
Evaluating Real-Time Java for Mission-Critical
Large-Scale Embedded Systems

David C. Sharp, Edward Pla, & Kenn R. Luecke
The Boeing Company, Saint Louis, Missouri, USA

{david.sharpedwardpla, kenn. r.luecke}@boeing. com

Abstract

Many of the benefits of Java, including its
portability, networking support, and simpliciv, are of
increasing importance to large-scale distributed real-
time embedded (DRE) systems, but have been
unavailable due to the lack of acceptable real-time
performance. Recent work establishing the Real-Time
Specification for Java (RTSJ) [I] has led to the
emergence of Real-Time Java Virtual Machines (RT
JVMs) that promise to bridge this gap. This paper
describes benchmarking results on an RT JVM This
paper extends previously published results [2] by
including additional tests, by being run on a recently
available pre-release version of the first commercially
supported R TSJ implementation, and by assessing results
based on our experience with avionics systems in other
languages.

1. Introduction

The Boeing Company is currently experimenting
with Real-time (RT) Java as part of the Air Force
Research Laboratory (AFRL) RT Java for Embedded
System (RTJES) program [11. This program investigates
the use of Java in hard and soft large-scale distributed
real-time embedded (DRE) avionic system applications.
The program has two primary objectives: benchmarking
RT Java implementations to assess their suitability for
this domain, and demonstrating the operational benefit of
RT Java features for network-centric applications. This
paper describes results of a portion of the network-
centric benchmarking effort on a pre-release version of
the commercial JTimeB RT JVM from TimeSys that
implements the RTSJ.

Ricardo J. Hassan I1
Jet Propulsion Laboratory,Pasadena, California, USA

ricardo. hassan@pl.nasa.gov

The RTSJ defines a set of classes which provide
capabilities supporting real-time operation in a Java
environment, including threading, scheduling, event
handling, synchronization, and memory management.
Specially constructed RT JVMs support the real-time
semantics defined in the class library specification.

Our benchmarking efforts focus on assessing the
performance and determinism of systems using these RT
JVM features via two sets of tests. The first set of tests
(which are discussed in this paper) assesses the
characteristics of individual RTSJ features. The second
set of tests (which are not discussed in this paper)
investigates performance within an environment that is
representative of an actual avionics application, based on
our experience with reusable component-based avionics
systems on the Boeing Bold Stroke initiative [3]. We
plan to publish these latter test results when complete.

The remainder of this paper is organized as follows.
Section 2 describes the experimental system
configuration. Section 3 describes the low-level RTSJ
benchmarking results. Concluding remarks and
acknowledgements follow in Sections 4 and 5 ,
respectively.

2. Experimentation System

This section describes the configuration of both the
hardware and software test platform.

2.1. Hardware System

A Dell GX 150 computer was used for Java
benchmark development and execution. This computer
has a 1.2 Gigahertz Pentium 4 single processor. It has a
12 GB hard drive, 256 MB of RAM, 256 KB of cache
memory, and 900 MB of swap memory.

\.

[I] This work was sponsored by the Air Force Research Laboratory,
Wright-Patterson Air Force Base, Information Directorate, under
contract F33615-97-D-1155-0008.

mailto:hassan@pl.nasa.gov

2.2. Software System 3.1. Throughput

As of this writing, the only known commercial
implementation of the RTSJ is fiom TimeSys, for which
we received a pre-release version. Prior to availability of
this product, we developed tests and measured results on
the openly available Reference Implementation (RI), also
from TimeSys. The RI was designed to investigate and
demonstrate the semantics of the RTSJ, not for
production-quality run-time performance. Prior RI
benchmarking confirmed this [2], but these results are
not included here due to space constraints.

The test platform was configured with Red Hat
Linux version 7.2, with real-time support provided by
TimeSys LinudNET for X86 UNI platform operating
system extensions, version 3.1.214c, and TimeSys RT
JVM version 3.5.3.

The JVM was executed with a memory allocation
pool of 50 MB (-XmsSOM). The immortal memory size
was set to 80 MB (IMMORTAL~SIZE=8OOOOOOO).

The tests were developed with the Jakarta Ant
version 1.4.1 build tool with javac from the Java
Development Kit (JDK) version 1.2.2. This javac
version was selected due to version compatibility issues
in libraries used in the avionics application test set. No
just in time or ahead of time compilation was performed
for these tests.

3. RTSJ Testing

These tests focus on assessing the performance of
specific RTSJ capabilities. These tests are being added to
the RTJPerf open source RT JVM benchmarking suite
established by Angelo Corsaro at the University of
Califomia, Irvine (UCI) [4] and Washington University
in St. Louis. Taken together, tests were created to assess
determinism, latency, and throughput associated with
threads, scheduling, memory management,
synchronization, time, timers, asynchrony, exceptions,
and class loader and dynamic linking. Only the tests
deemed of most importance are included here due to
space constraints.

For each test, a description of the test is included,
along with success criteria, and experimental results and
analysis. The success criteria are based on requirements
and experiences with avionic mission computing
systems. While these criteria are intentionally domain
specific, they do capture expectations for an important
category of embedded systems. In all cases, the raw
measured values are provided for comparison against
criteria in other domains.

The RTSJ introduces two new types of threads as
shown in Figure 1 : RT threads and No Heap RT (NHRT)
threads. RT threads support, at a minimum, basic real-
time preemptive scheduling. No Heap RT threads add the
guarantee that execution will be independent of garbage
collection but with the additional restriction that heap-
based memory not be used. This section outlines tests
assessing the throughput of these different thread types in
varying execution environments.

- .-__
l a v a .la n g . T h r e a d I

I

Figure 1. Thread Inheritance in RT Java

3.1.1 Thread Throughput

Description: Record the execution time of a
computationally intensive algorithm, representative of
avionics mission computing processing, when run in
different thread types: NoHeapRealtimeThread (NHRT),
RealtimeThread (RT), and java.1ang.Thread. All three
thread types will be processing in a 20 Hz frame. In the
thread's r u n () method, log timestamps before and after
the algorithm executes. This computationally intensive
algorithm is a flight controls algorithm that is CPU
intensive and reads data from two different input files.
The flight controls algorithm performs all of its memory
allocation and reference storage upon initiation. The
NoHeapRealtimeThreads were executed using Immortal
memory which has no garbage collection while the
RealtimeThreads were executed from heap memory.

Success Criteria: Throughput in different threads
shall not vary by more than 1 %

Results: The throughput for NHRT, RT, and normal
java threads on the selected algorithm was comparable.
The largest percentage time difference between the three
thread types was 0.643% for the NHRT and RT threads.
See Table 1 for more throughput comparisons between
NHRT, RT, and normal threads.

Table I. Algorithm Execution Times Within
Different Thread Types (mi I I isecon ds)

Avg
Max
Min

3.5201 3.5087 3.5174 0.324%
3.5372 3.5601 3.5439 0.643%
3.5109 3.4977 3.5076 0.376%

3.1.2 Thread Throughput With Contending
Background Threads

Avg I 50.0

Description: Record the execution time of the same
mission computing algorithm, when run with different
scheduling parameters and competing threads. The
algorithm is CPU intensive and executes in a
NoHeapRealtimeThread with a priority of 260. Measure
how the same functionality scheduled with varying
numbers of lower priority threads behaves. The
contending threads execute in Realtimenreads with
lower priorities. The lower priority threads log
timestamps and invoke yield () methods. All threads
are periodic, executing at a 20 Hz frame rate.

Success Criteria: Difference between the tests with
no background threads and the tests with 15 background
threads shall be less than 5%.

The first case schedules only the thread
being analyzed, while the second case schedules the
thread to be analyzed along with 15 background threads.
The difference between the maximum, minimum, and
average data points were all below 1%. This meets our
success criteria. See Table 2 for detailed metrics.

Result: 50.0

Table 2. Algorithm Execution Times with
Contending Background Threads (milliseconds)

Max
Min

Difference

0 Other 15 Other
Threads
3.5253 3.5290 0.1039%

Max 3.5395 3.5669 0.7673%
Min 3.5218 3.5244 0.0756%

~

50.0048 50.0241
49.9954 49.9794
0.0094 0.0447

Jitter I 0.0177 I 0.0424 I I

3.2. Determinism

The RTSJ provides direct support for initiating
functionality that needs to be run at periodic intervals
either via thread scheduling or via events driven by
timers. This section outlines tests investigating timing

jitter associated with initiating and completing periodic
activities.

3.2.1 Periodic Start of Frame Determinism

Description: Using the Periodic Parameters
class, establish a periodic thread. Immediately after the
waitForNextPeriod () call, log a timestamp and
calculate the time between invocations. Two tests were
conducted. The first test was executed with only a single
20 Hz NoHeapRealtimeThread being analyzed, while the
second test was executed with the 20 Hz
NoHeapRealtimeThread thread being analyzed while
another fifteen lower priority RealtimeThread threads
were executing at a 20 Hz frame rate. The lower priority
threads log timestamps and invoke yield () methods.
All threads are periodic, executing at a 20 Hz frame rate.

Success Criteria: Jitter shall be within 1% of the
period. With a representative avionics processing rate of
20 Hz, the maximum allowable jitter is 0.5 milliseconds.

Results: The maximum jitter in both tests easily
surpassed the success criteria of 0.5 milliseconds. See
Table 3 for details.

Table 3.20 Hz Frame Execution Times Measured
at Frame Start Up (milliseconds)

3.2.2 Periodic End of Frame Determinism

Description: Using the Periodicparameters class, set
up a periodic NoHeapRealtimeThread thread.
Immediately after the waitForNextPeriod () call,
execute an algorithm of significant duration but not
longer than the period. After the algorithm completes,
log a timestamp and calculate the difference between
successive timestamps. Repeat with and without
competing lower priority RealtimeThread threads as for
the previous test. The lower priority threads log
timestamps and invoke yield () methods. All threads
are periodic, executing at a 20 Hz frame rate.

Success Criteria: Completion time differences shall
be under 0.5 milliseconds. This represents 1% of a 20 Hz
frame.

Results: The maximum jitter for 0 and 15 competing
threads was 0.0282 milliseconds and 0.1441
milliseconds, respectively, which easily met the success
criteria. See Table 4 for specific measurement results.

Table 4. Frame Execution Times Measured at
Frame Completion (milliseconds)

0 Other Threads 15 Other Threads
50.0000 50.0000
50.0153 50.0688
49.9870 49.9247

Difference 0.0282 0.1441

50.0000 I
50.0000

50.0667 I
50.0087

49.9337 I
49.9920
0.1330 I
0.0167

Avg

Max

Min

Delta

3.2.3 Periodic Event Determinism

I

50.0000 I
50.0000

50.0908 I
50.0954

49.9386 I
49.9024
0.15221
0.1930 Description: Measure the jitter in PeriodicTimer

driven AsyncEvents. Immediately inside the
handleAsyncEvent method, log a timestamp and
calculate the time between invocations. The first test was
executed with only a single 20 Hz
NoHeapRealtimeThread being analyzed, while the
second test was executed with the 20 Hz
NoHeapRealtimeThread thread being analyzed while
another fifteen lower priority RealtimeThread threads
were executing at a 20 Hz processing rate also.

Success Criteria: Periodic event timing differences
shall be under 0.5 milliseconds, 1% of a 20 Hz (50
millisecond) frame.

Results: The first case was run with the
AsyncEventHandler analyzing a single thread while the
second case was executed with the AsyncEventHandler
analyzing a single thread with fifteen background
threads. The third case was run with the
BoundAsyncEventHandler analyzing one thread while
the fourth case was executed with the
BoundAsyncEventHandler analyzing a single thread with
fifteen background threads. In all cases, the jitter met the
success criteria. See Table 5 for more completion time
comparisons with and without competing threads.

3.3. Latency

This section details tests assessing delays associated
with context switching, synchronization, and event
delivery. The RTSJ supports event-based programming
for two types of event handlers: bound and unbound. A
bound event handler creates one thread that is
permanently bound to the handler and remains active for
all event fires. An unbound event handler creates a new
thread with each event fire.

Table 5.20 Hz Frame Execution Times Measured
at the Event Fire (milliseconds)

1 0 Other Threads 15 Other Threads I Ungboouunndd/ 1 Unbound/
Bound

3.3.1 Context Switch Latency

Description: Initiate a high priority thread and a
lower priority thread. Both threads will be executing at a
20 Hz frame rate. In the higher priority thread, log a
timestamp before the yield () in the run method. In
the lower priority thread, log a timestamp after the
y i e l d () in the run method. Then compute the latency
between the higher priority thread’s timestamp and the
lower priority thread’s timestamp.

Success Criteria: Context switch latency shall be
less than 10 microseconds.

Results: See Figure 2 for a graph of the context
switch latency data samples. The results show a median
of approximately 2.1 microseconds. Some of the samples
spike to 2.3-2.8 microseconds, probably indicating that
some processing in addition to the context switch is
being run following the y i e l d () call. Even with this,
however, the maximum time to switch between threads
was roughly 2.8 microseconds, which is better than the
10 microsecond success criteria.

3

6 2 7

i24

-
c
0

5 *E 2 1 -
F i E a

1 5
1000 1999 2998 399;

Samdes

Figure 2. Context Switch Latency

3.3.2 Priority Inheritance Latency

Avg

Description: This test measures a relatively simple
three thread case of priority inheritance. The low priority
thread (LPT) starts and enters a synchronized method.
While in that method, the medium priority thread (MPT)
starts and preempts the LPT. While the MPT runs, a
high priority thread (HPT) preempts the MPT and
attempts to enter the same synchronized method the LPT
presently has a lock on. According to priority
inheritance, the LPT should get boosted up to the priority
of the HPT so it can finish with the synchronized
method, thus allowing the HPT to run as soon as
possible. Log timestamps before and after the calls to the
synchronized method. Also log timestamps at the first
and last instructions inside the synchronized method.
These timestamps are used to measure the boost,
unboost, and total priority inheritance latency times.
Each thread will execute at a 20 Hz frame rate.

Success Criteria: Priority latency shall be under 50
microseconds for boosting and unboosting priorities
combined.

Results: For both cases the maximum latency was
roughly 9.0 microseconds, thus the test passed the 50
microsecond success criteria. See Table 6 for more
priority inheritance boost, unboost, and total latencies.

Table 6. Priority Inheritance Latency
(microseconds)

Synchronized Synchronized Difference
1.3351 3.2385 1.9034

Max
Min

3.3.3 Synchronization Latency

1.7257 3.6962 1.9705
1.3153 3.1975 1.8822

Description: Record the time elapsed to enter a
synchronized method versus a non-synchronized method.
Log timestamps prior to the method call and once inside
the synchronized and non-synchronized methods. Each
thread will execute at a 20 Hz frame rate.

Success Criteria: Synchronization latency shall be
under 5 microseconds of overhead (difference between
synchronized and non-synchronized).

Results: The test was executed for the synchronized
and normal method latency cases. For each case the
latency differences were less than 2 microseconds, thus
this test passes the 5 microsecond threshold. See Table 7
for more synchronized and non-synchronized latencies.

Avg
Max
Min

Delta

Latency
Boost Unboost (Boost + Unboost)
5.1372 2.7735 7.9107
6.2626 3.1574 8.9635
4.4778 2.6517 7.1566
1.7849 0.5057 1.8070

Max I 27.649 27.241

3.3.4 Event Latency

Min
Delta

Description: Measure the latency from the firing of
an AsyncEvent to the time it is handled. Log timestamps
prior to the fire and once the event is handled. Each
thread will execute at a 20 Hz frame rate.

Success Criteria: Event latency shall be under 100
microseconds.

Results: BoundAsyncEventHandler was used for the
first case and AsyncEventHandler was used for the
second. Both the BoundAsyncEventHandler and
AsyncEventHandler were acceptable for our needs since
all cases met the success criteria. Table 8 compares the
BoundAsyncEventHandler and AsyncEventHandler
latencies. Analysis of the data indicates that a relatively
few measurement spikes were observed as in Section
3.3.1.

Table 8. Event Latency (microseconds)
b .

14.355 14.339
13.294 12.902

IBoundAsyncEventHandled AsyncEventHandler I
b

3.4. Memory Management

The RTSJ defines a range of different memory types
to address real-time aspects of memory management and
garbage collection. This section details tests with
allocation throughput, entry, and exit performance for the
Heap, Immortal, Linear Time (LT) Memory, and
Variable Time (VT) memory areas. The Allocation Time
and Throughput Time tests were created by the Jet
Propulsion Laboratory. See Figure 3 for a diagram of
MemoryArea inheritance relationships in the RTSJ. In
Figure 3, the Memory Area classes that are colored
represent the classes with test results included herein.

I I I

Figure 3. Memory Area Class Inheritance

3.4.1 Allocation Time vs Memory Area

Description: Measure the time required to allocate
the same sized objects in different memory areas. Place
time stamps before and after the memory allocation code.
Then calculate the difference between before and after
times for memory allocation. Perform this test for
various object sizes from 4 to 16,384 bytes. Each thread
executes at a 20 Hz periodic frame rate.

Success Criteria: Average allocation time less than 2
microsecondstbyte shall be acceptable.

Results: The average time to create 64 byte objects
took less than 16 microseconds for all memory areas,
meeting the success criteria. The times for immortal,
linear time, and variable time memory areas were nearly
identical for this test. See Figure 4 for per-byte allocation
times in the different memory areas.

I Samples (1=4bytes, 2=8bytes, 3=64bytes, 4=512bytes,
5=4096bytes, 611 6384byles)

Figure 4. Maximum Memory Allocation Time per
Byte for multiple byte objects

3.4.2 Throughput vs Memory Area

Description: Measure the time needed to execute a
division, trigonometric, and no operation in each memory
area. The division operation is a ‘divide by 2’ while the
trigonometric operation takes the ‘log of 5 ’ . Place time

stamps before and after the call to each operation. Each
thread will execute at a 20 Hz frame rate.

Type (l=Heap , 2=lmmortal ,
3=LT Memory, 4=VT Memory

Figure 5. Operation Execution vs Memory Area

Success Criteria: The throughput values shall be
within 5% across all memory types.

Table 9. Operation vs Memory Area

I Min I Max I %Delta I
Float
Trig 1.0400 1.0667 2.5%

0.9%
Result: As tabulated in Table 9, the percent variation of
operation execution across all memory areas was less
than 4% thus meeting our success criteria.

3.4.3 Memory Area Entry/Exit

Description: Log timestamps before entering a
MemoryArea and immediately upon entering. Also
record timestamps prior to leaving the scope and
immediately after leaving the scope. Each thread will
execute at a 20 Hz frame rate.

Success Criteria: Average memory area entry time
shall be 100 microseconds or less. Average memory area
exit time shall be 100 microseconds or less.

Results: The average memory entry and exit times
were under 20 microseconds for all measured memory
types. Therefore this test passed the success criteria.
The exit times for LT Memory and VT Memory was
substantially more than for other memory areas because
the garbage collector is executed on these memory areas
when their scope is freed. See Figure 6 for a graph
mapping the time to enter and exit the various
MemoryAreas.

1 2 3 4
Type (l=Heap, 2=lmmortal ,
3=LT Memory, 4=VT Memory)

Figure 6. Average Memory Area EntrylExit Times

4. Concluding Remarks

The experimental results in this paper indicate that
emerging RTSJ implementations are capable of
providing real-time characteristics with sufficient
performance to meet key avionics system requirements.

There are still some areas that motivate further
investigation. These areas include relative throughput to
C++ or other languages, performance of memory
management including garbage collection, and continued
investigation into timing spikes as noted in the results.
Our early results, however, indicate that the principal
prerequisite real-time characteristics for mission-critical
avionics systems are emerging in commercial
implementations and hold promise in meeting the vision
of bringing Java to large-scale DRE systems.

A second set of tests (which are not discussed in this
paper) investigates performance within an environment
that is representative of an actual avionics application,
based on our experience with reusable component-based
avionics systems on the Boeing Bold Stroke initiative.
This paper wiii -TprovideS insight into a comparison
between avionics mission computing applications that
have been written in both RT Java and C++ that are
based on a Bold Stroke application. We plan to publish
these latter test results when complete.

5. Acknowledgements

This benchmarking effort has been a highly
collaborative effort, with many contributors. We thank
the US Air Force Research Laboratory Information
Directorate, Wright-Patterson Air Force Base, for
guiding and sponsoring this work. James M. Umes-Jr.
from Boeing created our initial set of RTSJ level tests.
This paper benefited substantially from review and result
interpretation insights provided by Peter Dibble at

TimeSys. Ron Cytron and Ravi Pratap at Washington
University in St. Louis contributed to this work,
especially in the context of their aspect oriented event
service named FACET, with ongoing integration results
planned for future publication [5] .

[I] G. Bollella, B. Brosgol, P. Dibble, S . Fun; J. Gosling, D.
Hardin, and M. Turnbull, R. Belliardi, “The Real-Time
Specification for Java”. Addison-Wesley, 2000.
[2] A. Corsaro, D.C. Schmidt, “Evaluating Real-Time Features
and Performance for Real-time Embedded Systems”,
Proceedings of the 8” IEEE Real-time Technology and
Applications Symposium, September 2002..
[3] D.C. Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development”, Sofiarre
Technology Conference, May 1998.
[4] A. Corsaro, D.C. Schmidt, “Evaluating Real-Time Features
and Performance for Real-time Embedded Systems”,
Proceedings of the 8& IEEE Real-time Technology and
Applications Symposium, September 2002.
[5] F. Hunleth, R. Cytron, and C. Gill, “Building Customizable
Middleware using Aspect Oriented Programming”, OOPSLA
2001 Advanced Separation Of Concems Workshop, Oct. 2001.

