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Abstract 

Many of the benefits of Java, including its 
portability, networking support, and simpliciv, are of 
increasing importance to large-scale distributed real- 
time embedded (DRE) systems, but have been 
unavailable due to the lack of acceptable real-time 
performance. Recent work establishing the Real-Time 
Specification for Java (RTSJ) [ I ]  has led to the 
emergence of Real-Time Java Virtual Machines (RT 
JVMs) that promise to bridge this gap. This paper 
describes benchmarking results on an RT JVM This 
paper extends previously published results [2] by 
including additional tests, by being run on a recently 
available pre-release version of the first commercially 
supported R TSJ implementation, and by assessing results 
based on our experience with avionics systems in other 
languages. 

1. Introduction 

The Boeing Company is currently experimenting 
with Real-time (RT) Java as part of the Air Force 
Research Laboratory (AFRL) RT Java for Embedded 
System (RTJES) program [ 11. This program investigates 
the use of Java in hard and soft large-scale distributed 
real-time embedded (DRE) avionic system applications. 
The program has two primary objectives: benchmarking 
RT Java implementations to assess their suitability for 
this domain, and demonstrating the operational benefit of 
RT Java features for network-centric applications. This 
paper describes results of a portion of the network- 
centric benchmarking effort on a pre-release version of 
the commercial JTimeB RT JVM from TimeSys that 
implements the RTSJ. 
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The RTSJ defines a set of classes which provide 
capabilities supporting real-time operation in a Java 
environment, including threading, scheduling, event 
handling, synchronization, and memory management. 
Specially constructed RT JVMs support the real-time 
semantics defined in the class library specification. 

Our benchmarking efforts focus on assessing the 
performance and determinism of systems using these RT 
JVM features via two sets of tests. The first set of tests 
(which are discussed in this paper) assesses the 
characteristics of individual RTSJ features. The second 
set of tests (which are not discussed in this paper) 
investigates performance within an environment that is 
representative of an actual avionics application, based on 
our experience with reusable component-based avionics 
systems on the Boeing Bold Stroke initiative [3]. We 
plan to publish these latter test results when complete. 

The remainder of this paper is organized as follows. 
Section 2 describes the experimental system 
configuration. Section 3 describes the low-level RTSJ 
benchmarking results. Concluding remarks and 
acknowledgements follow in Sections 4 and 5 ,  
respectively. 

2. Experimentation System 

This section describes the configuration of both the 
hardware and software test platform. 

2.1. Hardware System 

A Dell GX 150 computer was used for Java 
benchmark development and execution. This computer 
has a 1.2 Gigahertz Pentium 4 single processor. It has a 
12 GB hard drive, 256 MB of RAM, 256 KB of cache 
memory, and 900 MB of swap memory. 

\. 
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2.2. Software System 3.1. Throughput 

As of this writing, the only known commercial 
implementation of the RTSJ is fiom TimeSys, for which 
we received a pre-release version. Prior to availability of 
this product, we developed tests and measured results on 
the openly available Reference Implementation (RI), also 
from TimeSys. The RI was designed to investigate and 
demonstrate the semantics of the RTSJ, not for 
production-quality run-time performance. Prior RI 
benchmarking confirmed this [2], but these results are 
not included here due to space constraints. 

The test platform was configured with Red Hat 
Linux version 7.2, with real-time support provided by 
TimeSys LinudNET for X86 UNI platform operating 
system extensions, version 3.1.214c, and TimeSys RT 
JVM version 3.5.3. 

The JVM was executed with a memory allocation 
pool of 50 MB (-XmsSOM). The immortal memory size 
was set to 80 MB (IMMORTAL~SIZE=8OOOOOOO). 

The tests were developed with the Jakarta Ant 
version 1.4.1 build tool with javac from the Java 
Development Kit (JDK) version 1.2.2. This javac 
version was selected due to version compatibility issues 
in libraries used in the avionics application test set. No 
just in time or ahead of time compilation was performed 
for these tests. 

3. RTSJ Testing 

These tests focus on assessing the performance of 
specific RTSJ capabilities. These tests are being added to 
the RTJPerf open source RT JVM benchmarking suite 
established by Angelo Corsaro at the University of 
Califomia, Irvine (UCI) [4] and Washington University 
in St. Louis. Taken together, tests were created to assess 
determinism, latency, and throughput associated with 
threads, scheduling, memory management, 
synchronization, time, timers, asynchrony, exceptions, 
and class loader and dynamic linking. Only the tests 
deemed of most importance are included here due to 
space constraints. 

For each test, a description of the test is included, 
along with success criteria, and experimental results and 
analysis. The success criteria are based on requirements 
and experiences with avionic mission computing 
systems. While these criteria are intentionally domain 
specific, they do capture expectations for an important 
category of embedded systems. In all cases, the raw 
measured values are provided for comparison against 
criteria in other domains. 

The RTSJ introduces two new types of threads as 
shown in Figure 1 : RT threads and No Heap RT (NHRT) 
threads. RT threads support, at a minimum, basic real- 
time preemptive scheduling. No Heap RT threads add the 
guarantee that execution will be independent of garbage 
collection but with the additional restriction that heap- 
based memory not be used. This section outlines tests 
assessing the throughput of these different thread types in 
varying execution environments. 
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Figure 1. Thread Inheritance in RT Java 

3.1.1 Thread Throughput 

Description: Record the execution time of a 
computationally intensive algorithm, representative of 
avionics mission computing processing, when run in 
different thread types: NoHeapRealtimeThread (NHRT), 
RealtimeThread (RT), and java.1ang.Thread. All three 
thread types will be processing in a 20 Hz frame. In the 
thread's r u n  ( ) method, log timestamps before and after 
the algorithm executes. This computationally intensive 
algorithm is a flight controls algorithm that is CPU 
intensive and reads data from two different input files. 
The flight controls algorithm performs all of its memory 
allocation and reference storage upon initiation. The 
NoHeapRealtimeThreads were executed using Immortal 
memory which has no garbage collection while the 
RealtimeThreads were executed from heap memory. 

Success Criteria: Throughput in different threads 
shall not vary by more than 1 % 

Results: The throughput for NHRT, RT, and normal 
java threads on the selected algorithm was comparable. 
The largest percentage time difference between the three 
thread types was 0.643% for the NHRT and RT threads. 
See Table 1 for more throughput comparisons between 
NHRT, RT, and normal threads. 



Table I. Algorithm Execution Times Within 
Different Thread Types (mi I I isecon ds) 

Avg 
Max 
Min 

3.5201 3.5087 3.5174 0.324% 
3.5372 3.5601 3.5439 0.643% 
3.5109 3.4977 3.5076 0.376% 

3.1.2 Thread Throughput With Contending 
Background Threads 

Avg I 50.0 

Description: Record the execution time of the same 
mission computing algorithm, when run with different 
scheduling parameters and competing threads. The 
algorithm is CPU intensive and executes in a 
NoHeapRealtimeThread with a priority of 260. Measure 
how the same functionality scheduled with varying 
numbers of lower priority threads behaves. The 
contending threads execute in Realtimenreads with 
lower priorities. The lower priority threads log 
timestamps and invoke yield ( ) methods. All threads 
are periodic, executing at a 20 Hz frame rate. 

Success Criteria: Difference between the tests with 
no background threads and the tests with 15 background 
threads shall be less than 5%. 

The first case schedules only the thread 
being analyzed, while the second case schedules the 
thread to be analyzed along with 15 background threads. 
The difference between the maximum, minimum, and 
average data points were all below 1%. This meets our 
success criteria. See Table 2 for detailed metrics. 

Result: 50.0 

Table 2. Algorithm Execution Times with 
Contending Background Threads (milliseconds) 

Max 
Min 

Difference 

0 Other 15 Other 
Threads 
3.5253 3.5290 0.1039% 

Max 3.5395 3.5669 0.7673% 
Min 3.5218 3.5244 0.0756% 

~ 

50.0048 50.0241 
49.9954 49.9794 
0.0094 0.0447 

Jitter I 0.0177 I 0.0424 I I 

3.2. Determinism 

The RTSJ provides direct support for initiating 
functionality that needs to be run at periodic intervals 
either via thread scheduling or via events driven by 
timers. This section outlines tests investigating timing 

jitter associated with initiating and completing periodic 
activities. 

3.2.1 Periodic Start of Frame Determinism 

Description: Using the Periodic Parameters 
class, establish a periodic thread. Immediately after the 
waitForNextPeriod ( )  call, log a timestamp and 
calculate the time between invocations. Two tests were 
conducted. The first test was executed with only a single 
20 Hz NoHeapRealtimeThread being analyzed, while the 
second test was executed with the 20 Hz 
NoHeapRealtimeThread thread being analyzed while 
another fifteen lower priority RealtimeThread threads 
were executing at a 20 Hz frame rate. The lower priority 
threads log timestamps and invoke yield ( ) methods. 
All threads are periodic, executing at a 20 Hz frame rate. 

Success Criteria: Jitter shall be within 1% of the 
period. With a representative avionics processing rate of 
20 Hz, the maximum allowable jitter is 0.5 milliseconds. 

Results: The maximum jitter in both tests easily 
surpassed the success criteria of 0.5 milliseconds. See 
Table 3 for details. 

Table 3.20 Hz Frame Execution Times Measured 
at Frame Start Up (milliseconds) 

3.2.2 Periodic End of Frame Determinism 

Description: Using the Periodicparameters class, set 
up a periodic NoHeapRealtimeThread thread. 
Immediately after the waitForNextPeriod ( )  call, 
execute an algorithm of significant duration but not 
longer than the period. After the algorithm completes, 
log a timestamp and calculate the difference between 
successive timestamps. Repeat with and without 
competing lower priority RealtimeThread threads as for 
the previous test. The lower priority threads log 
timestamps and invoke yield ( ) methods. All threads 
are periodic, executing at a 20 Hz frame rate. 

Success Criteria: Completion time differences shall 
be under 0.5 milliseconds. This represents 1% of a 20 Hz 
frame. 

Results: The maximum jitter for 0 and 15 competing 
threads was 0.0282 milliseconds and 0.1441 
milliseconds, respectively, which easily met the success 
criteria. See Table 4 for specific measurement results. 



Table 4. Frame Execution Times Measured at 
Frame Completion (milliseconds) 

0 Other Threads 15 Other Threads 
50.0000 50.0000 
50.0153 50.0688 
49.9870 49.9247 

Difference 0.0282 0.1441 

50.0000 I 
50.0000 

50.0667 I 
50.0087 

49.9337 I 
49.9920 
0.1330 I 
0.0167 

Avg 

Max 

Min 

Delta 

3.2.3 Periodic Event Determinism 

I 

50.0000 I 
50.0000 

50.0908 I 
50.0954 

49.9386 I 
49.9024 
0.15221 
0.1930 Description: Measure the jitter in PeriodicTimer 

driven AsyncEvents. Immediately inside the 
handleAsyncEvent method, log a timestamp and 
calculate the time between invocations. The first test was 
executed with only a single 20 Hz 
NoHeapRealtimeThread being analyzed, while the 
second test was executed with the 20 Hz 
NoHeapRealtimeThread thread being analyzed while 
another fifteen lower priority RealtimeThread threads 
were executing at a 20 Hz processing rate also. 

Success Criteria: Periodic event timing differences 
shall be under 0.5 milliseconds, 1% of a 20 Hz (50 
millisecond) frame. 

Results: The first case was run with the 
AsyncEventHandler analyzing a single thread while the 
second case was executed with the AsyncEventHandler 
analyzing a single thread with fifteen background 
threads. The third case was run with the 
BoundAsyncEventHandler analyzing one thread while 
the fourth case was executed with the 
BoundAsyncEventHandler analyzing a single thread with 
fifteen background threads. In all cases, the jitter met the 
success criteria. See Table 5 for more completion time 
comparisons with and without competing threads. 

3.3. Latency 

This section details tests assessing delays associated 
with context switching, synchronization, and event 
delivery. The RTSJ supports event-based programming 
for two types of event handlers: bound and unbound. A 
bound event handler creates one thread that is 
permanently bound to the handler and remains active for 
all event fires. An unbound event handler creates a new 
thread with each event fire. 

Table 5.20 Hz Frame Execution Times Measured 
at the Event Fire (milliseconds) 

1 0 Other Threads 15 Other Threads I Ungboouunndd/ 1 Unbound/ 
Bound 

3.3.1 Context Switch Latency 

Description: Initiate a high priority thread and a 
lower priority thread. Both threads will be executing at a 
20 Hz frame rate. In the higher priority thread, log a 
timestamp before the yield ( )  in the run method. In 
the lower priority thread, log a timestamp after the 
y i e l d  ( ) in the run method. Then compute the latency 
between the higher priority thread’s timestamp and the 
lower priority thread’s timestamp. 

Success Criteria: Context switch latency shall be 
less than 10 microseconds. 

Results: See Figure 2 for a graph of the context 
switch latency data samples. The results show a median 
of approximately 2.1 microseconds. Some of the samples 
spike to 2.3-2.8 microseconds, probably indicating that 
some processing in addition to the context switch is 
being run following the y i e l d  ( )  call. Even with this, 
however, the maximum time to switch between threads 
was roughly 2.8 microseconds, which is better than the 
10 microsecond success criteria. 
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Figure 2. Context Switch Latency 



3.3.2 Priority Inheritance Latency 

Avg 

Description: This test measures a relatively simple 
three thread case of priority inheritance. The low priority 
thread (LPT) starts and enters a synchronized method. 
While in that method, the medium priority thread (MPT) 
starts and preempts the LPT. While the MPT runs, a 
high priority thread (HPT) preempts the MPT and 
attempts to enter the same synchronized method the LPT 
presently has a lock on. According to priority 
inheritance, the LPT should get boosted up to the priority 
of the HPT so it can finish with the synchronized 
method, thus allowing the HPT to run as soon as 
possible. Log timestamps before and after the calls to the 
synchronized method. Also log timestamps at the first 
and last instructions inside the synchronized method. 
These timestamps are used to measure the boost, 
unboost, and total priority inheritance latency times. 
Each thread will execute at a 20 Hz frame rate. 

Success Criteria: Priority latency shall be under 50 
microseconds for boosting and unboosting priorities 
combined. 

Results: For both cases the maximum latency was 
roughly 9.0 microseconds, thus the test passed the 50 
microsecond success criteria. See Table 6 for more 
priority inheritance boost, unboost, and total latencies. 

Table 6. Priority Inheritance Latency 
(microseconds) 

Synchronized Synchronized Difference 
1.3351 3.2385 1.9034 

Max 
Min 

3.3.3 Synchronization Latency 

1.7257 3.6962 1.9705 
1.3153 3.1975 1.8822 

Description: Record the time elapsed to enter a 
synchronized method versus a non-synchronized method. 
Log timestamps prior to the method call and once inside 
the synchronized and non-synchronized methods. Each 
thread will execute at a 20 Hz frame rate. 

Success Criteria: Synchronization latency shall be 
under 5 microseconds of overhead (difference between 
synchronized and non-synchronized). 

Results: The test was executed for the synchronized 
and normal method latency cases. For each case the 
latency differences were less than 2 microseconds, thus 
this test passes the 5 microsecond threshold. See Table 7 
for more synchronized and non-synchronized latencies. 

Avg 
Max 
Min 

Delta 

Latency 
Boost Unboost (Boost + Unboost) 
5.1372 2.7735 7.9107 
6.2626 3.1574 8.9635 
4.4778 2.6517 7.1566 
1.7849 0.5057 1.8070 

Max I 27.649 27.241 

3.3.4 Event Latency 

Min 
Delta 

Description: Measure the latency from the firing of 
an AsyncEvent to the time it is handled. Log timestamps 
prior to the fire and once the event is handled. Each 
thread will execute at a 20 Hz frame rate. 

Success Criteria: Event latency shall be under 100 
microseconds. 

Results: BoundAsyncEventHandler was used for the 
first case and AsyncEventHandler was used for the 
second. Both the BoundAsyncEventHandler and 
AsyncEventHandler were acceptable for our needs since 
all cases met the success criteria. Table 8 compares the 
BoundAsyncEventHandler and AsyncEventHandler 
latencies. Analysis of the data indicates that a relatively 
few measurement spikes were observed as in Section 
3.3.1. 

Table 8. Event Latency (microseconds) 
b . 

14.355 14.339 
13.294 12.902 

IBoundAsyncEventHandled AsyncEventHandler I 
b 

3.4. Memory Management 

The RTSJ defines a range of different memory types 
to address real-time aspects of memory management and 
garbage collection. This section details tests with 
allocation throughput, entry, and exit performance for the 
Heap, Immortal, Linear Time (LT) Memory, and 
Variable Time (VT) memory areas. The Allocation Time 
and Throughput Time tests were created by the Jet 
Propulsion Laboratory. See Figure 3 for a diagram of 
MemoryArea inheritance relationships in the RTSJ. In 
Figure 3, the Memory Area classes that are colored 
represent the classes with test results included herein. 
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Figure 3. Memory Area Class Inheritance 

3.4.1 Allocation Time vs Memory Area 

Description: Measure the time required to allocate 
the same sized objects in different memory areas. Place 
time stamps before and after the memory allocation code. 
Then calculate the difference between before and after 
times for memory allocation. Perform this test for 
various object sizes from 4 to 16,384 bytes. Each thread 
executes at a 20 Hz periodic frame rate. 

Success Criteria: Average allocation time less than 2 
microsecondstbyte shall be acceptable. 

Results: The average time to create 64 byte objects 
took less than 16 microseconds for all memory areas, 
meeting the success criteria. The times for immortal, 
linear time, and variable time memory areas were nearly 
identical for this test. See Figure 4 for per-byte allocation 
times in the different memory areas. 

I Samples (1=4bytes, 2=8bytes, 3=64bytes, 4=512bytes, 
5=4096bytes, 611 6384byles) 

Figure 4. Maximum Memory Allocation Time per 
Byte for multiple byte objects 

3.4.2 Throughput vs Memory Area 

Description: Measure the time needed to execute a 
division, trigonometric, and no operation in each memory 
area. The division operation is a ‘divide by 2’ while the 
trigonometric operation takes the ‘log of 5 ’ .  Place time 

stamps before and after the call to each operation. Each 
thread will execute at a 20 Hz frame rate. 

Type ( l=Heap ,  2=lmmortal ,  
3=LT Memory,  4=VT Memory  

Figure 5. Operation Execution vs Memory Area 

Success Criteria: The throughput values shall be 
within 5% across all memory types. 

Table 9. Operation vs Memory Area 

I Min I Max I %Delta I 
Float 
Trig 1.0400 1.0667 2.5% 

0.9% 
Result: As tabulated in Table 9, the percent variation of 
operation execution across all memory areas was less 
than 4% thus meeting our success criteria. 

3.4.3 Memory Area Entry/Exit 

Description: Log timestamps before entering a 
MemoryArea and immediately upon entering. Also 
record timestamps prior to leaving the scope and 
immediately after leaving the scope. Each thread will 
execute at a 20 Hz frame rate. 

Success Criteria: Average memory area entry time 
shall be 100 microseconds or less. Average memory area 
exit time shall be 100 microseconds or less. 

Results: The average memory entry and exit times 
were under 20 microseconds for all measured memory 
types. Therefore this test passed the success criteria. 
The exit times for LT Memory and VT Memory was 
substantially more than for other memory areas because 
the garbage collector is executed on these memory areas 
when their scope is freed. See Figure 6 for a graph 
mapping the time to enter and exit the various 
MemoryAreas. 
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Type  (l=Heap, 2=lmmortal ,  
3=LT Memory, 4=VT Memory)  

Figure 6. Average Memory Area EntrylExit Times 

4. Concluding Remarks 

The experimental results in this paper indicate that 
emerging RTSJ implementations are capable of 
providing real-time characteristics with sufficient 
performance to meet key avionics system requirements. 

There are still some areas that motivate further 
investigation. These areas include relative throughput to 
C++ or other languages, performance of memory 
management including garbage collection, and continued 
investigation into timing spikes as noted in the results. 
Our early results, however, indicate that the principal 
prerequisite real-time characteristics for mission-critical 
avionics systems are emerging in commercial 
implementations and hold promise in meeting the vision 
of bringing Java to large-scale DRE systems. 

A second set of tests (which are not discussed in this 
paper) investigates performance within an environment 
that is representative of an actual avionics application, 
based on our experience with reusable component-based 
avionics systems on the Boeing Bold Stroke initiative. 
This paper wiii -TprovideS insight into a comparison 
between avionics mission computing applications that 
have been written in both RT Java and C++ that are 
based on a Bold Stroke application. We plan to publish 
these latter test results when complete. 
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