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PREFACE.

This publication gives a gencral development of the
theory of the Lambert conformal conic projection. It is
intended to supplement the matter found in Special
Publication No. 47 entitled, ““The Lambert Conformal
Conic Projection with Two Standard Parallels.” Tt is also
supplementary in a way to Special Publication No. 49,
which contains the Lambert projection tables for the region
in France, and to Special Publication No. 52, which gives
corresponding tables for tho United States, since it gives
as o whole the mathematical development of the theory
upon which they depend.

A short account of Lambert’s life and work is given in
the introductory paragraphs, followed by a fow pages upon
the subject of projections in general.
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GENERAL THEORY OF THE LAMBERT
CONFORMAL CONIC PROJECTION.

By Oscar S. ApaNS,
Geodetic Computer, U. 8. Coust and Grodetic Survey.

Since this publication is to treat of some of Lambert’s
work, it is altogether fitting that it should be prefaced with
a short account of his life, especially with a statement of his
significance in the domain of map projections. Johann
Heinrich Lambert was born at Miilhausen in Alsace n
1728. He was the son of a poor tailor and his education
was entirely the product of his own exertions, due to a
systematic course of reading. It was his regular custom to
spend 17 hours per day in study and writing. At the carly
age of 16 ho discovered, in computations for the comet of
1744, the so-callod Lambert’s theorem. During the latter
part of his life he resided in Berlin, where he was much
honored for his ability. It was in the application of
mathematical analysis to the practical problems of life
that he cspecially oxcellod. FHis untimely death occurred
in 1777 in the forty-ninth year of his age.

His contributions to mathematics were the series which
bears his name, the conception of hyperbolic functions, his
theorem in conics, and the demonstration of the incom-
mensurability of #. Both Lagrange and Gauss used parts
of his work as points of departure for their investigations.

Lambert’s work in the field of map projections needs
careful consideration. He was the first mathematician
to make general investigations upon the subject of pro-
jections. Those who preceded him in this work limited
themselves to the development of a single method of pro-
jection, principally the perspective, but Lambert con-
sidered the problem of the representation of a sphere upon
a plane from a higher standpoint and he stated certain

general conditions that thé representation. was to fulfil,
5



6 U. 8. ‘COAST AND GEODETIC SURVEY,

the most important of these being the preservation of
angles or conformality and equal surface or equivalence.
These two qualities, of course, can not be obtained in the
same projection.

Although Lambert did not fully develop the theory of
these two methods of projection, yet he was the first to
express clearly the ideas regarding them. The former,
conformality, has become of the greatest importance to
pure mathematics, but both of them are of exceeding im-
portance to the cartographer. It is no more than just,
therefore, to date tho beginning of a new epoch in the
scienco of map making from the appearance of Lambert’s
work. What hoe accomplished is of importance, not only
for the genecrality of the ideas underlying it, but also for
his successful application of them in methods of projection.
The manner in which he attacks and solves any particular
problem is very instructive. Ile has developed several
methods of projection that are not only interesting but
that are to-day in use among cartographers, the most im-
portant of these being the conformal conic projection.

The initial problem presented to us in map making is
the ropresentation upon a plane surface of the relative
positions, sizes, and shapes of features that are found upon
the curved surface of the earth. A perfect representation
is impossible, since the surface of the oarth being non-
developable, can not be spread out in a plane. Thero are,
howover, many different ways of obtaining approximate
representations, the theory and properties of which con-
stitute tho subject of map projections.

The positions of the points upon the earth afe usually
defined by their latitude and longitude. Ienco, if we can
dovise a suitable method of representing the meridians and
parallels upon the sheet, the points can be plotted by their
positions relative to these lines and the map can be con-
structed. The term ‘‘projection’ is evidently used in a
wider sense than that which is given to it in geometry.
The majority of map projections are not projections in the
goometrical sense—that is, perspective projections, orthog-
onal projections, ete.—but merecly a network of meridians
and parallels that makes possible a one-to-one correspond-
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ence botween the places upon the carth and the points
upon the map.

Some of the things to be desired in a map are as follows:

1. Preservation of the shapes of the countries.

2. Preservation of the relative sizes of the countries in
their representation upon the map.

3. The distance between places should be in constant
ratio to their distances as indicated upon the map.

4. A great cirele upon the carth should be represented

by a straight line upon the map.
5. The Iatitude and longitude of any place should he

readily found from its position upon the map.

6. The ease with which a projection can be construeted is
also to be considered from the practical standpoint.

Only part of these things can be attained by any given
method of projection.

The scale of a map in any given direction is the ratio
which a short distance measured upon the map béars to
the corresponding distance upon the surface of the earth.
The definition is limited to short distances because the scale
of a map generally varies from point to point. It would
of course be desirable that the scale of the map should be
correet in every direction at every point and constant for
all parts of the map. This is impossible, however, si'ncc if
it were true, the map would be a perfect representation of
the spheroidal surface and could be fitted to it. 1In any
given method of projection, therefore, some of the features
to be desired must be sacrificed.

The representation of the shapes of countries as nearly
correct as possible is one of the most important functions
of & map. A large country can not, of course, be repre-
gented without soine distortion when considered as a whole,
but small areas may be mapped by similar figures. A pro-
jection that preserves the similarity of small arcas is called
orthomorphic. The representation of one surface upon
another so as to preserve similarity of clements has been
called by mathematicians conformal representation. An
orthomorphic projection is therefore a conformal repre-
sentation of the spheroidal surface of the carth upon a

plane. Orthomorphic projections are in general not of
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much use in map making unless the meridians are straight
lines.

The Lambert conformal conic projection fulfills this re-
quirement, and it has lately been brought into especial
notice by the fact that it is the projection that is used for
the battle maps in France. In this projection, as is the
case with any conic-projection, the intersecting cone gives
a better map than is given by the tangent cone. In the in-
tersecting cone we have a shortening of the scale between
the standard parallels and a lengthening of the same at the
top and bottom of the map.

The following is a somewhat simplified development of
the mathematical theory of the projection, including a
determination of the necessary and suflicient conditions
for a conformal mapping. Use is made of the tangent cone
only in order to determine the two limiting cases of the
projection.

It iswell known that a plane curve can be expressed
in parametric form in such a way that z=¢() and y=
¥(t), ¢ and ¢ being some known functions of the variable ¢.
Thus the straight line passing through the point (¢, b) with
direction cosines a and 8 can be expressed in the form

z=a+at,y=>0+pt
A circle can be given in the form
t=a cos t, y=a sin t.
A space or skew curve can be similarly expressed as
r=¢(t), y=y(), z2=x(1).

Such a curve may degenerate to a planc curve under cer-
tain conditions; the obvious one is that one of the func-
tions is identically zero.
A straight line in space becomes

r=a+at, y=b+pt, z=c+vt.
A circular helix is given by the equations

T=a cost, y=«asint, z="0L.

When the coordinates are given in terms of functions
of two variable parameters, the locus becomes a surface
except under certain conditions that will be specified
later. Thus, the tangent surface of a skew curve ex-
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pressed by the parametric equations z=¢(), y=y(f), and
z=x(¢) is given by the equations

r=0() +s¢’(t), y=v ) + '), 2=x( +sx' D),
the primes denoting differentiation with respect to ¢. By
employing s and ¢ as independent variables, the surface
given is.that swept out by a tangent to the curve as it
moves along the curve. The surface of a sphere is given
by the equations

r=asintcoss, y=asintsins, and z=a cos .

To avoid some of the diflicult questions connected swith
the theory of curves and surfaces, the functions that
will be considered in this article will be limited to domains
in which they are single valued, finite, continuous, and
differentiable. These limitations are permissible in the
cases to be considered. Thus, in the equations of the
sphere the variables are limited to the domains

—T<t<+5 and —7<s< +.
2 2

In regard to the functions threc cases may occur. In
the first place all of the functions may be constant, thus
giving o single point. In the second place, the functions
may not be constant, but any two of them may be func-
tions of the third; this would give a curve and not a surface
sinco the three functions could then be expressed in terms
of some single variable, 7, and the equations would become

t=X(@), y=Y), and z2=Z(n).

As the third possibility, at least two of the functions are
independent of each other. In this case the locus repre-
sented is a surface. Of course any two may be inde-
pendent, but all that is necessary is that at least two boar

this relation to each other.
Let ¢ and ¢ be the ones that are thus independent.

This requires that their Jacobian is not identically zero, or
0p 00
ou’ ov| 0
o0 oy
ou’ v

57341°—18-—2



10 U. S. COAST AND GEODETIC SURVEY.

It should be noted that a parametric representation of a
surface is not unique. If such a representation has been
found any number of other forms can be obtained by set-
ting the v and v of the first form equal to two arbitrary
independent functions of two other variables s and t.
Thus the equations may be u=NX\(s, t) and v= ;;(s, t) with

the condition
OA OA

os” ot |7V

ou Ou

os’ ot

If one of the variables is held constant while the other
varies, a curve is traced out upon the surface. Thus there
is a set of curves for w=-constant, and another set for
v=constant. These curves are called the parametric
curves and « and v are called tho curvilinear coordinates.
By a change of coordinates as indicated above a set of
curves can be determined such that the curves, uw=con-
stant, are everywhere perpendicular to the curves, v=
constant. In the equations of the sphere, s=-constant
gives a meridian great circle and t = constant gives a circle
of latitude or a parallel. In this case the curves are per-
pendicular or orthogonal. In a more general way any
functional relation between the variables v and v deter-
mines a curve upon the surface. This can be expressed
in the form of one coordinate as a funetion of the other, as
v=g¢ (u), or in the form ¥ (u, v)=0. As a further con-
sideration any ordinary differential equation of the first
order between u and v determines a set of ! curves upon
the surface, since the integration of the same would give a
functional relation between » and v containing one arbi-
trary constant.
The element of length upon a surface is given by the

;quat.lon dS? = da? + dop? + dz22.
ut
bL bx
dy = 2"- du + g—"’ dv
oz 0z

dz—b du +a dv
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o[+ G

or Jdr Oy br/ 0z bz)d v

hence

+2 ou bv+b_u v T oudy

-G

To abbreviate the expression it is customary to use the

RN

aa; or Qy Oy 0z Oz

= au av+bu av+bu ov

6=(55)+ G +(50)-

With these the equation for the clement of length becomes
dS?= [ dur 4+ 2F du dv+ G dv*
If v is held constant, the element of length becomes
dS? = I du?, since dv=0

If the direction is taken positive in which u is increasing,
wo find

dS,=E du
Similarly for u = constant, S, = yG dv

. _ or _ 9y ), 02

If vis constant do = —a&du, dy = budu’ anddz= Su du.
The direction cosines of the tangent to the curve v = constant
are given by tho equations a=3§3, ete.

L ox 1 Jy 1 9z

Theseb = =, and vy
eseboecome, a= w/ 7 ou’ y B= w/ 7 5u’ 1/ T >0

Similarly the direction cosines of the tanoenb to the curve
= consgtant are given in the form

a’:—I: Q_:c_’ B = 1oy =, and ¥’ = } _b_z_
V& v J& ov VG 0
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If 6 is the angle between these two tangents or the angle
between the curves, we have from: the known relation,
cos =aa’ +68" +vvy’

1 /Or dr Oy Oy 0Oz 0z

T JEAS: w0 ou 'ty 5@)

7

TR
It follows, then, that the parametric curves u and v
upon a surface on which /s identically zero form an or-
thogonal system unless the +/FG is identically zero at
the same time, Since when Fis zero neither /2 nor ¢
is zero for the usual real surfaces, it follows that, when

o T
F=0, 6=7-

We shall now determine the conditions that are neces-
sary and sufficient to permit a conformal representation
of a surface upon a plane. One surface is said to be con-
formally represented upon another when any infinitely
small section of the first surface is represented by a similar
figure upon the other.

If a surface is to be represented upon a plane according
to some law and x, y, z are the rectangular coordinates
of the surface and u, v the rectangular coordinates of the
plane, then for every pair of coordinates «, v in the plane
a set of coordinates x, ¥, z of the surface must correspond;
that is z, ¥, and z must be functions of v andv.

We may then consider that the surface with the para-
meters u, v 1s to be represented on the plane with the
rectangular coordinates u, v. The question then becomes
under what conditions such a representation is conformal,
Let us suppose that (u, v), (u+du, v+dv) and (u+6u,
v+6&v) are three points upon the surface forming an in-
finitesimal triangle. This will be represented upon the plane
by the triangle (u, v), (u+du, v+dv) and (u +6u, v+&),
These two triangles must be similar but since their positions
relative to each other do not come into consideration,
no account is to be taken of signs either of sides or angles.
Two things are then required, first that the sides of the
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triangle extending from the point (1, v) of the surface
must be in the same ratio as their representations in the
plane extending from the point (u, v) of the plane, and
secondly the angle included between the sides of the tri-
angle upon the surface must he equal to the angle included
by their images in the planc.  That is, the square of the
elements of length upon the surface must be proportional
to the square of the clements in the plane and the cosine
of the angle between the lines upon the surface must

equal the cosine of the corresponding angle in the plane.
<\t ETNe

But as’— 1' (Zu2+2 F du dv+ G dvs.
= I §u?+2 F ou dv-+(7 1%,

The quantities I, I¥, and ¢ would be the same in each case.
They may be constants or functions of » and » but since

F1i. 1.—Surlsace triungle and its representation upon & plane.

each curve is infinitesimal and starts from the samoe point

(4, v), they would be constants for this point. On the
other hand, in the plnm,, wo have \
T
o-nt Js’—du’+dv pestn T (3

b2 = du? + 8t N,f‘;_ 5*‘ N -

The first condition is therefore that L)de prgportmn
E du+2 I" du dv+ G dv? du d

iz Fousv+ G ot sl r o,
3 LT Ry
may be identically true. This evidently requires that

E=@ and F=0. Thus the parametric curves must be

orthogonal.
The cosine of tho angle betweon the curves upon the

surface must now be determined. The direction cosines
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of the tangent at the point (u,v) of the curve dS upon the
surface are determined by
dr dy  dz
dS’ dS’ d8
or ox or
- audu+ o dv t
JE dui+2 1 du dv+ G do®’ O

Also the direction cosines of the tangent at the point (u,
v) to the curve 8§ upon the surface are in like manner

oz or oy b/
b 6u+av ou 6u+a

. . =, cle.
VE 242 1 ow 504G 307 I owr+2 I 6u o0+ G 007

Consequently, if o is the angle between the curves, we have

oy
du+b {v>( -6u+ 6) <a h‘*av )l

E))/ 01/
-a--lzé + 3v> (a"’“*av‘h’)(__ 5H+av >]

ov

cosa= x/(l'cl;_%——‘)lfju:/;; (,rdv;) (Esut+ 2 I'susv+ GGov®
or

Edu dut I (du v+ 6u dv) +(r do v
cos o=

VA 2 T dwdo + ¢ dv?) (L SWEF2 I su s+ Q 61)2)
In the plane the corresponding direction cosines are

du, d_?_)_
/(lu2 Tdv? Vdu? 4 dv?

and o du v
Vour + vt \four+ sv?

If A is the angle between these two lines, we have

cos A — _dudutdv sy

O ) G 8
The second requirement is, therefore, that the equation
L Fdu su j;- ]_’ ((]u_éviéq_dg)_) t(‘_du_ér L

L2 Fdu do -G do®) (E 3ur+2 I su oo+ G 09
. du su+dv &v
J@w T &) o v

NCAT
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should be identically true. This requires as before that
E=@, and F=0. Thus of tho two conditions only ono is
necessary and one is also sufficient since each leads to the
sume results. It is thus scen that the lincar clement upon
the surface must be such that it can be expressed in the
form dS*=m? (du? +dv*). :

If we have a surface with the lincar clement diS*=
Vdw? 4 Udv® in which V is a function of v alone and
U is a function of w alone, it can be expressed in
the required form. Let us put it in the form d8*=

uv (ii}b‘ +- ——) By changing the paramcters, we may let

6= / and 7 = LN The lincar clement then becomes
U JV
dS? = L 1% (1/03+(]77").

When the Iinear element is in this form, the surface is
said to be expressed in terms of an isothermal orthogonal
system of parameters and the net of u, » curves is said to
form an isotheymal orthogonal net.  The surface is divided
by them into an «? group of infinitesimal squarces. o

After the surface has been expressed in this manner
in terms of isothermal orthogonal coordinates, the general
conformal representation of the surface upon a plane can
be determined.  This at the same time determines the
general conformal mapping of the 4, v plane upon another
plane with point to poeint correspondence.  This general
representation is given by the cquation x+wy=f (v +w),
in which i denotes as usual \/:T and f (% +1) is any ana-
lytic function of the complex variable (w-+w). The
clement of length &S?=m*(du* +dv?) is represented in the
plane by ds*=dz* +dy?.  Let the curve ¢ be represented
by the curve €, in the plane. If @ represents the angle
which the curve (" makes with the curve v =constant, we
will have dS,=mdun and

d S,, _ du

o8 0="3% = Vil v a0

gin f= dv_
1/du2 Tdv
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If 6, is the angle that €, makes with the axis of X, we have

cos ,= dz
Vdz? +dp
. dy
o 5 9. =
sin % \/tlﬁ +dy?

dll+bd?) du+1dv
o — g — et
¢ =cos 0+ sin Jdu? Fdv? du—1dv

oo Q¥ +1 dv

du—1 dv

or e
Similarly, ) :

dz+idy_ [dz+1dy
Vdz? +dy? dz—1 dy

éh=cos 6, +1 sin 0,=

de+1 dy
2i6) —
e T dr i dy
Therefore,
. ezi(o_a.)=(lu +idv dz—idy
du—tdv dr+idy
or ezt(o_o,)____du +idv dz—1idy

de+1idy " du—1dv
But since z +iy=f (4 +1), so also will z— 1y =f (u— W)«
By differentistion, we have '
dz +1dy = (du +idv)f’ (u+1v)

or
dz +1dy
du+idv

dz—id .
o= =),

— " (u+iv)

and

the primes denoting differentiation with respect to the
complex variable. By substituting these values, we have

. I (u—w)
¢H0= = f’(u+w)

I I and T, are another pair of corresponding curves
starting from the same point and their angles are denoted
by ¢ and ¢,, we should find that €*@—#) equaled the
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same expression. Since this expression is constant for a
given point, it follows that
021001 — p2i(¢=~¢1)

or .
G—0,=¢—¢,

so that
0—=0,—o,.
That is, the angle between the curves upon the surface is
preserved in the representation on the plane. If we had
made use of the functional relation z+1iy=F (u—iv) we
should find therelation 2@+ = I (u—w)
na therelation ¢ 7w Eiv)

Therefore in the same way as above

0+0,=¢ -+,
or
b—p=o,—0,.
That is, the angles are equal but directed in the inverse
sense, a difference that is not taken into account in con-
formal mapping. The most general conformal mapping
is given then by the relations
1y =f(u+w)
and '
z+iy = I(u—1iv)
The two other forms are merely conjugates of these, 1. e.,

z—y =1 (u—1iv)

and .
z—1y=F(u+w).

It is easily shown that these f unctional relation:‘? a:lso
preserve the proportionality of lengths. By diflerentiating
the relation z+iy=f (u+iv) we find that dz+idy=
(du+idv) f'(u+v). By differentiating tho conjugate of
this, we obtain dx —idy = (du —idv) f* (u—w).
When these results are multiplied, we obtain

(dx)? — (idy)? =] (du)? ~ Gdv)?]f" (u+0) 7 (u ~ )

dr +dy? = (du + dv®) f (u + ) ' (u— )
But the clement of length in the plane has the form
ds? = dx? + dy*

or

b7341°—15——3
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Also on the surface dS? =m? (du®+ dv?)
By combining theserelations, wefind

dsz=%§f’(u +'iv)f’(u—.'ifv)

or

ds _f (w+w) f" (u—1iv)
a5

m

The two functions (v +1v) and f'(u—iv) are conjugate
complex functions and hence their product is realsince

Y4

-
L

v
F1G. 2.—Surface of revolution.

hoth the sum and product of conjugate complex functions
are real. The fact that the angle between the curves is
held would in itsell be sufficient to establish the comfor-
mality of the representation, but we shall have need of
the above expression which is called the magnification of
the representation.

If we have the equation of a plane curve given in the
planc in the form z=u, y=0, z=f(u), a surface of revo-
lution with this curve as a meridian is given by the
equations =14 cos v, y =% sinv, z=f(u). For this surface
E=1+[{f'(w)}, F=0, and ¢=u?* the prime denoting dif-
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ferentiation with respect to u. The squarc of the element

of length is therefore dS?= {1 + [f”’(w)}dw? + w*dv*
dSz — uz{ _1_+[{L_;_(_u )]Zduz + dvz} .

or

We can let

Then dS? = u2(du? + dv?).

- [Tk,
u

The surface is thus expressed in
terms of an isothermal orthogonal set of coordinates.

Another test for a conformal mapping is that the func-
tions must satisfy the Cauchy-Riemann partial differential

equations.

T4y =f(u+w)

Hence

With the form

we obtain

Therefore _

Sumif ki

=if" (1 +1v)

oz

aa£=f’(u+iv) or ———f’(u+w)

Q—~zf’(u+w)

’ig'i'f=f'(u+'w) —«---*zf’(uHL)

a—-llv—f (u+1v).

and v ~ou’

41y = F(u—w)

O% _ oo

>u F'(u—w)
0T _  pwiy z
55———%1“ (U~ w)
;O

o = ["(u—w).

i i ().

ov

ox oy and oz _ b?/
Su- “ov o T ou’
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These are the equations that determine that a given
complex function is a function of a complex variable in
the accepted sense. The first set preserves the angle
between two given ares in magnitude and sign.  The second
set results in reversing the angle, or the original angle and
the image have opposite signs.  Both z and ¥ are functions
that satisfly Laplace’s equation for two dimensions. Thus
with the first set

% _ 0%y
ou Jvdu
Fr_ Oy
ot Qudv
But 0%y 0%y

dvon” dudv”

Therefore by addition

Also

The same results may be found from the sccond sct.
From these results we may conclude that the most general
conformal representation of one surface upon a plane is
given by setting the complex variable in the plane equal
to any analytic function of the complex variable formed
from the isothermal orthogonal coordinates of the surface,
or to any analytic function of the conjugate of this com-
plex variable. In the first case direct equality of angles
is found; in the sccond, the angles are equal but turned
in opposite directions.

If the surface to be represented is an cllipsoid of revolu-
tion, the parametric cquations may be chosen in the
following form:

=@ cos Msinu, y=a sin M sin u, z=10 cos u.

a is the semi-major axis, b is the semi-minor axis, M is
the longitude and » the complement of the eccentric angle
of the generating cllipse or the complement of the reduced
latitude.



THEORY OF TIE LAMBERT PROJECTION. 21
The clement of length upon the spheroid is given by the
cquation d8% =da® +dy? +d=.
But
dz=a cos M cos w du—asin Msinu dM;
dy=asin M cos udu +a cos M sin u dM;
dz= ~b sin u du;
hence the clement of length becomes dS? =a® sin® w A +
(@ cos?u + ¢ sin u) du?, Thus F=a?sintu, F=0,and (=
; <, @t =D, .
a*cos *u 407 sin u.  1f = 5— is put cqual to ¢ the equation
beecomes
A8 =a? sinzu [dM? + (cot* u+1—¢) du?l.

The equation of the generating cllipse is given by

T=a sin ¥,
z=> cos U,
P
U
L

Fig. 3.—Generating ellipse with angles L, p,snd 1,

The tangent of the colatitude p, is the cotangent of the
angle which the normal makes with the X axis. The
tangent of the angle which the tangent makes with the X

axis i3 dz
dz

The tangent of the angle which the normal makes with
the X axis, or the tangent of the latitude Z is equal to

dzx
Tdz’

But

_dx_ tan L= (;; cot u

dz
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or :
tan L =cot p=% cot u
hence ,
7 tan u =tan p
or y1—¢€ tan u=tan p.
_ (1 —e*)cos? p N
cos? u—m since cos? U= T tante
., sin’p
SIN* U =13 Gos? P
du _ dp
1 —e2.
1—e COS*U  COS? P
or
du—~ V1 —é dp
—e? cos? p
(1 —e?)*dp?
2 - =
) (cot?u+1 ez)du2 =€ cos® p)* si? p
ence
__a@’sin’p (1—e)2dp?
ds* 1—é cos? p A+ (1—¢? cos® p)? sin? p
Let
_ (1—-e?)dp
@ o= (1—¢ cos® p)sin p
en

dp efesmpdp f—esinpdp
sinp 2J)1—ecosp 2) 1+ecosp

By integration
6=log tan ——log (1 —ecos p)+§e log (1+ecos p)+log@.

If the limits of integration are so chosen -that & (the con-
stant of integration) becomes equal to unity, we have

1+ecos p\z
0= log[tan2 (—ecosp)]

l1+ecos p 7
1—ecos p

or

ef =tan g
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The element of length now becomes

_ a*sin?p
asr = E S0 ] p(dM +doz>

The parameters have been reduced to an isothermal
orthogonal system.

We can now determine any number of conformal repre-
sentations of the spheroid upon the plane. All that is
necessary is to make use of the relation

z+uy=f (M)

f being any analytic function and either combination of
signs being used.
With the relation x + iy =f (M —16), letf (v) = Ke?.

We now have

p 14¢ 008 p
if+tiog [ an B (Fretm2)? ]

x+1,'y= Ke
D, [ltecos p
_ Kelog [zan 5} T—e cos p) ]xeull

= Ktnn’2 (lm) (cos IM+14 sin lM).

—€Cos8 p

By equating the real parts and the imaginary parts, we
obtain

le
z=K tan! 2. M-P ?cosIM
2 \l—ecosp
 wtant P l+ecosp
y= K tan 5" ({Tecos p sin [ M.

In- this projection the parallels become concentric cir-
cles. The equation for the radius is
N e S 1 P, 1+ecosp
#+y'= K tan 2" \I—ecosp
The meridians are represented by radii of these concentric
circles. This method of projection is the one known as
Lambert’s conformal conic projection, first developed by
John Heinrich Lambert, in his ‘‘Beitriige zum Gebraucho
der Mathematik,” Berlin, 1772. It was later fully dis-
cussed by Gauss.




24 U. 8. COAST AND GEODETIC SURVEY.

If an angle 2 is assumed such that

E=tan£~ <1+e cos p 7
2 l—ecosp

this angle will be very nearly equal to the complement of
the geocentric latitude.

tan

%

F1G, 4.—Generating ellipse with angles L and L',

From the equation of the generating ellipse (p. 21), the
tangent of the geocentric latitude is given by

‘ ~Z=g cot w=tan L’/
But

tan L= 7 2 cotu
or .

cot u=-2— tan L,
hence

) b?
tan L’=E cot U=3 tan L,

@ and b being the semimajor axis and semiminor axis,
respectively.

Then to a sufficient degree of approximation z= —g—— L.

The value of z can be computed rigidly very conven-
iently by assuming an angle ¢ such that cos ¢=¢ cos p.

Then, since
g [ltcosgq
COt \/1 —~C0s ¢

2 P i 4
tanz tan 5 cot 3
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or
log tan —§=10g tan 'g+e log cot %

However, the approximate formula determines z to within
a few tenths of a second. By using th1s auxiliary angle
the equations become

2= Ktan‘* cos I M
Y= Ktan’ sin I M

= 1 2
r= K tan 5

With these values z is reckoned downward from the center
of the concentric circles and y to the right of the central
meridian if M is reckoned positive in that direction,

K and [ are as yet left arbitrary constants. ! may be so
determined that the ratio of the lengths of any two arcs of
parallels on the map may be equal to the ratio of the
lengths of the arcs that they represent. If N is the radius
of curvature perpendicular to the meridian, or the length
of the normal prolonged to the minor axis, a radian of the
parallel L, has the length N, cos Ly; in the same way the
length of a radian of parallel L, is N, cos L,. Conse-
quently, the ratio of the lengths of these two arcs is repre-

sented by N cos L
1 1

- N,cos L,

Since the A factor' in the tables for geodetic positions is

equal to
1

Nsin 1”

the ratio becomes
4,co8 L

A cos L,

* The arc upon the map that represents the radian of para,llel
L, has the length Ir, =1K tan’ Z . The radianof parallel L,

1 8ee United States Coast and Geodstio Survey Speclal Publication No, s, entitled
“Formulae and Tables for the Computation of Geodetioc Positions.”
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is likewise represented by Ir,=1K tan' —;—” The ratio of
lengths will be preserved if we have
2

tan 4
an 5 _Aycos L,
\ tan 22 A, cos L,

2
I — log cos L, —log cos L,—log A, +log 4,

or 4 2
“1 . ~2
log tan 5 log tan 5

, K may now be determined so as to hold not merely the
ratio of the arcs of parallels L, and I, but also'to hold the
exact length of these parallels. This is an excellent method
of determination for mapping such an area as that of the
* United States. In this way we should have

1K tan! 2 ——— N, cos L,= cos L

A, sin 177
hence Ko cos L, _ cos L,
A, sin 1771 tan? =t 2 A,sin 17 Ztim’ ZZ

The twofold determination serves as a check on the com-
putation.

With this determination of { and X, we shall compute the
expression for the magnification at any point. We
employed as the form of the function f

f (M—if) = Ketdt+o

henee ' (M—i6) =i KM+l
I (M+i8) = —i K le—itM+10
B F(M—i6) f'(M+i6) = Keleet,
ut

ds _, _ A CH=i6)" (M +76)

m

From the equation of the linear clement on the ellipsoid
on page 23

a sin p
41— ¢ cos? P

1/ —¢? cos? p Klo®,

@ sin p

m=
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But
' 2 \l—ecosp
therefore
Kltan 2 1+e cos P\ o————
= z/1—¢ cos? p
asinp \1—ecosp
or

o= Zrn Iy _lrnApsin 17
~ N, cos L, cos L,

r, being the radius of the circle on the map that represents
the parallel of L, and p, being the radius of the parallel.
The last form is obvious from the conditions.

If the parallels to be held are chosen about 14 of the
 distance from the bottom and the top of the area to be
mapped, the proper balance will be preserved. The
upper -and lower part of the map will then be about as
much too large in scale as the central part is too small.
The scale along L, and L, will be exactly correct. With
this value of K one can tell how much any parallel is in
error of scale by computing a radian of the parallel and
the length of the arc which represents it on the map. This
is just a statement of the equation

7c=@—’.
Py

With this projection a.map could be made of an area
such as that of the United States so that it would not be
in error of scale in any part of it by more than 1 1/5 per
cent. A polyconic projection of the same area is in error
of scale by as much as 614 per cent in some parts. A
Lambert projection for the United States to be evenly
balanced should hold parallels 29° and 45°. The scale
would then be just about 1 per cent short along the 37°
parallel and 1 1/5 per cent long along the 49° parallel.

In Special Publication. No. 52 of the United States
Coast and Geodetic Survey, are given tables of coordinates
for a Lambert projection of the United States. The
standard parallels were chosen as 33° and 45° to lessen
the scale distortion of the middle section of the country.
This scheme gives about 214 per cent scale distortion
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Fi16. 5.—8cale distortions with the standard parallels at 29° and 45°.
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FiG. 6.—Scale distortions with the standard parallels at 33° and 45°.
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along the parallel of 25° as the greatest on the whole map.
Only a small part of Florida and of Texas are affected by
this increase of scale error. ‘

The coordinates for mapping the parallels are most con-
veniently computed using as origin the point where the
parallel crosses the central meridian, the central meridian

o being the Y axis and a perpendicular to it
the X axis. All the formulas required for
computation are as follows:

bz
tan L’ =— tan L
P
z=1§r—-L’

Z=10g cos L, —log cos L,—log A, +log 4,

log tan —22—‘ —log tan %2

2
K cos L, _ cos I,
A, sin 17 1 tan? 521 A, sin 1”7 1 tan} 523
2
= | et
D r= K tan 5
 xz=rsinlM

Fia. 7.~Represents. % =7 (1 —cos I M) =2r sin? U_[= z tan 2.0
tion of a small geo- 2 ) 2 ;

id. . . N .
detlo trapesel If it is desired to make the computation
considering the earth as a sphere, it is only necessary to

let e=0. 2z then equals the polar distance or z=p =—72,—r ~L;
.1

A“:Az:asin 17
above formulas, the correct forms are given for the sphere.

The difference of the radii gives the spacing upon the
central meridian. If the parallel at the top and the one
at the bottom are constructed by determining the coordi-
nates of their intersections with the meridians, the me-
ridians can then be drawn. They can then be subdivided
as was done in the case of the central meridian. In this
way the coordinates of the other parallels can be deter-
mined without computation.

When these values are inserted in the
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If the two parallels to be held approach each other indefi-
nitely, we shall have to determine the limiting value of 7,
This can be done in a number of different ways, and
in fact the computation was made in six different ways
with the same result in each case. The value that was
obtained is the same as that obtained by Gauss and cited
by Forsyth in his “Theory of Functions of a Complex
Variable.”” Especial pains were taken with this, because
Germain in his’ “Traité des Projections” obtains an
erroneous result. The value is here determined by the
same method that Germain said that he used, not because
it is the simplest but to illustrate the fact that the correct
result can be so obtained.

The problem is to so determine / that 0 may have the
same ratio to BD that 4B has, or to determine the place
where two successive parallels are held at the same ratio.
This is the same as saying that the magnification shall be
a minimum at this point and can be true only at this point.

OB=r
length of BD on the map is equal to dr
a(l— e’)dp___
(1 —¢* cos? p)%
length of OD on the map=l(r+dr)dM
length of @D on the earth

[ a sin p asin p )
VI—€cos?p (—\/1-—e ? cos? ]d
[_ @ sin p + a cos p dp g€ sin? p cos pdp]JM
LTS e cosfp JT—@cosip  (1—¢ cost p)T
@ sin p a(l—e€) cos pdp
4 ]dM
1/1—-5 cos¥p (1—¢é Coszp)z

length of BD on the earth=

To meet the required conditions, we must have the propor-
tion

@ sin p a(l—¢€) cos pd
n P p]dM

U +dr)d M [m (1-¢ cos* p)7
dr _al=¢)dp

(1—¢€ cos? p)‘g*
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or
Ir , (1—¢ cos?p)sin p
'(‘i;,,'*'Z*- (1"’62)dp +cos p.

Therefore, since .
codr_ (=) dp
Ir” (I—¢cos? p) sin p’

I=cos p.
The magnification is least at
p=cos™ [ or at L=sin"" 1.

If this least value of the magnification is denoted by %,
~we have

! e ’
I /1—-I\T /14ed\z i—5%
k=-—~:—:—=' __._._.) .< ) -'\/1—‘6222
R AN B/ 1—d _
If 7 is taken equal to cos p, and K is determined so as to
hold the length of the parallel of colatitude p, we shall
have the case of a tangent cone.

Fia. 8.—S8tereographic projection of the northern hemisphere.
Germain obtained the erroneous value
7208 p—¢ cos p(1—3 sin’ p)
. ' 1—¢
If 7 becomes equal to unity, we have p,=o and the

tangent cone becomes a tangent plane at the north pole.
The equations now become , :
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2
r= K tan 5

r=rcos M
y=rsin M.
This gives a projection for the spheroid analogous to the
stereographic projection for the sphere. With the sphere
the value of € is zero and z becomes the polar distance.
We then have a perspective projection from the south
pole upon the plane tangent at the north pole.
If 7 becomes equal to zero the tangent cone becomes a

cylinder. tangent at the equator, and p, equals 7)75 To

determine the values it becomes necessary to evaluate
some limits. K becomes infinite but so that K1 is finite
and K —g finite:

K N, cos zLo
! tan’ ~29
Kl N, coszL0
‘ tan? —29
When
o . T
po':zo:‘Q“
then
- lim Xl=N,=q

In the genera: formulas

le
- P, (ltecos p\y
w—Ktanlz (1—-ecosp cos I M

14ecos
Y = Ktan’]—)— (1 ecosg 2smlM

To evaluate the limit, let us write « in this form

1+e 08 p
z=Kcos IM ¢ '° [t“ l—e oS D ]

or on developing the exponential

g= K cos lM{l +1log tanB (w) ]+0(zz)}

1—¢€cos p
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O(?). denoting terms with I? as the lowest power of I. But

=K
hence

i (}i:‘é?;?i) J

— K cos LM O@).

Taking the limit when poilr; l=o0
1—ecosp
o —2Z=a log [cotr—p (1 e oos p) ]
Denoting x,—z by « and substituting for p its value %—-L,
we have
x=alog, | tan > (L_eqm L>
En 1+esin L

log, denoting the N&perlan logarithm,

= z]l 1+ecos p\esinlM
y= KI tan 5 (1_€cosp s 2

Taking the limit when po-—::%, =0

y=aM,

M being of course expressed in arc. Interchanging z and
Y to give the coordinates as usually plotted, we have

z=aM
y=a log, [tan ) (1 —esin L) ]
4 14esin L

This is a projection of the spheroid analogous to the
Mercator projection for the sphere. If ¢ becomes zero we
have the Mercator projection of the sphere.

We thus find that the stereographic and the Mercator
are special cases of the Lambert projection and are there-
fore conformal.

~ Certain points in a conformal projection may be singular
points at which the conformality fails. This is the con-
dition at the pole in the Lambert conformal conic projec-
tion. The angles between the meridians are not pre-
served, since the angle between two meridians is I M instead
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~ of M as upon the earth. At such points, if w=1(z) is the
complex relation, %%’ is equal to zero or to infinity. The con-

formality fails at the poles in a Mercator projection but is
preserved at the central pole in a stereographic polar pro-
jection. Since the angle at the center of the system of
circles in the Lambert projection is equal to 1M, the 360°
in longitude is mapped on a sector of a circle with central
angle equal to 360° X [. Since ! is in the usual cases less
than unity, the central angle will be less than 360°, If1{

3!4 ﬂ} | lJ 4 ! 80
) N4
- (> \\ \ ) J‘/ f/ N
Wi ARV NRT /
TR %y i
S mQ
o] ¥ 1
R . W
U™ » \
Y H \ 4 o 0
(
\
N N anyi
' i
lr c,\
)
l
1 80

Ll
180 90 0 90 180
\ F16. 9.—~Mercator projection.

is equal to 34, the angle of the sector would be 270°; for I
equal to 24 the angle would be 240°,

In the war zone in France, the maps are made in the fol-
lowing manner. Instead of using the exact formulas that
have been developed, approximations are employed. A
cone tangent at 55 grades (49° 30') is first determined with
the parallel of 55¢ as the central parallel of the map.
Along the central meridian the parallels are spaced from
the formula

3
Ar=/3+6—i~o—,
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B being the distance along the meridian on the earth and p,
being the mean radius of curvature at 55¢. This formula
for Ar is a Taylor series development of Ar from the rigid
formula for r, correct to the third power of 8.t

The radius for the parallel of 55¢ is taken as N, cot 55¢,
N, being the radius of curvature perpendicular to the
meridian. The values of Ar being added to or subtracted
from this radius give the radii of the other parallels. AM
sin 55¢ gives the arc along the parallel corresponding to

F1a. 10.~Graticule for the Lambert projection of the northern hemiisphere with I=3f,

the difference of longitude A3/ reckoned from the central
meridian.

After these values are computed the whole scale is re-
duced by 1 part in 2037. This gives us approximately a
cone intersecting at the parallels of 53¢ and 57¢, The
whole map is then covered with a system of kilometer
squares with origin’ at latitude 55¢ and longitude 6¢ east

1 See United States Coast and Geodetic Survey Special Publication No. 47, p. 13.
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of Paris. The lines north and south are all parallel to the
meridian of 6¢ and the east and west lines are perpendicular
to the same. A great circle for a limited region is a straight
line within the limits of scaling. Since the map is con-

180 2

So

- Fi1a. 11,—Graticule for the Lambert projection of the northern hemispheae with I=34.
o \

formal, a chart made upon this projection is of great use
in determining the direction for gunfire. The scale is also
preserved constant within the error of scaling, so that the

projection is excellent for the determination of both direc-
tion and distances.
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