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This version of September 3, 2006. German chemical manufacturing industry is marked

by two major structural changes during 1992–2004. Firstly, number of firms was ranging

extensively: from 676 to 901, while only 96 firms represented balanced panel. Secondly,

size of the firm dropped considerably—by 88%. This paper is intended to shed light on both

phenomena. Based on reliable census data analysis suggests the former evidence be explained

(i) by persistent poor performance of firms and (ii) by so called “general purpose technology”

argument. The latter phenomenon was found to be a rational behaviour because numerous

firms continually operated under decreasing returns to scale. (JEL: D21, L23, L25, L65

Keywords : DEA, technical and scale efficiency, technological change, firm size, firm level

data, chemical manufacturing).

I Introduction

The 1990’s have brought about severe competitive challenges and new rules of playing game in

chemical industry. Freeman 1999 claims that the last decade was accompanied by great changes,

with the massive restructuring as the key feature:

The days of the integrated chemical company were coming to an end, with companies

abandoning noncore business segments in efforts to boost the creation of shareholder

value. The reshaping of the industry had begun in the 1980’s, but it was on a small

scale compared to that in the 1990’s.

Merges and acquisitions have performed a significant role in the adjustment process of the chem-

ical industry (Weston et al. 1999). The German chemical industry have been doing tremendous

job (Landau and Arora 1999) and continues to do so in development of the global and national

economies in terms of employment, investments and value added as reported by the President

of the Verband der Chemischen Industrie e.V. (Federation of the Chemical Industry, registered

association).1 Firstly, due to merges/de-merges, acquisition activities and entries/exits the
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number of manufacturing firms representing chemical industry in Germany has been moving

backwards and forwards greatly between 1992 and 2004. While the number of firms that were

observed each year during the period under consideration is 96, the number of all firms has

been ranging from 676 to 901 (see Tables 1 and 2). Secondly, during this period of time the

average size (defined as the number of employees2) of the firm has decreased by about 88%

(from 813 to 433). At the same time such average size has dropped only by approximately 31%

(from 1998 to 1520) among 96 firms that were observed in all years, whereas among firms that

were observed twelve or less times the average size has plummeted by about 110% (from 633 to

301). These figures also tell us that firms, which existed in all years from 1992 through 2004,

were considerably larger than those, which operated less than 13 years. Such patterns suggest

that relatively larger firms have better propensity to survive, and that economical/technological

situation has put considerable pressure on smaller firms (see Swift 1999). Nevertheless, we note

that even relatively larger firms have been persistently becoming smaller in size. Then the

natural question arises: “Is the small beautiful?”

These phenomena beg for explanation and one intuitively comes up with an idea of scale

economies. In addition to such hypothesis, the ‘relative performance’ argument comes into

play. What if relatively smaller firm out-perform relatively smaller ones? In the literature the

relationship between firm size and relative performance received thorough attention. On the

one hand, larger firms have better penetration in the market and they can exploit economies

of scale; moreover, larger firms have more funds to employ a better manager (Kumar 2003);

studies which focus explicitly on the relationship between firm size and technical efficiency (e.g.,

Alvarez and Crespi 2003, Gumbau-Albert and Maudos 2002, Meeusen and Broeck 1977, Torii

1992) found that the technical efficiency increases with the size of the firm. On the other hand,

in the larger firm it is more difficult to keep all departments coordinated, that is, efficient (X -

inefficiency, see Leibenstein 1966). Indeed, Table 1 shows that the mean of the output was

remaining constant during time under consideration, while the kurtosis of the distribution was

gradually increasing, implying that the producers of the largest output were producing even

more. The different story is told by Table 2. While coefficient of variation, skewness and

kurtosis remained virtually the same, the mean was rising considerably, suggesting a positive

shift of the entire distribution, that is, all firms from balanced panel were producing more. On

the other hand, we observe different patterns within inputs. Interestingly, within unbalanced

panel (Table 1) the average expenditures for the labor compensation, capital usage and energy

collapsed, while other categories remained virtually the same. Table 2 demonstrates us different

reality.

During the period under consideration the difference between balanced and unbalanced

samples is substantial. Among other distinctions, Table 3 reveals that while smallest firms (less

than 49 employees) make up about quarter of the unbalanced panel, they constitute at most

4.2% of the balanced one. And vise versa, the largest firms (more than 1000 employees) represent

approximately 10% of all firms in unbalanced sample, whereas balanced sample comprises up

2It is not uncommon to use number of employees as the proxy for firm size in the analysis of the chemical
industry(e.g., Grant II et al. 2002).
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to 35% of the largest firms.

This paper is intended to shed light on two major structural changes in German chemical

manufacturing industry during period 1992 through 2004 using modern frontier efficiency anal-

ysis. First, we plan to explain tremendous volatility in composition of industry; and second, to

give reasons for aggregate tendency of firms to reduce its size. In this paper, we do a ‘bench-

mark’ analysis. The purpose of the estimates of the efficiency at the firm level is to measure

the relative performance of the manufacturing units within an industry. We want to study the

structural changes of the industry by looking at the distribution of the efficiencies and their

changes over time. We also attempt to quantify potential scale economies. More specifically, we

focus on the relationship between firm size and its performance by determining scale efficiency

of the firm. The development of these indicators of the productive efficiency is bound to disclose

the aggregate performance of the industry.

The paper unfolds as follows. Sections II provides an overview of methodology. Section III

discusses data used in this study. Section IV presents the empirical results, and section V

concludes.

II Methodology

This section provides an overview of methodology. The reader is referred to Färe 1988, Färe et al.

1994a, Färe and Primont 1995, and other cited references for more details.

An assessment of technical efficiency of firms requires the measurement of the best practice

frontier and the identification of a point of reference for judging the relative efficiency level of

the unit under inspection. In this paper, the best practice frontier is estimated as the upper

boundary of the smallest convex free disposable cone of the observed data on inputs and outputs

using the data envelopment analysis (DEA) estimator (DEA is initiated by Charnes et al. 1978;

see Kneip et al. 1998 for a proof of consistency for the DEA estimator, as well as Kneip et al.

2003 for its limiting distribution). The reason for opting this non-parametric mathematical

programming technique in favor of parametric statistical approaches is two-fold. Firstly, DEA

does not impose an a priory assumption on technology underlying the the production process.

Secondly, new developed bootstrap procedures enable to retrieve statistical properties of ef-

ficiency estimates, which furthers previously available point estimates to rigorous hypotheses

testing (Simar and Wilson 1998, 2000; Simar and Zelenyuk 2003).

One of the a priori assumptions, which has to be made before employing DEA is the as-

sumption about the returns to scale of the underlying technology. Literature suggests that

different returns to scale assumptions may result in completely different conclusions (see dis-

cussion and empirical application in Färe et al. 1994b and Ray and Desli 1997). Fortunately,

a reliable bootstrap procedure is developed, which puts forward a direct data driven test of

the returns to scale (Simar and Wilson 2002). Authors suggest a technique not only to test

for global returns to scale, but also test for the returns to scale at which a particular decision

making unit is operating (known as a scale efficiency), and, if not scale efficient, the test for

judgment at which portion of technology the unit is operating: increasing or decreasing returns
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to scale.

DEA allows two orientation choices, which reflect underlying technology. The first is output

orientation, which fixes inputs on the observed level and boosts outputs as much as possible

within best-practice technology. The second is input orientation, which, holding outputs con-

stant, tries to decrease inputs within best-practice technology. In the analysis of manufacturing

firms it is intuitive to assume output orientation, since resources are limited and not subject to

very quick change, and economic purpose is to produce as much as possible.

A Technical efficiency

For each firm j (j = 1, . . . ,K) vector xj = (xj1, . . . , xjN ) ∈ ℜN denotes N inputs, vector

yj = (yj1, . . . , yjM) ∈ ℜM denotes M outputs. We assume that under technology T outputs are

producible by inputs,

T = {(x, y) : y are producible by x} (1)

For output-based scores of technical efficiency the technology is represented by its production

possibility set,

P (x) ≡ {y : (x, y) ∈ T} (2)

The Shephard’s (1970) output distance function is defined as

Do(x, y) = inf
{

θ > 0 :
y

θ
∈ P (x)

}
(3)

This function by construction is positive and less or equal than unity, and is convenient in the

sense of providing information about the amount of necessary increase of outputs to move a

firm to a boundary or production possibility set.

Empirically, technical efficiencies are estimated via activity analysis models. For K observa-

tions, M outputs and N inputs an estimate of the Farrell output-oriented measure of technical

efficiency can be calculated by solving a linear programming problem for each observation j

(j = 1, . . . ,K):

T̂Eo
j = θ̂j =

[
D̂o

j (x, y|C)
]
−1

=

[
max

{
θ:

K∑

k=1

zkykm ≥ yjθ,

K∑

k=1

zkxkn ≤ xj, zk ≥ 0

}]−1

(4)

for m = 1, . . . ,M and n = 1, . . . , N . Note that superscript o stands for output orientation, while

C—for constant returns to scale (CRS). Other returns-to-scale are modeled by adjusting process

operating levels zk’s; for variable returns to scale (VRS) we add a convexity constraint, an∑K
k=1

zk = 1 equality,3 while for non-increasing returns to scale (NIRS) we add an
∑K

k=1
zk ≤ 1

inequality,4 to linear programming problem in equation (4).

3This equality ensures that firm j is compared only to firms of similar size; such convexity restriction not
utilized under CRS assumption, when firms of different sizes might be compared, that is,

PK

k=1
zk might be

greater/smaller than unity.
4This inequality ensures that firm j is not compared to other firms that are considerably larger, but maybe

compared to smaller firms.
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Fig. 1: Output-oriented Technical and Scale Efficiency

Figure 1 illustrates hypothetical one-input one-output production with three different tech-

nologies CRS, VRS and NIRS. Intuitively, in Figure 1 the vertical distance from an observation

to CRS/VRS/NIRS best-practice frontier stands for output-oriented technical efficiency under

CRS/VRS/NIRS assumption.

B Bias corrected technical efficiency

Although the DEA method is typically considered to be deterministic, the efficiency is still

computed relatively to estimated and not true frontier. The efficiency scores obtained from

a finite sample (in equation (4) from K observations) are subject to sampling variation of

the estimated frontier (Simar and Wilson 1998). What is claimed is that estimated technical

efficiency measures are too optimistic, due to the fact that the DEA estimate of the production

set is necessarily a weak subset of the true production set under standard assumptions underlying

DEA. It is proposed that the following bootstrap algorithm enables to retrieve bias-corrected

estimates of original (as in equation (4)) “overstated” technical efficiencies:

(i). Obtain efficiency scores as in equation (4) for each firm j (j = 1, . . . ,K).

(ii). Using a smooth bootstrap, generate a random sample of size K from θ̂j, j = 1, . . . ,K;

θ∗ib, . . . , θ
∗

Kb, where

θ∗j = β
∗

+
1√

1 + h2bσ2

θ

(θ̃∗j − β
∗

) (5)

θ̃∗j =

{
β∗ + hǫ∗j if β∗ + hǫ∗j ≤ 1,

2 − (β∗ + hǫ∗j ) otherwise
(6)

β∗

1
, . . . , β∗

K is a bootstrap sample from original efficiency estimates as in step (i), h is the
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smoothing parameter of the kernel density estimate of original efficiency estimates, and

ǫ∗j , j = 1, . . . ,K are random draws from the standard normal.

(iii). Compute y∗jb for each j, j = 1, . . . ,K,

y∗jb =
θ̂j

θ∗jb
yj (7)

(iv). Compute the bootstrap estimate θ̂∗jb of θ̂j for each j, j = 1, . . . ,K, by solving linear

programming problems

θ̂∗jb =

[
max

{
θ:

K∑

k=1

zky
∗

km ≥ yjθ,

K∑

k=1

zkxkn ≤ xj, zk ≥ 0

}]−1

(8)

Repeat steps (ii) to (iv) B times to obtain estimates
[
θ̂∗jb, b = 1, . . . , B

]
for each j, j = 1, . . . ,K.

Bias-corrected estimates of original technical efficiency from equation (4) are

θ̃j = θ̂j − b̂iasj (9)

b̂iasj =
1

B
θ̂∗jb − θ̂j (10)

C Weighted technical efficiency

In our analysis we will also look at the performance of an average representative firm. As shown

by Färe and Zelenyuk 2003 the simple averages of technical efficiency scores are misleading and

weighted averages have to be adopted instead. For we do not have data on output prices, we

rely on the price independent weights, which are the sum of each firm’s share of each output

normalized by the number of outputs M:

wj =
1

M




yj1

K∑
k=1

yk1

+
yj2

K∑
k=1

yk2

+ . . . +
yjM

K∑
k=1

ykM


 =

1

M

M∑

m=1

yjm

K∑
k=1

ykm

(11)

for each j, j = 1, . . . ,K

D Non-parametric test of returns to scale

Simar and Wilson 2002 suggested a non-parametric test of returns to scale. Their idea of

testing the null hypothesis that the technology is globally constant returns to scale versus the

alternative hypothesis that the technology is globally variable returns to scale boils down to

testing by how far is potential test statistic from its bootstrap analogue. The measure of scale
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efficiency5, originally proposed by Färe and Grosskopf 1985,

sj(xj , yj) =
DCRS

j (xj , yj)

DV RS
j (xj , yj)

(12)

is used to facilitate the bootstrap test. Among others, the test statistic, which showed the best

statistical properties is defined as

ŜCRS
2n =

K∑
j=1

D̂CRS
j (xj , yj)

K∑
j=1

D̂V RS
j (xj , yj)

(13)

If null hypothesis is true, then D̂V RS
j (xj , yj) = D̂CRS

j (xj , yj) j = 1, . . . ,K, and ŝj = 1. If

alternative hypothesis is true, then ŝj ≤ 1. Since ŜCRS
2n ≤ 1, the null hypothesis is rejected if

ŜCRS
2n is significantly less than unity.

Taking into account the importance of returns to scale assumption for DEA results, this

data-driven test is advised to be performed before applying any DEA model. Additionally,

this test can be easily translated to hypothesis testing by individuals. The CRS assumption

is only feasible when all firms are operating at an optimal scale; i.e., when scale elasticity

is unity. However, for many reasons (e.g., imperfect competition, financial constraints) it is

more appropriate to assume variable returns to scale (see Coelli et al. 2002 for history and

development of the this stream). Assuming CRS when VRS should be assumed in reality

mixes up technical efficiency estimates exactly by scale efficiencies. Therefore, performing the

individual returns-to-scale test is fairly important in case of scale efficiency analysis. The testing

procedure is the following.

Under the null hypothesis that distance functions are equal under constant and variable

returns to scale, sj(xj , yj) = 1. Since by definition sj(xj , yj) ≤ 1, such null hypothesis is rejected

if sj(xj , yj) is significantly less than unity; this test is performed for each j, j = 1, . . . ,K. For

firm j, for which this null hypothesis is rejected, sj(xj , yj) ≤ 1 and this firm is scale inefficient.

Then further test has to be performed. With another measure of scale inefficiency, defined as

ηj(xj , yj) =
DNIRS

j (xj , yj)

DV RS
j (xj , yj)

(14)

and which is less or equal to unity by construction, the test concludes that firm is operating

under increasing returns to scale (or in terms of Figure 1 it is a firm (xi, yi)) if ηj(xj , yj) is

significantly less than unity, and is operating under decreasing returns to scale (or in terms of

Figure 1 it is a firm (xj , yj)) otherwise. All tests in this subsection are bootstrap tests, built on

prior works by Simar and Wilson 1998, 2000, and we do not describe them in detail to conserve

5Scale efficiency measures how close is the manufacturing firm to potentially optimal scale. The measure of
scale efficiency shows the expansion magnitude of output vector, from the observed firm to the optimal scale on
the frontier function for output orientation.
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space. Interested readers are referred to the original paper by Simar and Wilson 2002 for more

details.

III Data

We use micro data from the German Cost Structure Census6 of manufacturing for the period of

1992-2004 for the chemical industry.7 The Cost Structure Census is gathered and compiled by

the German Federal Statistical Office; firms are legally obliged to respond to the Cost Structure

Census, so that missing observations due to non-response are precluded. The survey comprises

all large German manufacturing firms which have 500 and more employees over the entire

period, firms with 20-499 employees are included as a random sample that can be assumed as a

representative for this size category as a whole. Since the year 2001 the statistic also contains

firms with 1-19 employees. Due to merges/acquisitions and entries/exits the number of firms is

different from year to year and varies considerably: 726, 695, 676, 857, 843, 848, 814, 835, 819,

794, 784, 901, and 881 for year 1992 through 2004, respectively; 96 firms represent balanced

panel.8 Unfortunately, Cost Structure Census does not allow to retrieve information on entry-

exit or/and merging-demerging of firms for two reasons. First, every firm is assigned a unique

‘id’ and when firm with a certain ‘id’ disappears in the next year there are three possibilities

for that: (i) firm actually exited the market, (ii) firm has been acquired by another firm, or

(iii) firm changed the industry classification and is considered by statistical office as a new one.

Second, appearing of a new firm or new ‘id’ might stem from three reasons: (i) it is really an

entry, (ii) firm transferred from other industry, or (iii) that new merger occurred and statistical

office assigns a new ‘id’. The data-set does not differentiate these reasons.

Our measure of output is gross production. This mainly consists of the turnover and the

net-change of the stock of the final products. We do not include turnover from activities that

are classified as miscellaneous such as license fees, commissions, rents, leasing etc. because such

6Aggregate figures are published annually in Fachserie 4, Reihe 4.3 of Kostenstrukturerhebung im Verarbeit-
enden Gewerbe (diverse years).

7Industry “Manufacture of chemicals, chemical products and man-made fibres” (NACE.24 in accordance
with the Classification of Economic Activities in the European Community) composed of the following sub-
industries: Manufacture of basic chemicals (24.1), Manufacture of industrial gases (24.11), Manufacture of dyes
and pigments (24.12), Manufacture of other inorganic basic chemicals (24.13), Manufacture of other organic
basic chemicals (24.14), Manufacture of fertilizers and nitrogen compounds (24.15), Manufacture of plastics in
primary forms (24.16), Manufacture of synthetic rubber in primary forms (24.17), Manufacture of pesticides
and other agro-chemical products (24.2), Manufacture of paints, varnishes and similar coatings, printing ink and
mastics (24.3), Manufacture of pharmaceuticals, medicinal chemicals and botanical products (24.4), Manufacture
of basic pharmaceutical products (24.41), Manufacture of pharmaceutical preparations (24.42), Manufacture of
soap and detergents, cleaning and polishing preparations, perfumes and toilet preparations (24.5), Manufacture
of other chemical products (24.6), Manufacture of explosives (24.61), Manufacture of glues and gelatines (24.62),
Manufacture of essential oils (24.63), Manufacture of photographic chemical material (24.64), Manufacture of
prepared unrecorded media (24.65), Manufacture of other chemical products n.e.c. (24.66), Manufacture of
man-made fibres (24.7).

8These numbers come from stratified sample (see Fritsch et al. 2004), but we have access to “population”
number of all firms in the industry from 1995 to 2003, and confirm it is also quite volatile: 1255, 1236, 1222,
1226, 1258, 1245, 1253, 1315 and, 1332 respectively. As for the “population” data, only number of all firms can
be retrieved, whereas in further analysis we have to rely on stratified sample, the best micro-data available for
now.
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revenue can not adequately be explained by the means of a production function.

Cost Structure Census contains information for a number of input categories.9 These cate-

gories are payroll, employers’ contribution to the social security system, fringe benefits, expen-

diture for material inputs, self-provided equipment and goods for resale, for energy, for external

wage-work, external maintenance and repair, tax depreciation of fixed assets, subsidies, rents

and leases, insurance costs, sales tax, other taxes and public fees, interest on outside capital as

well as “other” costs such as license fees, bank charges and postage or expenses for marketing

and transport.

Some of the cost categories including expenditure for external wage-work and for external

maintenance and repair contain a relatively high share of reported zero values because many

firms do not utilize these types of inputs. Such zeros make firms incomparable, and thus might

bias DEA results. In order to reduce the number of reported zero input quantities, we aggregated

the inputs into the following categories: (i) material inputs (intermediate material consumption

plus commodity inputs), (ii) labor compensation (salaries and wages plus employer’s social

insurance contributions), (iii) energy consumption, (iv) user cost of capital (depreciation plus

rents and leases), (v) external services (e.g., repair costs and external wage-work), and (vi)

“other” inputs related to production (e.g., transportation services, consulting or marketing). For

translating values into real terms, all input and output series were deflated using the producer

price index for the respective industry.

IV Empirical results

This section first reports the technical efficiency results based on data envelopment analysis and

then presents an analysis of scale efficiency of German chemical manufacturing firms. Findings

from this section are intended to explain two structural changes in the chemical industry ensued

during period 1992 through 2003.

A Technical efficiency

For each of thirteen years under consideration we performed a non-parametric tests of returns

to scale (see section II, subsection D) to apply the appropriate DEA model to our data. In all

thirteen cases the null hypothesis that the technology is constant returns to scale (Test 1) is

overwhelmingly rejected. Further, we performed the Test 2, i.e., that the underlying technology

is nonincreasing returns to scale. The p-values of the null hypothesis of Test 2 are 0.087, 0.052,

0.011, 0.179, 0.138, 0.032, 0.034, 0.078, 0.018, 0.209, 0.077, 0.061, and 0.007 for 1992 through

2004, respectively. Assuming the size of the test ten percent the technology is nonincreasing

returns to scale in 1992, 1993, 1995, 1996, 1999, 2001, 2002, and 2003; in the rest years the

technology is variable returns to scale.

With the knowledge of the appropriate technology we apply the homogeneous bootstrap

9Though the production theory framework requires real quantities, using expenditures as the proxies for inputs
in production function is also practised in the literature (see e.g., Paul et al. 2004, Paul and Nehring 2005).
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following Simar and Wilson 1998 (see section II, subsection B). The year by year summary

statistics of the technical efficiency for both unbalanced and balanced samples are presented

in Table 4. The averages due to Färe and Zelenyuk 2003 of bias corrected technical efficiency

scores by size categories are shown in Table 5.

The most striking result is the high level of technical inefficiency of German manufacturing

firms—about 30%. This finding remains even if we look at firms within balanced sample, i.e.,

firms that survived in all thirteen years under consideration. The lower panel of Table 4 does

not contrast the upper one, implying that the distribution of technical efficiency in all years

was virtually the same for balanced and unbalanced sample of firms. Moreover, neither clear

decreasing, nor clear increasing trend in the values of efficiency is present. Thus, the “average”

distance to the production possibility frontier did not increase during the period. This can

indicate either unchanged technology and unchanged performance of the “average” firm, or

changing of the performance in the same path as change of the underlying technology. Former

is hardly convincing, since technological progress did positively influence the performance of

the firm (e.g., Brynjolfsson and Hitt 2000), and especially in chemical industry (see Swift 1999

and Weston et al. 1999). Thus, firms were going hand in hand with technological improvement,

but were always legging behind the technological change. In the literature the latter evidence is

known as a “general purpose technology” argument, which emphasizes that it takes time before

newly implemented technology can be utilized 100 percent efficiently (see Helpman and Rangel

1999), and which explains continuous poor aggregate performance of the German chemical

manufacturing firms.

The other observation worth mentioning is that while technical efficiency of an “average”

German chemical manufacturing firm was fairly stable over the period under consideration; the

mean was ranging only moderately from 0.70 to 0.75, remaining quite low. This implies that

the same inputs in the different years could have produced 33–43 percent more of the observed

output if the inputs were employed by firm with frontier production technology.

We have also looked at the rankings of the firms10 between all years in terms of technical

efficiency distribution. Thus we are able to investigate the changes in rankings of firms during

the period under consideration. The Spearman’s rank correlation coefficients between technical

efficiency scores in different years are presented in Table 6. The correlation coefficients between

one year lag is rather high as a rule, except for 1995/96 one, but lower than estimates of in the

literature (e.g., Førsund and Hjalmarsson 1979) indicating instability of the rankings. Further,

the larger the lag between years the larger the discrepancy in the relative performance of the

firm. This finding means quite low level of firmness in performance ranking between years,

and together with “general purpose hypothesis” argument suggests an explanation for such

big jumps in number of firms in different years; i.e., the first major structural change in the

aggregate performance of the chemical manufacturing industry during the 1990’s.

Remarkably, a close look at the Table 5, which presents descriptive statistics of technical

efficiency by size categories, reveals that in different years larger firms perform better or similar

10This is only possible for balanced sample, that is 96 firms.
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than the average while smaller firms—worse. The firms with less than 49 employees are clearly

lagging behind the firms from the rest size categories. The “average” firms from the rest five size

categories are performing virtually similarly, with a little advantage of the largest size category.

The latter finding creates a puzzle, which bags for an explanation: larger firms are more

technically efficient, which is desirable economically, so firms had better increased its size, while

they did the opposite. Does this frustrate our “the small is beautiful” argument? The answer

is “no”. Resolving this puzzle is the subject of the following subsection.

B Scale efficiency

In the section IV, subcestion A we have already noticed that the industry has not been per-

forming under global constant returns to scale, meaning that scale inefficiency is present.

That is why, in current subsection we bother with analysis of scale efficiency of German

chemical manufacturing firms. Instead of estimating scale efficiency in accordance with equa-

tion (12) (Färe and Grosskopf 1985), we rather employ Test 1 and Test 2 to individual firms

(Simar and Wilson 2002).

We first consider firms, for which Test 1 is not rejected, that is scale efficient firms. The

frequency of such firms in different years is presented in Table 7. The most remarkable finding is

that the share of scale efficient has been constantly and persistently increasing from a little bit

more than one thirds in 1992 to a half of all firms in 2004. If the power of the test is changed to

five percent, the change of portion of scale efficient firms adjusts numerically: from 41 percent

in 1992 to 57 percent in 2004. The argument, however, remains the same: during the period

under inspection the number of scale efficient firms has been persistently growing in relative

terms—in absolute terms this is not true because the total number of firms in the industry has

been quite volatile in different years.

Additionally, we pay special attention to frequencies of scale efficient firms in different size

categories. They are shown in Table 8 together with the number of firms in each size category.

Three observations are worth noting. First, this table reveals that the fraction of scale efficient

firms with less then 49 employees has been holding constant over the year. Second, the middle

size firms (“50 to 249 employees”) have experienced the largest growth in the share of scale

efficient firms, over 100 percent: from 38 to 77 percent in size category “50 to 99 employees”,

and from 15 to 32 percent in size category “100 to 249 employees”. Third, the share of scale

efficient firms grew only moderately among larger firms. What follows from this table supports

“the small is beautiful” argument even more. The finding that the share of larger firms as well

as the size of the firm have been gradually decreasing over the years (see Table 3), plus the fact

that the share of scale efficient firms has been increasing shad light on three above-mentioned

observations.

In order to understand why increase of share of scale efficient firms goes together with the

fact that the technical efficiency has been remaining virtually constant over the years we look

at the remaining (scale inefficient) firms.

In order to analyze the nature of scale inefficiency, we perform the Test 2 (test null hy-
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pothesis: nonincreasing returns to scale versus alternative—variable returns to scale) on firms

for which Test 1 was rejected, i.e., on scale inefficient firms. If the null hypothesis of Test 2

is rejected for a certain firm, it is scale inefficient due to increasing returns to scale, and has

to exploit its scale and increase its size to be more scale efficient; if the null of the Test 2 is

failed to be rejected then firm is operating on decreasing returns to scale portion of technology

and has to decrease its size. Table 9 superimposes results from Table 7 and frequency of firms

for which null hypothesis of Test 2 was not rejected, or scale inefficient firms due to decreasing

returns to scale. The table shows that while the absolute number of scale efficient firms has

been conceptually increasing, the number of scale inefficient firm is virtually constant with some

jumps in 1996 and 1998.

The most remarkable finding, however, is that while a considerable portion of firms are scale

inefficient the reason for that for majority of them is operating at the decreasing returns to scale

portion of technology. According to Table 9, from 94 to 99 percent of scale inefficient firms in

different years resemble firm i from Figure 1, and consequently had to reduce their size to be

scale efficient—and this is exactly what they have been doing during the 1990’s.

These findings suggest that for German chemical manufacturing firms improving technical

efficiency has not been the first priority during the 1990’s. Instead they have been paying special

attention to establishment of an optimal scale, while technical efficiency has been supported on

the same level. This tendency can be clearly read from Tables 7 and 4. And since scale inefficient

firms cared about being scale efficient and simultaneously operated at the decreasing returns to

scale, they have been reducing their size.

To sum up, scale efficiency turned out to be an important concept, and the estimates therein

captured tendency of the aggregate performance of firms in the industry. The nature of scale

inefficiency clearly renders an explanation for the second structural change in the industry,

namely, the tendency of the firms to get smaller. The explanation of “the small is beautiful”

phenomenon is robust over years.

V Concluding remarks

In this paper, the Farrell’s measures of efficiency have been applied to German chemical manu-

facturing industry. We estimate and evaluate economic performance, focusing on technical and

scale efficiency, during period 1992 through 2004. Proposed analysis is set to give reasons for

two documented structural changes, (i) explosive nature of composition of industry; and (ii)

aggregate tendency of firms to become smaller (so called “the small is beautiful” phenomenon).

Interestingly, the level of technical inefficiency is rather high—about 30%. This finding

remains irrespective of sample considered. Moreover, the firms are persistently inefficient—

during 1992 through 2004 the parameters of distribution were virtually the same in different

years. In combination with the fact that firms’ rankings in terms of technical efficiency were quite

volatile during the period, the latter finding provides the rationale for the first structural change

in the aggregate performance of the chemical manufacturing industry during the considered

period.

12



The share of scale efficient firms has been gradually increasing during the period under

consideration from 37 in 1992 to 51 percent in 2004. These are small firms that have been and

are mostly scale efficient. Moreover, the middle size firms has been determining the growth of

portion of scale efficient firms.

The most remarkable result, however, comes from analysis of nature of scale inefficiency.

Among scale inefficient firms 94 to 99 percent of firms in different years are inefficient due to

decreasing returns to scale; they had to reduce its size to become more scale efficient. These

findings rationalize the fact that firms have been continuously becoming smaller during 1992

through 2004, that is, give reason for the second structural change in the industry.

Some policy implication can be drawn from these findings. While it is important to acknowl-

edge the importance of becoming larger (for instance merging activities) for technical efficiency

of a firm, it is also worth paying attention to the scale of the firm. More specifically, it is es-

sential to analyze at which portion of technology firm is operating, and which implication does

it have for decision about choosing the size of the firm. Our analysis proves that middle size

firms (50 to 249 employees) are most successful if technical and scale efficiency performance are

analyzed in combination.
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Table 1: Output and Inputs: Summary Statistics, 1992-2004,
Unbalanced Sample

Year N Standard Coefficient Skewness Kurtosis Mean Min Median Max
deviation of variation

Output

1992 726 1014054 4.8 11.9 163 211227 723.8 32292 15135792
1993 695 946245 4.7 11.5 152 201254 972.6 30628 13852398
1994 676 1020509 4.7 11.8 162 216919 938.7 34225 15884029
1995 857 960073 5.0 13.3 208 192545 1416.7 28973 17132570
1996 843 929676 4.8 13.5 217 194125 794.2 28873 16495555
1997 848 929299 4.6 14.7 259 201217 740.6 33325 18191370
1998 814 920986 4.5 14.7 256 205566 1340.0 36682 17037900
1999 835 890267 4.4 14.6 257 203617 1290.0 36467 16886770
2000 819 1018809 4.4 14.2 244 231730 1404.7 37957 18922732
2001 794 1005882 4.2 13.6 227 238612 1576.2 40720 18272336
2002 784 970146 4.3 14.1 238 227938 1922.3 42471 17911534
2003 901 880535 4.3 13.8 236 206873 1349.1 39053 16794964
2004 881 849574 3.9 13.1 241 218410 1903.4 40884 18135048
Material inputs

1992 726 295399 3.9 9.2 102 76094 13.1 11916 3870093
1993 695 273051 3.9 9.2 101 69872 16.3 11297 3587467
1994 676 303941 3.9 9.4 106 77494 63.5 12133 3950658
1995 857 289164 4.0 10.4 133 72361 14.1 11518 4576338
1996 843 267036 3.7 10.0 126 71358 40.7 11540 4151797
1997 848 281611 3.6 10.7 152 77671 89.1 13061 4933885
1998 814 260934 3.3 10.6 151 78033 176.4 14800 4349543
1999 835 266184 3.4 10.6 157 79431 127.6 14610 4859704
2000 819 357248 3.7 11.8 191 96394 47.8 15913 6919231
2001 794 338598 3.5 11.3 177 97227 43.9 17676 6400430
2002 784 311322 3.4 11.0 171 92073 20.4 18628 5853762
2003 901 313071 3.7 12.1 192 83899 33.3 15940 5946344
2004 881 334876 3.7 11.8 190 89703 43.9 17206 6572756
Labor compensation

1992 726 392343 5.6 13.0 189 69947 314.4 7639 6495467
1993 695 388277 5.6 12.7 180 69790 382.8 7730 6174036
1994 676 384160 5.4 12.5 175 70501 468.8 8201 6093890
1995 857 341333 5.9 14.4 232 58063 590.3 7064 6267881
1996 843 335416 5.7 14.2 228 59243 481.6 7338 6146896
1997 848 299487 5.4 15.8 289 55749 368.0 7753 5901589
1998 814 296152 5.2 15.2 269 57409 420.8 8762 5489492
1999 835 289585 5.0 15.0 263 57850 454.8 9692 5319419
2000 819 290629 5.0 15.0 262 58331 433.2 9955 5343963
2001 794 287970 4.8 14.0 233 60383 437.9 10843 5062888
2002 784 281063 4.9 14.6 248 57650 431.8 11567 5226464
2003 901 268607 4.9 14.9 273 54424 567.2 9648 5680023
2004 881 243885 4.5 16.0 342 54171 864.6 9389 5723708
Energy consumption

1992 726 73707 7.3 15.5 278 10032 2.7 462 1512668
1993 695 70387 7.5 15.3 269 9439 2.5 455 1416196
1994 676 67928 7.3 15.6 284 9361 6.0 477 1391076
1995 857 60770 7.6 16.7 323 7973 4.5 447 1341809
1996 843 62842 7.7 17.9 376 8146 8.3 451 1467619
1997 848 64657 7.9 20.7 496 8154 2.0 441 1638512
1998 814 58748 7.2 19.1 427 8190 8.7 498 1412024
1999 835 33986 4.9 11.5 168 6931 1.5 528 587401
2000 819 38822 5.1 11.5 167 7616 9.8 539 666958
2001 794 46045 5.3 12.6 196 8660 11.9 601 829509
2002 784 44988 5.3 12.3 186 8539 13.3 611 753911
Continued on Next Page. . .

16



Table 1 – Continued

Year N Standard Coefficient Skewness Kurtosis Mean Min Median Max
deviation of variation

2003 901 44217 5.8 15.6 296 7633 3.9 507 953492
2004 881 40033 5.2 13.0 219 7765 6.8 545 806895
Capital

1992 726 94515 5.3 11.9 161 17745 40.4 1803 1363207
1993 695 95674 5.3 11.6 153 18046 36.6 1986 1345946
1994 676 94270 5.1 11.4 148 18567 34.8 2053 1312000
1995 857 80973 5.4 12.8 187 14906 46.1 1795 1270690
1996 843 79316 5.2 12.5 181 15186 34.0 1753 1264177
1997 848 68061 4.9 13.7 229 13985 59.5 1787 1272745
1998 814 67932 4.7 13.9 236 14342 54.4 1972 1278483
1999 835 68063 4.6 13.7 231 14831 54.3 2127 1281434
2000 819 69828 4.6 13.4 222 15226 51.7 2213 1301647
2001 794 70774 4.5 13.1 211 15620 46.3 2417 1290556
2002 784 71060 4.7 13.5 222 15230 38.7 2532 1319370
2003 901 68208 4.8 14.0 242 14202 73.7 2287 1345081
2004 881 54751 4.0 12.0 201 13617 57.0 2314 1106204
External services

1992 726 78228 6.2 12.4 183 12663 3.0 747 1393239
1993 695 70937 6.1 12.4 184 11597 5.3 729 1276040
1994 676 77942 6.5 13.6 215 12076 5.3 819 1440158
1995 857 77324 7.3 16.3 304 10650 9.4 714 1627759
1996 843 93382 7.4 15.6 276 12579 3.4 740 1845954
1997 848 96622 7.5 17.2 329 12927 5.3 796 2021390
1998 814 95345 7.3 18.0 361 13106 3.5 878 2094028
1999 835 87430 6.7 17.2 340 13052 5.9 1082 1916457
2000 819 100066 7.0 17.1 321 14385 14.8 1143 1983162
2001 794 118516 7.6 17.8 350 15634 13.2 1182 2557606
2002 784 99778 7.2 17.0 320 13833 8.0 1257 2080831
2003 901 75399 6.0 15.1 271 12506 2.7 1017 1553493
2004 881 66145 5.6 16.7 357 11818 7.6 1032 1560612
“Other” inputs related to production

1992 726 171957 4.5 11.0 144 37904 20.2 4348 2708440
1993 695 171378 4.4 10.1 122 38917 88.9 4201 2458878
1994 676 194747 4.6 11.5 161 42281 64.3 4553 3317415
1995 857 170214 4.7 11.6 160 35912 68.4 3883 2913760
1996 843 181311 4.7 11.8 168 38437 40.0 3770 3161921
1997 848 172263 4.5 13.3 229 38268 24.6 4213 3463636
1998 814 182971 4.5 13.1 228 40584 40.5 4615 3726024
1999 835 246071 5.6 17.4 374 44078 39.7 4679 5776583
2000 819 226675 5.0 13.3 220 45376 26.1 5062 4365538
2001 794 267802 5.5 15.5 292 48938 32.8 5256 5714944
2002 784 272755 5.9 16.9 331 45940 118.9 5642 5938789
2003 901 224918 5.4 13.6 217 41305 112.6 4938 4041141
2004 881 228556 5.1 12.4 197 45081 152.6 5162 4437297

Notes: output and all inputs are in real terms, thousands of Euros;
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Table 2: Output and Inputs: Summary Statistics, 1992-2004,
Balanced Sample

Year N Standard Coefficient Skewness Kurtosis Mean Min Median Max
deviation of variation

Output

1992 96 1648205 3.0 7.5 65.7 542488 6243.3 192286 15135792
1993 96 1515083 3.0 7.4 64.4 510878 7847.5 170329 13852398
1994 96 1705189 3.1 7.8 69.9 543095 9687.3 188532 15884029
1995 96 1830029 3.2 7.9 71.4 577110 11942.1 194235 17132570
1996 96 1765289 3.1 7.9 70.6 571730 13036.4 203263 16495555
1997 96 1941885 3.1 7.9 71.5 619926 13877.6 205214 18191370
1998 96 1834287 3.0 7.7 68.8 607411 10771.3 209307 17037900
1999 96 1824004 3.0 7.7 68.0 603099 10845.9 209939 16886770
2000 96 2040054 3.0 7.7 68.5 670652 12221.1 225319 18922732
2001 96 1989084 3.0 7.6 65.8 663876 11902.6 241900 18272336
2002 96 1961059 2.9 7.4 64.1 669799 11216.1 218074 17911534
2003 96 1871315 2.8 7.1 59.3 666652 9085.9 204895 16794964
2004 96 1992103 2.9 7.4 63.2 678018 12903.2 191254 18135048
Material inputs

1992 96 451534 2.4 5.8 42.7 187446 356.4 68917 3734859
1993 96 395101 2.3 5.5 38.6 171435 111.6 63378 3186899
1994 96 468853 2.5 6.1 46.0 188843 199.8 65829 3950658
1995 96 524808 2.5 6.5 52.3 207421 287.4 75017 4576338
1996 96 480456 2.4 6.3 49.9 201432 454.9 73139 4151797
1997 96 566246 2.5 6.5 52.0 228293 518.7 84181 4933885
1998 96 514977 2.3 6.1 45.9 222203 682.7 86626 4349543
1999 96 545895 2.5 6.8 56.2 222618 402.3 88947 4859704
2000 96 746465 2.8 7.7 67.5 266760 651.2 108098 6919231
2001 96 703000 2.7 7.3 62.7 259191 651.2 109301 6400430
2002 96 658656 2.6 6.9 56.6 257409 890.4 96355 5853762
2003 96 666416 2.5 6.9 57.3 262603 962.0 95659 5946344
2004 96 729339 2.7 7.1 60.1 269656 934.3 106906 6572756
Labor compensation

1992 96 558766 3.1 7.3 62.4 178929 2081.2 52951 5060447
1993 96 548361 3.1 7.4 64.5 174500 2357.9 52336 5007826
1994 96 541043 3.1 7.5 65.0 172157 2760.0 55118 4948980
1995 96 576142 3.2 7.6 67.1 179186 2112.2 52466 5309250
1996 96 567776 3.2 7.5 65.1 179817 2025.0 55610 5196795
1997 96 582507 3.2 7.6 66.7 180787 2443.8 55051 5359060
1998 96 592834 3.2 7.3 62.7 187348 2769.6 59049 5372067
1999 96 592580 3.1 7.1 59.5 191245 2688.1 59401 5299292
2000 96 589777 3.1 7.3 62.4 191833 2712.5 61183 5343963
2001 96 577299 3.0 6.7 54.5 191659 2776.3 62020 5050351
2002 96 592787 3.0 6.9 56.1 195300 3129.7 59479 5226464
2003 96 641724 3.1 6.9 57.2 206226 3200.8 59290 5680023
2004 96 645025 3.1 7.0 57.7 207286 2898.1 57700 5723708
Energy consumption

1992 96 155385 5.3 9.2 88.3 29338 24.5 2713 1512668
1993 96 145623 5.2 9.2 87.8 28121 42.2 3040 1416196
1994 96 143145 5.1 9.2 87.5 27819 40.5 3012 1391076
1995 96 138145 5.1 9.1 87.3 26986 59.0 2698 1341809
1996 96 150505 5.5 9.3 89.2 27598 55.1 2698 1467619
1997 96 168008 5.6 9.3 89.4 30031 63.4 2935 1638512
1998 96 145143 5.3 9.2 88.2 27211 104.4 3028 1412024
1999 96 59449 3.3 6.5 49.9 18195 79.0 2581 504957
2000 96 75695 3.5 7.0 57.5 21569 63.2 2897 666958
2001 96 91371 3.7 7.5 64.7 24731 88.0 3245 829509
2002 96 83968 3.6 7.3 61.9 23405 89.3 3080 753911
Continued on Next Page. . .
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Table 2 – Continued

Year N Standard Coefficient Skewness Kurtosis Mean Min Median Max
deviation of variation

2003 96 76217 3.5 7.3 61.0 21996 90.4 3894 681030
2004 96 90392 3.8 7.4 61.9 23901 74.3 3963 806895
Capital

1992 96 141641 3.2 7.5 65.5 44265 436.4 11464 1297707
1993 96 139986 3.1 7.4 64.5 44925 689.2 11222 1278969
1994 96 136386 3.0 7.3 63.0 44917 666.0 11466 1240244
1995 96 130128 2.9 7.1 60.5 44524 727.9 11387 1173400
1996 96 125446 2.9 7.0 59.5 43861 712.2 12607 1127247
1997 96 125738 2.9 7.0 59.6 44110 676.8 11817 1130353
1998 96 124282 2.8 7.0 59.1 44144 625.7 12024 1115705
1999 96 125523 2.8 6.9 57.9 44726 600.2 12309 1121363
2000 96 126246 2.8 6.8 56.6 45338 567.6 12253 1121368
2001 96 126225 2.8 6.7 56.0 45427 540.9 12138 1118141
2002 96 126151 2.8 6.7 55.3 45599 516.5 12100 1114288
2003 96 126988 2.8 6.7 54.7 45938 499.7 11969 1118472
2004 96 125933 2.7 6.6 54.1 45861 492.9 11862 1106204
External services

1992 96 146728 4.4 8.5 78.7 33301 43.8 5631 1393239
1993 96 135720 4.4 8.3 75.8 30846 27.7 4578 1276040
1994 96 150967 4.7 8.7 80.7 32118 94.0 5440 1440158
1995 96 170270 4.8 8.7 81.5 35834 125.8 5693 1627759
1996 96 191389 5.0 9.0 84.8 38070 117.9 5324 1845954
1997 96 208845 5.1 9.1 86.1 40554 145.1 5777 2021390
1998 96 215613 5.2 9.1 87.4 41172 100.5 6064 2094028
1999 96 200138 4.7 8.7 81.8 42597 233.9 6208 1916457
2000 96 195913 4.4 8.3 75.9 44876 234.7 6545 1843938
2001 96 268370 5.0 8.7 80.8 53637 107.4 5858 2557606
2002 96 223341 4.6 8.2 73.5 48913 223.8 6449 2080831
2003 96 176262 4.0 7.3 59.5 44416 191.0 7359 1553493
2004 96 171109 4.1 7.8 67.2 41481 108.4 7267 1560612
“Other” inputs related to production

1992 96 242795 2.6 5.7 40.1 92349 606.6 23230 1959246
1993 96 237277 2.6 5.3 35.1 91901 519.8 22423 1842322
1994 96 259344 2.7 6.0 44.7 94373 319.4 23578 2149557
1995 96 244833 2.6 5.5 38.5 94798 922.2 23572 1950391
1996 96 262044 2.7 5.9 44.1 98526 833.4 26219 2180717
1997 96 291597 2.7 5.7 40.5 109526 767.6 31563 2363282
1998 96 280493 2.5 4.8 29.1 111543 830.2 34201 2048849
1999 96 339209 2.8 5.8 42.8 120995 786.8 33837 2795091
2000 96 395004 2.9 6.2 46.8 134667 865.6 37619 3326033
2001 96 413488 3.0 6.3 47.9 135644 1125.4 40291 3492273
2002 96 450661 3.3 6.7 52.7 137544 1024.2 34482 3890194
2003 96 464974 3.3 6.7 53.9 141353 995.9 32024 4041141
2004 96 498752 3.4 7.1 58.9 148725 626.4 37088 4437297

Notes: output and all inputs are in real terms, thousands of Euros
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Table 3: Frequency of Firms, 1992 through 2004,
Unbalanced and Balanced Samples

Size category Number Share of Cumulated Number Share of Cumulated
of Firms all Firms, Share of all of Firms all Firms, Share of all

% Firms, % % Firms, %
un-balanced sample balanced sample

1992

less than 49 employees 191 26.31 26.31 4 4.17 4.17
50-99 employees 133 18.32 44.63 10 10.42 14.58
100-249 employees 151 20.80 65.43 16 16.67 31.25
250-499 employees 93 12.81 78.24 12 12.50 43.75
500-999 employees 65 8.95 87.19 19 19.79 63.54
more than 1000 emp. 93 12.81 100.00 35 36.46 100.00
total 726 100.00 96 100.00
1993

less than 49 employees 176 25.32 25.32 3 3.13 3.13
50-99 employees 143 20.58 45.90 11 11.46 14.58
100-249 employees 146 21.01 66.91 19 19.79 34.38
250-499 employees 85 12.23 79.14 11 11.46 45.83
500-999 employees 63 9.06 88.20 19 19.79 65.63
more than 1000 emp. 82 11.80 100.00 33 34.38 100.00
total 695 100.00 96 100.00
1994

less than 49 employees 168 24.85 24.85 3 3.13 3.13
50-99 employees 143 21.15 46.01 13 13.54 16.67
100-249 employees 136 20.12 66.12 16 16.67 33.33
250-499 employees 88 13.02 79.14 11 11.46 44.79
500-999 employees 62 9.17 88.31 21 21.88 66.67
more than 1000 emp. 79 11.69 100.00 32 33.33 100.00
total 676 100.00 96 100.00
1995

less than 49 employees 251 29.29 29.29 3 3.13 3.13
50-99 employees 176 20.54 49.82 9 9.38 12.50
100-249 employees 186 21.70 71.53 20 20.83 33.33
250-499 employees 96 11.20 82.73 12 12.50 45.83
500-999 employees 71 8.28 91.02 22 22.92 68.75
more than 1000 emp. 77 8.98 100.00 30 31.25 100.00
total 857 100.00 96 100.00
1996

less than 49 employees 242 28.71 28.71 3 3.13 3.13
50-99 employees 178 21.12 49.82 10 10.42 13.54
100-249 employees 184 21.83 71.65 19 19.79 33.33
250-499 employees 91 10.79 82.44 11 11.46 44.79
500-999 employees 67 7.95 90.39 22 22.92 67.71
more than 1000 emp. 81 9.61 100.00 31 32.29 100.00
total 843 100.00 96 100.00
1997

less than 49 employees 248 29.25 29.25 2 2.08 2.08
50-99 employees 165 19.46 48.70 10 10.42 12.50
100-249 employees 191 22.52 71.23 21 21.88 34.38
250-499 employees 86 10.14 81.37 11 11.46 45.83
500-999 employees 73 8.61 89.98 17 17.71 63.54
more than 1000 emp. 85 10.02 100.00 35 36.46 100.00
total 848 100.00 96 100.00
1998

less than 49 employees 218 26.78 26.78 2 2.08 2.08
50-99 employees 169 20.76 47.54 12 12.50 14.58
100-249 employees 182 22.36 69.90 19 19.79 34.38
250-499 employees 91 11.18 81.08 13 13.54 47.92
Continued on Next Page. . .
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Table 3 – Continued

Size category Number Share of Cumulated Number Share of Cumulated
of Firms all Firms, Share of all of Firms all Firms, Share of all

% Firms, % % Firms, %
un-balanced sample balanced sample

500-999 employees 77 9.46 90.54 19 19.79 67.71
more than 1000 emp. 77 9.46 100.00 31 32.29 100.00
total 814 100.00 96 100.00
1999

less than 49 employees 189 22.63 22.63 1 1.04 1.04
50-99 employees 188 22.51 45.15 14 14.58 15.63
100-249 employees 197 23.59 68.74 16 16.67 32.29
250-499 employees 103 12.34 81.08 16 16.67 48.96
500-999 employees 79 9.46 90.54 17 17.71 66.67
more than 1000 emp. 79 9.46 100.00 32 33.33 100.00
total 835 100.00 96 100.00
2000

less than 49 employees 180 21.98 21.98 1 1.04 1.04
50-99 employees 185 22.59 44.57 13 13.54 14.58
100-249 employees 198 24.18 68.74 16 16.67 31.25
250-499 employees 106 12.94 81.68 15 15.63 46.88
500-999 employees 74 9.04 90.72 18 18.75 65.63
more than 1000 emp. 76 9.28 100.00 33 34.38 100.00
total 819 100.00 96 100.00
2001

less than 49 employees 162 20.40 20.40 2 2.08 2.08
50-99 employees 186 23.43 43.83 12 12.50 14.58
100-249 employees 194 24.43 68.26 20 20.83 35.42
250-499 employees 103 12.97 81.23 11 11.46 46.88
500-999 employees 76 9.57 90.81 20 20.83 67.71
more than 1000 emp. 73 9.19 100.00 31 32.29 100.00
total 794 100.00 96 100.00
2002

less than 49 employees 151 19.26 19.26 1 1.04 1.04
50-99 employees 180 22.96 42.22 13 13.54 14.58
100-249 employees 201 25.64 67.86 16 16.67 31.25
250-499 employees 108 13.78 81.63 16 16.67 47.92
500-999 employees 74 9.44 91.07 19 19.79 67.71
more than 1000 emp. 70 8.93 100.00 31 32.29 100.00
total 784 100.00 96 100.00
2003

less than 49 employees 207 22.97 22.97 1 1.04 1.04
50-99 employees 223 24.75 47.72 14 14.58 15.63
100-249 employees 211 23.42 71.14 16 16.67 32.29
250-499 employees 114 12.65 83.80 15 15.63 47.92
500-999 employees 77 8.55 92.34 21 21.88 69.79
more than 1000 emp. 69 7.66 100.00 29 30.21 100.00
total 901 100.00 96 100.00
2004

less than 49 employees 194 22.02 22.02 2 2.08 2.08
50-99 employees 218 24.74 46.77 13 13.54 15.63
100-249 employees 217 24.63 71.40 17 17.71 33.33
250-499 employees 112 12.71 84.11 16 16.67 50.00
500-999 employees 76 8.63 92.74 22 22.92 72.92
more than 1000 emp. 64 7.26 100.00 26 27.08 100.00
total 881 100.00 96 100.00
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Table 4: Technical Efficiency: Summary Statistics, 1992-2004, Unbalanced and Balanced
Samples.4a

Year N Mean4b St.d. Coef. of Var. Skewness Kurtosis min Q25 Median Q75

Unbalanced sample
1992 726 0.74 0.13 0.19 -0.53 2.97 0.24 0.60 0.69 0.78
1993 695 0.73 0.12 0.19 -0.45 3.04 0.21 0.59 0.67 0.76
1994 676 0.74 0.11 0.16 -0.37 2.78 0.34 0.61 0.69 0.77
1995 857 0.75 0.13 0.18 -0.52 2.90 0.24 0.61 0.70 0.78
1996 843 0.74 0.12 0.17 -0.56 3.24 0.28 0.62 0.69 0.77
1997 848 0.74 0.12 0.18 -0.59 3.14 0.22 0.62 0.70 0.78
1998 814 0.75 0.12 0.17 -0.43 2.83 0.29 0.62 0.70 0.79
1999 835 0.72 0.13 0.19 -0.42 2.89 0.24 0.58 0.67 0.77
2000 819 0.77 0.12 0.17 -0.72 3.48 0.27 0.63 0.72 0.80
2001 794 0.74 0.12 0.17 -0.64 3.21 0.28 0.63 0.72 0.79
2002 784 0.74 0.12 0.16 -0.65 3.65 0.25 0.63 0.71 0.78
2003 901 0.71 0.12 0.18 -0.27 2.71 0.28 0.57 0.66 0.75
2004 881 0.70 0.13 0.20 -0.31 2.69 0.24 0.56 0.65 0.74

Balanced sample
1992 96 0.75 0.11 0.15 -1.00 4.94 0.28 0.66 0.74 0.81
1993 96 0.74 0.10 0.14 -0.39 2.58 0.40 0.64 0.73 0.79
1994 96 0.75 0.09 0.13 -0.41 2.28 0.48 0.67 0.76 0.82
1995 96 0.75 0.09 0.13 -0.57 2.74 0.50 0.67 0.76 0.81
1996 96 0.75 0.10 0.13 -0.70 3.41 0.40 0.67 0.75 0.80
1997 96 0.74 0.10 0.13 -1.00 3.93 0.41 0.68 0.75 0.80
1998 96 0.74 0.10 0.14 -0.57 2.67 0.50 0.68 0.75 0.82
1999 96 0.71 0.12 0.16 -0.69 2.88 0.36 0.62 0.75 0.80
2000 96 0.77 0.10 0.14 -1.10 4.03 0.39 0.71 0.78 0.84
2001 96 0.74 0.11 0.15 -1.07 4.32 0.34 0.69 0.76 0.82
2002 96 0.74 0.11 0.15 -1.08 5.31 0.31 0.68 0.73 0.78
2003 96 0.70 0.11 0.15 -0.60 3.84 0.31 0.63 0.70 0.78
2004 96 0.69 0.12 0.18 -0.53 2.68 0.36 0.59 0.67 0.75

4a Technical Efficiency are bias corrected efficiency scores following Simar and Wilson 1998.
4b Averages are due to Färe and Zelenyuk 2003.
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Table 5: Averages5a of Technical Efficiency and Number of Firms by Size Categories, 1992-2004.

1992 1993 1994 1995 1996 1997 1998

Size Category N mean N mean N mean N mean N mean N mean N mean

less than 49 employees 191 0.66 176 0.65 168 0.66 251 0.67 242 0.67 248 0.70 218 0.71
50-99 employees 133 0.71 143 0.69 143 0.71 176 0.68 178 0.68 165 0.68 169 0.69
100-249 employees 151 0.73 146 0.71 136 0.72 186 0.73 184 0.72 191 0.70 182 0.70
250-499 employees 93 0.72 85 0.70 88 0.74 96 0.74 91 0.73 86 0.74 91 0.73
500-999 employees 65 0.73 63 0.71 62 0.73 71 0.76 67 0.76 73 0.77 77 0.76
more than 1000 emp. 93 0.74 82 0.74 79 0.75 77 0.75 81 0.75 85 0.74 77 0.75

total 726 0.74 695 0.73 676 0.74 857 0.75 843 0.74 848 0.74 814 0.75

1999 2000 2001 2002 2003 2004

Size Category N mean N mean N mean N mean N mean N mean

less than 49 employees 189 0.66 180 0.71 162 0.70 151 0.69 207 0.67 194 0.67
50-99 employees 188 0.65 185 0.71 186 0.70 180 0.71 223 0.66 218 0.63
100-249 employees 197 0.69 198 0.73 194 0.74 201 0.72 211 0.69 217 0.69
250-499 employees 103 0.72 106 0.76 103 0.76 108 0.74 114 0.71 112 0.69
500-999 employees 79 0.75 74 0.77 76 0.75 74 0.74 77 0.72 76 0.72
more than 1000 emp. 79 0.72 76 0.77 73 0.74 70 0.74 69 0.71 64 0.70

total 835 0.72 819 0.77 794 0.74 784 0.74 901 0.71 881 0.70

5a Averages are due to Färe and Zelenyuk 2003.
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Table 6: The Spearman’s Rank Correlation Coefficients of bias corrected technical efficiency
scores between Different Years.6a

..1992 ..1993 ..1994 ..1995 ..1996 ..1997 ..1998 ..1999 ..2000 ..2001 ..2002 ..2003 ..2004
TE1992 1.00
TE1993 0.81 1.00
TE1994 0.69 0.76 1.00
TE1995 0.54 0.62 0.69 1.00
TE1996 0.48 0.52 0.53 0.64 1.00
TE1997 0.28 0.30 0.29 0.46 0.67 1.00
TE1998 0.28 0.23 0.28 0.41 0.41 0.68 1.00
TE1999 0.34 0.24 0.31 0.38 0.45 0.58 0.67 1.00
TE2000 0.32 0.26 0.35 0.39 0.36 0.42 0.50 0.60 1.00
TE2001 0.35 0.32 0.39 0.42 0.41 0.53 0.48 0.54 0.74 1.00
TE2002 0.31 0.24 0.32 0.32 0.42 0.44 0.41 0.54 0.53 0.60 1.00
TE2003 0.31 0.27 0.43 0.34 0.35 0.45 0.53 0.50 0.63 0.70 0.68 1.00
TE2004 0.27 0.22 0.35 0.26 0.31 0.43 0.47 0.44 0.54 0.61 0.60 0.78 1.00

6a All correlation coefficients are significant at 1% level.
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Table 7: Frequency of Scale Efficient Firms (for which Test 1
is not rejected).7a

year Total N N of SE Firms7b N of SE Firms, %

1992 726 271 0.37
1993 695 258 0.37
1994 676 225 0.33
1995 857 357 0.42
1996 843 310 0.37
1997 848 410 0.48
1998 814 465 0.57
1999 835 445 0.53
2000 819 369 0.45
2001 794 389 0.49
2002 784 365 0.47
2003 901 474 0.53
2004 881 449 0.51

7a The size of the test is 10 per cent.
7b ‘SE’ stands for scale efficient.
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Table 8: Frequency of Scale Efficient Firms by Size Categories, 1992-2004.

1992 1993 1994 1995 1996 1997 1998

Size Category N freq.8a N freq. N freq. N freq. N freq. N freq. N freq.

less than 49 employees 191 0.88 176 0.89 168 0.82 251 0.82 242 0.83 248 0.81 218 0.88
50-99 employees 133 0.38 143 0.36 143 0.26 176 0.45 178 0.31 165 0.64 169 0.78
100-249 employees 151 0.15 146 0.15 136 0.11 186 0.19 184 0.13 191 0.32 182 0.54
250-499 employees 93 0.16 85 0.16 88 0.17 96 0.20 91 0.16 86 0.27 91 0.27
500-999 employees 65 0.08 63 0.10 62 0.11 71 0.10 67 0.15 73 0.14 77 0.10
more than 1000 emp. 93 0.12 82 0.10 79 0.16 77 0.13 81 0.09 85 0.09 77 0.12

total 726 0.37 695 0.37 676 0.33 857 0.42 843 0.37 848 0.48 814 0.57

1999 2000 2001 2002 2003 2004

Size Category N freq. N freq. N freq. N freq. N freq. N freq.

less than 49 employees 189 0.95 180 0.89 162 0.96 151 0.95 207 0.98 194 0.85
50-99 employees 188 0.84 185 0.56 186 0.59 180 0.64 223 0.70 218 0.77
100-249 employees 197 0.43 198 0.29 194 0.28 201 0.27 211 0.31 217 0.32
250-499 employees 103 0.16 106 0.21 103 0.32 108 0.19 114 0.24 112 0.21
500-999 employees 79 0.08 74 0.19 76 0.24 74 0.19 77 0.16 76 0.13
more than 1000 emp. 79 0.04 76 0.17 73 0.25 70 0.24 69 0.14 64 0.22

total 835 0.53 819 0.45 794 0.49 784 0.47 901 0.53 881 0.51

8a ‘freq’ stands for frequency in per cent.
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Table 9: Frequency of scale efficient (Test 1 is not rejected) and scale inefficient firms
with inefficiency due to Decreasing Returns to Scale (Test 2 is not rejected), 1992–
2004.9a

scale efficient scale inefficient

year Total N N of SE N of SE, % N of SI Due to DRS Due to DRS, %9a

1992 726 271 0.37 455 452 0.99
1993 695 258 0.37 437 432 0.99
1994 676 225 0.33 451 449 0.99
1995 857 357 0.42 500 495 0.99
1996 843 310 0.37 533 531 0.99
1997 848 410 0.48 438 432 0.99
1998 814 465 0.57 349 319 0.91
1999 835 445 0.53 390 379 0.97
2000 819 369 0.45 450 437 0.97
2001 794 389 0.49 405 402 0.99
2002 784 365 0.47 419 416 0.99
2003 901 474 0.53 427 424 0.99
2004 881 449 0.51 432 404 0.94

9a The size of the test is 10 per cent; this frequency increases even more when size of the test is
increased.

9b ‘SE’ stands for scale efficient; ‘SI’ stands for scale inefficient; ‘DRS’ stands for decreasing returns
to scale.
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