PREDICTIONS OF SOLAR CYCLE 24

William Dean Pesnell

NASA, Goddard Space Flight Center, Greenbelt, Maryland In Support of NASA/GSFC Solar Dynamics Observatory

I. PREDICTIONS OF CYCLE 24

Predictions of the magnitude and timing of Cycle 24 are used by a variety of Space Weather groups. It is necessary to have quantitative estimates of the uncertainty of the predictions—in both magnitude and timing. These predictions will help estimate orbital drag and other consequences of Space Weather in solar cycle 24.

The 45 predictions in Table 1 are a combination of personal work, predictions from the refereed literature, and predictions submitted for the Solar Cycle 24 Prediction Panel. The call for predictions was published in several newsletters, including the August, 15, 2006 Solar News. The table is organized by the predicted sunpsot maximum and includes the author (listed in the reference list), date, predicted maximum sunspot number (value and date), category of prediction, and a short summary of method. Although F10.7 is used in the atmospheric drag calculations the value of R_z was requested.

The prediction categories were Fun, Precursor, Spectral, Climatology, Recent climatology, Neural network, physics-Based, or other (please specify). The fifth column contains a one-letter abbreviation of the category for each prediction. If the prediction was found during the literature search the category was assigned by the author.

Janssens (2005; 2006) has 11 predictions and was a good check on the coverage of the literature. The group at Lund (http://www.lund.irf.se/) also has a prediction page with references but without Cycle 24 numbers derived from their wavelet studies (http://www.lund.irf.se/rwc/cycle24/). Their contribution will probably combine wavelet analysis and neural networks. Janssens estimates that Lundstedt will predict low activity ($R_{max} = 85 \pm 25$) for Cycle 24.

The significance of the difference from the climatological mean can be calculated if an error bar is provided. Defining $R_{\text{max,ave}} = 115$ and $\sigma_0 = 40$ as the climatological mean and standard deviation, created with 23 points. Then the variance of the difference is

$$\sigma_T^2 = (22\sigma_0^2 + \sigma_P^2)/21(1. + 1/23), \tag{1}$$

the t variable is

$$t_{test} = (R_{\max,P} - R_{\max,\text{ave}})/\sigma_T,$$
(2)

with the number of degrees of freedom (assuming one point in the prediction)

$$n_f = 23 + 1 - 2,\tag{3}$$

the significance of the difference is given by Student's probability distribution function:

$$\Pr = A(t_{test}|n_f). \tag{4}$$

This is plotted in Figure 1.

Author and Date		Predicted r	naximum		Category and Summary
		R_z	Date		
Horstman	2005	185	2010-2011	С	Projection of last 5 cycles
					(Johnson SFC)
Thompson	2006	180 ± 32		Р	
Tsirulnik, et al.	1997	180	2014	\mathbf{S}	Modified global minimum
					analysis
Podladchikova, et al.	2006	152 - 197		Р	Integral of sunspot number
					used as precursor
Dikpati, et al.	2006	155 - 180		В	Modified flux-transport dy-
					namo model calibrated with
					historical run of sunspot area
Hathaway & Wilson	2006	160 ± 25		Р	Analysis of aa index
Pesnell	2006	160 ± 54	2010.6	\mathbf{C}	Cycle n + 1 = Cycle n - 1
aa_min	2006	148		Р	
Maris and Oncica	2006	145	12/2009	Ν	Neural network forecast
Hathaway, <i>et al.</i>	2004	145 ± 30	2010	Р	Fast meridional circulation
					speed during cycle 22 leads to
					a strong solar cycle 24
Gholipour, et al.	2005	145	2011-2012	Ν	Spectral analysis and neuro-
		1.10		Б	fuzzy modeling.
Chopra and Dabas	2006	140	2012.5	Р	Disturbed days analysis
modified Feynman	2006	135 ± 20	0011 5	P	
Kennewell & Patterson	2006	134 ± 50	2011.7	С	Based on average of the last 8
$T_{i+1} = 1 = 1$	2006	199	2000 F	C	solar cycles $\nabla f = \frac{1}{2} \int \nabla f dx$
Tritakis <i>et al.</i>	2000	133 120 ± 15	2009.5	D	Statistics of $\sqrt{R_z}$
Tatov	2000	150 ± 15		Г	complexity of $H\alpha$ synoptic
Novenlinne	2007	194 ± 30		D	Value of an at color minimum
Kim <i>et al</i>	2007	124 ± 50 122 ± 6	11/2010	I C	Statistical analysis of evaluate
Kiiii, et ut.	2004	122 ± 0	11/2010	U	remotors
aa Avr	2006	120 ± 25		р	1 ameters
Pesnell	2000	120 ± 25 120 ± 45	2010.0	C	Cycle $n + 1 - Cycle n$
Echer <i>et al</i>	2000 2004	120 ± 40 116 ± 13.2	2010.0 2012-1013	S	Spectral analysis of B
Sello	2004	110 ± 10.2 115 ± 28	2012 1015	P	Precursor \pm nonlinear dynam-
Seno	2000	110 ± 20	2010.0	T	ics
Pesnell	2006	115 ± 40	2011.3	\mathbf{C}	Cycle $n + 1 = \bar{n}$
Tlatov	2006	110 ± 10 115 ± 15		P	Area of high-latitude unipolar
110007	2000	110 ± 10		-	regions
Tlatov	2006	115 ± 13		Р	Large-scale magnetic field.
					presented at October panel
					meeting
Prochasta	2006	114 ± 43	_	С	Mean of cycles 1–23.)
					Continued on next page

Table 1: Predictions of Solar Cycle 24

Author and Date		Predicted maximum			Category and Summary
		R_z	Date		
de Meyer	2003	110 ± 15		S	Transfer function model
Euler and Smith	2006	$110 \begin{array}{c} 196 \\ 49 \end{array}$	2/2011	С	Modified McNish-Lincoln model (MSAFE)
Hiremath	2007	110 ± 11	2012	\mathbf{S}	Autoregressive model
Tlatov	2006	110 ± 10	—	Р	Dipole-octupole magnetic mo- ments
Lantos	2006	108 ± 38	2011	С	Skewness of previous cycles separated into even/odd cycles
Kane	1999	105 ± 9	2010-2011	\mathbf{S}	Extrapolation of dominant spectral components found by MEM
Pesnell	2006	101 ± 20	2012.5	\mathbf{S}	Linear prediction (auto- regressive)
Wang, et al.	2002	83.2 - 119.4	3/2012	С	Statistical characteristics of solar cycles
Roth	2006	91.9 ± 27.9	1/2011	\mathbf{S}	Auotregressive-moving aver- age process
Duhau	2003	87.5 ± 23.5		\mathbf{S}	Coupling between sunspot maxima and aa minima mod- ulations (wavelet analysis)
Baranovski	2006	80 ± 21	2012	S	Mathematical theory of non- linear dynamics. Predicts a long cycle lasting 12 years
Schatten	2005	80 ± 30	2012	Р	Solar polar field precursor
Choudhuri, et al.	2007	80		В	Flux-transport dynamo model
Javariah	2007	74 ± 10		Р	Statistics of low-latitude sunspot groups
Svalgaard, et al.	2005	70 ± 2		Р	Polar magnetic field strength at solar minima
Kontor	2006	70 ± 17.5	12/2012	\mathbf{S}	Statistical gaussian-based ex- trapolation
Badalyan, et al.	2001	< 50	2010-2011	Р	Statistics of the λ 5303 Å coro- nal line
Clilverd, et al.	2006	42 ± 35		С	Atmospheric cosmogenic ra- diocarbon
Mariş, <i>et al.</i>	2004	low	_	С	Observations of flare energy release during the descending phase of cycle 23 (empirical)

Table 1: (continued)

II. REFERENCES AND NOTES

- Badalyan O. G., V. Obridko, and N. J. Sykora, Brightness of the coronal green line and prediction for activity cycles 23 and 24, *Solar Phys.*, **199**, 421–435, 2001.
- Baranovski, Alexander L., Shape fitting modeling and nonlinear solar cycles forecasting, prediction submitted September 8, 2006.
- Cameron, R. and M. Schüssler, Solar cycle prediction using precursors and flux transport models arXiv:astro-ph/0612693v1 22 Dec 2006.
- Chopra, P. and R. S. Dabas, Prediction of maximum amplitude of the next Solar Cycle 24 using modified Precursor Method, in *Proc. 36th COSPAR Scientific Assembly*, **36**, 909, 2006,
- Choudhuri, A. R., Piyali Chatterjee, and Jie Jiang, Predicting Solar Cycle 24 With a solar dynamo model, *Phys. Rev. Lett.*, **98**, 131103 doi:10.1103/PhysRevLett.98.131103, 2007 (URL: http://link.aps.org/abstract/PRL/v98/e131103).
- Clilverd, M., E. Clark, T. Ulich, J. Linthe, and H. Rishbeth, Reconstructing the long-term aa index of solar activity, presented at 35th COSPAR scientific assembly, Paris, 2004. Updated from "low" to 42 ± 34 at prediction panel meeting.
- Clilverd, M. A., E. Clarke, T. Ulich, H. Rishbeth, and M. J. Jarvis, Predicting Solar Cycle 24 and beyond, Space Weather, 4, S09005, 2006, doi: 10.1029/2005SW000207.
- de Meyer, F., A transfer function model for the sunspot cycle, Solar Physics 217, 349–366, 2003.
- Dikpati, M., G. de Toma, and P. A. Gilman, Predicting the strength of solar cycle 24 using a fluxtransport dynamo-based tool, *Geophys. Res. Lett.*, **33**, L05102, doi:10.1029/2005GL025221, 2006. (Predicts that SC24 will be 30–50% over SC23, would be 155–180 for maximum of SC23 = 120.)
- Duhau, S., An early prediction of maximum sunspot number in solar cycle 24, *Solar Phys.*, **213**, 203–212, 2003.
- Echer, E., N. R. Rigozo, D. J. R. Nordemann, and L. E. A. Vieira, Prediction of solar activity on the basis of spectral characteristics of sunspot number, Ann. Geophys., 22, 2239–2243, 2004, DOI: 1432-0576/ag/2004-22-2239.
- Euler, H. C., Jr., and S. W. Smith, Future solar activity estimates for use in prediction of space environmental effects on spacecraft orbital lifetime and performance, monthly report available at http://sail.msfc.nasa.gov/current_solar_report/CurRpt.pdf, results in table are from the September 2006 report.
- Gholipour, A., C. Lucasa, B. N. Araabia, and M. Shafiee, Solar activity forecast: Spectral analysis and neurofuzzy prediction, J. Atm. Sol.-Terr. Physics, 67, 595–603, 2005.
- Hathaway, D. H., and R. M. Wilson, What the sunspot record tells us about space climate, Solar Phys., 224, 5–19, 2004.
- Hathaway, D. H., and R. M. Wilson, Geomagnetic activity indicates large amplitude for sunspot cycle 24, prediction submitted as preprint on September 16, 2006.
- Hathaway, D., R. Wilson, and J. Reichman, A synthesis of solar cycle prediction techniques, J. Geophys. Res., 104, 375–388, 1999.
- Hiremath, K. M., The solar cycle as a forced and damped harmonic oscillator: long-term variations of the amplitudes, frequencies and phases, A. & Ap, 452, 591–595, 2006, DOI: 10.1051/0004-6361:20042619.
- Hiremath, K. M., Prediction of future fifteen solar cycles, arXiv:0704.1346v1 [astro-ph] 11 Apr 2007.
- Horstman, M., Varying solar flux models and their effect on the future debris environment Projection, *The Orbital Debris Quarterly News*, **9** (January 2005), 4–5, 2005.

A projection of "... a single 11-year cycle based upon the last 5 historic cycles." F10.7 peaks at 205 in 2010/2011. This prediction is then repeated for another 8 cycles to cover a century.

- Janssens, Jan, Solar Cycle 24: Overview of predictions on the start and amplitude of a new solar cycle (accessed as http://members.chello.be/j.janssens/SC24pred.pdf), 2005; and an updated table accessed as http://members.chello.be/j.janssens/SC24.html, 2006.
- Javaraiah, J., North-south asymmetry in solar activity: predicting the amplitude of the next solar cycle, M. N. R. A. S. Lett., Online Early (MNRAS Homepage), 2007, DOI: 10.1111/j.1745-3933.2007.00298.x.
- Kaftan, V. I., Kinematic modeling of the main solar cycle, in *Multi-Wavelength Investigations of Solar Activity*, IAU Symposium, **223**, eds. A. V. Stepanov, E. E. Benevolenskaya, and A. G. Kosovichev, Cambridge, UK: Cambridge University Press, pp. 111–112, 2004. Also as a scanned article, 2005.
- Kane, R. P., Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components, Solar Phys., 189, 217–224, 1999.
- Kennewell, John, Garth Patterson, prediction submitted September 11, 2006. Category of prediction: Average Cycle, Cycle 24 Prediction details:

Cycle parameter Value

2007.8 ± 0.5
2011.7 ± 1.0
2018.2 ± 1.5
134 ± 50

- Description of Prediction Technique: The prediction is based on the average of the last 8 solar cycles (Cycles 15 to 23). IPS plans to adjust this average cycle as the new cycle unfolds. To do this, IPS is developing software for manipulating this predicted cycle. The difficulty is ensuring that you are not chasing a short-term variation when making an adjustment to the cycle prediction. Verified 9/24/2006 during construction of this table.
- Kim, Myung-Hee Y., John W. Wilson, Francis A. Cucinotta, An Improved Solar Cycle Statistical Model for the Projection of Near Future Sunspot Cycles, NASA/TP-2004-212070, 2004. http://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2004-212070.pdf
- Kontor, Nikolay N., Statistics based regular extrapolation, prediction submitted August 28, 2006.
- Lantos, P., Predictions of galactic cosmic ray intensity deduced from that of sunspot number, Solar Phys., 229, 373–386, 2005, DOI: 10.1007/s11207-005-5565-6. (Discusses the prediction of GCRs from solar cycle prediction.)
- Lantos, P., The skewness of a solar cycle as a precursor of the amplitude of the next, *Solar Phys.*, **229**, 373–386, doi: 10.1007/s11207-006-0128-z, 2006.
- Li, Ke-Jun, Peng-Xin Gao, and Tong-Wei Su, Estimating the size and timing of the maximum amplitude of Solar Cycle 24, *Chin. J. Astron. Astrophys.*, **5**, 539–545, 2005. Not shown in table as they have multiple predictions, depending on the timing of solar minimum and rise time of Cycle 24. "Presuming cycle 23 to be a short cycle (as is more likely), the minimum of cycle 24 should occur about December 2006 (± 2 months) and the maximum, around March 2011 (± 9 months), and the amplitude is 190 \pm 16, if it is a fast riser, or about 136, if it is a slow riser. If we presume cycle 23 to be a long cycle (as is less likely), the minimum of cycle 24 should occur about June 2008 (± 2 months) and the maximum, about February 2013 (± 8 months) and the maximum will be about 137 or 80, according as the cycle is a fast riser or a slow riser."

- Lundstedt, H., Solar activity modelled and forecasted: A new approach, Adv. Space Res., 38, 862–867, 2006, doi:10.1016/j.asr.2006.03.041.
- Maris, G., and A. Oncica, Solar cycle 24 forecasts, *Sun & Geospace*, **1**, 2006. Downloaded from http://www.stil.bas.bg/IHY/forms/SUN_GEO200601.html
- Mariş, G., M. D. Popescu, and D. Beşliu, Solar cycle 23 analysis, in *Multi-Wavelength Investigations of Solar Activity*, IAU Symposium, No. 223, eds. A. V. Stepanov, E. E. Benevolenskaya, and A. G. Kosovichev, (Cambridge, UK: Cambridge Press), pp. 127–128, 2004.
- Nevanlinna, H., prediction submitted to panel, 2007.
- Niehaus, K. O., H. C. Euler, Jr., and W. W. Vaughan, Statistical technique for intermediate and long-range estimation of 13-month smoothed solar flux and geomagnetic index, NASA Technical Memorandom 4759, September 1996. http://sail.msfc.nasa.gov/tm4759.pdf
- Pesnell, W. D., 2006. Values derived while creating this table. Based on the numbers in the table retrieved from ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/maxmin.new
- Podladchikova, T., B. Lefebvre, R. Van der Linden, Peak sunspot number for solar cycle 24, prediction submitted September 12, 2006.
- Prochasta, Robert D., untitled prediction submitted September 12, 2006. Verified 9/24/2006 during construction of this table.
- Roth, Markus, untitled prediction submitted September 12, 2006.
- Schatten, K., Fair space weather for solar cycle 24, Geophys. Res. Lett., 32, L21106, doi:10.1029/-2005GL024363, 2005.
- Sello, S., Update of prediction through email dated October 4, 2006. Method is described in Sello (2003).
- Sello, S., Solar cycle activity: A preliminary prediction for cycle #24, A. & Ap., 410, 691–693, doi:10.1051/0004-6361:20031295, 2003.
- Svalgaard, L., E. W. Cliver, and Y. Kamide, Cycle 24: the smallest sunspot cycle in 100 years?, *Geophys. Res. Lett.*, **32**, doi:10.1029/2004GL021664, 2005. Updated at panel meeting from 75 ± 8 to 70 ± 2 .
- Tlatov, A.G., Indices of solar activity minimum of sunspot cycles and prediction solar cycle 24, manuscript received via email, September 26, 2006. The four prediction methods are listed in Table 2. Most are precursor predictions and timing information was not included.
- Tritakis, Vasilis, Helen Mavromichalaki, and George Giouvanellis, Prediction of basic elements of the forthcoming solar cycles 24 and 25 (years 2005-2027), in *Recent Advances in Astronomy* and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, 848, pp. 154–162, 2006, DOI: 10.1063/1.2347972.
- Tsirulnik, L. B., T. V. Kuznetsova and V. N. Oraevsky, Forecasting the 23rd and 24th solar cycles on the basis of MGM spectrum, *Adv. Space Res.*, **20**, 2369–2372, 1997, doi:10.1016/S0273-1177(97)00909-5.
- Wang, J.-L., J.-C. Gong, S.-Q., Liu, G.-M. Le and J.-L. Sun, The prediction of maximum amplitudes of solar cycles and the maximum amplitude of solar cycle 24, *Chin. J. Astron. Astrophys.*, 2, 557–562, 2002. Date of maximum is predicted between 3/2011–3/2013, average is listed in Table 1.

Table 2: Tlatov's Predictions of the Magnitude of Solar Cycle 24

Index	Name	$R_z(\max)$	Comments
Area of high-latitude unipolar regions	Apz(t)	115 ± 15	
Dipole-octupole magnetic moments	A(t)	110 ± 10	
Complexity of $H\alpha$ synoptic charts	K(t)	130 ± 15	
Power of sector structure of the mag-	SSPD(t)		Prediction comes one year after
netic field			minimum
Length of neutral lines	L(t)		Prediction comes after minimum
Declination angle of filaments	P(t)		Prediction comes after minimum
Number of CaII-K bright points at	NK		No data after 2002
high latitudes			
Large-scale magnetic field		115 ± 13	Presented at October panel meet-
			ing
Weighted average		115 ± 7	-

Figure 1: The predictions from Table 1, plotted in order of increasing predicted maximum for Cycle 24. The lower plot is the significance of the difference from the climatological average of 115 ± 40 for those predictions that included an error bar.