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1.0 INTRODUCTION

This document is a detailed derivation of the equations for the Space Shuttle

_ onboard software module to solve Lambert's rendezvous problem. The equations

presented here pertain only to elliptical transfer orbits. These equations are

developed from discussions and notes received from Stanley Shepperd of Draper

Laboratory. The Lambert problem is defined as follows: Given an initial posi-

tion vector (r0), a terminal position vector (_i), and a specified transfer time

between _0 and _I' determine the required initial velocity vector _O" This
subroutine does not include multirev capability.

2.0 SYMBOLS

a semimajor axis

r 0 initial position magnitude

_I terminal position magnitude

_0 initial position vector

r I final position vector
C magnitude of chord connecting

E eccentric anomaly

b semiminor axis

t time

t normalized time

e transfer angle

f true anomaly

e eccentricity

p orbital parameter, semilatus rectum

m

r 0 and r I

3.0 DERIVATION OF EQUATIONS

Lambert's theorem (ref. I) states that the time of flight is a function of three

parameters: the semimajor axis, the sum of the two radii, and the chord of the

transfer. The following development obtains expressions for a, r0 + rl, and

C. The geometry is shown in figure I.

Any point on an ellipse (X,Y) is related to its eccentric anomaly. For

the initial and final points of the Lambert problem, the coordinate pairs

are given by

X0 = a cos Eo

X I = a cos E I

YO = b sin E0

YI = b sin E I

so that



X

\
\

.,Q

_J

!

r-m

or-

_JP

14--
0

_J
E
0
_J

C_

!

_J
_L

I,



X2 y2
--+ _ : I

a2 b2

The chord between T 0 and rl, is given by
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C2 = (XI - XO )2 + .(Y2 - YO )2

: a 2 (cos E I -" cos EO) 2 + b 2 (sin E I - sin EO )2

= 4a2 sin2 2 sin2

+ 4b2 c°s2 2 sin2 2

: sin 2 I El -4 _ EOI la2 sin2 ( El + EO1 a2+ (I
2 _ cos 

and

= a2 sin2 _ sin2 2 + (I - e 2) cos 2 2

_ e2 cos 2
: a2 sin2 2

(i)

The radius of an orbit for the initial and final points of the Lambert problem

can be expressed in terms of the eccentric anomaly as follows:

r0 = a(1 - e cos EO)

r I = a(1 - e cos E I)

Adding these two equations yields



r0 + r I = a [2 - e (cos EI + cos EO)]

= a 2 - 2e cos cos
2
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and

r 0 + r I / El + E 0 E I - EO_

= a _I - e cos cos J2 2 2
(2)

Kepler's equation (ref. I) may be written for the initial and final points of
the Lambert problem as follows:

to : E0 - e sin E 0

t I = E I - e sin E I

where time (t) is the time from pericenter. Subtraction of these equations
yields

(tI - tO ) = (E I - EO) - e (sin E I - sin EO)

: (E I - EO) - 2 e cos
sin

or

"__ tl -to2 = El -E02 e cos (El + EO-I_ sin (El - EO12
(3)

Equations (I), (2), and (3) yield three equations in the following three
unknowns:



EI - E0 EI + E0
a _ _ e cos

2 2
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In order tc solve these three equations, the following change of variable is

maze :

- B El - EO

2 2

(4)

e+B
COS : e COS

2

EI + E0

2

(5)

The angles _ and B are defined-to satisfy the fo]lowJng l_mits:

0 < c_ - B < 2Tf

0 < a + 8 < 2'rr

These definitions and constraints _mply that

0 <_ <2_

-IT < _ < IT

Th_s is shown in figure 2.
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Substituting equations (4) and (5) for equations (I), (2), and (3) yields

the following results:

C/2a = sin sin
2

(6)

: I - cos cos _ (7)
2a

tl -to2 = _ -B2 sin I_ 1 cos I_ 1
(8)

or equivalently,

C/a : cos B - cos

r 0 + r I
- 2 - (cos B + cos _)

a

(9)

(I0)

(t I - to ) : (a - B) - (sin _ - sin B) (11)

The three unknowns are now a, _, and B.

From equations (9) and (10), the equations for
to obtain

a and B can be separated

COS C_ = I -
ro+r1+C

2a
(12)

and

cosB : I -
ro+r1+C

2a
(13)

7



The semi-perimeter of the transfer angle S is given by
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r0+r I +C
S =

2

Equations (11) and (13) can now be written as

I - cos a = S/a

and

I - cos 8 = S- C/a

X _I - cos

or, since sin 2 += - 2

a S
sin 2 : --

2a (14)

and

8 S- C
sin 2 - =

2 2a
(15)

Equations (14) and (15) can be combined to yield

sin - _ + sin

2 -- /

Define
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so that

B
sin- : k sin -

2 2

From simple trigonometric relations

- C _r0 + rl e+ -- : COS -
-- S S 2

From this relationship, I is a constant for a particular problem in the range

of -I < I < I. Positive values occur for transfers less than 180 ° and negative

values For Transfers greater than 180 ° .

The independent variable u is chosen to be

u = cos - (16)
2

The other sines and cosines follow from the following sequence of operations:

a _! 2" a
sin - = _I - u , sin -

2 2
is always positive

since 0 < a < 2_

B a 8
sin - = k sin- , sign of sin - determined by l

2 2 2

B BCOS _ : I - sin 2 _ , sign of cos _ must be positive

since -w < B <

The above relations allow evaluation of Kepler's equation to evaluate t

corresponding to the current value of u. A Newton-Raphson iteration is

performed to determine the value of u to yield the desired value t. Since

0<a<2w
m



79FM17

cL
and u = cos -, the value of u is between

2

-I< u< I

4.0 DETERMINATION OF INITIAL VELOCITY EQUATION

From basic two-body motion, the equation for the required velocity vector

is given by

V0

V0 : Vr0 Yr0 + Vh0 (in x Jr0),

where

lr 0 = a unit vector along r0

z n = a unit vector along the angular momentum vector

Vr 0 : the component of velocity along i_ 0

Vh 0 = the component of velocity along i n x i_ 0

Vr 0 = -- + -- =

r0 a

r02-p + 2r 0
a

V02r02
P : (_02

X'fi-
Vro : "- gO

r0

Vh0 --
r0

I0
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where P is the semilatus rectum and

G0 =

E

ro V0

Therefore,

Vo---
r0

(GO _rO +_/D- (i-n Xiro))

From reference 3:

and

r0 cos EI - EO1 + G 0 _'_ sin I El - E0> = kS2

G0 =

(El-
kS - r0 cos 2

Also from reference 3,

E I - EO) _/_r I eq-d-sin 2 = _ sin

and

e

r_-_1 sin 2

11



Therefore,
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V0 = w
r0

VrorlSin
!ro + (_n x Tr

2

5.0 CODED EQUATIONS

This section presents and explains the equations for this routine as coded and

tested. The routine is coded in FORTRAN and is named LCONVR. The coded equa-

tions presented represent a bench program version of the onboard Lambert

targeting routine specification as documented in reference 2.

The input and output arguments for the routine are as follows:

Input list: RO, RI, NUNIT, T

Output list: V0, ALARM

where

RO

RI

NUNIT

T

VO

ALARM

For descriptive purposes, the code has been blocked into nine sections.

section is listed and explained as follows:

= the initial position vector

= the final position vector

= a unit vector in the direction of the angular momentum vector

= the desired transfer time

= the required initial velocity

= a flag to signal possible problems with input data or iteration

procedures

Each

a. Code section I

12



79FM17

00126 83*
00127 84*
00170 85,
00131 86,*
00134 87*
00135 88*

90,
00141 91.
00142 92.

- 00'" 3 93.,L-T

00145 94*
001_ .6 ?5*

ALARM"D
ROMAGzVECMG(RO )
R I _ A_-- VE-C--MG_R-I-)

T .P, I
I CONTI NUE

R I_A ITA-._O-.-5._'- ¢-RO M-AG_'A:_t-M-A-G-_V-E-G_MG-I-T-E-¢'!-P--I- )
VPARA-SORT (2,0*GMIRP ARA)
CALL CROSS(RO,R! TEMP)
Z-ROMAG*RIMAG-DO'I'IRO _,R1)
IF-I Z ._._E-I_TR-A-N_R-OMAG-*_I-M_O TO 2
ALARM-2
RETURN

Comment section I - This segment of the code calculates some program constants

and does some initial testing. The ALARM flag is set to zero. The value

of ALARM will be changed to a positive integer if a test is failed

RPARA is equal to the semiperimeter of the transfer triangle and is used as

a normalizing factor. VPARA is equal to the parabolic velocity at perigee
for VPARA.

The parameter Z is calculated as

z : I oII  l-R-o= I oII  I(I-cose).

If the transfer angle is close to 0° or 360 ° , some of the equations break

down numerically. For example,

(t I - to ) = (_ - B) - (sin _ - sin B)

A test is made at this point. If the transfer angle e is close to 0° or

360 °, ALARM is set to 2 and an exit is made.

b. Code section 2

D01W7 96*
"_'50 97"
00151 98*
00152 99*
00153 IOC)*
_nlS" _01*

2 CONTI NUE
U :O-O-T-(-T-E- _-T-) / Z
VH:SQRT(ROMAG*RIMAG/ II.O+U*U })
N:O

UMIN--UMAX- I_.0_0o 5.*EPSDU

13



Comment section 2 - The cotangent of e/2 is calculated as
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Z : (R0 x RI)" NUNIT/Z

NUNIT is a unit vector in the direction of the angular momentum.
The parameter VH is calculated as

= Vl il i / (I+ z2)

The initial value of the counter is set on the number of Newton-Raphson
iterations:

N:0

The upper and lower limits on u is set, and u can take on the values between

-I < 0 < +I

However, if the orbit is near parabolic, u will be close to I (u = I if the orbit

is parabolic), and some of the equations will numerically break down. For this

reason, the lower limit on u is set to -I where

UMIN : -I

and the upper limit on u is set to equal

DU
UMAX : I

2

DU is a calculated number. Figure 3 explains the development of DU.

The normalized time t versus u is shown in figure 3. From reference 3,

t can be written as

t= 4kD+D3Q

14
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where

: 8/_ (tl -2to)

D =y-Xu

Y = _I - 12 (I - u 2)

4 F(I, 3, _ q) (ref. 3) = f (w (u))-- 7
Q=3

W: J+E2

79FM17

E :I +uD

The purpose of the following development is to calculate the slope of tu = I
and estimate the value of t when u = I - DU. When

U= I

Y = I

D = I-X

E = I

W= I

4

Q = -
3

and

4

{p = 41 (I - I) + (I - I)3 -
3

4
- (I - 13)
3

The slope of t at u = I is given by

16
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: I + 3D2 -- +
du du du

dy k2u X2

du y

dD -XD
-- : -- : -_. (1 - X)
du y

dE
- - (1 - },)2

du y

dw D2 (I - X) 2

du 4wy 4

dQ dQ dw

du dw du

dw

du 4wy

(y - ku) 2 (1 - k) 2

dQ 5 (w + 1)(w + 2) + 2F

dw 5w2(w + 1)3

3Q 16

w 5

dQ (i- k)2 /16 ] 4

au: 4 _-J-_ : -
( 1 - X) 2

i-
dtp

- -), 14k + 3(I -
du k

X) 2 4 ] (_x](_- x)- (_- x)345
(1 - k) 2

4
: - - (1 - k 5)

5

17



Now

79FM17

T : tp + Atp :
4 4

tp - DU -- : - (I - i)3+ _ (I - _5) DU
du 3 5

However, only half of this value is taken to be conservative and

2 2
T : - (I -i)3 + _ (I -_5) DU

3 5

c. Code section 3

00155 102.
00156 10:_,
00160 I04_
00!£ 1 10.5 -"

LAMBO A:VH/RPAR A_U
IF(ABS(LAMBDA! ,LT,1,CE-091 LAMBDAzO,D
U--LAMBDA/SORT! 1,0+LAMBDA,LAMBDA)

Comment section 3 - The constant parameter LAMBDA is calculated as

LAMBDA : u

The first guess for the independent variable u is calculated. This first
guess assumes a circular orbit and is calculated as

u2 = cos 2 - = I - sin 2 -
2 2

S
: I - -a

2

For a circular orbit,

2a = r0 + rI

18



However,

79FM17

Since

r0 + rl = 2 S - C

I S - C 1
: S +

S

S - C- S

r0 + r I = S (I + k2).

Therefore,

s Vu = I =k I +k 2
s (I +

The normalized transfer time is calculated as

VPARA
TILDES :-- T

RPARA

A problem may occur in k i_ the_transfer angle is near 180 ° .

tains the cross product of R0, RI, k may be near zero, and

underflow. The code must consider this problem.

Since k con-

k2 may cause an

d. Code section 4

00_62 306,
O0163 107,
00165 108,

00170 110,
00171 111.

TOTHEs:0.O
IFIABS(LAMBDA) .GT.1.CE-OT| TOTHE5:LAMBDA**5
TMINz2.013.0*(I.O-LAMBDA**3;+O.4* (I.O-TOTHES)*EPSOU
IF (TI--_S-.G-T-.-T--M-I-N.} G 0 TO 3
ALARM:I
RETURN

Comment section 4 - A transfer time is determined which is slightly greater than

the parabolic transfer time. The parabolic transfer time is given by u = I, or

2

tu : I : - (I - LAMBDA 3)
3

19
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The correction for the DU shift away from u = I is also considered, so that

2 2
T_MIN= _ (I - LAMBDA3) + _ (I - LAMBDA5) DU

The value of LAMBDAmust be tested to prevent an underflow in LAMBDA5if the
transfer angle is near 180° . The normalized value of the transfer time is
tested against the value of T MIN. If the normalized time is less than T_MIN,
the desired transfer is parabolic, or close to parabolic. The ALARMflag is set
to 3, and an exit is made.

e. Code section 5

_8_7_,_ I]12" .3 c()NTI NUE

00174 114"
00175 115"

CALL CALA
IF(ABS(TILERR).LT.EPSILN*TILDES) GO TO 4

Comment section 5 - The counter on the number of Newton-Raphson iterations is

incremented by calling the subroutine CALA. This subroutine calculates the

transfer time corresponding to the current value of u. If the transfer time

obtained from Kepler's equation yields the desired transfer time, within

tolerances, the program calculates the desired initial velocity.

f. Code section 6

RR177 116. CALL CALB__2C0 !!7. !F(N_-LT;NM_-) GO TO
00202 118. ALARM:5

Comment section 6 - If the transfer time obtained from Kepler's equation does

not yield a satisfactory answer, a call is made to the Newton Raphson iterator

to obtain a better value of u.

g. Code section 7

00203 I19.
00204 120.
00295 121.
00206 X2-_*
00207 123.
00210 124.
R021 1 125.

0021 5 127.
00217 128"

4 CONTINUE
VH:VH/ROMAG
VR-RPARA/POMAG*LAMBD A-G
COEF: Y-P AQ AJ-LY--LJLH B D A *U )
COEF:COEF/ROMAG
CALL CROSSINUNIT,RO, TEMP)
DO 5 I:I.3
Vn ( T ) _-CNFF. ( VR_.RO (I) +VH*TEMP { I_)_L___

5 CONTINUE
RETURN

Comment section 7 - The code section 7 equations are the terms to calculate

the required initial velocity previously discussed. The equations are slightly

modified to remove the normalizing factor.

2O
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h. Codesection 8

00220 12c_* SUBROUTINE CALA
002-2-3...... 13n, ...................W--SORT (I.O-U,U ; .............................
0C)224 131, X=LAMBDA*w
00225 ! T?* Y--SORT(_.n-X*X )
_0276 I 33* FzW*Y-U*X
(J2__t ....... 13_.._ ............... GzU*Y+W,X ..................................................

00230 135. TILOA--( ARTAN( F, G)-(U*W-X*Y)) /(W*W*W)

00231 13&* STILDA-(3 _U*TILDA-2.C*(I.O-(U/Y }*LAMBDA**3))/(W*W'
00232 171', TILERRzTI_ucS-TILDA
..OQ2S3 ......138_,_........... REIURN ................................

Comment section 8 - The following sequence of calculations leads to the determi-

nation of the normalized transfer time corresponding to the current value of Uo

/

W : sin - : _I - UL
2

8
X : sin - : XW

2

8
l

X2Y : cos - : _I -
2 I

I

F : sin - (5 _ B) : WY - UX
2

I
G : cos - (_ - 8) : UY + WX

2

I

W3
[tan-1( >

Since 0 < _ - B < 2_,

('>0 _< tan -I _ <

Also, since t : -- tan -I
w3

21



- _ tan-I - (UW- XY)
du W4 dW

I d
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With a significant amount of manipulating and rearranging,

dt I X2
- 3at -2

du W2 W2

The error in the desired transfer time and the transfer time obtained from
Kepler's equation is given by TILE RR.

i. Codesection 9

00234 139.
0O237 140.
0O24O I_I*

00243 143.
00244 144.
00246 145,
RQ:_4 7 I f4(_,
00250 147,
00251 :48.
00252 149.
n{7_54 15r_.
00255 151,

SUBROUTINE CALB
USTEP :TILERRIS TXLDA
IF(USTEPoLE,O,O) GO TO 100
UMIN:U__
U:U+USTEP
IF(U.GT,UMAX) U--O,5* (UMIN+UMAX)
RETURN

1 no _C OALtI_N UE
UMAX:U
U:U+USTEP
IF(U.LT.UMIN| U:O.5* (UMIN+UMAX |
RETURN
END

Comment section 9 - This code is Just the Newton-Raphson step to find the change

in u for the next step.
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