�nite pseudo-random functions", Advances in Cryptology- CRYPTO '95 (LNCS 963), 15-28, 1995.
(Also U.S. Patent No. 5,757,913, May 1998, and U.S. Patent No. 5,673,318, Sept. 1997.)

[3] J. Black and P. Rogaway, \CBC MACs for Arbitrary-Length Messages: The Three-key Constructions,"
Advances in Cryptology - CRYPTO '00 Springer Verlag (LNCS 1880), pp. 197-215, Aug. 2000.

[4] M. Bellare and C. Namprempre, \Authenticated Encryption: Relations among notions and analysis of
the generic composition paradigm," manuscript, May 26, 2000. http://eprint.iacr.org/2000.025.ps.

[5] C.M. Campbell, \Design and Speci�cation of Cryptographic Capabilities," in Computer Security and
the Data Encryption Standard, (D.K. Brandstad (ed.)) National Bureau of Standards Special Publica-
tions 500-27, U.S. Department of Commerce, February 1978, pp. 54-66.

[6] Open Software Foundation, \OSF - Distributed Computing Environment (DCE), Remote Procedure
Call Mechanisms," Code Snapshot 3, Release, 1.0, March 17, 1991.

[7] V.D. Gligor and B. G. Lindsay,\Object Migration and Authentication," IEEE-Transactions on Software
Engineering, SE-5 Vol. 6, November 1979. (Also IBM-Research Report RJ 2298 (3l04), August 1978.)

16

[8] V.D. Gligor, and P. Donescu, \Integrity-Aware PCBC Schemes," in Proc. of the 7th Int'l Workshop
on Security Protocols, (B. Christianson, B.Crispo, and M. Roe (eds.)), Cambridge, U.K., LNCS 1796,
April 2000.

[9] R.R. Juneman, S.M. Mathias, and C.H. Meyer, "Message Authentication with Manipulation Detection
Codes," Proc. of the IEEE Symp. on Security and Privacy, Oakland, CA., April 1983, pp. 33-54.

[10] J. Katz and M. Yung, \Complete characterization of security notions for probabilistic private-key
encryption," Proc. of the 32nd Annual Symp. on the Theory of Computing, ACM 2000.

[11] D.E. Knuth, \The Art of Computer Programming - Volume 2: Seminumerical Algorithms," Addison-
Wesley, 1981 (second edition), Chapter 3.

[12] J. T. Kohl, \The use of encryption in Kerberos for network authentication", Advances in Cryptology-
CRYPTO '89 (LNCS 435), 35-43, 1990.

[13] C.S. Jutla, \Encryption Modes with Almost Free Message Integrity," IBM T.J. Watson Research
Center, Yorktown Heights, NY 10598, manuscript, August 1, 2000. http://eprint.iacr.org/2000/039.

[14] M Luby and C. Racko�, \How to construct pseudorandom permutations from pseudorandom func-
tions", SIAM J. Computing, Vol. 17, No. 2, April 1988.

[15] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press,
Boca Raton, 1997.

[16] M. Naor and O. Reingold, \From Unpredictability to Indistinguishability: A Simple Construction
of Pseudo-Random Functions from MACs," Advances in Cryptology - CRYPTO '98 (LNCS 1462),
267-282, 1998.

[17] RFC 1510, \The Kerberos network authentication service (V5)", Internet Request for Comments 1510,
J. Kohl and B.C. Neuman, September 1993.

[18] P. Rogaway, \The Security of DESX," RSA Laboratories Cryptobytes, Vol. 2, No. 2, Summer 1996.

[19] P. Rogaway, \OCB Mode: Parallelizable Authenticated Encryption", Preliminary Draft, October 16,
2000, available at
http://csrc.nist.gov/encryption/aes/modes/rogaway-ocb1.pdf.

[20] P. Rogaway, \PMAC: A Parallelizable Message Authentication Mode," Preliminary Draft, October
16, 2000, available at
http://csrc.nist.gov/encryption/aes/modes/rogaway-pmac1.pdf.

[21] S. G. Stubblebine and V. D. Gligor, \On message integrity in cryptographic protocols", Proceedings
of the 1992 IEEE Computer Society Symposium on Research in Security and Privacy, 85-104, 1992.

Appendix A - Proof [Security of the XCBC$-XOR in a Message-Integrity Attack]

Notation: Throughout this proof, the superscripts of variables xp; zp; yp, and rp0 denote the plaintext,
hidden ciphertext, ciphertext, and initial random value of a queried message p; 1 � p � qe, whereas the
(primed) variables x0i, z0i, y0i, and r0i0 denote the plaintext, hidden ciphertext, ciphertext, and the initial
random value of the i-th forged (i.e., unqueried) message, 1 � i � qv. The length of the plaintext of

17

message p is denoted by np = jxpj and that of forgery y0i by n0i = jx
0ij blocks. (These lengths do not

include the last plaintext block that holds the value of the XOR function.)

To �nd an upper bound on the probability of an adversary's success we (1) de�ne four types of events
on which we condition the adversary's success, (2) express the upper bound in terms of the conditional
probabilities obtained, and (3) compute upper bounds on these probabilities. Our choice and number of
conditioning events is motivated exclusively by the need to obtain a (good) upper bound for the probability
of the adversary's success. Undoubtedly, other events could be used for deriving alternate upper bounds.

To provide some intuition for the choice of conditioning events de�ned, we give examples of events that
cause an adversary's success. (The reader can skip these examples without loss of continuity.)

Examples of Adversary's Success. A way for the adversary to �nd a forgery y0 that passes the
integrity check g(x0) = x0n+1, is to look for collisions in the input of f�1, namely collisions of the (1)
hidden ciphertext blocks generated during the decryption of a forgery, z0s; 1 � s � n + 1, and (2) ini-
tialization block y00 (i.e., block 0 of the forged ciphertext). These blocks could collide either with blocks
yp0 ; z

p
k; 1 � p � qe; 1 � k � ni+1 obtained at encryption or among themselves. The following four examples

illustrate why such collisions cause an adversary's success. Other such examples, and other ways to �nd
forgeries, exist.

Example 1 { Collisions between blocks z0s and z
p
k

Suppose that all hidden ciphertext blocks z0s obtained during the decryption of forgery y0 collide with
some hidden ciphertext blocks zpk obtained at encryption. If this event occurs during forgery decryption,
we declare pessimistically that the adversary is successful. Why is the adversary successful? Among the
forgeries that make this event true, some will decrypt correctly with probability one. For example, if any
two of the hidden ciphertext blocks between position 1 and np of a queried message p are swapped, the
decryption of the resulting hidden ciphertext will pass the integrity check g(x0) = x0n+1 with probability
one (viz., [15], Example 9.89, pp. 367-368, for a similar example). Thus, any forgery that generates such
hidden ciphertext at decryption will pass this integrity check with probability one.

Why is our criterion for adversary's success based on such a collision event pessimistic? Among the forg-
eries that make this event true, some will decrypt correctly with negligible probability. These forgeries
include truncations of the ciphertext of already queried messages.6 For truncations, the integrity check
cannot pass with probability greater than 1=2l (and for this reason we can focus on other types of forgeries
for the rest of this proof).

Example 2 { Collisions among the z0s blocks

Suppose that two hidden ciphertext blocks z0s and z
0
t obtained during forgery decryption do not collide with

any hidden ciphertext blocks obtained during encryption, but collide with each other. If this event occurs
during forgery decryption, we declare pessimistically that the adversary is successful. Why is the adversary
successful? Among the forgeries that make event true, some will decrypt correctly with probability one. For

6Let the forged ciphertext y0 be a truncation of ciphertext yp obtained at encryption; i.e., y0s = yps ; 8s; 0 � s � n0+1; jy0j =
n0 + 1 and n0 < np, i.e., n

0 + 1 � np. The condition n0 + 1 � np (due to truncation) implies that all the plaintext blocks
x
p
1; � � � ; x

p

n0+1
are constants. In this case, z0s = zps ; 8s; 0 � s � n0 + 1 and thus x0s = xps ; 8s; 0 � s � n0 + 1. The integrity check,

z
p
0 � x

p
1 � � � � � x

p

n0
� x

p

n0+1
= 0; is the exclusive-or of a random and uniformly distributed variable z00 = f 0(r00) = f 0(rp0) = z

p
0 ,

where f 0
R

 Rl;l, and constant plaintexts xp1; � � � ; x
p

n0+1
. Hence, Pr[zp0 � x

p
1 � � � � � x

p

n0 � x
p

n0+1
= 0] = 1

2l
:

18

example, if any two identical blocks never seen among the hidden ciphertext blocks obtained at encryption
are inserted into two adjacent positions between 1 and np of the hidden ciphertext of message p (i.e.,
z0s = z0s+1; 1 � s < np � 1), the decryption of the resulting hidden ciphertext will pass the integrity check
g(x0) = x0n+1 with probability one (viz., [15], Example 9.89, pp. 367-368, for a similar example). Thus,
any forgery that generates such hidden ciphertext blocks at decryption will pass this integrity check with
probability one.

Why is our criterion for adversary's success based such a collision event pessimistic? Among the forgeries
that make this event true, some will decrypt correctly with negligible probability. For example, consider
forgeries that cause an odd number of identical hidden ciphertext blocks to be generated during decryption.
Suppose these blocks have the following properties: (1) they do not collide with any hidden blocks obtained
at encryption, (2) they do not collide with any initialization blocks yi0; 1 � i � qe, obtained at encryption,
(3) they do not collide with the initialization block y00 of the forgery, and (4) they appear between positions
1 and np+1 of the hidden ciphertext of queried message p obtained at encryption. Forgeries that produce
such blocks during decryption cannot pass the integrity check with probability greater than 1=2l. This is
the case because the decryption of these identical hidden blocks produces random, uniformly distributed
plaintext blocks that are independent of any other plaintext blocks in g(x0) = x0n+1 and can only cancel
each other out in pairs under the exclusive-or operation.

The next two examples refer to collision events of the initialization block y00. These can lead to forgeries
that satisfy the conditions of the events de�ned in Examples 1 and 2 above, and hence such collisions
contribute to an adversary's success.

Example 3 { Collisions between blocks y00 and zpk+1

Suppose that, during the decryption of forgery y0, block y00 collides with some hidden ciphertext block
obtained during encryption. Let y00 = zpk+1; 1 � p � qe; 1 � k � np. This means that the lower order bits
of r00 = f�1(y00) = xpk+1 � zpk can be predicted (at least) to the same extent as those of zpk, since x

p
k+1 is

chosen. In (pessimistic) case the entire r00 is predicted, the adversary's forgeries can satisfy the collision
events of Examples 1 and 2 above.

Example 4 { Collisions between blocks yi0 and yp0

Suppose that an adversary �nds a collision between the initialization blocks of two ciphertext messages
i and p obtained at encryption, namely yi0 and yp, and chooses the initialization block of the forgery y0

to be y00 = yi0. If the adversary can �nd such a collision event at encryption, the adversary can also �nd
forgeries that satisfy the collision events of Example 1 at decryption. For example, the adversary can
create a ciphertext message that has not been seen before (i.e., a forgery) by mixing the blocks of two
ciphertext messages obtained at encryption whose initial ciphertext blocks collide; e.g., ciphertext block
yik of messages i replaces ciphertext ypk 6= yik of message p, where y00 = yi0 = yp0 ; i 6= p; ni � np; 1 � i; p � qe,
1 � k � ni.

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
four conditioning events based on collisions in the input of f�1. Intuition for the choice of events is provided
by Examples 1 { 4 above.

For each veri�cation query (or forgery) y0i, 1 � i � qv, we de�ne two types of collision events, Ci and Di,
that refer to the hidden ciphertext blocks z0is obtained during forgery decryption.

19

Event Ci includes all the instances when the hidden blocks z0is of forgery y0i collide either with initialization
blocks yp0 or with some hidden ciphertext blocks zpk generated during encryption, where 1 � p � qe; 1 �
k � np + 1. To de�ne event Ci formally, let S be the the union of all the yp0 blocks and all the hidden
ciphertext blocks zpk produced at encryption:

S = fyp0; 1 � p � qeg [fz
p
k ; 1 � p � qe; 1 � k � np + 1g:

Also let Zi be the collection of hidden ciphertext blocks z
0i generated during the decryption of the arbitrary

forgery y0i; 1 � i � qv, that do not collide with blocks of S:

Zi = fz
0i
s ; 1 � s � n0i + 1; z0is =2 Sg:

Hence, event Ci (Collision) is de�ned by:
Ci : Zi = ;;

i.e., Zi is empty; or, equivalently, Ci : Zi � S.

The second type of collision event de�ned for the arbitrary forgery y0i; 1 � i � qv, refers to collisions
among blocks y0i0 ; z

0i
s ; 1 � s � n0i + 1 where z0is 2 Zi, and is denoted by Di (not distinct) below. This event

is de�ned in terms of its complementary event Di (distinct), which states that there is at least a hidden
block z0is 2 Zi that does not collide with any other hidden block z0it 2 Zi or with y0i0 .

7 It is clear that this
de�nition makes sense only when Zi 6= ;. Formally, if Zi 6= ;,

Di : 9z
0i
s 2 Zi; 1 � s � n0i + 1 : z0is 6= z0it ;8z

0i
t 2 Zi; t 6= s; 1 � t � n0i + 1 and z0is 6= y0i0 :

The third type of collision event for the arbitrary forgery y0i; 1 � i � qv, which is denoted by Ii below,
includes all the instances when the initialization block y0i0 collides with some hidden ciphertext blocks
generated during encryption (i.e., zpk; 1 � p � qe; 1 � k � ni + 1). Formally, event Ii is de�ned by:

Ii : y
0i
0 2 S � fy

p
0 ; 1 � p � qeg;

or, equivalently,
Ii : y

0i
0 2 fz

p
k; 1 � p � qe; 1 � k � np + 1g;

The fourth type of collision event, denoted by E below, de�nes collisions among the initialization blocks
(i.e., block 0 of the ciphertext) generated at encryption. (Hence, this collision event is independent of the
forgery y0i.) Formally, this event is de�ned as

E : yi0 = yp0;

where i 6= p; 1 � i; p � qe.

Note 0: Events denoting collisions in the inputs to f during encryption, such as those used in the proofs
of Lemma 1 and Theorem 1, can also allow an adversary to produce a successful forgery. For example,
collisions in the input to f during the encryption of a message p; 1 � p � qe, cause hidden ciphertext
blocks generated during encryption to collide, thereby leading to the discovery of rp0; 1 � p � qe. This
would break both integrity and secrecy. To account for these events, we could condition on them (in a
similar manner as that used for event E below) and add the bound provided by Lemma 1 (adjusted for the

use of f
R
 P l) to the �nal bound. Technically, this would enable us to assume that an adversary could

7Recall that hidden ciphertext blocks z0is ; z
0i
t 2 Zi do not collide with any z

p

k or with any y
p
0 obtained during encryption,

where 1 � p � qe; 1 � k � np + 1.

20

not discover rp0 ; 1 � p � qe, and that rp0 are random, uniformly distributed and independent of each other.
For the sake of brevity, we make this assumption below without actually conditioning on collision events in
the input to f at encryption (for the reasons discussed in the estimation of the complexity of a successful
integrity attack following the statement of Theorem 2).

Note 1: Other events than the four de�ned above could cause an adversary's forgery y0i to pass the integrity
check g(x0i) = x0ini+1. However, Claim 1 below makes it clear that the success of such a forgery could only
occur with probability no greater than 1=2l.

Note 2: Another collision event in the input of f�1, y0i0 = yp0 ; 1 � i � qv; 1 � p � qe, can be caused
simply by the adversary's choice of the initial forgery block. Unlike the four events de�ned above (and
illustrated by Examples 1 { 4), the occurrence of this collision event cannot cause an adversary's success
in the absence of other collision events. Nevertheless, the occurrence of this event is accounted for in the
proof; viz., Proof of Claim 3 below.

Upper bound on the Probability of Successful Forgery. Let F be a SPRP family, P l be the set

of all permutations on f0; 1gl, and f
R
 P l denote the random selection of f and f�1 from P l. Let S

f
R
 P l

represent all the ciphertext blocks produced at the encryption of the qe queries (viz., the de�nition of S

used for collision events above) when the XCBC$-XOR scheme is implemented with f
R
 P l; i.e.,

S
f
R
 P l

= ff(rp0); 1 � p � qeg [ff(x
p
k � zpk�1); 1 � p � qe; 1 � k � np + 1g:

For any f
R
 P l and S

f
R
 P l

, we de�ne the �nite family of random functions GS : f0; 1gk �f0; 1gl ! f0; 1gl

whose members are f; f , with f de�ned as:

f =

8<
:

f�1(t); t 2 S
f
R
 P l

v(t); t 2 f0; 1gl � S
f
R
 P l

; v
R
 Rl;l

;

where Rl;l is the set of all functions from f0; 1gl to f0; 1gl. We denote by f
R
 GS the random selection of

f and f from GS.

The family of functions GS behaves exactly like P l when the plaintext blocks input to f and ciphertext
blocks input to f�1 are those generated during the encryption of any adversary's qe chosen-plaintext
queries, and behaves exactly like Rl;l during the decryption of any ciphertext block not in S

f
R
 P l

.

Note that the familyGS is well-de�ned for any message-integrity attack because, by de�nition (viz., Section
2), in any such attack, all qe encryption queries precede all qv forgery veri�cation queries. Thus S

f
R
 P l

and

f are completely determined before any of the qv forgery veri�cation queries are possible, whose processing
would require block decryption with f . (Also note that we allow qe = 0 and, in this case, S

f
R
 P l

= ; and

f = v.)

For the balance of this proof, we use the result of Fact 1 below (whose proof can be found at the end of

this appendix) that provides the reduction from f
R
 F to f

R
 GS.

Fact 1
(a)

Pr
f
R
 F

[Succ] � �+ Pr
f
R
 P l

[Succ]:

21

(b)

Pr
f
R
 P l

[Succ] � Pr
f
R
 GS

[Succ] +
�v(�v � l)

l22l+1
:

Fact 1 reduces the problem to �nding an upper bound for Pr
f
R
 GS

[Succ]. Unless we state otherwise, as-

sume that f
R
 GS (and drop this subscript from Pr

f
R
 GS

[Succ].)

To compute an upper bound for the probability of successful forgery, Pr[Succ], we condition on event E
�rst, since this event does not depend on the forgery y0i. Using standard conditioning, we obtain

Pr[Succ] � Pr[E] + Pr[Succ j E]:

Since event E is equivalent to the event that at least a collision happens when qe balls are thrown at
random in 2l buckets [2],

Pr[E] �
qe(qe � 1)

2l+1
:

To �nd an upper bound for Pr[Succ j E], we use the de�nition of adversary's success (viz., the attack
de�nition), which states that at least one forgery (and veri�cation query) y0i succeeds; i.e., there exists an
index i; 1 � i � qv such that g(x0i) = x0i

n0
i
+1. Hence, by union bound,

Pr[Succ j E] �
qvX
i=1

Pr[g(x0i) = x0in0
i
+1 j E]:

To �nd an upper bound for the probability of decrypting a single, arbitrary (non-truncation) forgery y0i

correctly given E, namely for Pr[g(x0i) = x0i
n0
i
+1 j E], we condition on event (Ci or Di). Using the total

probability formula we obtain:

Pr[g(x0i) = x0in0
i
+1 j E] = Pr[g(x0i) = x0in0

i
+1 j E and (Ci or Di)]Pr[Ci or Di j E] +

Pr[g(x0i) = x0in0
i
+1 j E and (Ci and Di)]Pr[Ci and Di j E]:

Hence,8

Pr[g(x0i) = x0in0
i
+1 j E] � Pr[Ci or Di j E] + Pr[g(x0i) = x0in0

i
+1 j E and Ci and Di]:

However, both event Ci and event Di depend on the event Ii (viz., Example 3 above). Hence, to compute
Pr[Ci or Di j E] we condition on event Ii and, using the total probability formula, we obtain:

Pr[Ci or Di j E] = Pr[Ci or Di j E and Ii]Pr[Ii j E] + Pr[Ci or Di j E and Ii]Pr[Ii j E]

� Pr[Ii j E] + Pr[Ci or Di j E and Ii]:

Furthermore,

Pr[Ci or Di j E and Ii] = Pr[Ci or Di j Ci and E and Ii]Pr[Ci j E and Ii]

+Pr[Ci or Di j Ci and E and Ii]Pr[Ci j E and Ii]

� Pr[Ci or Di j Ci and E and Ii] + Pr[Ci j E and Ii]

= Pr[Ci j E and Ii] + Pr[Di j Ci and E and Ii];

8This also follows from our pessimistic assumption that if event (Ci or Di) is true, then the adversary has broken integrity.

22

since event [Ci or Di j Ci and E and Ii] is equivalent to event [Di j Ci and E and Ii].

Combining the results of the last three inequalities, we obtain:

Pr[g(x0i) = x0in0
i
+1 j E] � Pr[g(x0i) = x0in0

i
+1 j E and Ci and Di] +

Pr[Ii j E] + Pr[CijE and Ii] + Pr[Di j Ci and E and Ii]:

The probabilities that appear at the right side of this inequality are bounded as shown in the following
four claims whose proofs are included below. (Note again that forgeries based on truncations of ciphertext
messages obtained at encryption are not included in any of the claims below. All these claims refer to a
single, arbitrary (non-truncation) forgery y0i; 1 � i � qv.)

Claim 1

Pr[g(x0i) = x0in0
i
+1 j E and Ci and Di] �

1

2l
:

Claim 2

Pr[Ii j E] �
1

2l
�e
2l

�
log2

�e
l
+ 3

�
:

Claim 3

Pr[CijE and Ii] �
(n0i + 1)qe

2l
+

1

2l
�e
2l

�
log2

�e
l
+ 3

�
:

Claim 4

Pr[Di j Ci and E and Ii] �
n0i
2l+1

(log2 n
0
i + 3) +

n0i + 1

2l
:

Note that if the maximum length m of the encrypted messages is known, the log2
�e
l
term of Claims 2 and

3 can be replaced with log2m.

Further in this proof as well as in the proofs of Claims 2 { 4, we use the following three facts, whose proofs
can be found at the end of this appendix.

Fact 2
For any 1 � i � 2l � 1, let m be de�ned by i = d � 2m, where d is odd. If r0 is random and uniformly
distributed, then for any constant a,

Pr[i� r0 = a] �
1

2l�m
:

Fact 3
For any N > 1, let m be de�ned by a = d� 2m, where 1 � a � N � 1 and d is odd. Then

N�1X
a=1

2m �
N � 1

2
(log2(N � 1) + 3):

Fact 4
If for any p; 1 � p � qe; np > 0, and if

Pqe
p=1(np + 1) � �e

l
, then,

qeX
p=1

(np + 1) log2(np + 1) �
�e
l
log2

�e
l
;

23

and, further, if m = max(np + 1), then

qeX
p=1

(np + 1) log2(np + 1) �
�e
l
log2m:

Note that a similar relation is obtained if the summation is done for the veri�cation queries, i.e.,

qvX
i=1

(n0i + 1) log2(n
0
i + 1) �

�v
l
log2

�v
l
;

and, further, if m0 = max(n0i + 1), then

qvX
i=1

(n0i + 1) log2(n
0
i + 1) �

�v
l
log2m

0:

By Claims 1{4, the probability of success given E for a single, arbitrary (non-truncation) forgery is

Pr[g(x0i) = x0in0
i
+1 j E] �

1

2l
+

(n0i + 1)qe
2l

+
1

2l

�
�e
l
log2

�e
l
+
3�e
l

�
+

n0i
2l+1

(log2 n
0
i + 3) +

n0i + 1

2l

=
(n0i + 1)(qe + 1)

2l
+

n0i
2l+1

(log2 n
0
i + 3) +

1

2l

�
�e
l
log2

�e
l
+

3�e
l

�
:

Hence, the probability of adversary's success when he has up to qv veri�cation queries totaling at most �v
bits and using up to tv time is bounded by

Pr[Succ] � Pr[E] +
qvX
i=1

Pr[g(x0i) = x0in0
i
+1 j E]

�
qe(qe � 1)

2l+1
+

qvX
i=1

�
(n0i + 1)(qe + 1)

2l
+

n0i
2l+1

(log2 n
0
i + 3) +

1

2l

�
�e
l
log2

�e
l
+
3�e
l

��

�
qe(qe � 1)

2l+1
+
�v(qe + 1)

l2l
+

�v
l2l+1

(log2
�v
l
+ 3) +

qv
2l

�
�e
l
log2

�e
l
+

3�e
l

�

because
Pqv

i=1(n
0
i + 1) � �v

l
and

qvX
i=1

n0i
2l+1

(log2 n
0
i + 3)

qvX
i=1

n0i + 1

2l+1
(log2(n

0
i + 1) + 3) �

�v
l2l+1

(log2
�v
l
+ 3)

by Fact 4.

Furthermore, by using Fact 1, the probability of adversary's success when f
R
 F is bounded by:

Pr
f
R
 F

[Succ] � �+
�v(�v � l)

l22l+1
+
qe(qe � 1)

2l+1
+
�v(qe + 1)

l2l
+

�v
l2l+1

(log2
�v
l
+ 3) +

qv
2l

�
�e
l
log2

�e
l
+

3�e
l

�
:

Also, if the maximum length m of the encrypted messages is known, the last term of the above bounds can

be replaced with qv
2l

�
�e
l
log2m+ 3�e

l

�
, and if the maximum length m0 of the decryption queries is known,

the next to the last term of the above bounds can be replaced with �v
l2l+1

(log2m
0 + 3).

24

The parameters of the attack are bounded as follows: qe � q0, since the scheme is also supposed to be
chosen-plaintext secure, te + tv � t, and �00 = �e + �v � ql. The forgery veri�cation parameters qv; �v; tv
can be chosen within the constraints of these bounds and the desired Pr

f
R
 F

[Succ]. ut

Proofs of Claims 1{4

Notation: Recall that Claims 1 { 4 above refer to a single, arbitrary (non-truncation) forgery y0i; 1 � i � qv.
Hence, to simplify notation in the proof of these claims, we drop the forgery index i from the events
Di; Ci; Ii, and simply use D;C; I for these events. We also drop the forgery index i from the collection Zi
and use Z instead. Furthermore, we drop the prime and forgery index i from the ciphertext y0i, hidden
ciphertext, z0i, plaintext x0i, r0i0 , and the length n0i. Hence, when we refer to the (single) forgery, we use
the variables y, for forgery ciphertext, x for forgery plaintext, z for the hidden blocks of forgery y, y0 for
the initialization block of forgery y (and r0 for the decryption of the initialization block y0), and n for the
length of x. Superscripts continue to identify encryption queries. In the proof of Claims 1 { 4, we use the
notation PrA[:] = Pr[: jA], where A is an arbitrary event.

Proof of Claim 1

If C is true, then Z is not empty. For any zs 2 Z,

xs = f(zs)� zs�1

Since zs does not collide with any hidden blocks obtained at encryption, and event (C and D) is true (i.e.,
there is at least one hidden block zs 2 Z by event C that does not collide with another hidden ciphertext
block zt 2 Z; s 6= t or with y0 by event D), then f(zs) = v(zs) is uniformly distributed and independent of

anything else (since v
R
 Rl;l); i.e., independent of any other f(zk); zk 2 Z, k 6= s, and independent of any

zk; 0 � k � n+ 1. Hence, the corresponding plaintext block xs is uniformly distributed and independent
of anything else. Thus,

g(x) � xn+1 = z0 � x1 � � � � � xn � xn+1

is random and uniformly distributed, and hence:

Pr[g(x) � xn+1 = 0 j E and C and D] = Pr[g(x) = xn+1 j E and C and D] �
1

2l
:

ut

Proof of Claim 2

Event I : y0 2 S � fyp0 ; 1 � p � qeg = fz
p
k; 1 � p � qe; 1 � k � np + 1g is equivalent to the union of all

possible events y0 = zpk; 1 � p � qe; 1 � k � np + 1. Hence, by union bound,

Pr[I j E] �
qeX
p=1

np+1X
k=1

Pr[y0 = zpk j E]:

We determine an upper bound for Pr[y0 = zpk j E] based on

y0 = zpk , y0 = ypk � k � rp0 , k � rp0 = ypk � y0:

25

In this expression, rp0 is random and uniformly distributed, and from the de�nition of event E, if E is true,
then rp0 is random and uniformly distributed. Hence, since ypk � y0 is a known constant, by Fact 2,

Pr[y0 = zpk j E] = Pr[k � rp0 = ypk � y0 j E] �
1

2l�m
;

where the exponent m is de�ned by k = d� 2m and d is odd. Hence, for each p; 1 � p � qe, from this and
Fact 3 with N � 1 = np + 1 and a = k,

np+1X
k=1

Pr[y0 = zpk j E] �
1

2l

np+1X
k=1

2m �
1

2l
np + 1

2
(log2(np + 1) + 3):

Since
Pqe

p=1(np + 1) � �e
l
by the de�nition of n+ p and of the attack, we obtain

Pr[I j E] �
qeX
p=1

np+1X
k=1

Pr[y0 = zpk j E] �
1

2l

qeX
p=1

np + 1

2
(log2(np + 1) + 3) �

1

2l
�e
2l

�
log2

�e
l
+ 3

�
;

by Fact 4. Further, if m = max(np + 1), then Pr[I j E] � 1
2l
�e
2l (log2m+ 3), also by Fact 4. ut

Proof of Claim 3

Below we use the notation that PrA[:] = Pr[: jA], where A is an arbitrary event.

C is equivalent to the event that every hidden ciphertext block obtained during decryption is found among
the hidden ciphertext blocks obtained during encryption or among the yp0 blocks obtained at encryption.
This implies that for any s; 1 � s � n + 1 : Pr

I and E
[C] � Pr

I and E
[zs 2 S] by union bound. Since,

S = fyp0; 1 � p � qeg [fz
p
k ; 1 � p � qe; 1 � k � np + 1g, it follows that, by union bound,

Pr
I and E

[zs 2 S] � Pr
I and E

[zs 2 fy
p
0 ; 1 � p � qeg]

+ Pr
I and E

[zs 2 fz
p
k; 1 � p � qe; 1 � k � np + 1g]:

For the �rst term, for any s; 1 � s � n + 1, the event zs 2 fy
p
0 ; 1 � p � qeg is the union of all collision

events zs = yp0 ; 1 � p � qe. Hence,

Pr
I and E

[zs 2 fy
p
0 ; 1 � p � qeg] �

qeX
p=1

Pr
I and E

[zs = yp0]:

But zs = ys� s� r0 by the scheme de�nition, and hence s� r0 = ys� y
p
0 . To compute Pr

I and E
[s� r0 =

ys � yp0], we use the following claim, whose proof can be found at the end of this appendix:

Claim 3.1
Let yp0y

p
1 � � � y

p
np+1 be a queried message, and y = y0y1 � � � yn+1 be a forged ciphertext. If event I is true,

then r0 is random and uniformly distributed. Furthermore, if y0 6= yp0 , then r0 is also independent of rp0 .

Since event I is true, it follows that r0 is random and uniformly distributed (by Claim 3.1 above). Also,
event I and E implies that r0 is random and uniformly distributed by the de�nition of event E. Hence, by
Fact 2,

PrI and E [s� r0 = ys � yp0] �
1

2l�m
;

26

where m is de�ned by s = d � 2m and d is odd. Furthermore, m � log2 s � log2(n+ 1), since s � n+ 1.
Hence, 2m � n+ 1, and

PrI and E [s� r0 = ys � yp0] �
n+ 1

2l
:

Hence, for any s; 1 � s � n+ 1:

Pr
I and E

[zs 2 fy
p
0 ; 1 � p � qeg] �

qeX
p=1

n+ 1

2l
=

(n+ 1)qe
2l

:

To compute an upper bound for the second term, namely on Pr
I and E

[zs 2 fz
p
k; 1 � p � qe; 1 � k �

np + 1g], we are free to choose a hidden ciphertext block at index j of forgery y, namely zj , and then we
only need to show that PrI and E [zj 2 fz

p
k; 1 � p � qe; 1 � k � np + 1g], is bounded. (This is the case

because the bound must be true for any s; 1 � s � n+ 1.)

Thus, the balance of the proof of Claim 3 consists of two parts. In the �rst part, we partition the space
of forgeries that are not truncations into three complementary types and choose a zj (and hence, index
j) for each type. In the second part, we �nd an upper bound for the probability Pr

I and E
[zj 2 fz

p
k; 1 �

p � qe; 1 � k � np + 1g] for each of the chosen zj's. Hence, the maximum of these three upper bounds
represents the upper bound for Pr

I and E
[zj 2 fz

p
k; 1 � p � qe; 1 � k � np + 1g] for all forgeries that are

not truncations.

Part 1. Finding index j depends on the type of forgery. A forgery can be such that a ciphertext obtained
at encryption is the pre�x of the forgery; we call this the pre�x case. The complementary case for the
pre�x case, which we call non-pre�x, includes two separate subcases, namely when y0 is di�erent from any
yi0 of any ciphertext obtained at encryption, or when there is an index i such that y0 = yi0. Hence, in the
latter case, there must be at least a block in the forged ciphertext y that is di�erent from the corresponding
block of the ciphertext of a queried message i, namely yi. Further, the length of the forged ciphertext y,
denoted by n, may be di�erent from the length of the message plaintext de�ned by ni.

This partition of forgery types shows that a forged ciphertext y = y0y1 � � � yn+1, which is not a truncation,
can be in one of the following three complementary types:
(a) 9i; 1 � i � qe : n > ni;8k; 0 � k � ni + 1 : yk = yik; i.e., the forged ciphertext is an extension of the
ciphertext yi (the pre�x case). The non-pre�x case consists of the following two forgery types:
(b1) y0 6= yi0;8i; 1 � i � qe; i.e., the forged ciphertext and all queried-message ciphertexts di�er in the �rst
block.
(b2) 9i; 1 � i � qe : y0 = yi0;9k; 1 � k � min(ni + 1; n + 1) : yk 6= yik; i.e., the forged ciphertext is
obtained by modifying a queried message ciphertext starting with some block between the second and last
block of that queried-message ciphertext. In this case, let j be the smallest index such that yj 6= yij (i.e.,

8k; 0 � k � j � 1 : yk = yik).

Let us choose index j (and hence zj) as follows. For forgeries of type (a), j = ni + 2 (or j > ni + 1);
for forgeries of type (b1), j = 1; and for forgeries of type (b2), j is the smallest index such that
yj 6= yij; 1 � j � minfni + 1; n + 1g. In all cases j � 1, and hence, the chosen ciphertext block zj is
well de�ned.

Part 2. For the index j chosen in Part 1, we �nd an upper bound for Pr
I and E

[zj 2 fz
p
k; 1 � p �

qe; 1 � k � np + 1g]. Event zj 2 fz
p
k; 1 � p � qe; 1 � k � np + 1g is the union of all possible events

27

zj = zpk; 1 � p � qe; 1 � k � np + 1. Hence, union bound leads to:

Pr
I and E

[zj 2 fz
p
k ; 1 � p � qe; 1 � k � np + 1g] �

qeX
p=1

np+1X
k=1

Pr
I and E

[zj = zpk]:

Now we �nd an upper bound for Pr
I and E

[zj = zpk] for each of the three forgery types. In determining
this upper bound, we use the following claim, whose proof can be found at the end of this appendix:

Claim 3.2
Let zpk; 1 � p � qe, be the hidden ciphertext blocks generated at the encryption of a queried message
yp0y

p
1 � � � y

p
np+1, and zj be the chosen hidden ciphertext block generated during the decryption of forgery

y = y0; y1; � � � yn+1. Then 8k; 1 � k � np + 1,

Pr
I and E

[zj = zpk] �
1

2l�m
;

where
(a) if y0 6= yp0, then m = min(m1;m2), with m1 and m2 being de�ned by j = d1�2

m1 , k = d2�2
m2 , where

d1; d2 are odd; and
(b) if y0 = yp0 , where m is de�ned by k � j = d� 2m if k > j, or by j � k = d� 2m if j < k, and d is odd.

Claim 3.2 provides upper bounds for Pr
I and E

[zj = zpk], where p; k are arbitrary values that satisfy the
hypotheses of parts (a) or (b) and zj is the chosen hidden ciphertext block de�ned in Part 1. These hy-
potheses are veri�ed for the chosen j of each forgery type as shown below.

Upper bound for forgeries of type (a).
Let the ciphertext of queried message i be the pre�x of forgery y. To �nd the upper bound in this case,
we partition the sum

Pqe
p=1

Pnp+1
k=1 Pr

I and E
[zj = zpk] into two sums, for p 6= i and p = i, respectively. For

p 6= i, we use Claim 3.2(a), and for p = i we use Claim 3.2(b), to �nd an upper bound for Pr
I and E

[zj = zpk].
Then we �nd individual upper bounds for each of these two sums, and add these upper bounds.

qeX
p=1

np+1X
k=1

PrI and E[zj = zpk] =
qeX

p=1;p6=i

np+1X
k=1

PrI and E [zj = zpk] +
ni+1X
k=1

PrI and E[zj = zik]:

For the �rst sum, note that p 6= i, and recall that for forgeries of type (a) y0 = yi0. Since E is true,
y0 = yi0 6= yp0. Hence, by Claim 3.2(a), Pr

I and E
[zj = zpk] �

1
2l�m

, where m � m2 with m2 being de�ned
by k = d2 � 2m2 and d2 is odd. Thus,

qeX
p=1;p6=i

np+1X
k=1

PrI and E[zj = zpk] �
1

2l

qeX
p=1;p6=i

np+1X
k=1

2m2 :

But, by Fact 3 with N � 1 = np + 1 and a = k,

np+1X
k=1

2m2 �
np + 1

2
(log2(np + 1) + 3):

Hence,
qeX

p=1;p 6=i

np+1X
k=1

Pr
I and E

[zj = zpk] �
1

2l

qeX
p=1;p6=i

np + 1

2
(log2(np + 1) + 3):

28

For the second sum, we note that p = i, which means that y0 = yi0 = yp0, and that j = ni + 2 > k;8k; 1 �
k � ni + 1. Hence, by Claim 3.2(b) PrI and E[zj = zpk] �

1
2l�m

, where j � k = d� 2m and d is odd. Since
j = ni + 2, in follows that j � k = ni + 1; � � � ; 1, and thus,

ni+1X
k=1

Pr
I and E

[zj = zik] �
ni+1X
j�k=1

Pr
I and E

[zj = zik]
1

2l

ni+1X
j�k=1

2m:

But, by Fact 3 with N � 1 = ni + 1 and a = j � k,

ni+1X
j�k=1

2m �
ni + 1

2
(log2(ni + 1) + 3);

and hence,
ni+1X
k=1

Pr
I and E

[zj = zik] �
1

2l
ni + 1

2
(log2(ni + 1) + 3):

Adding the two upper bounds, we obtain

qeX
p=1

np+1X
k=1

Pr
I and E

[zj = zpk] �
1

2l
ni + 1

2
(log2(ni + 1) + 3) +

1

2l

qeX
p=1;p6=i

np + 1

2
(log2(np + 1) + 3)

=
1

2l

qeX
p=1

np + 1

2
(log2(np + 1) + 3):

Since
Pqe

p=1(np + 1) � �e
l
, by Fact 4, it follows that

PrI and E[zj 2 fz
p
k; 1 � p � qe; 1 � k � np + 1g] �

qeX
p=1

np+1X
k=1

Pr
I and E

[zj = zpk] �
1

2l
�e
2l

�
log2

�e
l
+ 3

�
:

Further, if m = max(np + 1), then

PrI and E [zj 2 fz
p
k; 1 � p � qe; 1 � k � np + 1g] �

1

2l
�e
2l

(log2m+ 3) ;

also by Fact 4.

Upper bound for forgeries of type (b1).
For this type of forgery, y0 6= yp0 ;8p; 1 � p � qe. Hence, by Claim 3.2(a), Pr

I and E
[zj = zpk] �

1
2l�m

, where
m � m2 with m2 being de�ned by k = d2 � 2m2 and d2 is odd. By following the same derivation as that
for forgeries of type (a), we obtain:

Pr
I and E

[zj 2 fz
p
k ; 1 � p � qe; 1 � k � np + 1g] �

qeX
p=1

np+1X
k=1

Pr
I and E

[zj = zpk] �

1

2l

qeX
p=1

np+1X
k=1

2m2 �
1

2l

qeX
p=1

np + 1

2
(log2(np + 1) + 3) �

1

2l
�e
2l

�
log2

�e
l
+ 3

�
:

29

Also, if m = max(np + 1), then

Pr
I and E

[zj 2 fz
p
k; 1 � p � qe; 1 � k � np + 1g] �

1

2l
�e
2l

(log2m+ 3) :

Upper bound for forgeries of type (b2).
Let the �rst j� 1 ciphertext blocks of queried message i provide the �rst j� 1 ciphertext blocks of forgery
y. To �nd the upper bound in this case, we partition the sum

Pqe
p=1

Pnp+1
k=1 PrI and E [zj = zpk] into four

terms, �nd individual upper bounds for each term, and then add these upper bounds. The �rst term is a
sum taken for p 6= i and in this case we use Claim 3.2(a) to �nd an upper bound for Pr

I and E
[zj = zpk].

The last three terms are for the case p = i, and two of these terms are sums taken for k < j and k > j,
respectively. For these sums, we apply Claim 3.2(b) to �nd an upper bound for Pr

I and E
[zj = zpk]. For

the remaining term corresponding to i = p and k = j, we show that the event zj = zpk is impossible.

qeX
p=1

np+1X
k=1

Pr
I and E

[zj = zpk] =
qeX

p=1;p6=i

np+1X
k=1

Pr
I and E

[zj = zpk] +
j�1X
k=1

Pr
I and E

[zj = zik] +

Pr
I and E

[zj = zij] +
ni+1X
k=j+1

Pr
I and E

[zj = zik]:

For the �rst of the four terms above, we have the same bound as that of the �rst of the two sums in the
case of forgeries of type (a) above, namely,

qeX
p=1;p 6=i

np+1X
k=1

Pr
I and E

[zj = zpk] �
1

2l

qeX
p=1;p6=i

np + 1

2
(log2(np + 1) + 3):

For the second term, namely
Pj�1

k=1 PrI and E [zj = zik], we note that i = p, which means that y0 = yi0 = yp0,
and k < j. Hence, by Claim 3.2(b), PrI and E [zj = zik] �

1
2l�m

, where j � k = d� 2m and d is odd. Since
k = 1; � � � ; j � 1, it follows that j � k = j � 1; � � � ; 1, and by Fact 3 with N � 1 = j � 1 and a = j � k,

j�1X
k=1

Pr
I and E

[zj = zik] =
j�1X

j�k=1

Pr
I and E

[zj = zik] �
1

2l

j�1X
j�k=1

2m �
1

2l
j � 1

2
(log2(j � 1) + 3):

For the third term, PrI and E [zj = zij] = 0. This is the case because zj = zij , yj � j � r0 = yij � j � ri0
and, since y0 = yi0 , r0 = ri0, it follows that zj = zij , yj = yij, which is impossible by the de�nition of

j. (Recall that for forgeries of type (b2), j is the smallest index such that yj 6= yij; 1 � j � minfni+1; n+1g.)

For the fourth term, namely
Pni+1

k=j+1 PrI and E
[zj = zik], we note that i = p, which means that y0 = yi0 = yp0,

and j < k. Hence, by Claim 3.2(b), Pr
I and E

[zj = zik] �
1

2l�m
, where k � j = d� 2m and d is odd. Since

k = j + 1; � � � ; ni + 1, it follows that k � j = 1; � � � ; ni � j + 1, and by Fact 3 with N � 1 = ni + 1� j and
a = k � j,

ni+1X
k=j+1

PrI and E [zj = zik] =
ni�j+1X
k�j=1

PrI and E [zj = zik] �
1

2l

ni�j+1X
k�j=1

2m

�
1

2l
ni � j + 1

2
(log2(ni � j + 1) + 3):

30

Now, we add the bounds of the last three of the individual upper bounds, and then we add the �rst upper
bound to obtain the total upper bound for forgeries of type (b2).

j�1X
k=1

Pr
I and E

[zj = zik] + Pr
I and E

[zj = zij] +
ni+1X
k=j+1

Pr
I and E

[zj = zik] �

1

2l
j � 1

2
(log2(j � 1) + 3) +

1

2l
ni � j + 1

2
(log2(ni � j + 1) + 3):

Since for this type of forgeries 1 � j � ni + 1, the terms under log2 are j � 1 � ni; ni � j + 1 � ni. Thus,
the sum of the last three terms is bounded as follows:

j�1X
k=1

Pr
I and E

[zj = zik] + Pr
I and E

[zj = zij] +
ni�j+1X
k=j+1

Pr
I and E

[zj = zik] �

1

2l
j � 1

2
(log2 ni + 3) +

1

2l
ni � j + 1

2
(log2 ni + 3) =

1

2l
ni
2
(log2 ni + 3) �

1

2l
ni + 1

2
(log2(ni + 1) + 3):

Hence, by adding the �rst of the individual upper bounds to this above sum, we obtain:

qeX
p=1

np+1X
k=1

Pr
I and E

[zj = zpk] �
1

2l
ni + 1

2
(log2(ni + 1) + 3) +

1

2l

qeX
p=1;p6=i

np + 1

2
(log2(np + 1) + 3)

=
1

2l

qeX
p=1

np + 1

2
(log2(np + 1) + 3):

Since
Pqe

p=1(np + 1) � �e
l
, by Fact 4, it follows that

PrI and E[zj 2 fz
p
k; 1 � p � qe; 1 � k � np + 1g] �

qeX
p=1

np+1X
k=1

Pr
I and E

[zj = zpk] �
1

2l
�e
2l

�
log2

�e
l
+ 3

�
:

Further, if m = max(np + 1), then PrI and E [zj 2 fz
p
k ; 1 � p � qe; 1 � k � np + 1g] � 1

2l
�e
2l (log2m+ 3).

Finally, for any forgery that is not a truncation, Pr
I and E

[zj 2 fz
p
k ; 1 � p � qe; 1 � k � np + 1g] is

bounded by the maximum of the bounds for the types (a), (b1) and (b2), namely

Pr
I and E

[zj 2 fz
p
k ; 1 � p � qe; 1 � k � np + 1g] �

1

2l
�e
2l

�
log2

�e
l
+ 3

�
;

or, if m = max(np + 1), then Pr
I and E

[zj 2 fz
p
k ; 1 � p � qe; 1 � k � np + 1g] � 1

2l
�e
2l (log2m+ 3). Hence,

returning to the probability of event C conditioned by (I and E),

PrI and E [C] = Pr[C j I and E] �
(n+ 1)qe

2l
+

1

2l
�e
2l

�
log2

�e
l
+ 3

�
:

31

Also, if the maximum length m of the encrypted messages is known, the last term of the above bound can
be replaced with 1

2l
�e
2l (log2m+ 3). ut

Proof of Claim 4

Event C is true implies that there is at least one element zs 2 Z. Event D states that any hidden ciphertext
block zs 2 Z collides with another hidden block zt 2 Z; t 6= s, or zs collides with y0. Let s be the smallest
index of the element zs 2 Z; hence, event D implies that zs collides with some other element zt 2 Z; t > s
or zs = y0, or, alternatively, zs 2 Z � fzsg or zs = y0. Hence,

Pr[D j C and E and I] � Pr[zs 2 Z � fzsg or zs = y0 j C and E and I]

Union bound leads to:

Pr[D j C and E and I] � Pr[zs 2 Z � fzsg j C and E and I] + Pr[zs = y0 j C and E and I]

�
X

t>s;zt2Z

Pr[zs = zt j C and E and I] + Pr[zs = y0 j C and E and I]:

To compute the upper bound of the �rst probability of the sum, Pr[zs = zt; zs; zt 2 Z; t 6= s j C andE and I],
recall that Z must have at least one element (since C is true). If Z has only one element, then this prob-
ability is zero. If Z has at least two elements, zs; zt, we use the following claim, whose proof can be found
at the end of this Appendix:

Claim 4.1
(a) For any zs; zt 2 Z; 1 � s < t � n+ 1:

Pr
C and E and I

[zs = zt] �
1

2l�m
;

where the exponent m is de�ned by t� s = d� 2m and d is odd.
(b) For any zs 2 Z; 1 � s � n+ 1, and for any y0:

PrC and E and I [zs = y0] �
1

2l�m
;

where the exponent m is de�ned by s = d� 2m and d is odd.

Then, by Claim 4.1(a) X
t>s;zt2Z

Pr[zs = zt j C and E and I] �
X

t>s;zt2Z

2m

2l

where t� s = d� 2m and d is odd. Let a = t� s; zs; zt 2 Z; s < t. Then, by using this notation, the fact
that the di�erences t� s represent a subset of set f1; � � � ; ng, and Fact 3, we obtain

X
t>s;zt2Z

2m

2l
=

X
a=t�s;t>s;zs;zt2Z

2m

2l

�
nX

a=1

2m

2l
�

n

2l+1
(log2 n+ 3):

32

For the term Pr[zs = y0 j C and E and I], we use Claim 4.1(b) and obtain:

Pr[zs = y0 j C and E and I] �
1

2l�m
;

where m is de�ned by s = d � 2m and d is odd. By de�nition, m � log2 s � log2(n + 1), and hence
2m � n+ 1. Thus,

Pr[zs = y0 j C and E and I] �
n+ 1

2l
:

By adding the two upper bounds, it follows that

Pr[D j C and E and I] �
n

2l+1
(log2 n+ 3) +

n+ 1

2l
:

ut

Proof of Fact 1
(a) Let A be an adversary attacking the XCBC$�XOR mode using qe+qv queries, �e+�v total memory
for these queries, and time te + tv. The probability of success is related directly to the security of the
underlying encryption mode XCBC$ and F . To �nd an upper bound for this probability, we introduce
a distinguisher D for F , which is given two oracles f and f�1, where f is a permutation used by the
XCBC$ � XOR mode. D runs A, simulates an oracle for XCBC$ � XOR via queries for its own
oracles f and f�1, responds to A's qe encryption queries, and veri�es A's choices of ciphertext forgeries
y0i = y0i0 y

0i
1 � � � y

0i
n ; y
0i
n+1; 1 � i � qv. D returns the result of each y0i's veri�cation to A; i.e., D returns either

Success or Failure to A. D outputs 1 if A's forgery decrypts successfully, and 0, otherwise.

Distinguisher D's advantage, AdvD(F; P
l) � �, is de�ned as:

AdvsprpD (F; P l) = Pr
f
R
 F

[Df = 1]� Pr
f
R
 P l

[Df = 1]:

where f
R
 F denotes the selection of function f from the SPRP family F by the random key K, and

f
R
 P l denotes the random selection of f from the set of all permutations P l.

By the de�nition of the distinguisher algorithm:

Pr
f
R
 F

[Df = 1] = Pr
f
R
 F

[D �XCBC$�XOR(y) 6= Null] = Pr
f
R
 F

[Succ]

and
Pr

f
R
 P l

[Df = 1] = Pr
f
R
 P l

[D �XCBC$�XOR(y) 6= Null] = Pr
f
R
 P l

[Succ]:

The above probabilities are over the random choice of r0, f
R
 F , f

R
 P l, and D's guesses. Hence,

Pr
f
R
 F

[Succ] = Pr
f
R
 F

[Succ]� Pr
f
R
 P l

[Succ] + Pr
f
R
 P l

[Succ]

= AdvsprpD (F; P l) + Pr
f
R
 P l

[Succ] � �+ Pr
f
R
 P l

[Succ]:

(b) This proof is based on constructing a polynomial-time algorithm D that distinguishes between f�1
R
 P l

and f
R
 GS using an adversary A for the XCBC$�XOR mode.

In a similar manner to the one used in part (a) (repeated here for completeness), let A be an adversary
attacking the XCBC$ �XOR mode using qe + qv queries, �e + �v total memory for these queries, and

33

time te + tv. To �nd an upper bound for Pr
f
R
 P l

[Succ], we introduce a distinguisher D for P l which is

given two oracles O, O�1. These oracles simulate the block encryption and decryption operations needed

by D to simulate the XCBC$ �XOR mode for adversary A. Oracle O simply uses f
R
 P l to respond

to D's block encryption requests. In contrast, oracle O�1 ips a coin b 2 f0; 1g and responds to D's block

decryption requests by using either f�1
R
 P l or f

R
 GS. D runs A, responds to A's qe encryption queries,

and then veri�es A's choices of ciphertext forgeries y0i = y0i0 y
0i
1 � � � y

0i
n; y
0i
n+1; 1 � i � qv. [As a consequence,

D issues all its requests for block encryption to O, if any, before all the requests for block decryption to
O�1.] D returns the result of each y0i's decryption to A; i.e., D returns either Success or Failure to A. D
outputs 1 if A's forgery decrypts successfully, and 0, otherwise.

Distinguisher D's advantage, AdvD(P
l; GS), is de�ned as:

AdvD(P
l; GS) = Pr

f
R
 P l

[Df = 1]� Pr
f
R
 GS

[Df = 1]:

where f
R
 P l denotes the selection of function f , and its inverse f�1, from the set of all permutations

P l by the random key K, and f
R
 GS denotes the random selection of f from P l to encrypt and the

associated function f
R
 GS to decrypt.

By the de�nition of the distinguisher algorithm:

Pr
f
R
 P l

[Df = 1] = Pr
f
R
 P l

[D �XCBC$�XOR(y) 6= Null] = Pr
f
R
 P l

[Succ]

and
Pr

f
R
 GS

[Df = 1] = Pr
f
R
 GS

[D �XCBC$�XOR(y) 6= Null] = Pr
f
R
 GS

[Succ]:

The above probabilities are over the random choice of r0, f
R
 P l, f

R
 GS, and D's guesses. Hence,

Pr
f
R
 P l

[Succ] = Pr
f
R
 P l

[Succ]� Pr
f
R
 GS

[Succ] + Pr
f
R
 GS

[Succ]

= AdvD(P
l; GS) + Pr

f
R
 GS

[Succ]:

Now we �nd an upper bound for D's advantage in distinguishing between P l and GS. By the de�nition
of the two oracles O and O�1, only oracle O�1 can be used by D to distinguish between P l and GS.
Furthermore, whenever a block decryption request to oracle O�1 is a ciphertext block that was generated

during the encryption of A's qe queries, the output of oracle O
�1 is the same for both f

R
 P l and f

R
 GS

(by the de�nition of f), and a distinction between P l and GS cannot be made. Hence, D can make a
distinction between P l and GS only when the ciphertext blocks of the decryption requests to oracle O�1

(i.e., the inputs to f�1 or f) have never been generated during the encryption of A's qe queries; i.e., the
ciphertext blocks are not in S

f
R
 P l

.

To make the distinction between f�1
R
 P l and f

R
 GS, D needs to send only ciphertext blocks that are

not in S
f
R
 P l

to oracle O�1, since D already has the plaintext blocks corresponding to all the ciphertext

blocks in S
f
R
 P l

. In this case, f = v, where v
R
 Rl;l, and the advantage of distinguisherD cannot be higher

than the advantage of any polynomial-time algorithm D' that distinguishes a random permutation from
a random function using the same block decryption requests from f0; 1gl � S

f
R
 P l

to oracle O�1 as those

made by distinguisher D; i.e., AdvD(P
l; GS) � AdvD0(P l; Rl;l). However, by the bound of the birthday

34

attack, AdvD0(P l; Rl;l) � q(q�1)
2l+1

where q is the number of the block decryption requests to oracle O�1; i.e.,
q � �v

l
Hence,

AdvD(P
l; GS) � AdvD0(P l; Rl;l) �

�v(�v � l)

l22l+1
:

Hence,

Pr
f
R
 P l

[Succ] � Pr
f
R
 GS

[Succ] +
�v(�v � l)

l22l+1
:

ut

Proof of Fact 2

If i = d � 2m, then i � r0 = d � 2m � r0 has (at least) the �rst (i.e., least signi�cant) m bits zero. Also,
since i < 2l, it follows that d < 2l�m. Let r0m = r0[1 � � � l �m] be the least signi�cant l �m bits of r0.
(These bits will be shifted in the most signi�cant l�m bit positions of a block by multiplication with 2m.)

First, we note that
i� r0 = (dr0m)jj 0 � � � 0| {z }

m

where dr0m = r0m + � � �+ r0m| {z }
d times

mod 2l�m and jj is the concatenation operator. To see this:

i� r0 = (d� 2m)� r0 = d� (r0 � 2m) = (r0 � 2m) + � � �+ (r0 � 2m)| {z }
d times

= (r0mjj 0 � � � 0| {z }
m

) + � � �+ (r0mjj 0 � � � 0| {z }
m

)

| {z }
d times

= (r0m + � � � + r0m| {z }
d times

)jj 0 � � � 0| {z }
m

= (dr0m)jj 0 � � � 0| {z }
m

where dr0m = r0m + � � �+ r0m| {z }
d times

mod 2l�m.

Second, we divide all values of an arbitrary constant a into two complementary classes based on whether
the �rst (i.e., least signi�cant) m bits of a are all zero, compute Pr[i � r0 = a] for each class separately,
and then take the maximum of the two probabilities as the overall bound.

Let a[1 � � �m] = 0 denote the values of a for which the �rst m bits are zero, and a[1 � � �m] 6= 0 those for
which at least one of the the �rst m bits is not zero. Since i � r0 = (dr0m)jj 0 � � � 0| {z }

m

, it follows that, if

a[1 � � �m] 6= 0, Pr[i� r0 = a] = 0. However, if a[1 � � �m] = 0, then [i� r0 = a] , [dr0m = b], where
b = a[m + 1 � � � l] represents bits m + 1; � � � l of a, i.e., the l �m most signi�cant bits of a. Hence, in this
case,

Pr[i� r0 = a] = Pr[dr0m = b];

where d; r0m; b 2 f0; 1g
l�m. However, d and 2l�m are relatively prime because d is odd. Hence, d has a left

inverse,9 e, and dr0m = b , edr0m = eb , r0m = eb (mod 2l�m), which happens with probability 1=2l�m

because r0m = r[1 � � � l �m] is random and uniformly distributed in f0; 1gl�m. Thus, if a[1 � � �m] = 0,

Pr[i� r0 = a] =
1

2l�m
:

9A way to see that d has a left inverse, e, is to label 2l�m = f , and to note that, if d and f are relatively prime, then, by
Euclid's gcd algorithm, there exists e and h such that ed+ hf = 1; i.e., ed = 1� hf or ed = 1(modf).

35

Hence, for any value of constant a, Pr[i� r0 = a] � 1
2l�m

. ut

Proof of Fact 3

Since any a can be expressed as a = d � 2m, where d is odd, there are multiple values of a that have the
same exponent m. (For example, for all odd values of a, m = 0, and for all even values of a that are not
a multiple of 4, m = 1.) Hence, when computing the sum

PN�1
a=1 2m, we can group together the terms 2m

that have the same exponent m (i.e., we group the terms 2m that are equal).

For a given exponent m, we �nd the number of distinct values of a that have the same exponent m when
represented as d � 2m. To �nd this number, we note that 1 � a � N � 1 and, hence, 1 � d � bN�12m c.

Hence, the number of distinct values of a that yield the same exponent m is b12

�
bN�12m c+ 1

�
c, since this

number is bounded by the number of distinct values of d odd.

>From the de�nition of exponent m, 2m � N � 1 (i.e., 0 � m � log2(N � 1)). Hence,

N�1X
a=1

2m =

blog2(N�1)cX
m=0

b
1

2

�
b
N � 1

2m
c+ 1

�
c2m �

blog2(N�1)cX
m=0

�
N � 1

2
+

2m

2

�

=
N � 1

2
(blog2(N � 1)c + 1) +

2blog2(N�1)c+1 � 1

2

because, for any M > 0,
PM

m=0 2
m = 2M+1 � 1. Hence,

N�1X
a=1

2m �
N � 1

2
(log2(N � 1) + 1) + (N � 1) =

N � 1

2
(log2(N � 1) + 3):

ut

Proof of Fact 4

Since, by hypothesis,
Pqe

p=1(np + 1) � �e
l
, the term under the log2 is np + 1 � �e

l
. Hence, we obtain:

qeX
p=1

(np + 1) log2(np + 1) � log2
�e
l

qeX
p=1

(np + 1);

and thus,
qeX
p=1

(np + 1) log2(np + 1) �
�e
l
log2

�e
l
:

Further, if m = max(np + 1), then log2(np + 1) � log2m. Hence,

qeX
p=1

(np + 1) log2(np + 1) �
�e
l
log2m:

ut

Proof of Claim 3.1

36

There are three possible complementary cases to consider:
(1) y0 = yi0, for some queried message i; 1 � i � qe. Then r0 = f = f�1(yi0) = ri0 is random and uniformly
distributed, by de�nition. Furthermore, if r0 = ri0 6= rp0 (i.e., y0 = yi0 6= yp0), then i 6= p and r0 is also
independent of rp0, by de�nition.
(2) y0 = zij , for some queried message i; 1 � i � qe; 1 � j � ni + 1; i.e., y0 collides with some hidden

ciphertext block, zij , generated during the encryption of message i. But this is exactly the event prohibited

by I.
(3) y0 6= yi0 and y0 6= zik, for all queried messages i; 1 � i � qe; k � 1. Then r0 = f(y0) = v(y0) 6= ri0;8i; 1 �

i � qe is random, uniformly distributed and independent of anything else because v
R
 Rl;l and f has never

been invoked with argument y0. Hence, r0 is random, uniformly distributed and independent of rp0. ut

Proof of Claim 3.2

The event zj = zpk is equivalent to yj�j�r0 = ypk�k�r
p
0 , j�r0 = k�rp0�y

p
k+yj , k�rp0 = j�r0�yj+y

p
k.

(a) If y0 6= yp0 , and since event I is true, it follows that r0 is random, uniformly distributed, and independent
of rp0 , by Claim 3.1 above. Also, event I and E implies that r0 is random, uniformly distributed, and
independent of rp0 by the de�nition of event E. Thus, j � r0 is independent of k � rp0 � ypk + yj and k � rp0
is independent of j � r0 � yj + ypk, since j; k > 0, and yj; y

p
k; j; k are known constants. Furthermore, event

[zj = zpk] � [j � r0 = k � rp0 � ypk + yj] � [k � rp0 = j � r0 � yj + ypk]. Hence,

Pr
I and E

[zj = zpk] = Pr
I and E

[j � r0 = k � rp0 � ypk + yj]

= PrI and E[k � rp0 = j � r0 � yj + ypk]:

However, Pr
I and E

[j � r0 = k� rp0 � y
p
k + yj] �

1
2l�m1

, where j = d1� 2m1 and d1 is odd, by Fact 2. Also,

PrI and E [k � rp0 = j � r0 � yj + ypk] �
1

2l�m2
, where k = d2 � 2m2 and d2 is odd. Hence,

PrI and E [zj = zpk] � min

�
1

2l�m1
;

1

2l�m2

�
=

1

2l�m
;

where m = min(m1;m2).

(b) If y0 = yp0, then r0 = rp0. Hence,

zj = zpk , yj � j � r0 = ypk � k � rp0 , (k � j)� r0 = ypk � yj:

Thus,
PrI and E [zj = zpk] = PrI and E[(k � j) � r0 = ypk � yj]:

However, since event I is true, it follows that r0 is random and uniformly distributed, by Claim 3.1 above.
Also, event I and E implies that r0 is random and uniformly distributed, by the de�nition of event E.
Since j; k > 0; j 6= k, and yj; y

p
k; j; k are known constants, and k 6= j, Fact 2 implies that

Pr
I and E

[(k � j) � r0 = ypk � yj] �
1

2l�m

where m is de�ned by k � j = d� 2m; k > j or j � k = d� 2m; j > k, and d is odd. ut

Proof of Claim 4.1

37

(a) One can write the event zt = zs , (t� s)� r0 = yt � ys. Hence,

Pr
C and E and I

[zs = zt] = Pr
C and E and I

[(t� s)� r0 = yt � ys]:

Since event I is true, r0 is random and uniformly distributed, by Claim 3.1. Furthermore, by the de�nition
of events E and C, event C and I and E implies that r0 is random and uniformly distributed. Using the
de�nition of m and the facts that (1) r0 is random and uniformly distributed, (2) yt; ys are constants, and
(3) 1 � t� s � 2l � 1, we obtain (by Fact 2) that

Pr
C and E and I

[(t� s)� r0 = yt � ys] �
1

2l�m

where m is de�ned by t� s = d� 2m and d is odd. Hence,

PrC and E and I [zs = zt] �
1

2l�m
:

(b) The proof of this part is similar to that of part (a) and is included here for completeness.

Note that, since zs = ys � s � r0, event zs = y0 , s � r0 = ys � y0, where ys and y0 are constants.
However, since event I is true, r0 is random and uniformly distributed, by Claim 3.1. Furthermore, event
C and I and E implies that r0 is random and uniformly distributed. Hence, by Fact 2,

PrC and E and I [zs = y0] = PrC and E and I [s� r0 = ys � y0] �
1

2l�m

where m is de�ned by s = d� 2m and d is odd. ut

38

Appendix B { Proof [Security of the Stateful-Sender XEBC-MAC (XECBC-MAC) in an
Adaptive Chosen-Message Attack]

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a
Message-Integrity Attack, Appendix A, and the same facts (i.e., Facts 1 { 4). Unless mentioned otherwise,

we focus on the probability for adversary's success when f
R
 Rl;l, and, for simplicity, we will drop the

f
R
 Rl;l subscript from the probability equations.

To �nd an upper bound on the probability of an adversary's success we use the same proof technique as
for the XCBC$-XOR scheme. That is, we (1) de�ne several types of events on which we condition the
adversary's success, (2) express the upper bound in terms of the conditional probabilities obtained, and
(3) compute upper bounds on these probabilities. As before, our choice and number of conditioning events
is motivated exclusively by the need to obtain a (good) upper bound for the probability of the adversary's
success. Undoubtedly, other events could be used for deriving alternate upper bounds.

We provide some intuition for the choice of conditioning events de�ned, by giving the following examples of
events that cause an adversary's success. (The reader can skip these examples without loss of continuity.)

Examples of Adversary's Success. A way for the adversary to �nd a forgery x0 that passes the
integrity check w0 = w, is to look for collisions in the input of f , at forgery veri�cation. The following
three examples illustrate why such collisions cause an adversary's success. Other such examples, and other
ways to �nd forgeries, exist.

Example 1 { Collisions between inputs of f at forgery veri�cation with those at message signing

Suppose that all inputs to f at forgery veri�cation collide with inputs to f at signing. We pessimistically
declare the adversary to be successful. For example, suppose that two of the block inputs to f at the
veri�cation of forgery (x0; ctr0; w0) represent two swapped inputs to f at the signing of message x using
counter ctr and obtaining the authentication tag w. Also suppose that all other inputs to f at forgery
veri�cation are the same as those of message x at signing. Hence, x0 6= x. In this case, the authentication
check for forgery (x0; ctr0 = ctr; w0 = w) will pass the integrity check.

It should be noted that this criterion for adversary's success is pessimistic because, among the forgeries
that make this event true some will decrypt correctly with negligible probability. For instance, if a forgery
x0 is a truncation of a signed message, the collision of the last forgery block x0n0+1 = z00 + (n0 + 1) � r00
with any of the inputs to f or f 0 at message signing is a negligible-probability event and hence truncation
would have a negligible chance of success (viz., Claim 1 below provides some intuition for this statement).

Example 2 { Collisions among inputs of f at forgery veri�cation

Suppose that two inputs of f obtained during forgery veri�cation, x0n+1 and x0n+2, do not collide with
any of the inputs to f obtained during message signing, but collide with each other; x0n+1 = x0n+2. Also
suppose that the adversary's forgery (x0; ctr0; w0) is obtained as follows: x0 = xjjx0n+1jjx

0
n+2, ctr

0 = ctr, and
w0 = w. Clearly, x0 6= x and the forgery (x0; ctr0; w0) passes veri�cation under the pessimistic assumption
that f(z0 + (n+ 3)� r0) = f(z0 + (n+ 1)� r0).

Example 3 { Collisions among the inputs of f that cause discovery of r0

Suppose that the forgery counter ctr0i collides with an input to f , xpk + k � rp0 ; 1 � p � qs; 1 � k � np,

39

obtained during message signing, or with x0ij + j � r0i0 ; 1 � i � qv; 1 � j � n0i, during the veri�cation of

forgery (x0; ctr0; w0). Suppose that the adversary �nds that xpk + k� rp0 = ctr0i, for some message p, known
plaintext block xpk and known counter ctr0i, 1 � i � qv. Hence, the adversary can determine rp0 and thus
the adversary's forgeries can satisfy collisions of Examples 1 and 2 above. A similar collision event between
ctr0i and an input to f during forgery veri�cation has a similar e�ect.

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
three conditioning events based on collisions in the inputs of f . Intuition for the choice of events is provided
by Examples 1 { 3 above. To de�ne the conditioning events, we use the following notation for the last
block that is enciphered

xpnp+1 = zp0

x0in0
i
+1 = z0i0 :

Next, we introduce the sets:

Is : fctr1; � � � ; ctrqsg

S : fxpk + k � rp0; 1 � p � qs; 1 � k � np + 1g;

Vi : fx0is + s� r0s0 ; x
0i
s + s� r0s0 =2 (Is [S); 1 � s � n0i + 1g;

where Is is the set of all the counters used at signing, S is the set of all the inputs to function f (aside
from the counters) at signing, and Vi is the set of all the inputs to function f (aside from the counters) at
veri�cation of query i. Based on sets Is; S; Vi, we introduce the following collision events that arise at the
veri�cation of forgery (x0i; ctr0i; w0i):

Ci : Vi = ;

Event Ci includes all instances when inputs of f at forgery veri�cation (aside from counters) collide with
either counters or inputs to function f at message signing. Next we de�ne event Di as follows:

Di : 9s; 1 � s � n0i + 1 : x0is + s� r0i0 2 Vi

and x0is + s� r0i0 6= x0it + t� r0i0 ;8x
0i
t + t� r0i0 2 Vi; t 6= s; 1 � t � n0i + 1

and x0is + s� r0i0 6= ctr0i

Event Di states that there is at least one input block of forgery i that does not collide with any other block
and counter of forgery i. It is clear that the de�nition for Di makes sense only when event Ci is false.

The rationale for introducing events Ci (or, actually, Ci) and Di is similar to the one used in the proof of
Theorem 2. That is, we want to �nd a desirable event which states that there exists a forgery block that
does not collide with any other input to f at either message signing or veri�cation of forgery i (as suggested
by Examples 1 and 2). Clearly, if this event is true, then the probability of veri�cation passing is 1=2l. To
�nd this event, however, we must ensure that all other collisions that that may lead to the discovery of
r0 are also ruled out for this block (as suggested by Example 3). For this reason, we must introduce two
events beside Ci and Di, namely events Rv

i and Rs de�ned below. (Note that these events need not cover
the last block or a signed message or of forgery i since such a collision cannot be used to solve for either r00
or r0 since random variables z00 and z0 remain unknown to the adversary.) After we �nd the desired event
for forgery i, we show that the complement of this event has a negligible probability (viz., the section on
Non-truncation Forgeries below).

Rv
i : ctr0i 6= x0ij + j � r0i0 ;8j; 1 � j � n0i

40

Event Rv
i states that all inputs to f during the veri�cation of forgery i (aside from counters and last block)

do not collide with forgery counters.

Rs : P s and P v and Qs;

where

P s : ctra 6= xpk + k � rp0;8a; p; k; 1 � a; p � qs; 1 � k � np

P v : ctr0a 6= xpk + k � rp0;8a; p; k; 1 � a � qv; 1 � p � qs; 1 � k � np

Qs : xpj + j � rp0 6= xpk + k � rp0 ;8p; j; k; 1 � p � qs; 1 � j; k � np; j 6= k

and j is the index of a block in forgery i; i.e., x0ij . Event R
s states that all inputs to f at message signing

(aside from counters and last block) do not collide with any other such inputs and with any of the counters
used at message signing and forgery veri�cation. Note that event Rs is independent of any forgery i.

Upper bound on the Probability of Successful Forgery. By standard conditioning,

Pr[Succ] � Pr[Succ j Rs] + Pr[Rs] � Pr[Succ j Rs] + Pr[P s] + Pr[P v] + Pr[Qs];

since Rs = P s or P v or Qs. The second, third and fourth terms in the sum are bounded as in the following
Claim:

Claim 1
(a)

Pr[P s] �
qs�s
l2l+1

�
log2

�s
l
+ 3

�
:

(b)

Pr[P v] �
qv�s
l2l+1

�
log2

�s
l
+ 3

�
:

(c)

Pr[Qs] <
1

2l
(�2s
4l2

(log2
�s
l
+ 3):

To compute an upper bound for the probability of successful forgery, when event Rs is true, we note
that the adversary is successful if one of his qv forgeries is successful. Let the i-th adversary's forgery be:
(ctr0i; x0i; w0i), where x0i = x0i1 � � � x

0i
n0
i
. Hence, by union bound, the probability of adversary's success for all

qv veri�cation queries (when f
R
 Rl;l) is:

Pr[Succ j Rs] �
qvX
i=1

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j R

s]:

Hence, we �rst compute the probability of adversary's success when a single forgery veri�cation is allowed;
i.e., we compute Pr[w0i = y0i1 �� � ��y

0i
n0
i
+1 j R

s]. For this computation, we partition the space of all possible

forgeries into (1) truncation and (2) non-truncation forgeries.

Truncation Forgeries. For truncation forgeries, we introduce the events:

ZIs : z0i0 + (n0i + 1)� r0i0 2 I
s

ZS : z0i0 + (n0i + 1)� r0i0 2 S:

41

Using these events, we show that the probability of adversary's success in creating a successful forgery i is
negligible. If forgery i is a truncation, then there exists p; 1 � p � qs : ctr

0i = ctrp and x0ik = xpk;8k; 1 �
k � n0i < np, hence z

0i
0 = zp0 . If the input to f at block n0i + 1, namely z0i0 + (n0i + 1) � r0i0 , does not

collide with any counter (i.e., event ZIs is true) and any input to function f (aside from the counters)
at signing (i.e., event ZS is true), then y0i

n0
i
+1 = f(z0i0 + (n0i + 1) � r0i0) is random, uniformly distributed

and independent of any other block y0 in the formula for w0i. Hence, in this case, the probability of the
event that y0i1 � � � � � y0i

n0
i
+1 = w0i during the veri�cation of forgery i is 1=2l. Summarizing, by standard

conditioning and union bound,

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j R

s] � Pr[w0i = y0i1 � � � � � y0in0
i
+1 j (ZIs or ZS) and Rs] + Pr[ZIs or ZS j R

s]

�
1

2l
+ Pr[ZIs or ZS] �

1

2l
+ Pr[ZIs j R

s] + Pr[ZS j R
s]:

Upper bounds for the probabilities of events ZIs j R
s and ZS j R

s are given by the following Claim:

Claim 2
(a)

Pr[ZIs j R
s] �

qs
2l
:

(b)

Pr[ZS j R
s] �

�s
l2l

+
np
2l
:

Hence, for any truncation forgery,

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j R

s] �
1

2l
+
qs
2l

+
�s
l2l

+
np
2l
�

�s
l2l

+
qs + (np + 1)

2l
:

Non-truncation Forgeries. Now, we �nd an upper bound for Pr[w0i = y0i1 � � � � � y0i
n0
i
+1 j R

s] for non-

truncation forgeries. To compute this upper bound, we de�ne an event such that (1) the probability of
successful forgery is 1=2l when this event occurs, and (2) the probability of the complement of this event
has a negligible upper bound.

Using the events de�ned above and by standard conditioning, we obtain:

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j R

s] � Pr[w0i = y0i1 � � � � � y0in0
i
+1 j C

i and Di and Rv
i and Rs] +

Pr[Ci or Di or Rv
i j R

s]

� Pr[w0i = y0i1 � � � � � y0in0
i
+1 j C

i and Di and Rv
i and Rs] +

Pr[Ci or Di or Rv
i j R

v
i and Rs] + Pr[Rv

i j R
s]

= Pr[w0i = y0i1 � � � � � y0in0
i
+1 j C

i and Di and Rv
i and Rs]

+Pr[Ci or Di j Rv
i and Rs] + Pr[Rv

i j R
s]

� Pr[w0i = y0i1 � � � � � y0in0
i
+1 j C

i and Di and Rv
i and Rs] +

Pr[Ci or Di j Ci and Rv
i and Rs] + Pr[Ci j Rv

i and Rs] + Pr[Rv
i j R

s]

= Pr[w0i = y0i1 � � � � � y0in0
i
+1 j C

i and Di and Rv
i and Rs] +

Pr[Di j Ci and Rv
i and Rs] + Pr[Ci j Rv

i and Rs] + Pr[Rv
i j R

s];

42

since the following events are equivalent:

(Ci or Di or Rv
i j R

v
i and Rs) � (Ci or Di j Rv

i and Rs)

(Ci or Di j Ci and Rv
i and Rs) � (Di j Ci and Rv

i and Rs):

Event (Ci and Di and Rv
i and Rs) is the desired event mentioned earlier in this proof. If this event

happens, then there must exist an index j; 1 � j � n0i + 1 such that x0ij + j � r0i0 does not collide with

any other input to f , at either message signing or veri�cation of forgery i, and hence y0ij = f(x0ij + j � r0i0)

is random, uniformly distributed and independent of any other terms in the expression y0i1 � � � � � y0i
n0
i
+1.

Hence, y0i1 � � � � � y0in0
i
+1 is random and uniformly distributed and hence,

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j C

i and Di and Rv
i and Rs] �

1

2l
:

The other probabilities that appear in the expression for the total probability Pr[w0i = y0i1 �� � ��y
0i
n0
i
+1 j R

s]

are bounded as in Claim 3, whose proof can be found below:

Claim 3
(a)

Pr[Rv
i j R

s] �
n0i
2l+1

(log2 n
0
i + 3):

(b)

Pr[Ci j Rv
i and Rs] �

qsn
0
i

2l
+

�s
l2l+1

�
log2

�s
l
+ 3

�
:

(c)

Pr[Di j Ci and Rv
i and Rs] �

n0i
2l+1

(log2 n
0
i + 3):

Based on this claim, for an arbitrary forgery i that is not a truncation, we obtain:

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j R

s] �
1

2l
+

n0i
2l+1

(log2 n
0
i + 3) +

qsn
0
i

2l
+

�s
l2l+1

�
log2

�s
l
+ 3

�
+

n0i
2l+1

(log2 n
0
i + 3)

<
n0i
2l
(log2 n

0
i + 3) +

qsn
0
i

2l
+

�s
l2l+1

�
log2

�s
l
+ 3

�
:

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation
forgeries, hence,

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j R

s] �
n0i
2l
(log2 n

0
i + 3) +

qsn
0
i

2l
+

�s
l2l+1

�
log2

�s
l
+ 3

�
:

Hence, for all qv veri�cation queries, we obtain by union bound,

Pr[Succ j Rs] �
qvX
i=1

Pr[w0i = y0i1 � � � � � y0in0
i
+1 j R

s]

�
qvX
i=1

�
n0i
2l
(log2 n

0
i + 3) +

qsn
0
i

2l
+

�s
l2l+1

�
log2

�s
l
+ 3

��

�
�v
l2l

(log2
�v
l
+ 3) +

qs�v
l2l

+
qv�s
l2l+1

�
log2

�s
l
+ 3

�

=
�v
l2l

(log2
�v
l
+ 3) +

qs�v
l2l

+
qv�s
l2l+1

�
log2

�s
l
+ 3

�
:

43

Hence, by Claim 1,

Pr[Succ] �
�v
l2l

(log2
�v
l
+ 3) +

qs�v
l2l

+
qv�s
l2l+1

�
log2

�s
l
+ 3

�
+

(qs + qv)�s
l2l+1

�
log2

�s
l
+ 3

�
+

�2s
l22l+2

(log2
�s
l
+ 3):

Finally, when f
R
 F , the probability for adversary's success is bounded as follows:

Pr
f
R
 F

[Succ] � �+
�v
l2l

(log2
�v
l
+ 3) +

qs�v
l2l

+
qv�s
l2l+1

�
log2

�s
l
+ 3

�
+

(qs + qv)�s
l2l+1

�
log2

�s
l
+ 3

�
+

�2s
l22l+2

(log2
�s
l
+ 3)

= �+
�v
l2l

(log2
�v
l
+ 3) +

qs�v
l2l

+

�
qs + 2qv +

�s
2l

�
�s
l2l+1

(log2
�s
l
+ 3):

ut

Proofs of Claims 1 { 3
For the proof of Claims 1 { 3 we use the following Fact, which is very similar to Fact 3 in Appendix A:

Fact 1
For any N > 1, let m be de�ned by b� a = d� 2m, where 1 � a < b � N � 1 and d is odd. Then

X
1�a<b�N�1

2m �
(N � 1)(N � 2)

4
(log2(N � 2) + 3):

Fact 2
If for any p; 1 � p � qs; np > 0, and if

Pqs
p=1(np + 1) � �s

l
, then,

qsX
p=1

(np + 1)2 log2(np + 1) �
�2s
l2

log2
�s
l
;

and, further, if m = max(np + 1), then

qsX
p=1

(np + 1)2 log2(np + 1) �
�2s
l2

log2m:

Proof of Claim 1
(a) Event P s deals with collisions between inputs to f at signing, namely xpk+k�r

p
0; 1 � p � qs; 1 � k � np

and constant counters at signing, namely ctra; 1 � a � qs. Since P s � 9a; p; k; 1 � a; p � qs; 1 � k � np :
ctra = xpk + k � rp0, it follows by union bound that

Pr[P s] �
qsX
a=1

qsX
p=1

npX
k=1

Pr[ctra = xpk + k � rp0]:

In this event, ctra and xpk are constants. Since rp0 is random and uniformly distributed, and the event of
interest can be written as k � rp0 = ctra � xpk, then, by Fact 2 (Appendix A),

Pr[ctra = xpk + k � rp0] �
2m

2l
;

44

where k = d� 2m and d is odd. Hence, by Fact 3 (Appendix A) we have

npX
k=1

Pr[ctra = xpk + k � rp0] �
np
2l+1

(log2 np + 3):

Furthermore, by Fact 4 (Appendix A) we have

qsX
p=1

npX
k=1

Pr[ctra = xpk + k � rp0] �
qsX
p=1

np
2l+1

(log2 np + 3) �
1

2l+1

�
�s
l
� qs

�
log2

�
�s
l
� qs + 3

�

since
Pqs

p=1(np + 1) � �s
l
, or,

Pqs
p=1 np �

�s
l
� qs. Thus,

qsX
a=1

qsX
p=1

npX
k=1

Pr[ctra = xpk + k � rp0] �
qsX
a=1

1

2l+1

�
�s
l
� qs

�
log2

�
�s
l
� qs + 3

�

=
1

2l+1

�
qs�s
l
� q2s

�
log2

�
�s
l
� qs + 3

�
:

Hence,

Pr[P s] �
1

2l+1

�
qs�s
l
� q2s

��
log2

�
�s
l
� qs

�
+ 3

�
:

A simple (albeit higher) upper bound is then

Pr[P s] �
1

2l+1

qs�s
l

�
log2

�s
l
+ 3

�
:

(b) Event P v is very similar with event P s, i.e., it deals with collisions between inputs to f at signing,
namely xpk + k � rp0; 1 � p � qs; 1 � k � np and constant counters at veri�cation, namely ctr0a; 1 � a � qv.
In a manner similar to the one used in the proof of (a), since ctr0a are also constants,

Pr[P v]

�
qvX
a=1

qsX
p=1

npX
k=1

Pr[ctr0a = xpk + k � rp0] �
qvX
a=1

1

2l+1

�
�s
l
� qs

��
log2

�
�s
l
� qs

�
+ 3

�

=
1

2l+1

�
qv�s
l
� qsqv

��
log2

�
�s
l
� qs

�
+ 3

�
A simple (albeit higher) upper bound is then

Pr[P v] �
1

2l+1

qv�s
l

�
log2

�s
l
+ 3

�
:

(c) Event Qs, deals with collisions between inputs to f at signing within the same message, namely
xpj + j � rp0 6= xpk + k � rp0 where 1 � p � qs; 1 � j; k � np; j 6= k. Since Qs � 9p; j; k; 1 � p � qs; 1 � j; k �
np; j 6= k : xpj + j � rp0 6= xpk + k � rp0. Without loss of generality, let k > j. Then, by union bound,

Pr[Qs] �
qsX
p=1

X
1�j<k�np

Pr[xpj + j � rp0 = xpk + k � rp0]:

Event xpj + j � rp0 = xpk + k � rp0 is equivalent to (k � j)� rp0 = xpj � x
p
k. Since r

p
0 is random and uniformly

distributed, by Fact 2 (Appendix A), this event happens with probability 2m

2l
where k � j = d� 2m and d

is odd. Then, by Fact 1 (Appendix B), we have

X
1�j<k�np

Pr[xpj + j � rp0 = xpk + k � rp0] �
X

1�j<k�np

2m

2l
�

1

2l
np(np � 1)

4
(log2(np � 1) + 3):

45

Furthermore,

Pr[Qs] �
qsX
p=1

X
1�j<k�np

Pr[xpj + j � rp0 = xpk + k � rp0]

�
qsX
p=1

1

2l
np(np � 1)

4
(log2(np � 1) + 3) <

qsX
p=1

1

2l
(np + 1)2

4
(log2(np + 1) + 3);

and using Fact 2 (Appendix B), we have

Pr[Qs] <
1

2l

qsX
p=1

(np + 1)2

4
(log2(np + 1) + 3) �

1

2l
(�2s
4l2

(log2
�s
l
+ 3):

ut

Proof of Claim 2

(a) Event ZIs refers to collisions between the last input to f at veri�cation of forgery i, namely z0i0 + (n0i+
1)� r0i0 , and any counter at signing, namely ctra; 1 � a � qs. By union bound,

Pr[ZIs j R
s] �

qsX
a=1

Pr[z0i0 + (n0i + 1)� r0i0 = ctra j Rs]:

z0i0 = zp0 = f 0(rp0) is random, uniformly distributed and independent of ri0 and of the counter since it is
obtained by enciphering with a di�erent key. Hence, since ctra is a constant,

Pr[z0i0 + (n0i + 1)� r0i0 = ctra j Rs] =
1

2l

and
Pr[ZIs j R

s] �
qs
2l
:

ut

(b) Event ZS refers to collisions between the last input to f at veri�cation of forgery i, namely z0i0 + (n0i +
1) � r0i0 , and any input to f at signing (other than counters), i.e., xab + b� ra0 ; 1 � a � qs; 1 � b � na + 1.
By union bound,

Pr[ZS j R
s] �

qsX
a=1

na+1X
b=1

Pr[z0i0 + (n0i + 1)� r0i0 = xab + b� ra0 j R
s]:

If b � na, then xab is a constant in the equation z0i0 + (n0i + 1) � r0i0 = xab + b � ra0 . Then, since z
0i
0 = zp0 is

obtained using a di�erent key, z0i0 is random, uniformly distributed and independent of r0i0 = rp0; r
a
0 and of

the constant xab . Hence,

Pr[z0i0 + (n0i + 1)� r0i0 = xab + b� ra0 j R
s] =

1

2l
:

If b = na + 1, then xab = za0 . In this case, if p 6= a, then z0i0 = zp0 and za0 are random, uniformly distributed
and independent; they are also independent of r0i0 = rp0 and ra0 . Hence,

Pr[z0i0 + (n0i + 1)� r0i0 = xab + b� ra0 j R
s] =

1

2l
:

46

In the complementary case, namely when b = na + 1; p = a, then z0i0 = zp0 = za0 = xab and r0i0 = rp0 = ra0 .
Since, in this case, b = na + 1 = np + 1, it follows that

z0i0 + (n0i + 1)� r0i0 = xab + b� ra0 , (np � n0i)� rp0 = 0;

where, np > n0i (since the forgery is a truncation of message p). Event Rs is true, hence rp0 is unknown,
random and uniformly distributed. Hence, by Fact 2 (Appendix A), the probability of this event is 2m

2l

where np � n0i = d� 2m and d is odd. Hence, 2m � np � n0i � np. Hence,

Pr[z0i0 + (n0i + 1)� r0i0 = xab + b� ra0 j R
s] = Pr[(np � n0i)� rp0 = 0 j Rs] �

2m

2l
�
np
2l
:

Hence,

Pr[ZS j R
s] �

qsX
a=1

na+1X
b=1

Pr[z0i0 + (n0i + 1)� r0i0 = xab + b� ra0 j R
s]

=
qsX
a=1

naX
b=1

Pr[z0i0 + (n0i + 1)� r0i0 = xab + b� ra0 j R
s] +

qsX
a=1;a6=p

Pr[z0i0 + (n0i + 1)� r0i0 = za0 + (na + 1)� ra0 j R
s] +

Pr[z0i0 + (n0i + 1)� r0i0 = zp0 + (np + 1)� ra0 j R
s]

�
qsX
a=1

naX
b=1

1

2l
+

qsX
a=1;a6=p

1

2l
+
np
2l

<
qsX
a=1

na+1X
b=1

1

2l
+
np
2l
�

�s
l2l

+
np
2l
:

ut

Proof of Claim 3

(a) Event Rv
i deals with collisions between inputs to f at veri�cation of forgery i and the counter corre-

sponding to forgery i. Hence, in a manner similar to the one used in the Proof of Claim 1(a)

Pr[Rv
i j R

s] �

n0
iX

j=1

Pr[ctr0i = x0ij + j � r0i0 j R
s] �

n0
iX

j=1

2m

2l
�

n0i
2l+1

(log2 n
0
i + 3):

ut

(b) The proof of this Claim is very similar to the proof of Claim 3 in the Proof of Theorem 2. First,
we choose an index j such that for any type of possible non-truncation forgery i, the input to f at the
veri�cation of forgery i, namely x0ij + j � r0i0 , does collide with any input to f during message signing with
low probability. Next, we compute an upper bound for these collisions.

All non-truncation forgeries can be partitioned in a similar manner as that used in the proof of Claim 3
of Theorem 2. That is, we de�ne extensions of the plaintext of a signed message, which we call the pre�x
case, and the complementary case, which we call non-pre�x case. The non-pre�x case includes two separate
subcases, namely when ctr0i is di�erent from any ctrp of any message p obtained at signing (i.e., message
(xp; ctrp; wp)), or when there is a signed message p such that ctr0i = ctrp. Hence, in the latter subcase,
there must be at least a block position j in the forged message x0i that is di�erent from the corresponding
block of the signed message p. This partition of all possible forgery types shows that a forged message
x0i = x0i1 � � � x

0i
n0
i
which is not a truncation, can be in one of the following three complementary types:

47

(a) 9p; 1 � p � qs : n
0
i > np; ctr

0i = ctrp and 8k; 1 � k � np : x0ik = xpk; i.e., the forged message is an
extension of message xp (the pre�x case). The non-pre�x case consists of the following two forgery types:
(b1) ctr0i 6= ctrp;8p; 1 � p � qs; and
(b2) 9p; 1 � p � qs : ctr

0i = ctrp;9k; 1 � k � min(n0i; np) : x
0i
k 6= xpk; i.e., the forged message is obtained by

modifying a queried message starting with some block between the second and last block.

Now we choose index j mentioned above for each type of possible non-truncation forgeries, as follows: for
forgeries of type (a), j = np + 1; for forgeries of type (b1), j = 1; and for forgeries of type (b2), j is the
smallest index such that x0ij 6= xpj ; 1 � j � minfnp; n

0
ig. In all cases 1 � j � n0i, and hence, the chosen

block x0ij is well de�ned.

Event Ci implies that x0ij + j � r0i0 2 I
s or x0ij + j � r0i0 2 S. Hence, by union bound

Pr[Ci j Rv
i and Rs] � Pr[x0ij + j � r0i0 2 I

s j Rv
i and Rs] + Pr[x0ij + j � r0i0 2 S j R

v
i and Rs]:

Let us de�ne the following events:

EIs : x0ij + j � r0i0 2 I
s

ES : x0ij + j � r0i0 2 S:

Hence,
Pr[Ci j Rv

i and Rs] � Pr[EIs j R
v
i and Rs] + Pr[ES j R

v
i and Rs]:

We determine upper bounds for events EIs j Rv
i ; ES j Rv

i using the following Claim, whose proof is found
at the end of this appendix:

Claim 3.1
(a)

Pr[EIs j R
v
i and Rs] �

qsn
0
i

2l
:

(b)

Pr[ES j R
v
i and Rs] �

�s
l2l+1

�
log2

�s
l
+ 3

�
:

Based on Claim 3.1,

Pr[Ci j Rv
i and Rs] � Pr[EIs j R

v
i and Rs] + Pr[ES j R

v
i and Rs] �

qsn
0
i

2l
+

�s
l2l+1

�
log2

�s
l
+ 3

�
:

ut

(c) We �nd an upper bound for Pr[Di j Ci and Rv
i and Rs] in a manner very similar to the one used in

Claim 4 of the Proof of Theorem 2.

Event Ci implies that there is at least one element x0is + s� r0i0 2 Vi. Event D
i is true if and only if for any

index s; 1 � s � n0i + 1, the block x0is + s � r0i0 2 Vi collides with another block x0it + t � r0i0 2 Vi; 1 � t �
n0i + 1; s 6= t, or with ctr0i. But the latter collisions, namely x0is + s � r0i0 = ctr0i, where x0is + s� r0i0 2 Vi,
is already precluded by event Rv

i . For the former collisions, let s be the smallest index of the element
x0is + s� r0i0 2 Vi. Hence, event D

i implies that x0is + s� r0i0 2 Vi � fx
0i
s + s� r0i0 g, and

Pr[Di j Ci and Rv
i and Rs] � Pr[x0is + s� r0i0 2 Vi � fx

0i
s + s� r0i0 g j C

i and Rv
i and Rs]:

48

Furthermore, by union bound we have

Pr[Di j Ci and Rv
i and Rs] �

X
t>s;x0it +t�r

0i
0
2Vi

Pr[x0is + s� r0i0 = x0it + t� r0i0 j C
i and Rv

i and Rs]:

In this expression, r0i0 is unknown, random and uniformly distributed since events Rv
i and Rs are true.

Furthermore, x0is ; x
0i
t are constants, or x0is is a constant and x0it = z0i0 , since t > s; if x0it = z0i0 , then x0it is

independent of r0i0 because z0i0 was obtained by enciphering with a di�erent key. Hence, by Fact 2 (Appendix
A), the probability is at most 2m

2l
, where t� s = d� 2m and d is odd. Hence,

Pr[x0is + s� r0i0 = x0it + t� r0i0 j C
i and Rv

i and Rs] �
2m

2l
:

Furthermore, proceeding in the same manner as for Claim 4 in the proof of Theorem 2 (viz., Appendix A)
we have

X
t>s;x0it +t�r

0i
0
2Vi

Pr[x0is + s� r0i0 = x0it + t� r0i0 j C
i and Rv

i and Rs] �
n0i
2l+1

(log2 n
0
i + 3);

and hence,

Pr[Di j Ci and Rv
i and Rs] �

n0i
2l+1

(log2 n
0
i + 3):

ut

Proof of Claim 3.1

(a) Event EIs refers to collisions between the chosen block x0ij + j � r0i0 and counters at signing, namely
ctrp; 1 � p � qs. Hence, by union bound, and Fact 2 (Appendix A)

Pr[EIs j R
v
i and Rs] �

qsX
p=1

Pr[x0ij + j � r0i0 = ctrp j Rv
i and Rs] �

qsX
p=1

2m

2l
=
qs2

m

2l
;

where j = d � 2m and d is odd, since, by events Rv
i and Rs r0i0 is unknown, random and uniformly

distributed, x0ij is a constant, and ctrp is a constant. Furthermore, since 2m � j � n0i, it follows that

Pr[EIs j R
v
i and Rs] �

qsj

2l
�
qsn
0
i

2l
:

ut

(b) Event EIs refers to collisions between the chosen block x0ij + j � r0i0 and inputs to f at signing other
than counters, namely blocks xpk + k � rp0; 1 � p � qs; 1 � k � np + 1. Hence, by union bound,

Pr[ES j R
v
i and Rs] �

qsX
p=1

npX
k=1

Pr[x0ij + j � r0i0 = xpk + k � rp0 j R
v
i and Rs]

In a manner similar to the one used for Claim 3 (Part 2) in the proof of Theorem 2, we can show that

Pr[ES j R
v
i and Rs] �

�s
l2l+1

�
log2

�s
l
+ 3

�
:

ut

49

Proof of Fact 1
We will use Fact 3 from Appendix A, but �rst we rewrite the sum as :

X
1�a<b�N�1

2m =
N�2X
a=1

N�1X
b=a+1

2m
N�2X
a=1

N�1�aX
c=1

2m;

where c
def
= b� a. By Fact 3 from Appendix A, we have

N�1�aX
c=1

2m �
N � 1� a

2
(log2(N � 1� a) + 3):

Hence, X
1�a<b�N�1

2m �
N�2X
a=1

N � 1� a

2
(log2(N � 1� a) + 3) =

N�2X
e=1

e

2
(log2 e+ 3);

where the index e
def
= N � 1� a. Furthermore, since e � N � 2, we have

X
1�a<b�N�1

2m �
N�2X
e=1

e

2
(log2 e+ 3) �

N�2X
e=1

e

2
(log2(N � 2) + 3) �

(N � 1)(N � 2)

4
(log2(N � 2) + 3):

ut

Proof of Fact 2
Since np + 1 � �s

l
and

Pqs
p=1(np + 1)2 � �2s

l2
, it follows that

qsX
p=1

(np + 1)2 log2(np + 1) �
qsX
p=1

(np + 1)2 log2
�s
l
�
�2s
l2

log2
�s
l
:

ut

50

Appendix C { Proof [Security of stateful XEBC-MAC (XECBS-MAC) in an Adaptive
Chosen-Message Attack]

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a
Message-Integrity Attack, Appendix A, and the same facts (i.e., Facts 1 { 4). Unless mentioned otherwise,

we focus on the probability for adversary's success when f
R
 Rl;l, and, for simplicity, we will drop the

f
R
 Rl;l subscript from the probability equations.

Notation. Let zpk; 1 � p � qs; 1 � k � np be the hidden inputs of function f at the signing of message p;
i.e., for signed message xp = xp1 � � � x

p
np , we have

zpk = xpk + p�R+ k �R�:

Let z0ij ; 1 � i � qv; 1 � j � n0i be the hidden inputs to function f at the veri�cation of forgery i; i.e., for

the forgery x0i = x0i1 � � � x
0i
n0
i
using the message identi�er (ID) s0i (s0i � qs), we have

z0ij = x0ij + s0i �R+ j �R�:

To �nd an upper bound on the probability of an adversary's success we use the same proof technique as
for the XCBC$-XOR scheme. That is, we (1) de�ne several types of events on which we condition the
adversary's success, (2) express the upper bound in terms of the conditional probabilities obtained, and
(3) compute upper bounds on these probabilities.

We provide some intuition for the choice of conditioning events de�ned, by giving the following examples of
events that cause an adversary's success. (The reader can skip these examples without loss of continuity.)

Examples of Adversary's Success. A way for the adversary to �nd a forgery x0 that passes the
integrity check w0 = w, is to look for collisions in the input of f , at forgery veri�cation. The following
three examples illustrate why such collisions cause an adversary's success. Other such examples, and other
ways to �nd forgeries, exist.

Example 1 { Collisions between inputs of f at forgery veri�cation with those at message signing

Suppose that all inputs of f at forgery veri�cation collide with inputs of f at signing. We pessimistically
declare the adversary to be successful. For example, suppose that two of the block inputs of f at the
veri�cation of forgery (x0 6= x; s0; w0) represent two swapped inputs of f at the signing of message x using
message ID s0 and obtaining the authentication tag w. Also suppose that all other inputs of f at forgery
veri�cation are the same as those of message x at signing. In this case, the authentication check for forgery
(x0; s0; w0 = w) will pass the integrity check.

It should be noted that this criterion for adversary's success is pessimistic because, among the forgeries that
make this event true some will decrypt correctly with negligible probability. For instance, if a forgery x0

is a truncation of a signed message and the message ID s0i is equal to the identi�er of the signed message,
then, despite collisions between the inputs of f at forgery veri�cation with inputs of f at signing, the
truncation forgery has only negligible chance of success (viz., Claim 1 below provides some intuition for
this statement).

Example 2 { Collisions among inputs of f at forgery veri�cation

Suppose that two (hidden) inputs of f obtained during forgery veri�cation, namely z01 = x01 + s0 �R+R�

and z02 = x02 + s0 � R + 2 � R�, for forgery x0 = x01x
0
2 using message ID s0, do not collide with any of the

51

inputs of f obtained during signing of any message x but collide with each other; also assume that x0 6= x.
Then the forgery (x0; s0; w0 = 0) passes veri�cation.

Example 3 { Collisions among the inputs of f that cause discovery of R or R�

Suppose that, at message signing, two (hidden) inputs of function f collide; i.e., zpk = zst ; 1 � p; s �
qs; 1 � k � np; 1 � t � ns, where (p; k) 6= (s; t). This can lead to the discovery of some, and possibly
all, of the bits of R or R�. For example, suppose that xp1 + p � R + R� = xp2 + p � R + 2 � R�, or
R� = xp1 � xp2. Knowing R

�, an adversary can choose i and the forgery x0 = x01x
0
2 with message ID s0 such

that x01+ s0�R+R� = x02+ s0�R+2�R�, i.e., x02� x
0
1 = R� = x2� x1. Then the adversary can let the

tag w0 = 0. Similar examples which illustrate collisions that pessimistically lead to the discovery of R can
be found; e.g., collision xp1 + p�R+R� = xr1 + r �R+R�, where p 6= r. (R� is completely determined if
p� r is odd.)

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
three conditioning events based on collisions in the inputs of f . Intuition for the choice of events is provided
by Examples 1 { 3 above. We introduce the sets:

S : fzpk; 1 � p � qs; 1 � k � npg;

Vi : fz0ij ; z
0i
j =2 S; 1 � j � n0ig;

where S is the set of all the inputs of function f at signing, and Vi is the set of all the inputs of function
f at veri�cation of query i. Based on sets S and Vi, we introduce the following collision events that arise
at the veri�cation of forgery (x0i; s0i; w0i):

Ci : Vi = ;:

Event Ci includes all instances when inputs of f at forgery veri�cation collide with inputs of function f at
message signing. Next we de�ne event Di as follows:

Di : 9j; 1 � j � n0i : z
0i
j 2 Vi

and z0ij 6= z0im;8z
0i
m 2 Vi; j 6= m; 1 � m � n0i:

Event Di states that there is at least one \new" input block of forgery i that does not collide with any
other \new" block of forgery i, where here \new" input blocks refers to input blocks that are not in the
set of input blocks at signing, namely S. It is clear that the de�nition for Di makes sense only when event
Ci is false.

The rationale for introducing events Ci (or, actually, Ci) and Di is similar to the one used in the proof of
Theorem 2 (Appendix A). That is, we want to �nd a desirable event which states that there exists a forgery
block that does not collide with any other input to f at either message signing or veri�cation of forgery
i (as suggested by Examples 1 and 2). Clearly, if this event is true, then the probability of veri�cation
passing is 1=2l. To �nd this event, however, we must ensure that all other collisions that that may lead to
the discovery of R or R�, are also ruled out for this block (as suggested by Example 3). For this reason,
we introduce event Rs de�ned below.

Rs : zpk 6= zst ; 1 � p; s � qs; 1 � k � np; 1 � t � ns; (p; k) 6= (s; t)

Event Rs states that the set S is collision-free. Note that event Rs is independent of any forgery i.

52

Upper bound on the Probability of Successful Forgery. By standard conditioning, we have

Pr[Succ] � Pr[Succ j Rs] + Pr[Rs]:

The second term in the sum is bounded as in the following Claim:

Claim 1

Pr[Rs] �
qs�s
l2l+1

(log2 qs + 3) +
�2s

l22l+1
(log2

�s
l
+ 3):

To compute an upper bound for the probability of successful forgery, when event Rs is true, we note that
the adversary is successful if one of his qv forgeries (x

0i; s0i; w0i) is successful, where x0i = x0i1 � � � x
0i
n0
i
. Hence,

by union bound, the probability of adversary's success for all qv veri�cation queries (when f
R
 Rl;l) is:

Pr[Succ j Rs] �
qvX
i=1

Pr[w0i = y0i1 � � � � � y0in0
i
j Rs]:

Hence, we �rst compute the probability of adversary's success when a single forgery veri�cation is allowed;
i.e., we compute Pr[w0i = y0i1 � � � � � y

0i
n0
i
j Rs]. For this computation, we partition the space of all possible

forgeries into (1) truncation and (2) non-truncation forgeries.

Truncation Forgeries. We call truncation a forgery x0i = x0i1 � � � x
0i
n0
i
together with a value of s0i such that

there exists a signed message xp = xp1 � � � x
p
np such that s0i = p and x0ik = xpk;8k; 1 � k � n0i < np.

In this case, for any 1 � j � n0i we have:

z0ij = zpj ;8j; 1 � j � n0i;

and thus
y0ij = f(z0ij) = f(zpj) = ypj ;

and the computed tag becomes

y0i1 � � � � � y0in0
i
= yp1 � � � � � yp

n0
i
= wp � yp

n0
i
+1 � � � � � ypnp :

where the exclusive-or sum yp
n0
i
+1 � � � � � ypnp contains at least one term since n0i < np.

Pr[w0i = y0i1 � � � � � y0in0
i
j Rs] = Pr[w0i = wp � yp

n0
i
+1 � � � � � ypnp j R

s] =

Pr[yp
n0
i
+1 � � � � � ypnp = w0i � wp j Rs]:

In this expression, when there are no collisions in the inputs of f at signing, the values yp
n0
i
+1; � � � ; y

p
np

are

random, uniformly distributed and mutually independent. Since np > n0i there is at least one of these
values. These values appear only in the signing of message p and the tag wp contains other outputs of
function f , namely yp1 ; � � � ; y

p

n0
i
which, due to event Rs being true, are also random, uniformly distributed,

mutually independent and independent of all the other outputs of function f at signing. (Intuitively, we
show that the exclusive-or sum yp

n0
i
+1 � � � � � ypnp is random, uniformly distributed and unknown.) Hence,

the exclusive-or sum yp
n0
i
+1 � � � � � ypnp is random and uniformly distributed, and hence

Pr[w0i = y0i1 � � � � � y0in0
i
j Rs] = Pr[yp

n0
i
+1 � � � � � ypnp = w0i �wp j Rs] =

1

2l
:

53

Non-Truncation Forgeries. Now, we �nd an upper bound for Pr[w0i = y0i1 � � � � � y0i
n0
i
j Rs] for non-

truncation forgeries. To compute this upper bound, we de�ne an event such that (1) the probability of
successful forgery is 1=2l when this event occurs, and (2) the probability of the complement of this event
has a negligible upper bound.

Using the events de�ned above and by standard conditioning, we obtain:

Pr[w0i = y0i1 � � � � � y0in0
i
j Rs] � Pr[w0i = y0i1 � � � � � y0in0

i
j Ci and Di and Rs] +

Pr[Ci or Di j Rs]

� Pr[w0i = y0i1 � � � � � y0in0
i
j Ci and Di and Rs] +

Pr[Ci or Di j Ci and Rs] + Pr[Ci j Rs]

= Pr[w0i = y0i1 � � � � � y0in0
i
j Ci and Di and Rs] +

Pr[Di j Ci and Rs] + Pr[Ci j Rs];

since the following events are equivalent:

(Ci or Di j Ci and Rs) � (Di j Ci and Rs):

Event (Ci and Di and Rs) is the desired event mentioned earlier in this proof. If this event happens, then
there must exist an index j; 1 � j � n0i such that z0ij does not collide with any other input to f , at either

message signing or veri�cation of forgery i, and hence y0ij = f(z0ij) is random, uniformly distributed and

independent of any other terms in the expression y0i1 � � � � � y0i
n0
i
. Hence, y0i1 � � � � � y0i

n0
i
is random and

uniformly distributed and hence,

Pr[w0i = y0i1 � � � � � y0in0
i
j Ci and Di and Rs] =

1

2l
:

The other probabilities that appear in the expression for the total probability Pr[w0i = y0i1 � � � � � y
0i
n0
i
j Rs]

are bounded as in Claim 2, whose proof can be found below:

Claim 2
(a)

Pr[Ci j Rs] �
qs
2l+1

(log2 qs + 3) +
�s
l2l+1

(log2
�s
l
+ 3):

(b)

Pr[Di j Ci and Rs] �
n0i
2l+1

(log2 n
0
i + 3):

Based on this claim, for an arbitrary forgery i that is not a truncation, we obtain:

Pr[w0i = y0i1 � � � � � y0in0
i
j Rs] �

1

2l
+

qs
2l+1

(log2 qs + 3) +
�s
l2l+1

(log2
�s
l
+ 3) +

n0i
2l+1

(log2 n
0
i + 3):

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation
forgeries, hence,

Pr[w0i = y0i1 � � � � � y0in0
i
j Rs] �

1

2l
+

qs
2l+1

(log2 qs + 3) +
�s
l2l+1

(log2
�s
l
+ 3) +

n0i
2l+1

(log2 n
0
i + 3):

54

Hence, for all qv veri�cation queries, we obtain by union bound and using Fact 4 from the proof of Theorem
2:

Pr[Succ j Rs] �
qvX
i=1

Pr[w0i = y0i1 � � � � � y0in0
i
j Rs]

�
qvX
i=1

�
1

2l
+

qs
2l+1

(log2 qs + 3) +
�s
l2l+1

(log2
�s
l
+ 3) +

n0i
2l+1

(log2 n
0
i + 3)

�

=
qv
2l

+
qvqs
2l+1

(log2 qs + 3) +
qv�s
l2l+1

(log2
�s
l
+ 3) +

�v
l2l+1

(log2
�v
l
+ 3):

Hence, by Claim 1,

Pr[Succ] �
qv
2l

+
qvqs
2l+1

(log2 qs + 3) +
qv�s
l2l+1

(log2
�s
l
+ 3) +

�v
l2l+1

(log2
�v
l
+ 3) +

qs�s
l2l+1

(log2 qs + 3) +
�2s

l22l+1
(log2

�s
l
+ 3):

Finally, when f
R
 F , the probability for adversary's success is bounded as follows:

Pr
f
R
 F

[Succ] � �+

qv
2l

+
qvqs
2l+1

(log2 qs + 3) +
qv�s
l2l+1

(log2
�s
l
+ 3) +

�v
l2l+1

(log2
�v
l
+ 3) +

qs�s
l2l+1

(log2 qs + 3) +
�2s

l22l+1
(log2

�s
l
+ 3)

= �+
qv
2l

+
�v
l2l+1

(log2
�v
l
+ 3) +

�
qv +

�s
l

�
qs
2l+1

(log2 qs + 3) +�
qv +

�s
l

�
�s
l2l+1

(log2
�s
l
+ 3):

ut

Proofs of Claims 1 and 2

Proof of Claim 1
To �nd an upper bound for Pr[Rs], we de�ne the following set (which enables us to de�ne event Rs):

Sp;k = fz
u
v ; 1 � u � p� 1; 1 � v � nug [fz

p
v ; 1 � v � kg;

and events:
Rs
p;k : Sp;k is collision-free;

and
Rs
p;np+1 = Rs

p+1;1; if p < qs:

Based on these de�nitions, Rs
1;1 is the true event, and Rs = Rs

qs;nqs
. By convention, Rs = Rs

qs;nqs+1
.

Using standard conditioning, we have the recurrence relation:

Pr[Rs
p;k+1] � Pr[Rs

p;k+1 j R
s
p;k] + Pr[Rs

p;k]:

55

Hence,

Pr[Rs] = Pr[Rs
qs;nqs+1

]

�
qsX
p=1

npX
k=1

Pr[Rs
p;k+1 j R

s
p;k] + Pr[Rs

1;1]

=
qsX
p=1

npX
k=1

Pr[Rs
p;k+1 j R

s
p;k]

because Pr[Rs
1;1] = 0, since event Rs

1;1 is always true. In here, we also have that Pr[Rs
qs;nqs+1 j R

s
qs;nqs

] =

Pr[Rs j Rs] = 0.

When event Rs
p;k is true, event Rs

p;k+1 is true only when the collisions zpk+1 = zuv happened, where either

u < p or u = p and v � k. By convention, zpnp+1 = zp+1
1 , if p < qs. Hence, by union bound:

Pr[Rs
p;k+1 j R

s
p;k] �

p�1X
u=1

nuX
v=1

Pr[zpk+1 = zuv j R
s
p;k] +

kX
v=1

Pr[zpk+1 = zpv j R
s
p;k]:

To compute a bound for the second sum, we note that

zpk+1 = zpv , (k + 1� v)�R� = xpv � xpk+1;

and by using Facts 2 and 3 (Appendix A), we obtain

kX
v=1

Pr[zpk+1 = zpv j R
s
p;k] �

k

2l+1
(log2 k + 3):

To compute a bound for the �rst sum, we split it into three terms based on the di�erent values of v � nu
relative to k + 1, and obtain

nuX
v=1

Pr[zpk+1 = zuv j R
s
p;k] =

kX
v=1

Pr[zpk+1 = zuv j R
s
p;k] + Pr[zpk+1 = zuk+1 j R

s
p;k] +

nuX
v=k+2

Pr[zpk+1 = zuv j R
s
p;k]:

(By convention, the probabilities for unde�ned collisions are set to zero. For instance, if k + 1 > nu, then
Pr[zpk+1 = zuk+1 j R

s
p;k] = 0 and the last sum is zero, since it does not have any terms.)

For the �rst term of the �rst sum, v � k, and

zpk+1 = zuv , (k + 1� v)�R� = xuv � xpk+1 + (u� p)�R:

Here, let m be de�ned as k + 1 � v = d� 2m and d odd; hence, by Facts 2 and 3 (Appendix A), one can
show that

kX
v=1

Pr[zpk+1 = zuv j R
s
p;k] �

k

2l+1
(log2 k + 3):

Similarly, for the last term of the �rst sum, v � k + 2,

nuX
v=k+2

Pr[zpk+1 = zuv j R
s
p;k] �

nu � k � 1

2l+1
(log2(nu � k � 1) + 3):

56

(Note that if nu�k� 1 � 0, the sum is set to zero, which is consistent with the convention for such sums).

Also, for the middle term of the �rst sum, v = k + 1

zpk+1 = zuk+1 , (p� u)�R = xuk+1 � xpk+1

and, hence, using Fact 2, we have

Pr[zpk+1 = zuk+1 j R
s
p;k] �

2m

2l

where 0 < p� u = d� 2m and d is odd. Hence,

nuX
v=1

Pr[zpk+1 = zuv j R
s
p;k] �

k

2l+1
(log2 k + 3) +

2m

2l
+
nu � k � 1

2l+1
(log2(nu � k � 1) + 3);

where 0 < p� u = d� 2m and d is odd. Furthermore, using Fact 4 (Appendix A), we have:

nuX
v=1

Pr[zpk+1 = zuv j R
s
p;k] �

nu � 1

2l+1
(log2(nu � 1) + 3) +

2m

2l
�

nu
2l+1

(log2 nu + 3) +
2m

2l
:

Hence, the �rst sum becomes

p�1X
u=1

nuX
v=1

Pr[zpk+1 = zuv j R
s
p;k] �

p�1X
u=1

�
nu
2l+1

(log2 nu + 3) +
2m

2l

�
:

Using Fact 3 (Appendix A), and 0 < p� u = d� 2m and d odd, we obtain

p�1X
u=1

2m

2l
�
p� 1

2l+1
(log2(p� 1) + 3):

by using Fact 4 (Appendix A). Hence, the �rst sum is bounded as follows:

p�1X
u=1

nuX
v=1

Pr[zpk+1 = zuv j R
s
p;k] �

p� 1

2l+1
(log2(p� 1) + 3) +

p�1X
u=1

nu
2l+1

(log2 nu + 3):

Hence the bound of Pr[Rs
p;k+1 j R

s
p;k] becomes

Pr[Rs
p;k+1 j R

s
p;k] �

p�1X
u=1

nuX
v=1

Pr[zpk+1 = zuv j R
s
p;k] +

kX
v=1

Pr[zpk+1 = zpv j R
s
p;k]

�
p� 1

2l+1
(log2(p� 1) + 3) +

p�1X
u=1

nu
2l+1

(log2 nu + 3) +
k

2l+1
(log2 k + 3):

Returning to the computation of the bound for Pr[Rs], we obtain

Pr[Rs] = Pr[Rs
qs;nqs

] �
qsX
p=1

npX
k=1

Pr[Rs
p;k+1 j R

s
p;k]

�
qsX
p=1

npX
k=1

0
@p� 1

2l+1
(log2(p� 1) + 3) +

p�1X
u=1

nu
2l+1

(log2 nu + 3) +
k

2l+1
(log2 k + 3)

1
A

=
qsX
p=1

npX
k=1

p� 1

2l+1
(log2(p� 1) + 3) +

qsX
p=1

npX
k=1

p�1X
u=1

nu
2l+1

(log2 nu + 3) +

qsX
p=1

npX
k=1

k

2l+1
(log2 k + 3)

57

In the �rst sum, since p� 1 � qs, it follows that

qsX
p=1

npX
k=1

p� 1

2l+1
(log2(p� 1) + 3) �

qsX
p=1

npX
k=1

qs
2l+1

(log2 qs + 3) �
qs�s
l2l+1

(log2 qs + 3):

The second sum yields:

qsX
p=1

npX
k=1

p�1X
u=1

nu
2l+1

(log2 nu + 3) �
1

2l+1
(log2

�s
l
+ 3)

qsX
p=1

npX
k=1

p�1X
u=1

nu

since nu �
�s
l
. One can also see that for: p = 1;

Pp�1
u=1 nu = 0 since it has no terms, for p = 2;

Pp�1
u=1 nu = n1,

etc. Hence,

qsX
p=1

npX
k=1

p�1X
u=1

nu
2l+1

= n2n1 + n3(n1 + n2) + � � �+ nqs(n1 + � � �+ nqs�1) �
1

2
(n1 + � � � + nqs)

2 =
�2s
2l
:

Hence, the second sum is bounded as follows:

qsX
p=1

npX
k=1

p�1X
u=1

nu
2l+1

(log2 nu + 3) �
�2s
l2l+2

(log2
�s
l
+ 3):

In the third sum, we have k � np and, using Fact 4 (Appendix A), we obtain:

qsX
p=1

npX
k=1

k

2l+1
(log2 k + 3) �

qsX
p=1

np(np � 1)

2l+2
(log2 np + 3) �

qsX
p=1

np�s
l2l+2

(log2 np + 3)

�
�2s

l22l+2
(log2

�s
l
+ 3):

Hence,

Pr[Rs] �
qs�s
l2l+1

(log2 qs + 3) +
�2s

l22l+2
(log2

�s
l
+ 3) +

�2s
l22l+2

(log2
�s
l
+ 3)

�
qs�s
l2l+1

(log2 qs + 3) +
�2s

l22l+1
(log2

�s
l
+ 3):

Remark: With more care one can show that the sum
Pqs

p=1

Pnp
k=1

k
2l+1

(log2 k + 3) is actually order
�2s
l22l

q
log2

�s
l
, and, hence, for very large �s

l
, the dominant term in the upper bound is �2s

l22l+2
(log2

�s
l
+3). ut

Proof of Claim 2
(a) The proof of this Claim is very similar to the proof of Claim 3 in the Proof of Theorem 2 (viz., Appendix
A). First, we choose an index j such that for any type of possible non-truncation forgery i, the input to
f at the veri�cation of forgery i, namely x0ij + s0i � R + j � R�, does collide with any input to f during
message signing with low probability. Next, we compute an upper bound for these collisions.

All non-truncation forgeries can be partitioned in a similar manner as that used in the proof of Claim 3 of
Theorem 2 (Appendix A). That is, we de�ne extensions of the plaintext of a signed message, which we call
the pre�x case, and the complementary case, which we call non-pre�x case. The non-pre�x case includes
two separate subcases, namely when s0i is di�erent from any message ID p of any message p obtained at
signing (i.e., message (xp; p; wp)), or when there is a signed message p such that s0i = p. Hence, in the

58

latter subcase, there must be at least a block position j in the forged message x0i that is di�erent from
the corresponding block of the signed message p. This partition of all possible forgery types shows that a
forged message x0i = x0i1 � � � x

0i
n0
i
which is not a truncation, can be one of the following three complementary

types:
(a) 9p; 1 � p � qs : n

0
i > np; s

0i = p and 8k; 1 � k � np : x
0i
k = xpk; i.e., the forged message is an extension

of message xp (the pre�x case). The non-pre�x case consists of the following two forgery types:
(b1) s0i 6= p;8p; 1 � p � qs; and
(b2) 9p; 1 � p � qs : s

0i = p;9k; 1 � k � min(n0i; np) : x
0i
k 6= xpk; i.e., the forged message is obtained by

modifying a queried message starting with some block between the second and last block.

Now we choose index j mentioned above for each type of possible non-truncation forgeries, as follows: for
forgeries of type (a), j = np + 1; for forgeries of type (b1), j = 1; and for forgeries of type (b2), j is the
smallest index such that x0ij 6= xpj ; 1 � j � minfnp; n

0
ig. In all cases 1 � j � n0i, and hence, the chosen

block x0ij is well de�ned.

Event Ci implies that x0ij + s0i �R+ j �R� 2 S. Hence, by union bound

Pr[Ci j Rs] �
qsX
p=1

npX
k=1

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ k �R� j Rs]:

We write the inner sum as a sum of three terms, as follows:

npX
k=1

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ k �R� j Rs]

=
j�1X
k=1

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ k �R� j Rs]

+ Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ j �R� j Rs]

+

npX
k=j+1

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ k �R� j Rs];

By the convention adopted above, the probability terms are zero for unde�ned collision events. (For
example, if j > np, then Pr[x0ij + s0i � R + j � R� = xpk + p � R + j � R� j Rs] = 0.) For the collision

x0ij + s0i�R+ j �R� = xpk + p�R+ j �R�, we have (s0i� p)�R = xpk � x
0i
j . In this expression, if s0i = p,

then by the choice of index j we are in case (b2) where x0ij 6= xpk, and the probability of this collision event

is zero. If s0i 6= p, then using Fact 2 (Appendix A), we have

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ j �R� j Rs] �
2m

2l
;

where s0i� p = d� 2m if s0i > p, or p� s0i = d� 2m if p < s0i. For, the other sums, in a manner similar to
the one used in Claim 1, we have:

j�1X
k=1

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ k �R� j Rs]

+

npX
k=j+1

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ k �R� j Rs]

�
np
2l+1

(log2 np + 3):

59

Hence, by using Fact 4 (Appendix A), we have

qsX
p=1

npX
k=1

Pr[x0ij + s0i �R+ j �R� = xpk + p�R+ k �R� j Rs] �
qsX
p=1

�
2m

2l
+

np
2l+1

(log2 np + 3)

�

�
qsX
p=1

2m

2l
+

�s
l2l+1

(log2
�s
l
+ 3):

In the �rst sum,
Pqs

p=1
2m

2l
, we use the fact that 1 � p; s0i � qs; p 6= s0i (as shown in Case (b2) above, the

probability is zero when p = s0i), hence

qsX
p=1

2m

2l
=

s0i�1X
p=1

2m

2l
+

qsX
p=s0i+1

2m

2l

�
s0i � 1

2l+1
(log2(s

0i � 1) + 3) +
qs � s0i � 1

2l+1
(log2(qs � s0i � 1) + 3)

�
qs � 2

2l+1
(log2(qs � 1) + 3) �

qs
2l+1

(log2 qs + 3)

Hence,

Pr[Ci j Rs] �
qs
2l+1

(log2 qs + 3) +
�s
l2l+1

(log2
�s
l
+ 3):

(b) We �nd an upper bound for Pr[Di j Ci and Rs] in a manner very similar to the one used in Claim 3(c)
of the Proof of Theorem 3 (viz., Appendix B). Since the message ID does not matter in this case (since all
the elements of Vi have the same message ID s0i, then the bound is identical

Pr[Di j Ci and Rs] �
n0i
2l+1

(log2 n
0
i + 3):

ut

60

Appendix D { Proof [Security of stateful XEBCS-XOR in a Message-Integrity Attack]

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a
Message-Integrity Attack, Appendix A, and the same facts (i.e., Facts 1 { 4). Unless mentioned otherwise,

we focus on the probability for adversary's success when f
R
 GS, and, for simplicity, we will drop the

f
R
 GS subscript from the probability equations.

Notation. Let zpk; 1 � p � qe; 1 � k � np be the hidden ciphertext blocks at the encryption of message p;
i.e., for encrypted message xp = xp1 � � � x

p
np
, we have

zpk = f(xpk + p�R+ k �R�); 1 � k � np

zpnp+1 = f(xpnp+1 + p�R):

Let z0ij ; 1 � i � qv; 1 � j � n0i+1 be the hidden ciphertext blocks at the decryption of forgery i; i.e., for the

forgery y0i = y0i1 � � � y
0i
n0
i
y0i
n0
i
+1 using the message identi�er (ID) s0i (s0i � qe), we have

z0ij = y0ij � s0i �R� j �R�; 1 � j � n0i + 1:

To �nd an upper bound on the probability of an adversary's success we use the same proof technique as
for the XCBC$-XOR scheme. That is, we (1) de�ne several types of events on which we condition the
adversary's success, (2) express the upper bound in terms of the conditional probabilities obtained, and
(3) compute upper bounds on these probabilities.

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
three conditioning events based on collisions in the inputs of f and f�1. We introduce the sets:

S : fzpk; 1 � p � qe; 1 � k � np + 1g;

Vi : fz0ij ; z
0i
j =2 S; 1 � j � n0i + 1g;

where S is the set of all the hidden ciphertext blocks (outputs of function f at encryption), and Vi is the
set of all the inputs of function f�1 at decryption of query i that are not in S. Based on sets S and Vi, we
introduce the following collision events that arise at the veri�cation of forgery (y0i; s0i):

Ci : Vi = ;:

Event Ci includes all instances when inputs of f�1 at forgery decryption collide with outputs of function
f at message encryption. Next we de�ne event Di as follows:

Di : 9j; 1 � j � n0i + 1 : z0ij 2 Vi

and z0ij 6= z0im;8z
0i
m 2 Vi; j 6= m; 1 � m � n0i + 1:

Event Di states that there is at least one \new" hidden ciphertext block for forgery i that does not collide
with any other \new" hidden ciphertext block for forgery i, where \new" hidden ciphertext blocks refers
to hidden ciphertext blocks that are not in the set of hidden ciphertext blocks at encryption, namely S. It
is clear that the de�nition for Di makes sense only when event Ci is false.

The rationale for introducing events Ci (or, actually, Ci) and Di is similar to the one used in the proof
of Theorem 2 (Appendix A). That is, we want to �nd a desirable event which states that there exists a
hidden ciphertext block that does not collide with any other output of f at message encryption or with
any other input to f�1 at the decryption of forgery i. Clearly, if this event is true, then the probability of

61

veri�cation passing is 1=2l if f
R
 GS, where we use the reduction from f

R
 F to f

R
 GS as de�ned in

Appendix A (Fact 1). To �nd this event, however, we must ensure that all other collisions that that may
lead to the discovery of R or R� are also ruled out for this block (viz., Example 3 in Appendix C). For this
reason, we introduce event Re de�ned below.

Re : zpk 6= zst ; 1 � p; s � qe; 1 � k � np + 1; 1 � t � ns + 1; (p; k) 6= (s; t):

Event Re states that the set S is collision-free. Note that event Re is independent of any forgery i.

Upper bound on the Probability of Successful Forgery. Fact 1 of Appendix A reduces the problem
to �nding an upper bound for Pr

f
R
 GS

[Succ], and

Pr
f
R
 F

[Succ] � �+
�v(�v � l)

l22l+1
+ Pr

f
R
 GS

[Succ]:

Unless we state otherwise, assume that f
R
 GS (and drop this subscript from Pr

f
R
 GS

[Succ].)

By standard conditioning, we have

Pr[Succ] � Pr[Succ j Re] + Pr[Re]:

The second term in the sum is bounded as in the following Claim:

Claim 1

Pr[Re] �
qe�e
l2l+1

(log2 qe + 3) +
�2e

l22l+1
(log2

�e
l
+ 3) +

�e(�e � l)

l22l+1
:

The proof of Claim 1 is similar to the proof of Claim 1 of Appendix C, and the extra term �e(�e�l)
l22l+1

appears

because of the distinction between f
R
 P l (since f

R
 GS) and f

R
 Rl;l.

To compute an upper bound for the probability of successful forgery, when event Re is true, we note that
the adversary is successful if one of his qv forgeries is (y

0i; s0i) is successful, where y0i = y0i1 � � � y
0i
n0
i
+1. Hence,

by union bound, the probability of adversary's success for all qv veri�cation queries (when f
R
 GS) is:

Pr[Succ j Re] �
qvX
i=1

Pr[x0in0
i
+1 = x0i1 � � � � x

0i
n0
i
j Re]:

Hence, we �rst compute the probability of adversary's success when a single forgery veri�cation is allowed;
i.e., we compute Pr[Succ j Re]. For this computation, we partition the space of all possible forgeries into
(1) truncation and (2) non-truncation forgeries.

Truncation Forgeries. We call truncation a forgery y0i = y0i1 � � � y
0i
n0
i
+1 together with a message identi�er s0i

(s0i � qe) such that there exists a ciphertext message yp = yp1 � � � y
p
np+1 where s

0i = p and y0ik = ypk;8k; 1 �
k � n0i + 1 < np + 1.

In this case, for any 1 � j � n0i + 1 we have:

z0ij = zpj ;8j; 1 � j � n0i + 1;

and thus
x0ij = f�1(z0ij)� s0i �R� j �R� = f�1(zpj)� p�R� j �R� = xpj ;

62

for any 1 � j � n0i, and

x0in0
i
+1 = f�1(z0in0

i
+1)� s0i �R = f�1(zp

n0
i
+1)� p�R

= xp
n0
i
+1 + p�R+ (n0i + 1)�R� � p�R = xp

n0
i
+1 + (n0i + 1)�R�:

Hence, the integrity condition
x0in0

i
+1 = x0i1 � � � � � x0in0

i

becomes
xp
n0
i
+1 + (n0i + 1)�R� = xp1 � � � � � xp

n0
i
;

where xp1; � � � ; x
p

n0
i
+1 are constants (since n

0
i+1 � np). Hence, by Fact 2, we have for the truncation forgery

i

P r[x0in0
i
+1 = x0i1 � � � � x

0i
n0
i
j Re] �

2m

2l
;

where n0i + 1 = d� 2m and d is odd. Thus, since 2m � n0i + 1, we have

Pr[x0in0
i
+1 = x0i1 � � � � x

0i
n0
i
j Re] �

n0i + 1

2l
:

Non-Truncation Forgeries. Now, we �nd an upper bound for Pr[x0i
n0
i
+1 = x0i1 � � � � � x0i

n0
i
j Re] for non-

truncation forgeries. To compute this upper bound, we de�ne an event such that (1) the probability of
successful forgery is 1=2l when this event occurs, and (2) the probability of the complement of this event
has a negligible upper bound.

Using the events de�ned above and by standard conditioning, we obtain:

Pr[x0in0
i
+1 = x0i1 � � � � � x0in0

i
j Re] � Pr[x0in0

i
+1 = x0i1 � � � � � x0in0

i
j Ci and Di and Re] +

Pr[Ci or Di j Re]

� Pr[x0in0
i
+1 = x0i1 � � � � � x0in0

i
j Ci and Di and Re] +

Pr[Ci or Di j Ci and Re] + Pr[Ci j Re]

= Pr[x0in0
i
+1 = x0i1 � � � � � x0in0

i
j Ci and Di and Re] +

Pr[Di j Ci and Re] + Pr[Ci j Re];

since the following events are equivalent:

(Ci or Di j Ci and Re) � (Di j Ci and Re):

Event (Ci and Di and Re) is the desired event mentioned earlier in this proof. If this event happens, then

Pr[x0in0
i
+1 = x0i1 � � � � � x0in0

i
j Ci and Di and Re] =

1

2l
:

The other probabilities that appear in the expression for the total probability Pr[x0i
n0
i
+1 = x0i1�� � ��x

0i
n0
i
j Re]

are bounded as in Claim 2, whose proof is similar to that of Claim 2 in Appendix C.

Claim 2
(a)

Pr[Ci j Re] �
qe
2l+1

(log2 qe + 3) +
�e
l2l+1

(log2
�e
l
+ 3):

63

(b)

Pr[Di j Ci and Re] �
n0i + 1

2l+1
(log2(n

0
i + 1) + 3):

Based on this claim, for an arbitrary forgery i that is not a truncation, we obtain:

Pr[x0in0
i
+1 = x0i1 � � � � � x0in0

i
j Re] �

1

2l
+

qe
2l+1

(log2 qe + 3) +
�e
l2l+1

(log2
�e
l
+ 3) +

n0i + 1

2l+1
(log2(n

0
i + 1) + 3):

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation
forgeries, hence,

Pr[x0in0
i
+1 = x0i1 � � � � � x0in0

i
j Re] �

1

2l
+

qe
2l+1

(log2 qe + 3) +
�e
l2l+1

(log2
�e
l
+ 3) +

n0i + 1

2l+1
(log2(n

0
i + 1) + 3):

Hence, for all qv veri�cation queries, we obtain by union bound,

Pr[Succ j Re] �
qvX
i=1

Pr[x0in0
i
+1 = x0i1 � � � � � x0in0

i
j Re]

�
qvX
i=1

�
1

2l
+

qe
2l+1

(log2 qe + 3) +
�e
l2l+1

(log2
�e
l
+ 3) +

n0i + 1

2l+1
(log2(n

0
i + 1) + 3)

�

=
qv
2l

+
qvqe
2l+1

(log2 qe + 3) +
qv�e
l2l+1

(log2
�e
l
+ 3) +

�v
l2l+1

(log2
�v
l
+ 3):

Hence, by Claim 1,

Pr[Succ] �
qv
2l

+
qvqe
2l+1

(log2 qe + 3) +
qv�e
l2l+1

(log2
�e
l
+ 3) +

�v
l2l+1

(log2
�v
l
+ 3) +

qe�e
l2l+1

(log2 qe + 3) +
�2e

l22l+1
(log2

�e
l
+ 3) +

�e(�e � l)

l22l+1
:

Finally, when f
R
 F , the probability for adversary's success is bounded as follows:

Pr
f
R
 F

[Succ] � �+
�v(�v � l)

l22l+1
+

qv
2l

+
qvqe
2l+1

(log2 qe + 3) +
qv�e
l2l+1

(log2
�e
l
+ 3) +

�v
l2l+1

(log2
�v
l
+ 3) +

qe�e
l2l+1

(log2 qe + 3) +
�2e

l22l+1
(log2

�e
l
+ 3) +

�e(�e � l)

l22l+1

= �+
�v(�v � l)

l22l+1
+
qv
2l

+
�v
l2l+1

(log2
�v
l
+ 3) +�

qv +
�e
l

�
qe
2l+1

(log2 qe + 3) +

�
qv +

�e
l

�
�e
l2l+1

(log2
�e
l
+ 3) +

�e(�e � l)

l22l+1
:

ut

64

