Ultrafast X-radiography and Tomography of High-Pressure High-Speed Fuel Sprays

Workshop on Emerging Scientific Opportunities Using X-ray Imaging Fontana, Wisconsin

August 29-September 1, 2004

Jin Wang Experimental Facilities Division Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Acknowledgement

Christopher Powell, Seong-Kyun Cheong, Xin Liu, Jinyuan Liu, Wenyi Cai, Yong Yue, Suresh Narayanan, Andrew MacPhee, Deming Shu

Collaborators:
Mark Tate, Matt Renzi, Alper Ercan, Sol Gruner
Ming-chia Lai, Kyoungsu Im
Ernie Fontes, Alexander Kazimirov
Johannes Schaller, Jochen Walther
Ramesh Poola
Don Moran, Gail Greiger, Paul VanBrocklin
Roy Cuenca,

People who helped: Armon McPherson, Tim Mooney, Kurt Goetze Joerg Fettes, Kevin Berta APS Sector 1 Staff and CHESS staff. Physics, Cornell Wayne State U. CHESS, Cornell Robert Bosch, GmbH EMD (GM) Delphi Automotive ES/ANL

XFD/AOD/ANL Robert Bosch Corp.

Experiments performed at XOR 1-BM beamline of APS and D- and A-lines of Cornell High Energy Synchrotron Source (CHESS), Cornell U.

The use of the APS and this work are supported by the U.S. DOE, under contract W-31-109-Eng-38. CHESS is supported by NSF and NIH under award DMR-9713424.

Spray Applications

Fuel Sprays

- Liquid fuel sprays are part of energy sources for propulsion and transportation systems including internal combustion engines (ICE).
- Combined with development of new injection mechanism, study of fuel spray and combustion is aimed to achieve more economical use of fuels and better control of pollutants.
- Optimized fuel spray penetration, atomization and mix with air charge in cylinder is a key for a clean and efficient combustion.
- Realistic fuel spray characterization is the first step and crucial for a realistic combustion simulation.

Conventional Diagnostics

- shadow, Mie, Schlieren imaging
- scattering
- Iaser-induced fluorescence
- interferometry

Pros and Cons

- ➤ non-intrusive
- temporally and spatially resolved
- commercially available
- ➢ opaque in region near a nozzle
- not quantitative close to nozzle

Outlines

Advanced Photon Source ARGONNE NATIONAL LABORATORY

- Approaches
 - Time-resolved monochromatic x-ray radiography and tomography
- Diesel Sprays
 - Direct imaging of shock waves using fast 2-D detector
 - Quantitative analysis of Mach-cone
 - A new era of fluid dynamic simulation effort
- Gasoline Sprays
 - X-radiography from various directions
 - Ultrafast X-Tomography
- Summary and Outlook
 - Edge-enhanced, phase-contrast imaging
 - Through the nozzle
 - Imaging the liquid droplets
 - Particle imaging velocimetry
 - Micro- and nano-focusing for time-resolved, full-field imaging

X-radiography

> Polychromatic radiography have been demonstrated since 80's:

544	J. PROPULSION	VOL. 6	
	Observations of Breakup Processes of Liquid Je Using Real-Time X-Ray Radiography	ets	Limited to nozzles in large scale (a few mm)
	J. M. Char,* K. K. Kuo,† and K. C. Hsieh‡ The Pennsylvania State University, University Park, Pennsylvania	- A	

$$I/I_0 = \int \rho(\lambda) e^{-\mu_m(\lambda) \cdot M} d\lambda / \int \rho(\lambda) d\lambda \qquad ----$$

Difficult to obtain Quantitative results

Use of monochromatic x-ray beam radiography makes determination of the fuel mass quantity in the beam () is EASY!

7

Experiment Setup

Shockwave Visualization

The first shock discovery was the shockwaves generated by fuel sprays

Reflection off a wall

Parameters: Injection pressure 80 MPa Injection duration 0.5 ms Ambient gas: $SF_6 @ 0.1$ MPa

images collected by J. Schaller and J. Walter, Robert Bosch, GmbH

MacPhee et al., Science, 295, 1261 (2002) with animation available on Science Website

10

Quantitative Analysis

12

Density Deconvolution

Δ

6

Radial Distance (mm)

8

10

2

0

 Mach cone gas distribution determined quantitatively!
Decompression behind the shock cone
Soft shock

CFD Simulation

• Simulating shock waves with multiphase multidimension models Simulation by3ew Professor Ming-chia Lai and Dr. Kyun-su Im at Wayne State University)

CFD Simulation

Experiment

Simulation

Solt Shock is real - not altitact

More details are revealed.

Gasoline Hollow-cone Sprays

Office of Science

U.S. Department

of Energy

Multi-orientational Radiography

Technology

of Energy

Ultrafast X-tomography

X-tomography is feasible, but many scientific and technical challenges need to be addressed:

- Environmental chamber for contain the spray
- Large x-ray transparent window
- High precision translation and rotation
- Precision timing
- Algorithm the handle time-resolved data
- Parallel computing

16

First Attempt at CHESS

QuickTime™ and a Cinepak decompressor are needed to see this picture.

- * 5.1 µs time-resolution, 76 time steps, 1 ms duration
- ✤ 1° angular steps, 180° total viewing angles
- * 20 GB of data

Reconstruction from Data

3.8 mm from the nozzle, 490 μs from the start of the injection

Sinogram

QuickTime™ and a Cinepak decompressor are needed to see this picture.

QuickTime™ and a Cinepak decompressor are needed to see this picture.

Reconstruction Goodness

Office of Science

U.S. Department

of Energy

19

Reconstructed Spray

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

Reconstructed Hollow-Cone Spray

QuickTime™ and a Cinepak decompressor are needed to see this picture.

Surface View

QuickTime™ and a Cinepak decompressor are needed to see this picture.

> Many new discoveries on high-pressure fuel sprays have been made during the past three years.

➤ The experiments revealed quantitatively and unambiguously many characteristics of fuel sprays that were never previously known and/or that could not be measured by any other means.

This technique has broken a new ground for fuel spray research and can be well-suited for studying transient events in dense plasmas and other optically opaque structures.

The time-resolved tomography has been first demonstrated!

Possibility of look through a real nozzle!

Edge-Enhanced Phase-Contrast

Collaborated with Kamel Fezzaa and Wah-Keat Lee of XFD/ANL

24

Filtered White Beam

Data collected at 7-ID, APS

Ultrafast Imaging

Data collected at 7-ID, APS

The Action of Needle!

QuickTime[™] and a DV/DVCPRO - NTSC decompressor are needed to see this picture.

Bubbles!

QuickTime[™] and a DV/DVCPRO - NTSC decompressor are needed to see this picture.

Future Directions

- Ultrafast time-resolved phase-contrast image of liquid droplets outside of nozzles
 - Microfocusing filtered white beam
- X-ray version of particle imaging velocimetry
 - Matured technique using laser imaging methods
 - Phase-contrast imaging provide enhanced particle edge detectability
 - Penetration ability of x-ray beam wellsuited for multiphase flow with gas/liquid/solid mixture.

Future Directions

For smaller object, better than µm spatial resolution is needed, which demands <u>Micro- and nano-focusing</u> for <u>phase contrast</u> <u>time-resolved</u>, <u>full-field imaging</u>

Formation, Stability, and Breakup of Nanojets Moseler & Landman, *Science* **289** 1165 (2000)

Lohse, *Nature* **418** 381 (2002)

Future Directions

May 2003

