Investigating SWMIT Coupling with Global MHD Simulations

George Siscoe Center for Space Physics Boston University

- Linear and saturated domains of SWMIT coupling
- Global forces
- Origins of the plasma sheets
- Polar cusp studies

BATSRUS/CCMC

Linear and Saturated Domains of SWMIT Coupling

Lindsay et al., 1995

Force in Linear Domain

Equatorial B Contours offset sunward

IMF = (0, 0, +5) nT Magnetic gradient pushes Earth away from sun.

Model and theory agree.

Force in Saturated Domain

IMF = (0, 0, -20) nT Magnetic gradient pushes Earth toward sun!

Magnetic Tension Dominates the Saturation Domain J1-Dipole Force Exceeds Magnetic Tension

Back of the envelope estimate

i.e., roughly an order of magnitude bigger

Net Force on Terrestrial System Integrate x-component of momentum stress tensor over a surface containing the terrestrial system

Change of Subject Origin of Plasma Sheet A Linear Domain Problem

Magnetosheath	Bow Shock
Solar Wind Streamlines	
Cusp Streamlines	

Magnetosheath through mantel doesn't work. Verification with CCMC

03/21/2000 Time = 02:00:00 y= $0.00R_{E}$

Model: BATSRUS Region: magnetosphere

03/21/2000 Time = 12:40:00 y= $0.00R_{E}$

Song-Russell Mechanism for Cold Dense Plasma Sheet

It turns magnetosheath plasma into LLBL. Must now turn LLBL into plasma sheet.

Verification with BATSRUS/CCMC

Origin of the cold-dense plasma sheet.

02/27/2002 Time = 11:00:00 y= $0.00R_{E}$

Model: BATSRUS Region: magnetosphere

Equatorward Shift of Cusps in Saturation Domain

All Codes Agree on This

Mullard Workshop on Sun-Earth Connections

- Comparisons with CCMC models (with Zerefşan Kaymaz & Yulia Bogdanova)
- Batsrus Model
- Open GGCM model (UCLA GGCM)
- Cusp Events on
 - Nov. 7, 2004 Strong Northward IMF
 - 19:35-20:10
 - Nov. 10, 2004 Southward IMF
 - 04:20-04:40

11/07/2004 Time = 19:35:00 y = $-2.91R_{r}$ 11/07/2004 Time = 19:00:00 y= $-3.42R_{\rm F}$ 20. 20. 10. 10. B fieldlines B fieldlines - IMF - IMF z [R_e] z [R_e] disconn. disconn. — Polarcap — Polarcap 0,0 open open 0.0 - closed closed user user selected selected -10. -10. P [nPa] P [nPa] 26.4 16.70 -20. -20. -10. -5. 0. 5. 10. 15. 20 -10, -5, 05. 10. 15. 20 Plot: CCMC X [R_E] Model: UCLA-GGCM Region: magnetosphere Plot: CCMC × [R_F] 0.1 0.03 Model: BATSRUS Region: magnetosphere

Cluster-1 position

Cluster-1 trajectory

NORTH IMF, Nov 07, 2004

OPEN GGCM: Time:19:00, y=-3.42

Cluster-1 trajectory

Cluster-1 position

MOLLARD CUSP, IMF Bz > 0, Nov 7, 2004: 19:35-20:10

MOLLARD CUSP, IMF Bz < 0, Nov 10, 2004: 04:20-04:40

Could be closure on the "Origin of the Plasma Sheet" problem.

Summary

- Global MHD simulations essential in investigating the globally coherent properties of SWMIT coupling.
- Point illustrated with examples from the bimodal, linear/saturated nature of the coupling.
- Also with a set of investigations to determine the origin of the plasma sheet.
- Examples illustrate that CCMC models give the community powerful tools with which to carry out such investigations.

