Swift Observation of GRB 070612B

D. Grupe (PSU), S. D. Barthelmy (GSFC), P. A. Evans (U Leicester), N. Gehrels (NASA/GSFC),
S. T. Holland (CRESST/GSFC/USRA), J. A. Kennea (PSU), W. B. Landsman (NASA/GSFC), C.
B. Markwardt (CRESST/GSFC/UMD), D. M. Palmer (LANL), J. L. Racusin (PSU), P. Romano (Univ. Bicocca & INAF-OAB) and M. C. Stroh (PSU) for the Swift Team

1 Introduction

BAT triggered on GRB 070612B at 06:21:17 UT (Trigger 282073) (Grupe, et al., GCN Circ. 6511). This burst is a long burst with an observed $T_{90} = 13.5 \pm 1$ s. Because of Earth constraint, Swift did not slew immediately to the burst. XRT began follow-up observations at T+3239 s, and UVOT at T+3256 s. Our best position of the afterglow is the XRT location $RA(J2000) = 261.7267 \ deg \ (17h26m54.4s)$, $Dec(J2000) = -08.7524 \ deg \ (-08d45'08.7'')$ with a 90% confidence statistical error of 4.7'' as given in Grupe & Evens (GCN Circ. 6514).

2 BAT Observation and Analysis

Using the data set from T - 240 s to T + 962s, further analysis of BAT GRB 070612B has been performed by the Swift team (Cummings, *et al.*, *GCN Circ.* 6523). The BAT ground-calculated position is RA(J2000) = 261.716deg (17h26m51.8s), Dec(J2000) = -8.474 deg (-08d44'48'') with an uncertainty of 1.1', (radius, systematic and statistical, 90% containment). The partial coding was 17%.

The masked-weighted light curves (Fig.1) shows a single roughly symmetrical peak starting at T - 5, and ending at T + 12s. $T_{90}(15 - 350 keV)$ is 13.5 ± 1 s (estimated error including systematics).

The time-averaged spectrum from T - 6.4s to T + 10.3s is best fitted by a single power law model. This fit gives a photon spectral index of $\Gamma = 1.55 \pm 0.11$, ($\chi^2 = 46.1$ for 57 d.o.f.). For this model the total fluence in the $15 - 150 \ keV$ band is $(1.7 \pm 0.1) \times 10^{-6} \ \text{ergs cm}^{-2}$ and the 1-s peak flux measured from T + 10.84s in the $15 - 150 \ keV$ band is 2.6 ± 0.4 photons cm⁻² s⁻¹. All the quoted errors are at the 90% confidence level.

3 XRT Observations and Analysis

The refined XRT position is $RA(J2000) = 261.7271 \ deg \ (17h26m54.49s), \ Dec(J2000) = -8.7517 \ deg \ (-08d45'06.3'') \ (4.0'' \ error \ circle \ ,90\% \ confidence)$ This position is 2.7'' away from the initial XRT position reported by Grupe & Evans *et al.*, *GCN Circ.* 6514.

The $0.3 - 10 \ keV$ light curve (Fig.2) shows a decaying source. While the afterglow is clearly detected in the first orbit, it is only marginally detected at a 2σ level during the second orbit. GRB 070612B was observed as a ToO starting at 2007 June 12 18:39 UT for 2.2ks. Only an upper limit at a level of 3.6×10^{-3} can be given. From the data of the first two orbits a decay slope of $\alpha = 3.3 \pm 0.3$ was calculated.

The X-ray spectrum can be fitted by an absorbed single power law with a photon spectral index $\Gamma = 1.7 \pm 0.8$ and an absorption column density fixed to the Galactic value of $N_{\rm H} = 1.68 \times 10^{21} {\rm ~cm^{-2}}$ (Dickey & Lockman 1990).

4 UVOT Observation and Analysis

The UVOT began observing the field of GRB 070612B 3256 s after the BAT trigger (Landsman & Grupe, *GCN Circ.* 6519). The afterglow was not detected in any of the UVOT observations inside the XRT error circle. The 3σ upper limits are listed in Table 1. These magnitudes are not corrected for Galactic extinction E(B-V) = 0.838 (Schlegel et al. 1998).

5 Other Observations

The field of GRB 070612B was observed by several ground-based observatories. However, none of them could detect the optical afterglow and only upper limits could be given. Li et al. *GCN Circ.* 6516 reported on observations with the 0.76 Katzman Automatic Imaging Telescope at Lick Observatory in V, I, and clear starting 44s after the BAT trigger. Cenko et al. *GCN Circ.* 6517 gave upper limits of 21.0 in i and 20.5 in z beginning 12 minutes after the burst using the Palomar 60cm telescope. Upper limits in R were reported by Jelinek et al. *GCN Circ.* 6518 using the FRAM telescope and Updike et al. *GCN Circ.* 6524 using the SARA 0.9m telescope at Kitt Peak.

Figure 1: BAT Light curve. The mask-weighted light curve in the 4 individual plus total energy bands. The units are counts s⁻¹ illuminated-detector⁻¹ and T_0 is 2007-June-12 06:21:17 UT.

Figure 2: XRT Lightcurve. Counts s⁻¹ in the 0.3-10 keV band: Windowed Timing mode is blue and Photon Counting mode is red. The approximate conversion is 1 count s⁻¹ = $\sim 1.63 \times 10^{-10} \ ergs \ s^{-1} cm^{-2}$ for an unabsorbed flux corrected for photon pileup.

Filter	T_{Start}	T_{Stop}	Exposure	Mag (3 σ UL)
Wh (FC)	3256	3356	98	>20.3
Wh	3256	9882	1201	>21.7
V	3238	11624	1113	>20.0
В	4180	5813	393	>20.4
U	3975	5608	393	>20.1
UVW1	3772	5404	393	>20.1
UVM2	3567	5199	393	>20.0
UVW2	4590	10888	1082	>20.9

Table 1: Magnitude from UVOT observations. The start, stop, and exposure times are given in s.