Algorithm Oriented Mesh Database

Jean-Francois Remacle *f, B. Kaan Karamete and Mark S. Shephard

Rensselaer Polytechnic Institute, Troy, New York, USA.

Abstract

In this paper, we present a new point of view for effi-
ciently managing general mesh representations. After
having given some mesh representation basics, we in-
troduce the new Algorithm Oriented Mesh Database
(AOMD). Some hypothesis are taken in order to be
able to manage any set of adjacencies. Then, we
present the design of the AOMD in terms of classes
and algorithms. The Standard Template Library
(STL) is used for managing the AOMD. Finally, we
present some preliminary results and discuss techni-
cal choices that were made in the AOMD design and
implementation.

1 Introduction

The aim of this paper is to present a new approch to
managing the topological relationships needed from
a mesh data structure to meet the needs of multi-
ple applications: Partial Differential Equation (PDE)
solvers, mesh generators, post processing viewers...
In adaptive computations, mesh generation and PDE
solving (and even post processing) are to be used to-
gether so that we want to use the same mesh database
for all our algorithms. One solution to the problem is
to store all possible adjacencies. This is not accept-
able in terms of memory size and algorithmic com-
plexity. Alternative approaches are to store a spe-
cific sets of adjacenties that ensure all others can be

*This work was partly supported by AFOSR, as part of
the ARPA/SFOSR Consortium for Crystal Growth Research,
under grant No. F49620-95-1-0407. It was also partially su-
ported by the DOE as part of the ASCI Flash Center at the
University of Chicago, under contract B341495.

TEmail: remacle@scorec.rpi.edu

evaluated [2]. In this paper, a new approach which
maintains most of the advantages of the other ap-
proaches without incurring the disadvantages will be
presented. We call this new approach the Algorithm
Oriented Mesh Database (AOMD) because we have
the ability to shape the AOMD to the needs of the
algorithms. The AOMD builds on the capabilities of
the Standard Template Library or STL [6,7]. The
paper will discuss how the construction and imple-
mentation of the AOMD is being accomplished and
present preliminary results on its effectiveness.

2 Basics of Mesh Representa-
tion

We distinguish geometrical objects with respect to
their dimension d. A geometrical object is said to
be n-dimensional if there exists a map of this ob-
ject to an open subset of R™. Our three dimensional
world leads then to four different kinds of geometri-
cal objects. The interactions of these objects are best
represented by the abstraction of topological entities
and their adjacencies. The basic topological entities
are vertices (0-dimensional objects, d = 0), edges
(1-dimensional objects, d = 1), faces (2-dimensional
objects, d = 2) and regions (3-dimensional objects,
d=3).

Modern solid modelers are using a boundary rep-
resentation in which an entity G¢ of dimension d is
described by its boundaries which are of dimension
d—1. The boundary representation of a model (topol-
ogy) and the geometry (shape) of model entities are
two separated notions.

A mesh is a discretization of a geometrical do-

main, that consists of mesh entities of controlled
size and distribution that have very simple topology
(hexaedron, tetrahedron...). The topology of a mesh
is described with adjacencies between mesh entities.
Meshes are used for scientific computation. Physics
i.e. material properties, boundary conditions are to
be prescribed on the geometrical model which is the
most natural representation of the reality [4]. This is
one of the reasons why we have to maintain both rep-
resentations of a model (solid model and the mesh)
and why we have to maintain a direct link between
every mesh entity M{ and the geometrical entity G;’-
(with ¢ > d) it is discretizing. We call this associa-
tion a classification of a mesh entity to a geometri-
cal entity and we note it M{ C GJ. The geometry
of mesh entities is not contained in our representa-
tion. This has the advantage that different geomet-
rical representations can be used for the same mesh.
The mesh topology contains only adjacency informa-
tions (even not vertices locations). The mesh geom-
etry contain either vertices location and any other
geometrical representation of mesh entities (e.g. the
exact geometry, this is another possible use for clas-
sification).

2.1 Adjacencies

Any mesh entity bounds and/or is bounded by other
ones of different dimensions. This adjacency informa-
tion represents the graph of a mesh. For any mesh
entity M¢, we distinguish two kind of adjacencies:

e Unordered upward adjacencies M[M*] when
k>d

e Ordered downward adjacencies M{M*} when
k<d

We distinguish adjacencies in this way because sets
of downward and upward adjacencies are inherently
different.

2.1.1 Upward Adjacencies

Upward adjacencies sets are unordered in the sense
that the ordering of the set has no importance. For
example, the first and second edge adjacent to a ver-
tex can be interverted with no consequencies. This

means also that asking for the it* edge surrounding
a vertex is not a meaningful question. The only in-
terresting way to access upward adjacency sets is a
continuous traversal, not a random access. Another
particularity of upward sets is that their size is vari-
able and unknown a priori.

2.1.2 Downward Adjacencies

Downward adjacencies are of fixed size and random
access is needed. These two very different behavior
of downward and upward sets will lead to a different
design for their implementation.

2.2 Mesh Representations

We introduce the following simple formalism. We
define I a 4 x 4 matrix that we will call the incidence
matriz of the mesh. Diagonal element I;; of I is equal
to 1 if mesh entities of dimension j are present in the
representation and is equal to 0 if not. Element I;;
of I is equal to 1 if the adjacencies from entities of
dimension i to entities of dimension j are present.

A mesh representation is said to be complete if
any adjacencies can be retieved for any mesh entity
without a global traversal of the mesh. In the other
case, the representations are termed incomplete. In a
complete representation, any adjacency information
requires number of operations that does not depend
on the size of the mesh. In an incomplete representa-
tion, getting some adjacencies will require a complete
traversal of the mesh containers (referred to as linear
behavior). It is evident that we cannot afford this
traversal each time we ask for an adjacency. Com-
plete representations are then the only acceptable
mesh representations if we have to work with a sin-
gle I for all the mesh related algorithms. In [2], we
were using a complete representation that we called
bi-directional in the sense that every entity M¢ had
both MA{Mi~1} and MZ[M#*!] adjacencies set. In
this case,

I =

OO ==
O = =
- O
-0 O

1.0 0 0 10 0 0
0 0 0 0 11 0 0
0 0 0 O 11 1 0
1.0 0 1 11 1 1

Nodal Finite Elements Hierarchical Finite Elements

11 0 0 1 0 1 0
11 00 0 0 0 O
00 0 0 10 1 0
11 0 1 0 0 1 1

Discontinuous Galerkin Edge Swapping

0 0 0 0 1 0 0 1
00 0 0 00 0 0
0 0 11 0 0 0 O
0 0 1 1 1 0 0 1

Laplacian Smoothing (1) Laplacian Smoothing (2)

Table 1:
rithms

Specific representation for specific algo-

Another complete representation is the circular one
[2] where

(2)

o O =
O == O
- O
—_o O =

Irrespective of the completeness of the mesh repre-
sentations, specific algorithms can have a preferred
representation that fits exactly its adjacency infor-
mation needs. For example, classical fixed order,
fixed mesh, lagrangian finite elements only requires
element-node connectivity. Hierarchical finite ele-
ments can take advantage of all downward entity sets
to be able to define degrees of freedom over a vari-
able order C° mesh [3]. Discontinuous Galerkin (and
finite volumes) only uses regions and faces for the
calculation. Mesh algorithms like smoothing (ver-
tex repositioning) or edge swapping needs also spe-
cific sets of adjacencies (see Table 1 for a summary).
Using a complete representation will fullfill the needs
of all above algorithms. However, the best represen-
tations with respect to operation count and memory

are varying from algorithm to algorithm as shown on
table 1. The aim of AOMD is to be able to fit the
mesh representation to particular algorithms. Each
algorithms “knows” a priori the set of adjacencies it
will access. So, from any sufficient initial representa-
tion, the AOMD builds up the optimum set of adja-
cency. The AOMD builds on the capabilities of the
STL.

3 Basics of the STL

STL is a C++ library of container classes, algorithms,
and iterators; it provides many of the basic algo-
rithms and data structures of computer science. The
STL is a generic library, meaning that its compo-
nents are heavily parameterized: almost every com-
ponent in the STL is a template. Like many class
libraries, the STL includes container classes: classes
whose purpose is to contain other objects. The STL
includes the classes vector, 1list, set, hash_set...
Each of these classes is a template, and can be in-
stantiated to contain any type of object. The STL
also includes a large collection of algorithms that ma-
nipulate the data stored in containers. STL provides
sort, invert, search algorithms that are not mem-
bers of container classes but who are generic. STL
iterators are the mechanism that makes it possible
to decouple algorithms from containers: algorithms
are templates, and are parameterized by the type of
iterator, so they are not restricted to a single type
of container In our presentation, we use three of the
STL containers:

e vector<>— can be used in much the same way as
you would use an ordinary C array, except that
vector eliminates the chore of managing dy-
namic memory allocation by hand. The vector
provides constant-time methods for moving for-
ward and backward in arbitrary-sized steps. In
other terms, we have random access iterators for
vectors.

e set<> — is a container that supports compara-
ble objects i.e. objects on which we can define
a less than operator. The set provides find,
add and delete operators which complexity is

always logarithmic. The set provides constant-
time methods for moving one step forward and
backward (bidirectional iterator). Elements of
the set are sorted.

e hash_set<> — basically a hash table. Elements
in a hash table have to provide a hash value
which is usually an integer valued function and
an equal operator that is a boolean function as-
serting if two elements are equal or not. A hash
table is able to provide constant delete, add and
find operators if the hash function provided by
its elements is sufficiently dense (i.e. if few el-
ements in the hash table share the same hash
value). Accessing an item in a hash table is a
two step operation: (i) first, the hash function is
used to access in one operation a linked list of el-
ements that have the same hash value (ii) then, a
linear search is made inside the linked list using
the equal operator For applications where val-
ues are simply stored and retrieved, and where
ordering is unimportant, hash tables are usually
much faster than sets.

4 Algorithm Oriented Mesh
Database

The aim of the AOMD is support the specific set of
adjacencies, complete or not, needed by each applica-
tion. For that aim, we need to be able to start from
a minimum mesh representation (we will define what
we mean by minimum representation) to generate any
other representation. This implies that we want to
be able to create mesh entities “from scratch”, to add
some non-existant adjacencies lists to any mesh en-
tity or to delete some unneeded ones.

4.1 Mesh Entity Description

Any mesh entity has to be described by a set of mesh
entities of lower dimension, MA{MF*} with k < d.
Regions may be defined by either faces, edges or ver-
tices, faces by edges or vertices and edges by vertices.
The vertex is then the atomistic, self consistent en-
tity. For being able to differentiate vertices, we do not

use coordinates because a mesh is considered here as
a purely topological object. We attribute an unique
iD to each vertex for differentiating them. We note
id(M?) the function that takes a vertex as parameter
and that returns its iD.

4.2 Mesh Entities Comparison

Hypothesis 4.1 says that entities are to be represented
using at least one set of entities of lower dimensions.
We use this hypothesis to build up an equal operator
for mesh entities that will remain valid in any mesh
entity representation. For vertices, we have already
dealt with this issue: two vertices MY and M} are
equal if id(MJ) = id(MJ). The second hypothesis
is that two entities that have the same vertices are
equal. Because mesh entities are always defined us-
ing lower order entities, it is always possible to obtain
their representation in terms of vertices. For exam-
ple, if a region is defined using its faces, faces are
defined using either vertices or edges. If the faces are
defined using edges, these edges are always defined
using vertices so that we can always access vertices
from any representation. Current equal operator has
an additional restriction relative to the more flexible
possibility of [2]. Figure 1 shows the case of a cir-
cle meshed using two curved edges M} and M} that
should be topologically distinct but, in our hypothe-
sis, are equal because they are bounded by the same
vertices. If we restrict ourselves to meshes that en-
forces to have at least three mesh edges for any closed
curve, our hypothesis is valid. We can have the same
similar issue at face level, two faces could share same
edges (imagine a sphere bounded by only two mesh
faces). Note that this equal operator has the very im-
portant advantage that two mesh entities can alway
be compared, even if their representations are differ-
ent. For example we are able to compare two regions,
one defined by edges and one defined by faces.

4.3 Downward Adjacencies Ordering:
Templates
Our third hypothesis for AOMD is a convention for

downward adjacencies ordering. Downward adjacen-
cies sets are ordered, this implies that two different

Figure 1: Pathological case of two mesh edges for teh discretization of a periodic model edge (circle)

ordering of the same downward set may lead to two
different entities. Note that this is a limitation, some
previous work on mesh representations were not need-
ing such convention. This convention allows the def-
inition of a set of tables that describes local rela-
tionships between downward entities of a same mesh
entity. Two tables are needed for each topologically
distinct mesh entities. The first table describes all
the edges of a mesh entity in terms of its vertices.
This table is called the “edge-vertex template”. The
second table describes faces of an entity in terms of
edges, it is the “face-edge template”. Another useful
template is the “face-vertex template” which is, by
definition, the compostion of the two previous ones.
As an example, we consider the tetrahedron of figure
2. A tetrahedron M? is a mesh entity with 4 vertices
M}{M°}, 6 edges M?{M"'} and 4 faces M}{M?}.
The “edge-vertex template” can be written in the ma-
trix form as :
pev_[1 11223 ¢
2 3 4 3 4 4

Elements T5" and T}y gives vertices indices of the i*"
edge of the tetrahedron. These indices are local, they
represent a position in the vertex adjacency list of the
current tetrahedron. For example, the second edge
of the tetrahedron is defined by the first and third
vertices: M1[M?, MJ]. The “face-edge template” can
be written in the matrix form as :

1 2 4

e | 6 2 3
=15 31
5 4 6

Representations may be wrong because they are
not coherent with templates. If we define the “edge-
vertex” template of the prism as :

1

Tev _ 1 21 2 4 4
~ |2 3 3 4 5 5 6

t
3 5
6 6 3)
The following representation:

M?® = { Mz, Mg, M3, M, Mg, Mg, Mj, My, My }

of the prism of figure 3 is correct and we can easily
recover the ordered set of vertices using templates.
For example, the first vertex of the prism is the one
shared by its first (M2), second (M}) and fourth
(M}) edges. So, it is vertex M. We can continue
and find the new coherent representation of the prism
in terms of vertices:

MSZ{M:?,M?,MS,M(?,M?,ME} (4)

The representation:
M3 = {M%,Mé,M;,M;,...}

is wrong because the fourth edge of the wedge has
to be the one that shares a vertex with the first and
second edges and it is not the case in this represen-
tation. The template convention is crucial in mesh
entities other than simplices. In simplices, the set
of edges is the set of all combination of two vertices.
The faces are the all the combinations of three ver-
tices (or of three edges). Every representation of a
simplex is coherent with this default template. For
non-simplices, this is not the case. All combinations
of two vertices are not necessary forming an edge so

Figure 2: Topology of a tetrahedron

that two different representations using the same ver-
tices can represent two different mesh entities. For
the prism, representation (4) and the following one

(5)

leads to the two different prisms (with different edges
and faces) of figure 3.

M3 = { M2, M, M, MO, M2, MS

4.4 Inverse templates

We define now the very interresting notion of in-
verse templates. Inverse templates are related to tem-
plates, they are in fact inverse mapping of templates.
The first invert table describes all the vertices of a
mesh entity in terms of its edges pair. This table is
called the “vertex-edge template”. For the tetrahe-
dron of figure 2, we write:

t
e [1 1 2 3
T‘[2445 (©6)

It means, for example, that the first vertex of the
tetrahedron is the one common to its first and second
edge. Similarly, we can define a “edge-face template”
that describes pairs of faces sharing an edge:

1121327

ef _
T_323444

(7)
We can define then the “vertex-face” template T%f
which is the composition of the T%¢ and T¢f. We
know by (6) that vertex 1 is common to edges 1 and
2. By (7), we know that edge 1 is common to faces 1
and 3 and edge 2 is common to faces 1 and 2. This
implies that vertex 1 is common to faces 1, 2 and
3. We can continue that reasoning for all vertices to
obtain:
111 27
T =12 3 2 3
3 4 4 4
Templates and inverse templates are of a great use
for AOMD. From any mesh entity representation, we

Mj M;
My Mg
M
My M;
Mg
M7 i Ms
MY M3

M;
M? = {Mg, MP, M3, Mg, Mg, M7}

My

M? = {Mg, M}, M}, M7, Mg, M3}

Figure 3: Two prisms with vertices that are ordered differently. The “edge-vertex” template (3) leads to the
definition of different set of edges (and faces) with same set of vertices. Opposite triangular faces of the

prism are drawn in both cases

are able to build up any other one using local opera-
tors (i.e. without looking through all the mesh). We
will show how templates will be used for modifying
mesh representations in a very straightforward way
in section 5.4.

4.5 Orientations

A direct consequence of hypothesis 4.3 is that sets of
vertices are always ordered because they are always
downward sets. Two entities that have the same set
of vertices are equal due to 4.2. Differential geom-
etry [1] asserts that some manifolds are orientable.
Our very simple mesh entities are of course of that
kind. Only two orientation are possible: we use 1
for a positive orientation and 0 for a negative one.
When a mesh entity M is first created, we take as
a convention that its orientation is positive. If, at a
certain stage, we have to deal with an entity M ng that
have the same vertices than Mg, orientation of M]‘-i
may be positive or negative, depending if an even or
odd permutation of de vertices is necessary to re-

cover M set of vertices. In case of figure 3, the use

of templates gives us a first edge MP{Mg, M} and
there is an edge M} that has the same vertices. Edge
M3} is then the first edge of the prism because it has
the good set of vertices but the prisms uses M} neg-
atively. It is easy compute efficiently “on the fly” all
the edge uses using templates. In case of the prism,
we have UY(M?3) = {0,1,1,1,0,0,1,1,0}. Uses in-
formation are important for higher order hierarchical
shape functions calculations in finite element analy-
sis. They are also important to ensure mesh valid-
ity [2,5].

4.6 Mesh Entity Identificator

Mesh vertices have an iD as we have seen in 4.2. We
also define an iD for entities of higher dimension This
iD must fullfill the following properties:

e Two mesh entities that share same vertices (i.e.
that are equal) have the same iD. However, two
different mesh entities of dimension > 0 may
share the same iD, they may be differentiated
in this case using a more complex equal opera-
tor that will check if all the vertices are equal

e Mesh entity iD is a symmetric function of ver-
tices iD’s i.e. does not depend on the particular
ordering of vertices

e (Calculation of mesh entity iD must not lead to
integer overflow: in case of big meshes, do not
use square functions of the vertex iD’s for exam-
ple

e Mesh entities iD’s should be dense i.e. few mesh
entities should share the same in order to avoid
a lot of equal operator calculationsiD

The mesh entity iD will be used as hash function in
a hash table. In results sections, we will compare
different iD definitions.

4.7 Minimum information

What is the minimum amount of data we need to be
able to build up all entities with their full set of adja-
cencies and classification? Due to hypothesis 4.1, ver-
tices are to be present in all representations (Igp = 1).
A sufficient minimum of data is that any mesh entity
“equally classified” has to be present in the represen-
tation. It means that all entities M{ for which we
have M C GY are to be present and classified if we
want the ability to construct a representation with
ILi; =1, 4,7=0,1,2,3. Note that all vertices are to
be present in the representation but only ones that
are classified on model vertices are to be classified.
With the minimum of information we have defined,
all the other ones may be classified univoquely: take
all classified edges M} C Gjand classify their unclas-
sified vertices to G}. Do the same for classified faces
and regions and all vertices will be classified.

The algorithm for being able to build up all entities
is straightforward. For a 3 — D mesh, take all regions
M} C G3, create faces M?{M?} using region tem-
plates and classify all new faces to G;’T. Then, take all

faces M7 C GY,
plates and classify new edges to Gg. Finally, take
all regions M} C G;’T, create region edges using re-
gion templates and classify new edges to G?. We do
not assert that this minimum data is neccessary, it
is possible to recover classification informations us-

ing geometrical criteria but this operation is not that

create faces edges using faces tem-

simple and, usually, there are multiple solutions to
this problem. Our goal is to avoid this problem and
only use topological information.

5 Design of the Algorithm Ori-
ented Mesh Database

We describe principal classes used in AOMD:

e class AdjacencyContainer — a generic con-
tainer for upward and downward adjacencies

e class meshEntity — a base class for all mesh
entities

e class meshEntityContainer — a general con-
tainer for meshes containing all kind of mesh en-
tities

The oriented language used here is C++. Functions
whose declarations are followed by = 0 are pure vir-
tual functions, and are required to be overridden by
a derived class. For evident reasons of conciseness,
only the principal features of the different classes we
describe are presented.

5.1 Adjacency containers

The class AdjacencyContainer is the base class
for all adjacency containers. The public interface
of class AdjacencyContainer includes the follow-
ing members:

class AdjacencyContainer {
public:
virtual iterator begin()=0;
iterator end()=0;
meshEntity*

find (meshEntity*)=0;
void add(meshEntity*)=0;
void del(meshEntity*)=0;

virtual
virtual

virtual
virtual

};

Tterators are STL iterators and the behavior of
begin() and end() functions are like in STL con-
tainers. Members add, del and find are there to

add, delete and find mesh entities meshEntity in ad-
jacency lists.

Downward entities containers are of fixed size,
are ordered and need random access. These con-
siderations lead our choice to use a STL vec-
tor vector<meshEntity*> which fullfill exactly our
needs. Operations like deleting or searching should
not be used because they are linear with respect of
the size of the vector.

Upward entities requires a more complex data
structure. We need to delete, add and search rapidly
elements in the container. We have chosen the
STL set set<meshEntity*> which provides bidirec-
tional iterators, requires more storage because of ex-
tra pointers but provides delete, add and search oper-
ators in log, n if n is the data size. STL set requires a
“less than” operator for its elements. We have shown
in 4.2 that two mesh entities are always compara-
ble. The less than operator will simply compare ver-
tices iD’s of entities in lexicographic way. We define
two derived classes upwardAdjacencyContainer and
class downwardAdjacencyContainer that override
all virtual functions of class AdjacencyContainer
using specific STL algorithms.

5.2 Mesh Entity Class

The class meshEntity is a base class for all mesh
entities. What is common to all mesh entities is:

class meshEntity {
protected :
unsigned long iD;
AdjacencyContainer *adjacencies[4];
public:
meshEntity(DownwardAdjacencyContainer&,
GeomEntity &) ;

virtual “meshEntity ();

iterator begin(int dim);

iterator end(int dim);

meshEntity *find(meshEntity*);

void add(meshEntityx*);

void del(meshEntityx*);

All mesh entities have four AdjacencyContainer
which may be of different nature depending on the

dimension of the actual mesh entity.

Constructor meshEntity::meshEntity takes as
input a list of downward entities and a geometrical
entity where the mesh entity is classified. At this
stage, it is possible to generate all downward adja-
cencies demanded for the particular algorithm. An-
other important operation done by the constructor is
the calculation of the mesh entity iD. For vertices, we
provide an iD generator that is able to give a unique
iD to each new vertex.

Destructor meshEntity:: meshEntity insure that
the object to be destructed is not present in any up-
ward adjacency of any of its downward adjacencies.

Iterators begin(int dim) and end(int dim) are
provided that iterates on adjacencies of dimension
dim.

Pure virtual members :

virtual int dimension () = 0;
virtual bool use (meshEntity*) = 0;
virtual meshEntity*

template(int ith,int dim)=0;
virtual int size (int dim) = 0;
};

are added to the class meshEntity. Function
dimension () returns the dimension of the mesh en-
tity concerned (1 for edges for example). Member
size(int dim) returns the number of entities of di-
mension dim for the mesh entity. Calling function
size(1) in case of an hexaedron will simply return
12 which is the number of edges in an hexaedron. Fi-
nally, function template(int ith,int dim) creates
the ith mesh entity of dimension dim. It is using the
template convention described in previous sections.
Function use (meshEntity* m) computes the use of
mesh entity m using templates.

5.3 Mesh Entity Container class

The class meshEntityContainer is a generic con-
tainer of mesh entities of all dimensions:

class meshEntityContainer

{
hashtable<meshEntity*> entities[4];

public :
iterator begin(int dim);
iterator end(int dim);
meshEntity *find(meshEntity*);
void add(meshEntity*);
void del(meshEntityx);

3

Since we must deal with large meshes, we need con-
tainers that provides efficient operators for searching,
adding and deleting mesh entities and that have small
memory requirements. For these reasons, we have
chosen the hash_set container of the STL. Mesh en-
tity iD’s will be considered as a good hash function if
few different entities have identical iD’s. We must un-
derstand here that the hash function must represent
the mesh entity, it has to be equal if two mesh entities
are equal in the sense that we have defined. The hash
function cannot be, for example, the address of the
meshEntity object or an integer given by a static
counter inside the mesh entity class. The iD must be
based on vertices iD’s.

A good measure of the efficiency of an hash table is
simply ¢ = 113; where N, is the number of elements
in the hash and where NV}, is the number of different
keys. In fact, ¢ is proportional to the average number
of operations needed for a search operation. The hash
table also needs an equal operator which we already
have defined: two entities are equal if they have the
same vertices. If ¢ ~ 1, only few equal operation will
be needed.

5.4 Algorithms for Mesh Representa-
tion Modifications

Algorithms for modifying mesh representation apply
to class MeshEntityContainer. There are only two
algorithms of this kind. We may want to add upward
adjacencies of dimension adj to all entities of dimen-
sion dim of meshEntityContainer m:

iterator i,j;
for(i=m.begin(dim) ;i!=m.end(dim) ;++i)
for(j=(*i)->begin(adj);
j!=(*i)->end(adj);
++3) (*j)->add (*i) ;

In this algorithm, we traverse all entities *i of di-
mension dim, we take all downward adjacencies *j of
dimension adj and we add *i to the adjacency of *j.
It is an inverse mapping operation. We may also want
to add downward adjacencies of dimension adj to all
entities of dimension dim of meshEntityContainer
m:

iterator i; int j;
for(i=m.begin(dim) ;i!=m.end(dim) ;++i)
for(j=0;j<(*i)->size(adj);++j){
mEntity *q=(*i)->template(j,adj);
if (mEntity *t = m.find(q)){
(*¥i)->add(t); if(q!=t)delete q;
}
else{
(*i)->add(q) ;m.add(q);
}
}

In this algorithm, we traverse all entities *i of dimen-
sion dim, we create, using templates, a set of down-
ward adjacencies *q of dimension adj and we look
into container m for an equal entity *t. If the entity
exists, then we add *t into adjacency of *i and we
delete *q. If not, we add *q into adjacency of *i and
in m. Both algorithms requires only one traversal of
the container and, if the find operator has a constant
complexity, both algorithms are linear in data sizes.
Note that these are the only two algorithms we need
for mesh representation modifications and the total
number of lines of codes is less than 15.

6 Choice of the Mesh Entity iD

Let us consider a mesh entity M. We can always
access its vertices so that we can always have the
representation MZ{MO®}. There are a lot of differ-
ent possible choices for calculating mesh entity iD
id(Mg2):

id(MY)

o idy (M) = "

j=1 n
o idy(MJ) = max; id(MY)

o idy(M{) = 37| R(id(M]))%op

10

where p is a big integer number for example 108 and
where R is a random number generator that takes
the vertex iD as its seed (R(7) is a function of i i.e.
i = j — rand(i) = rand(j)). Let us call ¥(d;, M?)
the efficiency of hash table as defined in 5.3 for a hash
table containing entities of dimension d and using id;
for computing mesh entity iD’s. Table 2 shows results
on tetrahedral meshes and table 3 shows results on
hexaedral meshes. Comparing v(ds) and v(d2) or

Tet. meshes T Ty Ts Ty

Nb. Vertices 10891 30525 47546 61411
Nb. Edges 74357 213446 355119 568290
Nb. Faces 124398 360675 568290 280716

Nb. Regions 60931 177753 280716 364716
P(ids, Ml) 3.56245 3.68714 3.74776 3.76395
P(ida, Ml) 7.98593 8.23004 8.31643 8.33284
P (ids, Ml) 1.00001 1.00004 1.00004 1.00007
P(idy, M2) 5.30731 5.59976 5.73278 5.81028
P(ida, M2) 15.55565 16.1817 16.3229 16.3923
P (ids, MZ) 1.00001 1.00004 1.00007 1.00008

Table 2: Results for tetrahedral meshes

Hex. meshes H; H> Hj

Nb. Vertices 15625 42875 166375
Nb. Edges 45000 124943 490050
Nb. Faces 43200 121380 481140
Nb. Regions 13824 39304 157464
P(idi, MY) 2.58621 2.69173 2.79613
Y(ida, M') 2.88148 2.91483 2.94560
Y(ids, M') 1.00000 1.00002 1.00004
Y(idi, M?) 2.38279 2.59326 2.71983
p(id2, M?) 2.81598 2.85795 2.90314
Y(ids, M?) 1.00000 1.00000 1.00003

Table 3: Results for hexaedral meshes

1 (dy) shows that computing iD’s using djs is from far
the best choice for all meshes. Only one operation is
needed for finding an entity in the database. It takes
56 seconds to create all faces in mesh Ty using ids
while only 13 seconds are needed using id3. Another
more important reason while we should use id3 is that
we will never find special cases where 9 (ids, M) > 1
so that hash tables will be no longer efficient.

11

7 Conclusions

We have developped here a model of mesh represen-
tation that is able to manage any adjacencies set.
Some hypothesis were made on mesh entities (equal-
ity operator, identificator) and on the mesh itself
(minimum representation) for insuring coherence of
the whole mesh database. The resuling database is
very light: 2500 lines of codes for the whole mesh
database. AOMD is also very efficient, as it was
proved in section 6. Finally, AOMD is also relatively
light in memory (70 MB for mesh T}) for but some
enhancements may still be done for making AOMD
lighter.

Future work will focus mainly on a parallel version
of AOMD. We will completely take into advantage
the structure of AOMD in parallel.

References

[1] W. Burke, “Applied Differential Geometry,”
Cambridge, 1991.

M.W. Beall and M.S. Shephard,
topology-based mesh data structure,”
Num. Meth. Engng., 40:727-758, 1997.

M.S. Shephard, S. Dey and J.E. Flaherty, “A
straightforward structure to construct shape
functions for variable p-order meshes,” Comp.
Meth. Appl. Mech. Engng., 147:209-223, 1997.

[2]

“A general
Int. J.

[3]

[4] M.S. Shephard, “The specification of physical
attribute information for engineering analysis,”

Engnineering with computers., 4:145-155, 1988.

M.S. Shephard and M.K. George, “Reliability of
automatic 3-D mesh generation,” Comp. Meth.
Appl. Mech. Engng., 101:443-462, 1992.

David R. Musser and Atul Saini, “STL Tutorial
and Reference Guide: C++ Programming with
the Standard Template Library,” Adison-Wesley,
1996.

Silicon Graphics STL web site, “Stan-
dard Template Library Programmer’s Guide,”
http://www.sgi.com/Technology/STL/.

[5]

[6]

[7]

