X-38 SEAL DEVELOPMENT

Donald M. Curry and Ronald K. Lewis National Aeronautics and Space Administration Johnson Space Center Houston, Texas

> Jeffrey D. Hagen Lockheed Martin Space Operations Houston, Texas

X-38 Seal Development

Donald M. Curry Ronald K. Lewis NASA Johnson Space Center

Jeffrey D. Hagen Lockheed Martin Space Operations

2001 NASA Seal/Secondary Air System Workshop NASA Glenn Research Center October 30-31, 2001

NASA

X-38-Crew Return Vehicle

- An element of the International Space Station (ISS)
- Three Scenarios
 - ISS castastrope
 - Emergency medical evacuation
 - Period of Space Shuttle unavailability
- X-38 Program Purpose:
 - To greatly reduce the costs and schedule for the development of crew Return Vehicles (CRVs) and Crew Transfer Vehicles (CTVs) through the use of the rapid development methodology associated with an X-project
 - Ground Testing
 - Atmospheric Testing
 - Space Flight Testing

X-38 Seal Locations

Baseline X-38 Rudder/Fin Seal Design

Cross Section of Rudder/Fin Seal Shelf Location

Rudder Shown at Flush Inboard Position

- Main Seal Components
 - Core: 6 pcf Saffil Insulation
 - Spring Tube: Inconel X-750
 - Sheath: Two Layers of Nextel 312 Fabric
- ✤ Nominal 20% Compression and 0.25-in. Gap

Rudder / Fin Seal to Bracket Assembly

X-38 Rudder / Fin Vertical Rub Surface Inconel – 0.10 in.

X-38 Rudder / Fin Seal Analysis

Flow Characteristics

•20% Seal Compression

•Permeability = 1.0 E-09 Ft²

•Mass Flux Computed using Darcy Relation:

$$m_{dot} = \frac{\boldsymbol{r}^* A^* K^* \boldsymbol{D} P}{\boldsymbol{m}^* L}$$

•Thermal Analysis

•Thermal Equilibrium Assumed between Seal/Structure and Gas Flow

•Heat Transfer to Seal Surface Modeled using Nestler Correlation

•Influx Gas Temperature Assumed to be Equal to External Wall Temperature

Seal Analysis Model

Governing Differential Equations for Equilibrium Thermal Assumption

Composite Fluid – Solid Energy Equation

$$\mathbf{r} C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) + \dot{m}'' C_{p_f} \mathbf{f} \frac{\partial T}{\partial x}$$

ρ, $C_P \& K$ are Composite Properties C_{Pf} is a Fluid Property $T_s = T_f \circ T$ (Thermal Equilibrium)

Darcy's Momentum Equation

$$-\frac{dP}{dx} = amn + brn^2$$

X-38 Rudder / Fin Seal Windward Surface Air Bulk Temperature and Pressure for Cycle 8 Trajectory

X-38 Rudder / Fin Seal Pressure Across the Gap Filler Seal Cycle 8 Trajectory

X-38 Rudder / Fin Seal Mass Flow Cycle 8 Trajectory

X-38 Rudder / Fin Seal Temperature and Pressure Cycle 8 Trajectory

X-38 Rudder / Fin Seal Cycle 8 Seal Surface Temperature Comparison

Baseline X-38 Bodyflap Seal Design

X-38 Bodyflap Seal Design (Undeflected)

X-38 Bodyflap Seal Design (45° Deflection)

X-38 Body Flap EMA TPS Concept Evaluation

• Problem:

Conventional TPS do not meet the requirements for the X-38 Body Flap Electro Mechanical Actuator (EMA) Arm

•Requirements:

High temperature, low conductivity, durable, and rub resistant TPS

X-38 Body Flap EMA TPS Concept Evaluation

•New Concept:

Two layers of Nextel 440 with a thin sheet of Inconel between them

•Purpose:

Evaluate a new TPS concept for the X-38 Body Flap Electro Mechanical Actuator (EMA) Arm

X-38 Body Flap EMA TPS Concept Evaluation Test Setup Top View of Cross Section of Channel Nozzle (Schematic)

X-38 Pre – Test Photograph

X-38 Body Flap Thermal Shield Concept Evaluation

Results:

New TPS concept failed due to severe surface degradation and easy fragmentation from the force of a pressure seal

Possible Solutions:

- Coated Niobium (C-103) Heat Shield (Baseline)
- Reusable Surface Insulation (RSI)
 "Donut" Rings

X-38 Post – Test Photograph 2800°F

EMA Arc Niobium TPS

EMA Niobium Surface Temperature

EMA Actuator Arm Temperature

EMA Arc Tile Donut TPS

Current Activities Rudder / Fin Seal

Rudder / Fin Seal

- •Thermal / Structural Analysis / Design of Vertical Rub Surface
- Modification of Seal Rub Test Fixture
- Mechanically Attaching Seal to Bracket for Rub Testing
 - Horizontal Tile Surface
 - Vertical Rub Surface
- Horizontal Rub Surface
 - Requires Smooth Tiles

Current Activities (Continued) Body Flap – EMA Arm Seal

Body Flap – EMA Arm Seal

Perform Rub Tests

•EMA Arm TPS w / Inconel Spring Seal

Coated Niobium

•Tile Ring (Donut)

•EMA Arm Gear Teeth

•Spring Tube Seal

Inconel Spring Seal

