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Abstract

Aust, J. Andrew (Ph.D., Electrical Engineering)

Maker-Fringe Analysis and Electric-Field Poling of Lithium Niobate

Thesis directed by Professor Adjunct Norman A. Sanford

This dissertation focuses on Maker-fringe analysis and electric-field

poling of z-cut lithium niobate (LiNbO3). The Maker-fringe analysis involved

examining second-harmonic generation (SHG) as a function of pump beam

angle of incidence, where four separate pump-SHG polarization orientations

were examined. The theoretical model developed here to describe the Maker

fringes includes the full birefringent of this uniaxial material. The theory also

considers Fabry-Perot resonances of both the pump and second-harmonic

waves in the sample. Simultaneously fitting all four pump-SHG orientations to

sample thickness, ordinary index of refraction at the pump and second-

harmonic wavelengths, and extraordinary index of refraction at the pump and

second-harmonic wavelengths has led to the most comprehensive Maker-

fringe analysis attempted to date. From this analysis, index of refraction

variations lead to a description of the compositional variation within a wafer

and between wafers. Other properties that may also be determined are the

nonlinear coefficients )2(
ijd , electrooptic coefficients rij, surface charges,

internal fields, stresses, and strains. Any effect that perturbs the indices of

refraction by 1 × 10-5 or more can be examined.
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The Maker-fringe analysis revealed that the extraordinary index of

refraction of LiNbO3 is smaller than that predicted by the commonly used

Sellmeier equation derived by Edwards and Lawrence [Edwards ‘84]. The

discrepancy is on the order of -9 × 10-4 at a wavelength of 532 nm and

appears to be related to the compositional variation between the congruent

material used in the original index studies and that, which is currently

available. Maker-fringe analysis has also been used to measure the nonlinear

coefficients )2(
31d = 5.95 pm/V and )2(

33d = 25.2 pm/V, electrooptic coefficients

Tr13 = 1.27 × 10-5 mm/kV and Tr33 = 3.44 × 10-5 mm/kV at a wavelength of 1.064

µm, and Tr13 = 1.39 × 10-5 mm/kV and Tr33 = 3.43 × 10-5 mm/kV at a wavelength

of 532 nm, and pyroelectrically induced electric fields up to -19.1 kV/mm after

a 200 °C temperature cycle.

The electric-field poling experiments involved examination of the poling

current with respect to the applied poling field and Maker-fringe analysis of

domain-reversed material. I observed a similar offset in the behavior of the

poling current (6.9 kV/mm) as other researchers have seen in polarization

hysteresis loops (6.7 to 7.0 kV/mm). I also correlated this offset with the

observation of fringe shifts in the Maker-fringe scans of domain reversed

material.
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Chapter 1

Introduction

1.0  Dissertation Overview

In this work, I use Maker-fringe analysis to examine several properties

of lithium niobate (LiNbO3). Historically, Maker-fringe analysis has been used

for the measurement of nonlinear coefficients; in most cases this has involved

fitting the envelope function of the fringes only. In my analysis, this one

measurement technique is used to examine the indices of refraction and the

electrooptic coefficients of LiNbO3 as well as the effects to the material due to

pyroelectricity and domain reversal [Aust ‘97a, ‘97b].

My theoretical contribution is the full Fabry-Perot resonance

development of the second-harmonic generation (SHG) for uniaxial media. I

also introduce a heuristic correction factor to compensate for the lack of

infinite plane waves. My treatment includes all four possible pump-to-SHG

polarization orientations obtained from rotation of a z-cut wafer about its y-

axis.

Finally, I examine the poling current, which is involved with domain

reversal, as a function of electric field. A correlation between the Maker-fringe

analysis of domain reversed LiNbO3 and the poling current studies is made.
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1.1  Background

Lithium niobate is used for a host of accoustooptic, electrooptic, and

nonlinear optical applications. As the sophistication of the devices employing

LiNbO3 increases the need for better characterization of this material has

arisen. Wafer uniformity is a key issue for improving device performance and

yields. One method of analysis, suggested as a tool to examine the uniformity

of LiNbO3 wafers and boules, is Maker-fringe analysis [Lunt ‘85]. Maker

fringes, or the oscillations of the SHG as a function of pump angle of

incidence, were first demonstrated by Maker et. al in 1962 while examining

quartz and potassium dihydrogen phosphate (KDP) [Maker ‘62]. Maker

fringes are produced by rotating a nonlinear material, typically around one of

its crystallographic axes, while illuminating it by a polarized pump beam. The

fringes are the result of interference between the bound and free harmonic

waves that propagate in a nonlinear material as a result of the pump wave.

The attributes of the fringes, their frequency and amplitude, depend upon

several criteria including the indices of refraction at the fundamental and

second-harmonic wavelengths, nonlinear coefficients, sample thickness,

pump and SHG polarizations, and location of rotation axis with respect to

crystal axes.

Bloembergen reported a theoretical description of nonlinear frequency

generation by a nonlinear material in 1962 [Bloembergen ‘62]. His treatment

considered the sum frequency produced from a plane-parallel plate of
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isotropic material being pumped by two infinite plane waves at frequencies ω1

and ω2. The resulting expression for the electric field at ω3 = ω1 + ω2 was

obtained by considering Fresnel’s laws for all three frequencies involved.

In 1969 Jerphagnon stated that Bloembergen’s “formulas, besides the

fact that they hardly can be used by the experimentalist, do not describe the

multiple refection phenomenon as it usually occurs” [Jerphagnon ‘69].

Jerphagnon then modified the multiple reflection result in such a way as to

eliminate the coherent addition of the Em and Em+1 transmitted electric fields,

where m ≥ 1. The reasoning given for his modification was that the crystal

faces were not flat and parallel enough to get a constant phase difference

between Em and Em+1. His result includes the incoherent addition of the

multiple pass fields but ignores the coherent addition. Another reason this

assumption worked for Jerphagnon is that the indices of refraction of the

materials he was examining, quartz, ADP, and KDP, are relatively low, ~1.5.

This reduces the reflectance of each pass and, therefore, reduces the

interference. Jerphagnon’s assumption may have been accurate for his

studies, but it is far from accurate for the work presented here, where the

nominal index of refraction of LiNbO3 is ~2.2 and the wafers are polished to a

scratch/dig of 10/5 and have a wavefront distortion at 633 nm of <λ/4.

My recent interest in LiNbO3 involves its use as a nonlinear material, in

particular, its use in implementing quasi-phase-matched (QPM) nonlinear

optical interactions [Yamada ‘93]. QPM is an extremely versatile method of

achieving phase matching for optical frequency conversions.
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Conventional birefringent phase-matching relies on the chance material

characteristics that the index of refraction at the fundamental frequency is the

same as it is for the harmonic frequency. This criterion is very limiting,

inasmuch as there are only a finite number of frequency conversions that can

be birefringently phase-matched with currently known materials. As

examples, LiNbO3 birefringently phase-matches SHG at room temperature for

fundamental wavelengths of ~1.08 and ~3.74 µm, while another material

suitable for QPM, LiTaO3, is not birefringently phase matchable.

QPM uses a periodic modification of the nonlinear susceptibility to

compensate for the phase walkoff between the fundamental and harmonic

waves. In the simplest case this modification is a periodic sign reversal of the

nonlinear susceptibility. The period of this modulation is two times the

coherence length lc of the particular interaction. For SHG the phase mismatch

between the fundamental and harmonic waves reaches a value of π at a

distance of lc in the media, at which point the sign of the nonlinear coefficient

is reversed and the fundamental field continues to feed power into the

harmonic field. Instead of relying upon the birefringence and/or the dn/dT for

the nonlinear media, phase-matching is achieved by tailoring the period of the

QPM grating to the particular desired interaction. This allows for efficient

phase-matching of any frequency conversion within the transparency window

of the material. LiNbO3 is particularly suited for implementing QPM because it

is a ferroelectric material. From Lines and Glass [Lines ‘77]:

A material is defined as ferroelectric when it has two or more
orientational states in the absence of an electric field and can be
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shifted from one to the another of these states by an electric
field. Any two of the orientation states are identical in crystal
structure and differ only in electric polarization vector at null
electric field.

Using the ferroelectric property of LiNbO3, the direction of the spontaneous

polarization, and therefore the sign of the nonlinear coefficients, can be

reversed by the application of a sufficiently strong poling field. A spontaneous

polarization domain grating can be formed in the material for implementing

QPM by patterning the poling electrodes into a grating structure with

individual segments the size of the coherence length of the desired

interaction.

Domain reversal, the process of changing the direction of the

spontaneous polarization, can briefly be explained as the movement of the

Li+1 and Nb+5 ions with respect to the oxygen planes in the material.

At temperatures below the Curie temperature, LiNbO3’s structure consists of

oxygen planes that are packed into octahedra. The interstices of these

orctahedra are one-third filled by lithium, one-third filled with niobium, and

one-third vacant. The order in which the cations occur in the +z direction is Li

Nb � Li Nb � Li Nb �, where � denotes a vacancy [Weis ‘85]. During

domain reversal, the Li+1 ions must pass through an oxygen plane from one

oxygen octahedron to the next while the Nb+5 ions merely shift their position

within an oxygen octahedron. Figure 1.1 schematically represents the

positions of the Li+1 and Nb+5 ions before and after domain reversal. The

motion of the cations in the crystal gives rise to a displacement current,



Lithium

Niobium

Oxygen

Domain Direction

+z

+y
+x

+z +z

+z

Figure 1.1 Position of ions in the LiNbO structure. Top figure is for a single

domain. Lower figure shows domain reversed region.
3

6
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referred to here as a poling current, that can be measured and is a direct

indication of the completeness of the domain reversal.

In the six years since the first demonstration of electrically induced

periodically poled LiNbO3 (PPLN), several groups around the world have

attempted to perfect the poling process [Webjörn ’94, Goldberg ’95, Pruneri

’95, Meyn ’97, Rosenman ’98] while others have concentrated on trying to

better understand the poling process itself [chao ’95, Gopalan ’97, ’98, Wang

’97, Miller ‘98]. Today PPLN substrates are commercially available from

approximately two suppliers here in the United States and a number of other

companies have in-house capabilities to produce such material. However,

these substrates are still fairly expensive and available only in a limited

number of domain periods. One of the reasons for this is the difficulty involved

in producing the QPM gratings. Device yields are still too low due to the

frequent occurrence of electrical breakdown suffered by the material during

electric field poling at room temperature.
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Chapter 2

Theoretical Development of Maker Fringe Analysis

2.0  Introduction

This treatment of Maker fringe analysis will deal with four specific

pump-to-SHG relationships: extraordinary or e-polarized pump producing e-

polarized SHG, e-polarized pump producing ordinary or o-polarized SHG, o-

polarized pump producing o-polarized SHG, and o-polarized pump producing

e-polarized SHG. Each of these nonlinear frequency conversions will be

treated in two distinctly different developments. The first is a single-pass ray

approach which will also include a second-pass correction. The second

method is a fully resonant approach where the Fabry-Perot resonance of the

pump and SHG will be considered. In presenting this formalism, the e-

polarized pump producing e-polarized SHG case will be given in detail,

because of its added complexity, while just the results will be stated for the

remaining cases.

The substrate being considered here is z-cut LiNbO3. For a z-cut wafer

the z-axis of the crystal is normal to the wafer’s polished surfaces. Figure 2.1

illustrates the orientation of the wafer in the experimental setup. For this

exercise, the wafer rotation is about the y-axis while the pump propagation is

in the xz-plane. The two different pump conditions are e- and o-polarized.



Eo

z-cut LiNbO3

Ep, o

Ep, e

z

-x

y

Ee

Figure 2.1 Schematic of sample orientation.
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When the pump polarization is parallel to the plane of incidence it is referred

to as p-, π-, or e-polarized. When the pump polarization is perpendicular to

the plane of incidence it is referred to as s-, σ-, or o-polarized.

2.1 Wave Equations

The wave equations describing the propagation of light through a

uniaxial crystal such as LiNbO3 must first be developed. The result of this

development will be used to express the propagation of the pump and the

second-harmonic fields through the substrate. This is accomplished by

starting with Maxwell’s curl relations

& & &

&

&

&

&

& &

∇ × = + = + +H J
D
t

J
E
t

P
to

∂
∂

ε ε
∂
∂

∂
∂

, (1a)

& &

&

∇ × = −E
H
toµ

∂
∂

. (1b)

The reference coordinate system is taken to coincide with the substrate’s

crystallographic axes. This results in the dielectric tensor 
&

&

ε  being diagonal

with ε11 = ε22 = 2
on  and ε33 = 2

en , where no and ne are the ordinary and

extraordinary indices of refraction. For the sample-pump orientation chosen

here all derivatives with respect to y are zero. Writing out the curl relations

with the current J
&

 assumed to be zero gives

                                   xxooyz PiEniH ω−ωε−=∂− 2 , (2a)
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                        yyooxzzx PiEniHH ω−ωε−=∂+∂− 2 , (2b)

                                      zzeoyx PiEniH ω−ωε−=∂ 2 , (2c)

                                   xoyz HiE ωµ=∂− , (2d)

                         yoxzzx HiEE ωµ=∂+∂− , (2e)

                                      zoyx HiE ωµ=∂ . (2f)

Solving Equations (2d-f) for Hx, Hy, and Hz, respectively, and then substituting

appropriately into Equations (2a-c) gives

   xoxoooxzzxz PEnEE µω=µεω−∂−∂ 22222 , (3a)

 yoyoooyzyx PEnEE µω=µεω−∂−∂− 22222 , (3b)

zozoooxxzzx PEnEE µω=µεω−∂+∂− 22222 . (3c)

The mixed partial derivatives zxzE
2∂  and xxzE

2∂  must be eliminated.

This is accomplished by using the fact that the media is charge-free, so that

0=•∇ D
&&

. Writing this equation out fully with 
&

&

& & &

D E Po= +ε ε  and again taking

all derivatives with respect to y as zero gives

022 =∂+∂ε+∂+∂ε=•∇ zzzzeoxxxxoo PEnPEnD
&&

. (4)

Rewriting Equation (4) to solve for zzE∂  and again to solve for xxE∂ gives

)(
1 2
2 zzxxxxoo
eo

zz PPEn
n

E ∂+∂+∂ε
ε
−=∂ , (5a)

)(
1 2
2 zzxxzzeo
oo

xx PPEn
n

E ∂+∂+∂ε
ε
−=∂ . (5b)
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Taking ∂x  of Equation (5a) and ∂z  of Equation (5b) results in suitable

expressions for eliminating the mixed partial derivatives found in Equations

(3a,c):

)(
1 2222
2

2
zxzxxxxoo

eo
zxz PPEn

n
E ∂+∂+∂ε

ε
−=∂ , (6a)

)(
1 2222
2

2
zzxxzzzeo

oo
xxz PPEn

n
E ∂+∂+∂ε

ε
−=∂ . (6b)

Substituting Equation (6a) into Equation (3a), Equation (6b) into Equation

(3c), and making the substitution ook εµω= 22  results in the general wave

equations

           x
oeo

zxz

eo

xx
xoxzxx

e

o P
k

n
P

n
P

EnkEE
n
n

ε
−

ε
∂−

ε
∂−=+∂+∂

2

2

2

2

2
2222

2

2

, (7a)

                y
o

yoyzyx P
k

EnkEE
ε

−
=+∂+∂

2
2222 , (7b)

            z
ooo

zz

oo

xxz
zezz

o

e
zx P

k

n
P

n
P

EnkE
n
n

E
ε

−
ε
∂−

ε
∂−=+∂+∂

2

2

2

2

2
222

2

2
2 . (7c)

These general wave equations will be used to describe both the pump and

the second-harmonic propagation within the LiNbO3. When used to describe

the pump propagation, the nonlinear driving terms or source polarizations Pi

on the right side of Equations (7a-c) are set to zero; no and ne are taken at the

pump wavelength λp; and the wave vector k becomes pooppk λπ=εµω= 22 .

For second-harmonic wave propagation the nonlinear driving terms are

retained, no and ne are taken at the second harmonic wavelength λs, and the
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wave vector k becomes soossk λπ=εµω= 22 . Note that the homogeneous

portions of Equations (7a-c) are completely uncoupled. Also, the partial

derivatives of Px and Pz will correspond to the “effective” nonlinear coefficients

described by many authors.

2.2 Single-Pass Analysis

This first approach to describing the second-harmonic signal uses

simple ray propagation. The input pump and generated second-harmonic

waves are treated in a stepwise fashion as they propagate through the media.

Figure 2.2 illustrates all the e-polarized pump and second-harmonic fields

associated with the single-pass approach.

2.2.1 Single-Pass Pump

In order to express the SHG output field in terms of the input field, a full

treatment of the pump propagation through the system must be undertaken.

Here, I calculate the Fresnel reflection and transmission coefficients for the

uniaxial media. Figure 2.3 depicts the pump waves incident, transmitted, and

reflected from the first surface of the sample as well as the wave vectors

associated with each of these fields. The pump wave incident on the sample



Figure 2.2 -polarized pump and SHG fields propagating through the
sample.
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for the e-polarized pump may be written as

)(
,

)(
,,,, ˆˆˆˆ tzKxKio

zp
tzKxKio

xpzpxpep
pzpxppzpxp eEzeExEzExE ω−+ω−+ +=+=

&

, (8)

where Kxp = kpsinθi, Kzp = kpcosθi, ωp is the angular frequency of the pump,

and θi is the incident angle of the pump. The waves reflected from the first

surface may be represented as

)(
,1,,1,

11 tzKxKio
xrpxrp

ppzrpxreEE ω−−= , (9a)

 )(
,1,,1,

11 tzKxKio
zrpzrp

ppzrpxreEE ω−−= , (9b)

where Kxr1p = kpsinθr1, Kzr1p = kpcosθr1, and θr1 is the angle of reflection for the

pump beam. The pump field transmitted through the first surface of the

sample must be a solution to the homogeneous portion of the wave

equations, that is, Equations (7a,c) with the right side set equal to zero. These

solutions may be written in the form

E E ep t x p t x
o i K x K z tpex pez p

, , , ,
( )

1 1= + −ω , (10a)

E E ep t z p t z
o i K x K z tpex pez p

, , , ,
( )

1 1= + −ω , (10b)

where Kpex = kpnep(θep)sinθep, Kpez = kpnep(θep)cosθep, and θep is the angle of

propagation through the sample of the e-polarized pump field. An expression

for the extraordinary index of refraction as a function of angle ne,p(θep) is

obtained by applying the solution of Equation (10a) to the homogeneous

portion of Equation (7a). This leads to the well known expression [see for

example Hecht ‘87]



17

n
n n

n ne p ep
o p e p

o p ep e p ep
,

, ,

, ,

( )
sin cos

2
2 2

2 2 2 2θ
θ θ

=
+

, (11)

in terms of our definition of θep.

In order to solve for the field amplitudes in Equations (9a,b) and

(10a,b) the boundary conditions at the first surface of the lithium niobate

substrate, z = 0, must be examined. The boundary conditions require the

tangential field components be equal across a surface. This leads to

( )E E Ep x p r x
z

p t x z, , , , ,+ =
= =1

0
1 0

, (12a)

( )H H Hp y p r y
z

p t y z, , , , ,+ =
= =1

0
1 0

. (12b)

Substituting the appropriate fields into Equations (12a,b) yields

                    xiKo
xtp

xiKo
xrp

xiKo
xp

pexpxrxp eEeEeE ,1,,1,,
1 =+ , (13a)

( ) ( )
( ) .,1,,1,

,1,1,1,1,,
1

xiKo
xtppez

o
ztppex

xiKo
xrppzr

o
zrppxr

xiKo
xpzp

o
zpxp

pex

pxrxp

eEKEK

eEKEKeEKEK

+−=

+−+−
(13b)

To satisfy these equations, the amplitudes on the left must equal the

amplitudes on the right and the transverse phases must be equal everywhere

on the boundary. These requirements lead to

E E Ep x
o

p r x
o

p t x
o

, , , , ,+ =1 1 , (14a)

,,1,,1,

,1,1,1,1,,

o
xtppez

o
ztppex

o
xrppzr

o
zrppxr

o
xpzp

o
zpxp

EKEK

EKEKEKEK

+−

=−−+−
(14b)

pexpxrxp KKK == 1 . (14c)

Equation (14c) leads directly to the law of reflection
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                                 1sinsin ri θ=θ . (15a)

and Snell’s law generalized to the air-uniaxial interface

                                 epeppei n θθ=θ sin)(sin , . (15b)

The field amplitudes o
zpE , , o

zrpE ,1, , and o
ztpE ,1,  found in Equation (14b)

may be written in terms of o
xpE , , o

xrpE ,1, , and o
xtpE ,1,  by using 

& &

∇ • =D 0. This

leads to the expressions

               o
xpi

o
xp

zp

xpo
zp EE

K

K
E ,,, tan ⋅θ−=−= , (16a)

             o
xrpi

o
xrp

zp

xpo
zrp EE

K

K
E ,1,,1,,1, tan ⋅θ== , (16b)

o
xtpep

pe

poo
xtp

pez

pex

pe

poo
ztp E

n

n
E

K

K

n

n
E ,1,2

,

2
,

,1,2
,

2
,

,1, tan ⋅θ−=−= . (16c)

The x-component of the transmitted pump field o
xtpE ,1,  may be found by

combining Equations (14a,b), (16a-c), and making the substitutions Kxr1p = Kxp

and Kzr1p = Kzp. The result is

o
xp

epepep
pe

po
ieppe

epo
xtp E

n

n
n

E ,
22

2
,

2
,

,

,1,

coscossincos)(

cos2

θ+









θ+θθθ

θ
= .

(17)

In order to represent this relationship in terms of the total incident pump field

the following expression is used

           
2

,2

2
,

2
,

2
, cos

1
xp

i
zpxpep EEEE

θ
=+= . (18)

Equation (17) can now be written as
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o
epepe

o
xtp EtE ,,1, cos1 θ= , (19)

where the transmission coefficient is

epepep
pe

po
ieppe

i
e

n

n
n

1t

θ+









θ+θθθ

θ=

coscossincos)(

cos2

22
2
,

2
,

,

.
(20)

Following a similar procedure as above, the reflected field amplitude is

o
epie

o
xrp E1rE ,,1, cos ⋅θ⋅= , (21)

where the reflection coefficient is

epepep
pe

po
ieppe

epep
pe

po
ieppeep

e

n

n
n

n

n
n

1r

θ+









θ+θθθ











θ+θθθ−θ

=

coscossincos)(

cossincos)(cos

22
2
,

2
,

,

22
2
,

2
,

,

. (22)

Examining these coefficients reveals the subtle differences between

the transmission and reflection coefficients for uniaxial and isotropic media. If

no,p and ne,p were equal, Equations (20) and (22) would simplify to the

commonly published transmission and reflection coefficients for isotropic

materials; see for example [Möller ‘88] or [Hecht ‘87]. The perturbation to

these coefficients due to factors of nop/nep is very slight. This fact is illustrated

in Figure 2.4 (a), where the transmittance, the square of Equation (20), is

plotted for three separate cases. The first case is for LiNbO3, the second for

an isotropic medium with n = nop, and the last for an isotropic medium with n =

nep. Figure 2.4 (b) provides a similar comparison for the reflectance, obtained

by squaring Equation (22). Figures 2.4 (a) and (b) show that the uniaxial

curves for LiNbO3 follow very closely the isotropic curves for n = nop.
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This is because at θi = 0° the pump wave sees only the ordinary index of

refraction.

Propagating the transmitted pump field through the substrate to the

second surface results in a second set of reflected and transmitted waves and

a second set of boundary conditions, as illustrated in Figure 2.5. The reflected

and transmitted waves from the second surface may be represented as

                        E E ep r x p r x
o i K x K z L tpexr pezr p

, , , ,
( ( ) )

2 2
2 2= − − −ω , (23a)

                        E E ep r z p r z
o i K x K z L tpexr pezr p

, , , ,
( ( ) )

2 2
2 2= − − −ω , (23b)

and

                        E E ep t x p t x
o i K x K z L tpxt pzt p

, , , ,
( ( ) )

2 2
2 2= + − −ω , (24a)

                        E E ep t z p t z
o i K x K z L tpxt pzt p

, , , ,
( ( ) )

2 2
2 2= + − −ω , (24b)

where

                              K k npexr p ep r r2 2 2= ( ) sinθ θ , (25a)

                              K k npezr p ep r r2 2 2= ( )cosθ θ , (25b)

                                K kpxt p t2 2= sinθ , (25c)

                                K kpzt p t2 2= cosθ , (25d)

and L is the sample thickness.

Examining the phases associated with the boundary conditions

( )E E Ep t x p r x
z L

p t x z L, , , , , ,1 2 2+ =
= =

, (26a)

( )H H Hp t y p r y
z L

p t y z L, , , , , ,1 2 2+ =
= =

(26b)
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at the second surface, z = L, leads to the obvious redefinition of the phases in

Equations (25a-d) to

                                      K Kpexr pex2 = , (27a)

                                      K Kpezr pez2 = , (27b)

                                       K Kpxt xp2 = , (27c)

                                       K Kpzt zp2 = . (27d)

Writing the amplitude equations

E e E Ep t x
o iK L

p r x
o

p t x
opez

, , , , , ,1 2 2+ = , (28a)

( )
,,2,,2,

,2,,2,,1,,1,

o
xtpzp

o
ztpxp

o
xrppez

o
zrppex

LiKo
xtppez

o
ztppex

EKEK

EKEKeEKEK pez

+−

=−−+−
(28b)

associated with the boundary conditions in Equations (26a,b) shows the

accumulation of phase associated with the pump propagation through the

sample. Writing Ep r z
o
, ,2  and Ep t z

o
, ,2  in terms of Ep r x

o
, ,2  and Ep t x

o
, ,2  by using

& &

∇ • =D 0 yields

o
xrpep

pe

poo
xrp

pez

pex

pe

poo
zrp E

n

n
E

K

K

n

n
E ,2,2

,

2
,

,2,2
,

2
,

,2, tanθ== , (29a)

o
xtpi

o
xtp

zp

xpo
ztp EE

K

K
E ,2,,2,,2, tanθ−=−= . (29b)

Combining Equations (16c), (28a,b), and (29a,b) results in expressions for the

transmitted and reflected pump field amplitudes at the second surface of the

substrate:
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
θ+θθθ

θ−









θ+θθθ

= . (30b)

Expressing Equations (30a,b) in terms of the incident pump field by using

Equation (18) results in

E t t E ep t x
o

e e i p e
o iK Lpez

, , ,cos2 1 2= ⋅ ⋅ ⋅θ , (31a)

LiKo
epepee

o
xrp

pezeErtE ,,2, cos21 ⋅θ⋅⋅= , (31b)

where the second-surface transmission and reflection coefficients are

epepep
pe
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ieppe
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n
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2t
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, (32a)
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
θ+θθθ
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



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


θ+θθθ

= . (32b)

This concludes the single-pass, e-polarized pump discussion. This

same procedure may be applied to the case of an o-polarized pump field as

depicted in Figure 2.6. For the o-polarized pump
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)(
,,, ˆ tzKxKio
ypyp

o
op

pzpxpeEEyE ω−+==
&

, (33)

the transmitted and reflected pump fields are

                            o
opo

o
ytp EtE ,,1, 1 ⋅= , (33a)

                            o
opo

o
yrp ErE ,,1, 1 ⋅= , (33b)

                            LiKo
opoo

o
ytp

pozeEttE ,,2, 21 ⋅⋅= , (33c)

                            LiKo
opoo

o
yrp

pozeErtE ,,2, 21 ⋅⋅= , (33d)

where the o-polarized transmission and reflection coefficients are

                             t
no

i

o p op i
1

2
=

+
cos

cos cos,

θ
θ θ

,
(34a)

                             r
n

no
i o p op

o p op i
1 =

−
+

cos cos

cos cos
,

,

θ θ
θ θ

,
(34b)

                             t
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o p op

o p op i
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=

+
,

,

cos

cos cos

θ
θ θ

,
(34c)

                             o
ioppo

ioppo
o r

n

n
r 1

coscos

coscos
2

,

, −=
θ+θ
θ−θ

= ,
(34d)

oppoppoz nkK θ= cos, , and θop is the angle of propagation through the sample

of the o-polarized pump field.
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2.2.2 Single-Pass Second-Harmonic Generation

The development of the second-harmonic field must now be

examined. The second-harmonic field is generated by the second-order

nonlinear source polarizations found on the right side of Equations (7a-c).

These polarizations arise from the interaction of the pump field with the

nonlinear material through the action of the second-order susceptibilities. As

described by [Shen ‘84] various definitions are found in the literature for

nonlinear susceptibilities. This has led to considerable confusion in

interpreting the value of the nonlinear susceptibilities within factors of 2 and

εo. Shen represents the second-harmonic source polarization as P = χ(2)EE

where P and E are complex quantities. He also notes that several authors [for

example, Yariv ‘84] represent P and E as real quantities using the nonlinear

coefficient d(2) resulting in P = d(2)EE. Using d(2) to connect the complex

polarization and electric fields results in P = 2d(2)EE. In this representation d(2)

is in units of C/V2. Following [Kurtz ‘79], I have chosen to represent the

nonlinear polarization as P = 2εod
(2)EE where d(2) is in units of m/V, as it is in

most reference books. Writing the nonlinear source polarization for LiNbO3 in

matrix notation results in
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For an e-polarized pump, the pump field transmitted into the LiNbO3 sample

is

ϕϕ +=+= io
ztp

io
xtpztpxtptp eEzeExEzExE ,1,,1,,1,,1,1, ˆˆˆˆ

&

, (36)

where tznkxnk ppeppepepeppep ω−θθ+θθ=ϕ )cos()()sin()( ,, . For this pump and

sample arrangement, the nonlinear source polarization becomes

)](ˆ)(ˆ)2(ˆ[2 2
,1,

)2(
33

2
,1,

)2(
31

2
,1,

)2(
22,1,,1,

)2(
15 ztpxtpxtpxtpztpo EdEdzEdyEEdxP ++−ε=

&

. (37)

Examining the product of the electric fields in this expression shows that

ϕ= io
ktp

o
jtpktpjtp eEEEE 2

,1,,1,,1,,1, , where j and k may be x or z. Recognizing that

ks=2π/λs=2kp and ωs=2ωp allows for the phase of the nonlinear source

polarization to be written in terms of the second-harmonic wavelength and

frequency:

tznkxnk speppespeppess ω−θθ+θθ=ϕ=ϕ )cos()()sin()(2 ,, , (38)

instead of the fundamental wavelength and frequency.

The nonlinear source polarizations that appear on the right side of

Equations (7a-c) are now defined. Solving Equations (7a-c) for the second-

harmonic fields may now be accomplished. The solution to these
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inhomogeneous wave equations can be found by adding a particular solution

to the homogeneous solution. The homogeneous and particular solutions

represent the “free” and “bound” second-harmonic waves mentioned in the

introduction. The particular solution is bound to the propagation of the pump

wave while the homogeneous solution is not. Figure 2.7(a) illustrates the e-

polarized second-harmonic fields associated with the first boundary while

Figure 2.7 (b) represents these fields’ wave vectors. The fields h
teE 1,  and p

teE 1,

represent the two portions of the total second-harmonic field propagating

through the sample. The homogeneous equations, obtained by setting all

driving terms to zero, have plane wave solutions of the form

                             )(
,1,,1,

tzKxKio
xte

h
xte

szesxeseEE ω−+= , (39a)

                             )(
,1,,1,

tzKxKio
zte

h
zte

szesxeseEE ω−+= (39b)

for the e-polarized second-harmonic field, where K k nxes s e s es es= , ( )sinθ θ ,

K k nzes s e s es es= , ( )cosθ θ , and θes is the angle of propagation of the e-

polarized second-harmonic field inside the sample. The extraordinary index of

refraction at the second-harmonic wavelength as a function of angle ne,s(θes)

may be solved as it was for the pump wavelength

n
n n

n ne s es
o s e s

o s es e s e s
,

, ,

, , ,

( )
sin cos

2
2 2

2 2 2 2θ
θ θ

=
+

(40)

in terms of our definition of θes. Figure 2.8 shows how ne,s(θes) varies from the

ordinary index at θes = 0° to the extraordinary index at θes = 90°.
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The particular solutions to Equations (7a-c) may be written as

                            )(
,1,,1,

tzKxKi
xte

p
xte

szepxepeAE ω−+= , (41a)

                            )(
,1,,1,

tzKxKi
zte

p
zte

szepxepeAE ω−+= , (41b)

where epeppesxep nkK θθ= sin)(, and epeppeszep nkK θθ= cos)(, . Therefore, the

general solutions are

            )(
,1,

)(
,1,,1,

tzKxKi
xte

tzKxKio
xtexte

szepxepszesxes eAeEE ω−+ω−+ += , (42a)

            )(
,1,

)(
,1,,1,

tzKxKi
zte

tzKxKio
ztezte

szepxepszesxes eAeEE ω−+ω−+ += . (42b)

The x-oriented field amplitude of the particular solution for an e-polarized

pump xteA ,1,  may be found by substituting Equation (41a) into Equation (7a)

and using Equation (37):
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+
+
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−
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(43)

Similarly the z-oriented field amplitude of the particular solution for an e-

polarized pump zteA ,1,  is
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EdEdnkK
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EEKKd
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(44)
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It is convenient to express these amplitudes in terms of the input pump field.

The pump field amplitude products found in Equations (43) and (44) may be

written in terms of the input pump field by using Equations (16c) and (19):

                    ( ) ( ) LKio
epepe

o
xrp

pezeEtE 22
,

222
,2, cos1 θ= , (45a)

                    ( ) ( ) LKio
epepeep

ep
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n
E 22

,
222

4

4
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,2, cos1tan θθ= , (45b)
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epepeep

ep
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o
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n
EE 22

,
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2

2

,2,,2, cos1tan θθ=⋅ . (45c)

Recognizing that Kzep = 2Kpez and substituting Equations (45a-c) into

Equations (43) and (44) results in the following expressions for the field

amplitudes of the particular solution in terms of the input pump field:
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+
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




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





=

(46a)
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
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





=

(46b)

Solving for the homogeneous field amplitudes is somewhat more

involved. Here the boundary conditions at z = 0 are once again invoked.

Representing the reflected second-harmonic field generated from an e-

polarized pump in its x- and z-components results in

                               )(
,1,,1,

tzKxKio
xrexre

szsxseEE ω−−=  and (47a)

                               )(
,1,,1,

tzKxKio
zrezre

szsxseEE ω−−= (47b)

where rsxs kK θ= sin  and rszs kK θ= cos . The boundary conditions at the first

surface for the second-harmonic fields may now be written as

                                    
0,1,0,1, ==

=
zxtezxre EE  and (48a)

                                    
0,1,0,1, ==

=
zytezyre HH . (48b)

Substituting into equations (48a,b) for the various fields leads to
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xte

xKio
xte

xKio
xre

xepxesxs eAeEeE += , (49a)
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o
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In order for these equations to be satisfied, the amplitudes on the right must

equal the amplitudes on the left and all the phases must be equal; that is,

                          xte
o

xte
o

xre AEE ,1,,1,,1, += , (50a)

xtezepztexep
o
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o

ztexes

o
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o
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AKAKEKEK

EKEK

,1,,1,,1,,1,

,1,,1,

−+−

=+
, (50b)

                             xepxesxs KKK == . (50c)

Equation (50c) represents the phase relationships of e-polarized reflected

and transmitted second-harmonic waves at the first boundary. These phases

can be related to the incident pump phase by combining Equations (50c) and

(15) resulting in a nonlinear Snell’s law:

iepeppeesesser nn θ=θθ=θθ=θ sinsin)(sin)(sin ,, . (51)

All the angles in Equation (51) can now be expressed in terms of the incident

pump angle as

                 θ θr i= , (52a)
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1
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All that is left is to solve for the homogeneous field amplitudes of the e-

polarized second harmonic waves found in Equations (50a,b). Using the
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same technique that was employed for the pump waves, the z-oriented

components may be expressed in terms of the x-oriented components

                              o
xre

zs

xso
zre E

K
K

E ,1,,1, = , (53a)

                              o
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soo
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K
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n
E ,1,
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,
,1, 





−= . (53b)

Finally, combining Equations (50a,b) and (53a,b) leads to the solution

( )
21

,1,2,1,
,1, bb

AbKAK
E xtezepztexepo

xte +
+−

= , (54)

where the factors

                                        zes
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se

so K
K
K

n

n
b +=

2

2
,

2
,

1  and (55a)

                                        zs
zs

xs K
K
K

b +=
2

2 (55b)

are used for simplification.

Propagating the transmitted second-harmonic field through the

substrate to the second surface results in a second set of reflected and

transmitted waves and a second set of boundary conditions. Figure 2.9

depicts the second-harmonic fields associated with the second surface of the

sample. The e-polarized reflected and transmitted waves originating from the

second surface may be represented as

))((
,2,

))((
,2,,2,

tLzKxKi
xre

tLzKxKio
xrexre

szepxepszesxes eAeEE ω−−−ω−−− += , (56a)

))((
,2,

))((
,2,,2,

tLzKxKi
zre

tLzKxKio
zrezre

szepxepszesxes eAeEE ω−−−ω−−− += , (56b)
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Figure 2.9 Second surface -polarized second-harmonic fields.e
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and

       ))((
,2,,2,

tLzKxKio
xtexte

szsxseEE ω−−+= , (57a)

       ))((
,2,,2,

tLzKxKio
ztezte

szsxseEE ω−−+= . (57b)

The continuity of the transverse phases at the second surface has already

been accounted for by the use of the propagation constants Kxes , xepK , and

Kxs . As was done for the forward propagating fields, the amplitudes of the

particular solution for the backward-travelling fields are
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(58b)

Expressing these backward-travelling amplitudes in terms of the input pump

field by substituting Equations (19), (29a), and (30b) into Equations (58a,b)

results in
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(59b)

These field amplitudes can be greatly simplified by recognizing that their

relationships with the forward-travelling amplitudes are

                                 LiK
extexre

zeperAA ⋅⋅−= 2
,1,,2, 2  and (60a)

                                 LiK
eztezre

zeperAA ⋅⋅= 2
,1,,2, 2 . (60b)

Applying the boundary conditions to the second surface of the sample

provides a means to solve for the remaining field amplitudes. The boundary

conditions at z = L are
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                               ( )
LzxteLzxrexte EEE

==
=+ ,2,,2,,1,  and (61a)

                               ( )
LzyteLzyreyte HHH

==
=+ ,2,,2,,1, . (61b)

Substituting into Equations (61a,b) for the various fields and setting their

amplitudes equal across the boundary leads to

               o
xtexre

o
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LiK
xte

LiKo
xte EAEeAeE zepzes

,2,,2,,2,,1,,1, =+++ , (62a)
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(62b)

Expressing Er z
o
2,  and Et z

o
2,  in terms of Er x

o
2,  and Et x

o
2,  results in
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= , (63a)

                                     o
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zte E

K
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E ,2,,2,
−= . (63b)

Combining Equations (60a,b), (62a,b), and (63a,b) results in the expression

( ) LiK
eeee

LiK
ee

o
xte

zepzes eBBeBE ,3,2,1,2, ++= (64)

for the transmitted x-oriented second-harmonic field amplitude, where the

factors
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= , (65a)
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= , (65b)
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AKAbK
B ⋅

+
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= , (65c)

have been employed. Using a similar procedure, the backward-travelling

homogeneous field amplitude is found to be

( ) LiK
eeee
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o
xre

zepzes eCCeCE ,3,2,1,2, ++= , (66)

where
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= . (67c)

An interesting note about Equations (64) and (66) concerns the phase

associated with the coefficients B2, B3 and C2, C3. The phase for all these

coefficients is KzepL, but this value comes about in two distinct ways. The

phase of the coefficients B2 and C2 comes from the source polarization terms

while the phase of the B3 and C3 terms comes from the pump wave

propagation.

Now that these amplitudes have been described, the optical power

leaving the sample from the second surface may be examined. The power

leaving the sample is proportional to the square of the amplitude of the

transmitted SHG field:

i
o

xt
o

zt
o

xtSHGe EEEP θ=+∝−
22

,2

2

,2

2

,2 sec . (68)
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The e-polarized, second-harmonic power leaving the sample is then

[ ( )
( ) ( )( )] .seccos2 2

,3,2,1
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,3,2
2
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izepzeseeeeee

eeeeee
pumpe

SHGe

LKKBBB
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θ⋅−++

++∝−
− (69)

Figure 2.10 is a plot of pumpe
SHGeP −

−  as a function of pump angle of incidence.

Following a similar procedure, as has been outlined in the previous

pages, the second-harmonic output for the remaining pump-SHG

configurations are given below. The o-polarized SHG produced from e-

polarized pumping is

[ ( ) ( ) ( )( )]LKKBBBBBBP zepzoseoeoeoeoeoeo
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SHGo −++++∝−
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,1 , (70)

where
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               ossoszos nkK θ= cos, (71f)

Figure 2.11 is a plot of pumpe
SHGoP −

−  as a function of pump angle of incidence.
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Figure 2.10  Single-pass e-polarized second-harmonic output resulting from
an e-polarized pump.
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Figure 2.11  Single-pass o-polarized second-harmonic output resulting from
an e-polarized pump.
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The o-polarized SHG resulting from an o-polarized pump is
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Figure 2.12 is a plot of pumpo
SHGoP −

−  as a function of pump angle of incidence. The

e-polarized SHG resulting from an o-polarized pump is
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Figure 2.13 is a plot of pumpo
SHGeP −

−  as a function of pump angle of incidence.
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Figure 2.12  Single-pass o-polarized second-harmonic output resulting from
an o-polarized pump.
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Figure 2.13  Single-pass e-polarized second-harmonic output resulting from
an o-polarized pump. 

L = 0.2 mm
Temp = 25°C
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2.3 Second-Pass Correction

Comparing the single-pass approximation to actual data shows that the

single-pass approximation, while good, fails to reproduce the high frequency

components in the data. Figure 2.14 shows e-polarized second-harmonic

data for e-polarized pumping along with the single-pass e- to e-polarized

theory. In this example the high frequency components of the data are visible

but they are not very prominent. This is because the high frequency

component of the second harmonic output is strongest at normal incidence,

while the e-polarized second-harmonic signal approaches zero at normal

incidence. Better examples of the high frequency signal will be shown later in

this discussion.

A better approximation to the high frequency component of the Maker

fringe signal is obtained by including a second pass in the development of the

pump and second-harmonic generation.

2.3.1 Second-Pass Pump Field

Following the propagation of the pump field reflected from the rear

surface of the substrate back to the front surface results in yet another set of

boundary conditions. Figure 2.15 is a simple ray diagram illustrating the

pump and second-harmonic fields that contribute to the second-pass
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Figure 2.14  Comparison of single-pass e-e Maker-fringe theory (red) with 
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Figure 2.15 Schematic representation of -polarized electric fields involved
in the second-pass correction.
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correction. The pump fields at this “third surface” may be written as

                         ))((
,2,,2,

tLzKxKio
xrpxrp

ppezpexeEE ω−−−= , (76a)

                         ))((
,2,,2,

tLzKxKio
zrpzrp

ppezpexeEE ω−−−= , (76b)

                         )(
,3,,3,

tzKxKio
xrpxrp

ppezpexeEE ω−+= , (76c)

                         )(
,3,,3,

tzKxKio
zrpzrp

ppezpexeEE ω−+= , (76d)

                         )(
,3,,3,

tzKxKio
xtpxtp

pzpxpeEE ω−−= , (76e)

                         )(
,3,,3,

tzKxKio
ztpztp

pzpxpeEE ω−−= . (76f)

The boundary conditions for this surface are

( )
0,3,,2,0,3, ==

+=
zxrpxrpzxtp EEE , (77a)

( )
0,3,,2,0,3, ==

+=
zyrpyrpzytp HHH . (77b)

Solving for o
xrpE ,3,  following the procedures of the previous sections results in

LKio
epepee

o
xrp

pezeErtE 2
,

2
,3, cos21 ⋅θ⋅⋅= . (78)

Continuing to propagate the pump ( o
xrpE ,3, ) to the rear surface of the substrate

leads to the final boundary condition considered for the pump. The fields at

this fourth boundary are

                         )(
,3,,3,

tzKxKio
xrpxrp

ppezpexeEE ω−+= , (79a)

                         )(
,3,,3,

tzKxKio
zrpzrp

ppezpexeEE ω−+= , (79b)

                         ))((
,4,,4,

tLzKxKio
xrpxrp

ppezpexeEE ω−−−= , (79c)
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                         ))((
,4,,4,

tLzKxKio
zrpzrp

ppezpexeEE ω−−−= , (79d)

                         ))((
,4,,4,

tLzKxKio
xtpxtp

pzpxpeEE ω−−+= , (79e)

                         ))((
,4,,4,

tLzKxKio
ztpztp

pzpxpeEE ω−−+= , (79f)

while the boundary conditions are

( )
LzxtpLzxrpxrp EEE

==
=+ ,4,,4,,3, , (80a)

( )
LzytpLzyrpyrp HHH

==
=+ ,4,,4,,3, . (80b)

Solving this set of boundary conditions for o
xrpE ,4,  results in

LKio
epepee

o
xrp

pezeErtE 3
,

3
,4, cos21 ⋅θ⋅⋅= . (81)

This concludes the discussion of the pump field. The results from Equations

(78) and (81) will be used later to reduce the second harmonic driving terms

into functions of the input pump amplitude.

2.3.2 Second-Pass Second-Harmonic Generation

The second pass of the second-harmonic fields must are now derived.

Once again, Figure 2.15 illustrates the progression of the second-harmonic

field through the sample that makes up the second-pass correction. The

second-harmonic fields and boundary conditions at the third surface are

    ))((
,2,

))((
,2,,2,

tLzKxKi
xre

tLzKxKio
xrexre

szepxepszesxes eAeEE ω−−−ω−−− += , (82a)

    ))((
,2,

))((
,2,,2,

tLzKxKi
zre

tLzKxKio
zrezre

szepxepszesxes eAeEE ω−−−ω−−− += , (82b)
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    )(
,3,

)(
,3,,3,

tzKxKi
xre

tzKxKio
xrexre

szepxepszesxes eAeEE ω−+ω−+ += , (82c)

    )(
,3,

)(
,3,,3,

tzKxKi
zre

tzKxKio
zrezre

szepxepszesxes eAeEE ω−+ω−+ += , (82d)

    )(
,3,,3,

tzKxKio
xtexte

szsxseEE ω−−= , (82e)

    )(
,3,,3,

tzKxKio
ztezte

szsxseEE ω−−= , (82f)

and

( )
0,3,,2,0,3, ==

+=
zxrexrezxte EEE , (83a)

( )
0,3,,2,0,3, ==

+=
zyreyrezyte HHH . (83b)

Solving for o
xreE ,3,  results in

)3(
,3

)3(
,2

)3(
,1,3, ee

LiK
ee

LiK
ee

o
xre GeGeGE zepzes ++= , (84)

where

                     o
xreee E

bb
bb

G ,2,
21

21)3(
,1 +

−= , (85a)

                     
( )

21

,2,,2,2)3(
,2 bb

AKAbK
G zrexepxrezep

ee +
+−

= , (85b)

                     
( )

21

,3,,3,2)3(
,3 bb

AKAbK
G zrexepxrezep

ee +
++−

= , (85c)

                   LiK
xteexre

zepeArA ,1,
2

,2, 2−= , (85d)

                   LiK
zteezre

zepeArA ,1,
2

,2, 2= , (85e)

                   LKi
xteexre

zepeArA 2
,1,

4
,3, 2= , (85f)

                   LKi
zteezre

zepeArA 2
,1,

4
,3, 2= , (85g)
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and where Equation (78) has been used to express the third-pass driving

terms Ae,r3 as functions of the first-pass driving terms Ae,r1. Rewriting Equation

(84) in terms of the first-pass driving terms leads to

( ) LKi
eeee

LiKo
xreee

o
xre

zepzes eCCeECE 2)3(
,3

)3(
,2,2,

)3(
,1,3, ++= , (86)

where

                    
21

21)3(
,1 bb

bb
C ee +

−= , (87a)

                    
( ) 2

21

,1,,1,2)3(
,2 2e

ztexepxtezep
ee r

bb

AKAbK
C

+
+−−

= , (87b)

                    
( ) 4

21

,1,,1,2)3(
,3 2e

ztexepxtezep
ee r

bb

AKAbK
C

+
++−

= . (87c)

Finally, propagating o
xreE ,3,  to the rear surface of the substrate results in the

following fields and boundary conditions:

     )(
,3,

)(
,3,,3,

tzKxKi
xre

tzKxKio
xrexre

szepxepszesxes eAeEE ω−+ω−+ += , (88a)

     )(
,3,

)(
,3,,3,

tzKxKi
zre

tzKxKio
zrezre

szepxepszesxes eAeEE ω−+ω−+ += , (88b)

     ))((
,4,

))((
,4,,4,

tLzKxKi
xre

tLzKxKio
xrexre

szepxepszesxes eAeEE ω−−−ω−−− += , (88c)

     ))((
,4,

))((
,4,,4,

tLzKxKi
zre

tLzKxKio
zrezre

szepxepszesxes eAeEE ω−−−ω−−− += , (88d)

     ))((
,4,,4,

tLzKxKio
xtexte

szsxseEE ω−−+= , (88e)

     ))((
,4,,4,

tLzKxKio
ztezte

szsxseEE ω−−+= , (88f)

and

( )
LzxteLzxrexre EEE

==
=+ ,4,,4,,3, , (89a)
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( )
LzyteLzyreyre HHH

==
=+ ,4,,4,,3, . (89b)

Solving these boundary conditions with the fields in Equations (88a-f) results

in the second-pass SHG field

)4(
,3

)4(
,2

)4(
,1,4, ee

LiK
ee

LiK
ee

o
xte FeFeFE zepzes ++= , (90)

where

                      o
xreee E

bb
b

F ,3,
21

1)4(
,1

2
+

= , (91a)

                      
( )

21

,3,,3,1)4(
,2 bb

AKAbK
F zrexepxrezep

ee +
−+

= , (91b)

                      
( )

21

,4,,4,1)4(
,3 bb

AKAbK
F zrexepxrezep

ee +
−−−

= , (91c)

                    LKi
xteexre

zepeArA 3
,1,

6
,4, 2−= , (91d)

                    LKi
zteezre

zepeArA 3
,1,

6
,4, 2= . (91e)

Rewriting Equation (90) in terms of the first-pass driving terms yields

( ) LKi
eeee

LiKo
xreee

o
xte

zepzes eBBeEBE 3)4(
,3

)4(
,2,3,

)4(
,1,4, ++= , (92)

where

                     
21

1)4(
,1

2
bb

b
B ee +

= , (93a)

                     
( ) 4

21

,1,,1,1)4(
,2 2e

ztexepxtezep
ee r

bb

AKAbK
B

+
−+

= , (93b)



57

                     
( ) 6

21

,1,,1,1)4(
,3 2e

ztexepxtezep
ee r

bb

AKAbK
B

+
−−

= . (93c)

By substituting Equations (86) and (66) into Equation (92), the second-pass

second-harmonic field becomes

{ [ ( ) ]
[ ] } ( ) .2)4(

,3
)4(

,2
2)3(

,3
)3(

,2

,3,2,1
)3(

,1
)4(

,1,4,

LKi
eeee

LiKLKi
eeee

LiKLiK
eeee

LiK
eeeeee

o
xte

zepzeszep

zeszepzes

eBBeeCC

eeCCeCCBE

++++

++=
(94)

By recognizing that several of these terms are quite small, Equation (94) can

be simplified by retaining terms that contain factors up to 22er  and ignoring

terms containing higher powers of r2e. Using these criteria eliminates )3(
,3 eeC ,

)4(
,2 eeB , and )4(

,3 eeB  from Equation (94) and results in the expression

LKKi
ee

LKKi
ee

LKi
ee

o
xte

zepzeszepzeszes eDeDeDE )2(
,3

)2(
,2

3
,1,4,

++ ++= , (95)

for the second-pass second-harmonic field leaving the sample, where

                            eeeeeeee CCBD ,1
)3(

,1
)4(

,1,1 = , (96a)

                            ( )eeeeeeeeee CCCBD ,3,2
)3(

,1
)4(

,1,2 += , (96b)

                            )3(
,2

)4(
,1,3 eeeeee CBD = . (96c)

The second-harmonic power carried in the second-pass field is proportional to

{
( ) [ ( ) ]

[ ) ]( } .sec2cos2

cos2
2

,3,1

,3,1,2

2
,3

2
,2

2
,14,

izepzeseeee

zepzeseeeeee

eeeeee
pumpe

tSHGe

LKKDD

LKKDDD

DDDP

θ⋅−+

−++

++∝−
−

(97)

Equation (97) is plotted in Figure 2.16. Comparing the magnitude of the

second-harmonic signal in Figures 2.10 and 2.16 shows that the perturbation

to the single-pass second-harmonic output due to the second-pass correction
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Figure 2.16  Second-pass contribution to theoretical e-polarized second-
harmonic output Pt4 for e-polarized pump.
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is less than 1 %. However, as will be shown next, the coherent addition of the

first- and second-pass second-harmonic signals adds a noticeable high

frequency component to the total output signal. The total two-pass SHG

power pumpe
SHGeTPP −

−  is proportional to

ee
pumpe

tSHGe
pumpe

SHGe
pumpe

SHGe crossPPTPP ++∝ −
−

−
−

−
− 4, , (98)

where the cross terms between the first- and second-pass second-harmonic

fields are incorporated into the term

{ [ ]
( ) [ ( ) ]

( ) [ ]
[ ( ) ]} .sec3cos2

2cos2

cos2

2cos2

2
,1,2

,2,2,1,1

,3,2,2,1

,3,1

izepzeseeee

zeseeeeeeee

zepzeseeeeeeee

zepeeeeee

LKKDB

LKDBDB

LKKDBDB

LKDBcross

θ⋅−+

++

+++

=

(99)

Figure 2.17 shows a plot of the full two-pass second-harmonic signal exiting

the sample as described by Equation (98). For comparison, the single-pass

SHG described by Equation (69) is also displayed.

While this solution is valid for infinite plane waves, it is far less

accurate when considering beams of finite diameter. With finite beams there

is the problem of walkoff between the first- and second-pass second-

harmonic beams for increasing angles of incidence. This is illustrated in

Figure 2.18. When these beams start to walk off, they go through a transition

from overlapping spatially to being spatially separated. As this transition

occurs, the addition of the beams goes from being coherent to being scalar.

To simulate this walk off, a walkoff compensation factor ηs is defined that is
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based on the physical dimensions of the Gaussian beam and the sample

thickness:

( ) (( ) )
dydx

d
yxx

d
yx

d s

s

ss
s











 +−−⋅






 +−
π

=η ∫ ∫
∞

∞−

∞

∞−

2

22

2

22

2 expexp
2

(100)

where eses Lx θ= tan2, , 2ps dd = , and ds and dp are the second-harmonic

and pump beam diameters. Solving this double integral results in











 −
=η 2

2
,

, 2
exp

s

es
es d

x
(101)

Multiplying the cross term, crossee, of Equation (98) by ηs provides a heuristic

means of simulating the beam walk off. Figure 2.19 illustrates the two-pass

second-harmonic with the walkoff factor included along with the data first

shown in Figure 2.14. A pump beam diameter of 70 µm and a sample

thickness of 0.20255 mm have been used for this simulation. Figure 2.19,

shows that the amplitude of the high frequency fringes matches that of the

data fairly well. However, the frequency of this fringe component appears to

be too large by a factor of 2.
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Figure 2.19  Comparison of two-pass e-polarized second-harmonic output
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2.4 Full Resonance Analysis

In the interest of developing a more rigorous solution to the Maker

fringe signal, I now present a fully resonant approach. In this section the

second-harmonic output is calculated by treating the sample under test as a

Fabry-Perot resonator for both the pump and second-harmonic fields. The

boundary conditions at the front and back of the sample are considered

simultaneously. As depicted in Figure 2.20, the fields propagating through the

system are composed of forward- and backward-travelling waves, each wave

representing all the waves travelling in that particular direction at a particular

location within the system. As an example, 1,teE  represents all of the SHG

waves travelling in the forward direction within the LiNbO3.

2.4.1 Full Resonance Pump

The e-polarized pump wave incident on the sample may once again be

written as

)(
,

)(
,,,, ˆˆ tzKxKio

zp
tzKxKio

xpzpxpep
pzpxppzpxp eEeEEzExE ω−+ω−+ +=+=

&

, (102)

with Kxp = kpsinθi and Kzp = kpcosθi.

The reflected waves from the first surface may be represented as

)(
,1,,1,

tzKxKio
xrpxrp

pzpxpeEE ω−−= , (103a)

)(
,1,,1,

tzKxKio
zrpzrp

pzpxpeEE ω−−= . (103b)



Figure 2.20 Schematic representation of the -polarized forward and
backward traveling electric fields associated the full resonance solution.
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Equations (103a,b) use the knowledge that θi = θr. The wave equations

developed earlier, Equations (7a-c), are still valid and describe the

propagation of the waves through the sample. For the e-polarized pump, a

solution to the homogeneous differential wave equations propagating in the

forward direction is

E E ep t x p t x
o i K x K z tpex pez p

, , , ,
( )

1 1= + −ω , (104a)

E E ep t z p t z
o i K x K z tpex pez p

, , , ,
( )

1 1= + −ω , (104b)

with Kpex = kpnep(θep)sinθep and Kpez = kpnep(θep)cosθep. The backward-

propagating solution for the e-polarized pump field is represented by

))((
,2,,2,

tLzKxKio
xrpxrp

ppezpexeEE ω−−−= , (105a)

))((
,2,,2,

tLzKxKio
zrpzrp

ppezpexeEE ω−−−= . (105b)

The final pump field associated with this treatment is that transmitted through

the entire system and is composed of

))((
,2,,2,

tLzKxKio
xtpxtp

pzpxpeEE ω−−+= , (106a)

))((
,2,,2,

tLzKxKio
ztpztp

pzpxpeEE ω−−+= . (106b)

In order to solve for the field amplitudes in Equations (102), (103),

(104), (105), and (106), the boundary conditions at the first and second

surfaces of the lithium niobate substrate are invoked simultaneously. The

boundary conditions are

( ) ( )
0,2,,1,0,1,, ==

+=+
zxrpxtpzxrpxp EEEE , (107a)
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( ) ( )
0,2,,1,0,1,, ==

+=+
zyrpytpzyrpyp HHHH , (107b)

for the first surface (z = 0) and

( ) ( )
LzxtpLzxrpxtp EEE

==
=+ ,2,,2,,1, (107c)

( ) ( )
LzytpLzyrpytp HHH

==
=+ ,2,,2,,1, . (107d)

for the second surface (z = L). Substituting the appropriate fields into

Equations (107a-d) and equating the amplitudes from the left and right sides

of these equations gives

                            o
xp

LiKo
xrp

o
xtp

o
xrp EeEEE pez

,,2,,1,,1, =++− , (108a)

         o
xp

LiKo
xrp

o
xrp

o
xrp EbpeEbpEbpEbp pez

,2,2,1,1,1,1,2 ⋅=⋅−⋅+⋅ , (108b)

                               0,2,,2,,1, =−+ o
xtp

o
xrp

LiKo
xtp EEeE pez , (108c)

           0,2,2,2,1,1,1 =−⋅−⋅ o
xtp

o
xrp

LiKo
xtp EbpEbpeEbp pez (108d)

where the factors

                               pez
pez

pex

ep

op K
K

K

n

n
bp +










=

22

1  and (109a)

                               zp
zp

xp K
K

K
bp +=

2

2 (109b)

are used to simplify the expressions. The field amplitudes may be found

simultaneously using methods of linear algebra. Rewriting Equations (108a-d)

in matrix format results in



68




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




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−
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0
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0
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,
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E

E

E

E

bpbpebp

e

ebpbpbp

e

E
o

xtp

o
xrp

o
xtp

o
xrp

LiK

LiK

LiK

LiK

o
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pez

pez

pez

pez

. (110)

The solutions to Equation (110) are

                      o
xpLKi

LKi
o

xrp E
ebpbpbpbp

ebpbpbpbp
E

pez

pez

,22
21

2
21

22
2

2
1

2
2

2
1

,1,
)()(

)(

−−+
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Equations (111a-d) can be rewritten by substituting the expressions for bp1

and bp2, using pezzep KK 2= , and by putting o
xpE ,  in terms of o

epE , . The

resulting expressions are
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epiFRe

o
xrp ErE ,,,1, cos1 ⋅θ⋅= , (112a)

                                    o
epiFRe

o
xtp EtE ,,,1, cos1 ⋅θ⋅= , (112b)

                                    LiKo
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o
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pezeErtE ,,,,2, cos21 ⋅θ⋅= , (112c)

                                    LiKo
epiFRe

o
xtp

pezeEtE ,,,2, cos2 ⋅θ⋅= , (112d)

where the resonant transmission and reflection coefficients in terms of the

single-pass coefficients are
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Examination of the quantities e,FRr1  and FRet ,2  reveals that these factors are

the same as the Fabry-Perot coefficients found in optics texts such as [Hecht

‘87] with the added complexity that they describe uniaxial media as opposed

to isotropic media. Comparing the first-surface transmission and reflection

coefficients for the full resonance and single-pass developments shows that

the full resonance coefficients follow the same trend as the single-pass

coefficients, but that a high frequency modulation is superimposed. This

comparison is illustrated in Figure 2.21. As was discussed during Section

2.3.2, due to walkoff of the multiple reflections within the sample, the

resonance condition decreases as the pump incidence angle increases. To

first approximation at high angles the reflectance and transmittance of the

system are equal to the single-pass case. To simulate this condition a pump

beam walk off factor ηp will be introduced later.
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2.4.2 Full Resonance Second-Harmonic Generation

With the pump fields accounted for, it is time to consider the SHG

fields for the full resonance case. In addition to the pump fields, Figure 2.20

depicts the SHG fields for this treatment. These fields may be written as

       )(
,1,1

tzKxKio
xrxr

szpxpeEE ω−−= , (114a)

       )(
,1,1

tzKxKio
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szpxpeEE ω−−= , (114b)

       )(
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)(
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       )(
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       ))((
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zre

tLzKxKio
zrzr

szepxepszesxes eAeEE ω−−−ω−−− += , (114f)
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       ))((
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ztzt

szpxpeEE ω−−+= . (114h)

The field amplitudes of the driving terms are derived just as they were in the

single-pass case. It is no surprise that the results here are identical to that of

the single-pass case except for the definition of the pump transmission

coefficient. For the full resonance case the driving terms are



72

( )

( ) ,cos1

tan2

tan4

222
,22

,
22

,
2
,

2
,

2

2
4
,

4
,)2(

33
)2(

31

22
,

22
,

2
,

2
,

2

2
,

2
,2

,
22)2(

15

,1,

o
piFRe

zepsexepsosesos

ep
pe

po
zepxep

zepsexepsosesos

ep
pe

po
sesxep

FR
xte

Et
KnKnnnk

n

n
ddKK

KnKnnnk

n

n
nkKd

A

θ














−−











θ+

+

−−

θ−−














=

(115a)

( )

( ) ,cos1

tan2

tan4

222
,

22
,

22
,

2
,

2
,

2

2
4
,

4
,)2(

3331
)2(

31
2
,

22

22
,

22
,

2
,

2
,

2

2
,

2
,)2(

15

,1,

o
piFRe

zepsexepsosesos

ep
pe

po
soszep

zepsexepsosesos

ep
pe

po
zepxep

FR
zte

Et

KnKnnnk

n

n
ddnkK

KnKnnnk

n

n
KKd

A

θ×














−−











θ+−

+

−−

θ−














=

(115b)
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The boundary conditions for the full resonance SHG fields are

( ) ( )
0,2,10,1 ==

+=
zxrxtzxr EEE  and (116a)

( ) ( )
0,2,10,1 ==

+=
zyrytzyr HHH (116b)

for the first surface (z = 0) and
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for the second surface (z = L). Setting the amplitudes of the left and right

sides of Equations (116a-d) equal and writing them in matrix format yields
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where the expressions
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are used to simplify the notation. Solving for the transmitted e-polarized SHG

field results in
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The e-polarized SHG power leaving the sample for this full resonance

treatment is proportional to

(
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where
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The e-polarized SHG produced by an e-polarized pump, described by

Equation (121), is plotted in Figure 2.22. This is the solution assuming infinite

plane waves. Once again, the beam walkoff must be included for this

development to accurately represent the second-harmonic output for finite

beams since the resonance condition decreases as the incidence angle

increases. The second-harmonic beam walkoff factor ηs is the same as was

developed in Equation (101). The pump beam walkoff factor ηp is derived
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similarly and is
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where epep Lx θ= tan2,  and dp is the pump beam diameter. With the overlap

factors included, the first surface pump transmission coefficient becomes

                                  LiK
eep

e
FRe

zeper

t
t

11

1
1

,
,

η−
= , (124)

and the factors from Equations (120a-d) become
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The resulting second harmonic signal is plotted in Figure 2.23 where dp = 70

µm and L = 0.2 mm. If the pump diameter is taken to be large, ~1 mm, the full

resonance case becomes identical to the single-pass solution. An expanded

comparison of the two-pass second-harmonic solution and the full resonance

second-harmonic solution is presented in Figure 2.24. This comparison

shows that the amplitude of the high frequency component of the full

resonance second-harmonic output is larger than that of the two-pass

second-harmonic output. The full resonance solution clearly exhibits multiple
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frequency components, while the two-pass solution visually appears to have

only a single high frequency component. Figure 2.25 shows how the full

resonance solution fits the data first shown in Figure 2.14. Once again, the

pump-beam diameter is 70 µm and the sample thickness is 0.20255 mm. The

full resonance solution depicted here is superior to that of the two-pass

solution shown in Figure 2.19. The improvement is most noticeable in the

agreement of the high frequency fringes.

The preceding pages have detailed the development of the e-polarized

second-harmonic power generated from an e-polarized pump. Using this

same procedure, I find that the o-polarized second-harmonic power

generated from an e-polarized pump is proportional to
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The o-polarized second-harmonic signal generated from an e-polarized pump

is plotted in Figure 2.26.

The two remaining cases involve an o-polarized pump
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By going through the development of the fully resonant pump field, as was

done in Section 2.4.1 for the e-polarized pump, I find that
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









 −
=η 2

2
,

, 2
exp

p

op
op d

x
, (130e)

opop Lx θ= tan2, . (130f)

The o-polarized SHG output for an o-polarized pump is given by
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The o-polarized second-harmonic signal generated from an o-polarized pump

is plotted in Figure 2.27.

The fully resonant e-polarized SHG output is then given by
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The e-polarized second-harmonic signal generated from an o-polarized pump

is plotted in Figure 2.28.
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Chapter 3

Experiments

3.0  Introduction

Due to the breadth of the research undertaken during this thesis there

are two significant experimental setups to discuss. The first was the Maker

fringe system used to generate and record second-harmonic signals from a

number of LiNbO3 samples. The second was the electric-field poling system

used to perform spontaneous polarization domain reversal within LiNbO3

wafers.

3.1  Maker Fringe System

The Maker fringe experiment consisted of a 4-axis positioning system,

Nd:YAG laser operated at 1.064 µm, photomultiplier tubes (PMTs) with

associated electronics, various optics, and a control computer. This system is

schematically represented in Figure 3.1 (a). A picture of the system is shown

in Figure 3.1 (b). The positioning system provided motion in x, y, z, and θ. The

computer controlled the positioning system and the data acquisition. Wafers

were mounted to the positioning system with a sample holder that provided

reference flats so that repeatable registration of the samples was possible.
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Figure 3.1 Maker-fringe apparatus (a) schematic representation,
(b) photograph. M mirror, P polarizer, PR polarization rotator, L lens, SUT
sample under test, PBS polarizing beam splitter, CBS chromatic beam
splitter, BB beam block, BPF band pass filter, PMT photomultiplier tube.
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The samples were oriented in the holder so that the crystallographic y-axis of

the LiNbO3 was oriented vertically and the x-axis was oriented horizontally.

Rotation was about the y-axis. The pump beam intersected the sample at the

rotation axis.

The pump laser polarization was set to either the o- or e-polarization

by means of a half-wave plate. The pump was focused using a 300 mm focal

length lens to 1/e diameter of approximately 60 µm at the test sample. The

output SHG was collected and refocused with a 300 mm focal length lens.

The o- and e-polarized SHG signals were separated from one another using a

Glan type polarizing beam splitter which directed each signal to its own PMT.

In the most recent iteration of the system, the pump laser was operated

mode-locked and Q-switched. The PMT signals were run through box car

averagers and finally into an analog to digital (A/D) converter. Earlier versions

of the system used a continuous wave (CW) laser, optical chopper, and lock-

in detection of the SHG signals.

The SHG signals were recorded as a function of pump beam angle of

incidence. This was accomplished by rotating the sample as the data were

taken. The angular resolution of the data was 0.1º. The data acquisition was

synchronized to the encoder pulse signal (0.0008º/pulse) from the rotation

stage.

The software written to control the Maker fringe system was designed

to allow flexibility in the data acquisition. The angular range of a scan was

selectable, as was the number of points to be scanned and the distance
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between points in the x- and y-directions. This allowed for doing single-point

scans as well as full wafer maps. Once stored, these SHG signals were

analyzed using the Maker fringe theory presented in Chapter 2.

3.2  Electric-Field Poling System

The major component of the electric-field poling system was a high-

voltage, variable-width pulse generator capable of delivering pulses from 0.5

to 15.5 kV for up to 5 ms. The rest of the system consisted of a data

acquisition computer, a digital storage oscilloscope, an electronic filter, and

an acrylic poling cell. Figure 3.2 (a) shows a schematic of the system while

Figure 3.2 (b) shows a picture of the actual setup.

The HV pulse generator provided two built-in monitoring ports. One

port provided a 1000:1 reduction of the high voltage supplied to the sample.

The other port provided a voltage signal proportional to the current flowing

through the system. The response of this signal was 2.0 V/A. The voltage-

monitoring signal was connected directly to the oscilloscope. The current-

monitoring signal ran through a conditioning filter and then to the

oscilloscope. The conditioning filter was used to remove DC and 60 Hz noise

from the current signal. The computer was used to arm the oscilloscope for

recording single pulse events. Both the voltage and current traces were

downloaded to the computer where they were stored and approximate

delivered charge measurements were made.
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Figure 3.2 Electric-field poling setup (a) schematic, (b) photograph.
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The poling cell was modeled after that used by Myers [Myers ‘95]. The

cell was constructed from two acrylic blocks approximately 25 × 50 × 50

mm. Each block had a reservoir with a feed through leading to the sample’s

position. A silicone o-ring was used to seal the acrylic block to the

sample. The entire cell was held together using 4 bolts around the perimeter

of the blocks. During later stages of the poling experiments, springs were

used in series with the bolts to equalize the pressure generated by each bolt.

Figures 3.3 (a) and (b) show a cross-sectional view of the poling cell and a

picture of the actual cell used.

Electrical contact was made to the sample by filling the reservoirs with

an electrolyte, that consisted of LiCl dissolved in de-ionized water in a ratio of

2:1 by mass. The circuit from the HV pulse generator to the poling cell and

back was completed in the following manner. An RG 11A coaxial cable

connected the high-voltage output to the poling circuit. The poling circuit,

pictured in Figure 3.4, was constructed on an acrylic base plate and consisted

of a 10 kΩ resistor, a high-voltage diode, and the poling cell, all connected in

series using 16 AWG copper wire. The series resistor provided protection for

the pulse generator in the event of a short in the poling circuit. The diode was

needed to prevent domain “flip-back” after the voltage pulse had finished.

Figure 3.5 shows the difference between current traces taken with and

without the high-voltage diode in the circuit. Without the diode a current flows

in the opposite direction to the poling current after the voltage pulse has
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Figure 3.3 Details of the poling cell (a) cross sectional view, (b) photograph.
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Figure 3.4 Photograph of the poling cell in the electric-field poling system.
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ended. This current is due to the reversed domain flipping back to its original

direction. With the diode in the poling circuit, the only current seen after the

voltage pulse has ended is the capacitance discharge of the sample.

The poling experiments proceeded one pulse at a time. With each

pulse the voltage and the current traces were recorded. The charge delivered

to the sample was calculated by integrating the current trace. Complete

domain reversal is accomplished when the total charge Q delivered to the

sample is

APdtiQ s2== ∫ , (135)

where i is the displacement current flowing in the circuit, Ps is the

spontaneous polarization, and A is the area being poled.

The electric-field poling system was used for several different poling

applications. It was used to pole test patches for analysis with the Maker

fringe system (see Section 4.4). It was used to examine the poling current

characteristics for different poling fields (see Section 4.5). And, finally, it was

used to fabricate periodically poled LiNbO3 (PPLN) chips for performing

various nonlinear frequency conversions. The details pertaining to the PPLN

can be found in Jeff Mitchell’s Master of Science thesis [Mitchell ‘99].
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Chapter 4

Data Analysis

4.0  Introduction

The data analysis is broken down into several subsections. While the

order of these subsections makes for a smooth progression of the analysis, it

is not the order in which they were encountered. Insight obtained from the

final stages of this research has shed light onto some of the observations

made early on and has led to a better understanding of the limitations of

Maker fringe analysis.

I will start by examining the Maker-fringe signals from as-received

samples of LiNbO3. This will involve fitting to several parameter combinations

involving thickness, index of refraction, electric field, nonlinear susceptibilities,

and electrooptic coefficients. The results from this section suggest that the

extraordinary index of refraction ne deviates from that predicted by the

Sellmeier equations [Edwards ‘83]. A close examination of the literature has

led to a possible explanation for this observation.

Next I will examine the possibility of determining some of the nonlinear

)2(
ijd and electrooptic rij coefficients using Maker fringe analysis. The ratio of

)2(
31

)2(
33 dd  will be investigated by observing how the amplitude of the Maker

fringe theory changes with this ratio. The electrooptic coefficients r33 and r13
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will be examined by observing the change in the Maker fringe signal during

the application of an electric field to the sample.

I will then examine the effect of electric-field-induced domain reversal

in LiNbO3 using Maker fringe analysis.

Last, I will explore one aspect of electric field poling, the maximum

current density as a function of applied field, and attempt to correlate these

results with those obtained during the Maker fringe analysis.

4.1  Maker-Fringe Analysis of As-Received LiNbO 3

The data analysis in this section involves several different fitting

parameter combinations for fitting the Maker fringe theory, derived in Chapter

2, to the data. I have written several Fortran programs using Equations (121),

(126), (131), and (133). These programs, later referred to as solvers, are

used to solve each pump-SHG case separately or simultaneously. The first

series of fits used just the thickness of the sample as the fitting parameter.

This was done separately for each of the 4 pump-SHG cases. Next, the 4

pump-SHG cases were fitted simultaneously to sample thickness, and finally

all 4 cases were fitted simultaneously to combinations of sample thickness

and index deviations from the Sellmeier equations.

The Maker-fringe scans were typically taken over pump angles of

incidence between -65º and +65º. The scans were analyzed by fitting over

this entire angular range. However, in order to facilitate the visibility of the
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fringe features, the Maker-fringe scans are displayed for positive angles only.

A least squared error (LSE) approach was used to determine which

parameters led to the best fits. In order to improve the fidelity of the least

square error, both the data and the theoretical Maker-fringe signals were

normalized to the areas under their curves before the LSE was calculated.

The refractive indices used in the theoretical calculations were generated

from Sellmeier equations derived by Edwards and Lawrence [Edwards ‘84].

Using these Sellmeier equations at a temperature of 25 ºC, the four indices of

refraction are: nop = 2.23218, nos = 2.32318, nep = 2.15603, and nes = 2.23424.

The first set of data for this section were taken from a portion of a 75

mm diameter, 0.2 mm thick LiNbO3 wafer. The sub-wafer consisted of one

quarter of the original wafer, produced by cutting the wafer in half once

vertically and once horizontally. This sample will be referred to as Sample A.

The initial observation of these data was that the overlap factors used

to predict the tapering-off of the high frequency fringe amplitude were

inadequate, at least from an aesthetic point of view. Therefore, overlap

factors were constructed by fitting the high frequency fringe amplitude of the

theory to that of the data. This led to two different overlap factors, one for the

o-polarized SHG ηo and one for the e-polarized SHG ηe. ηo was found by

fitting the high frequency fringe amplitude as a function of pump incidence

angle for the o-o case, while ηe was found by using the o-e case. The two

factors were
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                  )0596.0exp(8611.0)( iio θ⋅−=θη , (136a)

                  2015.00035.000004.0)( 2 +θ⋅−θ⋅=θη iiie . (136b)

Implementing these heuristic overlap factors into the Maker fringe code led to

much better fits of the high frequency fringes. However, they ultimately

resulted in the same fitting parameter solutions as the original overlap factors,

thus demonstrating the overall robustness of the solution procedure.

Solving for the sample thickness over a range of 0.18 to 0.22 mm with

0.01 µm steps for each of the 4 cases individually resulted in the data found in

Table 4.1.

Table 4.1  Thickness solutions for Sample
A. Each pump-SHG case fit individually.

Pump-SHG case L (mm)
o-o 0.19960
o-e 0.19951
e-o 0.19960
e-e 0.19395

Figure 4.1 shows the comparisons between the data and the theoretical fits

for each of the pump-SHG cases using the sample thickness as the only fitting

parameter. The theoretical traces match both the high and low frequency

fringes of the data very well. The most obvious exception is the slight walkoff

of the low frequency fringes at high angles of incidence for the o-e and e-o

cases. However, one problem with these results is that all of these data were

taken at the same location on the sample and therefore must have the same

sample thickness. I will discuss the resolution of this problem next.

The relatively large discrepancy between the thickness found for the e-

e case and that found for the other 3 cases is an example of what I call a
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“branch artifact.” Branches occur when the arguments of the cosine terms in

Equations (122), (127), (132), and (134) change by 2π. The main contributor

to the distance between branches is the term containing the difference of the

effective pump and SHG wave vectors. For the e-e case, branches in

thickness will occur approximately every Lbranch = 2π/(Kzep-Kzes). Calculated at

θi = 0 the value of Lbranch is ~5.8 µm and is the same for the other 3 cases for

θi = 0.

Examining the least squared error as a function of sample thickness,

Figure 4.2, reveals the oscillatory nature of the fitting parameter where local

minima are separated by a branch step. When only one pump-SHG case is

considered, it can be ambiguous as to which branch is the correct one. For

any given data set, up to three different branch thicknesses may provide

fitting parameters leading to acceptable theoretical fits to the data.

Measuring the distance between local minima from the least squared

error data for each pump-SHG case results in the average branch step

lengths found in Table 4.2.

Table 4.2  Measured average branch length
for each pump-SHG case, Sample A.

Pump-SHG case Measured Lbranch (µm)
o-o 5.75
o-e 6.14
e-o 5.66
e-e 5.58

While these values are approximated by the value of Lbranch, calculated above,

each case has a different branch step size. This is due to the angular

dependence of Lbranch as well as the other cosine terms in Equations
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(122), (127), (132), and (134) and can be used to eliminate the ambiguity in

choosing the proper branch. When examining the LSE for all 4 cases

simultaneously, it can be seen that there is only one thickness value where all

cases have coincidental minima. In Figure 4.3 we see that this thickness

occurs at ~0.1995 mm. Within this thickness branch, the e-e case has a LSE

at a thickness of 0.19951 mm.

The next step in the analysis is to reconcile the small thickness

deviations within the correct thickness branch. The first approximation is to

run all four solvers simultaneously to obtain a consensus thickness. For the

example data set given here, the consensus thickness is 0.19959 mm. Figure

4.4 shows the overlays of the theoretical fits for L = 0.19959 mm and the

Maker fringe data. Again, the fits are quite reasonable, except for the

matchup of the low frequency nulls at high angles of incidence for the o-e and

e-o cases. Since the change in thickness between the fits in Figures 4.1 and

4.4 for the o-o and e-o cases is only 0.01 µm, the fits are very similar to one

another. The only place where there is a distinguishable difference is in the 0°

to 5° range.

To improve the fit, the parameter search range was expanded to

include deviations from the indices predicted by the Sellmeier equations. The

resolution of the index perturbations was 10-5. Solving all 4 pump-SHG cases

simultaneously for the five parameters L, ∆nop, ∆nos, ∆nep, and ∆nes leads to a

series of degenerate solutions, 8 of which are presented in Table 4.3. Within

the range of degenerate solutions examined, there was no local
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minimum encountered in the LSE. This is problematic and reveals the

limitation of this experiment. An independent measurement of one of the five

fitting parameters must be performed in order to define the proper parameter

branch. The most logical candidate for independent measurement is the

thickness, which would have to be measure to an accuracy of 5 × 10-5 to

allow determination of the indices to within a few parts in 10-5.

Table 4.3  Degenerate solutions obtained from simultaneous 4-case fit to L,
∆nop, ∆nos, ∆nep, and ∆nes for Sample A.

L (mm) ∆nop (×10-4) ∆nos (×10-4) ∆nep (×10-4) ∆nes (×10-4) LSE (×10-2)
0.19957 2.6 3.0 -3.1 -7.2 1.390
0.19958 1.5 1.8 -4.3 -8.0 1.373
0.19959 0.4 0.7 -5.1 -9.3 1.367
0.19960 -0.7 -0.5 -6.2 -10.0 1.360
0.19961 -1.8 -1.6 -7.1 -11.4 1.354
0.19962 -2.9 -2.8 -8.2 -12.1 1.348
0.19965 -6.3 -6.3 -11.2 -15.6 1.329
0.19970 -11.8 -12.0 -16.0 -21.1 1.296

In the absence of such a measurement, I will report a solution based

on accepted index variations. The data in Table 4.3 show that as the

thickness increases the various ∆n’s become increasingly negative and the

least squared error improves. However, as the LSE improves the range of the

∆n’s becomes unacceptably large. I base this observation on the index-

versus-composition data reported by Bergman et al. [Bergman ‘68] and the

uncertainty associated with the Sellmeier equations. Bergman’s work shows

that the ordinary index of refraction has no detectable variation as a function

of LiNbO3 composition. Therefore, ∆nop and ∆nos should be within the

uncertainty of the Sellmeier equation, ± 2 × 10-4 [Edwards ‘84].
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Reconciling these degeneracies by taking all the degenerate solutions

that fall into the criteria of ∆no being ± 2 × 10-4 and averaging leads to a

solution of L = 0.199595 ± 0.00002 mm, ∆nop = -0.15 × 10-4 ± 1.6 × 10-4, ∆nos

= 0.1 × 10-4 ± 1.7 × 10-4, ∆nep = -5.7 × 10-4 ± 1.4 × 10-4, and ∆nes = -9.7 × 10-4

± 1.7 × 10-4. The theoretical traces generated by each of these degenerate

solutions are nearly indistinguishable from one another. For display, Figure

4.5 shows the overlays for the L = 0.19960 mm, ∆nop = -0.7 × 10-4, ∆nos = -0.5

× 10-4, ∆nep = -6.2 × 10-4, and ∆nes = -10.0 × 10-4 degenerate solution with the

data. These fits are the best that I have obtained for this data set. Both the

high and low frequency fringes match for all 4 pump-SHG cases.

The most striking observation made from the solutions above is the

offset of ne needed to obtain the quality of fit seen in Figure 4.5. Similar shifts

in ne have been discussed by Shoji et al. [Shoji ‘97] and by Sanford and Aust

[Sanford ‘98]. Shoji uses a Maker-fringe technique to measure the nonlinear

coefficients of LiNbO3. In doing so, he measures nes by assuming that the

ordinary index of Edwards and Lawrence [Edwards ‘84] is correct and fits his

data by solving for nes. For rotation about the z-axis, he reports a ∆nes = -10.7

× 10-4 and for rotation about the x-axis he reports ∆nes = -10.2 × 10-4. Shoji

gives no explanation for this deviation. Sanford and I have seen similar shifts

of nes in sequenced x-cut wafers of LiNbO3 [Sanford TBP]. Our preliminary

analysis shows that the top of the boule, the portion grown first, has a ∆nes on

the order of -5 × 10-4, while the value of ∆nes at the bottom of the boule is on
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the order of -7 × 10-4. The clear trend of decreasing nes is indicative of

increasing Li2O content with boule length.

The original index data are stated to have an accuracy of ± 2 × 10-4

[Nelson ‘74]. This seems to hold true for the values of no but not for the values

for ne. I believe the reason for this is the composition dependence of the

extraordinary index of refraction. While Bergman’s results show that no has no

detectable variation with composition his ne data vary considerably as a

function of composition [Bergman ‘68]. However, because Bergman’s data

are presented as a function of melt composition instead of crystal

composition, a conversion must be performed before a usable value for the

change in ne as a function of crystal composition can be obtained. I have

accomplished this using the melt-to-crystal composition data reported by

Carruthers et al [Carruthers ‘71]. Figure 4.6 shows Bergman’s ne data as a

function of crystal composition in terms of its Li2O mole percentage. A value

for ∆ne/∆mol% of -0.0112 mol%-1 is obtained by fitting a line to this data.

If the composition of the LiNbO3 used for the index study that led to the

Sellmeier equations was Li depleted by 0.09 mol% Li2O, compared to the

material used here, then the large ∆ne can be explained by this composition

difference. In an attempt to confirm or refute such a possibility, I investigated

the primary source of the index data used in the determination of the

Sellmeier equations [Nelson ‘74]. Nelson and Mikulyak state that the material

used in their index-of-refraction study is of congruent composition, which at

the time was considered to be 48.6 mol% Li2O. Their phase-matching
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Figure 4.6  Bergman’s index data re-cast as a function of crystal 
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temperature Tpm at 1.1523 µm was reported to be 174 ºC. They further stated

that this agreed favorably with the data of Byer et al. [Byer ‘70], who reported

Tpm for 1.15 µm at 172 ºC. Byer et al. also report the phase matching

temperature at 1.064 µm and 1.084 µm but do not mention their material’s

composition, other than its being congruent. A crosscorrelation between

Byer’s data and that reported by Bordui et al. [Bordui ’92] for Tpm at 1.064 µm

can be used to infer the composition of Nelson’s material. Bordui reports Tpm

as a function of crystal composition. His data show a linear relationship over

the composition range studied, 47 to 49.5 mol% LiO2. I believe the

composition studies performed by Bordui et al are the most comprehensive to

date and reflect the most accurate compositional data. Correlating Byer’s Tpm

data to Bordui’s Tpm vs composition data suggests that Byer’s and therefore

Nelson’s composition is closer to 48.3 mol% Li2O, not the 48.6 mol% LiO2

reported.

If this is in fact the case then my -9.7 × 10-4 ± 1.7 × 10-4 variation from

the predicted Sellmeier index for nes suggests that the composition of the

material used here differed from that used in Nelson’s study by 0.09 ± 0.02

mol% Li2O or had a composition of 48.39 ± 0.02 mol% Li2O. This coincides

well with the value currently regarded as congruent, 48.38 ± 0.015 mol% Li2O

[Bordui ’91].

Additional sources for the deviation of the extraordinary index are due

to static surface charge on the sample and the location from within the boule

from which the material was cut. The effect of charge on the surface will be
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examined later. The LiNbO3 data sheet from Crystal Technology, Inc. [Crystal

‘93] shows that the composition may vary up to ± 0.01 mol% Li2O from the top

to the bottom of the boule depending on the starting composition and other

growth conditions. Also Bordui’s paper [Bordui ‘91] states that the start

composition can only be determined to ± 0.01 mol% Li2O. These uncertainties

in composition add a further uncertainty of ± 2.2 × 10-4 in the value of ne.

Additional samples, from a second supplier, have also been studied.

Sample B was nominally 0.25 mm thick and Sample C was nominally 1.0 mm

thick. The Maker fringe data for both of these samples are displayed in Figure

4.7. Note the increased number of low frequency fringes as the sample

thickness increases. This is due to the fact that the path length change as a

function of pump incidence angle is faster for thicker samples. The Maker

fringe fitting parameters for Sample B were found using the same procedure

as described above. These parameters are shown in Table 4.4.

Table 4.4  Degenerated solutions obtained from simultaneous 4-case fit to L,
∆nop, ∆nos, ∆nep, and ∆nes for Sample B.

Lo (mm) ∆nop (×10-4) ∆nos (×10-4) ∆nep (×10-4) ∆nes (×10-4) LSE (×10-2)
0.23913 2.0 2.7 -4.7 -5.9 2.427
0.23914 1.1 1.7 -5.6 -6.5 2.436
0.23915 0.2 0.8 -6.3 -7.5 2.441
0.23916 -0.8 -0.2 -7.1 -8.6 2.448
0.23917 -1.7 -1.2 -8.0 -9.2 2.455
0.23918 -2.6 -2.1 -8.7 -10.2 2.460

Averaging all the solutions that fall into the criteria of ∆no = ± 2 × 10-4 results

in Lo = 0.239155 ± 0.00002 mm, ∆nop = -0.3 × 10-4 ± 1.4 × 10-4, ∆nos = 0.3 ×

10-4 ± 1.4 × 10-4, ∆nep = -6.8 × 10-4 ± 1.2 × 10-4, and ∆nes = -8.0 × 10-4 ± 1.4 ×

10-4.
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Figure 4.7  Maker-fringe data for Sample B, ~0.25 mm thick, and Sample C
~1.0 mm thick. (a) o-o case, (b) o-e case, (c) e-o case, (d) e-e case.
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Sample C proved to be very difficult to fit. The Maker fringes occur

much faster with respect to pump angle of incidence for thicker samples. As a

result, the high frequency fringes are, for the most part, unresolved in the

data. For this reason the single-pass Maker fringe code was used to solve for

the fit parameters for these data. The data also suffer from an apparent

acquisition anomaly. The nulls of the low frequency fringes ride up off the

baseline on what looks like a lower envelope. This phenomenon is most

noticeable for the e-o case but is present to some degree for all the cases.

Attempts to eliminate this behavior by slowing the sample rotation speed and

increasing the angular resolution of the data acquisition to 0.02º failed to

eliminate this behavior. Attempts to solve for the fitting parameters for this

data set, using the procedure described above, have failed. While performing

5 parameter fits (L and all 4 ∆n’s) or 4 parameter fits (holding L constant and

solving for all ∆n’s) the fitting parameters walkoff and never converge to a

solution that is fully contained in the search range. That is, at least one of the

fitting parameters would converge to a limit in its search range. This biases

the other parameters’ solutions and leads to unacceptable results.

Comparing the results for samples A and B shows agreement to within

the uncertainty stated. This suggests that the two suppliers are growing

material of similar composition.
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4.2 Nonlinear Coefficient Fit

Maker fringe analysis can be used as a tool to determine other

properties of LiNbO3 as well. In particular the nonlinear coefficients and the

electrooptic coefficients can be determined given suitable experimental

procedures. For determining the absolute nonlinear coefficients, the power of

all SHG outputs must be known. One way to achieve this is to take all the

data, as well as the signal from a reference material such as crystalline

quartz, on the same PMT with the same gain settings and the same pump

power. In this way the relative powers of the different SHG signals allow for

determining the ratios of the nonlinear coefficients, while comparing to the

reference material’s SHG signal fixes the test sample’s absolute nonlinear

coefficient values.

The data considered here were taken on two different PMT-box car

averager setups and for two different pump powers. Direct comparison of the

signal from one PMT to the other will not result in accurate values for the

nonlinear coefficients. From the data that were taken, however, I can

determine the ratio of )2(
31

)2(
33 dd  by examining the e-e Maker fringe signal.

Equations (115a) and (115b) show that the e-e case is a function of )2(
15d ,

)2(
31d , and )2(

33d . From Kleinman’s dispersion arguments we know that )2(
15d  =

)2(
31d  [Kleinman ‘62]. Changing the ratio )2(

31
)2(

33 dd  changes the shape of the
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envelope of the e-e Maker fringe signal. Therefore, the ratio of )2(
31

)2(
33 dd  can

found by fitting the envelope of the e-e Maker fringe theory to data.

Published values for )2(
31d  range from 4.6 × 10-11 to 5.95 × 10-11 pm/V

and for )2(
33d  from 25.2 × 10-11 to 34.4 × 10-11 pm/V [Dmitriev ’91, Kurtz ’79,

Shoji ’97]. These values translate into a )2(
31

)2(
33 dd  range from 4.2 to 7.5.

Figure 4.8 shows fits for 4 different )2(
31

)2(
33 dd  ratios in this range along with

data. The value of )2(
31

)2(
33 dd  of 4.2 fits the amplitude of the data best. This

suggests that )2(
33d  is on the low side of its range and )2(

31d  is on the high side

of its range. Thus the suggested values based on this work are )2(
33d = 25.2

pm/V and )2(
31d = 5.95 pm/V.

4.3 Electric Field Perturbations to Maker Fringe Signals

As mentioned above, the presence of an electric field on the surface of

the sample will cause a perturbation in the Maker fringe signals. This is due to

two separate phenomena: the electrooptic effect and the converse

piezoelectric effect. The electrooptic effect will affect the indices of refraction

of the material while the converse piezoelectric effect will cause a thickness

change in the sample. Since I am considering only DC electric fields, the

unclamped or constant stress electrooptic coefficient T
ijr must be used. T

ijr  is



0 20 40 60
Pump Angle of Incidence θi (°)

                      d 33
(2) /  d 31

(2) 
4.2
5.3
6.4
7.5
Data

0

0.2

0.4

0.6

0.8

1

e-
e 

S
H

G
 S

ig
n

a
l (

a
rb

. u
n

its
)

Figure 4.8  Comparison of different   d 33
(2) /  d 31

(2)  ratios for the e-e Maker-fringe
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related to the clamped or constant strain electrooptic coefficient S
ijr  by

jkik
S
ij

T
ij dprr += , (136)

where ikp  is the photoelastic coefficient and djk is the piezoelectric coefficient

(not to be confused with the nonlinear susceptibility )2(
jkd ). If the field is in the

z-direction only, the indices of refraction will be changed according to

313

3

2
Er

n
n To

o −=∆ ,
(137a)

333

3

2
Er

n
n Te

e −=∆ .
(137b)

The sample’s thickness change is given by

333 EdLL =∆ , (138)

where L is the sample thickness.

To demonstrate the magnitude of these changes, an electric field of 1

kV/mm present on the z-surface of the sample will give rise to the following

changes ∆nop = -0.4 × 10-4, ∆nos = -0.6 × 10-4, ∆nep = -1.6 × 10-4, ∆nes = -1.8 ×

10-4, and ∆L = 0.001 µm. The dispersion of the electrooptic coefficients was

considered when calculating these values. Interpreting the electrooptic

coefficient-versus-wavelength data presented by Mendez et al resulted in the

following coefficients T
pr ,13  = 0.8 × 10-5 mm/kV, T

sr ,13 = 1.0 × 10-5 mm/kV, T
pr ,33  =

3.1 × 10-5 mm/kV, T
sr ,33  = 3.2 × 10-5 mm/kV, where the subscript p designates

the pump wavelength and the subscript s designates the second-harmonic

wavelength [Mendez ‘99]. For the length change calculation I used d33 = 0.6 ×
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10-11 C/N and L = 0.2 mm. These calculations show that the electrooptic

effect should be clearly resolved by our Maker fringe analysis while the

converse piezoelectric effect should be negligible for electric fields up to 10

kV/mm.

LiNbO3 is a pyroelectric material and generates a surface charge

whenever the material experiences a change in temperature. As the

temperature of the sample changes, the spontaneous polarization changes

according to

TPs ∆⋅ζ=∆ (139)

where ζ = -4 × 10-5 C/(K•m2). Associated with this change in polarization is it a

change in the depolarizing field ∆Edep. The depolarizing field is eventually

compensated for by the migration of free charge, from either the environment

or the material itself, to the surface of the sample. Pyroelectric detectors work

by measuring the charge flow to the sample’s surface to compensate for the

temperature-induced change in the spontaneous polarization. When the

depolarization field is fully compensated for, the sample experiences no net

electric field. Figure 4.9 (a) represents a LiNbO3 sample that is fully

compensated for the depolarizing field generated by the sample’s

spontaneous polarization. Before the compensation is complete, the sample

experiences a net electric field Enet equal to the uncompensated depolarizing

field. Figures 4.9 (b)-(d) show a sequence of pictures representing the

polarization and electric field changes associated with a temperature change

and accompanying charge compensation. The first of these pictures
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shows a sample in the hypothetical situation of having experienced a

decrease in temperature and no charge compensation. The second

represents partial depolarizing field compensation and the last full

compensation. The effect of this ∆T-induced net electric field on the material

can be simulated by the effect of an applied electric field that produces the

same net electric field. From classic dielectric theory (see for example

[Serway ‘83]) we know that Enet = Eo + E1 where Eo is the applied electric field,

E1 is the field associated with the material’s response to the Eo and is the

electric-field-induced depolarizing field, and Enet is the net field experienced

by the material. Expressing the net electric field in terms of only the applied

field results in Enet = Eo/ε33 where ε33 is the dielectric constant and has a value

of 29.1 [Crystal Technology, Inc. ‘1993]. Therefore, a ∆T-induced net electric

field will result in the same electrooptic index changes to the material as an

applied electric field of Eo = ε33Enet.

The ∆T-induced depolarizing field relates to opposing the change in

the spontaneous polarization and not necessarily opposing the spontaneous

polarization itself. Positive temperature changes create a reduction in Ps but

the associated depolarizing field is directed to increase Ps. Negative

temperature changes increase Ps, but result in a depolarizing field that

opposes Ps. For large negative ∆T’s, the depolarizing field can become large

enough to overcome the coercive field of the material, ~21 kV/mm, and cause

self domain reversal. For temperature changes in either direction of ~100 °C
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over a time of a few minutes, electrical discharge from the sample has

routinely been observed.

An example of what can occur when a z-cut wafer of LiNbO3 is

temperature-cycled is illustrated in Figures 4.10 and 4.11. Figure 4.10 (a)

represents the typical appearance of an as-received wafer viewed through a

microscope with a 5x objective and through crossed polarizers. The sample

was then temperature-cycled on a hot plate from 25 ºC to 120 ºC in roughly

30 min and allowed to dwell at 120 ºC for 5 min. The sample was then

removed from the hot plate and allowed to cool back to room temperature

over a period of ~20 min. During the cooling, electrical discharges were

observed. Figure 4.10 (b) depicts the typical appearance of the sample after

this temperature cycle. Two types of features are visible, defects with 3-fold

symmetry, commensurate with the C3v point group symmetry of LiNbO3, and

“wispy clouds.” The sample was placed in a low vacuum in an attempt to

charge compensate it. This technique was suggested by Dieter Jundt of

Crystal Technology, Inc. Almost immediately after the mechanical pump was

turned on, more electrical discharges were observed. By the time the

pressure reached 0.5 Torr the discharging had stopped. No further

discharging was seen on the vent cycle or on a subsequent vacuum cycle.

The picture in Figure 4.10 (c) shows that the defects of 3-fold symmetry

remain but that the “wispy clouds” have been eliminated. I believe that the

“wispy cloud” observation was due to a non-uniform uncompensated

depolarization field in the sample after the temperature cycle. The nonuniform
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Figure 4.10 Photographs of a LiNbO wafer taken using a 5x objective.

(a) as-recieved sample, (b) after a 200 C anneal, (c) after charge
compensation.
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uniform field caused a spatially varying index change, localized birefringence

between no,x and no,y, that caused a variable polarization rotation and allowed

light to leak through the crossed polarizers. After the sample was fully

discharged, the effect was eliminated.

Examining the 3-fold symmetry defects more closely revealed that they

were in fact small domain reversed regions. Figures 4.11 (a) and (b) show

50x views of the same region of the sample for before and after etching. Once

again the pictures were taken through crossed polarizers. It is well know that

the positive and negative z-faces of LiNbO3 differentially etch in a solution of

HNO3 and HF with the negative z-face etching faster. I used a 2:1 ratio of

HNO3 to HF and etched the sample for 35 min at room temperature. The

result of the etch was a one-to-one correlation of etch features to 3-fold

symmetry defects. Etch features consist of hillocks on the negative z-face and

etch pits on the positive z-face. This confirms that these defects are domain-

reversed regions but does not explain their visibility when viewed between

crossed polarizers. I believe the distortion of the microscope illumination in

the vicinity of these defects is due to space charge separation in the region of

the domain walls. This would again create localized index changes, which

give rise to a birefringence between no,x and no,y at the domain walls, thereby

allowing the light to leak through the crossed polarizers.

The effect of pyroelectrically induced surface potentials on the o-o

Maker fringe signal is displayed in Figure 4.12. The different scans in the
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Figure 4.11 Photographs of 3-fold defects taken
with a 50x objective. (a) before etching and (b) after etching.

through crossed polarizers
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Figure 4.12  Progession of the o-o Maker-finge signal as a result of
pyroelectricity.
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figure correspond to (a) data taken before any processing, (b) immediately

after returning to room temperature following a 10 min anneal at 200 ºC, (c)

17 h after the anneal, and (d) after being rinsed in tap water. These data were

taken on the earlier Maker-fringe setup that used a cw pump laser and lock-in

detection. Vissual inspection of these traces shows that the fringe shift

immediately following the anneal is significant, ~4°; some recovery is seen

after 17 h, and full recovery has occurred after the sample was rinsed in tap

water.

Using the data from trace (a) as a baseline for the Maker-fringe

analysis results in a sample thickness of 0.19808 mm and index variations

from the Sellmeier values of ∆nop = -0.3 × 10-4 and ∆nos = 0.0. Using these

parameters as inputs and solving for an apparent applied electric field Eapp for

the data in trace (b) results in Eapp = -19.1 kV/mm, for trace (c) Eapp = -11.7

kV/mm, and for trace (d) Eapp = 1.0 kV/mm. The overlays of all four of these

fits are shown in Figure 4.13. These values suggest that the non-neutralized

depolarization field due to the original temperature cycle for traces (b) and (c)

are -0.66 and -0.40 kV/mm respectively. The 1.0 kV/mm apparent applied

field (0.03 kV/mm uncompensated depolarization field) found for trace (d) is

most likely due to a positive ∆T as the sample warmed from the temperature

of the tap water back up to room temperature.

In an attempt to eliminate the effect of depolarization fields on the

Maker fringe signals and to measure the values of Tr13  and Tr33 , a series of

experiments were devised using transparent electrodes on the z-surfaces of
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Figure 4.13  Theoretical fits to the o-o Maker-fringe signals shown in 
Figure 4.12. (a) baseline data, Eapp = 0.0 kV/mm, (b) post-anneal data, 
Eapp = -19.1 kV/mm, (c) 17 h post-anneal data, Eapp = -11.7 kV/mm, 
(d) post-charge compensation by rising in water, Eapp = +1.0 kV/mm.
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the sample. The electrodes were constructed in the following manner. A pad

of Al 100 nm thick and approximately 4 mm × 8 mm was deposited onto each

z-face of the sample. An electrical lead was bonded to a portion of each pad

using electrically conducting epoxy. Next a drop of LiCl in water solution was

sandwiched between the sample and a quartz cover slip. The cover slips

were positioned to overlap a portion of the Al pads. A schematic of these

electrodes is shown in Figure 4.14. The leads were then used to apply a

known electric field to the region of the sample covered by the quartz cover

slips while taking Maker fringe data.

Data was taken for Sample A with an open circuit condition and on

Sample D for a short circuit condition (0 kV/mm) and for ±5 kV/mm applied

fields. The open circuit condition was examined to see what type of

perturbation the electrodes themselves caused to the Maker fringe signals.

Figure 4.15 compares the o-o Maker fringe signal with and without the

surface electrodes. The result was somewhat disappointing. Because the

electrodes reduced the index contrast at the sample’s surfaces, the high

frequency fringes where greatly affected. Most notable was the reduction in

the high frequency fringe amplitude. This effect on the Maker fringe signals

can be accounted for in the theory by changing the boundary conditions at the

sample’s surfaces to include the index of refraction of the liquid electrodes. I

have not yet done so, so the analysis of these data uses the current full

resonance code using the overlap factors described in Equation (136).



LiNbO3

Quartz Cover Slip
over Electrolyte

Al pad

Electrical Lead

Front View

Side View

Figure 4.14 Schematic of liquid electrodes.
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Figure 4.15  Comparison of Maker-fringe signals for with and without liquid 
electrodes. (a) o-o case, (b) o-e case, (c) e-o case, and (d) e-e case.
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Analyzing the Make-fringe data taken at the same location as that

found in Table 4.3 but with the liquid electrodes in place shows how the

degenerate parameter sets have shifted. These results are presented in

Table 4.5.

Table 4.5  Degenerate solutions obtained from simultaneous 4-case fit to L,
∆nop, ∆nos, ∆nep, and ∆nes for Sample A with liquid electrodes.

L (mm) ∆nop (×10-4) ∆nos (×10-4) ∆nep (×10-4) ∆nes (×10-4) LSE (×10-2)
0.19958 1.7 2.3 1.2 -5.0 1.255
0.19959 0.6 1.2 0.3 -6.4 1.253
0.19960 -0.5 0.0 -0.8 -7.1 1.251
0.19961 -1.6 -1.1 -1.6 -8.4 1.248
0.19962 -2.7 -2.3 -2.7 -9.1 1.246

The average of the degenerate solutions that have ∆no’s in the range of ±2 ×

10-4 is L = 0.19960 ± 0.00001, ∆nop = -0.5 × 10-4 ± 1.1 × 10-4, ∆nos = 0.0 ± 1.1

× 10-4, ∆nep = -0.7 × 10-4 ± 1.0 × 10-4, ∆nes = -7.3 × 10-4 ± 1.0 × 10-4. The

thickness, ∆nop, and ∆nos fall within the range determined from the data

without the electrodes; however, ∆nep and ∆nes have shifted significantly from

the nonelectrode results. Looking at the individual degenerate solutions

shows even greater discrepancy of the ∆n’s between the data taken with and

without the electrodes. These discrepancies are most likely due to some

combination of the electrodes’ perturbation of the Maker fringe signals and a

redistribution of the surface charge due to the electrodes establishing a

constant potential on each surface.

Nontheless, I have used the liquid electrode technique to explore the

values of the linear electrooptic coefficients. Identical electrodes to those
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described above were fabricated on a similar sub-wafer of LiNbO3, Sample D.

Figure 4.16 shows the progression of the Maker fringe signal as a function of

applied electric field. The data taken with shorted electrodes (Eo = 0 kV/mm)

were used to determine the baseline parameters L, ∆nop, ∆nos, ∆nep, and ∆nes

for this sample. The degenerate solutions for this baseline data set were

solved for as described above and are presented in Table 4.6.

Table 4.6  Degenerate solutions obtained from simultaneous 4-case fit to L,
∆nop, ∆nos, ∆nep, and ∆nes for Sample D with Eo = 0 kV/mm.

Ref. # L (mm) ∆nop (×10-4) ∆nos (×10-4) ∆nep (×10-4) ∆nes (×10-4)
1 0.20223 1.4 1.8 -3.9 -5.0
2 0.20224 0.3 0.7 -4.8 -6.3
3 0.20225 -0.7 -0.4 -5.8 -6.9
4 0.20226 -1.9 -1.6 -6.8 -8.4

These values were then used as inputs for solving the data sets taken for ±5

kV/mm applied fields.

The Maker-fringe scans taken for the ±5 kV/mm applied fields were

analyzed in two different ways. First, as a self-consistency check, they were

analyzed by solving for the applied field using the previously stated published

values for the electrooptic coefficients. Then the actual applied field was used

as an input and the four electrooptic coefficients were found. In the self-

consistency check the -5.0 kV/mm data yielded an electric field of -5.2, -5.1, -

5.1, and -5.1 kV/mm for the four degenerate solutions in Table 4.6. The +5.0

kV/mm data solved to 5.0, 5.1, 5.0, and 5.0 kV/mm. The 5.0 kV/mm data were

very self-consistent while the -5.0 kV/mm were less self-consistent.
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The coefficients found from the second part of this experiment appear

in Table 4.7.

Table 4.7  Electrooptic coefficients found
Eo (kV/mm) Degenerate

Ref #
T

pr ,13  × 10-5

(mm/kV)

T
sr ,13  × 10-5

(mm/kV)

T
pr ,33  × 10-5

(mm/kV)

T
sr ,33  × 10-5

(mm/kV)
-5.0 1 1.28 1.41 3.47 3.37
-5.0 2 1.28 1.39 3.42 3.49
-5.0 3 1.25 1.38 3.43 3.34
-5.0 4 1.28 1.39 3.43 3.51
 5.0 1 1.03 1.12 3.11 3.46
 5.0 2 1.04 1.14 3.14 3.40
 5.0 3 1.08 1.16 3.11 3.52
 5.0 4 1.04 1.14 3.13 3.38

These values are mostly higher than those normally seen in the literature and

stated earlier in this section. There is a clear clustering of the results

dependent upon the applied field. For Eo = -5.0 kV/mm the average

electrooptic coefficients were T
pr ,13  = 1.27 × 10-5 mm/kV, T

sr ,13  = 1.39 × 10-5

mm/kV, T
pr ,33  = 3.44 × 10-5 mm/kV, and T

sr ,33  = 3.43 × 10-5 mm/kV. For Eo =

5.0 kV/mm the average electrooptic coefficients were T
pr ,13  = 1.05 × 10-5

mm/kV, T
sr ,13  = 1.14 × 10-5 mm/kV, T

pr ,33  = 3.12 × 10-5 mm/kV, and T
sr ,33  = 3.44

× 10-5 mm/kV.

The reasons for this clustering and the elevated values for these

electrooptic coefficients are unknown. Implementation of solving codes using

the proper boundary conditions for the liquid electrodes and having an

independent measurement of the sample’s thickness may help resolve these

issues.
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4.4 Maker-Fringe Analysis of Domain Reversed Lithium Niobate

Using Maker-fringe analysis as a tool to examine domain-reversed

LiNbO3 was a natural extension for this technique. However, no difference

between the Maker-fringe signals from originally domained material and

domain-reversed material should be expected unless a domain wall is

encountered. The domain reversal process involves realigning the direction of

the spontaneous polarization only and is not thought to affect the indices,

thickness, nonlinear coefficients, or depolarizing field response with respect to

the direction of the Ps of the sample.

Preliminary tests of this hypothesis proved it to be incorrect; there was

a clear shift between the Maker fringe signals taken before and after poling.

Determining the possible cause of the shift in the Maker fringe signals, the

conditions required to eliminate the shift, if any, and the magnitude of the shift

are the goals of this section.

Maker-fringe scans were taken at four different stages throughout the

process history of Sample Q. The four stages were before processing, after

electric field poling, after annealing, and after discharging the sample. At each

of these stages Maker fringe scans were taken over the same 5.0 mm by 5.0

mm region of the sample. The spacing between scans was 0.25 mm in both

the x- and y-directions. The 0.2 mm thick sample was 15 × 15 mm. For this

series of experiments only o-polarized pump data were taken. This was

because the data were taken very early in the research and at that time I was
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not considering e-polarized pumping. Having only o-polarized pump data cuts

the number of pump-SHG cases to be solved in half but only reduces the

number of fitting parameters to be found by one, because ∆nep is no longer

included.

The first set of Maker-fringe scans, those taken before any processing,

were used to establish a baseline set of fitting parameters that will be used

and compared to those for subsequent scans. Because of the nature of the

pyroelectric effect, the initial state of the sample is very difficult to judge.

Without knowing exactly the sample’s thickness and uncompensated

depolarization field, I cannot precisely determine the indices of refraction of

the material in the initial state. Using the o-o and o-e data taken for grid point

1, I initially assumed that the sample was fully charge compensated and

solved for thickness, ∆nop, ∆nos, and ∆nes simultaneously. The degenerate

solution I chose for these data was L = 0.20504 mm, ∆nop = -0.1 × 10-4, ∆nos =

0.2 × 10-4, ∆nes = -7.6 × 10-4. Next I assume that there is no variation in the

indices of refraction as a function of position and use these indices as inputs

while calculating the thickness and apparent electric field for the remaining

grid points. By making this assumption, any variation in the indices will be

incorporated into the variation in L and Eapp. The contour map in Figure 4.17

(a) represents the thickness values for a 1.5 mm × 5.0 mm region of this data

set and shows a clear trend of increasing thickness from the lower left corner

to the upper right corner. The maximum thickness excursion over this area is

0.35 µm. A map of corresponding electric field is shown in Figure 4.17
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(b) and shows no correlation with the thickness trend. The average electric

field is 0.15 kV/mm with values ranging from –0.3 to 0.7 kV/mm. These data

represent our baseline information for the sample. We will compare the

electric field data with those obtained after each of the processing steps.

The next set of scans was taken after a portion of the sample had been

poled to the opposite domain direction. The poled feature was delineated by

photoresist and consisted of a square 0.76 mm on a side. The domain

reversal was accomplished by applying a single 5.2 kV, 1 ms pulse to the

sample. See Section 3.2 for a description of the poling setup. The effect of the

poling process on the Maker-fringe scans is detailed in Figure 4.18. Here

Maker-fringe scans were taken from locations inside and outside the poled

region for before and after the domain reversal. The scans in Figure 4.18 (a)

show how the signals changed inside the poled region while Figure 4.18 (b) is

shown as a control to see how the signals outside the poled region changed.

Figure 4.18 (a) shows that the low frequency fringes are shifted toward

normal incidence and there is an offset in amplitude for the high frequency

fringes near normal incidence. Figure 4.18 (b) shows that the low and high

frequency fringes outside the poled region occur nearly on top of one another

with a slight shift of the low frequency fringes toward high angles of incidence.

Qualitatively these data suggest that the material and/or the electric field

conditions outside the poled region have changed very little, whereas inside

the poled region the change was larger and in the opposite direction. A

quantitative measure of these changes was made by fitting the apparent
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applied electric field to the data. In so doing, the thicknesses and indices

found from the baseline data set are used as inputs to the solver. The results

of this fit are displayed in Figure 4.19 (a). The location of the poled region is

clearly visible in the center of this contour map. In the poled region the

average electric field has shifted to -5.1 kV/mm while the average electric field

outside the poled region is 0.3 kV/mm. The slight increase in the electric field

in the nonpoled region of the sample is most likely due to a new

uncompensated depolarization field due to temperature changes during

processing. However, the large decrease in the apparent electric field in the

poled region must be due to some change in the material as a result of the

poling process. It is not thought to be a surface charge effect because the

sample has been rinsed in water as part of the photoresist removal process.

This rinsing would have presumably neutralized such a high surface charge.

The sample was annealed in a box furnace in an attempt to eliminate

the perturbation to the Maker-fringe signals caused by electric field poling.

The anneal consisted of heating the sample at a rate of 2 ºC/min from room

temperature to 200 ºC and held at this temperature for 12 min. The furnace

was then turned off and the whole setup was allowed to cool back to room

temperature. The third set of Maker fringe scans was then taken immediately

after the sample reached room temperature. Analysis of this data set will be

presented later. The sample was then discharged by placing it in a low

vacuum as described earlier in Section 4.3. After being discharged, the fourth

set of Maker-fringe scans was taken. This data set is analyzed by again
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solving for the apparent applied electric field using the thicknesses and

indices found from the baseline data as input parameters to the solver. The

result of this analysis is presented in the contour map of Figure 4.19 (b). The

average electric field outside the domain-reversed region has increased to 3.0

kV/mm. The variation of the apparent applied electric field from data set to

data set suggests that the sample is very susceptible to environmental

conditions, such as temperature fluctuations, and that great care must be

taken to fully neutralize the depolarization field. The average electric field in

the domain reversed region was 1.0 kV/mm. Comparing Ein – Eout

immediately after poling (-5.4 kV/mm) and after annealing (-2.0 kV/mm)

shows that the contrast of the domain reversed region has been reduced. I

believed that more thorough annealing and charge compensation will

completely eliminate this difference. Further discussion on the possible nature

of the apparent field associated with the domain-reversal process as well as a

correlation between this field and the poling dynamics will be presented in

section 4.5.

An example of the effect of rotating the sample through a domain wall

during a Maker-fringe scan is shown in Figure 4.20. These scans were taken

at the location of the red circle in Figure 4.19 (b). The fringe anomaly

centered at 47º can clearly be seen in the post-processed scan. The pre-

processed scan, taken at the same location, is included for comparison. The

fringe perturbation is due to an additional interference between the portion of

the beam in one domain region and that in the other domain region.
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The analysis of the data immediately following annealing but before

discharging the sample shows a peculiar behavior in the resulting electric

field. Again, this data set was solved for the apparent applied electric field

while using the thicknesses and indices found from the baseline data set.

Figure 4.21 shows the contour map of the resulting electric field. The average

electric field for the originally domained material was -9.4 kV/mm, while that

for the domain-reversed material was +8.8 kV/mm. These results suggest that

there is a nearly equal electric field across the sample’s entire surface

regardless of the domain region. The reason for the sign change in the poled

region is that the direction of the spontaneous polarization is in the opposite

direction and therefore the sign for the electric field is reversed. The

consequence of this is that the electrooptic index change in the poled region

will be in the opposite direction to that in the original domain region. This

situation is presented graphically in Figure 4.22 a).

This result is perplexing. Assuming that annealing has to a large extent

relaxed the effect of the domain reversal, intuition suggests that the direction

of the uncompensated depolarization field would be identical with respect to

the direction of each region’s spontaneous polarization. The directions of

these fields will be opposite to one another from the laboratory reference

frame but identical from the material’s frame of reference. This scenario is

depicted in Figure 4.22 (b). This in turn would give rise to like changes in the

∆n’s and therefore like changes in the Maker fringe signals. This hypothesis

results in a contour map of apparent electric field that shows no contrast
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between the original and reversed domain regions. Once again the results

show that such naive assumptions are apparently incorrect. It is plausible that

a surface charge migration has occurred during annealing that has distributed

the charge from the largest domain area, the original domain, over the entire

surface.

4.5 Poling-Current Characteristics of Electric-Field-Induced Domain

Reversal

Here I examine poling characteristics in an attempt to better

understand the dynamics of the electric-field poling process in LiNbO3. One

common experiment used to examine ferroelectric materials is to measure the

polarization of the material as a function of applied electric field. The result of

such an experiment is the polarization hysteresis loop. During this type of

experiment the direction of the material’s spontaneous polarization is

repeatedly reversed. However, because the high-voltage supply used here

did not have the capability to ramp the voltage continuously, I was unable to

perform such an experiment. Instead I developed an experiment to look at the

poling characteristics given a single applied poling pulse. In particular, the

poling-current characteristics were examined under these poling conditions.

The same test area was repeatedly poled to the anti-parallel and parallel

directions for several values of applied field. Anti-parallel poling is defined as

poling the spontaneous polarization to a direction 180° from that of the
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original material, while parallel poling is defined as poling the spontaneous

polarization back to its original orientation.

The feature being poled during this experiment was a square with 0.76

mm long sides and was delineated by patterning photoresist on the + z-face

of a 0.2 mm thick sub-wafer of LiNbO3. The electric field strength and pulse

duration were set to assure complete poling of the designated area in one

applied pulse. Each pulse was 1 ms long and the applied electric field ranged

from 18 to 29 kV/mm. The polarity of the pulse with respect to the sample was

reversed to change the poling direction. The time between successive pulses

was generally 2 to 3 min. Seven different samples, cut from a single wafer,

were used during this experiment; each was taken through several domain

reversal cycles for a range of applied electric fields. Four of the samples

experienced electrical breakdown during the poling process. The number of

domain reversals experienced by these samples before breakdown occurred

ranged from 1 to 40. Interesting surface patterns were generated when

electrical breakdown occurred. Figures 4.23 (a) and (b) show 5x and 50x

optical microscope images of these surface patterns respectively. The

patterns appear to be fractal in nature.

The current flowing through the poling circuit was recorded for each

applied pulse. Figure 4.24 shows examples of the anti-parallel poling current

for three different applied fields. Note that the “bumpiness” of the poling

current traces is not electrical noise in the data acquisition system but is

“domain reversal noise” due to domain nucleation and propagation. The
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Figure 4.23 Photographs depicting the aftermath of electrical breakdown,
(a) 5x objective and (b) 50x objective.
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“domain-reversal noise” is analogous to the Barkhausen noise commonly

observed with ferromagnetic phase transitions. This noise is most noticeable

at low poling fields, where domain nucleation takes longer to form and

suggests that there is non-uniformity within the crystal with regard to domain

nucleation.

The area that has undergone domain reversal can be determined by

integrating the current pulse

ss PdtiPQA 22/ ∫== , (140)

where Ps has a value of 0.71 µC/mm2 [Camlibel ‘69]. Ideally the area of our

poled region is 0.58 mm2 and should remain constant for the repeated

domain reversals. However, it was found that with increased cycling of the

domain reversal, the area being poled grew outward and underneath the

photoresist defining the opening. The area poled at the beginning of a series

was typically 0.6 mm2 and grew monotonically to a maximum of 0.85 mm2

after 40 domain reversals.

The current data were analyzed by examining the maximum current

obtained during a pulse divided by the area that underwent domain reversal

Imax/A for each applied electric field. The data presented in Figure 4.25

represents the data taken for all 7 samples studied here. These data show a

linear relationship between the applied field and the maximum current density

for both the anti-parallel and parallel poling directions. The slopes of these

two lines are very similar, 7.7 
kV/mm

mA/mm2

 for the anti-parallel poling direction
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and 8.4 
kV/mm

mA/mm2

 for the parallel poling direction. There is, however, an offset

in the poling field between the anti-parallel and parallel poling directions. It

takes less applied field to achieve the same maximum current density when

poling to the parallel direction than it does in poling to the anti-parallel

direction. This suggests a preferred direction for the spontaneous polarization

that is parallel with the original domain direction. The coercive field Ec of a

ferroelectric material is usually defined in terms of the polarization hysteresis

loop. Here, I define the coercive field with respect to the maximum poling

current density. The coercive field is defined as the applied field at the point

the maximum current density goes to zero. Extrapolating the data in Figure

4.25 to zero current density shows an anti-parallel coercive field PA
cE −  of 24.2

kV/mm and a parallel coercive field P
cE  of 17.3 kV/mm. The difference

between these coercive fields P
c

PA
coff EEE −= − is 6.9 kV/mm.

Next, one of the surviving samples was poled to the anti-parallel

direction and left there. The sample was then annealed in a box furnace at

200ºC for 12 min and allowed to cool back to room temperature as was done

for the sample in section 4.4. The sample was then put back in the poling

system and again repeatedly domain reversed. The poling current was again

recorded for a range of applied electric fields for both the anti-parallel and

parallel poling directions. The definition of anti-parallel and parallel is still

referenced to the original domain direction. Figure 4.26 shows the post-
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annealed maximum current density as a function of applied field. The original

pre-annealed data are shown in gray for comparison purposes.

The relationship between the current density and the applied field is

once again linear for both of the poling directions. The slopes of these two

lines are again very similar to one another, 6.6 
kV/mm

mA/mm2

 for the anti-parallel

case and 7.0 
kV/mm

mA/mm2

 for the parallel case, but the slopes have decreased

with respect to those for the pre-annealed data. The most striking difference

seen here is the location of the post-annealed data with respect to the pre-

annealed data. The post-annealed parallel data overlay the pre-annealed

anti-parallel data. This implies that poling away from the annealed domain

direction is similar to poling away from the original domain direction in the pre-

annealed state. Annealing the domain-reversed material has essentially

returned it to its original state but with its spontaneous polarization pointing in

the opposite direction, this direction being the new preferred domain direction.

However, the post-annealed anti-parallel data do not overlay the pre-

annealed parallel data. This suggests that not everything about the material

has been fully reversed after the domain reversal and subsequent anneal.

The coercive field for the post-annealed anti-parallel data has increased when

compared to the pre-annealed parallel data. As a result the offset between

the coercive fields for the post-annealed data post
offE  has decreased to 5.6

kV/mm.
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The difference in the coercive fields between poling in the anti-parallel

and parallel directions is not unprecedented. Gopalan and Gupta [Gopalan

‘97] as well as Wang et al [Wang ‘97] have reported observing differences

between the coercive fields for the two poling directions of 6.7 kV/mm and 7.0

kV/mm respectively. These values are for as-received samples and compare

favorably to the value of 6.9 kV/mm reported here. Gopalan also reports a

coercive field difference of ~4 kV/mm for an annealed domain-reversed

sample [Gopalan ‘97]. Their annealing consisted of a rapid heating to 200ºC,

a 2 min dwell, and a rapid cooling back to room temperature.

In a follow-up paper examining congruent and stoichiometric LiNbO3,

Gopalan et al [Gopalan ‘98] conclude that the origin of the difference in the

coercive fields for the two poling directions is related to the non-stoichiometry

of the material. He further explains the asymmetry in the polarization

hysteresis loop as being the result of an intrinsic internal field. The internal

field is defined as ( )P
c

PA
c EEE −= −

2
1

int  and is oriented parallel to the original

spontaneous polarization.

I will attempt to further explain the presence of this internal field. Lines

and Glass [Lines ‘77] state that defects in a ferroelectric crystal structure

generally increase the coercive field of a material and give rise to a defect

polarization ∆P. The defect polarization can be modeled as an equivalent field

of Eint = ∆P/εεo. They further state that when the spontaneous polarization of a

crystal is reversed by the application of an electric field, the defect

polarization may or may not be reversed with it.
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In the case of congruent LiNbO3, the deficiency of Li in the material

results in a crystalline structure containing defects. There are two cation

substitution models commonly proposed for the defect chemistry of congruent

LiNbO3. The Li-site vacancy model involves Li vacancies (VLi)
- and Nb anti

sites (NbLi)
4+ and the Nb-site vacancy model involves Nb vacancies (VNb)

5-

and Nb anti sites. Evidence for both these models has been reported in the

literature [Watanabe ’95, Schirmer ‘91] without definitively confirming the

validity of one model over the other. One theoretical investigation suggesting

the presence of the ilmenite structure Li Nb � Nb Li � Li Nb � Nb Li within

the LiNbO3 structure has lead to the observation that these two models may

in fact be synonymous [Donnerberg ‘91]. Regardless of which model is

correct, there are charged point defects due to the deficiency of Li in

congruent LiNbO3. As stated by Lines and Glass, these charged defects will

give rise to a defect polarization which in turn can be considered as a defect

induced electric field. The defect-induced electric field is most probably the

source of the internal field reported by [Gopalan ‘97].

The data reported here show further support for this hypothesis. A

plausible explanation for my observations is that congruent LiNbO3 has

associated with it a defect polarization aligned in the direction of the original

spontaneous polarization. This defect polarization impedes domain reversal

to the anti-parallel direction and assists domain reversal to the parallel

direction. Further, even though the defect polarization prefers to be aligned in

the direction of the spontaneous polarization, it is not reversed by the
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application of the poling field. The defect polarization does, however, almost

completely re-align itself to the anti-parallel spontaneous polarization during a

200 ºC annealing. This suggests that the energy of the defect is relatively low,

4 × 10-2 eV. I believe that this is a result of the movement of the defect

vacancies within the crystal. The vacancy locations appear not to move under

the application of the poling field but do appear to move during annealing to

re-establish their preferred relationship with the spontaneous polarization.

With these interpretations of the results, the Maker fringe data

presented in Section 4.4 can now explained. The fringe shift resulting from

the domain reversal is the effect of the defect polarization acting on indices of

refraction of the material. The magnitude of the index changes is the result of

the net difference in the electric field the material ‘sees’ acting through the

electrooptic effect. The net difference in the electric field is

P
c

PA
coff EEEE −=⋅= −

int2 .
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Chapter 5

Conclusion

The Maker-fringe theory developed here has proven to be quite

accurate at reproducing the second-harmonic signals generated by z-cut

LiNbO3. Theoretical descriptions for all four pump-SHG polarization

orientations capable of being produced by rotation about the y-axis of a z-cut

wafer have been developed. Simultaneously fitting all four of these pump-

SHG orientations to thickness, ordinary index of refraction at the pump and

second-harmonic wavelengths, and extraordinary index of refraction at the

pump and second-harmonic wavelengths has led to the most comprehensive

Maker-fringe analysis attempted to date. The results of this analysis have

corroborated previous researchers’ claim of lower than expected

extraordinary indices of refraction [Shoji ’97, Sanford ‘98]. The results of this

work suggest the difference between the extraordinary index of refraction and

that predicted by the Sellmeier equation derived by Edwards & Lawrence

[Edwards ‘84] is -5.7 × 10-4 ± 1.4 × 10-4 at the pump wavelength (1.064 µm)

and -9.7 × 10-4 ± 1.7 × 10-4 at the second-harmonic wavelength (532 nm).

Correlation of reported composition-related phase matching temperatures

suggests the reason for the low values of ne. Apparently, the composition of

the material used for the original index studies was lithium deficient, 48.3 mol
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% Li2O, compared to current congruent material, 48.38 ± 0.015 mol % [Bordui

‘91].

However, it has been discovered that an independent measure of the

sample’s thickness must be made in order to eliminate the degenerate nature

of the solutions obtained during the Maker-fringe analysis. With the thickness

of the sample measured to within 5 × 10-5, the indices of refraction can be

determined to within a few parts in 10-5. Researchers at NIST, Gaithersburg,

now have a thickness measurement technique that uses gauge blocks, which

may prove to be useful in determining wafer thickness to this precision. Great

care must also be taken to fully compensate the sample for any

depolarization fields that may be present due to its pyroelectric response to

temperature fluctuations. This perturbation to the Maker-fringe signals is

associated only with z-cut material; pyroelectricity will not effect x- and y-cut

LiNbO3.

I have also used Maker-fringe analysis to examine the DC electrooptic

coefficients of LiNbO3. The values obtained for Tr13  and Tr33  were larger than

those generally seen in the literature [Weis ’85, Mendez ‘99]. However, the

electrooptic coefficients reported in the literature are for low frequency AC

fields, not true DC fields as were studied here. This subtlety may explain the

discrepancy.

Examining electric-field domain-reversed material proved to be very

interesting. It was observed that the electric-field domain reversal process did

affect the Maker-fringe signals. The magnitude of the perturbation to the
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Maker-fringe signals was quantified by fitting the data to an apparent applied

electric field in the z-direction. The result of this fit suggested an applied field

of -5.4 kV/mm. The shift in the Maker-fringe signals could be partially relaxed

by a short anneal at 200 °C. The apparent applied field in the domain

reversed region after annealing was -2.0 kV/mm. I believe a full recovery of

the sample will occur given a slightly more rigorous anneal.

Examining the poling current as a function of applied field, I was able

to demonstrate electric field asymmetries (6.9 kV/mm) in my maximum

current density experiment similar to what other researchers have reported in

their polarization hysteresis loops (6.7 kV/mm [Gopalan ‘97] and 7.0 kV/mm

[Wang ‘97]). Since the asymmetry is such that it is easier to pole the material

back to the original domain direction, it must be oriented in the direction of the

original spontaneous polarization. This would make the asymmetry field

negative with respect to the domain-reversed material, just as was seen from

the Maker-fringe analysis of the domain reversed material. I believe that the

apparent applied field seen from the Maker-fringe analysis of the domain-

reversed material and the asymmetric field seen during the poling

experiments are the result of the same phenomenon.

The exact reason for this effect is not known. However, these results

support the contention that it is the result of a defect-induced polarization

associated with congruent LiNbO3. The defect polarization seems to be

unaffected by the poling fields but greatly affected by a 200 °C annealing. As
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a result of this behavior, I believe the vacancy site location with respect to the

rest of the ionic structure is the cause of this phenomenon.

Gopalan has shown that the asymmetry in the polarization hysteresis

loop goes to zero as the composition of LiNbO3 goes to stoichiometric

[Gopalan ‘98]. This result lends credibility to the defect-induced polarization

hypothesis because stoichiometric material has far fewer defects than

congruent material. Gopalan also shows that the coercive field decreases by

~15 kV/mm for stoichiometric material. Presumably, electric-field poling of

stoichiometric material would suffer far fewer instances of electrical

breakdown; this could lead to much high yields and lower prices for QPM

devices.

Consideration for future work should be given to performing Maker-

fringe analysis at different pump wavelengths, in conjunction with an

independent thickness measurement, in an effort to obtain more index data

for congruent material. This could lead to more accurate Sellmeier equations

for LiNbO3. Poling studies as well as Maker-fringe analysis should be

performed on stoichiometric material. Again, Maker-fringe analysis at several

pump wavelengths could lead to extremely accurate Sellmeier equations for

this material. The poling studies would provide needed data to evaluate

stoichiometric material as a suitable substrate for QPM devices.
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Appendix A

Definition of Symbols

L sample thickness
dp, ds 1/e diameter of the pump and SHG beams; 2ps dd =
λp, ωp pump wavelength and frequency
λs, ωs second-harmonic wavelength and frequency; λs = λp/2
ε11, ε22, ε33 dielectric coefficients

)2(
ijkd                    nonlinear coefficients for LiNbO3

T
s

T
p rr ,13,13 , unclamped electrooptic coefficient relating ordinary index

changes due to z-directed electric fields for the pump and
SHG wavelengths

T
s

T
p rr ,33,33 , unclamped electrooptic coefficient relating extraordinary

index changes due to z-directed electric fields for the
pump and SHG wavelengths

no,p, ne,p              ordinary and extraordinary indices of refraction at the
pump wavelength

no,s, ne,s              ordinary and extraordinary indices of refraction at the
second-harmonic wavelength

ne,p(θep), ne,s(θes) angular dependent extraordinary index of refraction at the
pump and SHG wavelengths

∆nij  index offset from the Sellmeier predicted value; subscript
i corresponds to either e- or o-polarization while subscript
j corresponds to either pump or SHG wavelength

)()( Sellmeierncalculatednn ijijij −=∆
Hx, Hy, Hz magnetic field components
Ex, Ey, Ez electric field components
Px, Py, Pz nonlinear source polarizations
k genaric wave vector at wavelength λ
kp wave vector at the pump wavelength
ks wave vector at the second-harmonic wavelength
θi                angle of incidence of the pump wave, referenced to the

surface normal of the sample
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θep, θes, θop, θos angle of propagation in the LiNbO3 referenced to the
surface normal; e or o correspond to e- or o-polarization
while p or s corresponds to pump or SHG

Ki                       modified wave vector representing the projection of a
wave vector onto a crystallographic axis; subscript i, see
below for specific definitions

Kxp, Kzp kpsinθi and kpcosθi

Kpr1x, Kpr1z kpsinθr1 and kpcosθr1

Kpex, Kpez, Kpoz kpne,p(θep)sinθep, kpne,p(θep)cosθep, and kpno,pcosθop

Kxs, Kzs kssinθi, kscosθi

Kxes, Kzes ksne,s(θes)sinθes, ksne,s(θes)cosθes

Kxep, Kzep ksne,p(θep)sinθep, ksne,p(θep)cosθep

Kxop, Kzop, Kzos  ksno,p(θop)sinθop, ksno,p(θop)cosθop, ksno,s(θos)cosθos
o

zp
o

yp
o

xp EEE ,,, ,, pump wave electric-field amplitude components incident

on the LiNbO3
o

zrp
o

yrp
o

xrp EEE ,1,,1,,1, ,, pump wave electric-field amplitude components reflected

from the front surface of the LiNbO3
o

ztp
o

ytp
o

xtp EEE ,1,,1,,1, ,, pump wave electric-field amplitude components

transmitted through the front surface of the LiNbO3

t1e, r1e single pass, first surface transmission and reflection
coefficients for an e-polarized pump

o
zrp

o
yrp

o
xrp EEE ,2,,2,,2, ,, pump wave electric-field amplitude components reflected

from the rear surface of the LiNbO3
o

ztp
o

ytp
o

xtp EEE ,2,,2,,2, ,, pump wave electric-field amplitude components

transmitted through the rear surface of the LiNbO3

t2e, r2e single pass, rear surface transmission and reflection
coefficients for an e-polarized pump

t1o, r1o, t2o, r2o o-polarized pump transmission and reflection coefficients
for the front and rear surfaces of the LiNbO3

h
zte

h
yte

h
xte EEE ,1,,1,,1, ,, homogeneous solutions to the wave equations for SHG

produced from an e-polarized pump wave
p

zte
p

yte
p

xte EEE ,1,,1,,1, ,, particular solutions to the wave equations for SHG

produced from an e-polarized pump wave

zteytexte EEE ,1,,1,,1, ,, general solutions to the wave equations for SHG

produced from an e-polarized pump wave; equal to the
sum of the homogeneous and particular solutions

zteytexte AAA ,1,,1,,1, ,, field amplitudes for the particular solutions to the wave

equations for an e-polarized pump wave
o

zte
o

yte
o

xte EEE ,1,,1,,1, ,, field amplitudes for the homogeneous solutions to the

wave equations for an e-polarized pump wave
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h
zto

h
yto

h
xto EEE ,1,,1,,1, ,, homogeneous solutions to the wave equations for SHG

produced from an o-polarized pump wave
p

zto
p

yto
p

xto EEE ,1,,1,,1, ,, particular solutions to the wave equations for SHG

produced from an o-polarized pump wave

ztoytoxto EEE ,1,,1,,1, ,, general solutions to the wave equations for SHG

produced from an o-polarized pump wave; equal to the
sum of the homogeneous and particular solutions

ztoytoxto AAA ,1,,1,,1, ,, field amplitudes for the particular solutions to the wave

equations for an o-polarized pump wave
o

zto
o

yto
o

xto EEE ,1,,1,,1, ,, field amplitudes for the homogeneous solutions to the

wave equations for an o-polarized pump wave
ηp,e, ηp,e, ηp,e, ηp,e heuristic correction factors for finite sized beams; e or o

correspond to e- or o-polarization while p or s
corresponds to pump or SHG

t1e,FR, r1e,FR full resonance, first surface transmission and reflection
coefficients for an e-polarized pump

t2e,FR, r2e,FR full resonance, rear surface transmission and reflection
coefficients for an e-polarized pump

FR
zte

FR
yte

FR
xte AAA ,1,,1,,1, ,, full resonance field amplitudes for the particular solutions

to the wave equations for an e-polarized pump wave
t1o,FR, r2o,FR full resonance, first surface transmission and second

surface reflection coefficients for an o-polarized pump
FR

zto
FR

yto
FR

xto AAA ,1,,1,,1, ,, full resonance field amplitudes for the particular solutions

to the wave equations for an o-polarized pump wave


