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PREFACE. 

This publication gives a gcnaral tlevelopment of tho 
theory of tho Lambort conformal conic projection. It is 
intentled to supplemont tho mattcr found in Spccial 
Publication KO. 47 ontitlod, “Tho Liiinbert Coiiforinal 
Conic Projection with Two Standnrd PnrnUeIs.” It is also 
supplcmentary in a wny to Specinl Publication Xo. 40, 
which contains the Lambert projection tribles for tho region 
in France, and to Spccial Publictttioii KO. 52,  which givas 
corresponding tables for. tho Vnited States, since i t  gives 
ns wliol~ tho mathematical development of tho thcory 
upon which they drpend. 

A short account of Lnmbort’s lifo and work is given i l l  

tho introductory paragraphs, followcd by a fow pnges upon 
tho subject of projections in gonernl. 
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GENERAL THEORY OF THE LAMBERT 
CONFORMAL CONIC PROJECTION. 

n y  OSCAR s. ADAhlS,  

G'uoil~.tic C'onipuicr, U. S. C'oust and Grodcfic Survy. 
_I_ 

Since this publicatioil is to trent of sonio of Lambert's 
work, it is altogother fitt.ing that it should bo prcfscad with 
ti short account of his life, espccinlly with n stnt.enioiit of his 
sigjiificanco in tho domain of ]nap projcctions. Johann 
Hciurich Lanibort wus born a t  Mulhauscn in A h c o  in 
1738. Re was tho son of n 1100~' tailor and his oducation 
was entirdy tho product of his own exertions, duo to n 
systornatic C O I I ~ S O  of rcnc]ing. It w8s his regular custom to 
spond 17 hours pjur day  in study and writit1.g. At the oarly 
ngo of 16 110 discovored, in computations for tho comct of 
1 744, tho so-cnllod Zambert's thoorom. During the Intter 
part of his life 110 resided in Borlin, wliero lie was much 
honored for his ability. It \vas in. tho application' of 
mathematical n.lialysis to tho practical problems of lifo 
that  ho ospecinUy oscollod. IIis untimely donth occu~red 
in 1777 in tho for tpi inth ycnr of his age. 

His conti*ibu tjons to mathcmntics were the series which 
lmrs his namo, the conception of hypcrbolic functions, his 
t,heorcm in coiiics, and the dpmonstrntion of the incom- 
mc?risurubi1ity of r. Both Lngrango nntl Gnuss used pnrts 
of his worl; 11s points of departure for their investigations. 

IJnmbcrt,'s ~7ork in  he f i d d  of nmp projections ncc!tls 
CarefuI considerntion. I-IC ~ v n s  thc first mnthequticinn 
to mukc gericrnl investigations upon the su1)jcct of pro- 
jections. Thoso who procodcd him in this work limitad 
thomsclvns to tho dovoloprnont of n singlo method of pro- 
joction, principIly tho pcrspectivo, but Lambert con- 
siderod t,hu p r o b h n  of tho roprosontation of n sphoro upon 
a plano from r~ higlicr standpoint and 110 stated certain 
gttncrd conditions thnt t,lid roprcsontntion. wtls to fulfil, 
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6 U. 8. C O A S T  A S D  GEODETIC SURVEY. 

tho most important of thoso being tho preservation of 
angles or conformnlity and equal surfncc or cquivalcnco. 
Tlieso two cluulitios, of course, cnn not bo obtaiiiod in tlic 
sitme projection. 

Ntliougli IAnnibcrt did not frilly tlcvclo]) tho theory of 
theso two mctltods of projection, j y n t  lis was tlie first to 
express clcnrly tho idciw rcgurding thcm. The formcr, 
conEorinnlity, lins becomo of tlic gretitcst importance to 
puro matlicmatics, but both of t.horii nrc of oxcccding im- 
portunco to tho ciirtogriiplicr. I t  is no iiioro t.1iu.n just ,  
therefore, to dato the boginning of a new cpocli in tlic 
scienco of mnp ninking from the upp(:nrance of Lambert’s 
work. What 110 acconiplislic?d is of iniport,u.ncc, not only 
for tho geiicrnlity of tho ideas untlcrlyiiig it, but also for 
his succossful applicntion of thorn in  nlot.liotls of ~)rojoction. 
Tlio niariiior in which lie attaclts t~nd  solves any part.iculnr 
problem is vory instruct,ivc. 110 ltus  dovoloped scweral 
mctiiotls of i)rojcction tliat nro not only interesting but  
t h t  aro to-day in uso among cnrtogrnplicrs, t h o  most ini- 
portant of thoso being tho conformd conic projection. 

Tho initial problem prosontcd to us  in map making is 
tho ropresontation upon t~ plnrio surfaco of tlio rcltttivo 
positions, sizes, and shapes of fctlturos that nro found upon 
tho curved surfaco of tlio onrtli. A porfcct roprcsontntion 
is iinpossiblo, siiico tho surface of tho onrth being 11011- 
dovelopablo, can not bo sproad out in a plane. Thoro are, 
howcvor, many difi‘oront wrLys of obtaining approximato 
roprcsentations, tho tlicory and proportios of which con- 
stitute tho subjoct of mnp projections. 

Tho positions of tlio points upon tho earth a h  usually 
defincd by tlicir latitudc! and longitude. IIonco, if wo can 
doriso a suitable mothod of roproseiiting tlio moridians and 
Iiarallels upon the sheet, tho points cnn bo plottod by their 
positions rolativo to theso linos and tho mi l )  can bo con- 
structed. Tlio torm “projection” is evidently usod in a 
widor sonso than that wliicli is givon to i t  iii goomotry. 
Tho majority of map projections aro not projections in the 
goometrical sonso-that is, porspcctivo projections, orthog- 
onal projections, ctc.-bu t moroly a notwork of moridiaris 
arid parallcls that makos. possiblo a olio- to-olio corrospond- 





8 0. S. COAST A N D  GEODETIC SURVEY. 

much use in map making unless the meridians are straight 
lines. 

The Lambert conformal conic projection fulfills this ye- 
quircment, and i t  hiis lately heen brought into especial 
notice by the fact that i t  is the projcction that is used for 
the battle maps in France. In  tliis projection, as is the 
case with any conic-projection, tlie intcrsecting cone gives 
a better map than is given by thc tangent cone. I n  the in- 
tersecting cone n~ have a shortening of the scale between 
the standard parallcls and a lengthening of the same at the 
top and bottom of the map. 

The following is a somewhat simplified development of 
tho mathematical theory of the projcction, including a 
dcterminntion of the ncccssnry and suilicicnt conditions 
for a conformal miipping. Use is made of the tangent cone 
only in order to dcteminc the two limiting cases of tlic 
projection. 

It is well known that a plane curve can be expressed 
in parametric Eorrn in such a wiy tliat x = + ( t )  urid y =  
IC/(t), 4 and $ being some known functions of the viiriablc t .  
Thus tho struiglit line passing through the point ((1, b )  with 
direction cosines CY and (I c m  be expressed in the form 

~ = ~ + a t , ! / = 6 + / 3 t .  

A circle can be given in the form 
x = a  cos 1, y = a  sin t. 

A space or skew curve can be similarly cxl)rcsscd as 
x = + ( t ) ,  y = w ,  z = x ( O .  

Such a curve may dcgcncrate to u planc curve under ccr- 
tnin conditions; tlie obvious oiie is tliut oiic of the func- 
tions is identically zero. 
A straight line in space bccomcs 

z = + at, !/ = 6 +f i t ,  z = C+ 71. 

A circular lielix is given by  tlie equations 
x = u cos 2, y = u sin 1, z = 6t. 

When the wordiriiLtcs tire given in terms of functions 
of two variable I)uramct(w, the locus beconies a surface 
except under certain conditions t l iu t  mill be specified 
latel;. Thus, the tangent surface of a skew curvo ex- 
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pressed by tho parametric equations z=&(t), y=I ) ( t ) ,  and 
z = x ( l )  is given by thc equutions 

the primes denoting difrcrcntintion with respect to t .  By 
cmploying s tind t ns indcpcndcnt -\.uriuLlcs, the surface 
gimn is that S W C J I ~  out by t\. ttuigcnt to  tdie curve as it 
mows  tilo~ig tlic curve. ’J’lic surface of n spliere is given 
by the equntions 

2 = m  +s+’(t), y=$(t) +s+’(t>, z = x ( t )  +sx’(t), 

x = a sin t cos s, y = a sin t sin s, arid z = a COS 1. 

To a v i d  some of the dirficult questions coniiocted with 
the theory of (:ur\res and surfaces, the functions that 
will be consicfcred ill this article will be limited to domains 
in which t,hcy arc single wlued, finite, continuous, and 
djflcren tiable. Those Iimitiitioiis itre permissible in the 
cases to be consitlerd. ‘I’Iius, iri tlic e t p t i o n s  of the 
sphere t8he vnriablcs tire li~nitcd to the domuiris 

?r x - -<t< i-2 tind - a < s <  +n. 2 
In  regard to tlic furwtions tlirec ciiscs niny occur. In 

tho first place rill of tlic functions mtiy be constant, thus 
giving u siiigle poiiit. 111 the swo~itl plnce, the fuiictioiis 
may not bo (:onstunt, but any two of them may be func- 
tions of the tliirtl; this would give a curve and not a surface 
sirlca the three functions could then be expressed in terms 
of soino single variable, 0, and tho equations \\.auld becoine 

z=X(v) ,  y =  Y(q), ant1 z=Z(d .  
AS the third possibility, u t  least two of tlie functions nre 
independent of cucli other. I n  this case tlie locus repre- 
sented is a sur f tm.  Of course uny two mliy be inde- 
pendent, but all that  is iwcessary is that tit leust two b o i v  
this rclatiom to cnch other. 

Lot cp and I) be the ones that are tlius indcycndent. 
This requires that tlicir Jucobian is not idcnticdly zero, or 

57341‘-18-2 



ax ax 
&’ bj 
bP bP 
Zi1 bt 

equation 
But 

dS2 = d X 2  + dl/J + dz?. 
bx b X  d x = = d u f  -dv 
bU bV 

+ o  
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henco 

With t h e  the qunt ion for tho elomcnt of length bccomes 

tlSZ = I< d ~2 -+ 2 li’ du dv -I- G dv2 

I€ v is hold constant, the olomeiit of length becomes 

dS2 = B du2, sincc dv = 0 

’ If tho directioii is tnken positive in which u is increasing, 
wo find 

dS, = Ji? t l l L  

Tho diroction cosiiles of tho tangollt to tho CUI’VO II = consttint 
aro given by tho cquations a=-&, otc. 

dX 

U = c011st~iuit are given in tho form 
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If e is tlie angle bctwcen these two tangen65 or the aiigl~ 
betwccn the curvcs, we have frun: thc known relation, 

COS e = + pp' + yy' 

F' 
E?; ' = -. - 

It foUows, thcn, thjlt the paramet.ric curms tt and v 
upon a surface on which F is identically zero form an or- 
thogonal system unless thc lfIi'c is iclcnticdly zcro at 
the same timc. Since when IJ is xero neither f*: nor 12 
is zero for tlio usual r e d  surfaces, i t  lolluws that, wlicn 
F=(), @ = - - - "  x 

2 
We shuU now dctcrminc thc conditions tha t  iLro neces- 

sary and sufficicnt to permit ti conformal rcprcsentution 
of u. surface upon a ~)liuno. Oric surfucc is salic1 to be con- 
formully rcprcscntrd upon :inothcr i v h n  tiny infinitely 
smnll section of tlic first surface is represented hy a similar 
figure upon the other. 

If a surface is to be rcprescntrd upon a plane according 
to some liiw nml r ,  y, z arc the rectangular coordinates 
of the surface clnd u, w the rcctungulor coordiniitcs of tho 
plane, then for every pair of coordinntcs u ,  v in  tlic plnne 
ct set of coordinrttes T, y, z of tho surface inust correspond; 
that is 2, y, and z inust be functions of u t i 1 4  v, 

We may thcn considcr that tlie surface with the para- 
meters u, w is to  bc iq)rescnted on the plane with tlie 
rectangular coordinates u, w. 'l'hc qucstion then becomcs 
under what conditions such a representation is conformal. 
Let us suppose that (u, w), (u+du, v+dv) und (u+6u, 
v+6v) aro three points upon the surface forming an in- 
finitesimal triangle. This will bo represented upon the plane 
by tho triangle (u, v), (u+du, vfdv) and ( u f s u ,  v+6v). 
These two triangles must be similar but since thcir positions 
relative to each other do not come into consideration, 
no account is to  hc takcn of signs either of sides or angles. 
Two things are then required, first that the sides of tho 
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triangle extonding from the point (u, t i )  of the surface 
must  bo in thc siimc ratio us their representations in the 
plane c~,stcn(li~ig from the p i n t  ( 1 1 .  1 7 )  of the plane, and 
~ccondly tlic ilngle includcrl hetwecn thc sidcs of the tri- 
angle upon the surfncr, must i,c cqunl t o  the angle included 
by their imngcs in tIte plnne. T h a t  is, thc square of the 
elemcrits of length upon the surface must be I)roportionnl 
to  thc square of tho rlcnieiits in the plane and the cosine 
of the angle bct\wcn tlic! lines upon ilie surf’ace m u s t  
equa l  the cosine of the corresponding iingle in thc plane. 

us2 = k7 du2 + 2 I.’ du rlv 9- G‘ dv2. 
6s2=P6u2$2 F6u6v-l-G 6v=. 

Tho quniititlcs I;, 17, mtl  C: wonId bo t 110 snmo in each cnsc. 
They mny bo coilstunts or i‘unct ions of 2~ nnd v but since 

<,,r*  k - 7  ’ 
But 

l k .  l.--SiIrfupo triuiiglo niid its 
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of tho tangent nt tlic point (u, v) of tho curve dS upon t,lio 
surface are tletcrniiiied by 

a x  my dz 
(TS' a-s9 2-s 

bxdu -t @ dv or 
bu bv 

- r  otc. - - - .. .JE2<T-F2-p=&, &+(rT[vz 
Also t h o  dircctioii cosiiies of t h o  tnngcnt a t  the point (v, 
v) to tho curve 65' upon tlie surfwe nrc in like r n t u i n ~ r  

Consequently, if a is thc tingle l)ct\vceri the ciirv(s, v w  linvc 
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should bo idcnticr~lly true. This rcquircs as  hoforo t ha t  
E= G, and P’= 0. Thus of tho two conditions only 0110 is 
ncccssary nnd one is nlso suficiont since encli leads to the 
Sumc results. It is thus sccn that thc lincw clcmcnt upon 
the surface must bo such that it can bc cxprcsscd in the 
form dS2 e r n 2  (du2+dv2). i 

If wc have LL sur f tm with tho lincar cleincnt dS?= 
V d u 2  -+ cidv2 in which V is a function of v aloiicb and 
U is a function of u done, i t  c:m lx? vxprcssvd in 

the rcquircd iorm. J,c.t 11s p u t  i t  in the for111 dS’= 

By chnnging thc pamnictcis, we niny lct 
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If e, is the angle that C, makes with the axis of X, we have 

d u  +i dv 
du-i dv 

or ___ 

Similarly, 
el01 = cos e, +i sin 0, = 

or ezlel = dx +i d?/ 
. . _ -  

dx - i d y  
Thercf ore, 

But since s + i y = f  (u+iv),  so also will x-iy=f(u-iv)w 
By differentiation, wo have 

dz + idy = (du + idv)f’ (U +iv) 
or 

and ax - iay ~- - -f’ (u -iv), 
d u  - idv 

the primes denoting diflerentintion with respect to the 
complex variable. By substituting these values, we have 

If r and rl are another pair of corresponding curves 
starting from tho same point and their angles are denoted 
by 4 and &, we should find that e%(**I) equaled the 
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Since this expression is constant for 8 same eq~rcssion. 
given point, i t  follows that 

or 

so that 

Thnt is, the angle between the curves upon the surfwe is 
preserved in the rcprcscntntion on the plauc. If we had 
mnde use o i  the functional relation x + i y =  F (u -h)  we 

Therefore in  the same way t i s  above 

or 

That is, the angles are equal hut  directed in tho inrcrse 
sense, n difference that is not taken into account in con- 
formal mapping. The most general couformd mapping 
is giver] then by tho relations 

and 
2 + i y  =f(u + iv) 
z + i y =  F(u-iv) 

The two other forms are merely conjugates of those, i. e., 

and 

Eut  the clement of length in the plunc J I M  tho form 
( lS?  = (1x2 + dy2 

67341 "-Jb-3 



18 U. 9. COAST AND GEODETIC SURVJJY. 

Also on the surface dSZ = m2 (du2 + dvZ) 
By combining these relations, wefind 

or 
ds 
as - m 

43” (u + iv) f (u - iv) _- -____  

The two functions f’(u+iv) and f’(u-iv) are conjugate 
complex functions and hence their product is real since 

FIG. Z.--Surfnco of revolution. 

both the sum and product of conjugate complex functions 
are real. Tho fact that  the angle between the curves is 
held would in itself bo sufficient to establish the comfor- 
mality of the representation, but  we shall have need of 
the rtbove expression which is called the magnification of 
the representation. 

If we have tho equation of a plane curve given in the 
plane in the form x=u, y=O, z = j ( u ) ,  a surface of revo- 
lution with this curve as a meridian is given by tho 
eclusitions x =u cos v, y = u sin v, z =f(u). For this surface 
E= 1 + [f’(u)]Z, F=O, and C = + ,  the prime denoting dif- 
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iercntiation with respect to u. 
of length is therefore dSz= ( 1  -f- I f ' ( ~ ) ] ~ / d u ~ i - u ~ d ~  
or 

Tho squarc of the clement 

Then dSz = uz(dw2 +dv2). 'rile surface is thus cxprcssed in 
terms of an isothermal orthogonal set of coordinates. 

Anotlicr test for n coilformal mapping is that tlic func- 
tions must satisfy the Cauchy-Eiemaiin partial differcntjal 
equtitioris. TVc htwc 

.z + i!/ =*f( ?L + i v )  

Therefore 
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These are the equations thiit determine that a given 
complcx function is a function of u complex vuriable in 
the acrcpted sense. The first set preserves tlic anglc 
botwecn two given arcs in mngnitude and sign. Tlic sccontl 
set rcsults in reversing tlic anglc, or tho originnl aiiglc untl 
the iliiige liuve opposite signs. Both 2 aiitl y tire functions 
t h t  satisfy iupluce's equutioii for two dinicnsioiis. Thus 
witli t h e  first set 

But 

Tliercforc I)y udtlitioii 

Also 

The same rcsults niay be found from tlic sccond set. 
From thcsc rcsults wo may coiirlutlc that  tlic most gcncral 
conformnl rc~p~*cscn tatiori of one surface upon a plane is 
givcn by setting the> complcx variable in thc planr (qual 
to aiiy anrilytic function of the complcs varia1)lc fornicd 
from the isothermal orthogonal coordinutcs of thc surfaw, 
or to any analytic function of thc conjugat(: of this coin- 
plcs vurid~lc.  In  the first case dircct ccluality of aiiglcs 
is found; in the strond, thc angles arc equal but turned 
in opposite dircctions. 

If thr surfwe to be rcprcscntcd is ai1 ellipsoid of rcvolu- 
tion, thc parametric cquations may be chosen in the 
following form : 

x = (L  cos M sin u, ?!=a sin ,If sin u, z = b cos u. 

a is tho scmi-mujor axis, 7, is thc semi-minor axis, ili is 
thc longitudc ant1 u the complcmcnt of the eccentric anglc 
of thc gcmrating cllipsc or thc c-oinplcmont of thc rcduced 
la t i t u d c . 



d2  
dx inis is - - + 
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or 

hence 

or 

or 

hence 
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a tan L=cot p = z  cot u 

7, - tan u=tan  p a 
t a n u = t a n p .  

sin2 p 
1 - €2 cos2 p sin2 u = 

(1 - e2)2aP2 . 
(1 - 2 cosz P ) ~  sinz p (cot2 U+ 1 -e2)du2= 

Let 
(1 - E2)ap 

(1 - €2 cos2 p)sin p 
then 

--E sin p dp 
1 + e  cos p 

By iiitegration 

O=log tan -;log (1 - - E  cos p)  +$ log (1 + E  cos p )  +log G. 

If the limits of integration are so chosen 'that G (the con- 
stant of integration) becomes equal to unity, we have 

or 
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The element of length now becomes 

The parameters have beon reduced to  an isothermal 
orthogonal system. 

We can now determine any number of conformal reprc- 
sentations oE the apheroid upon tho plane. N1 that is 
necessary is to make us0 of the relation 

f being any analytic function and either combination of 
signs being used. 
With the relation s+iy-f ( M - i s ) ,  letf(v) = Keflv .  

We now have 

x +iy = Ice 

x+iy=f (Mf8) 

i ldl-t l log [ tm e 2 ’  (l-ecosp) - 7 ‘I 

By equating tho rod parts axid tho imnginrwy parts, wo 
obtain 

In this projection the parallels become concentric cir- 
cles. The equation for the radius is 

The meridians are represontod by radii of those concontric 
circles. This method of projection is tho one known as 
Lambert’s conformal conic projection, first dovelopod by 
John Heinrich Lambort, in his “Boitr&$ zum G o b r n u d  
der Mathomatik,” Berlin, 1772. It wm later fully dis- 
cussed by Gauss. 
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If an angle z is assumed such that 

this angle will be very nearly equal to the complement of 
the geocentric latitude. 

FIG. I.--Qenerating ellipse with angles L and L'. 

From the eqhation of the generating ellipse (p. 21), the 
tangent of the geocentric latitude is given by 

But 
cot u= tan L' $ 7 ,  

x a  
- =- 

a tan L=a cot u, 

6 .  cot u=- tan L, a 
6 tan L/=-  cot u=E tan Z, a aa 

or 

honce 

a and b being the semimajor axis and semiminor axis, 
respoc tively . 

Then to a sufficient degree of approximation z = ;- L'. 
- 

The value of z can be computed rigidly very conven- 
iently by assuming an angle 9: such that cos p = e cos p. 
Then, since 

2 tan-=: tan f cote 2 2 



THEORY OF THE LAMBERT PROJECTION. 25 

or 
2 log tan -=log tan $+e log cot 2 

Eowever, the approximate formula determines z to within 
a few tenths of a second. By using this auxiliary angle 
the equations become 

2 z = R t a n l g  cosZM 

Z y= K tanlg sin 1X 

2 
T = IT t ad2  

With these values 2 is reckoned downward from the center 
of the concentric circles and y to the right of the central 
meridian if M is reckoned positive in that direction, 

1 may be so 
determined that the ratio of the lengths of any two arcs of 
parallels on the map may be equal to the ratio of the 
lengths of the arcs that they represent. If N is the radius 
of curvature perpendicular to the meridian, or the length 
of the normal prolonged to the minor axis, a radian of the 
parallel L, has the length Nl cos L,; in the s m e  way the 
length of a radian of parallel L, is Nz .cos L,. Conse- 
quently, the ratio of the lengths of these two arcs is repre- 
sented by 

Nl cos L, 
. N, cos L,’ 

Since the A factor1 in the tables for geodetic positions is 
equal to 

1 
N sin 1’’ 

A, cos L, 
A, cos L,’ 

The arc upon the map that represents the radian of parallel 
2’ SI has the length ZT, = 1. K tanz $. The radian of parallel La 

K and 1; are as yet left arbitrary constants. 

the ratio becomes 

1 See United Statos Coast and Qeodetio Eurpcy Special Publication No. 8, entitled 
“Formulae and Tables for the Computation of Qeodetlo Positions.” 
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2 is likewise represented by Zr, = I  K tanz $ 0  

lengths will be preserved if we have 
The ratio of 

1 

A,.COS Ll (z)= A, cos L, 

log COS L, -log COS L,-lOg A,  +log A2. or 1 = z z log tan “--log tan 22 

, Kmay now be determined so as to hold not merely the 
ratio of the arcs of parallels L, and L, but also‘to hold the 
exact length of these parallels. This is an exccllent method 
of determination for mapping such an area as that of the 
United States. In  this way we should have 

2 

2 cos L, . 
A, sin I”’ 

cos L, 

Z K tan2 2 = N ,  cos I;, == 2 
hence 

_ -  - cos L, K= 
A, sin 1’’ z tml? A, sin 1’’ tan2 3 2 

The twofoId determination serves as a check on thc com- 
putation. 

With this &termination of Z and IC, we shall compute the 
expression for the magnification at any point. We 
employed as the form of the functionf 

hence 
f ( M -  i d )  = J[&H+ls 

f’ ( M -  id) = i IllenM+le 
f’ ( M +  ;e) = - ;Ilze-ilM+lfl 

f’(M-ie)f’(M+ie) = IPPe2U. 

#‘ ( M -  i e y  ( M+ ;e) 
Hut  

& - 
m 

From the equation of the linear element on the ellipsoid 
on page 23 a sin p 

m= 41 - €2 cos2 p 
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But 

theref ore 

* I + €  c o s p  f 
el0 = tanz 2. 

2 0 l--E cosp 

or 
lr, - l r , _  = ZrnAn sin 1" 

k= - N ,  cos L, cos L, 

r, being the radius of the circle 011 the map that represents 
the parallel of L, and pn being the radius of the parallel. 
The last form is obvious from the conditions. 

of the 
,distance from the bottom and the top of the area to be 
mapped, the proper balance will be preserved. The 
upper and lower part of the map will then be about as 
much too large in scale as the central part is too small. 
The scale along L, and L, will be exactly correct. With 
this value of I< one can tell how much any pardlcl is in 
error of scale by computing a radian of the parallel and 
the length of the arc which represents it on the map, This 
is just a statement of the equation. 

If the parallels to be held are chosen about 

With this projection a map could be macle of an area 
such as that of the United States so that it would not be 
in error of scale in any part of it by more than 1 1/5 per 
cent. A polyconic projection of the same area is in error 
of scale by as much as 6% per cent in some parts. A 
Lambert projection for the United States to be evenly 
balanced should hold parallels 29" and 45". The scale 
would then be just about 1 per ceiit short along the 3 7 O  
parallel and 1 1/5 per cent long along the 49O parallel. 

In  Special Publication No. 52 of the United States 
Coast and Geodetic Survey, are given tables of coordinates 
for a Lambert projection of the United States. The 
standard parallels were chosen as 33" and 45" to lessen 
the scale distortion of the middle section of the country. 
This scheme gives about 2% per cent scale distortion 



m 

FIG. 5.+csIe distortions with the standard pnrllels at 29' and 45'. 



hc. 6.-Scale distortions with the standard psrall~lS at 33* and 45". 
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along the parallel of 25” as the greatest on the whole map. 
Only a small part of Florida and of Texas are affected by 
this increase of scale error. 

The coordinates for mapping the parallels are most con- 
veniently computed using as origin the point where the 
parallel crosses the central meridian, the central meridian 

being the Y axis and a perpendicular to it 
the X axis. All the formulas required for 
computation are as follows: 

0 

b 2  tan L’=2 tan L 

z=--L’ 
2 

21 Z log t,m - -log tan -z 2 2 

5- 

log COS L, -log COS L, -log A, + log A, 1= 

- cos L, - cos L, K= 
z z A, sin 1’” Z tan’ 2 A, sin 1” 1 tan’ 2 2 2 JI 

2 r =  K tan’ - 2 
z = r  sin ZM 
y = r (1 - cos 1 M )  = 2r sin3 2 = z tan - . I <  2M ZM 

FIG. 7.-Repwsents. 
tion of a small ceo- 2 
dstic trapezoid, < 

I€ it is desired to make the comnutation 
considering the earth as a sphere, it is only necessary to 

let B = o. z then equals the polar distance or 2 = p  =- - L ;  

A, = A ,  = - When these values are inserted in the 

above formulas, the correct forms are given for the sphere. 
The difference of the radii gives the spacing upon the 

central meridian. If the parallel at  the top and the one 
at  the bottom are constructed by determining the coordi- 
nates of their intersections with the meridians, the me- 
ridians can then be drawn. They can then be subdivided 
as was done in the case of the central meridian. In  this 
way the coordinates of the other parallels can be deter- 
mined without computation. 

n- 
2 

1 
a sin 1’’ 
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If the two parallels to be held approach each other indefi- 
nitely, we shall have to determine the limiting value of Z, 
This can be done in a number of different ways, and 
in fact the computation was made in six different ways 
with the same result in each case. The value that was 
obtained is the same as that obtained by Gauss and cited 
by Forsyth in his “Theory of Functions of a Complex 
Variable.” Especial pains were taken with this, because 
Germain in his’ “Trait6 des Projections” obtains an 
erroneous result. The value is here determined by the 
same method that Germain said that he used, not because 
i i  is the simplest but to  illustrate the fact that the correct 
result can be so obtained. 

The problem is to so determine Z that OB may have the 
same ratio to BD that AB has, or to determine the place 
where two successive parallels are held at  the same ratio. 
This is the same as saying that the magnification shall be 
a minimum st this point and can be true only at  this point. 

OB=r 
length of BD on the map is equal to dr 

a(1-  e2)dp- length of BD on tho earth- 3 
(,1 - € 2  cos2 p) . z  

length of CD on tho map = I(r + dr)dM 
length of OD on the earth 

a COS p d p  +---- - a2  sin2 p COS pap 
(i-~zcos2p)p 

- - r d ~ ” E , ” , p  J1-E2cOSZp - 
a sin p 41- €2) COS pap -+ 

To meet the required conditions, we must have the propor- 
tion 

a sin p 41- 8 )  COS pdp 
- 41- €2 cos2 p (1 - €2 COS8 p ) 5  

+ 
a(1-  2 j 2 p  

(1 - E 2  cos2 p ) F  3 

- 
ar 
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or 
+cos p .  -.+I= lr (1 - e2 cosz p )  sin p 

dr  (I - e2)dp 
Therefore, since 

I dr (I -€’ )  d p  _ -  
Zr - (I - €2 cos~ p )  sin p’ 

1 =cos p .  
The magnification is least at 

If this least value of the magnification is denoted by k, 
p=cos-l 1 or at L=sin-‘ 1. 

we have 

a 

If 1 is taken equal to cos p ,  and Kis determined so as to  
hold the length of the pardel of colatitude p ,  we shall 
have the case of a tangent cone. 

FIG. 8.-Stereogrsphic projection of the northern hemisphere. 

Germain obtained the ertoneous value 
cos p - €2 cos p(1 -  3 sin2 p )  

1-2 
If Z becomes equal $0 unity, we have p o = o  and the 

tangent cone becomes a tangent plane at the north pole. 
The equations now become 

1= 
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z T =  IF tan - 
2 

x = r  cos -34 
y=r  sin ill. 

This gives a projection for the spheroid analogous to the 
stereographic projection for the sphere. With the sphere 
the value of e is zero and z beconies the polar distance. 
We .then have a peBpective projection from the south 
pole upon the plane tangent at  the north pole. 

If Z becomes equal to zero the tungent cone becomes a 
cylinder tangent at  the equator, and p ,  equals 2. To 
determine the values it becomes necessary to evaluate 
somg limits. IF becomes infinite but so that IZZ is finite 
and X-xfinite: 

2 

No cos Lo 
20 1 t a d  5 

K= 

When 

then 

Y 

No cos Lo EZ= 2. 
tan2 -0 2 

p ,  t z,*; 

lim IFl=N,=a , 

In the general formulas 

To evaluate the limit, let us write x in this form 

l+c eo9 p x=KcosZMe~'"g [ t a n $ -  (-p)s] 
or on developing the exponential 
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O ( 6 )  denoting terms withla as the lowest power of 1. But 
xn =: E 

- I[ cos I d l  0 (12) * 

Taking the limit when poG:, l=o 

Denoting xo--x: by x and substituting for p its value E- L, 2 
we have 

x-alog, kan(;+;). ( 1-es inL ) 2 ]  5 

1 + E  sin L 
log, denoting the Naperian logarithm. 

Taking the limit when p o A $ ,  E o  

y = a x ,  
M being of course expressed in arc. 
y to give the coordinates as usually plotted, we have 

Interchanging x and 

x=aM 

This is a projection of the spheroid analogous to the 
Mercator projection for the sphere. If e becomes zero we 
h w e  the Mercator projection of the sphere. 

We thus find that the stereographic and the Mercator 
are special cases of the Lambert projection and are there- 
fore conformal. 

Certain points in a conformal projection may be singular 
points at  which the conformality fails. This is the con- 
dition at  the pole in the Lambert conformal conic projec- 
tion. The angles between the meridians are not pre- 
served, since the angle between two meridians is 2 M instead 
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of Y as upon the earth. At such points, if zo=f(z) is the 

complex relation, @is equal to zero or to infinity. me con- 

formality fails a t  the poles in a Mercator projoction but is 
preserver1 at the central pole in a stereographic polar pro- 
jection. Since the angle at the center of the system of 
circles in the Lambert projection is equal to ZM, the 360' 
in longitude is mapped on a sector of a circle with central 
angle equal to 360' X 1. Since Z is in the usuaI cases less 
than unity, the central angle will be less than 360'. If I 

dz 

FIQ. 9.-Meroetor projection. 

is equal to x, the mglo of the sector would be 270'; for Z 
equal to % the angle would be 240°. 

In  the war zone in France, the maps are made in the fol- 
lowing manner. Instead of using the exact formulas that 
have been developed, approximations are employed. A 
cone tangent at  55 grades (49O 30') is first determined with 
the parallel of 55g as the central parallel of the map. 
Along the central meridian the parallels are spaced from 
the formula 

P3 
' A r = p + -  

6P: 
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@ being the distance along the meridian on the earth and po 
being the mean radius of curvature a t  558. This formula 
for Ar is a Taylor series development of Ar from the rigid 
formula for r, correct to the third power of @.I 

The radius for the parallel of 55g is taken as No cot 558, 
No being the radius of curvature perpendicular to the 
meridian. The values of Ar being added to or subtracted 
from this radius give the radii of the otherparallels. AM 
sin 55g gives the arc along the parallel corresponding to 

FIG. lO.-Qraticule for the Lambert projection of the northern hetuisphcre with 2-x. 

the difference of longitude A N  reckoned from the central 
meridian. 

After these values are computed the whole scale is r e  
duced by 1 part in 2037. This gives us approximateIy a 
cone intersecting at  the parallels of 539 and 57g. "he 
whole map is then covered with a system of kilometer 
squares with origin. at latitude 55g and longitude 6g east 

f See United States Coast and Qeodetio Survey SpociRl Puhlication No. 47, p. 13. 
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of Paris. The l i e s  north and south are dl parallel to the 
meridian of 6g and the east and west lines are perpendicular 
to the same. A great circle for a limited region is a straight 
line within the limits of scaling. Since the map is con- 

0 
Fxo. 11.-Qraticule for the Lambert profeotion of the northern hemispheae with 2-H. - 
formal, a chart made upon this projection is of great use 
in determining the direction for gunfire. The scale is also 
preserved constant within the error of scaling, so that the 
projection is excellent for the determination of both direc- 
tion and distances, 
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