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A NEW MATRIX DEVELOPMENT OF THE POTENTIAL AND ATTRACTION AT EXTERIOR POINTS
AS A FUNCTION OF THE INERTIA TENSORS
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Ocean Service, NOAA, Rockville, MD 20852, U.S.A.
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ABSTRACT. In this work a novel tensor-matrix notation is first intro-
duced and later applied to develop a new general expression to compute
the potential of a body at exterior points as a function of the full
tensors of inertia. As a corollary the general matrix development of
the gravitational attraction in function of the inertia tensors is

also established. For clarity the first terms in both expansions are
given explicitly in a simplified matrix form. Some classical particu-
lar cases still used in geophysical and geodetic literature are pointed
out and discussed.

1. INTRODUCTION

It is well known that the gravitational potential V of a body at any
exterior point P may be expressed as a spherical harmonic expansion. Much
has been written about this subject, and among the representative basic
references on the topic, one may mention (Hobson, 1931) and (Heiskanen and
Moritz, 1967).

A general representation of the potential V as a function of the so-
called inertial integrals and the partial derivatives of 1/ (r being the
radius vector of P) with respect to the Cartesian coordinates of P was
given in (Thomson and Tait, 1912, I, p. 202) and (MacMillan, 1930, p. 329).
Because of the practical limitations of the above formula, MacMillan (1930,
p. 384) proceeds one step further, providing the expansion of the potential
function with respect to the inertial integrals of the body and the powers
of the Cartesian coordinates of the point in question.

In this paper a novel approach using a general matrix representation
for the expansion of the exterior potential as a function of the full inertia
tensors of rank r is presented.

This is followed by another general matrix development giving the Car-
tesian components of the gravitational attraction (force function) at the
same point as a function of the inertia tensors.

A significant difference from the methods mentioned above is the pos-
sibility of writing the low order terms of the expansion in a conceptually
simple matrix form, avoiding lengthy and cumbersome polynomial expansions
of considerable complexity (see MacMillan, 1930, p. 87; Grafarend, 1980 or
Doubochine, 1981).
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258 TOMAS SOLER

The matrix notation introduced here is especially useful when treating
problems involving rotation of e¢oordinate systems. A second important
difference whicH contrasts with the spherical harmonic expansion is the
fact that in this presentation the primary ingredients of the development
are the full tensors of inertia, well defined physical gquantities with

fundamental dynamic properties in any body.

2. PRELIMINARY CONCEPTS AND NOTATION

A new notation is introduced in this work in order to simplify mathematical
expressions. This direct notation is intended to be as clear and concise as
feasible and is fully based on conventional matrix calculus, avoiding as
much as possible the index convention commonly used in tensor treatises.

In this way all the variables contained in the equations will be explicitly
represented or implied in a straightforward manner.

Although matrix notation, in the author's opinion, is sometimes not as
compact as formal tensor notation, it is more intuitive and easily compre-
hended by any reader with a basic knowledge of matrix algebra. As a by-
product, the resulting matrix equations can be coded immediately in any
computer language, taking advantage of matrix manipulation subroutines
available in most computer facilities.

Unless otherwise stated, the following preliminary notations will be
adopted throughout this paper.

2.1. Coordinate systems

Three-dimensional orthogonal Cartesian coordinates and those coordinate
systems derived from them exist in what is known as an Euclidean three space
represented by E3. This is the space of our ordinary experience and the

only one implied throughout this paper. However, it should be mentioned that
there are spaces of both mathematical and physical interest which are

neither three-dimensional nor Euclidean.

2.2. Vectors

In this study vectors of coordinates will be represented by column matrices
denoted as

This column vector defines a point in the E3 Euclidean space specified
by the three real numbers X0 i=1, 2, 3, expressing the coordinates of the
point along the Cartesian system.
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A NEW MATRIX DEVELOPMENT OF THE POTENTIAL AND ATTRACTION 259

To conform with matrix multiplication rules, sometimes the components

of the same vector {x} will be arranged in horizontal array

t_
{x} = {x1 X, x3}
and termed a row vector. (The symbol t stands for transpose).

One-dimensional vectors are called scalars.

2.3. Matrices

In general a 3x3 real matrix will be denoted between two brackets [M].
Sometimes well-known types of matrices are written without the brackets.
For example, this is the case of the rotation matrix R of the transformation
between two Cartesian systems of’ coordinates, described in Section 6.

Th2 following special types of matrix notations are introduced and
subsequently used:

a) Skew-symmetric

To every vector {x} it is possible to associate a skew-symmetric matrix

denoted by
[ 0 ~X, xzi
[x] = X3 0 —x1i (2.1)
X, Xy 0 ]
where clearly
[x1% = -Ix]. (2.2)

b) Identity matrix
The 3x3 unit, or identity matrix, will always be denoted by [1]. In

general a unit matrix of order n will be written [1].
nxn

c) Symmetric matrices
Such matrices will always be represented by the upper triangular ele-

ments only, and the letter s in the lower left of the matrix.

3. THE TENSOR-MATRIX CONCEPT

In principle, the algebra that has been devised for matrices may be used

for tensors as well. In the E3 Euclidean space all tensors are of dimension
d =3 and the distinction between covariant and contravariant components

is non-existent. Nevertheless, tensors in E3 may have different rank. It is
well known that scalars are tensors of rank zero. Any 3x1 vector is a tensor
of rank one, and 3x3 matrices are tensors of second rank. In particular,
tensors of second rank, like their corresponding matrices, may be diagonal,

symmetric, anti-symmetric, orthogonal, etc.
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The total number of elements of a tensor of dimension d and rank r is
d*. In the particular case of tensors of inertia, only 3(r + 1) (r +2) are
distinct (i.e. not equal); consequently this is the maximum number of ele-
ments which must be computed in order to fully know any tensor of inertia
of rank r.

At this point one should take note of the difference between tensor
rank and matrix rank. Although it will not be used in this paper, the rank
of a matrix [M] is the number of linearly independent columns (or rows) of
[M]. Obviously for a 3x3 matrix O £ rank [M] £ 3. Some modern texts of tensor
calculus replace the more traditional word ‘'rank' (of a tensor) with 'order'
but this terminology will not be followed here.

Three different tensor operations wil% be introduced having the fol-

lowing properties.

3.1. Tensor product

This is an operation between two tensors of rank r and s which results in a
tensor of rank r +s. An example of this operation in matrix notation is the
product of a vector and its transpose, namely {x}{x}t. The term 'dyadic',
infrequently employed today, occasionally is mentioned synonymously with
the {x}{x}t tensor. The symbol ® commonly used in mathematical literature
to denote this operation will be adopted in the present discussion except

in the case of the dyadic tensor.

3.2. Tensor 'inner' product

It is an operation between two tensors of rank r and s which gives as a
result a tensor of rank r +s -2. The scalar product of two vectors is a
particular example of this operation (e.g. {i}t{x} = scalar). No particular
symbol for this operation will be used here. In subsequent sections it will

be shown that it follows matrix multiplication rules with some restrictions.

3.3. Contraction of a tensor

It is an operation ‘that, applied once to a tensor of rank r (for rz 2) gives
as a result a tensor of rank r - 2. The symbol ¥ will be used to denote

contraction (i.e., first order contraction); thus
% [tensor of rank r] = tensor of rank r - 2

As is well known, the contraction of a second rank tensor is equal to
the trace of its matrix. It will be seen later that inertia tensors of rank
greater than three may have contractions of several orders. Thus the con-

k
tractions of order k will be denoted by ¥. By definition the contraction
o

of order zero is the identity contraction € [ 1=1[ 1.
The tensor inner product described above when mentioned in books is
introduced as a contracted tensor product; nevertheless this practice will

rot be followed in this presentation.
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A NEW MATRIX DEVELOPMENT OF THE POTENTIAL AND ATTRACTION 261

Whereas 3.1, 3.2 and 3.3 do not completely define these operations, the

remaining details will become clear from the examples considered below.

4, TENSORS OF INERTIA OF SECOND RANK

There is little agreement in physical and mathematical literature about

what is referred to as tensors of inertia. In this work the nomenclature
suggested by Hotine (1969, p. 165) is adopted, departing from the conven-
tional terminology to which the readers may be accustomed. The following

definitions and notations will be used throughout this paper.

4.1. Tensor of inertia of second rank (Inertia matrix of second rank)

The tensor of inertia of second rank of a body in a Cartesian coordinate

system is defined by any of the forms given below

[ x3xtam = [ (37 am

[I] = =
In Iy
X? XqXy XXy Iy T I3
_ 2 -
JM X, XyX o dm = 122 123 (4.1)
s xg ls Iy

where the integration is to be extended over the total mass M of the body.

The diagonal elements Iii' i=1, 2, 3 are referred to as the moments
of inertia with regard to the planes Xy =0, i=1, 2, 3 respectively, and
Iij’ i=#=j=1, 2, 3 as the products of inertia with respect to the planes
xi=0 and xj=0, i=j=1, 2, 3.

The symmetry of [I] follows immediately from the matrix equality
t,t t
({xHx}717 = {x}x}". (4.2)

Notice that the elements of the inertia matrix of second rank in (4.1) have
two subindices. In general, elements in tensors or inertia matrices of rank

r will have r subindices.

4.2. Associate tensor of inertia of second rank

The associate tensor of inertia of a body in a Cartesian coordinate system
is defined by

(11 [ [§][§]t dm = J [J] dm =
M

Ju
2 2
x2+x3 —x1x2 —x1x3 A -F -E
= x2 +x2 -X,X dm = B -D (4.3)
1 3 273
M 2 2
S X, +X S C

1
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262 TOMAS SOLER

where A, B, C are referred to as the moments of inertia of the body with

respect to the x E and

F

11 %Xy and X, axes respectively, and D= 123, = I13

=I12 as defined above, or equivalently the products of inertia with

respect to the axes X, and X3 Xy and Xq and Xy and X, respectively.
The moments and products of inertia are known as the six constants
of the body with respect to a particular coordinate system, and clearly
they are dependent on the choice of coordinate system.
The symmetry of the associate tensor of inertia of second rank is

obvious from
[lx10x1 1% = [x11x1". (4.4)
It may be proved that
x11x1% = (3 txh 111 - (3= © (4.5)

giving a second representation of [[]] as

t
= | ceten o - eoeo® an, (4.6)
M
By an orthogonal transformation (which preserves the rectangular Car-
tesian character of thé coordinate axes), the matrix [[]] may be reduced to

the diagonal form

A 0 0
p
diag[]] = Bp o |. (4.7)
S C

Then the values Ap, Bp and Cp are called the 'principal moments of
inertia' and the axes of the transformed coordinate system are called the
'principal axes of inertia'. Notice that the origin is not changed by the
orthogonal transformation.

The tensor of inertia referred to a coordinate system with origin at
the center of mass (CM) will be called the 'central tensor of inertia'. If
the central tensor is principal (i.e. diagonal) its associated coordinate
axes are called 'central principal axes', or sometimes, 'axes of figure' of
the body.

The coordinates of a point with respect to the axes of figure will be
denoted by Xopj i=1, 2, 3. Moments of inertia with respect to central
principal axes will also be distinguished by subscripts op.

Observe that according to the above definitions the principal axes of
inertia of a body are not necessarily central, a fact many times overlooked.

The first order contraction of [I] gives the moment of inertia with
respect to the origin of the coordinate system

¥[1I] = Tr[I] = I {x}t{x} dm = j (x2 +x2 4 xg) dm. (4.8)
M

M 1 2
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It is immediately proved from (4.1),

(4

.3)

263

and (4.6) that the second rank

tensors [I] and [[]] are related by the equations

rt

3Trll]
T [0 1] -

Tr(I] (4.9)

It

{1l (1 (4.10)

5. TENSORS OF INERTIA OF RANK HIGHER THAN® TWO

5.1. Tensors of inertia of third rank

The tensor of inertia of third rank will be defined in matrix notation as

x1[J] [J]1 [I]1
(11} = Jf x) ® [7] dn = J x,l0] pam = | {131, bam =< (11,
M M M
x3[J] [J]3 [I]3
(5.1)
where [J] was defined previously in (4.1). Explicitly (5.1) may be written
(.3 2 2 N
*q X% x7%y ]
2
X_]X2 X1X2X3
2
Ls X1X3 ]
rx X X X2 X, XX )
: : 1%2 1%2 1%2%3
(lriy = {31} am = x3 x2x dm =
I Ju *2 2*3 ¢
LS X2X§
'X2 2 1
1X3 X1X2X X1X3
2 2
X2%3 Xo¥3
3
S X
L*— _3 ..J/
- 9
(1111 Ti12 T113
120 Tq23
S I133]
- -
11 To12 Toa3 (1], 1
9 Iooo  Iop3| =g 112 j (5.2)
N 1733 (11,
I311 T312 I3q3
T30 I323
s I
L 333 )
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Therefore, in E3 tensors of inertia of third rank can be considered
3x1 'vectors', the 'components' of which are three matrices which will be
called 'inertia matrices of third rank'. Notice that the rank of an inertia
matrix in this context is the rank of the tensor which it is a part of, i.e.
the number of subindices in every element or the degree of the products
Xixjxk’ rather than conventional matrix rank. The total number of elements
of a three-dimensional tensor of rank three will be 27, but only 10 of them
are distinct. (They are underlined in Equation (5.2).)

One may define 3x3 inertia matrices of any rank as a function of the

basic matrix [J]

[I]ijk...p JM xixjxk...xp[J] dm =

2
e XX, X X3
= [ X.X.X X x2 X,X dm (5.3)
Jy Tk T 2 273 :
S 2
X3

where the subindices i, j, k...p are pbsitive integers equal to 1, 2 or 3.
If n is the total number of subindices, then the rank of the inertia matrix
is n+ 2.

Incidentally, note that any permutation of the n subindices i, j, k...p
does not alter the result, assuring the invariance of inertia matrices of

any rank with respect to the same subindices, i.e.

[L)i9 = [Ty = [Rlgpg = [3)ggp = D8]y = [TDyy,e (5.4)

Also notice that in general the elements of an inertia matrix of rank
r are the so-called 'inertial integrals' which are in the form

J x?xzxg dm for g + s + t = r (5.5)
M

5.2. Inertia tensors of fourth rank

Fourth rank inertia tensors are defined as follows:

[[I]] J {x} ® {[J]} dm =
M

031y 1315, D904,

[3] (31..] am = [ [031] dm (5.6)
JM 22 23 Iy

s (3155

or explicitly
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A NEW MATRIX DEVELOPMENT OF THE POTENTIAL AND ATTRACTION 265
—§4 x3x x3x ’k3x x2x2 x2x X "k3x x2x X x2x2 7]
-1 172 1 172 172 17273 173 17273 173
%x?  x%x.x 2.%° x.x%x X, x2x X, X X2
172 17273 172 17273 17273 17273
s %2x2 s X, X xzj s %, %3
173 - 172734 & 173 4
'k2x2 x x3 X xzx T'kzx X X, X% X, %X
172 172 17273 17273 17273 17273
[ 4 3 3 2.2 )
[[11] Iy fﬁ X5%4 X% 4 X5x5 dm
s x2x2 s X %3
L 273 4L 273 4
Mx2x? %, %% %.x5 ]
173 17273 173
2.2 3
X5X3 X,X3
s s X4
L - 3004
(Tl [y, (Il
= [1]22 [I]23 (5.7)
L s [L133

Hence the inertia tensor of fourth rank is formed by a matrix of 3x3
submatrices which are denoted as 'inertia matrices of fourth rank'.

Therefore the inertia tensor of fourth rank has 34

=81 elements, of
which only %(4 +1) (4 +2) =15 are distinct. One choice of these distinct
elements is underlined in Equation (5.7) following a pattern previously

used for third rank inertia tensors and easy to generalize. Consequently
fourth rank tensors of inertia are composed of 3x3 symmetric matrices, there-
fore the tensor 'components' are inertia matrices of fourth rank. The number
of distinct inertia matrices in a tensor of rank r is 3r(r -1). Thus, for a

tensor of r =4 one has only 6 distinct inertia matrices of fourth rank.

5.3. Tensors of inertia of higher rank

Following the same logic outlined in the previous sections, the tensor of

inertia of fifth rank can be written in any of the forms given below

x, [13]]
(= [ oo e 191 an = [ <xy00010 pdn
M M

x5 [[3]]

or, showing all inertia matrices explicitly,

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1984CeMec..32..257S&amp;db_key=AST

—32. 2725750

4CENET ..~

I'I_

266

(111} = J

[ty

[J]12

(I15,

(9142

(314,

(9125

[Tl

(1157

[1ly,

(11,

[114,

[I1,,

(31,37)
(J1,5

(9133

[J]13] ‘
17,4 Ldm = <

[J153]
[9343]
[3153

[J143]

-

[H133
[I]33J1
[I1,5]
(1153
(113312
[11,3]

(11,53

(113513

> =

(111,
(1111,
[[111,

(11424

(11524

(T142,

1y,

[(T1923

[I1553

TOMAS SOLER

[T11347)
(T1534
(11334
(11452]
(11,450 =
(1133,
[11433]

(T1;33

[T1335])

(5.8)

The three 'components' of the tensor of inertia of fifth rank [[I]]i,

i=1, 2, 3 are called clusters. Because our space is a E3 Euclidean space,

every inertia.tensor of odd rank r will be a vector of three clusters, so

named because they are formed by clusters of submatrices, the primary ele-

ments of which are inertia matrices of rank r.

For example, explicitly the element [I]

inertia matrix of rank five,

[Tl4,5 =

1
- W

X, X, X

123 is known to be the following

(5.9)
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A NEW MATRIX DEVELOPMENT OF THE POTENTIAL AND ATTRACTION 267

Thus in general every tensor of odd rank r 2 3 will be a vector of three

clusters and may be denoted in short by

1 m
: . [...[I]...]1 o,
Al [T]0001) = (oo [T,y P=< 0y (5.10)
[...[I]...]3 o3
where o, are clusters, and
m = greater integer less or equal to r/2 =<r/2> (5.11)

and r =2m + 1. In general the symbol <v> will be used to denote the largest
integer £v.
Similarly, tensors of inertia of even rank will be 3x3 matrices of

clusters represented symbolically by

1 m-1 1T m-1 1 m-1
[...[I]...]11 [...[I]...]12 [...[I]...]13

PN 5 S PO AP 5 IR
S
[...[I]...]33

(5.12)

fl...[17...]

m as defined above and rank (even) = 2m.

Equation (5.12) may also be expressed in compact cluster form as

11 12 13

1 m
[[...[I]...]]1°¢% 055 0,3
s 033

Thus, in a simplified notation the tensor of inertia of six rank can
be written
[(T11,, [[T]11,, [[I11,4
[[rri1l = (rril,, [II1],, (5.13)
s [[I11,,

where the clusters [[I]]ij may be obtained from the previously defined

matrices in (5.8), namely
[[I]]ij = Xi[[I]]j

Each element of the cluster [[I]]ij is an inertia matrix of rank six

[T]5 gk
Remark. Multiplication of. 'vectors' and 'matrices' consisting of these
'components' (i.e. clusters for high rank inertia tensors) follows the

ordinary multiplication of matrices except 'component' by 'component' rather
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than element by element. The following examples explicitly illustrate the

convention applied, replacing the standard notation using .

a) The expression [{x}?'®[1]]{[1]} will be abbreviated to

[11,

YT = (5T, o= ok LT, + x,[T1, + x5(T1, (5.14)

b) Similarly [{X}t'® [111[[I}1[{x}®[1]] will be shortened to

(35T (x)

1]
—~
b
—
—
H
—
N
N
—
H
—
N
w
-~
»
—

2 2 2
x [Ty + x0Tl + x3[1]55 +
2 o2x x) [T, + 2x,x, 011, 5 + 2x,x5[11 5 (5.15)

c) and [[A1e®[1]){[I]} by

ajy 3y g3 | Hy ap [Tl + a1, + a;50Tl,

i, (5.16)
ay 3y, a3 1l ayq [Tl + ay,[1l, + ay50T],
azq agy; asy| ([Tl ag [I1; + ag,[11, + ag5[Il,

5.4. The associate tensor of inertia of third rank

Although not defined or given explicitly in books on mechanics, one can
also extend the concept of higher tensors of inertia to the associate tensor
of inertia. For example, the associate tensor of inertia of third rank can

be written

(- 2 2
XXy ¥ X4X3 XX, TXqX3 WW
3 + 2 -X.X
X1 T X%3 1%¥2%3
S X3 + X X2
K 17 %%
3 2 .2 _ 7
X2 + X2X3 X‘]X2 X1X2X3
{rn} = J {x} o [J] am = J < x2x. +xox°  -x2x > dm =
1% T XoX3 2%3
M M 2 3
LS X_]X2 + X2 ]
-X X, +X X . XX -X X2 -|
2%3 T %3 1%2%3 1%3
2, .3 2
Xq¥3 7 X3 X¥3
2
S X, X, + XX
L 1737 %273
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A NEW MATRIX DEVELOPMENT OF THE POTENTIAL AND ATTRACTION 269
(T - -z 1
A1 F1 E1
B1 —D1
K C1_
A, -F, -E, (1,
=9 B, =D,|p=<I[l], 5. (5.17)
s C,J [,
Ay F3 By
By D3
LS C3.)

To emphasize the difference between the tensor and associate tensor of
inertia of third rank, notice that although D1 =E2 =F3, the diagonal ele-
ments of the matrices are always different from the non-diagonal elements;
therefore we have 15 distinct elements in the associate tensor of inertia,
as opposed to 10 in the tensor of inertia of third rank. The extension to

higher rank associate tensor of inertia, if required, become fairly obvious.

5.5. Contraction of tensors of rank higher than two

Contractions of higher rank tensors are defined as follows:
a) The contraction of tensors of even rank is equal to the sum of the

three clusters forming the diagonal of the tensor, that is

1 m-1 1 m-1

3
= ¥y [eeo0Tdeeidy, = [e.[I10.00. (5.18)

1 m
] ii

€ll...[1]...]

b) The contraction of tensors of odd rank is equal to the contraction
of each of the clusters, namely

m 1 m-1

1
%[...[I]...]1 (...[TI1...1,

b =< @l 01).. ), p =S Leeu [T, e (5.19)

€l...010...0, [...0T)...0,

1 m
¢i0...[1]...]

For example, the contraction of tensors of third rank may be written

(€[I]1 Tr[I]1 I + I + I

111 122 133
€{[(1]1} = ‘€[I]2 = Tr[I]2 = 1211 + 1222 + 1233 (5.20)
¢lrl, TriIl, T319 * I3 * I333

where in general the contraction of any 3x3 inertia matrix is its trace

%[I]ijk...p = TrlI], (5.21)

ijk...p°
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With the above definitions, equations similar to (4.9) and (4.10) can be

written involving the tensor and associate tensor of inertia of third rank

€{I11} = + € {01} (5.22)

and

i}

{1y = 0111401y - {0013 (5.23)

where [[1]] is the unit tensor of fourth rank (i.e. [1]).
9x9

In general one may take the contraction of a tensor of rank r, k times,
where k=0, 1, 2, ..., m, and the maximum contraction m given by m= <r/2>
where <r/2> was defined above in (5.11).

Thus, neglecting the contraction of order zero which is the identity
contraction, a tensor of inertia of third rank may take only one contraction
while fourth rank tensors of inertia may take a maximum of two. Multiple
contractions will be denoted by

2 3 m m
€, € =%%, ¢ =%%%, ..., € =¢%%....%. (5.24)

14

m
The maximum contraction % when applied to a tensor of even rank will result

in a scalar, while when applied to a tensor of odd rank, it will result in
a 3x1 vector.
Therefore

. (5.25)

m Scalar for r even
%[Tensor of rank r] = {

Vector for r odd

For example, [[[I]]] being a tensor of sixth rank, may have a maximum

of m=3 contractions. Thus one can write for the first order contraction,

w

GLLITIIY = [[I1]q, + [[I11,, + [[I1155 = .21 [[T1],,- (5.26)
l:
The contraction of second order will be
2
CLIII11) =FFI00T11] = €U00T1],, + [[TI1],, + [[T1144) =

+

[I19991 * [Tlap0p * [Tl3333 * 2011495,

* 2lIly55 *+ 20115555 (5.27)

and finally for the maximum (third order) contraction

3 2
GIIIT11] =FFLIIT1]] = Tr[Ilqq qq * TrlIly,n, + Tr(Ilgsqqy +

+ 2Tr[I]1122 + 2Tr([I] (5.28)

1133 + 2TrlIl5535.

Consequently the contraction of order k (k £m) of a tensor of rank r will

result in a tensor of rank r - 2k.

k
€% [Tensor of rank r] = Tensor of rank r - 2k. (5.29)
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6. EFFECT .OF ROTATIONS ON THE TENSORS OF INERTIA AND THEIR CONTRACTIONS

Assume that one knows the rotation R between two coordinate systems with a
common origin. The transformation of coordinate between the two systems due

to the rotation is given by the following equation:
{&} = R{x} (6.1)

where the 3x3 matrix of direction cosines R may be parameterized by, e.g.
Eulerian or Cardanian angles (Magnus, 1971, p. 32).
It is well known that tensors of inertia of second rank (3x3 matrices

in E3) transform according to the equation
=~ _ t
fI] = R[I]IR (6.2)
and that their contractions (traces) are invariant under rotation, namely
@[I1 = €[1]1 or Tr(il = Trl[I]. (6.3)

This invariance of the contractions under rotation in general is lost for
higher rank tensors. It may be shown (see Appendix A) that the transforma-
tion involving R between higher rank inertia tensors will follow the

equations presented below.

Third rank tensors.

Given the transformation {X} = R{x} and denoting by {[I]} and {[I]} the
inertia tensors of third rank in the transformed and original system

respectively, then

(i1, R[I]_IRt.
(111} =< (11, p= RARITI,R (6.4)
(1, R[I]3Rt
Notice that
[t = R[I]iRt, i=1, 2,3 (6.5)

implying that in general the clusters are not tensors. In this case,
clearly, inertia matrices of third rank are not tensors.
The only possible contraction of third rank inertia tensors transforms

according to the equation

¢i1l, Tr(I],
%1111} = RQ €11, p= R Tr[I], - (6.6)
€11, Tr(I],

Similarly fourth rank tensors will transform under rotation according to
the equation
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272 TOMAS SOLER
t t t
R[I]11R R[I]12R R[I]13R
~ _ t t| _t
[[I]] = R R[I]22R R[I]23R R (6.7)
t
S R[I]33R

and taking contractions up to m=2

€ILT1) = RILID,, + [11,, + [I]33]Rt = RYIIT]IRE (6.8)

2 - 2

$1111] =9€11T1] = €1111). (6.9)
Therefore

#R{[I]} = RE([I]} = @{[I]} (6.10)
and

2 2 .

Fllzll =FII11]. (6.11)

For better understanding, the following example shows the effect of a
rotation R on a fifth rank tensor, the corresponding formulation for higher

rank tensors being evident.

( RII] R RII], ,R R[I] ;R )
t t t
R R[I]22R R[I]23R R
t
e RUITIpRT
£ £ o
(h[I]11R R[I] ,R R[I] ;R
{I1¥11} = R< R R[T],,R®  RII],.R%| R® 3 (6.12)
t
e RlIlggR 02
£ £ £q
R[I]11R R[I]12R R[I]13R
t t t
R R[I], R R[I],,R R
t
L |s RIT1,,R13 J
and hence
t
o, R[[I]111 + [I]122 + [1]133]R
- B B t
€{ll111} = R¥ a, p= R R[[I]211 + [11,,, +« [TI1,551R7 4, (6.13)
t
o, R[[I]311 + [I]322 + [I]333]R

But a fifth rank tensor may have a maximum of two contractions; therefore,

TriI]
2 ~ ~ .
CLILI11} =F6LI[T11} = RS Tr[1]

+ TriI1] + Tr[1]

111 122 133

+ Tr(I] + TrlI1] . (6.14)

211 222 233

Tr[I] + Tr{I} + TrlI]

311 322 333
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which is the product of a 3x3 matrix by a column vector, thus resulting in
a column vector or a tensor of rank one.

In general it may be proved that

m L m m 1 m

€{r...[1]...1} = RE([...[11...]} (6.15)
and

m L m m 1 m -

€l...[11...1 =Fl...[1]...]. (6.16)

Thus the invariance of the contraction under rotation is conserved
only when the maximum possible contraction m (see Equation 5.25) is applied
to even rank inertia tensors. This was expected because the maximum order
contraction of even rank tensors are scalars.

In the following sections the basic operations among inertia tensors
outlined above will be applied to express the potential of a body at an

exterior point as a function of the inertia tensors.

7. THE EXPANSION OF THE POTENTIAL OF A FINITE BODY AS A FUNCTION OF THE
TENSORS OF INERTIA

Consider a rigid body of arbitrary shape and mass M, and let Ox denote the

origin of the coordinate system X0 i=1, 2, 3 fixed in the body. Let CM be

Pix{
Xop, X -2
P
’/f ,/ :
£ - P )
/’/ // :
- p
g ’ ]
- ” :
JE [
Qix{ . ]
,"dm H
I
N XoPy |
rla '
[ ]
" i \
{Q i i
1 )
|
]
]
]
]
i
t
3
x; !
]
'
]
3
1]
'
]
]
1
]
[}
i
¥
~ ]
~d
x°p1
Fig. 1. Coordinate systems notation and configuration.
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the body's center of mass and Xopy r i=

TOMAS SOLER

1, 2, 3 its central principal axes.

Denote by {g} the column vector of the coordinates of the CM in the X

system.

Let {i} represent the column vector of the coordinates of a point P

exterior to the body at a distance r from Ox. That is (see Fig. 1)

2 = %%

(7.1)

Similarly, let {x} be the coordinates of a mass-point Q interior to

the body at a distance r from Ox and with element of mass dm.

The gravitational potential of any body at an exterior point P(§1,§2,§3)

can be expressed by the well known equation

dm
V =G J —_—
M 2

(7.2)

where G is the gravitational constant and the integration is to be extended

over the complete mass M of the body. The distance % between P and Q is

given by
2?2 = (% - x35% - x}
where
r cos ¢ cos A r
{x} =< r cos ¢ sin A p=4r
* r sin ¢ r

with similar expressions holding for
tion of point P.

Thus Equation (7.3) may be writt

sin

sin

coOs

the

en

(7.3)
6 cos A
™
8 sin A »; B = — - ¢ (7.4)
2
¢]

barred variable defining the posi-

N

22 = (215 R) + 1t xy - 2(% Eix) = 2+ 2 - 2Frt (7.5)

where, in this case

1

t=cos §=— {%}{x} =cos § cos 6+sin 8 sin 8 cos(% - 1). (7.6)

rr

When r <r one can write (Heiskanen and Moritz, 1967, p. 33)

n
r

"_DT]- Pn(COS 1’))

1 -]
- = 2
L =0 r

n

(7.7)

where Pn(cos y) are the Legendre polynomials of degree n.

It is well known that the series in (7.7) converges absolutely and

uniformly in a certain domain for arbitrary values of the angle vy.

Substituting (7.7) into (7.2) and integrating term by term
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o 1
- = = n
v(r, 6, A) = G nzo %H:T JM r'P_(cos ¥) dm (7.8)

where by the addition theorem (Hobson, 1931, p. 143)

Pn(cos y) = Pn(cos Q)Pn(cos 6) +
n (n - m! - -
+2 } ———— P (cos 8)P_ (cos B) cos m(A = A).
m=1 (n + m)!
(7.9)
Therefore (7.8) can be written in the form
- - - © 1 - -
v(r, 8, ) =G } —/ Y (8, }) (7.10)
n=0 r
and the surface spherical harmonic of degree n is given by
Y (8, X) = J rP_(cos y) dm. (7.11)
n M n

It is known that any homogeneous harmonic polynomial of degree n,
Hn(§1, §2, §3), when expressed as a function of spherical coordinates
(¥, 8, %) may be rearranged as a product of two functions, only one of

which is dependent on r and the other dependent on (8, X)
- - - _ -n - =
Hn(x1, X5 x3) =r Yn(e, A) (7.12)
where in the notation of (Heiskanen and Moritz, 1967, p. 29)

a__R 6, A b_ S _(8, N1 =
o = nm nm nm"nm

<
—_
@l
<~
>
n
I~

—
@
~
>

+

n
= )} [a_._ cos mA + b __ sin mA]P__(cos ). (7.13)
m=0 nm nm nm

For clarity, it must be emphasized that the above does not mean that
all homogeneous polynomials are harmonic functions; only some of them are
(see Hotine, 1969, p. 162).

From (7.12) therefore

Y (5, %) = =2 I (7.14)

and substituting Equation (7.14) in (7.10) finally it is possible to write

the potential V as a function of the Cartesian coordinates of P, namely

Hn(x1, X5 x3)

=2n+1
r

V(Xy, Xy X3) =G ] . (7.15)
n=0

As mentioned above, the series on the right-hand side of (7.15) con-
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verges absolutely and uniformly for r >a and for any a such that all points
of the body satisfy the inequality r <a.
The polynomial Hn(§1, 22, §3) may be obtained from (7.12) and (7.11)

= =n

= = a n
Hn(XT’ Xy x3) = r JM r Pn(cos y) dm. (7.16)

Using Equation (1-62) in (Heiskanen and Moritz, 1967, p. 24), namely

Z)m/z <(n-m) /2> K

P (t) =271 - ¢ (-1 x

nm k=0

(2n - 2k)!
x t
k!(n - k)!(n - m - 2k)!

n-m-2k (7.17)

where
<{n - m)/2> = greater integer less or equal to (n - m)/2

and the particular case m =0, one gets

_.. <n/2> (2n - 2k)! _
P (t) =2 ] (-1 £n2k, (7.18)
k=0 k!(n - k)!(n - 2k)!
Recalling that now
(X1 x}
t =cos ¢ = —— (7.19)
rr
one can write (7.18) in the form
<n/2> _ _ _ _
P (cos y) = 1 T ({x}F{xn 72K (E) 2k (7.20)
L nk
k=0
where
X (2n - 2k)!
Tnk = (-1) = (7.21)
27kt (n - k)!(n - 2k)!
and finally, substituting in (7.16), one arrives at
_ _ _ <n/2> _ _ _
H (R, %,, %) = ] T (= ™25 2* dm. (7.22)
n 1 2 3 k=0 nk M

The potential V(§1, 22, §3) may be obtained from (7.15) as

© 1 <n/2>
V(E,, %, %) =G ] ———r [ (X ) 2 (7 2 an
1r 720 73 n=o r2n+1 k=0 nk M
(7.23)

and using only matrix notation inside the integral
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_ _ _ o 1 <_n/2> _ - _
Vi Ry Ry =6 1 oo L TuEot | (@) MR B K an.
n=0 r k=0 M
(7.24)
The above equation can finally be written in the simplified form
_ _ _ © <n/2> 1
Vix., x,, x,) = G z :—-_——TJ (7.25)
1 2 3 nZO k=0 r2(n k)+1 "nk“nk
where Tnk was given in (7.21) and
L= | 1@t ()t n ® an. (7.26)

Ju

In the following sections it will be proved that Jak is a function of

k
the tensors of inertia of rank n and its contractions %ﬁ where

k=0, 1...<n/2>,

8. COMPUTATION OF THE LOWER TERMS IN THE SERIES

8.1. Zero order term

In this particular case n=0, implying k =0.

Therefore
- - - 1 (
Volx,, x5, X3) = G — dm. (8.1)
0" 2 3 I JM
Knowing that
[ am = m (8.2)

which may be considered the tensor of inertia of rank zero, one gets the
well known result

GM

VO(X1’ Xy x3) = . (8.3)

r

8.2. First order term

Assuming n =1 and consequently k =0, and substituting these values in (7.24),

- - - ¢ -t G -t
Vilxy, x,, x3) = = J ({x}"{x}) dm = = {x} J {x} dm (8.4)
r M r M
but

&1

J {x} dm = M{g} = M £y (8.5)

M
&3
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where {f} was defined previously as the coordinates of the center of mass
of the body with respect to the X0 i=1, 2, 3 coordinate system. Equation
(8.5) may be considered the tensor of inertia of rank one.

Replacing (8.5) in (8.4) one has

_ GM  _
x3) = 53 {x}-{¢&} (8.6)

V(X x50

8.3. Second order term

Assuming n =2, then k=0,1 and substituting into (7.24) one can write

3G G

v2(§1, >‘<2, x3) = o= JM ((x1%xhH? am - = JM ({x}%{x}) dm (8.7)
but

(X xh? = e eatEr = RteE (8.8)
and

(x}%{x} = €13] = Tr(I] (8.9)

which after integration becomes as a function of the tensor of inertia of
second rank

3G G

£ = —g (KICI1)R) - —5 TrlI). (8.10)

Vox,, X
27 2r 2r

2/

The above equation may be written as a function of the associate tensor
of inertia [l]. Recalling Equations (4.9) and (4.10) it follows that

3G

Vy (%, %y, Xy = - — (XITLNR) +
2r
3G e G
+ —¢ Tl {x}"{x} - —5 Trll; (8.11)
4r 4r
or
L G 3¢ _ _
Volxy, Xy X3) = —5 Tc[l] - — x} [01{x}. (8.12)
2r 2r

It is remarkable that V2 as a function of [I] is equal to the negative

value of V, as a function of [0]. Nevertheless this property cannot be

generalizeg for any n, as will be shown later when determining V3.

It can be proved immediately that Equation (8.12) when referred to the
central principal axis, reduces to the second order term of the potential
expansion, as given in (Thomson and Tait, 1912, II, p. 87 or Heiskanen and
Moritz, 1967, p. 63).

Another particular form of Equation (8.12) included in the development
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of the potential is attributed to MacCullagh and consequently called 'Mac-
Cullagh's formula'. See (Jeffreys, 1970, p. 176 or Hotine, 1969, p. 167).
Noticing that

NG = 2rartinite - Ezlp (8.13)

where {oa} is the column vector of direction cosines of line OxP, namely

(see Fig. 1),

(3 ]
>1

sin cos

>1

sin

@l

{a} =< sin (8.14)

@l

cos

and Ip is the moment of inertia of the body with respect to the line OxP,

another way to write (8.12) is

G 3G G
vV, ==—= (A +B+C) - —= I =—= (A +B+C - 3Ip). (8.15)

2 of 2t P 2f3

Notice the generality of the above equation where A, B and C are not
the central principal moments of inertia, but the moments of inertia (not
even principal) with respect to a given coordinate system. This term is
more general than the corresponding one included in the equation originally
credited to MacCullagh and published as a lecture account by one of his
students (Allman, 1855) 'with the view of securing to Prof. MacCullagh the
merit of whatever is original in the investigation or its results'.

MacCullagh's formula refers to the central principal axes of the body;

consequently Equation (8.15) takes the simplified form

G
V2op = 273 Pop " Bop * Cop ™ 3o (8.16)
where now
0 0

op
I ={a}t B 0 {a} = ofA + 0B + o%c (8.17)
op op 1% 2 op 37op* :

s C

op

Because the axes of figure now constitute the basic reference system,
{€£} =0, thus V1=:0, and finally the potential, neglecting terms in the

expansion higher than the second, is written

GM G

\Y = — + (A + B + C - 31 . 8.18
op ; 21_,:3 op op op Op) ( 18)

The above equation is quoted and used in geophysical literature when

studying the contributions to the associate tensor of inertia due to tidal,
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rotational or any other type of deformation. For example, one can consult
(Munk and MacDonald, 1960, p. 25 or Israel and Ben-Menahem, 1975).

It is easy to prove that Equations (8.10), (8.12) or (8.15) correspond
exactly to the second degree term in the expansion of the potential in

spherical harmonics.

8.4. Third order term

Assuming n =3 and thus k =0,1 and after substitution into (7.24)
VyRy, Ry %) = =3 | () am -
2r M
3G
- — [ @) w0t an, (8.19)
2r JM

After some matrix manipulation and simplification (see Appendix B),

the above equality can be written

5G

v3(§1, §2, 23) = 557 {?c}t[>'<1[1]1 + §2[112 + 23[113]{§} -
Tr[I]1
3¢ _
- —= (X} { Tr(1l, (8.20)
2r
Tr[I]3

where the term between brackets may be expressed as the 'inner tensor
product' of {x} by the third rank inertia tensor, so that

(11,

(KFEOIT1) = (RIE 0T, p= X [T0, + X,010, + X,[1],. (8.21)
(11,
Therefore
L 56 _ . 4 _ 36 _
Valxg, %Xy, X5) = =7 {x} [{x} {[11}]{x} - s {x}"6(I11}. (8.22)

Equation (8.20) as a function of the associate tensor of inertia takes the

form
o 56 _ . _ _ _ _
Valxy, Xy, X5) = - 557 {x}70x 0014 + x, 001, + x3[ﬂ]3]{x} +
Tr[ﬂ]1
-.t
+ —= {x} Tr[]] . (8.23)

2r5 2

Trill,

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1984CeMec..32..257S&amp;db_key=AST

—32. 2725750

4CENET ..~

rt

A NEW MATRIX DEVELOPMENT OF THE POTENTIAL AND ATTRACTION 281
Hence
5G ' G
= = = - -t - =, t . 8.24
Uy (Rys Bye R) = - RN ¢ 5 (KGN (8.24)

Notice that the coefficient of the term containing #{[[]} above is opposite
in sign to the one containing ¥{[I]} in (8.22), but smaller by a factor of
three. Thus

v, (as a function of [I]) = -V, (as a function of [[]).

9. HIGHER ORDER TERMS
Computing only J;k in (7.26) and therefore bypassing the calculation of the
coefficients of the expansion, easily obtainable from (7.25) for any value

of n, it may be proved that the higher order terms take the following forms.

9.1. Fourth order term

In this case n=4 and k takes the values k=0, 1, 2.
If k=0, then

.
[Tl [Tl [Ty
© it [11,, [Il,y| {X}] (X} =

Fiyo ® G

s [I]33

(2Rt (RI (XY (9.1)

For the value k=1, one has
(114 [Tl4; [Ty

g = x° e [T1,, [T1,5(1 {x} = {X}"GLITII{R} (9.2)

s [I]33
and finally, for k=2

(Il [Ty, (1145 R

g, =€ (11,, [Il,5| =%rI11]. (9.3)

r

s [I]33

9.2. Fifth order term

Assuming now n =5, and therefore k=0, 1, 2, one can write the following;
if k=0
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(r 1Y)
[T, (114, [Il4,
(115, (11,4
L s [I]33 1
[I]11 [1112 [I]13
L= @t Rt x¥ [11,, [Il,5| 1 1% (%=
i s [1131_2
[I]11 [I]12 [I]13
[1122 [I]23
[1] 3
(L ® 33)7)
[[I]]1
= {11t 1t ot (011,01 (3] (&} =
(0113
= (it it iR (k). (9.4)
For k =1
[zl
Sy o= G LRI, o) (xEs (RPHRIMELLININR). (9.5)
For k =2 [[I]]3
[{11]
2 1 )
Sy, = KNG, b= (TG I, (9.6)
[[1],

9.3. Sixth order term

To provide more familiarization with the particular notation for matrix
expansion introduced in this paper, J;k values for the sixth order term will
be given explicitly.

For n=6 and k=0, 1, 2, 3, if k=0

[[I]]11 [[I]]12 [[11113

E o - (x1t 1zt ot (111, [lrll, | (&3 &k} {x}-=
s (il
= PRI T I (R IR LRD . (9.7)
For k =1
L= (PG {R (XD, (9.8)
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For k=2
-t 2 - (9.9)
54 = {x} €IIl1]11){x}
6, 2
and finally, for k=3
3
£ L =F€III11]]. (9.10)
6, 3

10. GENERAL EQUATION

In conclusion, a general equation for Jg K using the notation and operations
14

involving inertia tensors defined in this paper can be written as follows:

n

Iy = J U SN2 (0 X an =
M

<Eil>—k k
={§}t{§}t 2 {g}twg[lnertia tensor

2 rria tens (RIEI.2. .. (%) (10.1)

} B>k
where the symbol <v> was previously defined following Equation (5.11).

In order to facilitate understanding of the new notation, the general
Equation (10.1) will be given explicitly below for even and odd rank inertia

tensors when n z 2,

A 3
| n 1is even |
—e [ Mk -t : k 1 m | _ m-k _
S = 05 [ (G5 Sl ] | & (10.2)
e ;
: n is odd :
-t m-k —e b ik 1 m m-k _
Sy = W [ [ @ aLLnn L& ] ® (10.3)
S .

where m=<n/2> and k=0, 1, 2...m.

Finally, when the expression (10.1) is substituted in Equation (7.25)
and the rules defined here for manipulating inertia tensors are followed,
the potential at an exterior point P(§1, §2, §3) in matrix notation is
obtained

- - - ? <n§2> Tnk
V(X,, Xo¢r X,) = G ———— X
1 2 3 n=0 k=0 r2(r1 k) +1
_ t<E%l>-k _ t]{ Inertia _ <§>—k _
x ({x} . .00 {x} %’[tensor of] {x}.C...{x}).

rank n (10.4)

11. INVARIANCE OF THE POTENTIAL WITH RESPECT TO ROTATION OF THE
COORDINATE SYSTEM

The invariance of the gravitational potential V with respect to a rotation

of the coordinate system is immediately obtained from Equation (7.25) using
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simple matrix notation. (The body remains fixed in this rotation).
Recalling (6.1) in general one can write the transformation between the

original coordinates {x} and the rotated ones (X} as
{8} = R{x}.

Therefore

(%1% = (x)tr®

and similarly
(x1% = {x)tRE.
Hence

1t = (tRtRG = (xrfx)

and similarly

(#1%(%) = (x)%x}.

Therefore the expression of j;k in Equation (7.26) is invariant with

respect to a rotation of the coordinate system, namely

n-2k n-2k

[ (tmsn (38 xn¥am (11.1)

J (515N ¥ am = f (7)1 x1)
M M

or

Sk = Fox- (11.2)
Because the radius vector of point P will not change after a rotation
of the coordinate system, that is, f==f, the very well known property that
the potential V is invariant with respect to a rotation of the coordinate
system is established.

~

V(§1, §2, §3) = v(§1, iz, §3). (11.3)

This result emphasizes the well known fact that tensors of rank zero

are always invariant under the change of coordinates.

12. COMPUTATION OF THE GRAVITATIONAL ATTRACTION

The .components of the gravitational attraction f at P along the Xs0

i=1, 2, 3 coordinate axes can be expressed by

(£} = {:;} v (12.1)

9x

or explicitly,
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3V 3V 3V

f_I = ;:_(——, f2 = a—}_z—-, f3 = 3?. (12.2)
1 2 3

Therefore, taking the partial derivatives of the potential given by

Equation (7.25) with respect to the vector {x} one obtains

<n/2>

(£} =6 § 7 T (2k-o2n - np2mT3g
n=0 k=0 "
[ e T e e * and -
M
© <n/2>
+G ¥ T kfz(k'n)'1
n=0 k=0 "

n-2k-1

« } (n - 2k) ({x3E(x1) (35 x X (x) am.

M
The above expression can be written

o <n/2>
{f} =G } y T
n=0 k=0

x {(2k = 20 = DI 28 IX} + (n - 2k) A} ) (12.3)

EZ(k—n)—1
nk

where]nk was given previously by Equation (10.1), and

n-2k-1

A} (1x)%(x}) (x5 xH ¥(x} dn. (12.4)

nk JM

Equation (12.3) may be rewritten in the final form

© <n/2> Tk I2(k-—n) -1
tf1=¢ nZO kZO 2K +1 |7 -2 tf}nk'*(n"Zk)L%7nk}
(12.5)
where
- _ t<n;1>—k _ t]< Inertia _ <%>—k _ _
S = {x}=({x} NERSES g{tensor of] {x}.....{x}) (%3.
nk nk rank n

(12.6)

It can be proved following a procedure similar to the one used in the

previous sections that

n-1 . n
<——>-k k Inertia <=>-k
{%?nk = {E}t..%....{Q}t%’{tensor of] {Q}.%...{E}. (12.7)
rank n

Notice that for n =2k the coefficient multiplying {x?nk in Equation
(12.3) is equal to zero; thus Equation (12.4) needs only to be defined for

values of n = 2k.
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13. EXPLICIT FORM OF THE FIRST TERMS OF THE EXPANSION OF THE GRAVITATIONAL
ATTRACTION

13.1. Zero order term

In this case n=0 and k =0; therefore, taking into account (12.3)

GM

{f}, = - 3 {x} : (13.1)

which is the well known value for the components of the gravitational

attraction at P(§1, X 23) at a distance of r from a point mass M located

2'
at the origin of the X i=1, 2, 3 coordinate system.

13.2. First order term

Substituting the values of n=1 and k=0 in (12.5), one gets

3eM _ GM
(£}, = - == (X HeD {x)+ = (&) (13.2)

1 r r

The above equation, as expected, depends on the coordinates of the
center of mass of the body. Observe that as in the case of the potential,
the components of the first order term of the gravitational attraction
expansion will be zero if one selects as reference a central coordinate

system.

13.3. Second order term

For n=2, k takes the values k=0, 1. Thus, using the general Equation
(12.5) one gets

15G -t _ _ 3G _ 3G _
{f}, = - —= ({x} [I1{xD{x} + —&= [I1{x} + — FII1{x}. (13.3)
2 7 5 5
2r r 2r

It is possible to express the above equation as a function of the associate
tensor of inertia [ ]. Substituting (4.9) and (4.10) in (13.3), after some
matrix manipulation and simplification, one gets as expected the same

expression, but with a change of sign and with [I] replaced by [[].

15G -t _ _ 3G _ 3G _
{(fl, = — Ux}7 11z {x} - = [G1{x} - — €L11{x]. (13.4)

2r r 2r

Recalling (8.13) one can write the above egquation

3G _ 3G _
{£}, = - = (@) - 51){x} - 5 [11{x) (13.5)
r r
oxr 3G _ 3G _
{f}Z = - (A + B+ C - SID){X}- =5 [01{x}. (13.6)
2r r
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Finally, if the selected coordinate system is a central principal

system, Equation (13.6) reduces to

3G 3G

{f}zop = - ;Eg (Aop + Bop + Cop - 5Iop){x} - Eg diag[ﬂo]{x}(13.7)

where the value of IOp was given in (8.17) and diag[ﬂo} is a diagonal matrix
the elements of which are the three central principal moments of inertia,
i.e. A _,B _,C .

op op op - -
After substituting {x} =r{a} with {0} as defined previously in (8.14),
Equation (13.7) reduces in matrix notation to the form attributed to

MacCullagh (Allman, 1855).

3G 3G

{f}20p=— E (Aop+Bop+Cop—SIop){OL} "—;:T diag[HO]{ot}. (13.8)

Finally, a new form of Equation (13.4) can be obtained adding to and

subtracting from it the value
G —
o GLlli{x}. (13.9)
r

After simple matrix manipulation and simplification and the substitu-

tion €[] =Tr[]], one arrives at

5G -t o
{f}, = - — (x}7ITell101] - 30011{x}) {x}+
2r
G -
S+ — [Tr0101) - 3001){x}. (13.10)
r

The above general expression when referred to the central principal
axes Xop; s i=1, 2, 3 reduces to the formula given by Thomson and Tait
(1912, II, p. 87), namely

5G

- _ =2 _ =2
{f}zop = S27 ((BOp + COp 2Aop)x1 + (AOp + COp 2Bop)X2 +
(B_+C_-2A )x
G op op op 1
-2\ .- -
+ (Aop + Bop 2Cop)x3){x} +_§Er (Aop-e-Cop ZBOp)x2 .
(Aop+BOp-—2COp)x3

(13.11)

14. HIGHER ORDER TERMS

Equations (12.6) and (12.7) will now be used to show explicitly the value
of the quantities tf}nk and {ank for the third, fourth and fifth order
contributions to {f}.
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14.1. Third order term

In this case n=3 and k=0, 1. For n=3 and k =0, one gets

i#Y3 0 = f3,0{§} S (R R E , (14.

Ay o = UEFTITIII(RD. (14

For n=3 and k=1,

- _t -
tf}3,1 = J3,1{x} = ({x}¥LI11}){x}, (14.

{%}3’1

€ll11}. (14

14.2 Fourth order term

Now n=4 and k=0, 1, 2. For n=4 and k=0,

By o =y, ol%) = (RITHERITIITINRIG) (R, (14

{4} I 1{x11{%}. (14

4,0
For n=4, k=1,
Wy 4 = 5 %) = (RIGUITINGED (30, (14
ﬁ%}4,1

For n=4, k=2,

2
Fly o = Iy oix} = GLIII1Lx]. (14.

Observe that in this case the coefficient n - 2k, multiplying {ﬁ?4 2
4
in Equation (12.5) is equal to zero; therefore the value of L%?4 2 is
14

not needed.

14.3. Fifth order term

Now for n=5, k will take the values k=0, 1, 2. Thus for n=5 and k=0,
one has,

= rirlix:. (14.

TOMAS SOLER

1)

.2)

3)

.4)

.5)

.6)

.7)

8)

9)

Fg, o = 45, o1%) = R HERHUDDHRIG) (K], (14.10)

’

W o = HRIFHRITITIINRI LX) (14.11)
For n=5, k=1,

g 1 = 5 (%) = URIFHERIGITINIGH (R, (14.12)

Whg 1 = LRIGIITIINIRY. (14.13)

Finally, for n=5 and k =2,
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- t2 -
Fls, 5 = (Ux}"ELIIINI D {x], (14.14)
2
g , =FLLI111). (14.15)

15. SIMPLIFIED EQUATIONS

A further simplification of Equation (12.5) can be established by intro-
ducing the 'notational device' described below.
For values of n =2k, Egquation (12.7) takes the form

-t =15 Inertia
{AT__ = ({x} ) ' {tensor of|. (15.1)
n=2k, k
rank n
In the above equation, the symbol ({;{}t)“1 although literally lacking

proper meaning (at least in a Cayleyian matrix algebra sense) is to be

understood as the 'inverse' value of {E}t, i.e.

(x5 T ENE = () (15.2)

or

ity THE = (k). (15.3)
Assuming the above 'operational artifice', the 'inverse' value of {X} can be
introduced similarly, and the following general relationships between the
vectors {j}nk’ {jan and the scalar jﬁk may be written.

From Equations (12.6) and (12.7), for any value of n it immediately
follows that

Py = Fadx) = (T ) (%) (15.4)
Consequently
S = xtn (15.5)

The above equalities are easily seen in explicit form by comparing the
values given in Sections 9 and 14 for the lower order terms.

As a result of the above, it is possible to write a final equation for
the attraction and potential at any exterior point P of a body whiech depends
only on the guantity LX?nk.

The components of the attraction along any X i=1, 2, 3 coordinate
system at point P{x} can be written

_ o <n/2> Tnk

{f} = G x
abo o TR

2(k-n)-1 _ _
Ao T PG - o) (15.6)

r
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and the potential at the same point

Tnk =5t
EjTH:ET:T ({x} L%?nk)’ (15.7)

where Tnk was given in Equation (7.21), L%}nk in (12.7) and <n/2>, as
defined previously, is the largest integer <n/2.

Notice that in order to know {E} or V at any point exterior to the
body with coordinates {x}, one needs a set of inertia tensors (up to rank n)
for the body in question, referred to the basic coordinate system Xy
i=1, 2, 3. A value of the vector ﬁ%}nk must be computed from the inertia
tensors at each point {x} using Equation (12.7). Substitution of this wvalue
in (15.7) or (15.6) will provide the potential or the components of the

gravitational attraction along the X5 coordinate system at P.

16. EFFECT ON {f} OF ROTATION OF COORDINATE SYSTEMS
It is clear that a transformation of coordinates under the rotation R is
given by

{%} = R{x} (16.1)
should result in

{£} = R{f}. (16.2)

<
That this is the case can easily be proved using the matrix notation of this
work. Clearly,

b{}nk = RL%}nk (16.3)

and
(00 ) (x} = (0 O RIKY = RURYE ) (33 (16.4)

Substituting (16.3) and (16.4) in (15.6), one finally obtains, as expected,
(16.2). Employing the same reasoning, it is obvious from Equation (15.7)

that the potential is invariant under rotation, a fact already proved.

17. CONCLUSIONS

In this work a new methodology has been formulated for the calculation of
the gravitational potential and attraction of a body at any exterior point.
The final expressions are original in the Sense that they depend exclusively
on two major parameters: the Cartesian coordinates of the point and a set

of inertia tensors of the body. The theory is developed in a general matrix

form introduced through a novel notation which uses basic matrix algebra
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operations. Some applications of the general equations are obtained and
discussed, arri&ing at simple formulas for the first terms of the expansion,
which are very easy to visualize and comprehend without the necessity of
writing laborious and lengthy polynomial expressiodns.

The author has more practical problems in mind. For example, the cal-
culation of the potential or its gravitational force created by a disturbing
field such as the earth's crust is the most immediate and obvious one. In
this particular instance any spherical region of the upper crust can be
modeled by a finite number of elements (or blocks) using a discrete density
function depending only on elevation and based on known geophysical hypo-
theses (e.g. Airy-Heiskanen isostatic compensation). In this way crustal
influence on the attracting force at satellite altitude can be computed. It
should be noted that this procedure is equivalent to obtaining the disturb-
ing effect originated by the mass irregularities of the crust at satellite
heights. Naturally, if the resolution of the data is high (e.g. 1° x1°
terrain elevations or oceanic depths of equiangular blocks are available),
very few terms in the expansion will be required. The number will be
dependent primarily on the altitude of the satellite. Recall that if one
uses spherical harmonics a resolution of 1° x 1° will require approximately
an 180° x 180° earth model, which is always expensive to implement.

The method outlined here proposes an alternative to other currently
used methods: for example, surface density layer, point masses, etc. The
surface density layer approach is equivalent to computing the tensors of
inertia of the elements, assuming they have varying density and a differen-
tially small height. The point mass approach may be considered a particular
case of the expansion described in this paper, when only the zero order term
is considered. In areas where the existing elevation data bases are very
detailed (e.g. the U.S. where one point of elevation exists for every 30
seconds of latitude and longitude), an accurate computation of the disturb-
ing effects of the modeled crust would be feasible. The author in a previous
unrelated investigation already computed the second rank inertia tensors for
1° x 1° earth crustal blocks of 50 km depth, using a density distribution
based on the isostatic compensation theory (Soler, 1977, or Soler and
Mueller, 1978). The extension of this numerical integration to higher rank
inertia tensors does not present insurmountable difficulties, although it
must be stressed that now the set of inertia tensors of each element should
be computed with respect to a local coordinate system in the block.

Nevertheless, the intention of the material set forth here was limited
to introducing the theory without putting any emphasis on practical examples
related specifically to the fields of geodesy or geophysics. Utilization
of the equations discussed above is easy to envision. Thus it is left to
the reader to apply them to problems related to the gravitational potential
and attraction of a body, and in particular the earth.
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APPENDIX A

A. Transformation under rotation of tensors of inertia of third and fourth

rank

Assume an orthogonal transformation between two Cartesian coordinate

systems, where the matrix of direction cosines R is defined in general by

It is well known that tensors of first and second rank between the respective

systems transform according to the equations

{i} = R{X}l
[¥] = R[IIRS,
€111 = gl1].

If the original and transformed inertia tensors of third rank are
denoted by

(11, (11,
{11} =411, 0 and {111} =< (11,
[11, [,

they will transform under R as follows; from the basic definitions, the
inertia matrix [i]1 will take the form

(31, = | = {xM)% dam = | (a,x, + a,x, + a,x,)R[JIR" dm =
1 M o1 M 1 272 373

t

1]

o X R[J]Rt dm + o X R[J]Rt dm + o X, R[JIR™ dm =
1 M 1 2 M 2 3 M 3

o,R x,[J] dm Rti-a R X,[J] dm Rt-ra R x,[J] dm Rt =
1 M 1 2 Jum 2 3 M 3

t t

t
aTR[I]1R + azR[I]zR + aBR[I]BR .

The inertia matrices [f]i, i=2, 3 can be obtained similarly:
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T — t t t
[T], = B4RIT]; RT + B,RII],R” + B;R[II;R,
S - t t t
[I1; = v4RII]; R # y,RIII,R" + y;R[IIR .

Therefore, finally

[i]1 a; o, oy R[I]1Rt R[I]_IRt
(31} =<Q LI, p = |8, By  Bg R[,I]th - R R[I]ZRt ]
(11, Y. Yy Y R[I]3Rt R[I]3Rt

A.1 Transformation of contractions of third rank tensors of inertia under

a rotation

As above, denoting the transformed and the original tensors of inertia of
third rank by {[I]} and {[I]} respectively, and using the basic definitions,

one can write

€n, - [ % mter - JM (g% + ayx,y + agxy) (x)5RRIx} dm =

x1{x}t{x} dm + o JM xz{x}t{x} dm + oy jM x3{x}t{x} am =

(
a
1y
= o, €l1]1, + o, BT, + o BII],.
Similarly,
€111, = 86111, + %111, + 86111,
%1113 = v, 6111, + v, 6111, + v @L1]5.

Thus
(g[i]1 (K[I]1
€UE =< G1T1, p= RAEITI, p-
‘5[ﬂ3 ‘6[113

A.2 Transformation under rotation of fourth rank inertia tensors

If [[I]] and [[I]] are the transformed and original tensors of inertia of

fourth rank respectively, it is possible to write

gy = [ %08, s [ G e a2 060 an -
= :M (a1X1 *oayX, * a3x3)2R{x}{x}th dm =
= ;M (afx? +a§x§ + ... +2a1a3x1x3 +2a2a3X2x3)R[J]Rt dm =
= :M (a2Re2 IR + ... 4 2a,a5R%, %, [JIR") dm =
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t t

_ 2 2 2
= a1R[I]11R + azR[I]ZZR + a3R[I]33R +

+ 2a1a2R[I]12Rt + 2a1a3R[I]13Rt + 2a2a3R[I]23R .

A non-diagonal cluster of the tensor [[I]], for example [f]12, may be

obtained similarly,

(11, = | %130, an = [ (agx, + ayx, + aye) %, (30} an =
M M
t am -
= JM (0 X, + 0%, + 03¥) (Byx, + Bo%, + 83X, )RIJIR™ dm =
t t

u

t
a1B1R[I]11R + a261R[I]12R + u3B1R[I]13R +

t t t
+ a162R[I]12R + aZBZR[I]zzR + a382R[I]233 +

t t

t
+ a1B3R[I]13R + a283R[I]23R + a3B3R[I]33R .

Therefore, finally, with the simplified notation used in this work,

t t t
R[I], R R[I],,R R[I] 4R
~ _ t t| _t
[[1]] = R R[I],,R R[I],,R™ | R".
s R[I]33Rt

The same procedure can be extended, if required, to higher rank tensors.

APPENDIX B

B. Powers of scalar products in matrix notation

In this appendix some of the matrix operations used to derive the equations
in Sections 8 and 9 are given explicitly.

Recalling the value of ({g}t{x})z from Equation (8.8), one can write
(251 = (R txh 2R = Rl xR,
but it can be .proved that

{xHx1® = [x][&] + Tri{xHxI®I01].

Therefore, substituting the above and knowing that [x]{x} = {0}, one gets

(x5 xh 3 = ZIPIl (rr{x1XIE) (R} =

Uz ) [a11HRY =

i

{;}t[§1x1[J1 + 2%, 1)+ Ry [911H{R) =
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x1[J] [J]1

-t [N ] @ - @ (B, 0]
%, 131 [31,
Thus
(21t h? = Gt
Using similar reasoning,

txn? =t izt -

= Lyt o11Ey (X tHx) =

= (1R 2 o111 (x) =

_ oatp=2 -2 - - -
= {x} [x1[J]11 + XZ[J]ZZ + L.l + 2x2X3[J]23]{x} =

= (IO 1R (R ete.

It is easy to see that
Trigl,
(MBI = () Ga1ix) = {g}qg{[J]} - (x)t Tr[J]2
Tr[J]3
and

R xh %%1a1 = (xtixh (xRt gl = toxigIal -

1]

(21813110141 = (1191 14%}.

Similarly,

(8 3gia1 = trteiio iz ete.

Finally, it follows immediately

2
((x1%xh? = (x3F1o1{x) = €11911,

3
(x1xh? = x3%11%(x} = €r1a111,

4
Ux}fxn? = %013 xy = 6100191111, ete.
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