

NREL/DLR Trough Workshop - Denver

March 2007

Paul Nava, Ulf Herrmann

FLAGSOL GmbH

Trough Thermal Storage - Content

1. Storage incentive – Why storage

2. Trough thermal storage technology - how does it look for a commercial plant designer –

a. 2 Tank Molten salt storage

b. PCM (Phase Change Material) storage

MilenioSolar

Villennium u c

c. Cement storage

FLAGS

d. Thermocline

3. Final judgment

Thermal Storage Incentive (1)

- Solar at daylight, electricity demand also at dark night – Increasing the capacity factor of the plant
- 2. Shifting electricity production to peak demand

3. Fulfil firm capacity and dispatchability requirements

Thermal Storage Incentive (2)

On planet earth surface, solar energy is on daylight with changing intensity, but the demand has a different distribution over the time; hence an energy storage is required for shifting energy

- Electrical storage is not implementable due to cost reasons
- Thermal storages technologies are available which increase power plant utilization
- Economical justification:
 - For a flat rate energy payment tariff and no capacity limit there is no economical justification
 - Adding enough storage to a plant with maximum capacity will reduce the generation cost as long as the storage is cheaper than a second power island

Thermal Storage Incentive (3)

Shifting energy to peak demand necessitate a mean of storage

- Electrical storage is not implementable due to cost reasons
- Thermal storages technologies are available which can shift the electricity production to the desired demand
- Economical justification:
 - The higher electricity rates for the practical shift of energy should compensate for the additional storage costs

Thermal Storage Incentive (4)

Dispatchability upgrades solar energy to the utility desired power supply, necessitate a source of thermal energy storage

- Thermal storages technologies are available which can delay and shift the electricity production in accordance with dispatcher instructions
- Economical justification:
 - Higher dispatchable electrical capacity value should compensate for the additional storage costs
 - In the extreme case of a fully dispatchable power plant, the plant utilization rate might be reduced, requiring higher compensation (for the energy waste due to "storage full" cases)
 - With a small amount of fossil backup full firm capacity can be achieved

Two Tank Molten salt storage

Widely used in Process Industry

b)

a) Molten Salt system with an output of 14 MW at 430°C, England

Heat Transfer plants. All photographs by Bertrams Heatec Ltd.

- Molten Salt system with an output of 88 MW at 400°C,Bauxite digestion plant in Germany
- Molten Salt system with an output of 7.7 MW at 470°C,melamine plant in Germany

MilenioSolar

Andasol HTF and molten salt storage systems arrangement

Andasol storage - Technical parameter

- Type:
- Storage Fluid:
- Melting Point of Fluid:
- Storage Capacity:
- Storage Tank Size:
- Salt Mass:
- Flow Rate:
- Cold Tank Temperature:
- Hot Tank Temperature:

2-Tank Molten Salt Storage Nitrate salt mixture (60% NaNO₃ and 40% KNO₃) 223°C 1,010 MWh (~7.5 hrs full load operation) 14 m height 37 m diameter 27,500 tons 953 kg/s 292°C 386°C

> Solar Millennium LLC

MilenioSolar

Andasol storage - construction

Andasol storage - Economical justification

Simplified indication of thermal storage required costs

- Andasol, Spain power plants design incorporate about 1,000,000 kWh thermal storage for the 50MW power block
- Conventional steam turbine power island costs are at about \$1000 per kW
- The alternative to the thermal storage introduction would be about equivalent to the double of the power block
- Requiring an equivalent of below \$50 per kWh thermal storage

Specific Cost of Storage Concepts

Phase Change Material storage

- Originally attractive due to PCM high latent heat capacity
- Coat a tail wind from DSG (Direct Steam Generation) as DSG needs latent heat storage for evaporation
- \$20/kWht target price
- Re. cascading PCM's for sensible heat HTF; better wait for one PCM results, current molten salt storage almost reached cascaded PCM potential price

PCM storage design; approach

- Composite (tested in laboratory)
- Encapsulation (tested in laboratory)
- Sandwich (Test in 2007)
- Inter-media (under investigation by Weizmann Institut Research)

• The composite and encapsulated feasibility have been both proven in laboratory, the Sandwich test will assess its lower costs potential

Cement Storage

- Attractive due to its low costs potential
- Could serve both for oil as well as for DSG sensible heat portions (pre and super heating's)
- ~\$25/kWht target price
- Tube register design found to be the best
- Heat transfer enhancement is important:
 - Material: concrete with quartz aggregates
 - Fins and other structure not cost effective
- Modular storage, SH and PH sections for example, enhance utilization and reduces size (costs)
- Full scale storage test ITES 2007-8 (1MW for a 5MWe plant)

Thermocline storage

- Saving potential with storage filler
- ~\$20/kWht price potential

- Filler is essential
- No saving without filler (1 tank saving < +~1/4 nitrate salt dominant costs)
- Test filler material selection: quartzite and silica sand
- 2.3 MWh successful proof of concept test

Final judgment

- Storage converts "as available energy" to much more valuable "dispatchable energy"
 Storage will be required in the future
- Molten Salt: most promising, O&M will assess its costs and potential reduction
- Cement: Simple and therefore straightforward to evaluate but not proven up to now
- Thermocline: Clear potential with filler, needs
 full scale test
- PCM: potentially available for DSG (costs unclear), doubtful for sensible HTF

