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Consistent large-eddy simulation of a temporal
mixing layer laden with evaporating drops.

Part 1. Direct numerical simulation,
formulation and a priori analysis
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(Received 8 August 2002 and in revised form 10 September 2003)

Large-eddy simulation (LES) models are presented and evaluated on a database
obtained from direct numerical simulation (DNS) of a three-dimensional temporal
mixing layer with evaporating drops. The gas-phase equations are written in an
Eulerian frame for two perfect gas species (carrier gas and vapour emanating from
the drops), while the liquid-phase equations are written in a Lagrangian frame. The
effect of drop evaporation on the gas phase is considered through mass, momentum
and energy source terms. The DNS database consists of transitional states attained by
layers with different initial Reynolds numbers and initial liquid-phase mass loadings.
Budgets of the LES equations at the transitional states show that, for the mass
loadings considered, the filtered source terms (FSTs) are smaller than the resolved
inviscid terms and some subgrid scale (SGS) terms, but larger than the resolved
viscous stress, heat flux and mass flux terms. The irreversible entropy production
(i.e. the dissipation) expression for a two-phase flow with phase change is derived,
showing that the dissipation contains contributions due to viscous stresses, heat and
species-mass fluxes, and source terms. For both the DNS and filtered flow fields
at transition, the two leading contributions are found to be the dissipation due to
the energy source term and that due to the chemical potential of the mass source.
Therefore, the modelling effort is focused on both the SGS fluxes and the FSTs in the
LES equations. The FST models considered are applicable to LES in which the grid
is coarser than the DNS grid and, consistently, ‘computational’ drops represent the
DNS physical drops. Because the unfiltered flow field is required for the computation
of the source terms, but would not be available in LES, it was approximated using the
filtered flow field or the filtered flow field augmented by corrections based on the SGS
variances. All of the FST models were found to overestimate DNS-field FSTs, with
the relative error of modelling the unfiltered flow field compared to the error of using
computational drops showing a complex dependence on filter width and number
of computational drops. For modelling the SGS fluxes and (where possible) SGS
variances, constant-coefficient Smagorinsky, gradient and scale-similarity models were
assessed on the DNS database, and calibrated coefficients were statistically equivalent
when computed on single-phase or two-phase flows. The gradient and scale-similarity
models showed excellent correlation with the SGS quantities. An a posteriori study is
proposed to evaluate the impact of the studied models on the flow-field development,
so as to definitively assess their suitability for LES with evaporating drops.

† Author to whom correspondence should be addressed: Josette.Bellan@jpl.nasa.gov
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1. Introduction
The accurate modelling of two-phase (TP) turbulent flows has been a long-standing

problem that is so far unresolved. In these flows, the interaction of the phases
through momentum, energy and sometimes mass transfer, determines the character of
the flow. Because this interaction occurs at scales that are much smaller than the scale
of practical interest, it is clear that routine simulations of such flows cannot embed a
resolution of the physics at the interaction scales, indicating that phase interactions
must be modelled.

Direct numerical simulation (DNS) is a methodology wherein all scales of the flow
are resolved. For TP flows with particles that are much smaller than the Kolmogorov
scale and which have a volumetrically small loading (� 10−3), Boivin, Simonin &
Squires (1998) have shown that the drops can be treated as point sources of mass,
momentum and energy from the gas-phase perspective; in such situations, it is
appropriate to perform DNS using an Eulerian framework to describe the gas phase
and a Lagrangian framework to track the drops. Although the volumetric loading
is small, the mass loadings can be considerably larger (� 10−1) owing to the ratio
of liquid density to carrier gas density being O(103), and therefore the drops may
considerably influence the flow, i.e. two-way coupling. Since the drops are considered
as point sources, the TP DNS resolution is essentially that which is adequate for
single-phase (SP) flow. Recent studies using this DNS methodology, for isotropic
turbulence, include those of Boivin et al. (1998) and Mashayek & Jaberi (1999) for
solid particles without phase change and those of Mashayek (1998a) and Réveillon
& Vervisch (2000) for evaporating drops. Other DNS with evaporating drops have
been performed by Mashayek (1998b) for homogeneous shear flow and by Miller &
Bellan (1999, 2000) for temporal mixing layers.

Large-eddy simulation (LES) is a promising alternative to DNS. The LES gas-phase
equations are derived by filtering the DNS gas-phase equations, leading to unclosed
terms, which for SP flow are primarily the subgrid-scale (SGS) fluxes that arise from
the convective terms. (The SGS fluxes appearing in the momentum equation are the
SGS stresses.) For TP flows, the filtered source terms (FSTs) are also unclosed. Since
only the large scales need to be resolved, LES may be conducted with reduced flow-
field resolution compared to DNS. Consistent LES then means tracking a reduced
number of drops; ‘computational’ drops are thus used to represent the physical drops.
In this context, TP LES has additional modelling requirements compared to SP LES;
whereas DNS requires modelling the interaction between individual drops and the
unfiltered flow field, in LES neither the individual drops nor the unfiltered flow field
are available and their interaction must be modelled from that between the filtered
flow field and the computational drops.

Recent LES of TP flows include those by Deutsch & Simonin (1991), Simonin,
Deutsch & Boivin (1993), Uijttewaal & Oliemans (1996), Wang & Squires (1996),
Boivin, Simonin & Squires (2000), and Yamamoto et al. (2001). These LES all
considered an incompressible gas phase laden with small solid particles, with the
particles not affecting the evolution of the gas phase, i.e. one-way coupling, and used
physical or computational particles whose evolution was entirely governed by the
resolved flow field. Wang & Squires (1996) found SGS effects, included by modifying
the gas-phase velocity felt by the particles, to be negligible. The LES of Boivin et al.
(2000) and Yamamoto et al. (2001) included two-way coupling, but still neglected SGS
effects on the particles. The SGS modelling requirement in these studies was confined
to the gas phase, facilitating the use of the large body of work on SGS flux models for
incompressible SP flow. Much less work has been devoted to compressible-flow SGS
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flux modelling and has mostly been confined to the energy equation in single-species
SP flows (e.g. Erlebacher et al. 1992; Fureby 1996; Martin, Piomelli & Candler 2000).
SGS TP flow models that treated the drop contribution but did not reduce the size of
the drop ensemble or consider the effect of the drops on the flow field were presented
by Miller & Bellan (2000) and Okong’o & Bellan (2000).

In the present study, we seek to develop a consistent LES formulation for TP flows
with evaporating drops, along with the necessary models for the unresolved quantities.
To this end, we first perform DNS to create a database of transitional states upon
which prospective models will be tested a priori. The DNS undertaken in this study
generally follows the approach of Miller & Bellan (1999, 2000). However, similar
to Réveillon & Vervisch (2000) and unlike Mashayek (1998a, b) or Miller & Bellan
(1999), we also include the effect of the species diffusional fluxes in the heat flux; this
effect is important at the low temperature difference between gas and drops (compared
to those typical of combustion problems) specified in the present DNS in order to
foster interaction between drops and flow field. Next, we derive the LES equations
suitable for our intended methodology and identify the terms that need to be modelled.
Using the DNS database, we will present an analysis of these equations that justifies
the focus of the present modelling effort on the FSTs and the SGS fluxes. The a priori
analysis is similar in spirit to that of the compressible SP study of Vreman, Geurts
& Kuerten (1995), albeit with different governing equations. Some of the models of
Okong’o & Bellan (2000) will be extended so as to calculate the FSTs from the filtered
flow field and the reduced drop ensemble. Concerning the SGS fluxes, the emphasis
will be on adapting and calibrating, for TP flows with phase change, models originally
developed for incompressible SP LES; adaptation is necessary since describing TP
flows requires additional conservation equations for energy and species mass and an
equation of state. The required models depend on the form of the energy equation that
is used (e.g. Erlebacher et al. 1992; Fureby 1996; Martin et al. 2000). The SGS flux
models we shall consider are the Smagorinsky (see Smagorinksy 1993), scale-similarity
(Bardina, Ferziger & Reynolds 1980) and gradient (Clark, Ferziger & Reynolds 1979)
models. The application of these models to compressible flows is usually made through
density-weighting. The thermodynamic variables are coupled through the equation of
state, as well as through the heat and mass fluxes appearing in the energy and species
equations. Therefore, appropriate modelling of the momentum, energy and species
SGS fluxes must be carefully assessed.

This paper is organized as follows. In § 2, we present the DNS formulation. This
formulation consists of a set of coupled conservation equations for the gas phase and
the liquid phase (i.e. the drops). The coupling describing the interaction between the
two phases is provided in the gas-phase conservation equations by source terms. In § 3,
we analyse the DNS results; in particular, we evaluate the adopted form of the heat
and mass fluxes. The gas-phase LES equations are developed in § 4 and assumptions
that may simplify these equations are examined using the DNS database. Thereafter,
the contribution of the source terms is examined by considering the budget of the
LES equations. The final form of the LES equations are then presented, in which
only the SGS fluxes and the FSTs need be modelled. A parallel perspective on the
importance of the source terms is presented in § 5, wherein the irreversible entropy
production (i.e. the dissipation) expression for two-phase flow with phase change is
derived and evaluated for transitional DNS and the filtered flow fields. Models for the
FSTs appearing in the LES equations are investigated in § 6, while several constant-
coefficient SGS models are proposed and calibrated in § 7. The present study aims to
create simple models so that the modelling approach can be validated by means of an
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a posteriori study. That study, to be undertaken in Part 2, will also address important
modelling issues that cannot be examined a priori, such as spatial and temporal dis-
cretization errors, interpolation errors, the interaction of the models with the resolved
scales, and determination of SGS model coefficients in the absence of a database for
calibration. Finally, conclusions and further discussions are presented in § 8.

2. DNS equations
The DNS equations are based on the formulation of Miller & Bellan (1999). Here,

we present only those aspects relevant to the LES methodology designed to replicate
the DNS large scales. The governing equations are formulated in an Eulerian frame for
the gas phase and a Lagrangian frame for the drops. The gas-phase equations are
formulated for two species, namely the carrier gas and the vapour evolving from
the drops. The drops are treated as point sources of mass, momentum and energy
for the gas phase; this treatment is justified by the dilute (i.e. volumetrically small,
O(10−3)) loading and the size of each particle being much smaller than the
Kolmogorov scale. Each drop is assumed to be spherical, and, consistent with the
drop description as a point source, its internal temperature and density are assumed
uniform. Furthermore, we neglect unsteady drag and added mass effects, as well as
Basset history forces, all of which are small for liquid-to-gas density ratios (Boivin
et al. 1998). Drop collisions are assumed negligible.

2.1. Gas-phase equations

For ease of notation, we define the vector of gas-phase conservative variables φ =
{ρ, ρui , ρet , ρYV } and denote the flow field as φ, where ρ is the density, ui is the
velocity in the xi coordinate direction, et is the total energy and YV is the vapour
(subscript V ) mass fraction (the carrier gas, subscript C, mass fraction is YC;
YC + YV = 1). The gas-phase conservation equations are:

∂ρ

∂t
+

∂(ρuj )

∂xj

= SI , (2.1)

∂(ρui)

∂t
+

∂(ρuiuj )

∂xj

= − ∂p

∂xi

+
∂σij

∂xj

+ SII,i , (2.2)

∂(ρet )

∂t
+

∂(ρetuj )

∂xj

= −∂(puj )

∂xj

− ∂qj

∂xj

+
∂(σijui)

∂xj

+ SIII, (2.3)

∂(ρYV )

∂t
+

∂(ρYV uj )

∂xj

= −∂jVj

∂xj

+ SI , (2.4)

where SI , SII,i and SIII are source terms due to the action of the drops. The thermo-
dynamic variables to be computed from φ are the internal energy (e = et − ek , where
the kinetic energy is ek = uiui/2), the pressure (p), the temperature (T ) and the
enthalpy (h = e + p/ρ). We assume perfect gases, for which

p(φ) = ρR(φ)T (φ), (2.5)

where R(φ) = YV RV + YCRC , RV = Ru/mV , RC = Ru/mC , Ru is the universal gas con-
stant and mC and mV are the molar weights of the carrier gas and vapour, respectively,
and

h(φ) = hV YV + hCYC, (2.6)
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where hC and hV are the enthalpies of the pure gases,

hC =

∫
Cp,C(T ) dT , hV =

∫
Cp,V (T ) dT , (2.7)

which are calculated from a given functional form of the heat capacities at constant
pressure, Cp,C and Cp,V . For the small temperature and pressure range to be simulated,
we assume the gas to be calorically perfect, meaning that Cp,C and Cp,V are constant;
then

hC(φ) = Cp,CT , hV (φ) = Cp,V T + h0
V , (2.8)

where Cp,C = Cp,C(T 0), Cp,V =Cp,V (T 0) and h0
V is the reference vapour enthalpy at

(T 0, p0) obtained from integration or tables, which accounts for the enthalpy difference
between the vapour and carrier gas at the reference conditions. Then (2.6) becomes

h(φ) = Cp(φ)T (φ) + h0
V YV , (2.9)

where the mixture heat capacity at constant pressure is Cp(φ) = Cp,V YV + Cp,CYC . The
temperature T is computed from the internal energy through

e(φ) = Cv(φ)T (φ) + h0
V YV , (2.10)

where Cv is the mixture heat capacity at constant temperature (Cv = Cp − R).
For (2.1)–(2.4), we specify the following functions of the flow field: the viscous

stress,

σij (φ) = 2µ
(
Sij − 1

3
Skkδij

)
, (2.11)

where µ is the viscosity and

Sij (φ) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.12)

is the rate of strain; the vapour mass flux,

jVj (φ) = ρYV VVj (φ) = −ρYV

[
D

YV

∂YV

∂xj

+ YC

(
YV + YC

mV

mC

)[
mC

mV

− 1

]
D

p(φ)

∂p(φ)

∂xj

]
,

(2.13)

where thermal diffusion effects have been neglected, VVj is the vapour diffusion
velocity, and D is the diffusion coefficient; the carrier gas mass flux

jCj (φ) = ρYCVCj (φ) = −jVj ; (2.14)

and the heat flux,

qj (φ) = −λ
∂T (φ)

∂xj

+ (hV (φ) − hC(φ))jVj (φ), (2.15)

where λ is the thermal conductivity. In (2.11), (2.13) and (2.15), µ, D and λ are assumed
constant, and may be defined through the Prandtl and Schmidt numbers, Pr= µCp/λ
and Sc= µ/(ρD). In Miller & Bellan (1999, 2000), the Fick contribution was assumed
to dominate the diffusional fluxes, and thus the second (pressure gradient) term was
neglected in (2.13); also, the Fourier term was assumed to dominate the heat flux and
the second (enthalpy flux) term in (2.15) was not included.

2.2. Drop (liquid-phase) equations

The equations describing the drop evolution have been presented in detail by Miller &
Bellan (1999) and only their essence is presented here. We define Z = {Xi, vi, Td, md}
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as the drop field with position Xi , velocity vi , temperature Td , and mass md . Under the
assumptions stated previously, the evolution equations for the drops, in a Lagrangian
frame, are:

dXi

dt
(Z) = vi, (2.16)

dvi

dt
(ψf , Z) =

1

md

Fi(ψf , Z), (2.17)

dTd

dt
(ψf , ψs, Z) =

1

mdCL

[Q(ψf , Z) + ṁd(ψf , ψs, Z)LV (Z)], (2.18)

dmd

dt
(ψf , ψs, Z) = ṁd(ψf , ψs, Z), (2.19)

where Fi is the drag force, Q is the heat flux, ṁd is the evaporation rate, and CL is
the heat capacity of the drop liquid. LV is the latent heat of vaporization, which, for
calorically perfect gases, is a linear function of temperature, LV =h0

V − (CL −Cp,V )Td .
The drop evolution depends on the gas-phase primitive variables, ψ(φ)={ui, T , YV , p},
evaluated either at the drop surface (subscript s) or at the drop far-field (subscript f ).
The far-field variables are taken as the gas-phase primitive variables interpolated
to the drop locations. The detailed expressions for Fi, Q and ṁd involve validated
correlations for point drops which are based on Stokes drag, with the particle time
constant defined by Crowe, Chung & Troutt (1998) as τd = ρLd2/(18µ), where ρL is
the density of the liquid and d is the drop diameter (md = ρLπd3/6):

Fi(ψf , Z) =
md

τd

f1(ui,f − vi), (2.20)

Q(ψf , Z) =
md

τd

Nu

3Pr
Cp,f f2(Tf − Td), (2.21)

ṁd(ψf , Z) = −md

τd

Sh

3Sc
ln[1 + BM ]. (2.22)

In (2.20), f1 is an empirical correlation to correct the Stokes drag for finite drop
Reynolds numbers

f1 =
1 + 0.0545Resl + 0.1Re1/2

sl (1 − 0.03Resl)

1 + a|Reb|b , (2.23)

a = 0.09 + 0.077 exp(−0.4Resl), b = 0.4 + 0.77 exp(−0.04Resl), (2.24)

based on the slip Reynolds number Resl = |ui,f − vi |ρd/µ, where ui,f − vi is the
slip velocity, and on the blowing Reynolds number Reb = Ubρd/µ, where Ub is the
blowing velocity obtained from the mass conservation relation at the drop surface,
ṁd = −πρd2Ub. The correlation of (2.23) is valid for the ranges 0 � Resl � 100
and 0 � Reb � 10. In (2.21), Cp,f = Cp,V YV,f + Cp,CYC,f and f2 = β/(eβ − 1), where
β = −1.5Pr ṁdτd/md is constant for drops obeying the classical ‘d2 law’ (Williams
1965). In (2.22), the mass transfer number is BM = (YV,s − YV,f )/(1 − YV,s) where YV,s

is calculated directly from the surface vapour mole fraction, XV,s, which is obtained
by equating the vapour and liquid fugacities at the surface (i.e. XV,sps = psat; also
ps =pf ), where the saturation pressure, psat , is provided by the Clausius–Clapeyron
relation. Therefore,

XV,s =
patm

ps

exp

[
LV

RV

(
1

TB,L

− 1

Td

)]
, YV,s =

XV,s

XV,s + (1 − XV,s)mC/mV

, (2.25)
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where patm =1 atm and TB,L is the liquid saturation temperature at patm (i.e. the
normal boiling temperature). Finally, the Nusselt, Nu, and Sherwood, Sh, numbers
appearing in (2.21) and (2.22) are empirically modified for convective corrections to
heat and mass transfer based on the Ranz–Marshall correlations

Nu = 2 + 0.552 Re1/2
sl (Pr)1/3, Sh = 2 + 0.552Re1/2

sl (Sc)1/3. (2.26)

Except for τd , which depends on µ, (2.20)–(2.22) depend essentially on ratios of
transport properties through non-dimensional numbers. Therefore, the value of τd

and thus for a given liquid and drop size, the value of µ determines the interaction
time between drops and gas.

2.3. Source terms

As in Miller & Bellan (1999), each drop acts as a point source of mass, momentum
and energy for the gas phase, with the drop source vector

Sd(ψf , Z) = {SI,d, SII,i,d , SIII,d}, (2.27)

SI,d = −ṁd, (2.28)

SII,i,d = −[Fi + ṁdvi], (2.29)

SIII,d = −
[
Fivi + Q + ṁd

(
1
2
vivi + hV,s

)]
, (2.30)

where hV,s = Cp,V Td +h0
V is the vapour enthalpy at the drop surface. The drop sources

in the Lagrangian frame must be reconstructed in the Eulerian frame to obtain the gas-
phase source vector S which contains the terms in (2.1)–(2.4), S(ψf , Z) = {SI , SII,i , SIII}.
As in Miller & Bellan (1999), we use

S(ψf , Z) =
∑

α

wα

V
[Sd(ψf , Z)]α, (2.31)

where the summation is over all drops α residing within a local numerical discretiza-
tion volume, V , and the geometrical weighting factor, wα , is used to distribute the
individual drop contributions to the eight nearest neighbour surrounding grid points
(i.e. corners of the computational volume V ) proportionally to the drop distance from
those nodes. These source terms are then minimally ‘smoothed’ using a conservative
operator so as to retain numerical stability of the Eulerian gas-phase fields (see Miller
& Bellan 1999). This smoothing is not a filter in that it does not remove flow scales,
but is required for successful simulations due to the ‘spottiness’ of the source terms.

2.4. Flow configuration and numerical procedure

The mixing-layer geometric configuration is illustrated in figure 1, where the stream-
wise (x1), the cross-stream (x2), and the spanwise (x3) coordinates are shown, and the
domain lengths are L1, L2 and L3 in each direction. Periodic boundary conditions
are used in the x1- and x3-directions, and adiabatic slip wall conditions (see Poinsot
& Lele 1992) are employed for the x2 boundaries. Drops reaching the slip walls are
assumed to stick to the wall, but are otherwise transported according to the drop
evolution equations (2.16)–(2.19). Initially, the gas phase consists only of the carrier
gas (no vapour). The free-stream velocity U0 = Mc,0aC,0 is calculated from a specified
value of the convective Mach number Mc,0 based on the carrier gas initial speed
of sound aC,0 =

√
RCTC,0Cp,C/Cv,C where TC,0 is the initial uniform temperature

of the carrier gas at the initial uniform pressure. The initial vorticity thickness is
δω,0 = δω(0) where δω(t) = �U0/(∂〈u1〉/∂x2)max, with the brackets 〈 〉 denoting averaging
over homogeneous (x1, x3) planes and �U0 = 2U0 being the velocity difference across
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x2

x3

–U0

+U0

x1

δ
ω,0

Figure 1. Mixing-layer configuration.

the layer; the initial mean streamwise velocity has an error-function profile. The
specified value of the initial Reynolds number, Re0 = ρ0�U0δω,0/µ, where ρ0 is the
initial gas density, is used to calculate µ. The thermal conductivity and diffusivity are
then computed using this value of µ and (constant) specified values of Prandtl and
Schmidt numbers. All thermophysical properties are the same as those employed in
the simulations of Miller & Bellan (2000) using air as the carrier gas and decane as
the drop liquid.

To promote layer growth, the layer is initially perturbed so as to induce roll-up
and pairing. The perturbations, described in Miller & Bellan (1999), follow Moser
& Rogers (1991) in specifying spanwise and streamwise vorticity fluctuations, with
streamwise and spanwise wavelengths in the x1- and x3-directions of λ1 = 7.29δω,0 and
λ3 = 0.6λ1. For all the simulations performed herein, L1 = 4λ1, L2 = 1.1L1 and L3 = 4λ3.
The relative amplitudes of the forcing perturbations with respect to the circulations
are 10% and 2.25% in the spanwise and streamwise directions, respectively. The
evolution of the layer comprises two pairings for the four initial spanwise vortices to
form a single vortex.

The drops are initially distributed randomly throughout the x2 < 0 domain with
specified temperature, velocity, number density and size distribution. Initially, all the
drops have the same temperature, Td,0, which is lower than TC,0 and TB,L to promote
evaporation; the initial velocity of each drop is the same as that of the gas phase at
its location. The mean number density profile is smoothed near the centreline, x2 = 0,
using an error function profile. The drop size distribution is specified through the drop
Stokes number St = τd�U0/δω,0, which is initially given by a Gaussian distribution
(see table 1). The initial number of drops is determined by the initial mass loading
ML0 (initial ratio of liquid mass to the mass of carrier gas in the drop-laden part of
domain).

The equations are solved numerically using a fourth-order explicit Runge–Kutta
temporal integration for time derivatives and an eighth-order central finite differencing
with tenth-order filtering for spatial derivatives (Kennedy & Carpenter 1994). This
filtering introduces a small amount of dissipation that serves only to stabilize the
computations for long-time integrations, but since it acts only on the shortest waves
that can be resolved on the grid, it does not act as a turbulence model allowing under-
resolved computations (Kennedy & Carpenter 1994). A fourth-order Lagrange inter-
polation procedure is used to obtain gas-phase variable values at the drop locations.
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δm/δω,0 Rem CPU-hours
Run Re0 ML0 Nd N1 × N2 × N3 t∗

trans at t∗
trans at t∗

trans (estimated)

SP500 500 0 0 256×288×160 100 2.580 1290 688
TP500a2 500 0.2 2 277 222 256×288×160 105 2.729 1365 1586
TP500a5 500 0.5 5 693 055 256×288×160 105 2.722 1361 2075
SP600 600 0 0 288×320×176 100 2.485 1491 1054
TP600a2 600 0.2 2 993 630 288×320×176 105 2.627 1576 2252
TP600a5 600 0.5 7 484 075 288×320×176 105 2.613 1568 2981

Re0: initial-vorticity-thickness Reynolds number, Re0 = ρ0�U0δω,0/µ
ML0: initial mass loading
Nd : initial number of drops
N1, N2, N3: number of grid points in x1, x2 and x3 directions, respectively
t∗
trans: transition time (dimensionless, rounded to nearest t∗ divisible by 5), t∗ = t�U0/δω,0

Rem: momentum-thickness Reynolds number, Rem = ρ0�U0δm/µ
CPU hours are estimates on 64 processors of an SGI Origin2000
For all cases: L1 = 0.2 m, L2 = 0.22m, L3 = 0.12 m , Mc,0 = 0.35, TC,0 = 375 K, ρ0 = 0.9415 kgm−3,

�U0 = 271.7 m s−1, δω,0 = 6.859 × 10−3 m
For drop laden cases: Td,0 = 345K, TB,L =447.7 K, ρL = 642 kgm−3; the initial St has a Gaussian

distribution with mean 3 and standard deviation 0.5

Table 1. Initial conditions and transition times.

3. DNS results
The DNS described herein was undertaken to achieve several transitional states

that could be further analysed for a priori turbulence modelling. All DNS initial
conditions and respective resolutions are given in table 1. Four of the cases have initial
conditions identical to those of Miller & Bellan (2000); two additional Re0 = 600 cases,
one (SP600) with no drops and another (TP600a5) with a higher initial mass loading
(ML0 = 0.5), have been simulated. As discussed in § 2.1, compared to Miller & Bellan
(2000), the gas-phase equations have been expanded to account for enthalpy flux and
pressure diffusion effects, with corresponding changes in the boundary conditions.
Further, the simulations have been performed for longer non-dimensional times
compared to those in Miller & Bellan (2000). The rationale behind conducting both
TP and SP DNS is that, although the focus is on TP DNS, it is desirable to perform
as much gas-phase model development as possible on the SP database. The more of
the SP information we can use for TP modelling, the more we can take advantage of
the existing body of work pertaining to SP LES modelling and focus our efforts on
uniquely drop-related modelling issues. The resolution for the TP cases is the same as
that for the SP cases at the same Re0, and is varied approximately linearly with Re0.
The adequacy of the resolutions is assessed by computing one-dimensional energy
spectra at the transitional times with the plots in figure 2 for TP600a2 (streamwise
spectra, figure 2a; spanwise spectra, figure 2b) being typical. These plots show that
most of the energy is in the large scales (low wavenumber, k) and that there is no
accumulation of energy at high wavenumbers.

To understand the characteristics of the mixing layers, we analyse their global and
detailed characteristics.

3.1. Global layer evolution

The global quantities for the layers are plotted versus the non-dimensional time
t∗ = t�U0/δω,0 in figure 3. Among the various quantities available to measure the



10 N. A. Okong’o and J. Bellan

100 101 102 103

k

102

100

10–2

10–4

10–6

(a)

E
(k

)

100 101 102 103

k

102

100

10–2

10–4

10–6

(b)

Figure 2. One-dimensional energy spectra, TP600a2, t∗ = 105: (a) streamwise, (b) spanwise.
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layer growth, we adopt the momentum thickness δm, calculated as

δm =

∫ x2,max

x2,min

[
〈ρu1〉x2,max − 〈ρu1〉

][
〈ρu1〉 − 〈ρu1〉x2,min

]
dx2(

〈ρu1〉x2,max − 〈ρu1〉x2,min

)2
, (3.1)

where x2,max = L2/2 and x2,min = −L2/2 are the slip wall coordinates. Depicted in
figure 3(a) is δm/δω,0 for all runs given in table 1. All layers show consistent growth
with two plateaux corresponding to the two pairings, although TP500a5 and TP600a5
show fewer variations, owing to the larger ML0 which makes the layers more difficult
to entrain and thus impedes their growth. All cases have matched values of δm/δω,0

from the beginning of the simulation until roll-up (t∗ � 25), as the Re0 or ML0 specific
characteristics are not apparent during roll-up, and then again for t∗ between 55 and
70, which is the time between the first pairing (40 � t∗ � 50) and the second pairing
(75 � t∗ � 90). In contrast, the layer growth is proportional to ML0 between roll-up
and the end of the first pairing as well as during the second pairing. All runs attain
a local maximum for t∗ in the range 95 to 105; the transitional times given in table 1
correspond to these peaks in δm/δω,0. The transitional-time value of δm/δω,0 increases
then decreases with ML0 for both Re0. This lack of monotonicity is a manifestation of
the initial forcing which has a relatively weaker influence on the highest ML0 layers.
Note that the range of transitional δm/δω,0 values is small (2.49 for SP600 to 2.73 for
TP500a2, about 10%).

The global mixing is measured by the product thickness δP

δP =

∫ L3

0

∫ x2,max

x2,min

∫ L1

0

ρ[2min(YV , YC)] dx1 dx2 dx3. (3.2)

In our simulations, the low vapour mass fraction (YV � 0.1) implies that δP is
essentially twice the mass of vapour in the computational domain (MV ). For the
drop laden layers, δP is illustrated in figure 3(b), while MV is plotted in figure 3(c)
(non-dimensionalized by the initial mass of gas, MG,0) The total liquid mass of the
drops (ML), is plotted in figure 3(d) which is directly related to the ensemble-averaged
drop diameter plotted in figure 3(e) (discussed below). Both MV and ML are seen to
depend only on ML0, with the plots for TP500a2 and TP600a2 (ML0 = 0.2) and those
for TP500a5 and TP600a5 (ML0 = 0.5) overlapping, respectively. Understandably, δP

increases with ML0. The initial δP growth is larger for ML0 = 0.5, but levels off
sooner compared to ML0 = 0.2, as vapour saturation intervenes in the lower stream
and stops evaporation, similarly to the situation in Miller & Bellan (1999); however,
the ratio of δP between simulations with the same Re0 is much less than that of
ML0 (e.g. 1.2 versus 2.5 at t∗ = 105). After a period of reduced increase rate, the
δP growth for ML0 = 0.5 then increases again, which is attributed to the increase in
the ensemble-averaged drop temperature (see figure 3f discussed below) that allows
increased evaporation. By the end of the simulation, δP is still increasing for all layers,
meaning that drops are still evaporating (the layer is not saturated). Notably, even at
late times, much of the liquid has not evaporated and the portion of unevaporated
liquid depends on ML0 (e.g. 45% for ML0 = 0.2 leading to ML =0.09, and 74%
for ML0 = 0.5 leading to ML =0.037 at t∗ = 105). This indicates that the interaction
of mixing and drop evaporation is very complex, so that ML0 is not quantitatively
predictive of the final vapour mass.

Drop-based ensemble averages (denoted by 〈〈 〉〉), here diameter-squared (〈〈d2〉〉)
and temperature (〈〈Td〉〉), illustrated in figures 3e and 3f , show a dependence only on
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ML0, although 〈〈Td〉〉 differs slightly between the matched ML0 cases for 80 � t∗ � 120.
At the beginning of the simulations, 〈〈d2〉〉 decreases at the same rate for all cases, this
being due to the same Td,0 and the same initial gas phase composition, but then the
rate of decrease at the higher ML0 quickly diminishes relative to the lower ML0 cases,
which is attributed to the accumulation of vapour in the gas phase (because 〈〈Td〉〉 is
larger for ML0 = 0.5, and therefore could not be the cause of decreased evaporation
rate). Emulating 〈〈d2〉〉, the initial variation of 〈〈Td〉〉 is the same for all cases, in
that it decreases due to the cooling effect of evaporation; but then, for t∗ � 10, an
oscillatory behaviour of 〈〈Td〉〉 is observed, with the higher ML0 cases having hotter
drops since the reduced evaporation rate maintains a larger 〈〈Td〉〉. As elaborated by
Le Clercq & Bellan (2003), the later oscillations in 〈〈Td〉〉 are due to the competing
effects of heating, which transfers energy from the gas phase, and evaporation, which
releases energy into the surrounding gas.

Also depicted in figure 3 are two vorticity measures, the positive spanwise vorticity,
〈〈ω+

3 〉〉, and the enstrophy, 〈〈ωiωi〉〉, where 〈〈 〉〉 denotes averaging over all grid points.
Initially null, ω+

3 is a measure of the small-scale activity; ωiωi is related to stretching
and tilting which is an important mechanism for turbulence production. Plotted in
figure 3(g), 〈〈ω+

3 〉〉δω,0/�U0 grows to an initial peak, at around the time of the first
pairing, decreases and then grows again to a higher second peak, after which it
declines. The time of the second peak is comparable for SP500 and SP600, being
about t∗ = 80 and approximately corresponding to the time of the second pairing. For
the TP cases, the peak is delayed, at about t∗ = 95, indicating that on a global basis the
drops delay vorticity production. The maximum value of 〈〈ω+

3 〉〉 increases with ML0

at the same Re0, indicating that the increasing number of drops causes increasing
small-scale formation effects, and increases with Re0 at the same ML0, consistent with
the well-known Re0 effect for SP layers; TP600a5 has the largest peak value overall.
Finally, 〈〈ωiωi〉〉(δω,0/�U0)

2 in figure 3(h) shows similar behaviour to 〈〈ω+
3 〉〉δω,0/�U0

in that it peaks sooner for the SP cases than for the TP cases, confirming the global
indication that the drop presence delays the evolution of vorticity-related attributes,
however, 〈〈ωiωi〉〉(δω,0/�U0)

2 peaks sooner than 〈〈ω+
3 〉〉δω,0/�U0. The TP600a2 curve

has distinct behaviour compared to the other TP curves in that it exhibits more
oscillations; however, TP600a5 reaches the maximum enstrophy whereas the other
three TP curves attain similar maxima.

In looking at the four global measures depicted in figure 3, the results can be
summarized as follows: (i) the variation of δm/δω,0 depends on ML0 and Re0 but with
no clear trend, (ii) δP increases with ML0 but is insensitive to Re0, and (iii) global
small-scale generation and enstrophy production increase with ML0 and with Re0.

3.2. Flow visualizations

Flow visualizations are here scrutinized to detect characteristics that are unavailable
in the global measures analysed above. To this end, contours of ω3δω,0/�U0 and
the drop number density, ρn, for TP600a2 and TP600a5 are shown in figure 4, and
contours of YV and T for the same cases are illustrated in figure 5. The vorticity is
qualitatively similar for both cases, with significant numbers of small-scale structures
distributed throughout the ultimate vortex comprising the mixing region. Notably, the
increase in ML0 decreases the local magnitude of the vorticity, presenting information
unavailable from figure 3(g) which showed an increase in 〈〈ω+

3 〉〉δω,0/�U0 with ML0.
Although the ultimate vortex has been somewhat distorted by the small scales, it
still retains some coherence at transition. The effect of the vorticity on the drop
locations can be seen by comparing figures 4(a) and 4(b) with figures 4(c) and 4(d),
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Figure 4. (a, b) Spanwise vorticity and (c, d) drop number density (m−3) for (a, c) TP600a2 at
t∗ = 105 and (b, d) TP600a5 at t∗ =105, in the between-the-braid plane (x3/L3 = 0.5). Dashed
lines are used for negative values of vorticity.

respectively. The low ρn regions within and on the lower stream side can be correlated
with high vorticity magnitude regions; in contrast, the high ρn regions occur at isolated
regions within the layer and correlate with low vorticity, either in the free stream or
on the edges of the ultimate vortex. The drop number density is generally smaller for
TP600a2, mainly due to the effect of its smaller ML0, but also due to the disappearance
of a larger number of drops that have completely evaporated. An in-depth analysis
of the drop organization conducted by Le Clercq & Bellan (2003) and based on
ρn conditionally averaged on the second invariant of the deformation tensor for
compressible flow, IIu = −[(SijSij − SkkSll)/2 − ωiωi/4], revealed that at transition the
drops accumulate mostly in regions where IIu � 0, then in regions where IIu < 0 and
in the smallest number at locations where IIu > 0.

The gas phase temperature, displayed at transition for the TP600a2 and TP600a5
cases in figures 5(a) and 5(b), exhibits a lower stream where T has decreased from
its initial value due to heat transfer to the drops and is close to Td,0 (or 〈〈Td〉〉,
see figure 3f ), whereas the upper stream is still at TC,0. The mixing region is very
inhomogeneous and is mostly composed of gas at an intermediate temperature of
about 360 K, with some colder gas within the layer and warmer layer gas found
only adjacent to the warmer stream. The temperature range of TP600a5 (figure 5b)
is slightly reduced compared to TP600a2 (figure 5a), and more of the colder gas
has penetrated into the mixing region, consistent with the higher ML0. The lowest T

regions correspond to locations of reduced pressure below the ultimate vortex, and
therefore have a lower density than the adjacent lower-stream gas. The YV contour
plots displayed in figures 5(c) and 5(d) aid in the understanding of the ML0-related
behaviour of δP (figure 3b). Despite the much larger ML0, the TP600a5 maximum
YV (about 0.10) is not substantially greater than that of TP600a2 (about 0.09). The
gas within the vortex is an inhomogeneous mixture, with the largest YV occurring
either in the lower stream or at the periphery of the regions of high ρn, as shown
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Figure 5. (a, b) Temperature (K) and (c, d) vapour mass fraction for (a, c) TP600a2 at
t∗ = 105 and (b, d) TP600a5 at t∗ = 105, in the between-the-braid plane.
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in figures 4(c) and 4(d). The highest YV regions can be correlated with those of the
high ρn which occur at isolated locations within the layer. The explanation for this
observation is that, although the entire layer is not saturated, by transition, the lower
stream is close to the saturation YV of about 0.09. Therefore, continuing release of
vapour can occur only within the mixing region, but of course only where the drops
reside.
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j = 1 j = 2 j = 3

jVj (r.m.s.) 1.4196 × 10−2 1.5865 × 10−2 1.6586 × 10−2

jVj (YV ) (r.m.s.) 1.4001 × 10−2 1.5718 × 10−2 1.6478 × 10−2

jVj (p) (r.m.s.) 3.0602 × 10−3 2.9603 × 10−3 2.8889 × 10−3

jVj (YV )/jVj (LS) 0.9631 0.9733 0.9784
jVj (p)/jVj (LS) 0.0369 0.0267 0.0216

r.m.s. = root-mean-square, LS = least-squares fit slope

Table 2. Vapour mass flux (kgm−2 s−1), TP600a5, t∗ = 105.

j = 1 j = 2 j = 3

qj (r.m.s.) 8.3640 × 103 9.3573 × 103 9.7093 × 103

−λ
∂T

∂xj

(r.m.s.) 4.4579 × 103 4.9651 × 103 5.1896 × 103

(hV − hC)jVj (r.m.s.) 1.2303 × 104 1.3750 × 104 1.4381 × 104

−λ
∂T

∂xj

/qj (LS) −0.4398 −0.4388 −0.4541

(hV − hC)jVj /qj (LS) 1.4398 1.4388 1.4541

r.m.s. = root-mean-square, LS = least-squares fit slope

Table 3. Heat flux (Jm−2 s−1), TP600a5, t∗ = 105.

3.3. Species-mass and heat flux budgets

The presence of both T and YV gradients in TP flows with evaporating drops directs
attention to the form of the vapour mass flux (2.13) and of the heat flux (2.15). For
ease of analysis, each flux is split into two terms

jVj = jVj (YV ) + jVj (p), qj = qj (T ) + qj (h), (3.3)

jVj (YV ) = −ρD
∂YV

∂xj

, jVj (p) = −YCYV

(
YV +

YCmV

mC

)[
mC

mV

− 1

]
ρD

p

∂p

∂xj

, (3.4)

qj (T ) = −λ
∂T

∂xj

, qj (h) = (hV − hC)jVj . (3.5)

To evaluate the importance of terms jVj (p) and qj (h) with respect to jVj (YV )
and qj (T ), respectively, the DNS database of the TP cases was analysed at their
transitional state; the results for TP600a5 are given in table 2 for jVj and in table 3
for qj . Comparisons of two quantities defined at all grid points, X(x1, x2, x3) and
Y(x1, x2, x3), are carried out using a least-squares (LS) fit of Y = bX which leads to
the slope

b =
〈〈XY〉〉
〈〈XX〉〉 (3.6)

and the correlation

R(X, Y) =
〈〈XY〉〉 − 〈〈X〉〉〈〈Y〉〉√

(〈〈X2〉〉 − 〈〈X〉〉2)
√

(〈〈Y2〉〉 − 〈〈Y〉〉2)
, (3.7)

where R2 is the fraction of the variation in Y due to the variation of X (Ayyub &
McCuen 1997). From the LS slope comparison of jVj (p) and jVj (YV ) with jVj , it is
obvious that the jVj (p) contribution is negligible and that more than 96% is due to
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jVj (YV ) . Clearly, in all directions, the root-mean-square (r.m.s.) magnitude of jVj is
close to that of jVj (YV ) and the jVj (p) r.m.s. is about one-fifth of that of jVj (YV ).
Therefore, it seems legitimate to neglect the pressure contribution in jVj . In contrast,
the dominant contribution to qj comes from qj (h), whose LS slope is three times the
magnitude of qj (T ) and, moreover, is of different sign, indicating that the enthalpy
term should be included in the energy equation. Neglecting qj (h) would lead to the
heat transfer vector having an opposite orientation. Also, the r.m.s. of qj (h) is larger
than that of qj (T ), reinforcing the conclusion that qj (h) must be included in qj .

4. Derivation of gas-phase LES equations
Following the SP protocol, the LES equations are here derived by spatially filtering

the gas-phase DNS equations described in § 2.1, resulting in various unclosed terms
that cannot be computed from the filtered flow field. Next, certain simplifying
assumptions are assessed that could reduce the complexity of the original LES
equations. Finally, the budget of the LES equations is computed to determine if the
LES equations can be further simplified by neglecting certain terms. This process
identifies those unclosed terms that will require explicit modelling.

The LES uses a mathematical description similar to that of DNS, i.e. Eulerian for
the gas phase and Lagrangian for the liquid phase. Drops tracked in the LES will
follow the DNS evolution equations presented in § 2.2; however, the LES may use
computational drops (defined in § 6.2) rather than physical drops.

4.1. Filtered gas-phase DNS equations

The filtering operation is defined as:

ψ̄(x) =

∫
Vf

ψ( y)G(x − y) d y, (4.1)

where Vf is the filtering volume and G is the filter function, with the property that
if ψ is spatially uniform, then ψ̄ = ψ . For finite-difference computations, the filter of
choice is a top-hat filter, which is adopted here; then ψ̄ is simply the volume-average.
The Favre (density-weighted) filtering is defined as ψ̃ = ρψ/ρ̄. It is also assumed
that filtering and differentiation commute, which is correct except near boundaries
(because the size of the filtering volume decreases as the boundary is approached).
The filtered gas-phase equations are

∂ρ̄

∂t
+

∂(ρ̄ũj )

∂xj

= S̄I , (4.2)

∂(ρ̄ũi)

∂t
+

∂(ρuiuj )

∂xj

= − ∂p̄

∂xi

+
∂σ̄ij

∂xj

+ S̄II,i , (4.3)

∂(ρ̄ẽt )

∂t
+

∂(ρetuj )

∂xj

= −∂(puj )

∂xj

− ∂q̄j

∂xj

+
∂(σijui)

∂xj

+ S̄III, (4.4)

∂(ρ̄Ỹ V )

∂t
+

∂(ρYV uj )

∂xj

= −∂jVj

∂xj

+ S̄I . (4.5)

From (4.1), the FSTs (S̄ = {S̄I , S̄II,i , S̄III}) are properly interpreted by considering a
drop located at X within the filtering volume Vf and its contribution within that
volume

S̄(x) =

∫
Vf

Sdδ( y − X)G(x − y) d y, (4.6)
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where Sdδ( y − X) is the point-source contribution from the drop and δ is the delta
function. When G is a top-hat filter, the FST is

S̄(ψf , Z) =
1

Vf

∑
β

[Sd(ψf , Z)]β, (4.7)

a volume-average over the drops β within the filtering volume, where Sd was defined
in (2.27). (Note that S̄ is not obtained by filtering the DNS S obtained through (2.31),
because S depends on the grid spacing whereas S̄ should depend only on the filter
width.)

Using the adopted notation of denoting the DNS flow field as φ, the filtered flow
field can now be denoted as φ̄ and we can formally define a function f (φ̄) that has
the same functional form as in the DNS but is in general different from its filtered
counterpart f (φ). For example, ẽ = ρe(φ)/ρ̄ = ẽt − ũiui/2, whereas e(φ̄) = ẽt − ũi ũi/2.
Moreover, we define SGS fluxes through

τij = ũiuj − ũi ũj , ζj = h̃uj − h̃ũj , ηj = ỸV uj − Ỹ V ũj , (4.8)

where h̃ = ẽ + p̄/ρ̄. With these notations, the filtered equations become

∂ρ̄

∂t
+

∂(ρ̄ũj )

∂xj

= S̄I , (4.9)

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũi ũj )

∂xj

= −∂[p(φ̄)]

∂xi

+
∂σij (φ̄)

∂xj

+ S̄II,i − ∂(ρ̄τij )

∂xj

− ∂

∂xi

[p̄ − p(φ̄)] +
∂

∂xj

[σ̄ij − σij (φ̄)], (4.10)

∂(ρ̄ẽt )

∂t
+

∂(ρ̄ẽt ũj )

∂xj

= −∂[p(φ̄)ũj ]

∂xj

− ∂qj (φ̄)

∂xj

+
∂[σij (φ̄)ũi]

∂xj

+ S̄III − ∂(ρ̄ζj )

∂xj

− ∂

∂xj

[
1
2
(ρuiuiuj − ρuiuiũj )

]
− ∂

∂xj

{[p̄ − p(φ̄)]ũj }

− ∂

∂xj

[q̄j − qj (φ̄)] +
∂

∂xj

[σijui − σij (φ̄)ũi], (4.11)

∂(ρ̄Ỹ V )

∂t
+

∂(ρ̄Ỹ V ũj )

∂xj

= −∂jVj (φ̄)

∂xj

+ S̄I − ∂(ρ̄ηj )

∂xj

− ∂

∂xj

[jVj − jVj (φ̄)]. (4.12)

Equations (4.9)–(4.12) for φ̄ contain terms that cannot be computed directly from φ̄

and that therefore must be modelled, namely, (i) the SGS fluxes (τij , ζj , ηj ), (ii) the
FSTs (S̄I , S̄II,i , S̄III), (iii) the velocity triple correlation (ρuiuiuj − ρuiuiũj ) and (iv) the

difference terms (p̄ − p(φ̄), σ̄ij − σij (φ̄), q̄j − qj (φ̄), σijui − σij (φ̄)ũi , jVj − jVj (φ̄)).

4.2. LES assumptions

To reduce the modelling requirements, the f (φ) = f (φ̄) assumption is evaluated
a priori : for the thermodynamic quantities,

ẽ = e(φ̄), T = T (φ̄), T̃ = T (φ̄), p̄ = p(φ̄), h̃ = h(φ̄); (4.13)

for the viscous stresses and the velocity–viscous stress correlation,

σij = σij (φ̄), uiσij = ũiσij (φ̄); (4.14)

and for the heat and mass fluxes,

jVj = jVj (φ̄), q̄j = qj (φ̄). (4.15)
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Fluxes Slopes

Exact Model SP500 TP500a2 TP500a5 SP600 TP600a2 TP600a5
J̄ V 1 JV 1(φ̄) – 0.9872 0.9804 – 0.9905 0.9847
J̄ V 2 JV 2(φ̄) – 0.9853 0.9826 – 0.9892 0.9850
J̄ V 3 JV 3(φ̄) – 0.9888 0.9840 – 0.9917 0.9860
q̄1 q1(φ̄) 1.0293 0.9989 0.9962 1.0381 1.0008 0.9982
q̄2 q2(φ̄) 1.1235 0.9987 0.9965 1.0820 1.0004 0.9974
q̄3 q3(φ̄) 1.1077 1.0031 1.0003 1.0816 1.0046 1.0013

Slope=
Model

Exact
from least squares fit

Table 4. LES assumptions for heat and mass fluxes at transitional times, �̄= 8�x.

For the velocity triple correlation, we assume (see Okong’o, Knight & Zhou 2000)

1
2
(ρuiuiuj − ρuiuiũj ) = ρτij ũi . (4.16)

The evaluation of the LES assumptions displayed in (4.13)–(4.16) was performed
on the filtered DNS databases at the transitional t∗. For the cubic top-hat filter used
here, the filtering volume has sides of length �̄. The present results use �̄= 4�x and
�̄= 8�x, where �x = max(�x1, �x2, �x3) (the grid spacing in the three coordinate
directions is approximately equal; see table 1). For each of (4.13)–(4.16), the model
(right-hand side of the equations) is linearly correlated to the exact quantity (left-
hand side) using a least-squares fit. If the assumptions were exactly correct, both
the slope and the correlation (computed from (3.6) and (3.7)) of the model to the
exact quantity would be unity. Calculations on all databases yielded slopes of 1.003
to 1.010 and correlations of 0.9931 to 1.000 for (4.13), and slopes of 0.9997 to 1.0005
and correlations of 0.9948 to 1.000 for the viscous stresses (σ̄ij = σij (φ̄)). The velocity–
stress correlation (uiσij = ũiσij (φ̄)), the mass and heat fluxes (4.15), and the velocity
triple correlation (4.16) had slopes and correlations almost as close to unity, ranging
from 0.985 to 1.124 and 0.945 to 0.999, respectively. Correlations and slopes generally
had a larger deviation from unity at the larger filter width. Table 4, for �̄= 8�x,
shows that the assumption for the heat flux (that q̄j = qj (φ)) appears to hold even
better for the TP than for the SP cases; this tendency was less evident for �̄= 4�x.

Therefore, the examination of the LES assumptions (4.13)–(4.16) shows that they
are justified, and that the appropriate simplifications could be made in (4.10)–(4.12).
However, (4.10)–(4.12) contain derivatives of the quantities whose near equality was
evaluated, and these derivatives are more sensitive to modelling errors than the
undifferentiated quantities, prompting us to further consider the budgets of these
equations.

4.3. Budgets of the filtered equations

The budgets of (4.10)–(4.12) are displayed in tables 5–9. Results are listed in the
tables for the filtered flow fields of the Re0 = 600 cases at the transitional t∗ indicated,
with �̄= 4�x and �̄= 8�x (results for Re0 = 500 were analysed but are not shown).
All computations are performed using all grid points, i.e. on the DNS (fine) grid, and
therefore do not include the discretization error incurred when the differentiations
are performed on a presumably coarser LES grid. Although the flow evolution will
not be the same in the LES as in the DNS, it seems reasonable to suppose that the
unclosed terms of larger magnitude would need to be modelled more accurately. The
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�̄ = 4�x �̄ = 8�x

x1 Momentum SP600 TP600a2 TP600a5 SP600 TP600a2 TP600a5

t∗ 100 105 105 100 105 105
∂

∂xj

(ρ̄ũ1ũj ) 3.0189 × 105 3.5057 × 105 3.7229 × 105 2.3156 × 105 2.5084 × 105 2.5697 × 105

∂

∂x1

[p(φ̄)] 1.8383 × 105 2.0398 × 105 2.0457 × 105 1.6600 × 105 1.6780 × 105 1.6006 × 105

∂

∂xj

[σ1j (φ̄)] 9.6983 × 103 1.1822 × 104 1.2642 × 104 4.8083 × 103 5.6936 × 103 6.1080 × 103

S̄II,1 0 1.0295 × 104 2.7318 × 104 0 7.6582 × 103 2.0126 × 104

∂

∂xj

(ρ̄τ1j ) 3.1105 × 104 4.8058 × 104 5.1557 × 104 3.8166 × 104 5.5275 × 104 5.9256 × 104

∂

∂x1

[�(p̄)] 1.4540 × 104 2.0341 × 104 2.2002 × 104 1.5676 × 104 1.9969 × 104 2.1764 × 104

∂

∂xj

[�(σ̄1j )] 7.8458 × 101 2.6273 × 102 2.9290 × 102 2.4730 × 102 2.8344 × 102 3.9732 × 102

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 5. Magnitude (r.m.s.) of terms in LES equations at transitional times. Units are N m−3.

�̄ = 4�x �̄ = 8�x

x2 Momentum SP600 TP600a2 TP600a5 SP600 TP600a2 TP600a5

t∗ 100 105 105 100 105 105
∂

∂xj

(ρ̄ũ2ũj ) 3.3349 × 105 4.1267 × 105 4.4661 × 105 2.3643 × 105 2.7925 × 105 3.0365 × 105

∂

∂x2

[p(φ̄)] 1.3690 × 105 1.8192 × 105 1.8367 × 105 1.1166 × 105 1.3544 × 105 1.3193 × 105

∂

∂xj

[σ2j (φ̄)] 8.5216 × 103 1.0611 × 104 1.1105 × 104 4.7701 × 103 5.2538 × 103 5.5265 × 103

S̄II,2 0 6.9249 × 103 2.0353 × 104 0 4.8362 × 103 1.4361 × 104

∂

∂xj

(ρ̄τ2j ) 3.0800 × 104 4.8879 × 104 5.2282 × 104 3.7772 × 104 5.6863 × 104 5.9078 × 104

∂

∂x2

[�(p̄)] 1.7619 × 104 2.3147 × 104 2.5343 × 104 1.9173 × 104 2.3912 × 104 2.5836 × 104

∂

∂xj

[�(σ̄2j )] 6.5071 × 102 4.4696 × 102 5.4342 × 102 2.3905 × 103 1.4599 × 103 1.8523 × 103

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 6. Magnitude (r.m.s.) of terms in LES equations at transitional times. Units are N m−3.

studied flow fields are relevant for LES since a significant portion of the domain
turbulent kinetic energy (TKE) resides in the SGS, ranging from 7% to 29% for the
six cases in the database. For each case, the portion of the domain TKE in the SGS
is about twice as large at �̄= 8�x than at �̄= 4�x. At a given �̄, the TKE portion
residing in the SGS is smaller at the larger Re0 and tends to increase with increasing
ML0.

For all equations, terms can be grouped as largest, intermediate and smallest, with
the relative magnitude of terms possibly varying within each group depending on
Re0, ML0 and �̄. For the momentum equations (tables 5–7), the largest contributions
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�̄ = 4�x �̄ = 8�x

x3 Momentum SP600 TP600a2 TP600a5 SP600 TP600a2 TP600a5

t∗ 100 105 105 100 105 105
∂

∂xj

(ρ̄ũ3ũj ) 3.1457 × 105 4.0645 × 105 4.3790 × 105 1.9954 × 105 2.5747 × 105 2.8035 × 105

∂

∂x3

[p(φ̄)] 1.0530 × 105 1.5672 × 105 1.7119 × 105 7.0193 × 104 1.0147 × 105 1.1331 × 105

∂

∂xj

[σ3j (φ̄)] 7.5605 × 103 9.2435 × 103 9.9855 × 103 3.6196 × 103 4.3543 × 103 4.6140 × 103

S̄II,3 0 5.5845 × 103 1.7995 × 104 0 3.5326 × 103 1.2056 × 104

∂

∂xj

(ρ̄τ3j ) 3.1263 × 104 4.8471 × 104 5.3294 × 104 3.8569 × 104 5.6031 × 104 6.0466 × 104

∂

∂x3

[�(p̄)] 1.8425 × 104 2.4512 × 104 2.6172 × 104 2.0470 × 104 2.5489 × 104 2.7479 × 104

∂

∂xj

[�(σ̄3j )] 1.2952 × 103 7.9873 × 102 1.0111 × 103 4.7803 × 103 2.9092 × 103 3.6961 × 103

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 7. Magnitude (r.m.s.) of terms in LES equations at transitional times. Units are N m−3.

�̄ = 4�x �̄ = 8�x

Energy SP600 TP600a2 TP600a5 SP600 TP600a2 TP600a5

t∗ 100 105 105 100 105 105
∂

∂xj

(ρ̄ẽt ũj ) 4.4946 × 107 2.2398 × 108 2.7730 × 108 7.2909 × 107 1.5981 × 108 1.9684 × 108

∂

∂xj

[p(φ̄)ũj ] 1.5226 × 107 1.7014 × 107 1.9872 × 107 2.7532 × 107 1.8993 × 107 2.3562 × 107

∂

∂xj

[qj (φ̄)] 1.4881 × 106 5.6522 × 106 7.0844 × 106 7.6108 × 105 2.6557 × 106 3.3632 × 106

∂

∂xj

[σij (φ̄)ũi] 1.0697 × 106 1.2488 × 106 1.3455 × 106 5.0522 × 105 5.7846 × 105 6.2543 × 105

S̄III 0 1.5530 × 107 2.5564 × 107 0 1.1828 × 107 1.9780 × 107

∂

∂xj

(ρ̄ζj ) 2.1851 × 106 1.1215 × 107 1.4102 × 107 2.3336 × 106 1.2167 × 107 1.5300 × 107

∂

∂xj

(Triple) 6.6728 × 106 9.8611 × 106 1.0852 × 107 7.7174 × 106 1.0727 × 107 1.1718 × 107

∂

∂xj

{�(p̄)ũj } 1.5788 × 106 2.0174 × 106 2.3056 × 106 1.6621 × 106 1.9663 × 106 2.2620 × 106

∂

∂xj

[�(q̄j )] 6.2555 × 105 4.5018 × 105 3.9000 × 105 4.6745 × 105 4.3517 × 105 3.6218 × 105

∂

∂xj

[�(σijui)] 2.1616 × 105 3.1954 × 105 3.4383 × 105 1.5634 × 105 2.1156 × 105 2.3148 × 105

Triple= ρekuj − ρekũj ; �(f̄ ) ≡ f (φ) − f (φ̄)

Table 8. Magnitude (r.m.s.) of terms in LES equations at transitional times. Units are Jm−3.

are due to the inviscid resolved terms, followed by the SGS stress term. The smallest
term (second smallest if S̄II,i = 0) is that containing the viscous stress differences.
Intermediate between the largest and smallest terms are the pressure difference term,
the viscous stress term and the FST (if non-zero). For the energy equation (table 8),
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�̄ = 4�x �̄ = 8�x

Species TP600a2 TP600a5 TP600a2 TP600a5

t∗ 105 105 105 105
∂

∂xj

(ρ̄Ỹ V ũj ) 1.9214 × 102 2.4156 × 102 1.3079 × 102 1.6469 × 102

∂

∂xj

[jVj (φ̄)] 1.0125 × 101 1.1959 × 101 4.6568 × 100 5.5968 × 100

S̄I 1.7522 × 101 2.9237 × 101 1.3301 × 101 2.2693 × 101

∂

∂xj

(ρ̄ηj ) 2.1016 × 101 2.4744 × 101 2.2555 × 101 2.6707 × 101

∂

∂xj

[�(jVj )] 5.9755 × 10−1 7.7168 × 10−1 6.0994 × 10−1 5.4061 × 10−1

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 9. Magnitude (r.m.s.) of terms in LES equations at transitional times.
Units are kg s−1 m−3.

the largest term is the resolved inviscid term containing the total energy. The smallest
terms are the viscous flux term, the heat flux difference term and the viscous flux
difference term. The intermediate terms can be divided into two groups, the group
of the larger terms comprising the resolved inviscid term containing the pressure, the
FST (unless it is null), the triple correlation term and the SGS enthalpy flux term,
while the group with the smaller terms consists of the heat flux term and the pressure
difference term. For the species equation (table 9; YV is null for the SP cases), the
largest contributions are due to the inviscid resolved terms. The intermediate terms
are the SGS species flux term and the FST; the smallest term is the mass flux
difference term. Although there is no definite pattern, the general conclusion is that
the ordering of the terms displays dependence on �̄/�x across ML0 and Re0 values.

In tables 5–9, the assumptions of (4.13)–(4.15) generally lead to the smallest
magnitude terms, decisively justifying their neglect. The momentum and species mass
source terms are of the same order of magnitude as the resolved viscous stresses and
species mass fluxes, respectively, and the energy source term is of the order of the triple
correlations, showing that the FSTs are of importance in the LES equations; however,
the FSTs are somewhat smaller than the SGS terms in the momentum equation, but
of same magnitude as the SGS terms in the energy and species equations. For all the
equations, the SGS term tends to be an order of magnitude smaller than the largest,
inviscid resolved, term. Thus, from the analysis of the magnitude of various terms,
it appears that a successful LES will probably depend mainly on proper resolution
of the filtered flow field, then on good models for the SGS fluxes and finally, for TP
flows, on the modelling of FSTs. Obviously, to capture the interaction between the
drops and the carrier gas, the FSTs are needed, and judging from their magnitude,
they should be modelled with care similar to the SGS quantities in the species and
energy equations.

4.4. Simplified LES equations

Upon incorporating the assumptions of (4.13)–(4.16), which have been validated in
§ 4.2 and § 4.3, a simpler form of (4.9)–(4.12) is obtained:

∂ρ̄

∂t
+

∂(ρ̄ũj )

∂xj

= S̄I , (4.17)
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∂(ρ̄ũi)

∂t
+

∂(ρ̄ũi ũj )

∂xj

= −∂[p(φ̄)]

∂xi

+
∂σij (φ̄)

∂xj

+ S̄II,i − ∂(ρ̄τij )

∂xj

, (4.18)

∂(ρ̄ẽt )

∂t
+

∂(ρ̄ẽt ũj )

∂xj

= −∂[p(φ̄)ũj ]

∂xj

− ∂qj (φ̄)

∂xj

+
∂[σij (φ̄)ũi]

∂xj

+ S̄III

− ∂(ρ̄ζj )

∂xj

− ∂

∂xj

(ρτij ũi), (4.19)

∂(ρ̄Ỹ V )

∂t
+

∂(ρ̄Ỹ V ũj )

∂xj

= −∂jVj (φ̄)

∂xj

+ S̄I − ∂(ρ̄ηj )

∂xj

. (4.20)

(Implicit in (4.17)–(4.20) is the replacement of f (φ) by f (φ̄).) Equations (4.17)–(4.20)
for φ̄ contain terms that cannot be computed directly from φ̄ and that therefore must
be modelled, namely, (i) the FSTs (S̄I , S̄II,i , S̄III) and (ii) the SGS fluxes (τij , ζj , ηj ).
The a priori modelling of these terms will be undertaken in § 6–7.

5. Irreversible entropy production for two-phase flows
A parallel evaluation of the relative importance of source terms entering the physics

of the situation is here obtained by deriving the irreversible entropy production
expression for TP flows and analysing its budget. The irreversible entropy production
is the dissipation, which is of crucial importance in determining the characteristics
of turbulent flows because it contains, in particular, the viscous dissipation which
measures the loss of mechanical energy to heat and the scalar dissipation which
manifests in the mixing.

5.1. Derivation of entropy equation for two-phase flow with phase change

According to Hirshfelder, Curtis & Bird (1954), the entropy equation is

∂(ρs)

∂t
+

∂(ρsuj )

∂xj

= −∂Σj

∂xj

+ g, (5.1)

where s is the entropy, Σj represents the flux of reversible entropy and g is the rate
of irreversible entropy production. In terms of the substantial derivative,

ρ
Ds

Dt
= −∂Σj

∂xj

+ g − sSI . (5.2)

From thermodynamics

T
Ds

Dt
=

De

Dt
+ p

D(1/ρ)

Dt
− µC

DYC

Dt
− µV

DYV

Dt
, (5.3)

where µC and µV are the chemical potentials of the carrier gas and vapour, respec-
tively; µV = hV − T sV where sV is the entropy of the pure vapour. Mathematical
manipulations of (5.3) in conjunction with the conservation equations (2.1)–(2.4) and
comparing with (5.2) leads to:

Σj =
1

T

(
qj − ρYCNA

mC

VCjµC − ρYV NA

mV

VVjµV

)
, (5.4)

where NA is the Avogadro number,

g =
1

T

[
SIII − uiSII,i +

(
1
2
uiui − µV

)
SI

]
+

σij

T

∂ui

∂xj

− qj

T 2

∂T

∂xj

− jCj

∂

∂xj

(µC

T

)
− jVj

∂

∂xj

(µV

T

)
. (5.5)
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For an ideal binary mixture of perfect gases (Hirshfelder et al. 1954)

∂

∂xj

(µV

T

)
= −hV

T 2

∂T

∂xj

+
Ru

mV

1

p

∂p

∂xj

− Ru

mV

1

YV

1

mC

(
YV

mV

+
YC

mC

) ∂YC

∂xj

. (5.6)

Further manipulations yield the final form of the dissipation as

g = gIII + gII + gI,kine + gI,chpot + gvisc + gtemp + gmass, (5.7)

gIII =
SIII

T
, gII = −uiSII,i

T
, gI,kine =

uiuiSI /2

T
, gI,chpot = −µV SI

T
, (5.8)

gvisc =
µ

T

(
2SijSij − 2

3
SkkSll

)
=

2µ

T

(
Sij − 1

3
Skkδij

)(
Sij − 1

3
Sllδij

)
,

gtemp =
λ

T 2

∂T

∂xj

∂T

∂xj

, gmass =
RCRV

YCYV (RV YV + RCYC)

jVj jVj

ρD
. (5.9)

The pure vapour entropy, sV , is calculated for a perfect gas as

sV =

∫
Cp,V (T )

dT

T
−

∫
RV

dp

p
, (5.10)

given a functional form for Cp,V (T ), where it is required that sV be null at 0 K (in
practice the integration is carried out from 1 K owing to the logarithmic singularity
at T = 0). Since here Cp,V is constant,

sV = s0
V + Cp,V ln(T/T 0) − RV ln(p/p0), (5.11)

where s0
V is the reference entropy at the reference temperature T 0 and pressure p0,

obtained from integration or tables, and Cp,V = Cp,V (T 0).
Inspection of (5.7) shows that the gas-phase dissipation has several origins. First,

the drops are energy, momentum and mass sources with the resulting dissipation
embodied in gIII, gII, gI,kine and gI,chpot. Note that gI,kine and gI,chpot are entirely due to
evaporation, with gI,kine due to the gas-phase kinetic energy of the mass evolving from
the drops, whereas gI,chpot is due to its chemical potential. Similar effects are contained
in gIII and gII, but these terms additionally have non-evaporation contributions from
the drag on and the heating of the drops. The terms gvisc, gtemp and gmass contain the
flux-related dissipation and are positive semi-definite.

5.2. Irreversible entropy production at transitional states

Before undertaking a detailed analysis of the budget of g (5.7), we present contour
plots of g for TP600a2 (figure 6a) and TP600a5 (figure 6b) at the transitional times.
As in the flow visualizations of figures 4 and 5, both cases show a qualitatively similar
aspect; however, the range of TP600a5 dissipation values is more than twice that of
TP600a2. Both layers show significant regions of negative dissipation (darkest blue
regions), mainly in the lower stream, but also in small pockets within the mixing
region, although the magnitude of the negative dissipation is less than 10% that of
the positive dissipation. Since negative dissipation can arise only from the source-term
contributions, this indicates that, at those locations, turbulence increases owing to the
presence of the drops. The regions of most intense dissipation are found within the
mixing region, and correspond to the high ρn regions (see figures 4c and 4d). From
the budget of g, discussed below, it is apparent that this visual correlation between g

and ρn is due to the g being dominated by the source terms.
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Filtered Difference (SGS) Filtered Difference (SGS)
Unfiltered �̄ = 4�x �̄ = 4�x �̄ = 8�x �̄ = 8�x

Term Average r.m.s. Average r.m.s. Average r.m.s. Average r.m.s. Average r.m.s.

gvisc 1640 3914 848 1720 791 2474 436 814 1204 3338
gtemp 13 36 6 13 7 27 3 5 10 33
g 1652 3932 854 1726 798 2484 439 817 1214 3352

Table 10. Entropy production of unfiltered and filtered flow fields, SP600 at t∗ = 100.
Units are Wm−3 K−1.

Filtered Difference (SGS) Filtered Difference (SGS)
Unfiltered �̄ = 4�x �̄ = 4�x �̄ = 8�x �̄ = 8�x

Term Average r.m.s. Average r.m.s. Average r.m.s. Average r.m.s. Average r.m.s.

gIII 13 819 40 010 15 498 49 319 −1680 14 180 17 813 43 664 −3995 19 840
gI,chpot −8014 24 935 −9012 30 571 998 8590 −10 312 26 710 2298 12 165
gvisc 2658 6372 1264 2526 1394 4319 615 1136 2043 5599
gII −89 2405 −237 2752 148 1030 −398 2559 310 1643
gmass 222 1302 109 361 113 1144 58 172 164 1243
gtemp 122 401 49 128 73 308 23 52 99 372
gI,kine 57 266 63 306 −6 86 72 251 −14 136
g 8775 19 177 7735 20 205 1040 6810 7869 17 507 905 9162

Table 11. Entropy production of unfiltered and filtered flow fields, TP600a2 at t∗ = 105.
Units are Wm−3 K−1.

Filtered Difference (SGS) Filtered Difference (SGS)
Unfiltered �̄ = 4�x �̄ = 4�x �̄ = 8�x �̄ = 8�x

Term Average r.m.s. Average r.m.s. Average r.m.s. Average r.m.s. Average r.m.s.

gIII 24 522 66 844 29 037 84 838 −4516 28 197 35 231 80 025 −10 710 40 498
gI,chpot −13 768 42 435 −16 317 52 692 2549 16 495 −19 642 48 420 5874 23 755
gvisc 3009 6979 1402 2729 1606 4771 679 1237 2330 6142
gII 58 7319 −466 8692 542 3348 −1070 8084 1128 5283
gmass 270 1189 139 474 131 883 76 233 194 1074
gtemp 136 438 57 156 78 323 28 68 108 399
gI,kine 114 523 133 603 −19 187 158 518 −43 293
g 14 341 29 760 13 986 34 316 355 11 529 15 459 32 093 −1119 16 097

Table 12. Entropy production of unfiltered and filtered flow fields, TP600a5 at t∗ = 105.
Units are Wm−3 K−1.

The strategy of the dissipation analysis is to first compare results obtained for SP600
and TP600a2 which should reveal the role of the drops, then scrutinize results from
TP600a2 and TP600a5 which should elucidate the role of ML0 and finally consider
this information together with results from TP500a2 and TP500a5 to elucidate the
influence of Re0. The data are compared from the perspective of the volume average
and r.m.s. budget of (5.7). The information is presented in table 10 for SP600, table 11
for TP600a2, table 12 for TP600a5 and table 13 to compare all four TP cases given
in table 1 (some information is repeated from tables 11 and 12 for easier visual
comparison). The terms in tables 11–13 are arranged according to decreasing r.m.s.
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Average entropy production RMS entropy production

Term TP500a2 TP500a5 TP600a2 TP600a5 TP500a2 TP500a5 TP600a2 TP600a5

gIII 14 730 26 765 13 819 24 522 41 990 74 878 40 010 66 844
gI,chpot −8512 −15 119 −8014 −13 768 26 037 47 339 24 935 42 435
gvisc 2966 3469 2658 3009 6878 8039 6372 6979
gII −138 303 −89 58 2581 7392 2405 7319
gmass 255 317 222 270 1194 1323 1302 1189
gtemp 143 153 122 136 453 512 401 438
gI,kine 67 128 57 114 300 536 266 523
g 9510 16 017 8775 14 341 20 343 34 440 19 177 29 760

Table 13. Entropy production of transitional flow fields at t∗ = 105. Units are Wm−3 K−1.

of TP500a2 for the DNS (unfiltered) flow field. All tables contain information at the
DNS scale and tables 10–12 contain also information at the LES and subgrid scales.
The filtered (LES scale) flow field is obtained by filtering the DNS flow field using
�̄ =4�x or �̄ =8�x (see § 4.2) and the SGS results are calculated by taking the
difference between the DNS-field and filtered-field value for each term.

5.2.1. Comparison of single-phase and two-phase flows, and ordering of DNS terms

For SP600 (table 10), g is positive, as expected, which means that its effect is
to diminish turbulence, and has only two components, gvisc and gtemp. Owing to the
compressible nature of the flow, gtemp is not null, however, it is much smaller than
gvisc owing to the very small temperature gradients.

For all TP flows (tables 11 and 12), g is positive in average and considerably larger
than its SP equivalent, showing that the global effect of the drops on the flow is to
increase dissipation and therefore to decrease turbulence. These results extend into the
realm of evaporating drops the information obtained from experimental results with
solid particles and no phase change by Hetsroni & Sokolov (1971), Popper, Abuaf
& Hetsroni (1974), Levy & Lockwood (1981), Modarress, Tan & Elgobashi (1984),
Fleckhaus, Hishida & Maeda (1987), Tsuji et al. (1988), Gore & Crowe (1989) and
Hardalupas, Taylor & Whitelaw (1989), which showed that particles smaller than the
Kolmogorov length will attenuate turbulence. Owing to the different nature of the
present flow fields compared with the solid particle cases, the origin of the leading
contributions to g is different. Specifically, for all TP cases, the largest term is gIII, due
to the energy contribution of the drops, and is positive on average. The DNS-field
average gIII term increases strongly, but less than proportionally with ML0 (1.8 for
both Re0 = 500 and Re0 = 600 versus 2.5 increase in ML0); at both ML0, this term
decreases slightly with increasing Re0. The dominance of gIII leads to g mimicking its
trends, i.e. being more sensitive to ML0 than to Re0 and decreasing with Re0 at both
ML0. Further, an examination of the DNS-field contributions to gIII reveals that the
(−ṁdhV,s) contribution is the largest followed by that of (−Q), then by (−Fivi), and
the remaining term with (−ṁdvivi/2) is the smallest.

The second largest term is gI,chpot, which is negative on average. Behaviour similar
to that of the average gIII is observed for the magnitude of the average gI,chpot, as well
as for the r.m.s. of both terms. Therefore the entropy production is overwhelmingly
of evaporative and thermodynamic, rather than dynamic, nature. Although, for the
flow fields considered, gIII dominates gI,chpot, there may be situations in which gI,chpot

will exceed gIII in magnitude and, since gI,chpot is negative, lead to evaporating drops
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enhancing turbulence at the DNS scale. Because gI,chpot is null for solid particles,
caution must be exercised in generalizing experimental results obtained with solid
particles to the different setting of evaporating drops.

The largest term not involving source terms is the viscous dissipation term gvisc,
which is third in order of importance and is about a factor of seven smaller than
the two largest terms. Following gvisc, the next largest term in magnitude is gII. On
the DNS field, the magnitude of the average gII is smaller than the average gvisc by a
factor of 30 (for TP600a2) to 50 (for TP600a5). The influence of ML0 is evident in the
r.m.s., which at the lower ML0 is larger for gvisc than for gII, while at the higher ML0

this ordering is reversed. Note that another DNS-field ML0 effect is that for TP600a2,
gII is negative on average, whereas for TP600a5, gII is positive on average. This gII

behaviour is understandable if we consider that gII ∼ [Fi + ṁdvi] in which on average
Fi > 0, whereas ṁdvi < 0. Then it is clear that gII > 0 if the drag dominates the mass-
change term as for TP600a5, whereas gII < 0 if the opposite situation exists as for
TP600a2. The second largest flux-related term, gmass , increases with ML0, indicating
that although the mass fraction range is comparable between TP600a2 and TP600a5
(see figure 5), its gradients are stronger for TP600a5. Finally, the two smallest terms
for all TP cases are gI,kine and gtemp , the latter being larger at the lower ML0, but
smaller at the higher ML0 for both Re0 in the DNS database.

5.2.2. Comparison of source-term dissipation at all scales

Both the filtered-field gIII and gI,chpot follow their DNS-field counterparts in being
positive and negative, respectively, on average. Notably, the SGS averages have the
opposite behaviour, that is, the average SGS gIII is negative and the average SGS
gI,chpot is positive, as a consequence of the filtered-field dissipation having larger
magnitude than that of the DNS. The dependence of gIII and gI,chpot on source terms
suggests that in LES the correct amount of (global) dissipation cannot be obtained
unless the (local) source terms are properly modelled. This conclusion is further borne
out by considering the Re0 and ML0 behaviour of g (see table 13). The DNS-field
average and r.m.s. trends in terms of ML0 and Re0 variation carry over to the LES
and subgrid scales for both gIII and gI,chpot (except the SGS at ML0 = 0.5, �̄= 4�x),
but, because of the opposing signs of gIII and gI,chpot, only to the LES scales for g.
At the subgrid scales, there is a decline, rather than an increase, in the average g

with increasing ML0 (independent of �̄/�x). Notably, for �̄= 8�x, the average g is
negative. Nonetheless, independent of �̄/�x, the SGS r.m.s. increases with ML0.

On the filtered field, the average gII has a sign opposite to that of the average gvisc.
Although the magnitude of the average gII is smaller than the average gvisc (except
for TP600a5 at �̄= 8�x), on the filtered fields the r.m.s. of gII is larger than that
of gvisc. For TP600a2 the 4�x-filtered-field average gII has the same sign as that
of the DNS but is about a factor of two larger in magnitude; for TP600a5, the
4�x-filtered-field average gII has the opposite sign and is eight times larger than the
DNS. The 8�x-filtered-field average gII has the same sign as the 4�x-filtered-field
average, but is about twice as large in magnitude independent of ML0.

5.2.3. Comparison of flux-related dissipation at all scales

For SP600, the dissipation at the LES scale is only about half (at �̄= 4�x) to a
quarter (at �̄= 8�x) of the DNS. For the SP calculation, the SGS terms increase
the dissipation on average; this augmentation is comparable in magnitude to the
4�x-filtered-field term but is much larger than the 8�x-filtered-field term. The SGS
r.m.s. has larger magnitude than the r.m.s. of the filtered-field terms, which is expected
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since the smaller scales are those responsible for the entropy fluctuations associated
with turbulence. For both TP600a2 and TP600a5, at all scales, the gvisc contribution is
considerably larger than for SP600, showing dissipation due to the drop effect on the
dynamic field in addition to the source-term dissipation. The contribution of the SGS
gvisc terms is larger than that at the LES scale both for the average and the r.m.s.,
thus showing a departure from the SP600 simulation where only the r.m.s. term was
larger. Similar to gvisc, the contribution of the SGS gmass and gtemp terms is larger than
that at the LES scale for both the average and r.m.s. (except for gmass at ML0 = 0.5,
�̄ =4�x). The larger gtemp for TP600a2 and TP600a5 compared to SP600 is mainly
due to the gradients arising from the temperature difference between the laden and
unladen streams (see figure 5).

5.2.4. Dissipation conclusions

Overall, the TP flow fields exhibit positive dissipation, and increased dissipation
compared to SP flows, meaning that the effect of the drops is to attenuate turbulence.
Although the dissipation due to the viscous stresses is significant, the bulk of the
dissipation is associated with the drop evaporation, whether for the DNS solution,
the filtered flow field or the small scales. The drop-related dissipation depends on the
source terms, which in turn depend on the local flow condition encountered by each
drop. Furthermore, this dissipation contains contributions, which may be negative
or positive, due to each category (mass, momentum, energy) of source term. The
global dissipation, an aggregate over the local contributions, was found not to be
readily parameterized through initial global characteristics of the flow field, namely
ML0 and Re0, for the few values of these parameters that were studied. Routine
detailed simulations of ML0 and Re0 effects is precluded by the high computational
requirements of DNS (see table 1) and motivates the development of a suitable
LES methodology with reduced computational demands. Such a methodology would
include careful modelling of local source terms, as it seems unlikely that the proper
amount of global dissipation could be achieved without capturing the local flow-drop
interactions.

6. Models for filtered source terms
In LES of TP flow with evaporating drops, the effect of the drops on the gas

phase occurs through the filtered source terms (FSTs), S̄. Two modelling issues arise
in computing S̄. First, in calculating S̄ through (4.7), the source effect of each drop
(Sd) depends on both the drop state (Z) and the unfiltered variables at the drop far
field (ψf ). However, in LES, ψf is not available and must be modelled from the
simulated flow field (φ̄). Secondly, to follow the LES spirit of reducing the resolution
requirements, the computational demands for the liquid phase can be diminished
by simulating a reduced drop field, here denoted Z̄, in which case S̄ must now be
modelled from Z̄. The proposed models for S̄ address the two issues just elaborated,
namely, the calculation of ψf from φ̄ and the reduction of the number of tracked
drops. Using the available DNS database, such models can be compared a priori
against the ‘exact’ FSTs, i.e. S̄(ψf , Z) calculated from the actual unfiltered flow field
and the full drop field. When analysing the DNS database, the issue of the reduced
drop field may be separated from that of unfiltered variable modelling by calculating
FST models using the actual unfiltered variables but with the reduced drop field, or
using the modelled unfiltered variables along with the full drop field. By considering
an ‘ideal’ unfiltered variable model that is the same as the actual unfiltered variables,
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and that would thereby accurately incorporate the gas-phase SGS effects, we can
designate all FST models according to the underlying unfiltered variable models,
which are described next.

6.1. Models of the unfiltered gas-phase variables at drop locations

A requirement to model the FSTs is the determination of the gas-phase quantities
to be used in computing the source term contribution of the individual drops. We
propose here to compute the drop source terms (Sd) using the DNS relations (see § 2.2),
which require the knowledge of the drop far field. In the DNS, the flow field (φ) is
computed at the grid points and the drop far field (ψf ) is computed at drop locations.

The DNS procedure to obtain ψf from φ can be conceptualized as ψ(φ)
I−→ ψf ,

where ψ(φ) denotes the functional dependence between primitive (ψ) and conservative
(φ) variables which is used to compute primitive variables at the grid points and I
denotes the interpolation process from grid points to drop locations. The LES requires
computing from the simulated flow field (φ̄) a model (subscript m) for the drop far
field, denoted ψf,m, which necessarily entails a reconstruction process R∗. Defining the

filtered gas-phase primitive variables as ψ̃ = {ũi , T̃ , Ỹ V , p̄}, then consistent with the
gas-phase equations (see § 4.1–4.2), ψ̃(φ̄) takes the same form as ψ(φ). Two possible

LES procedures for calculating ψf,m are: (i) ψ̃(φ̄)
R∗

−→ ψm

I−→ ψf,m and (ii) ψ̃(φ̄)
I−→

ψ̃f

R∗

−→ ψf,m. Higher accuracy is attained by computing gas-phase quantities at
the (fixed) grid points rather than at the (moving) drop locations, hence we adopt
procedure (i), in which the unfiltered variable models computed at the grid points are
denoted as ψm.

6.1.1. Description of unfiltered variable models

The ψm that we consider are those for which Okong’o & Bellan (2000) conducted
an a priori study, which, however, did not examine the FSTs resulting from these ψm.
All the models of Okong’o & Bellan (2000) are based on the filtered flow field ψ̃ , and
some models also use the SGS standard deviation, σSGS, where σ 2

SGS(ψ̃) = ψ̃2 − ψ̃2 (see
(7.1) and (7.2)). We will compare four ψm, denoted as:

(i) Ideal, which precisely replicates ψ , i.e. ψm = ψ . Although such a model cannot
be constructed in LES, in the a priori analysis it allows us to assess the best-case
scenario in which errors due to modelling the unfiltered flow field are eliminated.

(ii) Baseline, which uses the filtered field, i.e. ψm = ψ̃ . This model neglects SGS
effects on drop evolution.

(iii) Random, which uses a random function for ψm, specifically, a Gaussian with
mean ψ̃ and standard deviation σSGS. This model is based on the a priori analysis
of Okong’o & Bellan (2000), which showed this distribution to be applicable to the
gas-phase variables within the filtering volumes.

(iv) Deterministic, which uses the analytically derived model of Okong’o & Bellan
(2000) wherein

ψm = ψ̃ − σ sign(∇2ψ̃), (6.1)

with the filtered standard deviation σ =
√

σ 2 modelled as

σ 2 = (

√
ψ̃ψ −

√
ψ̃ψ̃)2 =

(√
σ 2

SGS + ψ̃ψ̃ −
√

ψ̃ψ̃
)2

. (6.2)

In LES, both σSGS and some components of ψ̃ (specifically, T̃ and p̄; see § 4.2)
must be modelled; however, we here use the actual ψ̃ and σSGS as calculated from
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�̄ = 4�x �̄ = 8�x

Model Baseline Random Deterministic Baseline Random Deterministic

u1,f 1.002 0.999 1.002 1.005 0.998 1.001
u2,f 1.020 0.967 0.998 1.041 0.913 0.992
u3,f 1.076 0.890 0.997 1.175 0.712 0.970
Tf 0.999 0.999 1.000 0.999 0.998 0.999
YV,f 1.006 1.003 1.002 1.014 1.008 1.007
pf 1.000 1.000 1.000 1.001 1.001 1.000

Table 14. Slopes from least-squares fit of exact to modelled quantities, slope= exact/model,
TP600a2 at t∗ = 105: unfiltered primitive variables interpolated to drop locations.

�̄ = 4�x �̄ = 8�x

Model Baseline Random Deterministic Baseline Random Deterministic

SI,d 0.949 0.847 0.991 0.863 0.729 0.926
SII,1,d 0.839 0.440 0.939 0.556 0.229 0.686
SII,2,d 0.843 0.355 0.929 0.498 0.156 0.624
SII,3,d 0.787 0.288 0.889 0.390 0.113 0.529
SIII,d 0.948 0.798 0.993 0.864 0.669 0.936

Table 15. Slopes from least-squares fit of exact to modelled quantities, slope= exact/model,
TP600a2 at t∗ = 105: drop source terms.

�̄ = 4�x �̄ = 8�x

Model Baseline Random Deterministic Baseline Random Deterministic

S̄I 0.879 0.855 0.974 0.752 0.726 0.861
S̄II,1 0.824 0.787 0.949 0.610 0.583 0.783
S̄II,2 0.866 0.814 0.965 0.619 0.585 0.810
S̄II,3 0.813 0.745 0.901 0.447 0.445 0.660
S̄III 0.872 0.844 0.981 0.738 0.711 0.871

Table 16. Slopes from least-squares fit of exact to modelled quantities, slope= exact/model,
TP600a2 at t∗ = 105: filtered source terms.

the DNS database in order to decouple the assessment of the reconstruction process
from the issue of modelling ψ̃ and σSGS. The modelling of σSGS is discussed in § 7.

The analysis here consists of using ψm to compute the drop far-field primitive
variables (ψf,m), the source term contribution of individual drops (Sd,m = Sd(ψf,m, Z))
and the FSTs (S̄m = S̄(ψf,m, Z)). For brevity, ψf,m, Sd,m and S̄m will be designated
according to ψm as ideal, baseline, random or deterministic models. The results from
the models will be compared to the ‘exact’ (i.e. DNS flow field) quantities (ψf , Sd

and S̄). Note that, because we are still considering the physical drop field, the ideal
model here leads to the exact ψf , Sd and S̄; therefore, only the other three models
will be assessed. We use the same method as in the DNS to interpolate the gas phase
variables to the drop locations and to calculate Sd . Both S̄m and S̄ are calculated
through (4.7), that is, at this juncture the exclusive difference between them is in the
use of ψm instead of ψ .
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6.1.2. Analysis of unfiltered variable models

Comparisons of two quantities defined at all grid points, X (the model) and Y (the
exact quantity), are performed using the LS fit of Y = bX which leads to the slope
and the correlation of (3.6) and (3.7). (For drop-based quantities, the averaging is
performed over the ensemble of all relevant drops.) The analysis is here performed
for TP600a2 at the transitional state and is based on the filtered flow fields obtained
at two different filter widths, �̄= 4�x and �̄ =8�x (see § 4.2). Slopes b, according
to (3.6), are tabulated in table 14 (for ψf ), table 15 (for Sd) and table 16 (for S̄). The
a priori analysis is restricted to a single simulation and uses TP600a2 because it has
stronger individual-drop evaporation (see § 3.1 and figure 3) and is thus expected to
lead to more robust models.

Displayed in table 14 is the assessment of the baseline, random and deterministic
ψm in their prediction of ψf . For all models, the largest discrepancy is in the modelling
of u3,f , with errors (measured according to the deviation from the optimum slope
of unity) of 8%, 11% and 0.3% for the baseline, random and deterministic ψm,
respectively, when �̄= 4�x. When �̄= 8�x, the corresponding errors are 17%, 29%
and 3%. Therefore, the deterministic ψf,m is much better than the baseline ψf,m, while
the random ψf,m is slightly worse than the baseline. Next, ψf and the three ψf,m

are used in (2.27) to calculate drop source terms (Sd or Sd,m); the slopes comparing
Sd to the model predictions are given in table 15. The largest discrepancy is in the
modelling of SII,3,d , with errors of 21%, 71% and 11% for the baseline, random
and deterministic models, respectively, for �̄= 4�x, and as much as 61%, 89% and
47% for �̄=8�x. The behaviour mimics that of table 14, where u3,f was the least
accurately modelled component of ψf . However, the modelling errors are much larger
in Sd,m than in ψf,m; the random model performs quite poorly while the deterministic
model performs best. All the slopes are less than unity, meaning that the source terms
will on average be overpredicted.

Finally, the FSTs (S̄), which are the quantities entering the LES equations, are
shown in table 16; these are computed by summing the (exact or modelled) drop
source terms of table 15 over all drops within each filtering volume. Similar to table 15,
the largest discrepancy is in the modelling of S̄II,3, with errors of 19%, 26% and 10%
for the baseline, random and deterministic models, respectively, when �̄= 4�x, and
as much as 52%, 55% and 34% for �̄ =8�x. As shown in table 7, S̄II,3 can exceed
the resolved viscous stress term in the LES x3-momentum equation, and thus errors in
modelling S̄II,3 may substantially affect the success of LES. The smallest discrepancy
is in the modelling of S̄I and is close to that in modelling S̄III. In comparing the
results for Sd,m and S̄m, we note that for S̄ all the slopes for the random model tend to
increase with respect to those of Sd (except for S̄I ), whereas for the other two models,
only the slopes of some momentum source terms (SII,2 and SII,3) consistently tend to
increase. The deterministic model S̄m is still the best, followed by the baseline model,
but the random model is now comparable to the baseline model. Similar to what was
seen for Sd , for S̄ all the slopes are less than unity, meaning that S̄ will on average
be overpredicted. Notably, the slopes for S̄ given in table 16 are considerably lower
than those for ψf given in table 14, and all the models show definite deterioration
with increased �̄.

This analysis indicates that with exact σSGS, the deterministic model is best while the
baseline model is generally no worse, and usually better than the more sophisticated
random model. This can partly be attributed to the nonlinear nature of the relationship
between ψf and Sd , since small discrepancies in ψf,m seem to lead to much larger
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discrepancies in Sd,m. The errors in S̄m are considerably larger than those in ψf,m.
Furthermore, the magnitude of the error in ψf,m shows no predictive ability for
the error in the resulting S̄m. Apparently, the filter width is the main determinant
regarding the accuracy of S̄m, since the errors consistently and dramatically increase
with �̄. For the deterministic model, it is clear that the σSGS model will impact on
the S̄m predictions. For the random model, it is also clear that concentrating on an
accurate σSGS model is an incorrect strategy since with the exact σSGS the random
model predictions are very close to those of the baseline model which is devoid of
σSGS.

6.2. Computational-drop modelling

Having studied the effect of the unfiltered-variable modelling on the source terms,
we now turn to the issue of reducing the number of computed drops. In LES, the
only information that would be available from experiments is the total number of
drops; small-scale DNS-type drop distribution is not currently measurable. Thus,
in LES we must make a ‘blind’ choice in representing the physical drops (Z) by a
computational drop field (Z̄). In this blind formulation, each computational drop
represents a number, NR , of physical drops. For simplicity, we will assume that NR

is the same for all drops, that is, NR = Nα/Nβ is the ratio between the number of
physical drops, Nα , and the number of computational drops, Nβ . The FSTs are then
computed for the Nβ drops, and scaled by NR leading to

S̄m(ψf,m(φ̄), Z̄) = NR

∑
β

1

Vf

[Sd(ψf,m(φ̄), Z̄(NR))]β. (6.3)

As in (4.7), the summation is over the drops within the filtering volume Vf , but
now over a representative drop field (Z̄) rather than the physical drops (Z). The
source term contributions for each computational drop are computed in the same
manner as for physical drops, that is, the representative nature of each drop is entirely
embodied in the parameter NR . The unfiltered variables (ψf ) required for calculating
each drop’s source term contributions are modelled (ψf,m), as described in § 6.1. The
modelled FSTs (S̄m) are next compared to the exact (i.e. DNS) FSTs S̄(ψf , Z). Note
that the ideal ψf,m leads to the exact S̄ only on the physical drop field (NR = 1). The
computational drops are here selected from the DNS drops by extracting them from
the array containing Z with a stride of NR; each computational drop retains the
physical drop characteristics (mass, location, velocity, temperature). Thus, the mass
loading may not be strictly conserved between DNS and LES.

6.2.1. Computational-drop-model analysis at transitional states

To illustrate the effect of increasing NR (decreasing the number of computational
drops), in figure 7 are the (x1, x3) homogeneous-plane averages and r.m.s. of S̄I

and its models. The results for S̄m are labelled according to the ψm used (ideal,
baseline, random, deterministic), while those for S̄ are labelled as exact. These plots
for NR = 1, 8 and 64 are not intended to be typical, but rather to visualize the global
comparisons to be presented below. Clearly, in the middle of the layer there is strong
evaporation, as indicated by the average, S̄I being positive. In the lower stream, on
average, S̄I is negative, indicating net condensation; further scrutiny revealed that at
some locations there is also evaporation. As shown by the small r.m.s. in the lower
stream, the magnitude of condensation/evaporation is small. Returning to the issue
of computational-drop modelling, figure 7 shows that S̄I is generally overpredicted by
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Figure 7. Homogeneous (x1, x3)-plane (a, c, e) averages and (b, d, f ) r.m.s. of S̄I models,
TP600a2 at t∗ = 105, �̄= 4�x: (a, b) NR = 1, (c, d) NR = 8, (e, f ) NR = 64. The filtered source
term models are designated - -, ideal; –·–, baseline; – –, random or –··–, deterministic according
to ψm, the model used for the unfiltered gas-phase variables. —, exact. NR is the ratio of the
number of physical drops to the number of computational drops.

the models. Whereas on average, the models do not seem to show much dependence
on NR , the r.m.s. shows a clear deterioration with NR . The greatest error in S̄I,m

occurs in the middle of the layer where the strongest evaporation occurs and where
the filtered flow field differs most from the unfiltered flow field. In contrast, near the
boundaries the filtered flow field is almost identical to the unfiltered one. Since the
models are relatively more accurate at the lower stream boundary, where the non-zero
S̄I shows that the drops are still evaporating/condensing, the indications are that drop
evaporation is not by itself the cause of errors in the FST models. Rather, errors arise
from the imprecision in representing the physical drop field by the computational
drop field, since the ideal model (which uses the actual unfiltered variables) gives the
same results as the other models near the lower boundary. Given that the errors due
to modelling the unfiltered flow field (see § 6.1) are unavoidable in LES, we want
to determine the conditions under which the additional errors introduced by the
computational-drop modelling are acceptably small.

To quantify the effect of increasing NR , slopes equivalent to those in table 16 are
plotted in figures 8 and 9 for S̄I (figures 8a and 8b), S̄III (figures 8c and 8d), S̄II,1

(figures 9a and 9b), S̄II,2 (figures 9c and 9d), and S̄II,3 (figures 9e and 9f ), for �̄ of
4�x and 8�x. These figures are for NR = 1, 2, 4, 8, 16, 32, 64 for all FST models; all
quantities are compared to S̄ computed at the corresponding �̄. (Note: the slopes
for NR =1 were previously presented in table 16.) In figures 8 and 9, all the slopes
are smaller than unity, meaning that all the models overestimate the source terms.
Generally, the deterministic model outperforms the baseline model, with errors almost
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halfway between those of the baseline and ideal models, and the random model is
the worst. Consistently, the ideal model gives the best prediction for S̄; its relative
superiority is significant at the larger filter width, and at the smaller filter width when
NR is small. For the smaller filter width at larger NR , all the models give similar
predictions. The accuracy of the models declines with NR , but not at the same rate
for all source terms as S̄III seems to be best predicted whereas S̄II,3 seems to be the
worst predicted with the strongest error growth with increasing NR .

From figures 8 and 9, it can be concluded that for small NR (more computational
drops), the inaccuracies in ψf,m are a much stronger source of error than is the effect of
computational-drop modelling (NR > 1). When using ψf , the ideal model S̄m improves
for fixed NR as �̄ is increased from 4�x to 8�x since the filtering volume is increased
and the number of drops within each filtering volume is accordingly increased, giving
a better accuracy. The opposite trend is observed with all the other S̄m because as
�̄ increases, information is lost during the gas-phase variable modelling, resulting in
decreasing accuracy (as �̄ increases, ψ̃ is more unlike ψ , see table 14). However, for
large NR (fewer computational drops), larger than about 8, the effect of having few
drops dominates, as can be seen by the increasing convergence of the slopes from the
ideal S̄m to those from the other S̄m for larger NR . Figures 8 and 9 also show the effect
of the nonlinear relationship between ψf,m and S̄m in that a proportional reduction
in grid resolution and number of drops does not give the same error in the FSTs.
That is, an eight-fold increase in the filtering volume, by increasing �̄ from 4�x to
8�x, and a concomitant eight-fold decrease in the number of drops (NR = 1, 2, 4, 8
compared to NR = 8, 16, 32, 64, respectively), that is, preserving the number of drops
in each filtering volume, does not maintain the error in S̄m. In quantifying the S̄m

error through the maximal percentage error (greatest deviation from unity over the
five source terms, multiplied by 100), the maximal S̄m error was found to be in S̄II,3 for
the baseline, random and deterministic models. Maximal percentage errors obtained
from the data in figures 9(e) and 9(f ) show that, for the baseline model, the error
for NR = 8 and �̄= 8�x is three times that for NR = 1 and �̄= 4�x, whereas the
error for NR = 64 and �̄= 8�x is twice that for NR = 8 and �̄ =4�x. A similar
trend of decreasing error ratio with increasing NR is observed for the other models.
When proportionally increasing NR and the filter volume, the largest loss of accuracy
is experienced with the deterministic model, which is the most accurate, while the
smallest relative error is with the random model, which is the least accurate.

In LES, the effect of modelling ψf is unavoidable and most probably �̄ would have
been selected according to the gas-phase resolution requirements; once �̄ is selected,
the accuracy of the calculation will decrease with increasing NR , independent of the
model. This means that if large errors are computationally acceptable (i.e. order of
magnitude calculations), a large NR and large �̄ are acceptable because the error will
be comparable to that for large NR and small �̄; that is, as NR increases, the error
becomes independent of �̄.

6.2.2. Computational-drop-model analysis at pre-transitional states

The above results concerning the computational drops were obtained at a
transitional state. It is pertinent to inquire whether the overprediction of the FSTs is
unique to this time station, or rather a general occurrence. To this end, the analysis
of S̄m was repeated at t∗ = 20, 45 and 80, corresponding to time stations before the
first pairing, between the first and second pairings and at the end of the second
pairing. The results are plotted along with those at t∗ = 105, in terms of the maximal
percentage error (greatest deviation from unity over the five source terms, multiplied
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Figure 10. Maximal percentage error in filtered source term models, TP600a2 at: (a, b)
t∗ = 20, (c, d) t∗ = 45, (e, f ) t∗ =80, (g, h) t∗ = 105 for (a, c, e, g) �̄= 4�x and (b, d, f, h) �̄ =
8�x. See caption of figure 8 for additional information.

by 100) in figure 10 for t∗ = 20 (figures 10a and 10b), t∗ =45 (figures 10c and 10d),
t∗ =80 (figures 10e and 10f ) and t∗ = 105 (figures 10g and 10h) at �̄ of 4�x and
8�x. Figures 10(g) and 10(h) represent the data in figures 8 and 9 (at t∗ = 105), and
the remarks made when discussing those figures are even more evident: (i) the effect
of modelling ψf is dominant at the larger �̄, where the error is initially large but not
so sensitive to NR , (ii) the effect of modelling ψf is significant at the smaller �̄ for
smaller NR but not at larger NR , (iii) the deterministic model performs best, followed
closely by the baseline model, with the random model giving the worst predictions,
and (iv) decreasing the number of computational drops proportionally to the increase
in filtering volume size does not necessarily maintain the filtering error. In considering
the pre-transitional time stations, the trends at a given NR seem to be as follows: (i) for
the smaller �̄, the error seems insensitive to time up to t∗ = 80 and then exhibits a
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small growth, except for the lowest NR = 1 or 2 where the error clearly grows with time,
and (ii) for the larger �̄, the error generally grows with time, with more pronounced
error growth at smaller values of NR .

6.2.3. Computational-drop modelling conclusions

From this a priori study, the indications are that the unfiltered flow field models
perform better for smaller filter widths; however, only at small values of NR (below
about 8 for �̄= 4�x) does this translate into improved accuracy of FST models. On
the other hand, for larger filter widths, there is little to be gained by using small
NR , since the error growth with NR is modest; however, the FST models will be
less accurate than at the smaller filter width. None of the models considered yields
particularly accurate predictions for the FSTs, with errors ranging from 10% to 90%.
However, this does not necessarily preclude their use in LES, since from the budgets
of the LES equations (§ 4.3), the FSTs are an order of magnitude smaller than the
largest terms. The sensitivity of flow field and drop evolution to FST errors can only
be determined by performing an a posteriori LES study.

7. Subgrid scale models
The analysis now turns to evaluating models for the SGS fluxes (defined in (4.8))

appearing in the LES equations (4.18)–(4.20). This activity involves considering several
possible functional forms for the fluxes, which contain proportionality coefficients to
be determined through calibration on the DNS transitional flow field. Additionally,
some of the FST models described in § 6.1 use the SGS variance σ 2

SGS, here defined as

σ 2
SGS(ũ1) = τ11, σ 2

SGS(ũ2) = τ22, σ 2
SGS(ũ3) = τ33, (7.1)

σ 2
SGS(T̃ ) = T̃ 2 − (T̃ )2, σ 2

SGS(Ỹ V ) = ỸV YV − (ỸV )2, σ 2
SGS(p̄) = p2 − (p̄)2. (7.2)

The SGS variances have a similar form to the SGS fluxes and we propose to model
them in the same way.

7.1. Functional forms

We consider here the following three typical SGS models:
(i) The Smagorinsky (SM) model for the SGS fluxes is

τij − 1
3
τkkδij = −CSM�̄2S(φ̄)

[
Sij (φ̄) − 1

3
Skk(φ̄)δij

]
,

ηj = −CSM�̄2S(φ̄)
1

2

∂Ỹ V

∂xj

, ζj = −CSM�̄2S(φ̄)
1

2

∂h̃

∂xj

,
(7.3)

where

S2(φ) = Sij (φ)Sij (φ). (7.4)

To model τkk, which may be important for compressible turbulence, we use the
Yoshizawa (1986) (YO) model

τkk = CYO�̄2S2(φ̄). (7.5)

The SM model is based on eddy-viscosity considerations which cannot be directly
extended to model the σ 2

SGS of T̃ , Ỹ V and p̄.
(ii) The gradient (GR) model for the SGS fluxes is

τij = CGR�̄2 ∂ũi

∂xk

∂ũj

∂xk

, ηj = CGR�̄2 ∂Ỹ V

∂xk

∂ũj

∂xk

, ζj = CGR�̄2 ∂h̃

∂xk

∂ũj

∂xk

, (7.6)
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while the GR model for σ 2
SGS(ψ̃) is

σ 2
SGS(ψ̃) = CGR�̄2 ∂ψ̃

∂xk

∂ψ̃

∂xk

. (7.7)

Theoretically (i.e. from a Taylor series expansion, see Appendix A), CGR = 1/12 for a
cubic top-hat filter.

(iii) The scale-similarity (SS) model for the SGS fluxes is

τij = CSS( ̂̃uiũj − ̂̃ui
̂̃uj ), ηj = CSS(

̂̃Y V ũj − ̂̃Y V
̂̃uj ), ζj = CSS(

̂̃hũj − ̂̃ĥ̃uj ), (7.8)

and the SS model for σ 2
SGS(ψ̃) is

σ 2
SGS(ψ̃) = CSS[(̂ψ̃)2 − ( ̂̃ψ)2], (7.9)

where the overhat (̂) denotes (unweighted) filtering at the test-filter level �̂ � �̄. Scale-
similarity implies that CSS = 1 for identical grid and test filters (Bardina et al. 1980;
Pruett & Adams 2000), however, practically, its true value depends on the situation
under study as well as on the filter type and on the ratio �̂/�̄ (see Appendix B).
For example, Liu, Meneveau & Katz (1994) found from analysis of experimental
data that for turbulent jets 0.3 � CSS � 0.6, whereas the rigorous derivation of Pruett,
Sochacki & Adams (2001) led to CSS = a2/c2 for second-order grid and test filters
whose second-order coefficients in the Taylor expansions are a2 and c2, respectively.

Although generally each SGS quantity may have a model coefficient value different
from the others and furthermore, the coefficient may be spatially and temporally
varying, for simplicity, in this study, all SGS quantities will use the same value of
the model coefficient (CSM, CGR or CSS) which is taken spatially and temporally
constant. In keeping with the LES philosophy of reduced computational effort, more
complicated model coefficients are usually considered only after constant coefficients
prove inadequate a posteriori.

7.2. Constant-coefficient calibration

The availability of a DNS database allows a priori calibration of the constant
coefficient appearing in each of the SGS flux models under consideration. The main
issue we wish to determine is whether SGS flux models calibrated on SP flows can
be applied to TP flows; therefore, in the present paper, a priori analysis is devoted to
SP600 and TP600a2, because they have the higher Re0 (see table 1). The restriction
to a single Re0 and the lower ML0 is with the intention to ‘blind’ test the models thus
obtained for all cases on an a posteriori basis (Part 2 of this study).

7.2.1. Constant-coefficient calibration procedure

The calibration procedure used here consists of three stages:
(i) Calculation of the coefficient for each SGS quantity. To this end, we use LS

fits of the SGS quantities to their models to compute the slope, b, which would be
the constant coefficient, and the correlation, R, according to (3.6) and (3.7). If X is
the model (without the coefficient) and Y is the SGS quantity, then the slope is the
constant coefficient; ideally, R would be unity.

(ii) Calculation of the coefficient for all SGS quantities. To obtain a single
coefficient, we average the slopes for the individual SGS quantities. The standard
deviation of these slopes measures their variation from the average. Therefore, the
smaller the standard deviation relative to the average slope, the more suitable is
the average slope for being the single coefficient for all the SGS quantities. This
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�̄ = 4�x �̄ = 8�x

SGS quantity SP600 TP600a2 SP600 TP600a2

ρ̄(τ11 − τkk/3) 0.0513 0.0478 0.0500 0.0456
ρ̄(τ22 − τkk/3) 0.0366 0.0362 0.0280 0.0304
ρ̄(τ33 − τkk/3) 0.0396 0.0400 0.0403 0.0414
ρ̄τ12 0.0681 0.0660 0.0710 0.0733
ρ̄τ13 0.0450 0.0436 0.0370 0.0399
ρ̄τ23 0.0325 0.0340 0.0284 0.0272
ρ̄ζ1 0.0885 0.1464 0.0486 0.1375
ρ̄ζ2 0.1121 0.1505 0.1004 0.1576
ρ̄ζ3 0.0925 0.0873 0.0752 0.0757
ρ̄η1 – 0.1512 – 0.1464
ρ̄η2 – 0.1536 – 0.1598
ρ̄η3 – 0.0884 – 0.0763

Average slope 0.0629 0.0871 0.0532 0.0843
Standard deviation of slopes 0.0287 0.0501 0.0243 0.0518
Average correlation 0.25 0.31 0.24 0.31

Table 17. Slopes from least-squares fit of SGS quantities to SGS models, Smagorinsky model.

�̄ = 4�x �̄ = 8�x

ρ̄τkk SP600 TP600a2 SP600 TP600a2

Slope 0.3043 0.3096 0.3154 0.3265
Correlation 0.81 0.79 0.79 0.77

Table 18. Slopes from least-squares fit of SGS quantities to SGS models, Yoshizawa model.

coefficient evaluation by means of the average slope, while not physically rigorous,
provides a starting point for LES; in the a posteriori study we will assess whether the
constant-coefficient approach, and the values here obtained, are viable for TP LES.

(iii) Calculation of the SGS model coefficient. To obtain a single coefficient, we
calculate the average slopes on many filtered flow fields (or realizations of the same
flow), and develop the best value for the SGS model coefficient. This coefficient may be
found to depend on filter width, Re0, Mc,0 flow configuration, etc. The applicability of
the coefficient will generally be limited to the types of flow for which it was calibrated,
which constitutes the main drawback of the constant-coefficient method. However,
the hope of the constant-coefficient LES methodology is that the SGS are somewhat
insensitive to the large-scale flow, and that their calibration on a geometrically simple
transitional flow will be applicable to a variety of other flows. In this study, the focus
is on possible dependence of SGS models on the presence or absence of drops, and
on the filter width. This dependence of the coefficient on the flow field is measured
by performing t-tests of statistical significance on the average slopes obtained in the
second stage described above.

7.2.2. Results of constant-coefficient calibration

The calibration procedure outlined above is performed for the SM, YO, GR and SS
models. For the SS model, two test-filter widths (�̂= �̄ and �̂ =2�̄) are investigated.
The analysis is performed for the SP600 and TP600a2 databases at the transitional
states (t∗ = 100 and t∗ = 105, respectively) at two different filter widths (�̄ = 4�x and
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�̄ = 4�x �̄ = 8�x

SGS quantity SP600 TP600a2 SP600 TP600a2

ρ̄τ11 0.1596 0.1655 0.1556 0.1629
ρ̄τ22 0.1645 0.1683 0.1694 0.1756
ρ̄τ33 0.1683 0.1723 0.1820 0.1870
ρ̄τ12 0.1448 0.1478 0.1313 0.1339
ρ̄τ13 0.1479 0.1506 0.1334 0.1354
ρ̄τ23 0.1475 0.1503 0.1343 0.1367
ρ̄ζ1 0.1488 0.1464 0.1346 0.1345
ρ̄ζ2 0.1475 0.1450 0.1338 0.1324
ρ̄ζ3 0.1489 0.1463 0.1334 0.1319
ρ̄η1 – 0.1468 – 0.1346
ρ̄η2 – 0.1455 – 0.1327
ρ̄η3 – 0.1466 – 0.1322
σ 2

SGS(T̃ ) 0.1737 0.1758 0.1809 0.1828

σ 2
SGS(Ỹ V ) – 0.1725 – 0.1784

σ 2
SGS(p̄) 0.1588 0.1666 0.1349 0.1580

Average slope 0.1552 0.1564 0.1476 0.1499
Standard deviation of slopes 0.0099 0.0119 0.0205 0.0216
Average correlation 0.97 0.97 0.92 0.91

Table 19. Slopes from least-squares fit of SGS quantities to SGS models, gradient model.

�̄ =8�x, see § 4.2) for a total of 4 data sets. The SGS quantities analysed are {ρ̄τij ,

ρ̄ζj , σ 2
SGS(T̃ ), σ 2

SGS(p̄)} (11 quantities) for case SP600 (for which Ỹ V = 0, ηj =0) and

{ρ̄τij , ρ̄ζj , ρ̄ηj , σ 2
SGS(T̃ ), σ 2

SGS(Ỹ V ), σ 2
SGS(p̄)} (15 quantities) for case TP600a2. The

σ 2
SGS(ũi) are represented as a subset of τij . For each model, the slopes for each SGS

quantity are presented in tables 17–20, along with the average and the standard
deviation of the slopes and the average of the correlations. We apply a two-tailed
t-test for equality of means to these slopes (at a 5% level of significance, assuming
unequal variances), and present the results of the t-tests in table 21. If the t-test
indicates that the average slopes are equal, we take the mean of the average slopes
(of the appropriate data sets) as the model coefficient. The analysis of the models,
including the calibrated coefficients, can be summarized as follows.

(i) Smagorinsky model (table 17) and Yoshizawa model (table 18). The correlation
between the SM models and the SGS quantities is poor (0.24 to 0.31), and the large
standard deviation is due to the large spread of the individual slopes. The t-test
indicates that the same coefficient can be applied to all four data sets; the mean value
of the average slopes is 0.072. For τkk , the YO model (table 18) has a correlation
of about 0.8, which is considerably better than that for the SM model. From the
four data sets considered, the mean value is CYO =0.314. This large value of CYO

compared to that of CSM indicates that τkk should not be neglected, in contrast to the
SGS stress results of Erlebacher et al. (1992) for isotropic turbulence. However, since
the Smagorinsky model generally correlates poorly with the SGS quantities, it is not
clear whether any benefit would be derived from not neglecting τkk , which does not
alter the average slope or the calibrated coefficient. The calibration of the SM model
along with the YO model leads to

CSM = 0.072, CYO = 0.314. (7.10)
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�̂ = �̄ �̂ = 2�̄

�̄ = 4�x �̄ = 8�x �̄ = 4�x �̄ = 8�x

SGS quantity SP600 TP600a2 SP600 TP600a2 SP600 TP600a2 SP600 TP600a2

ρ̄τ11 1.5832 1.6691 1.9327 2.0636 0.6114 0.6562 0.7143 0.7818
ρ̄τ22 1.6733 1.7390 2.2583 2.3869 0.6780 0.7163 0.9460 1.0100
ρ̄τ33 1.7341 1.7954 2.5860 2.6523 0.7317 0.7613 1.2425 1.2588
ρ̄τ12 1.4629 1.5364 1.6903 1.7806 0.5508 0.5949 0.6384 0.6679
ρ̄τ13 1.5728 1.6212 1.9217 1.9603 0.6522 0.6744 0.8130 0.8180
ρ̄τ23 1.5864 1.6472 1.9940 2.0627 0.6678 0.7052 0.8991 0.9187
ρ̄ζ1 1.5317 1.4812 1.7572 1.7383 0.5921 0.5638 0.6444 0.6509
ρ̄ζ2 1.5340 1.4754 1.7675 1.7472 0.5969 0.5625 0.6438 0.6819
ρ̄ζ3 1.6009 1.5378 1.9138 1.8865 0.6611 0.6236 0.7833 0.8002
ρ̄η1 – 1.4888 – 1.7480 – 0.5683 – 0.6565
ρ̄η2 – 1.4850 – 1.7581 – 0.5676 – 0.6897
ρ̄η3 – 1.5422 – 1.8929 – 0.6248 – 0.8049

σ 2
SGS(T̃ ) 1.8006 1.8430 2.3777 2.4825 0.7412 0.7719 0.9442 1.0575

σ 2
SGS(Ỹ V ) – 1.7918 – 2.4081 – 0.7439 – 1.0229

σ 2
SGS(p̄) 1.4381 1.6450 1.4324 1.8154 0.4913 0.6211 0.4246 0.5668

Average slope 1.5925 1.6199 1.9665 2.0256 0.6340 0.6504 0.7903 0.8259
Standard deviation 0.1087 0.1263 0.3301 0.3088 0.0749 0.0746 0.2168 0.1919

of slopes
Average correlation 0.94 0.93 0.89 0.88 0.82 0.82 0.74 0.73

Table 20. Slopes from least-squares fit of SGS quantities to SGS models, similarity model.

Average slope Average slopes equal?

�̄/�x =4 �̄/�x = 8 SP600 and TP600a2 �̄/�x =4 and 8

SGS Model SP600 TP600a2 SP600 TP600a2 �̄/�x = 4 �̄/�x = 8 SP600 TP600a2

SM 0.0629 0.0871 0.0532 0.0843 Yes Yes Yes Yes
GR 0.1552 0.1564 0.1476 0.1499 Yes Yes Yes Yes
SS1 1.5925 1.6199 1.9665 2.0256 Yes Yes No No
SS2 0.6340 0.6504 0.7903 0.8259 Yes Yes No No

Table 21. Average slopes and t-test for equality of average slopes, comparing SP600 to
TP600a2 and �̄ = 4�x to �̄ = 8�x. SGS models are: SM=Smagorinsky, GR = gradient,

SS = scale-similarity model with �̂= �̄ (SS1) or �̂ = 2�̄ (SS2). See tables 17, 19 and 20 for
the distributions used to calculate the average slopes.

The value obtained here of CSM =0.072 is higher than CSM = 0.172 � 0.029 used by
Vreman, Geurts & Kuerten (1997) for the SGS stresses, which was found to be too
dissipative; the calibrated values will lead to a SM model that is even more dissipative.

(ii) Gradient model (table 19). The correlation between models and SGS quantities
is excellent (0.91 to 0.97). From the t-test, the average slopes are equal for all four
data sets, with a mean value across the four data sets of 0.152. The calibration leads
to the GR model coefficient as

CGR = 0.152. (7.11)

(iii) Similarity model (table 20). The correlation between models and SGS quantities
ranges from good to excellent (0.73 to 0.94), with better correlation for �̂= �̄. From
the t-test, the average slopes are statistically equal when comparing SP600 to TP600a2,
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but not when comparing �̄= 4�x to �̄= 8�x. Therefore, the SS model calibration
yields

�̂ = �̄ : CSS = 1.606 for �̄ = 4�x, CSS = 1.996 for �̄ = 8�x; (7.12)

�̂ = 2�̄ : CSS = 0.642 for �̄ = 4�x, CSS = 0.808 for �̄ = 8�x. (7.13)

Since the theoretical model coefficient is unity, the closest value to theory is attained
with �̄ =8�x and �̂= 2�̄. The coefficients at �̂= �̄ are about 2.5 times larger than
those at �̂= 2�̄ for the same �̄, so there is a strong coefficient dependence on �̂/�̄.
On the other hand, the coefficients at �̄= 4�x are about 80% of those at �̄= 8�x,
so the coefficient dependence on �̄/�x is much weaker than that on �̂/�̄. It can
be analytically shown that there should be a coefficient dependence on �̂/�̄ (Pruett
et al. 2001; see Appendix B) such that CSS decreases with increasing �̂/�̄. However,
the coefficient dependence on �̄/�x being weak, suggests that the flow field is not
quite scale-similar, perhaps because the database represents a transitional state rather
than the fully turbulent regime (which is currently unachievable in DNS).

7.2.3. Constant-coefficient calibration conclusions

These results are consistent with the a priori SGS stress investigation of Pruett &
Adams (2000) for the decay of isotropic turbulence in which the SM model corre-
lated poorly with the exact stresses and the SS model correlated remarkably well,
particularly when the grid and test filter were identical. However, correlations for the
GR model are here much better when compared to those obtained by Pruett &
Adams (2000) (0.9 compared to 0.6); this may be due to their use of the same form
of the GR model as has been analysed here that applies only to cubic top-hat filters
(see Appendix A), and which is inconsistent with their filter (one-parameter Pade-type
filter). At this juncture, the prospects for successful TP LES using the SM model seem
poor, since drop evolution in TP flows is strongly dependent on the local conditions
which are poorly captured by this model. The model calibration exercise also suggests
that, to overcome deficiencies in the GR or SS model that have been found in some
a posteriori studies (e.g. Vreman et al. 1997, who used the theoretical coefficients
CSS = 1, CGR = 1/12 for the SGS stresses), it may be more fruitful to adjust CGR or
CSS rather than add the SM model (leading to ‘mixed’ models) and then attempt to
adjust the SM coefficient.

The most encouraging result of this calibration is the suggestion that coefficients
calibrated on compressible SP flow are statistically equivalent to those for TP flow
with evaporating drops, implying that SGS models already developed for compressible
SP flows may be applied to the SGS fluxes in TP flows. However, since the a priori
study does not include either the effect of the flow-field evolution on the drops or the
interaction among all scales inherent in turbulence, a posteriori studies are needed to
bear out this implication.

8. Summary and conclusions
We have conducted direct numerical simulations (DNS) of a two-phase (TP)

temporal mixing layer laden with evaporating drops as a precursor to conducting
large eddy simulations (LES) of this flow. The DNS provide a database on which a
priori analyses of the LES equations can be conducted. The gas-phase was computed
in an Eulerian frame using the compressible Navier–Stokes equations along with
conservation equations for total energy, carrier gas mass and vapour mass and a
perfect gas equation of state. The drops were individually tracked in a Lagrangian
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frame, with their effect on the flow being modelled through source terms in the
gas-phase equations. The resolution of the gas phase was adequate for a single-phase
(SP) flow. Initially, the gas phase consisted solely of the carrier gas species and, for
TP layers, drops were located in the lower stream only and were colder than the gas
phase. For the two initial Reynolds numbers (500 and 600) considered, the evolution
of SP (null mass loading) and TP (mass loadings of 0.2 and 0.5) layers was simulated
to attain a transitional state for each layer.

For the TP layers, the vorticity, temperature and vapour mass fraction fields at
transition were qualitatively similar regardless of mass loading. In particular, the
temperature of the gas in the initially drop-laden stream diminished to be close and
sometimes inferior to the initial drop temperature. The range and distribution of
the vapour mass fraction at transition showed sensitivity, but no strong effect of
the initial mass loading for mass loadings of 0.2 or 0.5, and the increasing product
thickness showed that the layer drops were still evaporating (i.e. the layer was not
saturated). Regions of high drop number density occurred in low-vorticity locations
and exhibited a complex small-scale organization.

In accord with our stated goal of conducting consistent LES, in which both the
grid resolution and the number of tracked drops will be reduced compared to the
DNS, we derived the LES equations applicable to TP flows with evaporating drops.
These LES equations were derived by spatially filtering the DNS equations, leading
to unclosed terms that could not be computed directly from the filtered flow field. By
invoking various assumptions, which were validated on the filtered DNS database,
and considering the magnitude of the terms in the LES equations at transition, we
obtained a hierarchy of terms to guide the simplification of the LES equations and
reduce the modelling requirements. In particular, we found that many filtered gas-
phase quantities are quantitatively close to their counterparts as calculated using the
same functional form as in the DNS, but from the filtered flow field. The unclosed
terms that were found to be of comparable magnitude at transitional states of TP
flow and that remained to be modelled were the filtered source terms (FSTs) and the
subgrid scale (SGS) fluxes.

The importance of the source terms was further analysed by deriving the irreversible
entropy production (i.e. dissipation) expression for TP flows with phase change and
calculating the dissipation budget at the DNS, LES and subgrid scales. At a given
initial Reynolds number, the dissipation was found to increase with increasing mass
loading, while for a given mass loading, the dissipation decreased with increasing
Reynolds number; this behaviour showed the need for robust turbulence models
that can accommodate a range of mass loadings. In contrast to SP flows where
the dissipation was governed by viscous effects, for the TP flows studied here, the
contribution to the dissipation was dominated by terms arising from drop-source
terms. The two most important contributions were due to the energy source term
and the chemical potential of the vapour emanating from the drops, and were
positive and negative, respectively, at the DNS and LES scales, but negative and
positive, respectively, at the SGS. At all scales, these two contributions exceeded
the contribution from the viscous stresses, and furthermore, for at least one filtered
field, the average of the dissipation term originating from the momentum source
contribution rivalled the average viscous dissipation in magnitude, indicating the
importance, in LES, of the FST models for portraying the correct physics of the flow.

The LES models evaluated a priori on the DNS database were of two types: those
for the FSTs representing the effect of the drops on the filtered flow field; and those
for the SGS fluxes arising from filtering the convective terms in the gas-phase
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DNS equations. The unfiltered flow field is required for the calculation of drop-based
quantities, but would not be available in LES; therefore, various approximations were
attempted for it, namely, the filtered flow field and the filtered flow field plus correc-
tions based on the SGS variances. All of the FST models were found to overestimate
FSTs, with the relative error of modelling the unfiltered flow field compared to that
of using computational drops showing a complex dependence on filter width and
number of computational drops. Generally, as the number of computational drops
decreased, the performance of the models deteriorated, and eventually the modelling
error became independent of the filter size.

To complete the LES modelling, constant-coefficient Smagorinsky, gradient and
scale-similarity models for SGS quantities were assessed and calibrated on the DNS
database. The gradient and scale-similarity models showed excellent correlation with
the SGS fluxes and variances, while the Smagorinsky model (possible only for SGS
fluxes) performed poorly. Calibrated values of the SGS model coefficients were com-
puted for various filtered flow fields; the values were compared for transitional states
generated from SP and TP DNS which had the same initial Reynolds number and grid
size and resolution. For all SGS flux models, these coefficients were statistically equi-
valent when computed on SP or TP flows. Additionally, for the Smagorinsky and gra-
dient model, these coefficients were statistically insensitive to the filter width, whereas
for the scale-similarity model, the coefficients depended on the filter widths used.

Although some of the models presented seem promising, the true test of their
appropriateness will be in a posteriori studies. Such studies are needed to determine
whether these models will lead to the proper evolution of the filtered flow field and
of the computational drops, and to appropriate interaction between the resolved and
modelled (i.e. SGS) flow field. Of particular interest will be the behaviour of the
models for the FSTs as the number of computational drops is decreased.

This work was conducted at the Jet Propulsion Laboratory (JPL) of the California
Institute of Technology, and was sponsored by the US Department of Energy (contract
monitors were N. Rossmeissl, Headquarters and D. Hooker, Golden Center) under an
agreement with the National Aeronautics and Space Administration. Computations
were performed on the SGI Origin2000 at the JPL Supercomputing Center.

Appendix A. Derivation of gradient model
The gradient model (Clark et al. 1979) can be derived starting from the Taylor

series expansion for a variable ψi ,

ψi(x) = ψi(x0) +
∂ψi

∂xk

(x0)Ik +
1

2

∂2ψi

∂xk∂xl

(x0)Ikl + O(�̄3), (A 1)

where Ik = (xk − xk0
) and Ikl =(xk − xk0

)(xl − xl0 ). Filtering this expansion leads to

ψ̄ i = ψi(x0) +
∂ψi

∂xk

(x0)Ī k +
1

2

∂2ψi

∂xk∂xl

(x0)Ī kl + O(�̄3). (A 2)

Multiplying the series expansions for the variables ψi and ψj , then filtering yields

ψiψj = ψi(x0)ψj (x0) +

[
ψi(x0)

∂ψj

∂xk

(x0) + ψj (x0)
∂ψi

∂xk

(x0)

]
Ī k

+

{
1

2

[
ψi(x0)

∂2ψj

∂xk∂xl

(x0) + ψj (x0)
∂2ψi

∂xk∂xl

(x0)

]
+

∂ψi

∂xk

(x0)
∂ψj

∂xl

(x0)

}
Ī kl . (A 3)
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Multiplying the series expansions for the variables ψ̄ i and ψ̄j yields

ψ̄ iψ̄j = ψi(x0)ψj (x0) +

[
ψi(x0)

∂ψj

∂xk

(x0) + ψj (x0)
∂ψi

∂xk

(x0)

]
Ī k

+
1

2

[
ψi(x0)

∂2ψj

∂xk∂xl

(x0) + ψj (x0)
∂2ψi

∂xk∂xl

(x0)

]
Ī kl +

∂ψi

∂xk

(x0)
∂ψj

∂xl

(x0)Ī k Ī l . (A 4)

Then, the general form of the gradient model, valid for any filter, is

ψiψj − ψ̄ iψ̄j =
∂ψi

∂xk

∂ψj

∂xl

[Ī kl − Ī k Ī l], (A 5)

where (A 3)–(A 5) are accurate to O(�̄3). Now, for a top-hat filter

ψ(x0) =
1

Vf

∫
Vf

ψ(x) dV, (A 6)

where Vf is the filtering volume. Then, if x0 is the centroid of the filtering volume,
Ī k = 0. The terms Ī kl are the moments of inertia, which in the case of a cubic top-hat
filter with symmetrical filtering volumes are �̄2δkl/12 leading to

ψiψj − ψ̄ iψ̄j = 1
12

�̄2 ∂ψi

∂xk

∂ψj

∂xk

. (A 7)

Approximating the ψi derivatives by ψ̄ i derivatives leads to the gradient model for a
cubic top-hat filter as

ψiψj − ψ̄ iψ̄j = CGR�̄2 ∂ψ̄i

∂xk

∂ψ̄j

∂xk

. (A 8)

This model is applied to the Favre-filtered quantities as

ψ̃iψj − ψ̃ iψ̃j = CGR�̄2 ∂ψ̃i

∂xk

∂ψ̃j

∂xk

. (A 9)

This expression can be derived from (A 5) by replacing the unweighted filtering with
Favre-filtering, namely

ψ̃iψj − ψ̃ iψ̃j =
∂ψi

∂xk

∂ψj

∂xl

[Ĩ kl − Ĩ k Ĩ l], (A 10)

then using Ĩ k � Ī k and Ĩ kl � Ī kl and approximating the ψi derivatives by ψ̃ i derivatives.
The model coefficient CGR can be expected to be larger than its theoretical value,

because, since ψ̄ i is smoother than ψi , ∂ψ̄i/∂xk will have a smaller magnitude than
∂ψi/∂xk .

Appendix B. Test-filter ratio dependence of scale-similarity model
The scale similarity model is (Bardina et al. 1980)

ψiψj − ψ̄ iψ̄j = CSS(
̂̄ψiψ̄j − ̂̄ψi

̂̄ψj ), (B 1)

where the overhat (̂) denotes filtering at the test-filter width �̂ � �̄. For clarity, the
derivation that follows uses the unweighted filter. The application to Favre-filtered
quantities is through replacing the unweighted filter with the density-weighted filter,
e.g.

ψ̃iψj − ψ̃ iψ̃j = CSS(
̂̃ψiψ̃j − ̂̃ψi

̂̃ψj ), (B 2)

where re-filtering is always unweighted.
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From (A 2),

ψ̄ i(x0) = ψi(x0) +
∂ψi

∂xm

(x0)Ī m +
1

2

∂2ψi

∂xm∂xn

(x0)Ī mn + O(�̄3), (B 3)

ψ̂i(x0) = ψi(x0) +
∂ψi

∂xm

(x0)Î m +
1

2

∂2ψi

∂xm∂xn

(x0)Îmn + O(�̄3). (B 4)

Then, to O(�̄3),

̂̄ψi = ψ̄ i(x0) +
∂ψ̄i

∂xm

(x0)Î m +
1

2

∂2ψ̄ i

∂xm∂xn

(x0)Î mn, (B 5)

̂̄ψiψ̄j = (ψ̄ iψ̄j )(x0) +
∂(ψ̄ iψ̄j )

∂xm

(x0)Î m +
1

2

∂2(ψ̄ iψ̄j )

∂xm∂xn

(x0)Î mn, (B 6)

̂̄ψi
̂̄ψj = ψ̄ i(x0)ψ̄j (x0) +

∂(ψ̄ iψ̄j )

∂xm

(x0)Î m +
∂ψ̄i

∂xm

(x0)
∂ψ̄j

∂xn

(x0)Î mÎn

+
1

2

[
ψ̄ i(x0)

∂2ψ̄j

∂xm∂xn

(x0) + ψ̄j (x0)
∂2ψ̄ i

∂xm∂xn

(x0)

]
Î mn, (B 7)

̂̄ψiψ̄j − ̂̄ψi
̂̄ψj =

∂ψ̄i

∂xm

∂ψ̄j

∂xn

[Î mn − Î mÎ n]. (B 8)

From (B 1),

CSS =
(ψiψj − ψ̄ iψ̄j )

( ̂̄ψiψ̄j − ̂̄ψi
̂̄ψj )

if ( ̂̄ψiψ̄j − ̂̄ψi
̂̄ψj ) 
= 0. (B 9)

Using (A 5) and (B 8),

CSS =

(
∂ψi

∂xk

∂ψj

∂xl

)
(

∂ψ̄i

∂xm

∂ψ̄j

∂xn

) [Ī kl − Ī k Ī l]

[Î mn − Î mÎ n]
. (B 10)

For symmetrical filtering volumes Ī k = 0 and Î m = 0; then assuming (∂ψi/

∂xk)(∂ψj/∂xl) � (∂ψ̄i/∂xk)(∂ψ̄j/∂xl) leads to

CSS � Ī kl/Î mn. (B 11)

In the case of a cubic top-hat filter, this would be

CSS � �̄2/�̂2 = 1/(�̂/�̄)2. (B 12)

This analysis shows the dependence of CSS on the test-filter to grid-filter ratio.
However, it might not predict CSS because, generally, ∂ψ̄i/∂xk is not a good
approximation to ∂ψi/∂xk . (From (A 2), the error in the approximation is proportional
to ∂2ψi/(∂xk∂xl) which is usually not small in a turbulent flow field.)
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