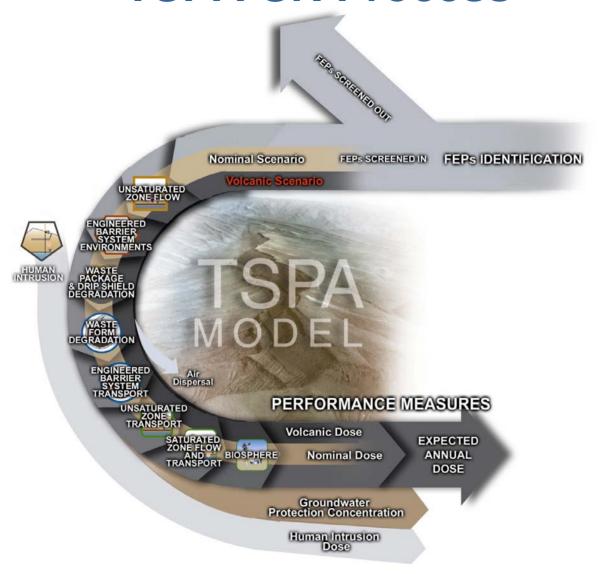


Total System Performance Assessment for the Site Recommendation - Approach and Preliminary Results

Presented to:

Nuclear Waste Technical Review Board

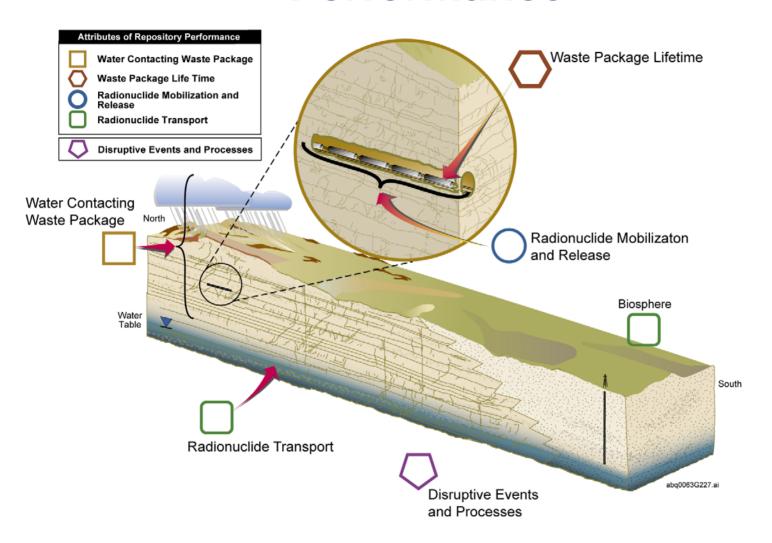
Presented by:


Dr. Robert W. Andrews
Performance Assessment Department Manager
Civilian Radioactive Waste Management System
Management & Operating Contractor

Outline

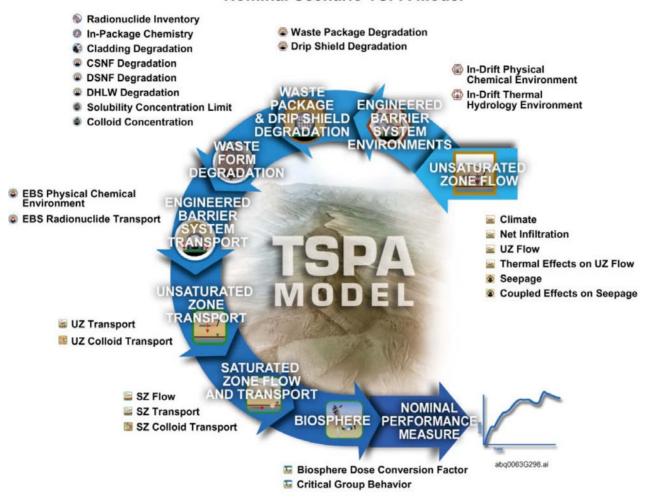
- TSPA-SR Process
- Attributes of Repository Performance
- TSPA-SR Nominal Scenario Process Model Factors
- Overview of Uncertainty/Variability/Conservatism in TSPA-SR
- TSPA Results
 - TSPA-VA
 - TSPA-SR Nominal Scenario Results (preliminary)
 - TSPA-SR Volcanic Scenario Results (preliminary)
 - TSPA-SR Nominal Scenario Example Sensitivity and Barrier Importance Analysis (preliminary)
- Summary

TSPA-SR Process

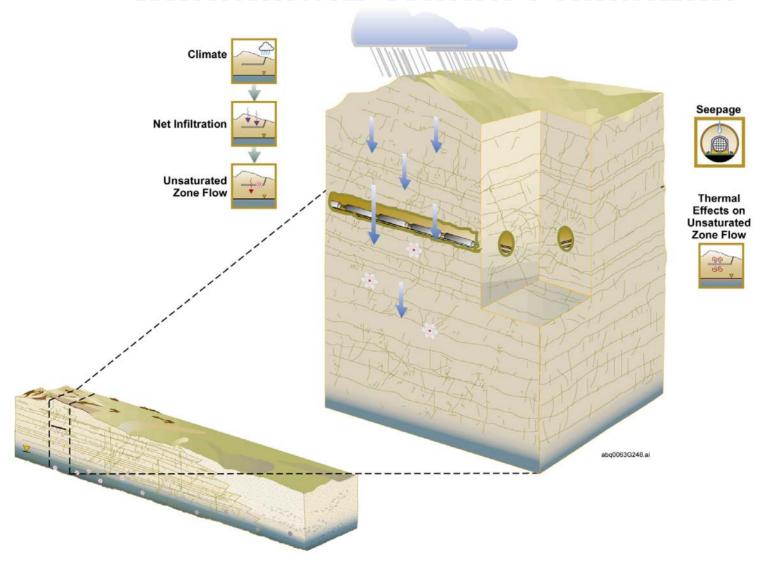


TSPA-SR Process

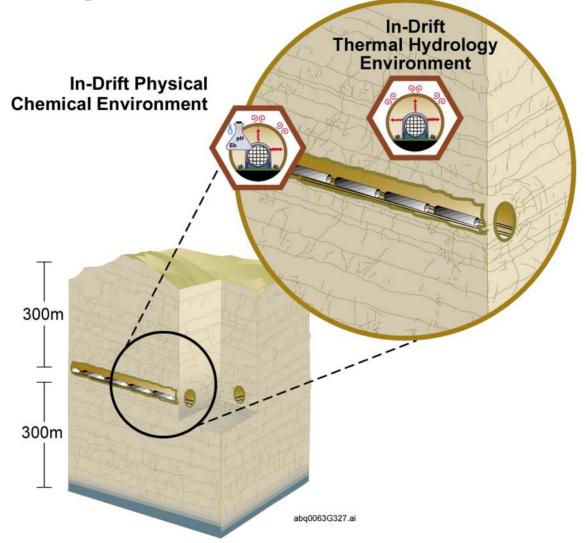
- Screen features, events and processes to determine those that must be retained in performance assessment
- Develop models, along with their scientific basis, for each process included in TSPA
- Identify uncertainty in models and parameters 3
- Construct integrated TSPA model using all retained processes
 - "Nominal" performance model contains all features, events and processes likely to occur
 - "Disruptive event" performance model contains low probability events (e.g., volcanism)
- **Evaluate total-system performance (individual dose and** groundwater protection) and significance of quantified uncertainty

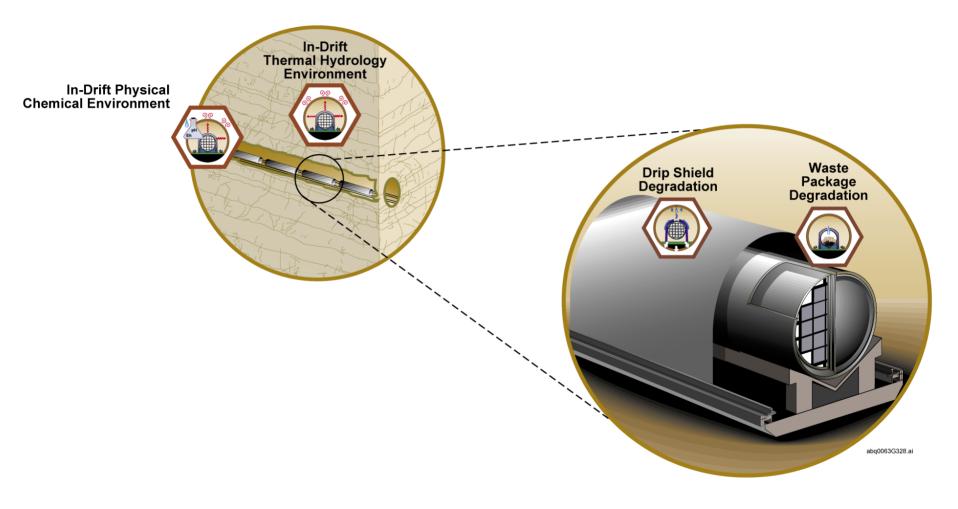

Yucca Mountain Project/Preliminary Predecisional Draft Materials

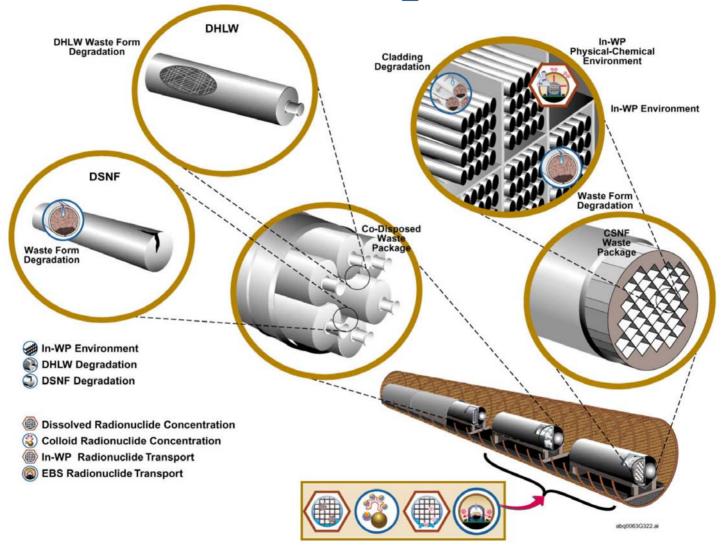
Attributes of Repository System Performance



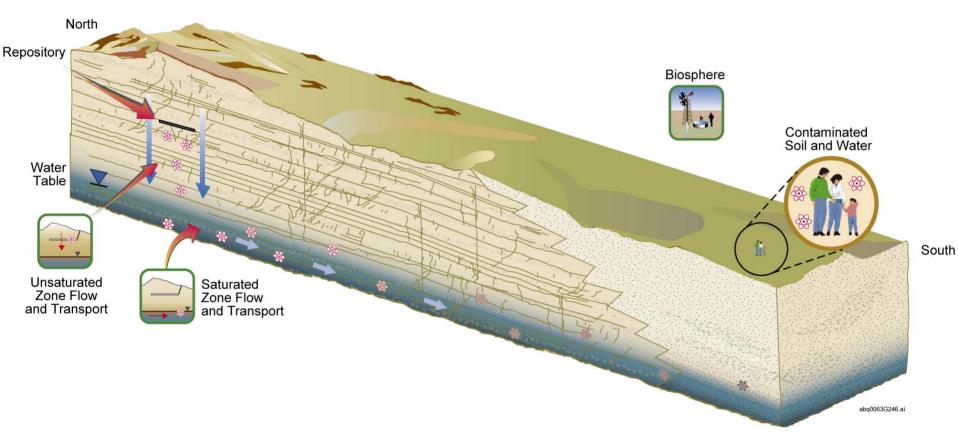
TSPA-SR Nominal Scenario - Process Model Factors


Nominal Scenario TSPA Model


Process Model Factors Affecting Water Contacting Waste Packages


Process Model Factors Affecting Waste Package Lifetime – Engineered Barrier System Environments

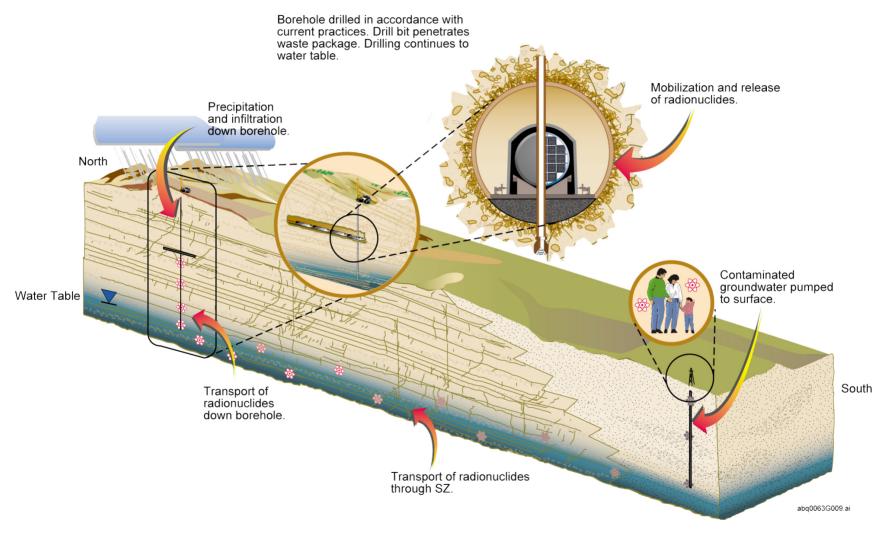
Process Model Factors Affecting Waste Package Lifetime – Waste Package Degradation



Process Model Factors Affecting Radionuclide Release From the Engineered Barriers



Yucca Mountain Project/Preliminary Predecisional Draft Materials


Process Model Factors Affecting Radionuclide Transport Away from Engineered Barriers

Process Model Factors for Disruptive Events Scenario

Process Model Factors for Human Intrusion Scenario

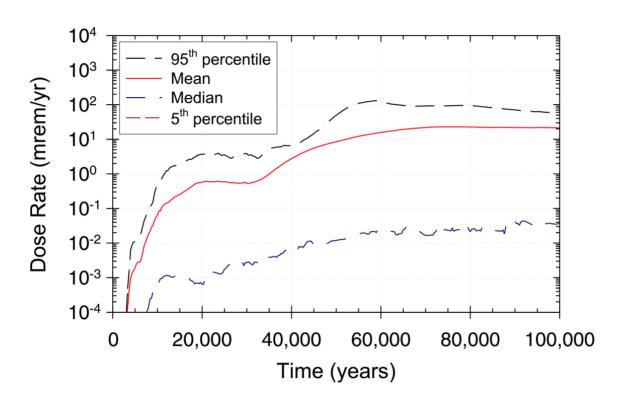
Uncertainty and Variability Incorporated in the TSPA-SR Models

- The technical basis for each process model and the corresponding abstraction included in the TSPA-SR is contained in the family of Analysis/Model Reports (AMRs)
- Uncertainty and both spatial and temporal variability are included in each model as appropriate
- Where significant complexity or unquantified uncertainty was encountered a degree of conservatism was included in the **AMR**
- The subsequent process model talks will discuss the nature and extent of the uncertainty and conservatism included in the models

M&O Graphics Presentations_YMAndrews_08/01/00.ppt

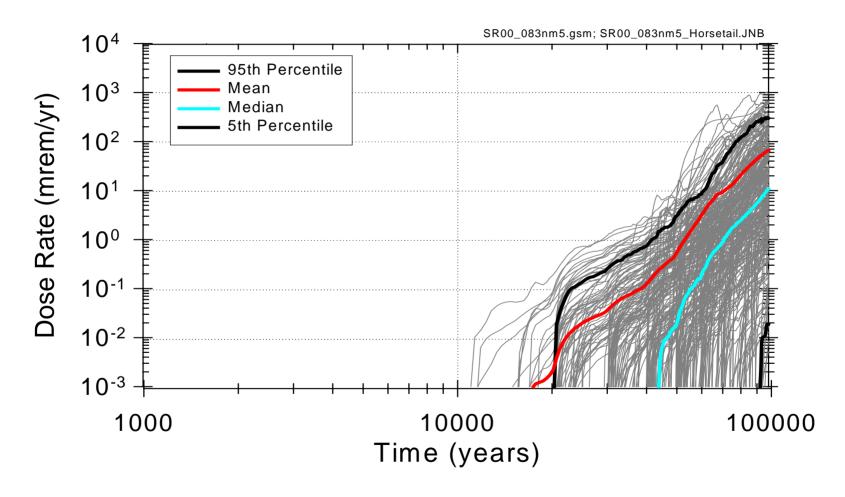
KEY ATTRIBUTES OF SYSTEM	Process Model	QUANTIFIED UNCERTAINTY	QUANTIFIED VARIABILITY	Сомментѕ
	Climate	✓	✓	 Uncertainty is captured by lower and upper bounds for climate. Variability is captured through timing of climates.
	Net Infiltration	✓	✓	
Water Contacting Waste Package	Unsaturated Zone Flow	✓	✓	 10% of flow through Calico Hills vitric unit (which is beneath about half the repository) is through the fractures. Results at Busted Butte indicate that 100% of flow through this unit should reside in the matrix.
	Coupled Effects on UZ Flow	✓		Thermal effects of far-field UZ flow have been screened out.
	Seepage into Emplacement Drifts	✓	✓	 Seepage threshold possibly underestimated. Seep flux increased by 55% to account for effects of drift degradation & rock bolts.
	Coupled Effects on Seepage			 Percolation flux taken 5 m above drift crown during thermal period as input to seepage model. Thermal dry-out neglected, possible better performance of lower lithophysal unit neglected.
	In-Drift Physical and Chemical Environments		✓	 Laboratory A22 corrosion rates measured under extreme chemical environments.
	In-Drift Moisture Distribution		✓	 Threshold RH based on the deliquescence point of NaNO3 salt, and the same threshold RH for both drip and no-drip conditions.
Waste Package Lifetime	Drip Shield Degradation and Performance	✓	✓	Corrosion initiated at threshold RH.
	Waste Package Degradation and Performance	✓	✓	 Corrosion initiated at threshold RH. Density and orientation of embedded defects/flaws. Highly aggressive water chemistry conditions are assumed for SCC Crack Initiation and Propagation. Laboratory A22 corrosion rates measured under extreme chemical environments.

OVERVIEW OF QUANTIFIED UNCERTAINTY AND VARIABILITY IN MODELS SUPPORTING TSPA-SR

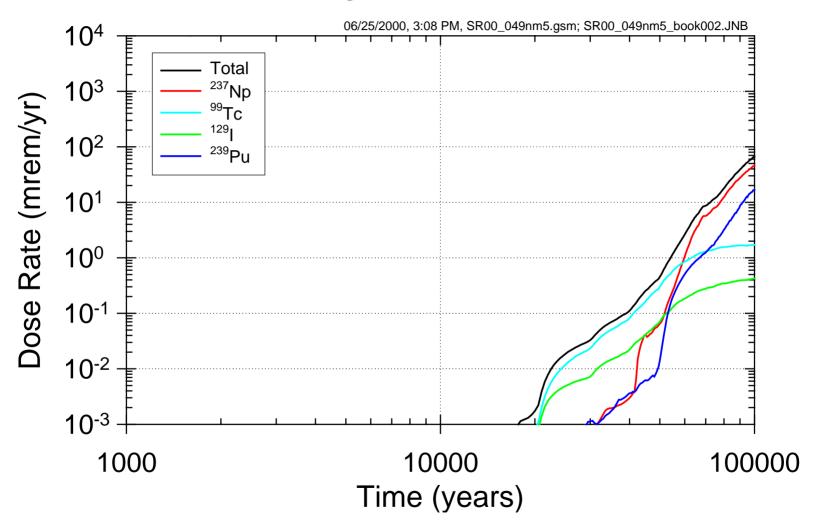

KEY ATTRIBUTES OF SYSTEM	Process Model	QUANTIFIED UNCERTAINTY	QUANTIFIED VARIABILITY	COMMENTS
	Radionuclide Inventory			 C-14 included in inventory is transported entirely in the aqueous phase.
	In-Package Environments		✓	 Thermal dry-out effects during first 5-10,000 years neglected. (No effect on DSNF/DHLW),
	Cladding Degradation and Performance	✓	✓	 Conservative estimate of perforation from creep rupture is used Wet unzipping has uncertainty added that is in addition to the uncertainty in the CSNF degradation rate
	CSNF Degradation and Performance			Degradation rates do not consider secondary phase formation.
	DSNF Degradation and Performance			 No cladding credit is assumed A constant degradation rate is used that conservatively bounds degradation of metallic uranium present in N-reactor fuel Degradation rates do not consider secondary phase formation.
Radionuclide Mobilization and	DHLW Degradation and Performance			 High degradation rates are assumed. Degradation rates do not consider secondary phase formation.
Release from the Engineered Barrier System	Dissolved Radionuclide Concentrations	✓		 High Np solubility is predicted because Np₂O₅ is conservatively assumed to be the controlling solid phase Np or other radioisotopes are not incorporated into secondary phases of uranium are assumed
	Colloid-Associated Radionuclide Concentrations	✓		 Concentration of iron-(hydr)oxide corrosion-product colloids not linked to corrosion rates Stabilities of colloid types (waste-form, groundwater, and corrosion-product colloids) are treated independently. Assumption that groundwater colloids consist of montmorillonite (smectite) clay minerals
	In-Package Radionuclide Transport			Diffusion from altered waste form to inner wall of waste package neglected
	EBS (Invert) Degradation and Performance		✓	 The advective flow for radionuclide transport through the invert is a one-dimensional process and always vertically downward. The binary diffusion coefficient for all radionuclides is bounded by the self-diffusion coefficient of water. A zero concentration boundary condition at the invert/UZ interface is enforced during the post-closure simulation period.

KEY ATTRIBUTES OF SYSTEM	PROCESS MODEL FACTOR	QUANTIFIED UNCERTAINTY	QUANTIFIED VARIABILITY	COMMENTS
Transport Away	UZ Radionuclide Transport (Advective Pathways; Retardation; Dispersion; Dilution)	1	y	matrix, which has been shown to be conservative. Colloid concentrations and K_c s used to calculate K_c are conservative (i.e., high). Colloid retardation is neglected for all colloids in the UZ.
from the Engineered Barrier System	SZ Radionuclide Transport	✓	✓	No sorption in fractures.
	Wellhead Dilution	✓		***************************************
	Biosphere Dose Conversion Factors	✓	•	Pessimistic DCF values for possible gastrointestinal absorption.
	Probability of Volcanic Eruption	1	✓ .	Spatial and temporal variability in igneous processes considered by PVHA panel.
	Characteristics of Volcanic Eruption	✓	•	Eruptive events assumed to be violent for full duration.
	Effects of Volcanic Eruption	✓	•	Volcanic eruption assumed to degrade all waste packages, drip shields, and cladding that are intersected by eruptive conduit.
Effects of	Atmospheric Transport of Volcanic Eruption	✓	√ :	Variability in Wind Speed with altitude and time included in cdf. Assume wind always blows toward critical group (south). (Conservative approach to compensate for not including surface redistribution processes).
Potentially Disruptive Processes and	Biosphere Dose Conversion for Volcanic Eruption	✓		High air mass loading assumed to persist permanently following ashfall.
Events	Probability of Igneous Intrusion	✓	✓ •	Spatial and temporal variability in igneous processes considered by PVHA panel.
	Characteristics of Igneous Intrusion		✓ .	Variability in location (length and orientation) affects extent of damage. Multiple dikes possible in a single event, assumed to be at least favorable spacing.
	Effects of Igneous Intrusion	1	/	Variability in location (length and orientation) affects extent of damage.

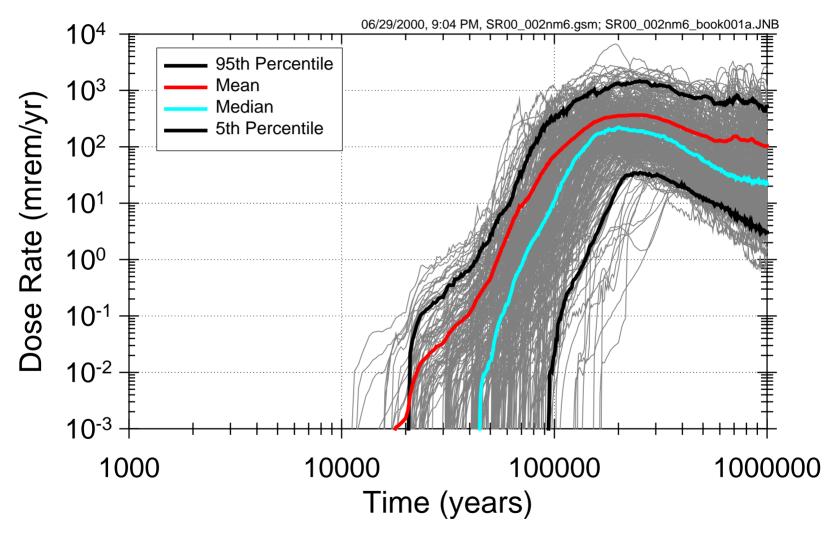
TSPA Results

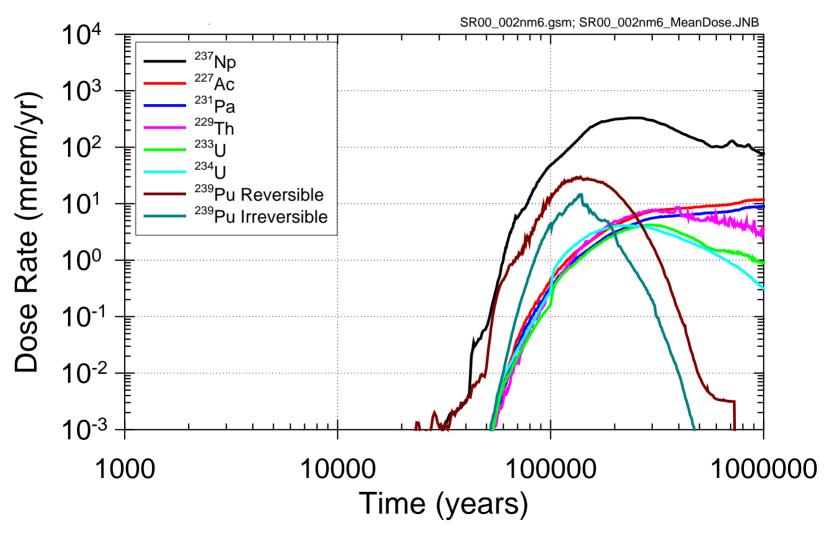

- TSPA-VA
- TSPA-SR Preliminary Nominal Scenario Class
 - 100 k-yr dose rate
 - 100 k-yr key radionuclides
 - 1,000 k-yr dose rate
 - 1,000 k-yr key radionuclides
- TSPA-SR Preliminary Igneous Activity Scenario Class
- Sensitivity Analysis

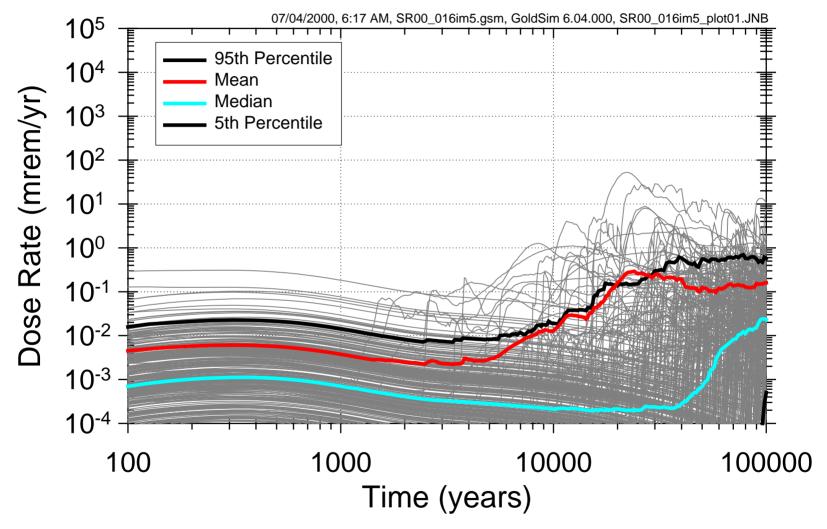
TSPA-VA Results*

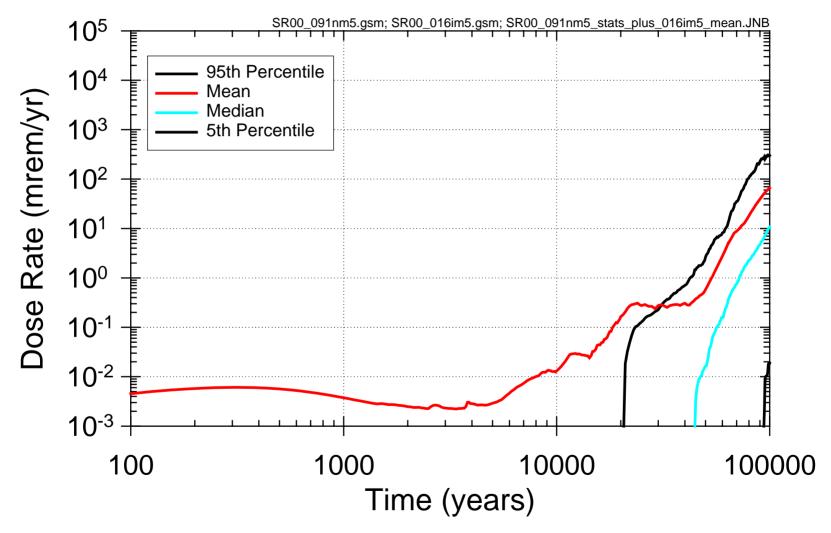


*Figure 4-28 of Viability Assessment of a Repository of Yucca Mountain, Volume 3 Total System Performance Assessment


TSPA-SR Preliminary Nominal Scenario Class – Individual Dose Results


TSPA-SR Preliminary Nominal Scenario Class – Key Radionuclides


TSPA-SR Preliminary Nominal Scenario Class – Individual Dose Results


TSPA-SR Preliminary Nominal Scenario Class – Key Radionuclides

TSPA-SR Preliminary Igneous Activity Scenario Class – Individual Dose Results

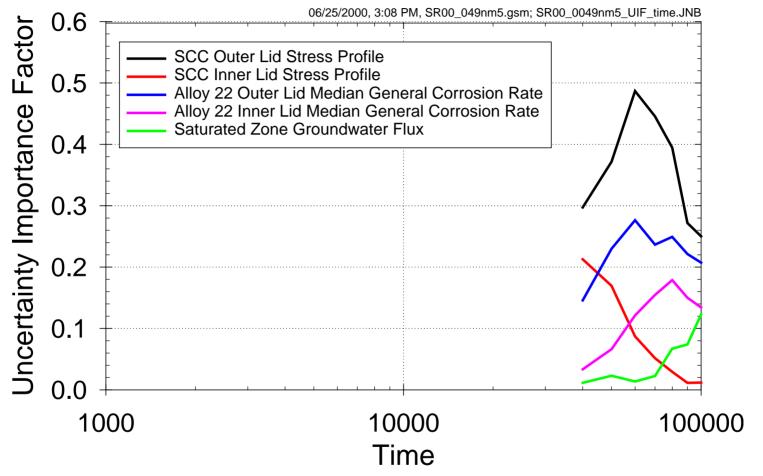
TSPA-SR Preliminary Combined Nominal and Igneous Activity Scenario Classes – Individual Dose Results

Summary of TSPA-SR Preliminary Sensitivity Analyses

Uncertainty analyses

- > 200 parameters in nominal performance scenario are represented with an uncertainty range
- Regression analysis, discriminant analysis, partial correlations and regression trees are used to identify the most significant parameters (an example follows)

Sensitivity analyses

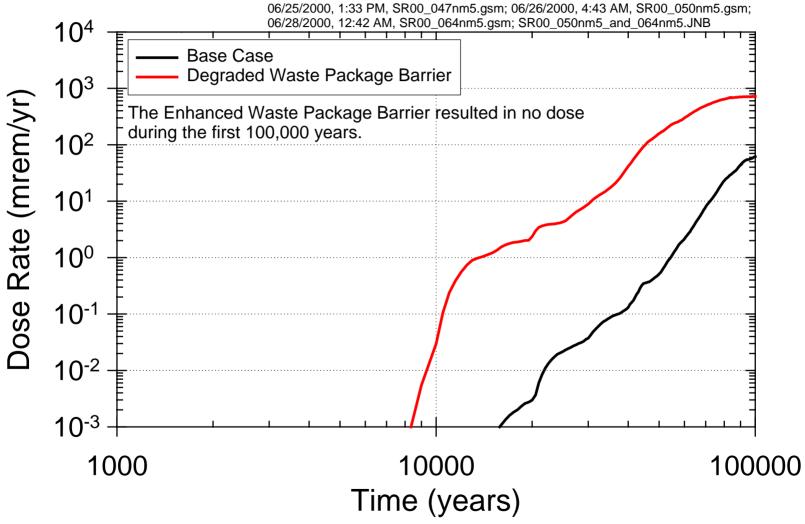

 Specific analyses fixing individual key parameters at their 5th and/or 95th percentile used to illustrate contribution to performance of individual process model factors

Barrier Importance analyses

Yucca Mountain Project/Preliminary Predecisional Draft Materials

- Barrier analysis Specific analyses fixing groups of key parameters at their 5th or 95th percentile used to illustrate contribution to performance of <u>combined process model factors</u> or <u>barriers</u> (an example for waste package degradation follows - additional examples are discussed in individual process model talks)
- Barrier Neutralization Analyses Specific Analyses removing the function of a particular barrier to gain insights to system performance (will be presented tomorrow in the RSS Rev 4 talk)

TSPA-SR Preliminary Nominal Scenario Class – Example Regression Analysis



*NOTE: Insufficient statistics prior to 40k years to provide representative results

Example of Barrier Importance Analyses

- Based on regression analyses, several waste package degradation parameters have been identified as significantly affecting the dose rate
- The following waste package degradation parameters were fixed at their 95th and/or 5th percentile to provide an estimate of the possible pessimistic (degraded) or optimistic (enhanced) performance:
 - Outer and inner lid weld stress profiles
 - Median Alloy 22 corrosion rate for outer and inner lids
 - Aging and MIC factors for corrosion rate
 - Defect probability

TSPA-SR Preliminary Nominal Scenario Class – Example of Waste Package Barrier Importance

Summary of Barrier Importance Analyses to be Presented in Subsequent Talks

- Unsaturated zone flow and transport
 - Infiltration barrier
 - Seepage barrier
 - Unsaturated zone transport barrier
- Engineered Barrier System transport
 - Invert diffusion barrier
- Drip shield and waste package degradation
 - Drip shield barrier
 - Waste package barrier

Summary of Barrier Importance Analyses to be Presented in Subsequent Talks

- Waste form degradation
 - Cladding barrier
- Saturated zone flow and transport
 - Saturated zone barrier
- Biosphere none
- Disruptive events
 - Volcanic activity sensitivity analysis
- Neutralization

Summary of Technical Improvements for TSPA-SR

- TSPA-SR has benefited from comments received from reviewers of TSPA-VA
 - DOE Peer Review, NWTRB, NRC, USGS TSPA-VA Peer Review, Clark County
- Major process model revisions include:
 - Climate and seepage
 - Coupled thermal-hydro-chemical processes and in-drift environments
 - Waste package degradation (esp. stress corrosion cracking)
 - In-package chemistry and radionuclide mobilization (esp. colloids)
 - Saturated zone transport
 - Igneous activity
- TSPA approach modified to address NRC and EPA requirements:
 - Explicit screening of features, events and processes
 - "Expected" annual dose to member of critical group
 - Groundwater protection of representative volume of aquifer
 - Stylized human intrusion scenario

Summary of Process Improvements for TSPA-SR

- All process models, abstraction models, analyses and calculations used to support TSPA-SR are controlled under a set of QA procedures common to all participants
- All data sets, parameters and models/analyses inputs and outputs are being tracked and controlled to ensure traceability
- TSPA-SR model developed to ensure all data used as input are traceable
- All data are tracked to verify quality status

Summary of Remaining Work for TSPA-SR

- Complete analyses and check/review
- Complete uncertainty, sensitivity, and barrier importance analyses
- Complete analysis of results
- Complete documentation

Backup

Process Model Factors Affecting Water Contacting Waste Packages

Key Attributes of Performance	Process Model Factor	TSPA-SR Input Parameters
	Climate	Climate states
		Timing and sequence
	Net Infiltration	Probabilities for different infiltration scenarios
	Net illittation	Infiltration Rate
Water Centesting	Unsaturated Zone Flow	Flow fields for different infiltration scenarios and climate states
Water Contacting Waste Package	Unsaturated Zone Flow	Percolation flux at repository
vvasie Fackage	Coupled Effects on UZ Flow	Percolation flux affected by TH
	Seepage into Emplacement	Seepage flux and seepage fraction as a function of percolation flux
	Drifts	Percolation flux f (multiple locations, waste type, time, climate)
	Coupled Effects on Seepage	Seepage flux and seepage fraction as a function of percolation flux
	Coupled Effects on Seepage	Seepage composition affected by THC

Process Model Factors Affecting Waste Package Lifetime – Engineered Barrier System Environments

Key Attributes of Performance	Process Model Factor	TSPA-SR Input Parameters
Waste Package Lifetime	In-Drift Physical and Chemical Environments	 Rock volume and mass distribution Temperature and RH on the drip shield and waste package surface – f (multiple locations, waste type, time, climate) Fugacity of CO₂ pH – f (region, time) Chloride – f (region, time) Mass of microbes
	In-Drift Thermal-Hydrologic	Seepage flux through the drip shield
	Environment	Fraction of drip shield and waste package surface that is wet

Process Model Factors Affecting Waste Package Lifetime – Waste Package Degradation

Key Attributes	Process Model	TSDA SD Immut Devemators
of Performance	Factor	TSPA-SR Input Parameters
Waste Package Lifetime	Drip Shield Degradation and Performance	 Probability of material and manufacturing defect flaws in drip shield Size of material and manufacturing defect flaws in drip shield Probability and size of rockfall induced by seismic activity Threshold for general corrosion initiation General corrosion rate under drip and no-drip conditions Crevice corrosion initiation threshold Probability (or area) of crevice formation on drip shield Stress and stress intensity factor profile in drip shield SCC initiation threshold SCC crack growth rate Effect of material and manufacturing defects on SCC initiation and crack growth rate Effect of rockfall damage on SCC initiation and crack growth rate Hydrogen concentration profile in drip shield HIC initiation threshold Penetration opening size by general corrosion, localized corrosion and SC
	Waste Package Degradation and Performance	 Probability of material and manufacturing defect flaws in waste package Size of material and manufacturing defect flaws in waste package Threshold RH for general corrosion initiation under drip and no-drip conditions General corrosion rate under drip and no-drip conditions Crevice corrosion initiation threshold of WP outer barrier Penetration opening size by general corrosion, localized corrosion and SCC Stress and stress intensity factor profile at closure welds SCC initiation threshold SCC crack growth rate Effect of material and manufacturing defect on SCC initial and crack growth rate MIC factor on corrosion rate Kinetics phase instability processes in base metal and weld Aging factor on corrosion rate

Process Model Factors Affecting Radionuclide Release From the Engineered Barriers

Key Attributes of System	Process Model Factor	TSPA-SR Input Parameters
	In Package Environments	 pH - f (region, time) Total dissolved carbonate (CO₃²) - f (region, time) Oxygen fugacity - f (region, time) Ionic strength - f (region, time) Fluoride - f(region, time) CO₂ fugacity Volume of water in the waste package/waste form cell
	Cladding Degradation and Performance	Fraction of surface area of Zircaloy-clad CSNF exposed as a function of time
	CSNF Degradation and Performance	CSNF intrinsic dissolution rate
Radionuclide Mobilization and	DSNF Degradation and Performance	DSNF intrinsic dissolution rate
Release from the Engineered Barrier System	HLW Degradation and Performance	 HLW intrinsic dissolution rate Specific surface area
	Dissolved Radionuclide Concentration	Concentration limits (solubilities) for all isotopes
	Colloid-Associated Radionuclide Concentrations	 Types of waste form colloids Concentration of colloids K_d and/or K_c for various colloid types Fraction of inventory that travels as irreversibly attached onto colloids
	In-Package Radionuclide Transport	 Porosity of corrosion products – f (time) Saturation of corrosion products – f (time) Evaporation – f (temperature, relative humidity, composition)
	EBS (Invert) Degradation and Performance	 Thermally perturbed saturation in the invert – f (waste type, region, time, climate) Porosity of the invert Diffusion coefficient Volumetric flux through the invert – f (climate, time) Saturation in the invert after thermal pulse – f (time)

Process Model Factors Affecting Radionuclide Transport Away from Engineered Barriers

Key Attributes of Performance	Process Model Factor	TSPA-SR Input Parameters	
	UZ Radionuclide Transport	 Fracture aperture and spacing in different units Flow fields for different infiltration scenarios and climate states K_d for all elements included in TSPA Matrix diffusion coefficients – f (isotopes, units) K_c and/or kinetic colloid parameters for Pu , Am, Th etc. Colloid filtration factor 	
Transport Away from the Engineered Barrier System	SZ Radionuclide Transport	 Breakthrough curves – f (radionuclide, region) Climate change flux multiplication factor Capture zones and release locations within each zone. Flow fields Flowing interval spacing Effective porosity for all units except the volcanic units Dispersivity (longitudinal, horizontal transverse, vertical transverse) Boundary definition of the alluvium K_d for isotopes included in TSPA Flowing interval porosity Matrix porosity Effective diffusion coefficient K_c colloid parameters Colloid filtration factor 	
	Wellhead dilution	Annual groundwater usage	
	Biosphere Dose Conversion Factor	Biosphere dose conversion factor – f (radionuclide, irrigation time)	

Process Model Factors for Disruptive Events Scenario

Key Attributes of Performance	Process Model Factor	TSPA-SR Input Parameters
	Seismic Activity	Probability of seismicity/structural deformation
Effects of Potentially Disruptive Processes and Events	Volcanic Direct Release	 Annual probability of igneous intrusion Atmospheric transport parameters Probability that an intrusion will result in one or more eruptive vents Number of vents through the waste Wind direction factor Wind speed Biosphere dose conversion factors - f (radionuclide) Factor to account for radionuclide removal from soil
	Intrusive Indirect Release	 Annual probability of igneous intrusion Number of Waste Packages damaged by intrusion (for groundwater transport source term)

Examples of Possible Sensitivity and Barrier Importance Analyses to Evaluate Significance of **Process Model Factors**

Key Attributes of System	Process Model Factor	Possible Sensitivity Analyses	Possible Barrier Importance Analyses
	Climate	Vary timing of climate changeVary magnitude of precipitation	Combine maximum precipitation and maximum infiltration to maximize infiltration rate
	Net Infiltration	 Vary magnitude of infiltration 	Initiation to maximize initiation rate
	Unsaturated Zone Flow	 Vary magnitude of flux 	
	Coupled Effects on UZ Flow		
Water Contacting Waste Package	Seepage into Emplacement Drifts	Vary fracture propertiesVary episodicity	Combine 95 th %ile on flow focussing factor and fracture properties to maximize seepage fraction and amount
	Coupled Effects on Seepage	 Vary changes to UZ flow 	
	In-Drift Physical and Chemical Environments In-Drift Moisture Distribution	 Vary T/RH Vary rockfall/location of rockfall Vary chemistry on DS (salt/dust) Vary chemistry on WP without DS present Vary range of moisture on DS Vary condensation under DS 	Combine 95 th %ile on flow focussing factor and fracture properties to maximize seepage fraction and amount
	Drip Shield Degradation and Performance	 Vary range of moisture on WP Vary corrosion rate Evaluate drip shield separation Evaluate leakage through drip shield joints 	Combine 95 th %ile on rockfall, Titanium degradation rate, indrift chemistry and HIC to minimize dripshield lifetime
Waste Package Lifetime	Waste Package Degradation and Performance	 Evaluate phase stability/aging Evaluate effect of phase stability on local/crevice corrosion Vary stress and stress intensity at closure weld Vary threshold stress Vary corrosion rate Vary initial defect size and probability Vary heat sensitization near welds Evaluate stainless steel barrier credit Evaluate co-dependence of DS/WP failure Vary MIC 	Combine 95 th %ile on initial defects, stress state, threshold stress, corrosion rate, MIC, and aging to minimize waste package lifetime

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Examples of Possible Sensitivity and Barrier Importance Analyses to Evaluate Significance of Process Model Factors

Key Attributes of System	Process Model Factor	Possible Sensitivity Analyses	Possible Barrier Importance Analyses
	Radionuclide Inventory	 Vary burn-up/age variability across repository 	
	In-Package Environments	 Vary water chemistry Evaluate evaporation from breached waste packages during thermal period 	• N/A
	Cladding Degradation and Performance	Vary degradation rateVary perforations	 Combine 95th %ile on initial defects, unzipping rate, and Fluoride content to minimize cladding lifetime
	CSNF Degradation and Performance	Vary degradation rate	
Radionuclide Mobilization and	DSNF Degradation and Performance	Vary degradation rate	• N/A
Release from the Engineered Barrier	DHLW Degradation and Performance	Vary degradation rate	
System	Dissolved Radionuclide	Vary Pu, Np solubility	
	Concentrations	Evaluate secondary phases	
	Colloid-Associated Radionuclide Concentrations	Vary fraction of irreversible colloids	Combine 95 th %ile colloids, pH, solubility,
	In-Package Radionuclide Transport	 Vary Fraction of water removed from waste package 	diffusion coefficient to maximize radionuclide mobilization and release
	EBS (Invert) Degradation and Performance	 Vary sorption in invert Vary diffusion coefficient in invert Vary saturation of invert 	THOSHEAGOT AND TOTOGOG

Examples of Possible Sensitivity and Barrier Importance Analyses to Evaluate Significance of Process Model Factors

Key Attributes of System	Process Model Factor	Possible Sensitivity Analyses	Possible Barrier Importance Analyses
	UZ Radionuclide Transport (Advective Pathways; Retardation; Dispersion; Dilution)	 Vary matrix diffusion Vary colloid filtration Evaluate spatial variation of properties Vary sorption 	Combine 95 th %ile on K _d matrix diffusion, flow rates to minimize transport times in the unsaturated zone
Transport Away from the Engineered Barrier System	SZ Radionuclide Transport	 Evaluate effect of climate change on pathways and flux Evaluate water table rise Vary flux Evaluate flowing interval spacing Vary amount of alluvium Vary Kd in alluvium Vary colloid filtration in alluvium 	Combine 95 th %ile on K _d , matrix diffusion, percent alluvium, flow rate to minimize transport times in the saturated zone
	Wellhead Dilution Biosphere Dose Conversion Factors	Vary volume of water used by critical group Vary BCDFs	• N/A
	Probability of Volcanic Eruption Characteristics of Volcanic	Vary probability Vary event eruption volume	
	Eruption Effects of Volcanic Eruption	350	
Effects of Potentially Disruptive	Atmospheric Transport of Volcanic Eruption	Vary wind speed and direction	• N/A
Processes and Events	Biosphere Dose Conversion for Volcanic Eruption	ur Statesta • workests soors	IWA
	Probability of Igneous Intrusion	Vary probability	
	Characteristics of Igneous Intrusion	Vary number of packages affected	
	Effects of Igneous Intrusion	 Vary degree of degradation of waste package 	