Site Assessment Report:

BLM Red Top Retort Site Wood River, Alaska

Prepared for AQE, Inc.

Prepared by C. J. Elsmann, Quest Environmental

August, 1994

AQE TO1

QE 5231

Table of Contents

Page

	Introduction: Project Purpose	1
1.0	Project Background and Summary	1
2.0	Methodology	2
3.0	Project Narrative	4
4.0	Analytical Results and Discussion	5
5.0	Quality Control	17
6.0	Drawings	18
7.0	Photographs	36
8.0	Conclusions, Risk Assessment and Recommendations	43
9.0	Attachments	46
	Tables	
I	Test Hole Soil Analyses Results	9
H	Surface Soils Analyses Results	10
111	Water Analyses Results	13
IV	Miscellaneous Analyses Results	14
V	Drummed Product Analyses Results	15
VI	Quality Control Precision Comparisons	17
VII	ADEC POL Soil Cleanup Matrix	45
	Drawings	
Fig. 1	Vicinity Map	19
Fig. 2	Groundwater, Surface Water, Sediment and Background Samples	20
Fig. 3	Retort Area Test Hole Samples	21
Fig. 4	Retort Shack Interior Samples	22
	Test Hole Logs	23-35

Introduction: Project Purpose

This report presents chemical and observational data collected and evaluated during a Site Assessment made in support of a Remedial Investigation of a site administered by the U.S. Bureau of Land Management. The objectives of the Site Assessment were to identify the nature and extent of potential contaminants for the purposes of mitigating contaminant exposure by selecting appropriate and timely remedial responses. This report presents the Risk Assessment developed as a result of Site Assessment data evaluation and interpretation, and an analysis of and recommendation for Treatment Alternatives.

1.0 Project Background and Summary

1.1 Site Physical Setting

The site is located on the eastern bank of the Wood River, approximately 3/4 of a mile downstream from the point where the Wood River exits Aleknagik Lake, and approximately 18 miles north of the town of Dillingham, in the southwest quadrant of the State of Alaska. The site's legal description is Section 29, Township 10 South, Range 55 West, Seward Meridian.

The site is situated on the relatively inactive Wood River flood plain, and is formed primarily of riverine gravels containing varying amounts of silt, overlain with approximately 6" of humus and peat. Groundwater flows down the adjacent Marsh Mountain in a more-or-less southwesterly direction into the tide-influenced Wood River. No ponds, streams or other wetland features were observed, with the exception of a small stream approximately 400' south (downriver) of the site. Mean average precipitation, including snowfall, is 24.44 inches, according to the National Weather Service. The site's primary permanent man-made feature is a modest shack constructed of wooden support posts and galvanised metal sides and roof, measuring approximately 18' by 12'. The shack sits in level attitude approximately 30' inland of the Wood River, and approximately 12 inches above the high river mark.

Small amounts of debris are scattered about the site, as were 22 steel barrels of 55 and 110gallon volumes filled to varying levels with POLs now identified as primarily Bunker-C.

1.2 Site Background

Following the discovery of the mercury ore Cinnabar (mercuric sulphide) near the peak of Marsh Mountain in the 1940s, the retort shack site was used to house the roasting/retorting (recovery through distillation) component of a small-scale mercury mining project which began at the end of World War II and ceased in the 1950's. A crushing (ball) mill was erected on Marsh Mountain, approximately 1 mile east of the retort shack, and crushed ore was transported by road to the site. Crushed ore was introduced into the roaster/retort cavity. Mercury vapor was extracted by the application of wood-fueled heat, and liquid mercury was subsequently condensed within two air-cooled steel pipe sections (condensers). Simple in design, such recovery processes were reputedly highly efficient in operation.

According to anecdotal information, the barrels of Bunker C distillate petroleum were to be used to more efficiently fuel the roaster/retort. According to the Bureau of Land Management, both the State of Alaska Department of Environmental Conservation and Greenpeace have recently conducted sampling at the site. Reports of these activities have not been presented to assessment personnel in their entirety, and will not be discussed here. QE 5231

1.3 Site Assessment Summary

A Site Assessment was conducted by QE on 27 June through 1 July, 1994. Soil, water, product and dust swipe samples collected at the site were analyzed by Analytical Technologies, Inc. (ATI) of Renton, Washington. Elemental (free) mercury and mercuric sulphide (cinnabar) were discovered within the site's soils in significant concentrations. Site soils are also contaminated with the petroleum product Bunker-C. Relatively small amounts of asbestos containing building material debris are also present on the site.

2.0 Methodology

The site assessment was performed in accordance with the basic quality controls and data quality objectives outlined in QE's ADEC approved Quality Assurance Program Plan (QAPP) by C. J. Elsmann of QE. Although this assessment has no relationship with underground storage tanks, the same standards of quality control, sample collection, sample treatment and analytical methodologies were utilized. Sample quantities and methodologies are listed below (where not specifically identified, sample amounts include quality control replicate and split replicate samples).

- Forty-three (43) soil samples were analyzed at ATI by EPA Test Method 7471 for mercury. Splits of each sample (exclusive of QC splits) were held at ATI's laboratory. Twelve (12) of these splits were later analyzed for mercury following a 1311 (TCLP) extraction.
- Two (2) soil samples were analyzed at ATI by EPA Test Methods 6010 and 7060 for antimony and arsenic, respectively.
- Two (2) soil samples were analyzed at ATI by EPA Test Methods 8100 mod., 8020 and 8010 for Diesel Range Organics (DRO), BTEX, and Halogenated Volatile Organics (HVO), respectively.
- Three (3) groundwater samples were analyzed at ATI for mercury by EPA Test Method 7471.
- One (1) groundwater sample was analyzed at ATI by EPA Test Methods 418.1 and 8020 for Total Recoverable Petroleum Hydrocarbons (TRPH) and BTEX, respectively.
- One (1) surface (river) water sample was analyzed at ATI by EPA Test Method 7471 for mercury.
- Two (2) river-bottom sediment samples were analyzed at ATI for mercury by EPA Test Method 7471.
- One (1) trip blank water sample was analyzed at ATI by EPA Test Method 8020 for BTEX.
- One (1) equipment rinsate water sample was analyzed at ATI by EPA Test Method 7471 for mercury, and one (1) equipment rinsate water sample was analyzed by EPA Test Methods 8100 mod., 8010 and 8020 for DRO, HVO and BTEX, respectively.

- Six (6) swipe samples were collected from interior areas of the retort shack and analyzed at ATI for mercury by EPA Test Method 7471.
- Two (2) mineral specimens were analyzed by ATI for mercury by EPA Test Method 7471. These samples were also re-analyzed following a TCLP extraction (1311).
- Four (4) drum product samples were analyzed by ATI's subcontractor lab' by ASTM-93, and EPA Methods AES 0029, 8080 and 9076 for Flash Point, Total Metals, Polychlorinated Biphenyls (PCBs), and Total Organic Halogens, respectively, to satisfy the EPA "Burn-Specifications."
- Thirty-five (35) soil samples were analyzed on site with the BiMelyze Mercury Assay Tube Kit For Solid Matrices manufactured by BioNebraska, Inc. of Lincoln, Nebraska. Results were disappointing; BioNebraska Inc. will reconform the assay kit to conform with expected project requirements, should this field kit be used in future.
- Three building material samples were analyzed at QE for asbestos by the EPA Interim Method for the Detection of Asbestos in Building Materials.

Samples were individually numbered at the time of collection within eight series of samples according to the following method:

94RTM1 series, soil samples;

94RTM2 series, surface and rinsate water samples;

94RTM3 series, river sediment samples;

94RTM4 series, asbestos building material samples;

94RTM5 series, groundwater samples;

94RTM6 series, surface mercury swipe samples;

94RTM7 series, barrel contents samples;

94RTM8 series, mineral samples.

Soil samples were collected into appropriate sized glass containers with new, clean disposable spoons. Groundwater samples were collected into glass and plastic containers with a hand-pump attached to a Vapor-Probe soil penetration device after having purged the borehole for five minutes. Surface water and rinsate water samples were collected directly into sample containers. Swipe samples were collected by rubbing a cotton swipe over a measured one-foot square area, and then sealing the swipe within a clean 40 ml glass container. River sediment samples were placed into glass containers after having been retrieved from the river bottom with an aluminum and steel benthic "clamshell" type sampling device. Barrel contents samples were placed into glass sampling containers with disposable glass "drum thieves." Asbestos samples were sealed within plastic bags. Mineral samples were also sealed within plastic bags.

Samples were quickly containerized, and those requiring refrigeration were immediately put into a cooler kept at less than four degrees Celsius with artificial "ice".

Test Holes were advanced with a post-hole digger until groundwater was reached (a maximum depth of 1.8 feet). Test Holes were sealed for over half their depths with Bentonite Clay hydrated each six-inch lift. Test Holes were completed at measured distances from the retort shack, individually numbered, and marked with wooden survey stakes. Non-disposable sampling equipment was decontaminated with a solution of Simple Green and deionized water, followed by three rinses with distilled water. Proper custody was maintained over samples at all times. Samples were carried by hand to ATI in Anchorage, Alaska.

3.0 Project Narrative

3.1 27 June 1994

Elsmann and McGowan of QE arrived on site for the initial inspection, wearing Type B SCBA personnel protection equipment. Eighteen points about the general site and within the retort shack were tested for the presence of mercury vapors with a real-time Jerome 431-X-Gold Film Hg Analyzer. As all tests were < .002 ppm, assessment personnel doffed SCBA gear and began developing a site plan and making initial observations. Weather was sunny with cloudy intervals, with temperatures in the mid-sixties, Fahrenheit, and a light ~ 2-knot wind.

3.2 28 June 1994

The exclusion, contaminant reduction and clean zones were established. Equipment and personnel decontamination stations were constructed. Test Hole 1 was advanced and sampled. POL stained areas were noted. Weather was overcast, with temperatures in the sixties, Fahrenheit, and a light ~ 5-knot wind.

3.3 29 June 1994

Test Holes 2 through 12 were advanced and sampled. The depth to water in the Test Holes varied from 1.25 to 1.8 feet, depending on the tide. Dust swipe samples from the retort shack interior were collected. Weather conditions were sunny with cloudy intervals, with temperatures in the seventies, Fahrenheit, and a light ~ 5-knot wind.

3.4 30 June 1994

Test Hole 13 was advanced and sampled. Asbestos samples were collected. Most surface soil samples were collected. Groundwater and river sediment samples were collected. One of the four drum contents samples was collected. One mercury sampling equipment rinsate water sample was collected. Free mercury in the form of fine (often < 1 mm dia.) droplets was observed at or slightly beneath the soil surface within the retort shack. Weather conditions were sunny, with temperatures in the mid-sixties, Fahrenheit, and a light ~ 1-knot wind.

3.5 01 July 1994

The balance of soil and drum samples was collected. The river water was sampled at the surface 10 feet offshore of the site's landing area. One POL equipment rinsate water sample was collected. One sample of reddish cinnabar ore and one sample of brown processed

cinnabar (slag) were collected. The site was secured with appropriate warning signage, and personnel and equipment were demobilized. Weather conditions were cloudy with light rain, with temperatures in the low sixties, Fahrenheit, and a light ~ 5-knot wind.

4.0 Analytical Results and Discussion

4.1 Metals in Soil

Site soils, particularly within and proximal to the retort shack, are heavily contaminated with elemental (free) mercury.

Soil samples collected within the retort shack and tested for mercury produced a range of concentrations from 61 ppm in sample 1031 to 15,000 ppm in sample 1034.

Soil samples collected at the surface ten feet from the retort shack and tested for mercury produced a range of concentrations from 22 ppm at Test Hole 6, to 2,200 ppm at Test Hole 2.

Subsurface soil samples collected ten feet from the retort shack and tested for mercury produced a range of concentrations from None Detected at Test Hole 7 at a depth of 1.8 feet, to 140 ppm at Test Hole 2 at a depth of 1.25 feet.

Soil samples collected at the surface five feet from the river bank and tested for mercury produced a range of concentrations from 9.9 ppm at Test Hole 11, to 300 ppm at Test Hole 9.

Subsurface soil samples collected five feet from the river bank and tested for mercury produced a range of concentrations from None Detected at Test Hole 11 at a depth of 1.5 feet, to 2.4 ppm at Test Hole 10, also at a depth of 1.5 feet.

Soil sample 1039 and it's split replicate 1040 were collected from the surface 20 feet east of the retort shack's east corner, and when analyzed for mercury produced results of 9.2 ppm and 12 ppm, respectively.

Soil sample 1041 and it's split replicate 1042 were collected from the surface 30 feet east of the retort shack's east corner, and when analyzed for mercury produced results of 5.8 ppm and 8.6 ppm, respectively.

Background soil sample 1038 was collected from the surface 75 feet north of the retort shack's north corner, and when analyzed for mercury produced results of 0.19 ppm.

Arsenic levels ranged from 4.9 ppm in background sample 1038 to 57 ppm in sample 1033 collected at the surface of Test Hole 13, within the retort shack.

Antimony, another metal associated with mercury roasting/retorting operations, was not detected in the two samples analyzed (1033 and 1038).

Cinnabar ore sample 8001 showed a mercury concentration of 3.1 ppm.

Processed ore (slag) sample 8002 showed a mercury concentration of 14 ppm.

Twelve (12) of the above samples were also analyzed for TCLP mercury. These concentrations ranged from None Detected in samples 1004, 1021, 1022, 1038, 8001 and 8002, to 0.17 ppm in sample 1034, which had a results of 15,000 ppm after the standard (initial) extraction.

Mercury concentrations decreased as collection points moved away from the contamination source (the retort shack) and were also in greater concentrations at the surface than at depth. Laboratory results and observations at the site point to a low incidence of reaction on the part of mercury with other available chemicals. Environmental factors also appear to have had little effect on the mercury, particularly within the retort shack itself. The presence of free mercury, droplets, drums and the shack itself all in a relatively undisturbed state points to the fortunate stability of the river's flood-plain, i.e., there does not appear to have been significant flooding within the past 50 years.

4.2 Metals in Water

The three (3) groundwater samples analyzed for mercury produced results of 0.00097 ppm (sample 5001 from a point 9' south [downstream] of the retort shack), 0.0014 ppm (sample 5002 from a point 25' south [downstream]of the retort shack) and 0.00099 (sample 5005 from a point 100' upstream of the retort shack).

Surface water sample 2001 from the surface 10 feet offshore of the site's landing area produced a mercury concentration of 0.00035 ppm.

All groundwater and surface water samples analyzed for mercury were less than the state and federal Maximum Contaminant Level (MCL) of 0.002 ppm for drinking water.

4.3 Metals in Other Matrices

Mercury swipe sample results, all collected from surfaces within the retort shack, ranged from a low of 7.7 ppm (sample 6002, collected from the midpoint of the northeast interior wall) to 940 ppm (sample 6003, collected from directly above the retort hearth on the carbon-black coated ceiling).

The two samples of river sediment tested for mercury yielded results of 0.19 ppm (sample 3001 from a point 15' offshore of the site landing area at a depth of approximately 5') to None Detected (sample 3002 from 100' downstream of the site, 15' offshore and at a depth of approximately 5').

4.4 POLs in Soil

Portions of the site are heavily contaminated with Bunker-C refined petroleum. All such areas are also contaminated with mercury.

Sample 1004 was analyzed for petroleum products along with mercury. The sample was collected from a darkly stained area (Test Hole 2) 10' northwest of the retort shack's northwest side. The analysis by EPA Test Method 8100 modified produced DRO results of 1200 ppm. Analyses by EPA Test Methods 8020 and 8010 both produced results of None Detected.

Sample 1043 was also analyzed for petroleum products along with mercury. The sample was collected from a darkly stained area 15' southwest of the retort shack's southwest side. The analysis by EPA Test Method 8100 modified produced DRO results of 140,000 ppm. Analyses by EPA Test Methods 8020 and 8010 both produced results of None Detected.

4.5 POLs in Water

Sample 5003 from a point 18" south of Test Hole 2, one of the heaviest stained areas, was tested for TRPH by EPA Test Method 418.1 and BTEX by EPA Test Method 8020. Both analyses produced results of None Detected.

4.6 Drummed POLs

Twenty-two drums containing product were found at the site. The following is a list of each drum's characteristics:

Field No. /		Suspected	•	. .	
Drum Volume, Gal.	Location C	ontents, Desc.	Approx. Quan.,	Gal.	Comments
1 / 55	Under Tarp	Bunker-C	35		
2 / 55	Under Tarp	Bunker-C	25		Sample 7002
3 / 55	Under Tarp	Bunker-C	55		
4 / 55	Under Tarp	Bunker-C	55		ч.
5 / 55	Under Tarp	Gear Oil, Olive	55		Sample 7004
6 / 55	Under Tarp	Bunker-C / Wat	er 10		·
7 / 55	Under Tarp	Bunker-C	55		Sample 7002
8 / 55	Under Tarp	Bunker-C	55		·
9 / 55	Under Tarp	Bunker-C	55		Sample 7002
10 / 55	Under Tarp	Bunker-C	25		
11 / 55	Under Tarp	Bunker-C	55		Sample 7002
12 / 55	NW Shack Wal	I Motor Oil, Brow	n 30		Sample 7001
13 / 55	NW Shack Wal	I Bunker-C / Wat	er 20		·
14 / 55	NW Shack Wal	I Bunker-C / Wat	er 20		Sample 7002
15 / 110	By Shore	Bunker-C	110 (Pu	mped Into Two	55-Gal. Drums)
16 / 55	By Shore	Bunker-C	55		·
17 / 110	By Shore	Bunker-C	110 (Pu	mped Into Two	55-Gal. Drums)
18 / 110	By Shore	Bunker-C	110 (Pu	mped Into Two	55-Gal. Drums) 7002
19/110	By Shore	Bunker-C			55-Gal. Drums)
20/110	By Shore	Bunker-C	110 (Pu	mped Into Two	55-Gal. Drums) 7002
21 / 110	By Shore	Bunker-C	110 (Pu	mped Into Two	55-Gal. Drums) 7002
22 / 110	By Shore	Bunker-C	•		55-Gal. Drums)

Product samples (7001, 7002 and 7003 and 7004) were analyzed by the Fuel Identification modified EPA Test Method 8015. Sample 7001, collected from drum 12, produced results indicative of mineral oil. Samples 7002 and 7003 produced results indicative of Bunker-C. Sample 7004 produced results indicative of a heavier oil, such as might be used as a lubricant.

These samples were also analyzed in compliance with the EPA requirements for use as fuels, the so-called "Burn Spec." Cadmium, chromium, arsenic, PCBs and Total Organic Halogens were not detected in any sample. Slight amounts of lead were detected in 7001, 7002, and 7003. Results indicate use as a fuel is appropriate for the drummed POLs found on site.

4.7 Asbestos

Cement Asbestos Board (CAB) debris observed around the retort shack was found to contain 25% chrysotile asbestos. Gasket material from the lower end of the retort was found to contain 90% chrysotile asbestos.

The following are tabulated laboratory results. Copies of lab' data are presented in Section 9.

Collect. Date,'94	Lab ¹	Sample No. ²	Location / Depth, Feet	Analyte / Method	Result, ppm	Field Analysis Result, ppm ³	TCLP Result, ppm
28 June	ATI	1001	TH 1 / Surface	Hg / 7471	64	0.51	***
28 June	ATI	1002	TH 1 / 1.5	Hg / 7471	0.55	0.04	***
29 June	ATI	1003	TH 2 / Surface	Hg / 7471	2200	0.63	0.027
29 June	ΑΤΙ	1004	TH 2 / 1.25	Hg / 7471	140	0.25	ND
				DRO / 8100 mod.	1200		
				BTEX / 8020	ND		
				HVO / 8010	ND		
29 June	ATI	1005	TH 3 / Surface	Hg / 7471	960	0.55	***
29 June	ATI	1006	TH 3 / 1.25	Hg / 7471	0.52	0.08	***
29 June	ATI	1007	TH 4 / Surface	Hg / 7471	1400	0.75	***
29 June	ATI	1008	TH 4 / 1.25	Hg / 7471	17	0.11	***
29 June	ATI	1009	TH 5 / Surface	Hg / 7471	590	0.37	•••
29 June	ATI	1010	TH 5 / 1.25	Hg / 7471	3.4	0.09	***
29 June	ATI	1011	TH 6 / Surface	Hg / 7471	22	0.25	***
29 June	ATI	1012	TH 6 / 1.25	Hg / 7471	6.1	0.0, 0.01	***
29 June	ATI	1013	TH 7 / Surface	Hg / 7471	30	0.06	***
29 June	ATI	1014	TH 7 / 1.8	Hg / 7471	ND	0.02	***

Table I: Test Hole Soil Analyses Results

Analytical Technologies, Inc. of Anchorage, Alaska.

Sample number prefixes (94RTM) are not shown. The first digit of each sample No. denotes the sample series, e.g, "1" equals the soil sample series, "2" equals the surface water sample series, etc.

Mercury field screening with the BiMelyze Immunoassay kit.

З DRO

1

2

Diesel Range Organics: C12 through C28. BTEX Benzene, Toluene, Ethylbenzene and Xylenes, shown here as a total.

Halogenated Volatile Organics. HVO

*** Not analyzed.

Collect. Date,'94	Lab'	Sample No.²	Location / Depth, Feet	Analyte / Method	Result, ppm	Field Analysis Result, ppm ³	Hg TCLP Result, ppm
29 June	ATI	1015	TH 8 / Surface	Hg / 7471	24	0.2, 0.19	***
29 June	ATI	1016	TH 8 / 1.8	Hg / 7471	1.6	***	***
29 June	ATI	1017	TH 9 / Surface	Hg / 7471	300	0.63	***
29 June	ATI	1018	TH 9 / 1.5	Hg / 7471	1.8	***	***
29 June	ATI	1019	TH 10 / Surface	Hg / 7471	17	0.53	***
29 June	ATI	1020	TH 10 / 1.5	Hg / 7471	2.4	***	***
29 June	ΑΤΙ	1021	TH 11 / Surface	Hg / 7471	9.9	0.11	ND
29 June	ATI	1022	TH 11 / 1.5	Hg / 7471	ND	***	ND
29 June	ATI	1023	TH 12 / Surface	Hg / 7471	13	0.02	***
29 June	ATI	1024	TH 12 / 1.5	Hg / 7471	0.75	***	***
30 June	ATI	1033	TH 13 / Surface	Hg / 7471	4300	2.04	***
				As / 7060	57		
				Sb / 6010	ND		
30 June	ATI	1037	TH 13 / 1.5	Hg / 7471	370	***	***

Table I: Test Hole Soil Analyses Results, Cont.

Analytical Technologies, Inc. of Anchorage, Alaska.

2 Sample number prefixes (94RTM) are not shown. The first digit of each sample No. denotes the sample series, e.g, "1" equals the soil sample series, "2" equals the surface water sample series, etc.

Mercury field screening with the BiMelyze Immunoassay kit. 3

DRO

Diesel Range Organics: C_{12} through C_{28} . Benzene, Toluene, Ethylbenzene and Xylenes, shown here as a total. BTEX

HVO Halogenated Volatile Organics.

Not analyzed.

1

Collect. Date,'94	Lab ¹	Sample No.²	Location	Analyte / Method	Result, ppm	Field Analysis Result, ppm ³	Hg TCLP Result, ppm
30 June	ATI	1025	Shack Interior	Hg / 7471	1600	1.69	0.021
30 June	ATI	1026	QC Split of 1025	Hg / 7471	1500	***	0.023
30 June	ATI	1027	Shack Interior	Hg / 7471	1200	1.03	***
30 June	ATI	1028	QC Split of 1027	Hg / 7471	1600	***	***
30 June	ΑΤΙ	1029	Shack Interior	Hg / 7471	500	1.46, 1.60, 1.57, 1.57, 1.62, 1.62	0.0045
30 June	ΑΤΙ	1030	QC Split of 1029	Hg / 7471	650	***	***
30 June	ΑΤΙ	1031	Shack Interior	Hg / 7471	61	0.53	0.00037
30 June	ATI	1032	Shack Interior	Hg / 7471	1300	***	***
30 June	ΑΤΙ	1034	Shack Interior	Hg / 7471	15000	***	0.17
30 June	ATI	1035	Shack Interior	Hg / 7471	1000	0.43, 0.57, 0.60, 0.37, 0.35, 0.36	***
30 June	ATI	1036	Shack Interior	Hg / 7471	• 480	***	***

Table II: Surface Soil Analyses Results

Analytical Technologies, Inc. of Anchorage, Alaska.

2 Sample number prefixes (94RTM) are not shown. The first digit of each sample No. denotes the sample series, e.g, "1" equals the soil sample series, "2" equals the surface water sample series, etc.

Mercury field screening with the BiMelyze Immunoassay kit.

DRO

Diesel Range Organics: C_{12} through C_{28} . Benzene, Toluene, Ethylbenzene and Xylenes, shown here as a total. BTEX

HVO Halogenated Volatile Organics.

*** Not analyzed.

1

3

Collect. Date,'94	Lab ¹	Sample No.²	Location	Analyte / Method	Result, ppm	Field Analysis Result, ppm ³	Hg TCLP Result, ppm
30 June	ΑΤΙ	1038	Background	Hg / 7471	0.19	0.08	ND
				Sb / 6010	ND		-
				As / 7060	4.9		
01 July	ATI	1039	TH 7 + 10'	Hg / 7471	9.2	***	***
01 July	ATI	1040	QC Split of 1039	Hg / 7471	12	***	***
01 July	ATI	1041	TH 7 + 20'	Hg / 7471	5.8	***	***
01 July	ATI	1042	QC Split of 1041	Hg / 7471	8.6		***
01 July	ATI	1043	POL Stained Soil by Shack	DRO / 8100 mod.	140000		
				BTEX / 8020	ND		
				HVO / 8010	ND		

Table II: Surface Soil Analyses Results, Cont.

1 Analytical Technologies, Inc. of Anchorage, Alaska. 2

Sample number prefixes (94RTM) are not shown. The first digit of each sample No. denotes the sample series, e.g, "1" equals the soil sample series, "2" equals the surface water sample series, etc.

З

Mercury field screening with the BiMelyze Immunoassay kit.

Diesel Range Organics: C_{12} through C_{28} . DRO

Benzene, Toluene, Ethylbenzene and Xylenes, shown here as an additive total. BTEX

Halogenated Volatile Organics.

HVO Not analyzed.

Collect. Date,'94	Lab ¹	Sample No. ²	Location	Analyte / Method	Result, ppm
30 June	ATI	5001	Groundwater ³ 9' Downstream of Shack, 1.5' Depth	Hg / 7470	0.00097
30 June	ΑΤΙ	5002	Groundwater ³ 3' N. of TH 11, 1.5' Depth	Hg / 7470	0.0014
30 June	ΑΤΙ	5003	Groundwater ³ 18" S. of TH 2, 1.5' Depth	TRPH / 418.1	ND
				BTEX / 8020	ND
30 June	ATI	5004	Trip Blank	BTEX / 602	toluene 1.3 ppb, TTL xylenes 0.7 ppb
30 June	ATI	5005	Groundwater ³ 100' Upstream of Shack, 1.5' Depth	Hg / 7470	0.00099
01 July	ATI	2001	River Water Opposite Shack	Hg / 7470	0.00035
01 July	ATI	2002	QC Split of 2001	Hg / 7470	0.00046
30 June	ATI	2003	QC Rinsate from Hg Sampling Equip.	Hg / 7470	ND
01 July	ATI	2004	QC Rinsate from POL Sampling Equip.	DRO / 8100 mod.	ND
-				BTEX / 8020	ND

Analytical Technologies, Inc. of Anchorage, Alaska. 1

2 Sample number prefixes (94RTM) are not shown. The first digit of each sample No. denotes the sample series, e.g, "1" equals the soil sample series, "2" equals the surface water sample series, etc.

.

3 Groundwater collected with vapor-probe tool and hand pump.

DRO

Diesel Range Organics: C_{12} through C_{28} . Benzene, Toluene, Ethylbenzene and Xylenes, shown here as an additive total. **BTEX** Halogenated Volatile Organics.

HVO ND

Collect. Date, '94	Lab'	Sample No. ²	Location	Matrix	Analyte / Method	Result, ppm
29 June	ATI	6001	NW. Wall Shack	Dust ³	Hg / 7471	85
29 June	ΑΤΙ	6002	NE. Wall Shack	Dust	Hg / 7471	7.7
29 June	ATI	6003	Ceiling Above Retort	Dust	Hg / 7471	940
29 June	ATI	6004	SE. Wall Shack	Dust	Hg / 7471	50
29 June	ATI	6005	Upper End Retort	Dust	Hg / 7471	15
29 June	ATI	6006	Lower End Retort	Dust	Hg / 7471	23
30 June	QE	4001	15' SW. of Shack	САВ	Asbestos / PLM	25 % Chryso.
30 June	QE	4002	Lower End Retort	Gasket	Asbestos / PLM	90 % Chryso.
30 June	QE	4003	Beneath Retort	Cement	Asbestos / PLM	ND
30 June	ATI	3001	River Sediment, by Site Landing	Sediment	Hg / 7471	0.19
30 June	ATI	3002	River Sediment, 100' Downstrearn of Site	Sediment	Hg / 7471	ND
1 July	ATI	80014	Cinnabar Ore (mercuric sulphide)	Mineral	Hg / 7471	3.1
1 July	ATI	8002 ^₄	Processed Cinnabar Ore (Slag)	Mineral	Hg / 7471	14

Table IV: Miscellaneous Analyses Results

1 Analytical Technologies, Inc. of Anchorage, Alaska.

2

3

4

Sample number prefixes (94RTM) are not shown. The first digit of each sample No.

denotes the sample series, e.g. "1" equals the soil sample series, "2" equals the surface water sample series, etc.

- Surface dust swipe collected from one foot² area upon cotton fabric swipe.
- TCLP mercury extraction results are "None Detected" for both samples.
- ND None Detected; i.e. less than the method detection limit

Chryso. Chrysotile form asbestos.

Collect. Date, '94	Lab ¹	Sample No. ²	Location	Analyte	Result, ppm
01 July	ATI	7001 ³	Clear Brown/Amber Suspect POL, Bbl. 12	Fuel ID	<5000 GRO, 630000 DRO
				Cd	ND
				Cr	ND
				Pb	1
				As	ND
				PCBs	ND
				FP	> 210 F
				тон	ND
01 July	ATI	7002⁴	Suspect Bunker C, Composite of Bbls. 2, 7, 9, 11	Fuel ID	<4900 GRO, 570000 DRO
				Cd	ND
				Cr	ND
				Pb	12
				As	ND
				PCBs	ND
		-		FP	> 210 F
				тон	ND

Table V: Drummed Product Analyses Results

Analytical Technologies, Inc. of Anchorage, Alaska. 1

- 2 Sample number prefixes (94RTM) are not shown. The first digit of each sample No. denotes the sample series, e.g, "1" equals the soil sample series, "2" equals the surface water sample series, etc.
- Sample chromatogram indicates petroleum hydrocarbons characteristic of mineral oil. 3
- 4 Sample chromatogram indicates petroleum hydrocarbons characteristic of both diesel and mineral oil.
- Fuel ID EPA Method 8015 mod.
- DRO
- Diesel Range Organics: C_{10} through C_{28} Gasoline Range Organics: C_7 through C_{10} GRO

FP Flash Point by ASTM D-93 in degrees Fahrenheit.

Total Metals EPA Method AES 0029

- Polychlorinated Biphenyls by EPA Method 8080. PCBs
- TOH Total Organic Halogens by EPA Method 9076 mod.
- ND None Detected; i.e, less than the method detection limit

Collect. Date,'94	Lab ¹	Sample No. ²	Location	Analyte	Result, ppm
30 June	ATI	7003 ³	Suspect Bunker C, Composite of Bbls. 14, 18, 20, 21	Fuel ID	<4500 GRO, 580000 DRO
				Cd	ND
				Cr	ND
				Pb	14
				As	ND
				PCBs	ND
				FP	> 210 F
				тон	ND
01 July	ΑΤΙ	70044	Translucent Olive/Green Suspect POL, Bbl. 5	Fuel ID	<370 GRO, 12000 DRO
				Cd	ND
				Cr	ND
				Pb	ND
				As	ND
				PCBs	ND
				FP	> 210 F
				тон	ND

Table V: Drummed Product Analyses Results, Cont.

1 Analytical Technologies, Inc. of Anchorage, Alaska.

2 Sample number prefixes (94RTM) are not shown. The first digit of each sample No. denotes the sample series, e.g, "1" equals the soil sample series, "2" equals the surface water sample series, etc.

3 Sample chromatogram indicates petroleum hydrocarbons characteristic of both diesel and mineral oil.

4 Sample chromatogram indicates petroleum hydrocarbons heavier than mineral or gear oil.

Fuel ID EPA Method 8015 mod.

DRO Diesel Range Organics: C₁₀ through C₂₈

GRO Gasoline Range Organics: C7 through C10

FP Flash Point by ASTM D-93 in degrees Fahrenheit.

Total Metals EPA Method AES 0029

PCBs Polychlorinated Biphenyls by EPA Method 8080.

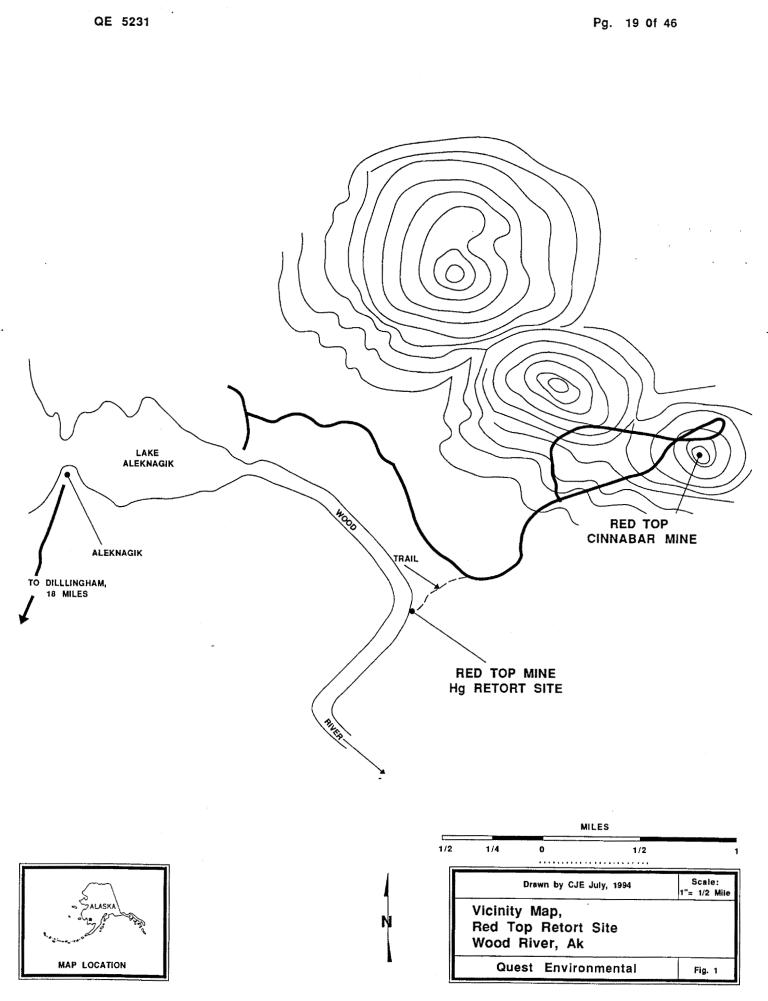
TOH Total Organic Halogens by EPA Method 9076 mod.

5.0 Quality Control

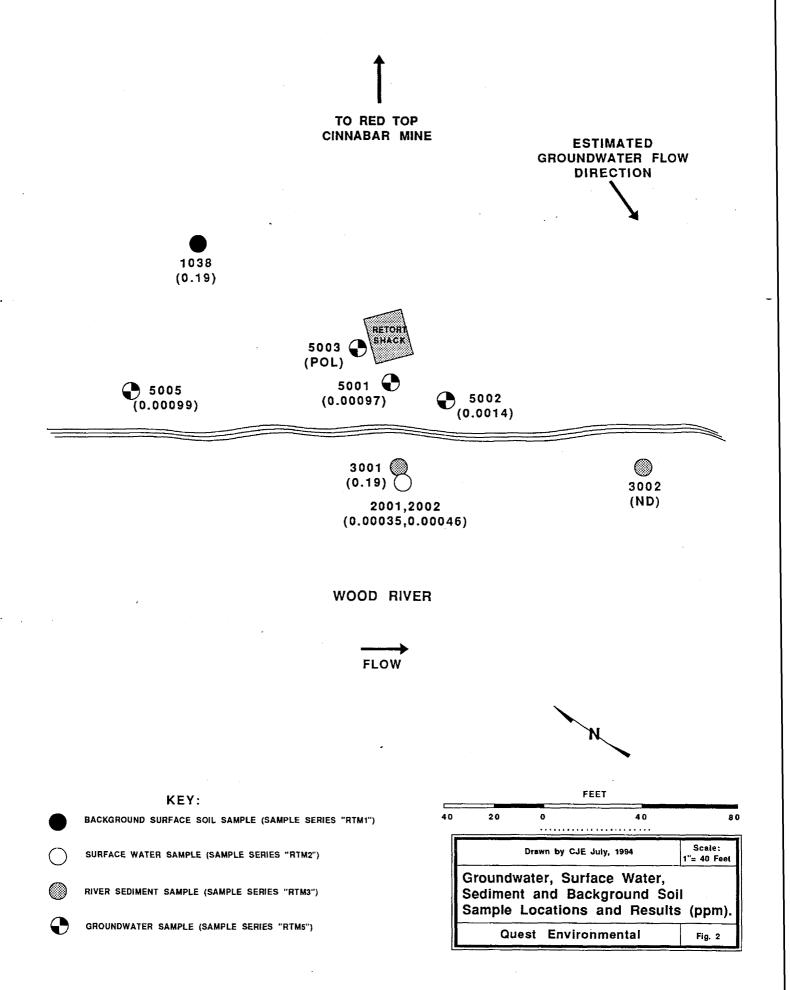
Quality assurance objectives for this project are discussed below. Table VI compares project and replicate sample results.

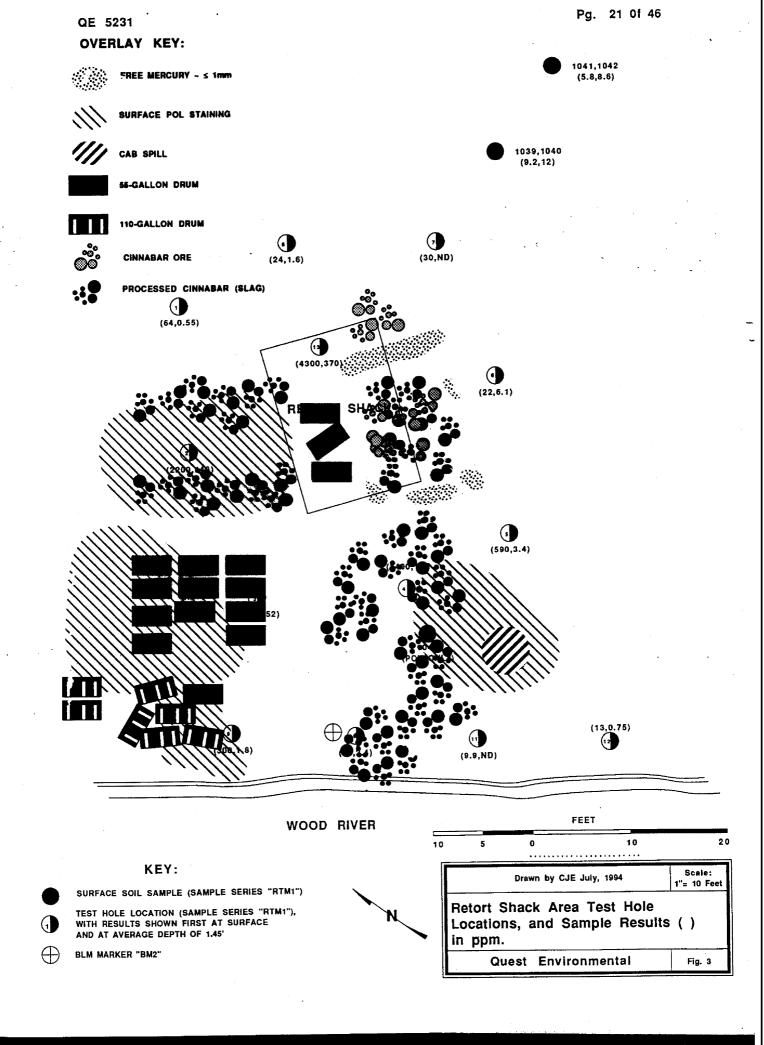
- Field personnel used proper sample collection and handling procedures.
- Field equipment calibration standards were met.
- The Relative percent difference (RPD) between split-replicate samples was within bounds except for sample set 2001, 2001, which had an RPD of 27.5 instead of the 20% maximum allowable. This lack of precision is not interpreted as significant to project goals.
- Internal laboratory quality assurance objectives were not all met. POL rinsate water sample 2004 was analyzed past its holding time. The MSD result for this sample was also out of limits due to unacceptable surrogate recovery. Sample 1043 was improperly diluted. These departures are not considered sufficient to significantly impact project data.
- Sample holding times were met, except for sample 2004, noted above.
- The percent completeness goal for the project was met.

PROJECT SAMPLE No. / RESULT	REPLICATE SAMPLE No. / RESULT	RPD	GOAL
94RTM1025 / 1600 ppm	94RTM1026 / 1500 ppm	6.45	< 40
94RTM1027 / 1200 ppm	94RTM1028 / 1600 ppm	28.5	< 40
94RTM1029 / 500 ppm	94RTM1030 / 650 ppm	26	< 40
94RTM1039 / 9.2 ppm	94RTM1040 / 12 ppm	26.4	< 40
94RTM1041 / 5.8 ppm	94RTM1042 / 8.6 ppm	38.8	< 40
94RTM2001 / 0.00035 ppm	94RTM2002 / 0.00046 ppm	27.5	< 20

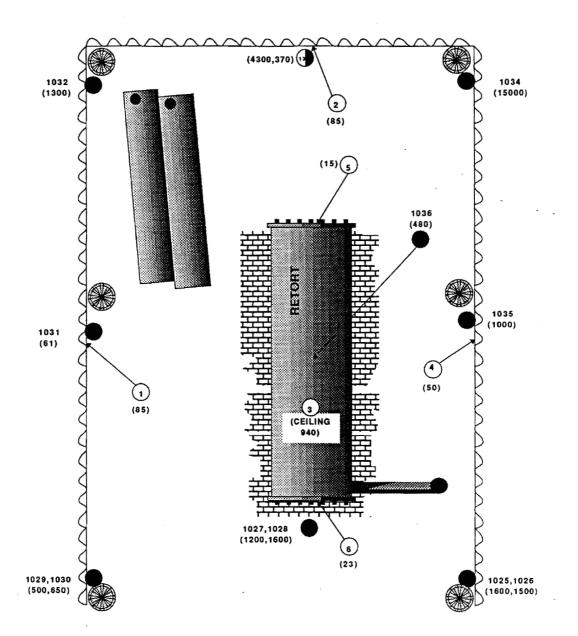

Table VI: QC Precision Comparisons

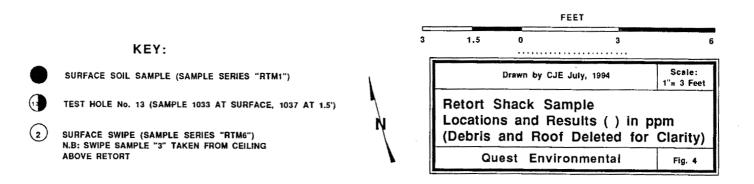
Overall field quality and data quality objectives for this project are considered acceptable.


QE 5231

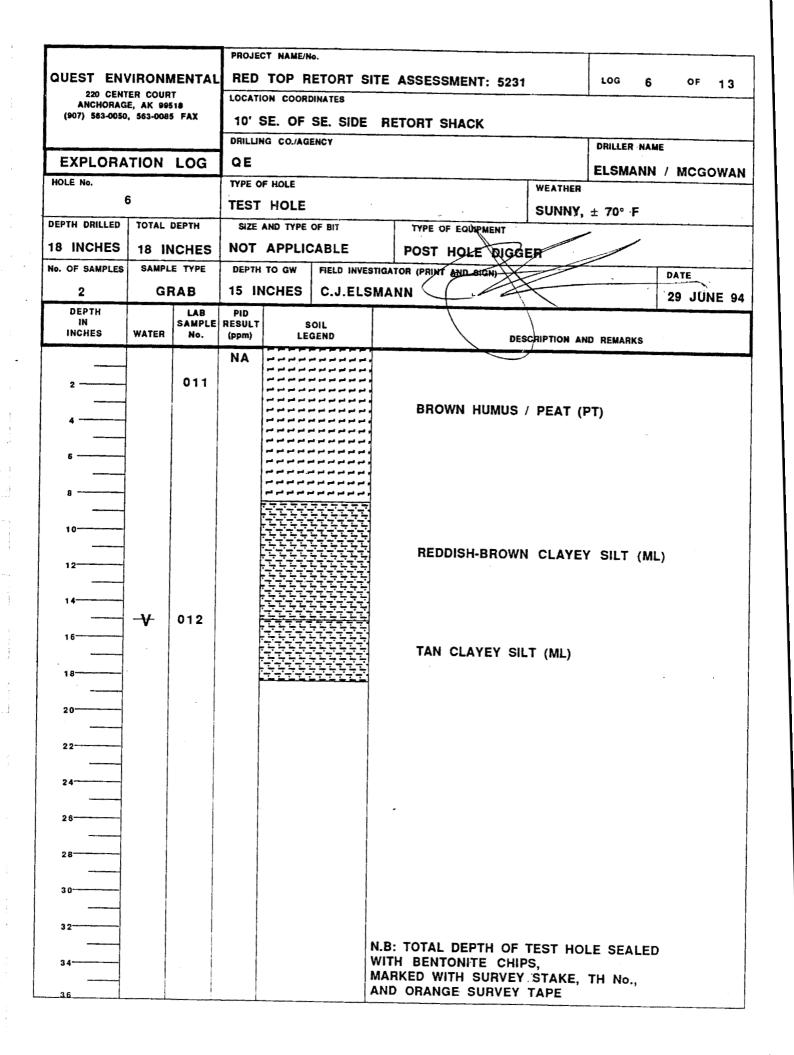

6.0 Drawings

The following drawings are presented for informational purposes only. Scales are approximate.





			PROJE	CT NAME/N	lo.				<u></u>			
QUEST ENV	IRONN	IENTAL	RED	TOP	ETORT S		SSESSME	NT: 5231	l	LOG	OF	13
220 CENT ANCHORAG		T		ON COOR								
(907) 563-0050			10' N	I. OF N	. CORNER	RET	ORT SHA	ск				
				NG CO./AG						DRILLER NA	ME	
EXPLORA	TIÓN	LOG	QE							ł		
HOLE No.			TYPE O	F HOLE					WEATHER	ELSMAN	N / MCC	iOWA
1	1		TEST	HOLE						N, ± 60° F		
DEPTH DRILLED	TOTAL	DEPTH	SIZE	AND TYPE	OF BIT		TYPE OF E	UIPMENT		, <u> </u>	-	
18 INCHES	24 IN	CHES	NOT	APPLIC	CABLE		POST HO		FR	1		
No. OF SAMPLES		E TYPE		TO GW			R (PRINT, AN		2	/	DATE	
2	GF	RAB	18 IN	CHES	C.J.ELS		14	\sim	\leq		28 JL	
DEPTH		LAB	PID	1				14)		20 50	
IN INCHES	WATER	SAMPLE No.	RESULT (ppm)		GEND				SCRIPTION AN	D DEMARKA		
						+		DE	SCRIPTION AN	ID HEMARKS		
			NA]						
2		001]						
]	BROWN	HUMUS	/ PEAT (F	PT)		
]						
6]						
]						
8]						
]				2		
10]						
12]						
14						1						
						1	TAN CL	AYEY SIL	T (ML)			
16						1						
18	-₩	002						. •				
20	1								·			
22							BROWN ≤ 0.5" (SILTY O	RAVEL, N	WELL GR.	ADED,	
		1					5 0.5 ((GIVI)				
24				66666								
						-						
26		-										
28		Í										
30												
32												
						N.B:	TOTAL D	EPTH OF	TEST HO	LE SEALE	ED	
34						MAR	BENTON	UIL CHI	PS, 'STAKE,		,	
36						AND	ORANGE	SURVEY	TAPE			


			PROJEC	CT NAME/N	ю.						
QUEST ENV	IRONN	IENTAL	RED	TOP R	ETORT S	ITE ASSESSMENT: 5231	LO	32		OF	13
220 CENT			LOCATI	ON COOR	DINATES	8			·····		
(907) 563-0050,			10' N	IW. OF	NW. SIDE	RETORT SHACK					
			DRILLIN	IG CO./AG	ENCY		DRIL	LER NA	ME		
EXPLORA	TION	LOG	QE				FIS	MANN		000	
HOLE No.			TYPE O	F HOLE		WEATH					VY A
2	2		TEST	HOLE			IY, ± 70)∘ F			
DEPTH DRILLED	TOTAL I	DEPTH	SIZE	AND TYPE	OF BIT	TYPE OF EQUIPMENT					
18 INCHES	18 IN	ICHES	NOT	APPLIC	CABLE	POST HOLE DIGGER	/	/			
No. OF SAMPLES		E TYPE	·····	TO GW		STIGATOR (PRINT AND SIGH			DAT	F	
2	GF	RAB	14 IN	ICHES	1					JUN	E 4
DEPTH		LAB	PID						10		
IN INCHES	WATER		RESULT (ppm)	-	GEND	DESCRIPTION	-				
			NA			Description	AND REI	AHKS			-
			AN		<u>لیے کی اور کی انے ہے۔</u> یے کے عن انے اس کے ^{اور} کے	1					
2		003]					
						BROWN HUMUS / PEAT	(P T)				
4						HEAVILY STAINED W/			DCC		
6					ہے کے انے کے لیے کے لیے کے لیے کے دی کے لیے کے لیے کے	(ASSUMED BUNKER C)	, 5180	NG O	DOR		
-				┍╺╤╺╤╺╤╺╤ ╼╴╤╶╤╶╤╶╤]					
8				,,,,]					
]					
10				┍┶┶┶┶ ŢŢŢŢŢ							
						REDDISH-BROWN CLA	YEY SI	LT (M	L)		
. 12		· ·				MOD. STAINED W/POL	MOD.	ODO	R		
14				╴┶┶┶┶ ╶┶┰╤┶							
	-+	004									
16											
						BROWN SILTY GRAVE	, WEL	L GR	ADED		
18						≤ 0.5" (GM), MOD. ODC	OR, SHE	EN O	N W	ÁTEF	3
20			,								
22											
24											
						-					
26											
28											
30											
32											
						N.B: TOTAL DEPTH OF TEST			n		
34						WITH BENTONITE CHIPS,			9		
						MARKED WITH SURVEY STAK	E, TH	No.,			
36						AND ORANGE SURVEY TAPE					

·

			PROJEC	T NAME/N),					
QUEST ENV		ENTAL	RED	TOP R	ETORT SIT	E ASSESSMENT: 5231		roe 3	OF	13
220 CENTE ANCHORAGE			LOCATIO	ON COORD	INATES	······································		• •••		
(907) 563-0050,			10' W	. OF W	CORNER	RETORT SHACK				
			DRILLIN	G CO./AGE	NCY			DRILLER NAT	AE	
EXPLORA	TION	LOG	QE					ELSMANN	/ MCGC	OWA
HOLE No.			TYPE O	F HOLE		· ·	WEATHER	·		
3			TEST	HOLE			SUNNY,	± 70° F		
DEPTH DRILLED	TOTAL D	EPTH	SIZE	AND TYPE	OF BIT	TYPE OF EQUIPMENT	·			
18 INCHES	18 IN	CHES	NOT	APPLIC	ABLE	POST HOLE DIGG	ER	1.		
No. OF SAMPLES	SAMPLI	E TYPE	DEPTH	TO GW	FIELD INVEST	IGATOR (PRINT AND BIGN	/		DATE	
2	GF	AB	15 IN	ICHES	C.J.ELSI	IANN	5		29 JUI	NE 9
DEPTH In Inches	WATER	LAB Sample No.	PID RESULT (ppm)		OIL GEND	DES	CRIPTION A	D REMARKS		
			NA				/			
2	•	005		، مرد مرد مرد مرد ر مرد مرد مرد مرد ر مرد مرد مرد مرد	و غیر شدر میر غیر غیر کم اس سے بین بہر میر ض					
		ł			و میں دی ہے ہے ہے ہے اور اس کے او کی کی کی کی کی کی کی کی کی	BROWN HUMUS	/ PEAT (PT)		
4										
6					و هو غو مو مو مو مو مو مو و قو قو قو مو مو مو مو مو					
8										
					55555		•			
10										
						REDDISH-BROW	N CLAYE	Y SILT (N	IL)	
1 2										
14	-4	006								
16	- v -	000								
						TAN CLAYEY SI	LT (ML)			
18	ta.									
	-									
20					ļ					
				İ						
22										
24										
26						-				
28										
30			1							
32						N B. TOTAL DEDTU OF	TECT 14		-n	
34						N.B: TOTAL DEPTH OF WITH BENTONITE CHI		JLE SEAL	.U	
34			ļ			MARKED WITH SURVE	Y STAKE	, TH No.,		
			,			AND ORANGE SURVEY	TADE			

			PROJEC	CT NAME/N	0.								
QUEST ENV			RED	TOP R	ETORT S	ITE ASSES	SMENT	: 5231		LOG	1	OF	13
220 CENT ANCHORAG	E, AK 995	18	LOCATI	ON COORD	INATES					L		• • • • • • •	
(907) 563-0050	, 563-0085	FAX	10' S	W. OF	SW. (OPE	EN) SIDE F	ETORT	SHAC	к				
			DRILLIN	G CO./AG	ENCY					DRILLER N	ME		
EXPLORA	TION	LOG	QE							ELSMAN	N /	MCG	OWAN
HOLE No.			TYPE O	F HOLE		·····			WEATHER				
	•		TEST	HOLE					SUNNY,	± 70° F			
EPTH DRILLED	TOTAL	DEPTH	SIZE	AND TYPE	OF BIT	TYPE	OF EQUIP	MENT		1			
8 INCHES	18 IN	ICHES	NOT	APPLIC	ABLE	POST	HOLE	DIGG					
IO. OF SAMPLES	SAMPL	E TYPE	DEPTH	TO GW	FIELD INVE	STIGATOR (PRIA	T AND SI	and			D	ATE	
· 2	GF	AB	15 IN	ICHES	C.J.ELS	SMANN (a				2	9 JU	NE [*] 94
DEPTH IN Inches	WATER	LAB Sample No.	PID RESULT (ppm)		OIL		(DES	CRIPTION AN		-		
			NA				6		WAIPTION AN	D REMARKS	-		
		0.0]							
2		007		,]							
				ہ ہے ہے ہے ہے ہ ہے ہے ہے ہے	ہے کے لیے ہے اس کے ا اسے اس کے اس کے اس	BR	оми н	UMUS	PEAT (F	די)	N		
				,	ہے دے نے مر مے دے د ہے ہے مر دے در د	1							
6				ے کے قبر کے لیے چڈ چ <u>ڈ چڈ چ</u> ڈ ج	، عبر شر مر مر مر مر م بنا جا بنا جا بنا بنا								
8													
10													
						RE	DISH-	BROWN	CLAYE		A T \		
12													
14	-¥-	008											
16	•												
						IAT I	I CLAY	'EY SIL	.T (ML)				
18			-										
20													
22													
24													
26						-							
28													
20													
30													
32													
34						N.B: TOTA WITH BEN MARKED M AND ORAL	TONIT	E CHIF URVEY	PS, STAKE.		D		

			PROJEC	T NAME/N	0.				
QUEST ENV	IRONM	IENTAL	RED	TOP R	ETORT SIT	E ASSESSMENT: 5231	LOG 5	OF	13
220 CENT			LOCATIO	ON COORD	NNATES				
(907) 563-0050,			10' S	OF S.	CORNER	RETORT SHACK			
				G CO./AGI			DRILLER NAM		
EXPLORA	TION	LOG	QE						
HOLE No.			TYPE O	FHOLF		WEATHER		/ MCGC	JWAN
5	5			HOLE					
DEPTH DRILLED	TOTAL	DEPTH	I	AND TYPE	OF BIT		(, ± 70° F		
18 INCHES				APPLIC			- 1		
No. OF SAMPLES		ICHES	1	TO GW		POST HOLE DIGGER			
				ICHÈS	C.J.ELSI			DATE	
2	GI	AB			U.J.ELSI			29 JUN	VE 94
DEPTH IN Inches	WATER	LAB Sample No.	PID RESULT (ppm)	-	GEND	DESCRIPTION	AND REMARKS		
			NA						
2		009			•	BROWN HUMUS / PEAT	(PT)		
					,		. ,		
4									
6				, , , , , , , , , , , , , , , , , , ,					
8									
10									
						REDDISH-BROWN CLAY	EY SHT (M	L)	
12								-,	
				· · · · · · · · · · · · · · · · · · ·					
14									
16	-₩-	010							
16						TAN CLAYEY SILT (ML)			
18	,								
				-					
20									
22									
24									
26						-			
28									
30									
3 2									
34						N.B: TOTAL DEPTH OF TEST H WITH BENTONITE CHIPS, MARKED WITH SURVEY STAK		D	
		F		1			-,		

			_							
			PROJEC	T NAME/No.	· · ·					
QUEST ENV	IRONM	ENTAL	RED	TOP RE	TORT SI	TE ASSESSMENT: 52	31	LOG 7	OF	13
220 CENT			LOCATIO	ON COORDI	NATES					
(907) 563-0050,	563-0085	FAX	10' E	. OF E.	CORNER	RETORT SHACK				
			DRILLIN	G CO./AGE	NCY			DRILLER NAM	E	
EXPLORA	TION	LOG	QE					ELSMANN	/ MCGO	WAN
HOLE No.			TYPE O	FHOLE			WEATHER			
7			TEST	HOLE		· · · · · · · · · · · · · · · · · · ·	SUNNY,	± 70° F		
DEPTH DRILLED	TOTAL 1	DEPTH		AND TYPE C		TYPE OF EQUIPMENT		/		
24 INCHES		ICHES		APPLIC		POST HOLE DI	GER			
No. OF SAMPLES	SAMPL	E TYPE		TO GW		TIGATOR (PRINTCAND SIGN			DATE	
2	GF	AB	20 IN	ICHES	C.J.ELS	MANN			29 JUN	IE 94
DEPTH In Inches	WATER	LAB SAMPLE No.	PID RESULT (ppm)		DIL		DESCRIPTION A	ND REMARKS		
منيين المراجعة وتحميل الكرياني			NA		، سو^ر سور سور سور میر د . ر شتو همو شدر چنو شور د					
		013			ر شنر خدو شن میر میر میر د ر کنی شن خبر میر میر میر د	BROWN HUM	JS / PEAT ((PT)		
2					, میں میں ہیں ہے میں د ر میں میں ہی میں ہے د			3		
4					ر اسم میں اسر سے میں ا ر اسم اسر میں میں اسر اسر ا ر اسم اسر میں میں اسر اسر ا					
6										
£										
° —								:		
10										
						REDDISH-BRC	WN CLAYE	EY SILT (M	IL)	
12										
14										
16										
18	1						•			
20	-+-	014								
	_					TAN CLAYEY	SILI (ML)			
22										
0.4										
24										
26										
·										
28										
30	-									
32	-									
						N.B: TOTAL DEPTH WITH BENTONITE		OLE SEALE	ED	
34			1			MARKED WITH SUR	VEY STAKE	, TH No.,		
36			<u> </u>	; ; ;		AND ORANGE SUR	EY TAPE			

.

				PROJEC	T NAME/N				· · · · · · · · · · · · · · · · · · ·	1			
	QUEST ENV	IRONN	IENTAL	RED	TOP R	ETORT SI	TE ASSESSI	MENT: 5231		LOG	8	OF	13
	220 CENT Anchoragi			LOCATIO	ON COORD	INATES				L			
	(907) 563-0050			10' N	E. OF N	ie. Side	RETORT SH	ACK					
				DRILLIN	G CO./AGE	INCY		··· /·· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	,, , , , , , , , , , , , , , , , , , ,	DRILLER	NAME	<u> </u>	
	EXPLORA	TION	LOG	QE						FLSM		MCG	OWA
	HOLE No.			TYPE OF	F HOLE				WEATHER			mod	
	ŧ	3		TEST	HOLE				SUNNY,	+ 70°	F		
ł	DEPTH DRILLED	TOTAL	DEPTH	SIZE	AND TYPE	OF BIT	TYPE OF	EQUIPMENT				<u></u>	·
	24 INCHES	24 IN	ICHES	иот	APPLIC	ABLE	POST I	HOLE DIGG	ER	_			
ł	No. OF SAMPLES		E TYPE		TO GW		IGATOR (PRINT				<u> </u>	DATE	
	2	G	RAB	20 IN	ICHES	C.J.ELS		CO				29 JU	NEG
	DEPTH		LAB	PID				F	<u> </u>				
	IN	WATER		RESULT (ppm)		OIL Gend		DES		ND REMAR	KS		
ſ				NA				\sim	/				
	2		015		,	,	BRO	NN HUMUS	/ PEAT (PT)			
	-		1		و غبو خو جو ہے۔ و غبو غبو خو غبو 	و قتو کنو کنو کنو تتر بنی			,	•	\$		
	4				, , , , , , , , , , , , , , , , , , ,	,							
	£												
	8												
	10												
							REDI	DISH-BROWN		Y SILT		N	
	. 12									. 0.21	(1112)	,	
										×			
	14												
	16		}										
	18												
											-		
	20	-4-	016				τδΝ	CLAYEY SI	T (ML)				
	22												
	24												
	26												
	28												
	30												
	32												
								DEPTH OF		DLE SE	ALED		
1			1				WITH BENT	CANTE CHIL	PS				
	34							ITH SURVEY		TH N			

			PROJEC	T NAME/N	0.				1	• • •		
QUEST ENV	IRONM	ENTAL	RED	TOP R	ETORT SI	TE ASSESSN	IENT: 5231		LOG	9	OF	13
220 CENT ANCHORAGI	ER COURT		LOCATI	ON COOR	NNATES				·	·		
(907) 563-0050,			23.5'	W. OF	W. CORN	ER RETORT	SHACK					
				G CO./AG					DRILLER	NAME		
EXPLORA	TION	LOG	QE						FISM		MCG	~\ \/ A
HOLE No.	······	دورور دورور در دور در دور دور دور دور دو	TYPE O	F HOLE				WEATHER	LLOW			
9	•		TEST	HOLE				SUNNY,	+ 70°	F		
DEPTH DRILLED	TOTAL D	EPTH	SIZE	AND TYPE	OF BIT	TYPE OF	ECNIPMENT			• •		
18 INCHES	18 IN	CHES	NOT	APPLIC	ABLE			RP .				
No. OF SAMPLES	SAMPLE		L	TO GW							DATE	`
2	GR	٨R	NOT	APP.	C.J.ELS			7				
DEPTH		LAB	PID								29 JU	
IN INCHES	WATER	SAMPLE No.		1	OIL GEND		DE	ORIPTION A	ND REMAR	KS		
			NA		ا من من مر مر مر مر مر مر		\rightarrow					
		017			ر ہے می می می می می می می ر می میر میر میر می می د	PROU			07			
2	•	017			، میر عبر میر میر سر میر م ر میر میر میر میر میر میر م	MIXED	/N HUMUS D WITH CII	/ PEAT (NNARAR	PI) ORE/SI	AG		
4				، ہے ہے ہے ہے ا , سے سے سے سے	ہ ہے ہے ہے می می میں ہے ر ہے ہے می می می میں ہے							
				, 644 646 647 647 , 644 647 647 647 647	ر ہے سے سے مے سے سے ہے ر سے سے سے مے سے سے سے							
6				, می در در در در	,							
8	1											
10												
12						BROW	VN CLAYEY	' SILT (M	IL)			
14												
							·					
15												
18	-	018				TAN	CLAYEY SI	LT (ML)				
20	-											
	l.											
22												
24												
26						-						
28												
30												
32												
52						N.B: TOTAL	DEPTH OF	TEST HO				
34						WITH BENT	ONITE CHI	PS, 🕚				
]						MARKED WI	TH SURVEN	STAKE,	TH No	·.,		
36						AND ORANG	E SURVEY	IAPE		<u> </u>		

				T NAME/N	-						
QUEST ENV					ETORT SIT	E ASSESS	MENT: 523	31	LOG 10) OF	13
ANCHORAGE	E, AK 995	18		ON COORD							
(907) 563-0050,	553-0085	FAX				NER RET	ORT SHAC	K, NEXT T	O BM2		
			4	G CO./AGI	ENCY				DRILLER NAM	Æ	
EXPLORA	TION	LOG	QE						ELSMANN	/ MCG	IOWA
HOLE No.			TYPE O	F HOLE				WEATHER			
1	0		TEST	HOLE				SUNNY,	± 70° F		
DEPTH DRILLED	TOTAL I	DEPTH	SIZE	AND TYPE	OF BIT	TYPE O	F EQUIPMENT		· .		
18 INCHES	18 IN	ICHES	NOT	APPLIC	CABLE	POST	HOLE DIO	GEH			• •
No. OF SAMPLES	SAMPL	E TYPE	DEPTH	TO GW	FIELD INVEST	GATOR (PRINT	AND SIGN	1		DATE	
· 2	GF	AB	NOT	APP.	C.J.ELSM	iann 🤇		11		29 Jt	NE 9
DEPTH IN Inches	WATER	LAB Sample No.	PID .RESULT (ppm)		GEND		(DESCRIPTION A	ND REMARKS		
		_	NA				\sim				
		019		میں میں عبو اسو ا میں اس میں میں میں	,	RPO		S / PEAT (
2		515		ہ مو مر سے دنر۔ ر نے سے سے مر	,	BRO		U / FLAI			
4				ر شنر شن شن شن شن ر شنر شن شن شن	,						
				ر غنو غنو غنو غنو . ر غنو غنو غنو منو .	۔ دے جے دے ہے دی اور دی اور ی دے دی دی اور دی دے دی اور						
6											
8											
10				,							
				, <u></u> , <u></u> , <u></u> , , <u></u> , <u></u> , ,,,, ,,,		DER			V CHT /**	11. \	
12				,,,, ,,,, ,,,,		NEU		ULATE	EY SILT (M	16)	
14											
16											
18		020	-								
20											
			-								
22											
24											
26											
28											
10											
30											
32											
32					1	I.B: TOTAI		F TEST H	OLE SEALE	D	
52											
34						VITH BEN	TONITE C			.0	

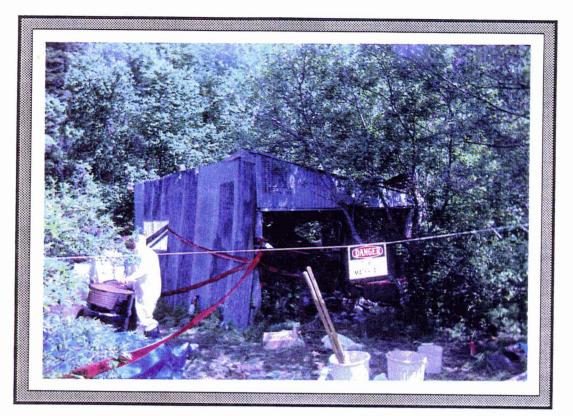
			PROJE	CT NAME/N	0.							
QUEST EN		IENTAL	RED	TOP R	ETORT S	ITE ASSESS	MENT: 5231		LOG	11	QF	13
220 CENT	ER COUR	т		ON COOR					L			
ANCHORAG (907) 583-0050			27' 5	SW. OF	W COR	NER RETOR						
				NG CO./AG					DBULER			
EXPLORA		100	QE						DRILLER			
HOLE No.		200		FHOLE					ELSMAN	<u>NN /</u>	MCG	OWAN
	1			HOLE				WEATHER				
DEPTH DRILLED	TOTAL	DEPTH		AND TYPE				SUNNY,	± 70° F		;	
18 INCHES				APPLIC			EQUIPMENT					
No. OF SAMPLES				TO GW			IOLE DIGG		<u> </u>			
				•		STIGATOR (PRINT	AND SIGNI	X.			ATE	
2	GI	AB		APP.	C.J.EL)		2	9⊳ JUI	NE 94
DEPTH IN Inches	WATER		PID		OIL							
Inches	WAICH	No.	(ppm)		GEND		DES	CRIPTION AN	D REMARKS	.		
			NA		میں ہے ہے ہے دو اس مرد کے میر ہے ہی ہی میں میں میں ا	1	\smile					
2		021			ہے ہے ہے جو جو شر کے ۔ یے یے جو سے تی دو اس	1						
					کیے کیے لیے لیے اس اس کے کیے میے کیے کیر اس اس	1		2				
4					ہے ہے ہے ہے نے اس شر م سے سے ہے جر اس نے اس	BROV	VN HUMUS	/ PEAT (I	PT)			
					میں میر میر سے شور ہے اس سے میر میر میر اس ا	1						
6					غیر غیر ہے کیر کیر کے غیر غیر عبر اس اس کے	1						
8					یے ہے ہے در اس کے اس ان ہے ہے ہے در اس ان	1						
				, 	مر بر در در در در در با با با با با با	4						
10						•						
12						REDI	DISH-BROWI	CLAYE	Y SILT	(ML)		
						1						
14]						
16						}						
						TAN	CLAYEY SIL	T (ML)				
18		022				1						
				-								
20												
22												
24												
						-						
26	1											
28												
30												
30												
32												
						N.B: TOTAL	DEPTH OF	TEST HO	LE SEAL	ED		
34						WITH BENT	ONITE CHIP	'S.				
						MARKED WI	TH SURVEY	STAKE,	TH No.,			
36						AND URANG	E SURVEY	IAPE				

•

			PROJEC	CT NAME/N									
QUEST EN		AENITA I				TE ASSES				1.00			
220 CENT	ER COUR	Т		ON COORI		DILE A55E5:	SMENI: 5	5231		LOG	12	0F	13
ANCHORAG (907) 563-0050	E, AK 995 , 563-008	518 5 FAX				ER RETOR	T SULOK	,					
				G CO./AG		ER REIOR	I SHACK	·		T			
EXPLORA	TION	LOG	QE							DRILLER			
HOLE No.			TYPE O	FHOLE					VEATHER	ELSM/	ANN	/ MCG	DWAN
1	2			HOLE							-		
DEPTH DRILLED	TOTAL	DEPTH	SIZE	AND TYPE	OF BIT	TYPE O	FEQUIPMENT		SUNNY,	I 70*	г 	······	
18 INCHES	18 IN	CHES	NOT	APPLIC	ABLE	ļ	HOLE		\sim	_			
No. OF SAMPLES	SAMPL	E TYPE	DEPTH	TO GW	FIELD INVE	STIGATOR (PRINT				<u> </u>		DATE	· · · · · · · · · · · · · · · · · · ·
2	GF	RAB	ΝΟΤ	APP.	C.J.ELS	SMANN (14	F			· ·	29 JUN	NE 94
DEPTH IN Inches	WATER	LAB Sample No.	PID RESULT (ppm)		GEND			DESCE	IPTION AN				
			NA					22301					
a ———		023			علم میر کے لیے اس سے میں غلو علم سے لیے اس اس	1							
2		023		, ,	دیر میر میر میر میر میر در میر میر میر در می می								
4				, 14, 24, 24, 24, 24, , 14, 24, 24, 24, 24, 24, 24, 24, 24, 24, 2	غنو کنو غنو کنو منو کنو کنو کنو ختو ختو کنو کنو	BRC	WN HUM	IUS /	PEAT (PT)			
				و اسر البر البر البر و البر البر البر البر	دیو کیو کیو ہے کی قدر کار دیر کیو کیو کیو کیو کیو ا	1			· · ·	,			
6				ہ انہ کے لیے کے و لیے لیے دے کم	منو ھنو جنو جنو دنو دن میو شنو میر جنو اسو ان	1							
					┙┥┍┥┍┥┍┥┍┥┍┥ ┑╶╴╸╕╴╴╴╸╼╴╼╸ ╤╶┯╶┯╶┯╶┯╶┯								
10													
12							DISH-BR	OWN	CLAYE	Y SILT	(ML))	
14													
16						4							
18		024			, <u> </u>	TAN	CLAYEY	SILT	(ML)		_		
			Γ										
20			-										
22													
24								I					
						-							
26													
28													
30		-											
32						N. D. TOTA							
34						N.B: TOTAL WITH BENT	ONITE C	CHIPS					
						MARKED W	ITH SUR\	VEY S	TAKE.	TH No.	,		•
36						AND ORANG	SURV	EYT	APE				

. •

-


					· · · · · · · · · · · · · · · · · · ·							
				T NAME/N		_					- /	
QUEST ENV						E ASSESSMEN	T: 5231		LOG	13	OF	13
ANCHORAG		8	LOCATIO	ON COORD	XNATES							
(907) 563-0050	, 553-0085	FAX	INTEF	NOR O	F RETORT	SHACK, AGAII	NST NE.	WALL, I	MIDWAY	Y		
			DRILLIN	G CO./AGI	ENCY				DRILLER	NAME		
EXPLORA	TION	LOG	QE							ELSM	ANN	
HOLE No.			TYPE O	FHOLE				WEATHER				
1	3		TEST	HOLE				SUNNY,	± 70°	F		
DEPTH DRILLED	TOTAL D	EPTH	SIZE	AND TYPE	OF BIT	TYPE OF EON	PMENT		·			
18 INCHES	18 IN	CHES	NOT	APPLIC	CABLE	POST HOL	E DIGG	ER	/			
No. OF SAMPLES	SAMPLE	TYPE	DEPTH	TO GW	FIELD INVEST	GATOR (PRINT AND	SIGN)		<i>g</i>	D	AIE	-
2	GR	AB	NOT	APP.	C.J.ELSM		1			:	30 JU	NE 9
DEPTH IN		LAB SAMPLE		s	BOIL)				
INCHES	WATER	No.	(ppm)	LE	GEND		DES	SCRIPTION AN	ID REMAR	IKS		
			NA		- سر سر در در در در در در - در در در در در در در		\sim					
2		033				BROWN	HUMUS	/ PEAT (PT) WI	тн		
					• • • • • • • • • • • • • • • • • •	DROPLE	TS OF F	REE ME	RUCS	≤ 1MM	А	
4					و مو مع مو مم مم مر مر و مو مع مع مر مر مر	UIA. AT	SURFAC	E. DOWN	10 6"			
					و میر میر میر دیر دیر میر میر بیر و میر میر میر میر میر بیر							
6					ار مو مو مو مو مو مر مو املحباحیاحیاحیاحیاح							
										/		
10												
							I BROW					
12						REDDIS	H-RHOM	N CLAYE	Y SHL	i (ML)		
14												
16												
							-					
18		037										
												
20												
22												
24												
<u></u>					i							
26												
28												
30												
30												
	r !		1	1								
32				1								
32						N.B: TOTAL DE			OLE SE	ALED		
32						N.B: TOTAL DE WITH BENTON MARKED WITH	ITE CH	IPS,				

•

÷.

7.0 Photographs

The following photographs were taken during the course of the project.

1

Photo. 1

The retort shack looking east. Note the test hole equipment decontamination buckets in the foreground.

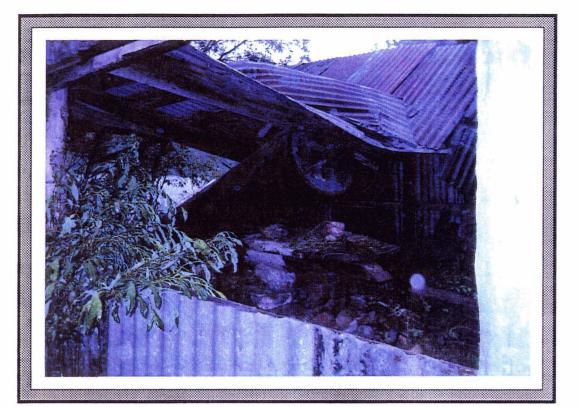


Photo. 2

The interior of the retort shack looking northeast.

The large metal cylindrical object in the center is the 8 1/2-foot long by 2-foot wide retort chamber, into which was introduced cinnabar ore.

To the left and on the ground are the two condensation chambers.

Photo. 3

A view from the rear of the retort shack looking west through a window opening.

The back half of the roof is no longer in place; sections have fallen to the floor, where these galvanized sheets have acted as a barrier between the elements and the free mercury condensate found beneath them. See photograph No. 9.

Photo. 4

Three 110-gallon drums as found at the site, looking towards the east.

An area of Bunker-C contaminated soil can be seen in the extreme right foreground.

These barrels, with their heavy-duty almost "ironclad" appearence are typical of POL drums manufactured during the early to mid-1900s.

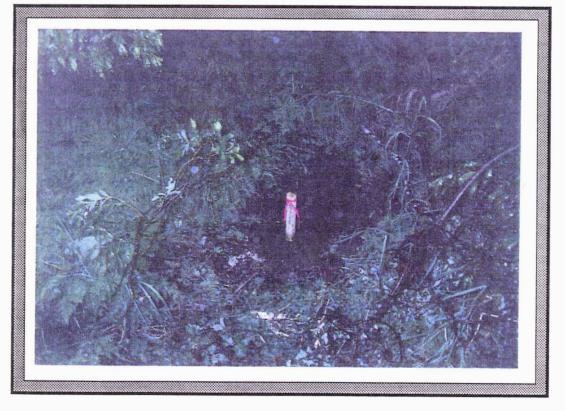
Photo. 5

A closeup of the same Bunker-C stained soil, looking towards the northeast.

Photo. 6

Looking towards the southwest and another POL stained area, this one approximately 20 feet southwest of the open end of the retort shack.

The shingle-like objects are fractured pieces of Cement Asbestos Board which were abated during the initial site visit.


-

14

Photo. 7


Test Hole six, ten feet southeast of the southest side of the retort shack.

Note the Bentonite chips used as a seal to prevent contaminant migration downward into the subsurface aquifer.

Photo. 8

Test Hole seven, ten feet east of the retort shack's east corner.

.

.

.

.

P.

1 Per

F

16

Photo. 9

Test Hole thirteen by the northest interior wall of the retort shack.

A sheet of galvanized roofing, which can be seen leaning against the northwest wall, was lifted off the floor to expose thousands of tiny mercury droplets which had lain undisturbed for almost fifty years.

The pedestal portion of a scale is visible in the center foreground.

Photo 10

View of the retort shack looking south, showing secured 55-gallon transfer barrels of (primarily) Bunker C. Part of the equipment decontamination station is visible in the foreground.

8.0 Conclusions, Risk Assessment and Recommendations

The following conclusions and recommendations have been developed in part as a result of historical, field and laboratory data interpretation.

8.1 Conclusions

Site soils are contaminated with elemental (free) mercury and relatively heavy molecular weight refined petroleum products (Bunker-C) to the extent that remediation is necessary. The subsurface aquifer does not appear to have been significantly impacted by either contaminant. Site biota may be impacted by mercury and / or Bunker-C, but this possibility is considered slight given the low leachability of mercury from TCLP analysis and the lack of significant POL migration.

The retort shack structure itself is contaminated with mercury which has escaped during the retort process and condensed on interior walls and the retort structures. These materials will also require remediation.

Left undisturbed, the asbestos discovered on site does not present a significant danger to health or the environment; however, since it must be removed in order to remediate the site, removal must take place under controlled conditions.

Mercury and its compounds are regulated under the Comprehensive Environmental Response, Compensation, and Liability Act of 19980, as amended by the Superfund Amendments and Reauthorization Act of 1986 (CERCLA / SARA).

Bunker-C is not classified as a hazardous substance, however, once it reaches the soils and / or groundwater of the State of Alaska, it becomes regulated by the State of Alaska Department of Environmental Conservation (ADEC).

Asbestos is not classified as a hazardous substance, but the handling of asbestos containing substances is regulated by the Federal Occupational Safety and Health Administration (OSHA), and the State of Alaska Department of Safety and Health (DOSH), and emissions of asbestos fibers are regulated by the National Emission Standards for Hazardous Air Pollutants (NESHAPS).

8.2 Risk Assessment

8.2.1 Contaminant Identification

Mercury has been identified as the site's contaminant of concern because of its intrinsic toxic properties and because of its potential for migration into critical exposure pathways. For the purpose of this risk assessment, other contaminants are much less significant.

8.2.2 Toxicity Assessment

Very little uncertainty exists regarding mercury's adverse effects. Mercury is a general protoplasmic poison; after absorption, it circulates in the blood and is stored in the liver, kidneys, spleen and bone. Central nervous system disorders are typical manifestations of

acute mercury poisoning. Spilled and heated elemental mercury are particularly hazardous. Mercury and its compounds can be introduced through the respiratory tract, gastrointestinal tract, and intact skin. In the environment, mercury can be efficiently transported along the food chain until concentrations reach critically high levels in humans and other predatory species.

8.2.3 Exposure Assessment

The source of potential contaminant migration is the retort shack and its immediate vicinity. The most likely mechanisms for the introduction of mercury into transport media are flooding of the Wood River, scouring by river ice, earthquake damage, or vandalism. Primary potential environmental transport media exist in the form of biological contact, both human and non-human, groundwater, and soil. Potential receptors are the Wood River ecosystem and local inhabitants or recreational visitors. A *publicly perceived* receptor may be the Bristol Bay fishery, since several species of commercially caught fish from that region depend upon the Wood River System for food and reproductive purposes. Routes of exposure to humans exists primarily in the form of dermal absorption of mercury, accidental ingestion into the gastrointestinal tract, and the consumption of contaminated prey.

8.2.4 Risk Characterization

Although the site has remained relatively undisturbed thus far, the risk potential for this site is considered high, since an extremely toxic substance is so closely associated with a rich ecosystem

8.3 Recommendations

Two primary methods of remediation were considered: removal and stabilization. The proximity of the Wood River and the potential for contaminant migration which exists even in stabilized matrices has been cause enough to reject stabilization as a viable alternative.

Removal of mercury / POL contaminated soil and transportation to a disposal facility is considered the best method to mitigate the site's contamination and, hence, reduce the risk of environmental exposure. EPA Land Disposal Restrictions (LDR or "Land Ban") effective 1992 require mercury contaminated soils to be treated to specific LDR standards prior to disposal. The alternatives are to conduct treatment at the site or near the eventual disposal facility. Two firms capable of remediating the soil to acceptable LDR standards were contacted, and both the cost and timeliness of transporting and erecting treatment process machinery precludes the consideration of on-site contaminant reduction. Our recommendation is to transport the contaminated soil to a treatment facility near the eventual disposal facility.

The site's mercury cleanup level has not yet been determined. Normal background levels may be relatively high, given that sampled material may contain varying amounts of cinnabar.

The site's POL soil cleanup levels are determined by application of the ADEC's Cleanup Matrix, presented below.

Table VII: ADEC POL Soil Cleanup Matrix Evaluation

Matrix Factor		Factor Description	Site Condition	Score
1.	Depth to Subs	urface Water from Contamination	< 5 Feet	10
2.	Mean Annual F	Precipitation	15-25 Inches	3
3.	Soil Type		Coarse W/Fines	8
4.	Potential Rece	ptors	Highest Given	15
5.	Volume of Cor	taminated Soil	25-100 Yards ³	5
			Total	41

The evaluation total of 41 points requires a Level A cleanup (100 ppm of DRO).

It is recommended asbestos debris be cleaned up under appropriate conditions prior to disposal of underlying mercury contaminated soils.

A Corrective Action Plan should be developed and submitted to the appropriate ADEC office for review.

9.0 Support Documents

The following documents (laboratory reports, internal laboratory QC data, etc.) are not paginated to conform with this report.

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

ATI I.D. # 407062

August 9, 1994

AQE 220 Center Court Anchorage AK 99518-1621

Attention : Cliff Elsmann

Project Number : 5231

Project Name : Red Top Retort Site

Dear Mr. Elsmann:

On July 8, 1994, Analytical Technologies, Inc. (ATI), received 66 samples for analysis. The samples were analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and quality control data are enclosed.

The analyses for polychlorinated biphenyls (PCBs), arsenic, cadmium, chromium, lead in the product samples, flash point and total halogen were performed by a subcontractor. Their report is included as an appendix.

Sincerely,

Jeffery L. Pettit Senior Project Manager

JLP/hal/mrj

Enclosure

:

SAMPLE CROSS REFERENCE SHEET

CLIENT PROJECT # PROJECT NAME	: RED TOP RETORT SITE	<i>:</i>	
ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
:			
407062-1	94 RTM 1001	06/20/04	0077
407062-2	94 RTM 1002	06/28/94 06/28/94	SOIL
407062-3	94 RTM 1003	06/29/94	SOIL
407062-4	94 RTM 1004	06/29/94	SOIL
407062-5	94 RTM 1005	06/29/94	SOIL
407062-6	99 RTM 1006	06/29/94	SOIL
407062-7	94 RTM 1007	06/29/94	SOIL
407062-8	94 RTM 1008	06/29/94	SOIL SOIL
407062-9	94 RTM 1009	06/29/94	SOIL
407062-10	94 RTM 1010	06/29/94	SOIL
407062-11	94 RTM 1011	06/29/94	SOIL
407062-12	94 RTM 1012	06/29/94	SOIL
407062-13	94 RTM 1013	06/29/94	SOIL
407062-14	94 RTM 1014	06/29/94	SOIL
407062-15	94 RTM 1015	06/29/94	SOIL
407062-16	94 RTM 1016	06/29/94	SOIL
407062-17	94 RTM 1017	06/29/94	SOIL
407062-18	94 RTM 1018	06/29/94	SOIL
407062-19	94 RTM 1019	06/29/94	SOIL
407062-20	94 RTM 1020	06/29/94	SOIL
407062-21	94 RTM 1021	06/29/94	SOIL
407062-22	94 RTM 1022	06/29/94	SOIL
407062-23	94 RTM 1023	06/29/94	ROTI
407062-24	94 RTM 1024	06/29/94	SOIL
407062-25	94 RTM 1025	06/29/94	SOIL
407062-26	94 RTM 1026	06/29/94	SOIL
407062-27	94 RTM 1027	06/29/94	SOIL
407062-28	94 RTM 1028	06/29/94	SOIL
407062-29	94 RTM 1029	06/29/94	SOIL
407062-30	94 RTM 1030	06/29/94	SOIL
407062-31	94 RTM 1031	06/29/94	SOIL
407062-32	94 RIM 1032	06/29/94	SOIL
407062-33	94 RTM 1033	06/29/94	SOIL
407062-34	94 RTM 1034	06/29/94	SOIL
407062-35	94 RTM 1035	06/29/94	SOIL
407062-36	94 RTM 1036	06/29/94	SOIL
407062-37	94 RTM 6001	06/29/94	WIPE
407062-38	94 RTM 6002	06/29/94	WIPE
407062-39 407062-40	94 RTM 6003	06/29/94	WIPE
-07002-40	94 RTM 6004	06/29/94	WIPE

CONTINUED ON NEXT PAGE

12

ATI I.D. # 407062

SAMPLE CROSS REFERENCE SHEET CONTINUED

PROJECT #	: AQE : 5231 : RED TOP RETORT SITE		
ATI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
407062 - 41 407062 - 42 407062 - 43 407062 - 43 407062 - 45 407062 - 46 407062 - 47 407062 - 47 407062 - 50 407062 - 51 407062 - 51 407062 - 52 407062 - 53 407062 - 55 407062 - 59 407062 - 61 407062 - 61 407062 - 62 407062 - 63	94 RTM 6005 94 RTM 6006 94 RTM 1037 94 RTM 1038 94 RTM 5001 94 RTM 5002 94 RTM 5003 94 RTM 5005 94 RTM 5005 94 RTM 7001 94 RTM 3001 94 RTM 3002 94 RTM 3002 94 RTM 1039 94 RTM 1040 94 RTM 1040 94 RTM 1041 94 RTM 1041 94 RTM 1042 94 RTM 1043 94 RTM 7002 94 RTM 7003 94 RTM 7004 94 RTM 7004 94 RTM 8001	06/29/94 06/29/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 06/30/94 07/01/94 07/01/94 07/01/94 07/01/94 07/01/94	WIPE WIPE SOIL SOIL WATER WATER WATER WATER WATER PRODUCT SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL
407062-64 407062-65 407062-66	94 RTM 8002 94 RTM 2001 94 RTM 2002 94 RTM 2004	07/01/94 07/01/94 07/01/94 07/01/94	ROCK WATER WATER WATER

----- TOTALS -----

:

MATRIX	# SAMPLES
SOIL	45
WATER	9
PRODUCT	4
WIPE	6
ROCK	2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

:

ATI I.D. # 407062

18

í

{

Ę

1

ANALYTICAL SCHEDULE

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE			
ANALYSIS	TECHNIQUE	REFERENCE	LAB
PURGEABLE HALOCARBONS	GC/ELCD		R
POLYCHLORINATED BIPHENYLS (PCBs)	GC/ECD	EPA 8080	SUB
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
DIESEL RANGE ORGANICS	GC/FID	AK DEC DRO	R
PETROLEUM HYDROCARBONS	IR	EPA 418.1	R
ANTIMONY	ICAP	EPA 6010	R
ARSENIC	AA/GF	EPA 7060	R
ARSENIC	DCP	EPA AES 0029	SUB
CADMIUM	DCP	EPA AES 0029	SUB
CHROMIUM	DCP	EPA AES 0029	SUB
LEAD	DCP	EPA AES 0029	SUB
MERCURY	AA/COLD VAPOR	EPA 7470	R
MERCURY	AA/COLD VAPOR	EPA 7471	R
FLASH POINT	P.M.C.C.	ASTM D-93	SUB
TOTAL HALOGENS	COULOMETRIC	EPA 9076	SUB
MOISTURE	GRAVIMETRIC	CLP SOW ILM01.0	R
R = ATI - Renton SD = ATI - San Diego PHX = ATI - Phoenix PTL = ATI - Portland			

- ANC = ATI Anchorage PNR = ATI Pensacola FC = ATI Fort Collins
- SUB = Subcontract

ATI I.D. # 407062

CASE NARRATIVE

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE

CASE NARRATIVE: VOLATILE ORGANICS ANALYSIS

Two (2) soil samples and one (1) water sample were received by ATI on July 8, 1994, for the following analysis: EPA method 8010.

The matrix spike/matrix spike duplicate (MS/MSD) associated with the water sample 407062-66 (94 RTM 2004) had a recovery of trichloroethene that was beyond the linear range of the instrument. The results were flagged with a "C" and noted on the analytical data page. The surrogate recovery in the MSD was outside of the current ATI control limits due to matrix interferences. The result was flagged with an "F" and noted on the analytical data page.

Sample 407062-66 (94 RTM 2004) was analyzed after the recommended holding time had expired.

Sample 407062-58 (94 RTM 1043) required a dilution during the extraction process in order to have any recoverable methanol extract to analyze. The final volume during the extraction process was ten mLs rather than the specified five mLs.

The blank spike (BS) recovery for 1,1-dichloroethene was outside of the current ATI control limits. The MS/MSD recoveries were within limits. No further action was taken.

All other corresponding quality assurance and quality control results defined as MS/MSD, BS, method blank and surrogate recoveries were within the established control limits.

:

4

ATI I.D. # 407062

-

÷.

ſ

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8010 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: N/A : N/A : 07/25/94 : ug/L : 1
COMPOUNDS	RESULTS	
BROMODICHLOROMETHANE		
 BROMOFORM	<0.2	
BROMOMETHANE CARBON TETRACHLORIDE	<1.0	
	<0.2 <0.5	
CHLOROBENZENE CHLOROETHANE	<1.0	
CHLOROFORM		
CHLOROMETHANE	<2.0	
1,2-DIBROMOETHANE (EDB)	<0.5	
1,2-DICHLOROBENZENE		
1,3-DICHLOROBENZENE	<0.5	
1.4-DICHLOROBENZENE	<0.5	
DIBROMOCHLOROMETHANE	<0.2	
1,1-DICHLOROETHANE	<0.2	
1 2-DICULOBOETHANE	<0.2	
1,1-DICHLOROETHENE	<0.2	
CIS-1,2-DICHLOROETHENE	<0.2	
TRANS-1,2-DICHLOROETHENE	<0.2	
1,2-DICHLOROPROPANE	<0.2	
CIS-1,3-DICHLOROPROPENE	<0.2	
TRANS-1,3-DICHLOROPROPENE	<0.2	
METHYLENE CHLORIDE	<2.0	
1, 1, 2, 2-TETRACHLOROETHANE	<0.2	
TETRACHLOROETHENE	<0.2	
1,1,1-TRICHLOROETHANE		
1, 1, 2-TRICHLOROETHANE	<0.2	
TRICHLOROETHENE	<0.2	
TRICHLOROFLUOROMETHANE		
VINYL CHLORIDE	<1.0	
SURROGATE PERCENT RECOVERY	L	IMITS

. •

BROMOCHLOROMETHANE

99

58 - 126

· · .•

2

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER	DATE SAMPLED DATE RECEIVED DATE EXTRACTE DATE ANALYZED UNITS DILUTION FACT	: 07/08/94 D : N/A : 07/26/94 : ug/L OR : 1
	DECILITE	
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE 1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE	<0.2 <0.2 <1.0 <0.2 <0.5 <1.0 <0.2 <2.0 <0.2 <2.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOCHLOROMETHANE	114	58 - 126

: :

ATI I.D. # 407062

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RE SAMPLE MATRIX : WATER EPA METHOD : 8010	TORT SITE	;	DATE	LE I.D. EXTRAC ANALYZ S	TED : I ED :	BLANK N/A 07/25/9 ug/L	4
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPIKED SAMPLE	-	RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE	<0.500 <0.200 <0.200	4.00 4.00 4.00	4.58 5.09 4.49	127	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS				<pre>% REC.</pre>			RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE				79 - 1 56 - 1 72 - 1	58		33 22 21
SURROGATE RECOVERIES	;	SPIKE		DUP. S	PIKE	LIMITS	<.
BROMOCHLOROMETHANE	:	111		N/A		38 - 1	40

ATI I.D. # 407062

Ξ

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP R SAMPLE MATRIX : WATER EPA METHOD : 8010	ETORT SITE	8	DATE	ELE I.D. EXTRAC ANALYZ S	TED : N ED : C	107082- N/A 07/25/9 1g/L	
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	-	DUP. SPIKED SAMPLE		RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE	<0.500 <0.200 15.7	4.00 4.00 4.00	4.09 4.63 21.3C	116 140	3.72 4.27 21.4C	93 107 142	9 8 0
CONTROL LIMITS CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE				% REC. 61 - 1 37 - 1 61 - 1	.60 .82		RPD 33 22 21
SURROGATE RECOVERIE BROMOCHLOROMETHANE	S	SPIKE 114		DUP. S 128F	PIKE	LIMITS 38 - 1	

:

F = Out of limits due to matrix interference. C = Estimated, value above linear range.

(a)*

i,

ľ

۰.

Ł

1

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8010	DATE SAMPLED DATE RECEIVED DATE EXTRACTEI DATE ANALYZED UNITS DILUTION FACTO	: : : : : : :	07/12/94 07/13/94 mg/Kg 1
COMPOUNDS	RESULTS		
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROFORM 1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE CIS-1,2-DICHLOROETHENE	<0.010 <0.010 <0.050 <0.010 <0.025 <0.050 <0.010 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		
SURROGATE PERCENT RECOVERY		LIM	ITS
BROMOCHLOROMETHANE	118	38	- 140

.

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 1004 SAMPLE MATRIX : SOIL EPA METHOD : 8010 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/08/94 D : 07/12/94 : 07/13/94 : mg/Kg
COMPOUNDS	RESULTS	
BROMODICHLOROMETHANE		
BROMOFORM	<0.018	
BROMOMETHANE CARBON TETRACHLORIDE	<0.091 <0.018	
CHLOROBENZENE	<0.018	
CHLOROETHANE	<0.091	
CHLOROFORM	<0.018	
	-0 10	
1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE	<0.045	
1,2-DICHLOROBENZENE	<0.045	
1,3-DICHLOROBENZENE	<0.045	
1,4-DICHLOROBENZENE DIBROMOCHLOROMETHANE	<0.045	
1,1-DICHLOROETHANE	<0.018	
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE	<0.018	
	<0.018	
CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	<0.018	
1,2-DICHLOROPROPANE	<0.018	
CIS-1.3-DICHLOROPROPENE	<0.018	
CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	<0.018	
METHYLENE CHLORIDE	<0.18	
1,1,2,2-TETRACHLOROETHANE	<0.018	
TETRACHLOROETHENE	<0.018	
	<0.018	
1,1,2-TRICHLOROETHANE	<0.018	
TRICHLOROETHENE	<0.018	
TRICHLOROFLUOROMETHANE	<0.045	
VINYL CHLORIDE	<0.091	
SURROGATE PERCENT RECOVERY		LIMITS
BROMOCHLOROMETHANE	100	20 140
DROMOCHLOROME I NAME	120	38 - 140

2

ATI I.D. # 407062-58

Ł

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 1043 SAMPLE MATRIX : SOIL EPA METHOD : 8010 RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/01/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : 07/12/94 DATE ANALYZED : 07/13/94 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE 1,2-DIBROMOETHANE (EDB) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE	<0.043 <0.022 <0.043 <0.11 <0.22 <0.043 <0.43 <0.11 <0.11 <0.11 <0.01 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <0.043 <
VINYL CHLORIDE SURROGATE PERCENT RECOVERY	<0.22 LIMITS

BROMOCHLOROMETHANE

97

. -

38 - 140

ATI I.D. # 407062

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RE SAMPLE MATRIX : SOIL EPA METHOD : 8010	TORT SITE		DATE	LE I.D. EXTRAC ANALYZ S	TED : ED :	BLANK 07/12/9 07/13/9 mg/Kg	
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP SPIKED SAMPLE	8	RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE	<0.0250 <0.0100 <0.0100		0.373 0.135 0.277	93 34H 69	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
CONTROL LIMITS				℁ REC.			RPD
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE				71 - 10 51 - 10 55 - 10	61		20 22 24
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	
BROMOCHLOROMETHANE		105		N/A		38 - 1	40

:

H = Out of limits.

1 -

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

S		NIKOL DA	T.T.					
CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RE SAMPLE MATRIX : SOIL EPA METHOD : 8010	TORT SITE		DATE	LE I.D. EXTRAC ANALYZ S	TED : ED :	407010 07/12/ 07/13/ mg/Kg	94	and the second se
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DÙP. SPIKED SAMPLE	-	RPD	•
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE	<0.0250 <0.0100 <0.0100		0.392 0.140 0.272	98 35 68	0.396 0.164 0.253	99 41 63	1 16 7	Landred Street Street
CONTROL LIMITS				% REC.			RPD	
CHLOROBENZENE 1,1-DICHLOROETHENE TRICHLOROETHENE				55 - 10 35 - 14 49 - 13	41		20 22 24	n an
SURROGATE RECOVERIES		SPIKE		DUP. SI	PIKE	LIMIT	S	.
BROMOCHLOROMETHANE		98		102		38 - 3	140	1

-

1

ATI I.D. # 407062

Ξ

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : N/A DATE ANALYZED : 07/12/94 UNITS : ug/L DILUTION FACTOR : 1	
COMPOUNDS	RESULTS	-
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		
SURROGATE PERCENT RECOVERY	LIMITS	
BROMOFLUOROBENZENE	99 76 - 120	

-

185

į

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX :	AQE 5231 RED TOP RETORT SITE METHOD BLANK WATER 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/13/94 : ug/L R : 1
COMPOUNDS		RESULTS	
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5	
SUR	RROGATE PERCENT RECOVERY		LIMITS
BROMOFLUOROBENZ	ZENE	95	76 - 120

. .

ATI I.D. # 407062-47

2

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 5003 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED : 06/30/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : N/A DATE ANALYZED : 07/12/94 UNITS : ug/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	99 76 - 120

2

:

ATI I.D. # 407062-48

ç. -

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 5004 SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 06/30/94 : 07/08/94 : N/A : 07/12/94 : ug/L R : 1
COMPOUNDS		
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.5 <0.5 1.3 0.7	
SURROGATE PERCENT RECOVERY	1	LIMITS
BROMOFLUOROBENZENE	99	76 - 120

3

;

1.2

ATI I.D. # 407062-66

Ξ

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

	"	: AQE : 5231 : RED TOP RETORT SITE : 94 RTM 2004 : WATER : 8020 (BETX)	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTO	: 07/12/94 : ug/L
	COMPOUNDS		RESULTS	· -
:	BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	•••••••••••••••••••••••••••••••••••••••	<0.5 <0.5 <0.5 <0.5	
	SU	RROGATE PERCENT RECOVERY		LIMITS
	BROMOFLUOROBEN	ZENE	99	76 - 120

2

:

: :

:

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME SAMPLE MATRIX EPA METHOD	: RED TOP RE			DATE	LE I.D. EXTRAC ANALYZ S	TED : 1 ED : 1 : 1	BLANK N/A 07/12/9 ug/L		
COMPOUNDS		SAMPLE RESULT		SPIKED RESULT		DUP. SPIKED SAMPLE	DUP. %		
BENZENE TOLUENE TOTAL XYLENES		<0.500 <0.500 <0.500		19.8 19.8 39.4	99	19.8 19.7 39.1	99	0 1 1	
CONTROL	LIMITS				% REC.			RPD	<i>r</i> :
BENZENE TOLUENE TOTAL XYLENES					89 - 13 89 - 13 89 - 13	13		10 10 10	
SURROGAT	TE RECOVERIES		SPIKE		DUP. SI	PIKE	LIMITS		ł
BROMOFLUOROBEN	IZENE	:	98		98		76 - 1	20	

ATI I.D. # 407062

2

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : AQ PROJECT # : 52 PROJECT NAME : RE SAMPLE MATRIX : WA EPA METHOD : 80	31 D TOP RETORT SITE FER		DATE	E I.D. EXTRACI ANALYZE	TED : N	LANK //A 7/13/94 g/L	1
COMPOUNDS	SAMPLE RESULT		SPIKED RESULT	00	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.500 <0.500 <0.500	20.0 1	19.4	97	20.0 19.9 39.6	100 100 99	3 3 4
CONTROL LIMI	rs			∛ REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				89 - 11 89 - 11 89 - 11	.3		10 10 10
SURROGATE RE	COVERIES	SPIKE		DUP. SP	IKE	LIMITS	
BROMOFLUOROBENZENE		97		97		76 - 12	20

đ

ATI I.D. # 407062

10.4

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE SAMPLE MATRIX : WATER EPA METHOD : 8020 (BETX)			SAMPLE I.D. # : 407075-2 DATE EXTRACTED : N/A DATE ANALYZED : 07/12/94 UNITS : ug/L					
COMPOUNDS		SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE TOTAL XYLENES	I THERE	648 5.40 277	20.0 20.0 40.0	352 24.1 251	CG 94 CG	358 24.3 242	CG 95 CG	2 1 4
CONTROL BENZENE TOLUENE TOTAL XYLENES	LIMITS				% REC. 86 - 1: 87 - 1: 85 - 1:	14		RPD 10 10 10
SURROGAT	E RECOVERIES ZENE		SPIKE 92	·	DUP. SI 94	PIKE	LIMITS 76 - 13	20

C = Estimated, value above linear range.

G = Out of limits due to high levels of target analytes in sample.

2

ATI I.D. # 407062

Ξ

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 07/12/94 DATE ANALYZED : 07/12/94 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.025 <0.025 <0.025 <0.025
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	108 52 - 116

ATI I.D. # 407062-4

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 1004 SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 06/29/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : 07/12/94 DATE ANALYZED : 07/12/94 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.045 <0.045
SURROGATE PERCENT RECOVERY	LIMITS

:

63

BROMOFLUOROBENZENE

2

52 - 116

ATI I.D. # 407062-58

VOLATILE ORGANICS ANALYSIS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 1043 SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/01/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : 07/12/94 DATE ANALYZED : 07/13/94 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.054 <0.054 <0.054 <0.054
SURROGATE PERCENT RECOVERY	LIMITS
BROMOFLUOROBENZENE	47 F 52 - 116

:

F = Out of limits due to matrix interference.

÷

ATI I.D. # 407062

Ť

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TO SAMPLE MATRIX : SOIL EPA METHOD : 8020	OP RETORT SITE (BETX)	2	DATE	LE I.D. EXTRAC ANALY2 S	TED : ED :	BLANK 07/12/9 07/12/9 mg/Kg	
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED		-	SPIKED	DUP. % REC.	
BENZENE TOLUENE TOTAL XYLENES	<0.0250 <0.0250 <0.0250	1.00	1.01 1.10 2.21	101 110 111			5 2 0
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				82 - 1 86 - 1 83 - 1	16		20 20 20
SURROGATE RECOVE	RIES	SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		101		101		52 - 1	16

· · ·

VOLATILE ORGANICS ANALYSIS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RI SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BET)	•	2			TED : 0 ED : 0	07076- 07/12/9 07/12/9 0g/Kg	4
COMPOUNDS	SAMPLE RESULT				SPIKED	8	RPD
BENZENE TOLUENE TOTAL XYLENES	<0.0250 <0.0250 <0.0250	1.00	1.03	103	0.997	100	6 - 3 2
CONTROL LIMITS				% REC.			RPD
BENZENE TOLUENE TOTAL XYLENES				62 - 1 63 - 1 64 - 1	15		20 20 20
SURROGATE RECOVERIES	3	SPIKE		DUP. S	PIKE	LIMITS	
BROMOFLUOROBENZENE		97		98		52 - 1	16

-

2

1 -

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : METHOD BLANK SAMPLE MATRIX : SOIL EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 07/13/94 DATE ANALYZED : 07/13/94 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<20
HYDROCARBON RANGE	C7 - C10
HYDROCARBON QUANTITATION USING	GASOLINE
FUEL HYDROCARBONS	<50
HYDROCARBON RANGE	C10 - C28
HYDROCARBON QUANTITATION USING	DIESEL

FUEL HYDROCARBONS DATA SUMMARY

RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 06/30/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : 07/13/94 DATE ANALYZED : 07/14/94 UNITS : mg/Kg DILUTION FACTOR : 10
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<5000
HYDROCARBON RANGE	C7 - C10
HYDROCARBON QUANTITATION USING	GASOLINE
FUEL HYDROCARBONS	630000
HYDROCARBON RANGE	C10 - C28
HYDROCARBON QUANTITATION USING	DIESEL

Sample chromatogram indicates petroleum hydrocarbons characteristic of mineral oil.

.-

ATI I.D. # 407062-59

FUEL HYDROCARBONS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 7002 SAMPLE MATRIX : PRODUCT EPA METHOD : 8015 (MODIFIED) RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE ANALYZED : 07/14/94
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<4900
HYDROCARBON RANGE	C7 - C10
HYDROCARBON QUANTITATION USING	GASOLINE
FUEL HYDROCARBONS	570000
HYDROCARBON RANGE	C10 - C28
HYDROCARBON QUANTITATION USING	DIESEL

Sample chromatogram indicates petroleum hydrocarbons characteristic of both diesel and mineral oil.

=

FUEL HYDROCARBONS DATA SUMMARY

	PROJECT # : PROJECT NAME : CLIENT I.D. : SAMPLE MATRIX : EPA METHOD :	RED TOP RETORT SITE 94 RTM 7003	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 07/01/94 : 07/08/94 : 07/13/94 : 07/14/94 : mg/Kg : 10
• •	COMPOUNDS		RESULTS	
	FUEL HYDROCARBO HYDROCARBON RAN HYDROCARBON QUA		<4500 C7 - C10 GASOLINE	
	FUEL HYDROCARBO HYDROCARBON RAN HYDROCARBON QUA		580000 C12 - C28 DIESEL	

Sample chromatogram indicates petroleum hydrocarbons characteristic of both diesel and mineral oil.

FUEL HYDROCARBONS DATA SUMMARY

RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/01/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : 07/13/94 DATE ANALYZED : 07/14/94 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	<370 C7 - C10 GASOLINE 12000 C10 - C28 DIESEL

Sample chromatogram indicates petroleum hydrocarbons that is heavier than either mineral or gear oil.

ATI I.D. # 407062

DIESEL RANGE ORGANICS DATA SUMMARY

CLIENT : AQE	DATE SAMPLED : N/A
PROJECT # : 5231	DATE RECEIVED : N/A
PROJECT NAME : RED TOP RETORT SITE	DATE EXTRACTED : 07/11/94
CLIENT I.D. : METHOD BLANK	DATE ANALYZED : 07/11/94
SAMPLE MATRIX : WATER	UNITS : mg/L
METHOD : AK DEC DRO	DILUTION FACTOR : 1
COMPOUNDS	RESULTS
FUEL HYDROCARBONS	<0.25
HYDROCARBON RANGE	C10 - C28
HYDROCARBON QUANTITATION USING	DIESEL
SURROGATE PERCENT RECOVERY	LIMITS

:

90

O-TERPHENYL

50 - 150

DIESEL RANGE ORGANICS DATA SUMMARY

	: RED TOP RETORT SITE : 94 RTM 2004	DATE ANALYZED : 07/12/94 UNITS : mg/L DILUTION FACTOR : 1
COMPOUNDS		RESULTS
FUEL HYDROCAR HYDROCARBON R HYDROCARBON Q		<0.25 C10 - C28 DIESEL
S	URROGATE PERCENT RECOVERY	LIMITS

2

106

O-TERPHENYL

50 - 150

DIESEL RANGE ORGANICS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP SAMPLE MATRIX : WATER METHOD : AK DEC D		3	DATE	PLE I.D. EXTRAC ANALYZ S	TED : (ED : (3LANK)7/11/9)7/11/9 ng/L		
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPÍKED SAMPLE	DUP. % REC.	RPD	
DIESEL	<0.250	2.50	2.38	95	2.48	99	4	2
CONTROL' LIMITS				% REC.			RPD	
DIESEL				63 - 1	21		20	
SURROGATE RECOVERI	ES	SPIKE		DUP. S	PIKE	LIMITS		
O-TERPHENYL		94		97		50 - 1	50	

50 - 150

4

DIESEL RANGE ORGANICS DATA SUMMARY

CLIENT I.D. SAMPLE MATRIX METHOD	: RED TOP RETORT SITE : METHOD BLANK	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 07/12/94 DATE ANALYZED : 07/12/94 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUNDS		RESULTS
FUEL HYDROCAR HYDROCARBON R HYDROCARBON Q	RBONS	<10 C10 - C28 DIESEL
S	URROGATE PERCENT RECOVERY	LIMITS

:

99

O-TERPHENYL

DIESEL RANGE ORGANICS DATA SUMMARY

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 1043 SAMPLE MATRIX : SOIL METHOD : AK DEC DRO RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 07/01/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : 07/13/94 DATE ANALYZED : 07/13/94 UNITS : mg/Kg DILUTION FACTOR : 100
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	140000 C10 - C28 DIESEL

SURROGATE PERCENT RECOVERY		LIMITS
O-TERPHENYL	I	50 - 150

:

I = Surrogate out of limits due to sample dilution.

:

DIESEL RANGE ORGANICS QUALITY CONTROL DATA

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RE SAMPLE MATRIX : SOIL METHOD : AK DEC DRO		2	DATE	PLE I.D. EXTRAC ANALYZ S	TED : ED :	BLANK 07/12/9 07/12/9 mg/Kg		
COMPOUNDS	SAMPLE RESULT	SPIKE ADDED	SPIKED RESULT	۴ REC.	DUP. SPIKED SAMPLE	90	RPD	• -
DIESEL	<10.0	200	197	99	192	96	3	/-
CONTROL LIMITS				% REC.			RPD	
DIESEL				66 - 1	18		20	1
SURROGATE RECOVERIES		SPIKE		DUP. S	PIKE	LIMITS	1	
O-TERPHENYL		100		100		50 - 1	50	7,

•

DIESEL RANGE ORGANICS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME SAMPLE MATRIX METHOD					DAT DAT UNI	TE EXTR TE ANAL TS	ACTED :	407062 07/12 07/13 mg/Kg	/94 /94
COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT		SPIKE	SPIKED RESULT	e	DUP. SPIKED	DUP. % REC.	RPD
DIESEL	668	810	19	200	1050	191G	1150	G	9
CONTROL	LIMITS					% RE	c.		RPD
DIESEL						50 -	134		20
SURROGAT	TE RECOVE	RIES		SPIKE		DUP.	SPIKE	LIMI	rs
O-TERPHENYL				111		113		50 -	150

G = Out of limits due to high levels of target analytes in sample.

TOTAL PETROLEUM HYDROCARBONS DATA SUMMARY

CLIENT	: AQE	DATE EXTRACTED : 07/11/94
PROJECT #	: 5231	DATE ANALYZED : 07/11/94
PROJECT NAME	: RED TOP RETORT SITE	UNITS : mg/L
EPA METHOD	: 418.1	SAMPLE MATRIX : WATER
ATI I.D. #	CLIENT I.D.	TOTAL PETROLEUM HYDROCARBONS
407062-47	94 RTM 5003	<1
METHOD BLANK	-	<1

•

2

TOTAL PETROLEUM HYDROCARBONS QUALITY CONTROL DATA

PROJECT # PROJECT NAME	: AQE : 5231 : RED TOH : 418.1 : WATER	RETORT S	SITE		DI DI	MPLE I ATE EXI ATE ANZ NITS	RACTED	: BLAN : 07/1 : 07/1 : mg/I	1/94 1/94	
COMPOUND	SAMPLE RESULT	SAMPLE DUP. RESULT	RPD	SPIKE ADDED	SPIKED RESULT	% REC.	DUP. SPÍKED RESULT	DUP. % REC.	RPD	-
PETROLEUM HYDROCARBONS	<1.00	N/A	N/A	10.0	10.2	102	9.59	96	6	-

% Recovery = (Spiked Result - Sample Result)
 Spike Concentration

.

ATI I.D. # 407062

METALS ANALYSIS

CLIENT PROJECT # PROJECT NAME	: AQE : 5231 : RED TOP RETORT SITE	MATRIX : WATER
ELEMENT	DATE PREPARED	DATE ANALYZED
MERCURY	07/13/94	07/14/94

:

:

ATI I.D. # 407062

METALS ANALYSIS DATA SUMMARY

CLIENT PROJECT # PROJECT NAME	: AQE : 5231 : RED TOP RETORT SITE	MATRIX : WATER UNITS : mg/L
ATI I.D. #	CLIENT I.D.	MERCURY
407062-45 407062-46 407062-49 407062-53 407062-64 407062-65 METHOD BLANK	94 RTM 5001 94 RTM 5002 94 RTM 5005 94 RTM 2003 94 RTM 2001 94 RTM 2002	0.00097 0.0014 0.00099 <0.00022 0.00035 0.00046 <0.00020

ATI I.D. # 407062

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME	: AQE : 5231 : RED TOP RETO	ORT SITE		MATRIX UNITS	K : WATER : mg/L	
ELEMENT	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED RESULT	SPIKE % ADDED REC.
MERCURY MERCURY	BLANK 407036-1	<0.00020 <0.00020	N/A <0.00020	N/A NC	0.00118 0.00125	0.00100 118 0.00100 125

NC = Not calculable.

\$

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative % Difference) = |(Sample Result - Duplicate Result)| Average Result

;

. .

ATI I.D. # 407062

METALS ANALYSIS

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP	RETORT SITE	MATRIX : SOIL
ELEMENT	DATE PREPARED	DATE ANALYZED
ANTIMONY	07/13/94	07/14/94
ARSENIC	07/14/94	07/15/94
MERCURY (SAMPLES -1 THROUGH -35)	07/11/94	07/12/94
MERCURY (SAMPLES -36 THROUGH -44, -51, -52, -54 THROUGH -57, -62, -63)	07/13/94	07/15/94

:

. •

ť

METALS ANALYSIS DATA SUMMARY

	: RED TOP RETORT DRRECTED FOR MOIST		UNI	
ATI I.D. #	CLIENT I.D.	ANTIMONY	ARSENIC	MERCURY
	94 RTM 1001 94 RTM 1002 94 RTM 1003 94 RTM 1004 94 RTM 1005 99 RTM 1006 94 RTM 1007 94 RTM 1007 94 RTM 1008 94 RTM 1009 94 RTM 1010 94 RTM 1011 94 RTM 1012 94 RTM 1012 94 RTM 1013 94 RTM 1013 94 RTM 1014 94 RTM 1015 94 RTM 1016 94 RTM 1017 94 RTM 1018 94 RTM 1020 94 RTM 1021 94 RTM 1022 94 RTM 1022 94 RTM 1022 94 RTM 10			
407062-1	94 RTM 1001	-		64
407062-2	94 RTM 1002	-	-	0 55
407062-3	94 RTM 1003	-	-	2200
407062-4	94 RTM 1004	-	-	140
407062-5	94 RTM 1005	-	-	960
407062-6	99 RTM 1006	-	-	0.52
407062-7	94 RTM 1007	-	-	1400
407062-8	94 RTM 1008	-	-	17
407062-9	94 RTM 1009	-	-	590
407062-10	94 RTM 1010	-	-	3.4
407062-11	94 RTM 1011	-	-	22
407062-12	94 RTM 1012	-	-	6.1
407062-13	94 RTM 1013	-	-	30
407062-14	94 RTM 1014	-	-	<0.26
407062-15	94 RTM 1015	-	-	24
407062-16	94 RTM 1016	-	-	1.6
407062-17	94 RTM 1017	-	-	300
407062-18	94 RTM 1018	-	-	1.8
407062-19	94 RTM 1019	-	-	17
407062-20	94 RTM 1020	-	-	2.4
407062-21	94 RTM 1021	-	-	9.9
407062-22	94 RTM 1022	-	-	<0.22
407062-23	94 RTM 1023	-	-	13
407062-24	94 RTM 1024	-	-	0.75
407062-25	94 RTM 1025	-	-	1600
407062-26	94 RTM 1026	-	-	1500
407062-27	94 RTM 1027	-	-	1200
407062-28	94 RTM 1028	-	-	1600
407062-29	94 RTM 1029	-	-	500
407062-30 407062-31	94 RTM 1030	-	-	650
407062-31	94 RTM 1031	-	-	61
407062-33	94 RTM 1032		-	1300
407062-34	94 RTM 1033	< 5 .7	57	4300
407062-35	94 RTM 1034	-	-	15000
407062-36	94 RTM 1035 94 RTM 1036	-	-	1000
407062-37	94 RTM 1036 94 RTM 6001	-	-	480
407062-38	94 RTM 6001 94 RTM 6002	-	-	85*
407062-39	94 RTM 6002 94 RTM 6003	-	-	7.7*
407062-40	94 RTM 6003 94 RTM 6004	-	-	940*
	94 KIM 6004	-	-	50*

* Wipe samples, results are nor corrected for moisture.

ATI I.D. # 407062

METALS ANALYSIS DATA SUMMARY

			MATR: UNITS	IX : SOIL S : mg/Kg
ATI I.D. #	CLIENT I.D.	ANTIMONY	ARSENIC	MERCURY
407062-41 407062-42 407062-43 407062-44 407062-51 407062-52 407062-54 407062-55 407062-55	94 RTM 6006 94 RTM 1037 94 RTM 1038 94 RTM 3001 94 RTM 3002 94 RTM 1039 94 RTM 1040 94 RTM 1041	- - - - - - - -	- - 4.9 - - - -	15* 23* 370 0.19 0.19 <0.12 9.2 12 5.8
407062-57 407062-62 407062-63 METHOD BLANK METHOD BLANK	94 RTM 8001	- - - <2.5 -	- - <0.25 -	8.6 3.1** 14** <0.10 <0.10

:

* Wipe samples, results are not corrected for moisture. ** Rock samples, results are not corrected for moisture

ATI # 407062

METALS ANALYSIS QUALITY CONTROL DATA

CLIENT PROJECT # PROJECT NAME	: AQE : 5231 E : RED TOP RI	ETORT SITE			MATRIX : UNITS :	: SOIL : mg/Kg	
ELEMENT	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	۶ REC.
ANTIMONY ANTIMONY	BLANK 407046-2	<2.50 <4.06	N/A <4.11	N/A NC	42.9 35.6	50.0 81.4	86 44
ARSENIC ARSENIC	BLANK 407046-2	<0.25 28.0	N/A 22.6	N/A 21	1.98 2.30	2.00 3.07	99 G
MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY	BLANK BLANK 407046-2 407042-8 407062-8 407062-16 407062-31 407062-44	<0.10 <0.10 <0.155 <0.153 17.2 1.63 60.8 0.192	N/A N/A <0.149 <0.154 13.7 1.52 64.5 0.280	N/A N/A NC 23 7 6 8	0.475 0.395 0.863 0.695 15.5 1.32 67.9 1.09	0.500 0.500 0.732 0.739 1.31 1.13 0.590 0.740	95 79 118 94 G F G 121

NC = Not CalculableF = Out of limits due to matrix interference. G = Out of limits due to high levels of target analytes in sample.

ATI I.D. # 407062

GENERAL CHEMISTRY ANALYSIS

PROJECT #	: AQE : 5231 : RED TOP RETORT SITE	MATRIX : SOIL
PARAMETER	DATE ANALYZED	

:

MOISTURE

1

07/08/94

ATI I.D. # 407062

GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

CLIENT PROJECT #	: AQE		MATRIX : SOIL
	: RED TOP RETORT SITE		UNITS : %
ATI I.D. #	CLIENT I.D.	MOISTURE	
407062-1	÷		
407062-2	94 RTM 1002	75 29	
407062-3	94 RTM 1003	29	
407062-4	94 RTM 1004	45	
407062-5	94 RTM 1005	73	
407062-6	99 RTM 1006	54	
407062-7	94 RTM 1007	74	
407062-8	94 RTM 1008	63	
407062-9	94 RTM 1009	80	
407062-10	94 RTM 1010	67	
407062-11	94 RTM 1011	75	
407062-12	94 RTM 1012	66	
407062-13	94 RTM 1013	63	
407062-14	94 RTM 1014	57	
407062-14 407062-15	94 RTM 1015	76	
407062-16	94 RTM 1016	56	
407062-17	94 RTM 1017	34	
407062-18	94 RTM 1018	52	
407062-19	94 RTM 1019	73	
407062-20	94 RTM 1020	55	
407062-21	94 RTM 1021	66	
407062-22	94 RTM 1022	49	
407062-23	94 RTM 1023	66	
407062-24	94 RTM 1024	51	· · · · · · · · · · · · · · · · · · ·
407062-25	94 RTM 1025	21	
407062-26	94 RTM 1026	29	
407062-27	94 RTM 1027	53	
407062-28	94 RTM 1028	39	
407062-29	94 RTM 1029	16	
407062-30	94 RTM 1030	15	
407062-31	94 RTM 1031	14	
407062-32	94 RTM 1032	- 56	
407062-33	94 RTM 1033	55	
407062-34	94 RTM 1034	52	
407062-35	94 RTM 1035	47	
407062-36	94 RTM 1036	9.9	

3

DIESEL RANGE ORGANICS DATA SUMMARY

36

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE CLIENT I.D. : 94 RTM 1004 SAMPLE MATRIX : SOIL METHOD : AK DEC DRO RESULTS ARE CORRECTED FOR MOISTURE CONTENT	DATE SAMPLED : 06/29/94 DATE RECEIVED : 07/08/94 DATE EXTRACTED : 07/12/94 DATE ANALYZED : 07/13/94 UNITS : mg/Kg DILUTION FACTOR : 2
COMPOUNDS	RESULTS
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBON QUANTITATION USING	1200 C10 - C28 DIESEL
SURROGATE PERCENT RECOVERY	LIMITS
O-TERPHENYL	102 50 - 150

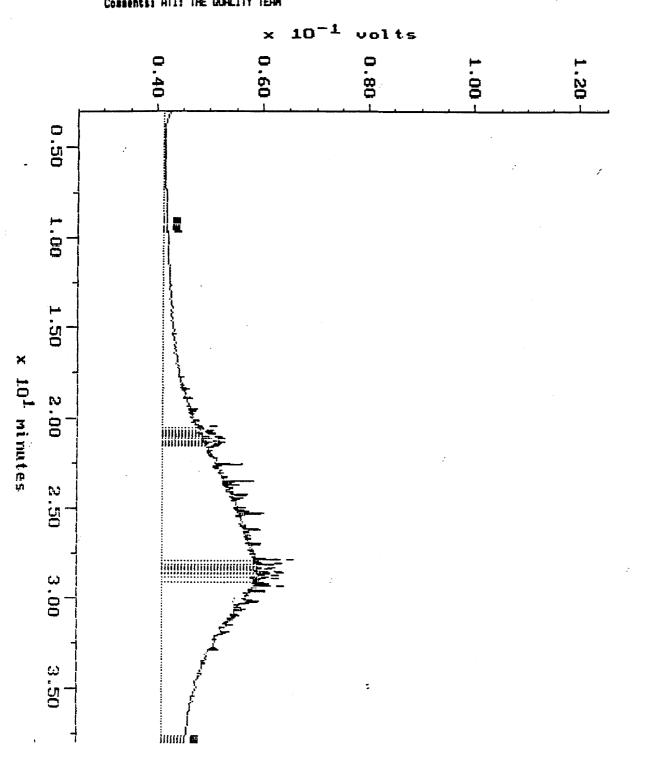
 \hat{P}

GENERAL CHEMISTRY ANALYSIS DATA SUMMARY

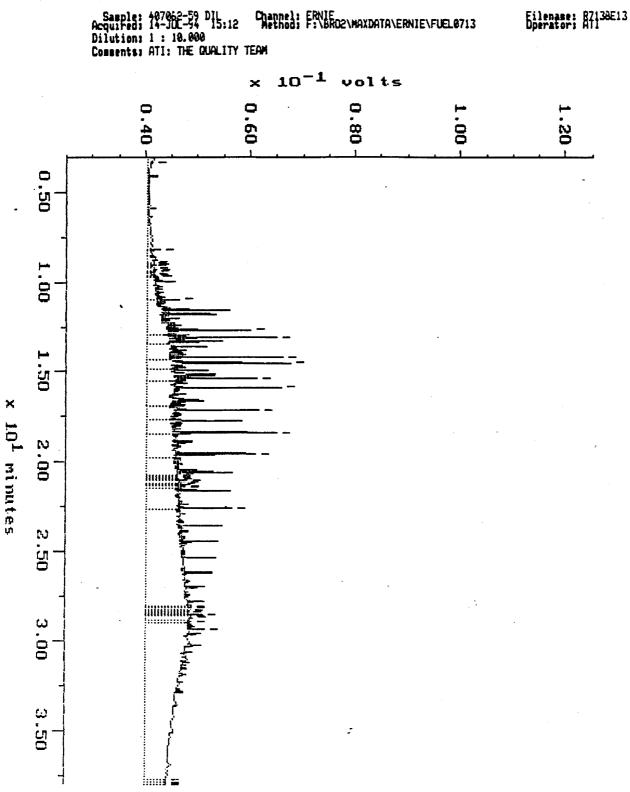
CLIENT PROJECT # PROJECT NAME	: AQE : 5231 : RED TOP RETORT SITE	MATRIX : SOIL UNITS : %
ATI I.D. #	CLIENT I.D.	MOISTURE
407062-43 407062-51 407062-51 407062-52 407062-54 407062-55 407062-56 407062-57 407062-58	94 RTM 1037 94 RTM 1038 94 RTM 3001 94 RTM 3002 94 RTM 1039 94 RTM 1040 94 RTM 1041 94 RTM 1042 94 RTM 1043	43 30 48 17 49 56 45 52 52 54

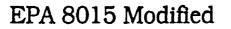
-

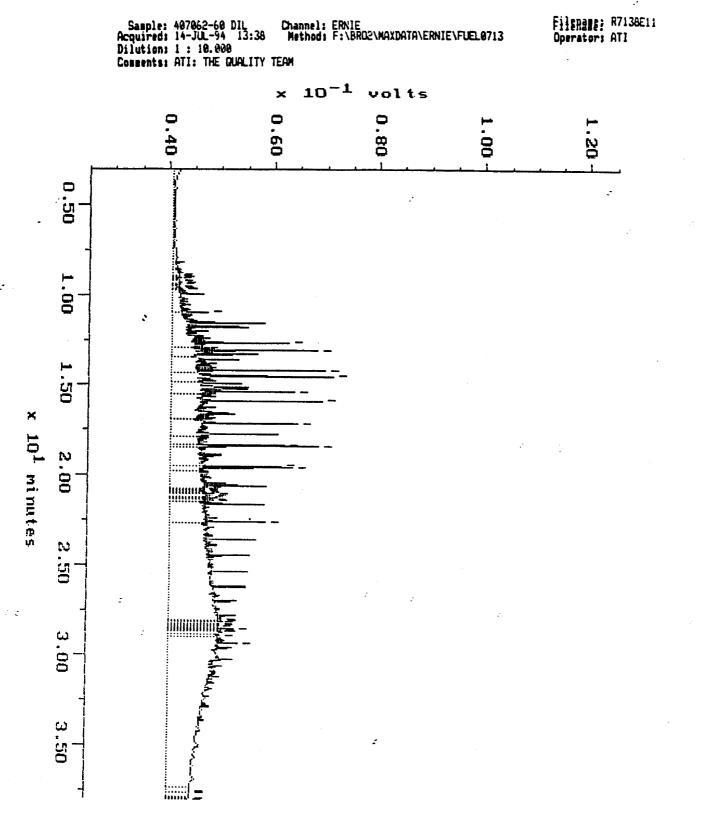
ATI I.D. # 407062

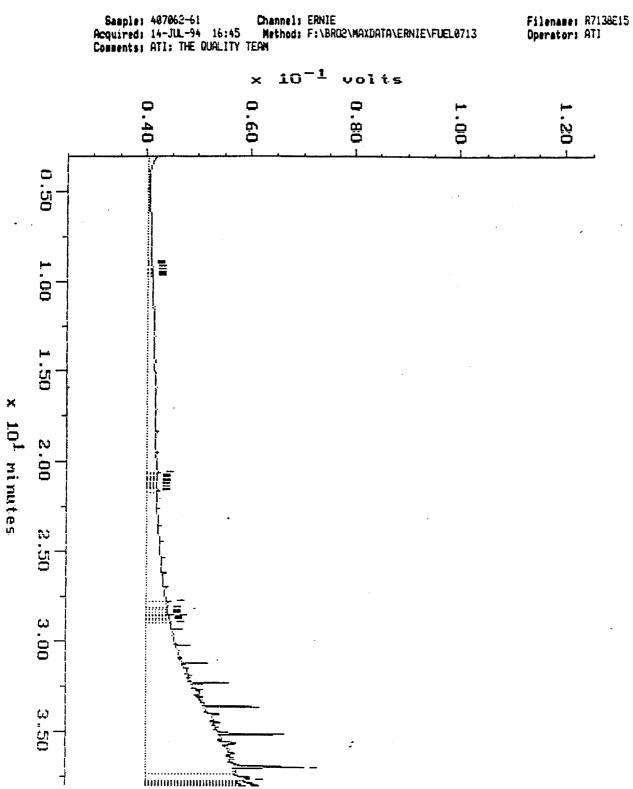

GENERAL CHEMISTRY ANALYSIS QUALITY CONTROL DATA

PROJECT # :	AQE 5231 RED TOP RETORT S	ITE		MATR	IX : SOI S : %	L	
PARAMETER	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
MOISTURE	407062-10	67	65	3	N/A	N/A	N/A
MOISTURE	407062-20	55	56	2	N/A	N/A	N/A
MOISTURE	407062-25	21	22	5	N/A	N/A	N/A
MOISTURE	407062-29	16	17	6	N/A	N/A	N/A
MOISTURE	407062-36	9.9	9.6	3	N/A	N/A	N/A

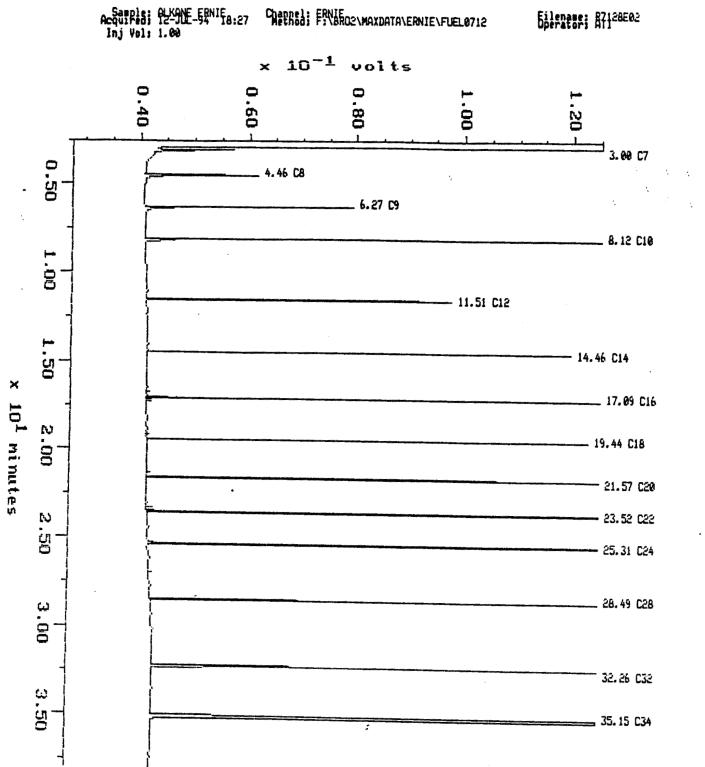

EPA 8015 Modified


Sample: 407062-50 DIL Channel: ERNIE Acquired: 14-JUL-94 10:30 Method: F:\BRO2\MAXDATA\ERNIE\FUEL0713 Dilution: 1 : 10.000 Comments: ATI: THE DUALITY TEAM

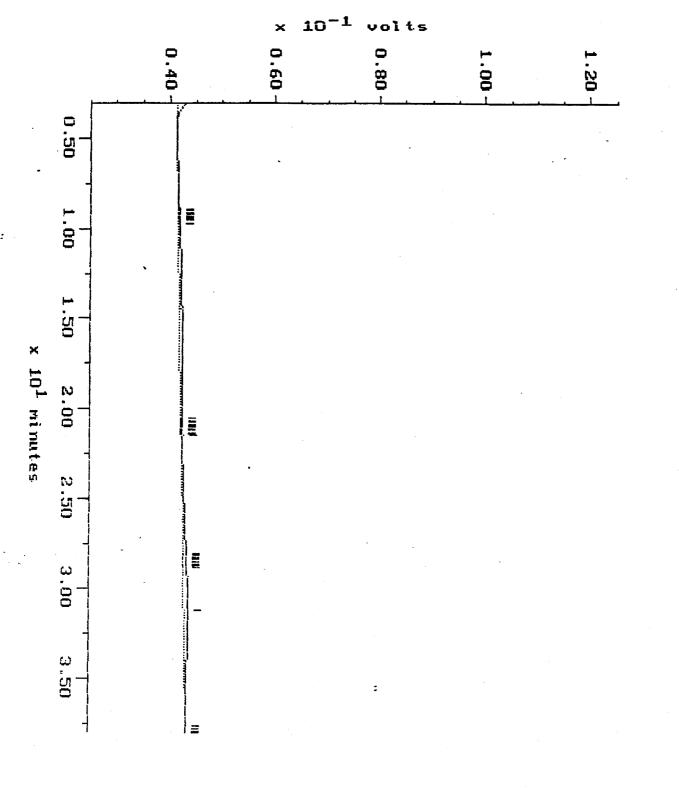

Filenase: R7138E07 Operator: ATI



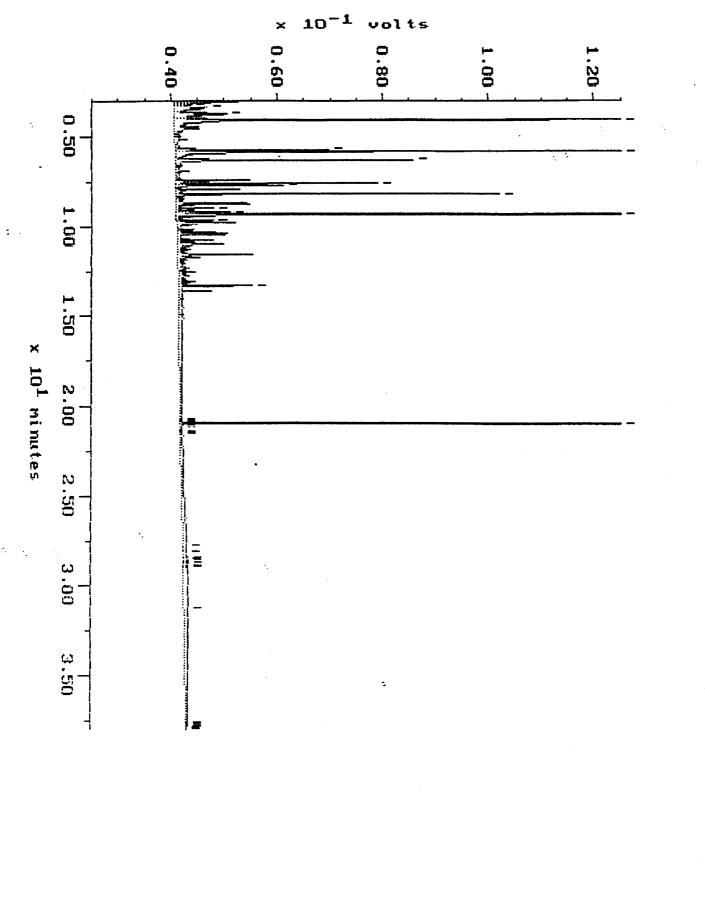
EPA 8015 Modified



EPA 8015 Modified

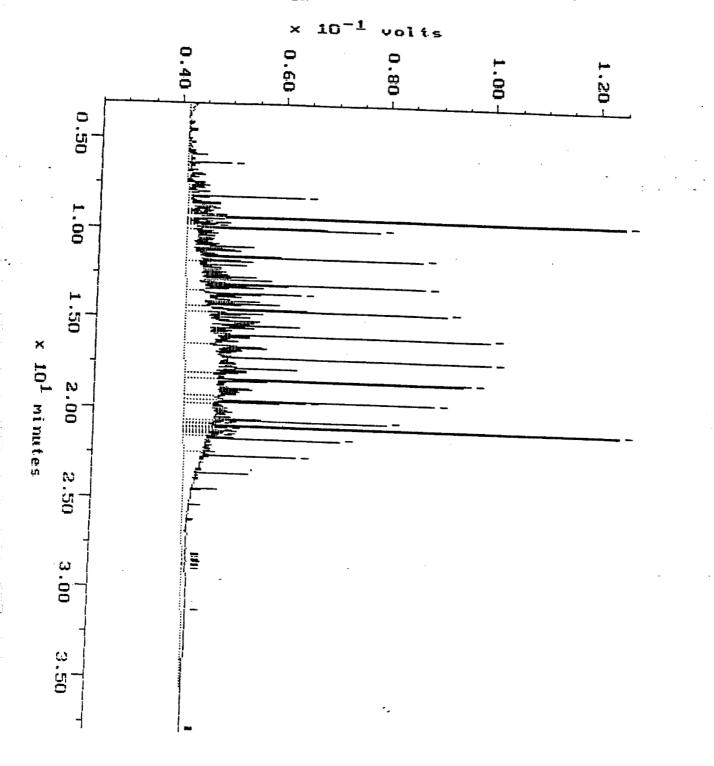

Alkane

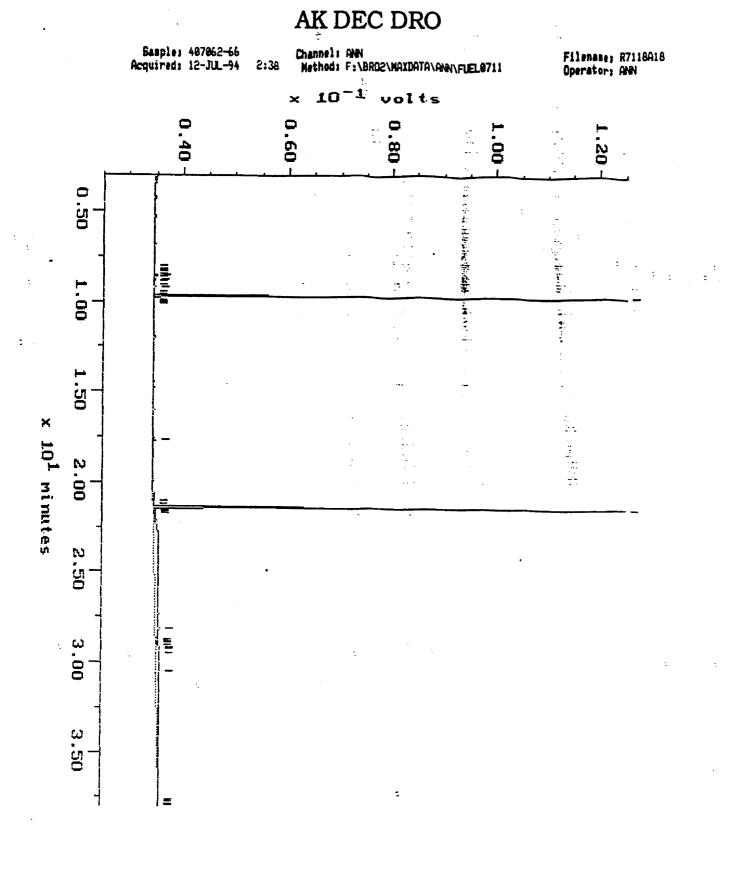
EPA 8015 Modified Blank

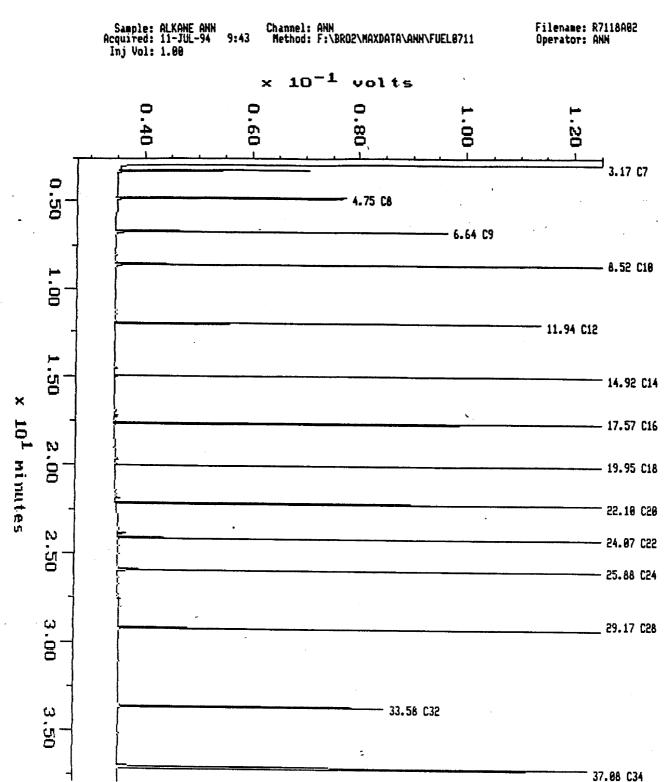

Sample: BLK 7-13 MECL2 Channel: ERNIE Acquired: 13-JUL-94 23:13 Method: F:\BRO2\MAXDATA\ERNIE\FUEL0713 Comments: ATI: THE QUALITY TEAM

Filenase: R7138E04 Operator: ATI

CONTINUING CALIBRATION

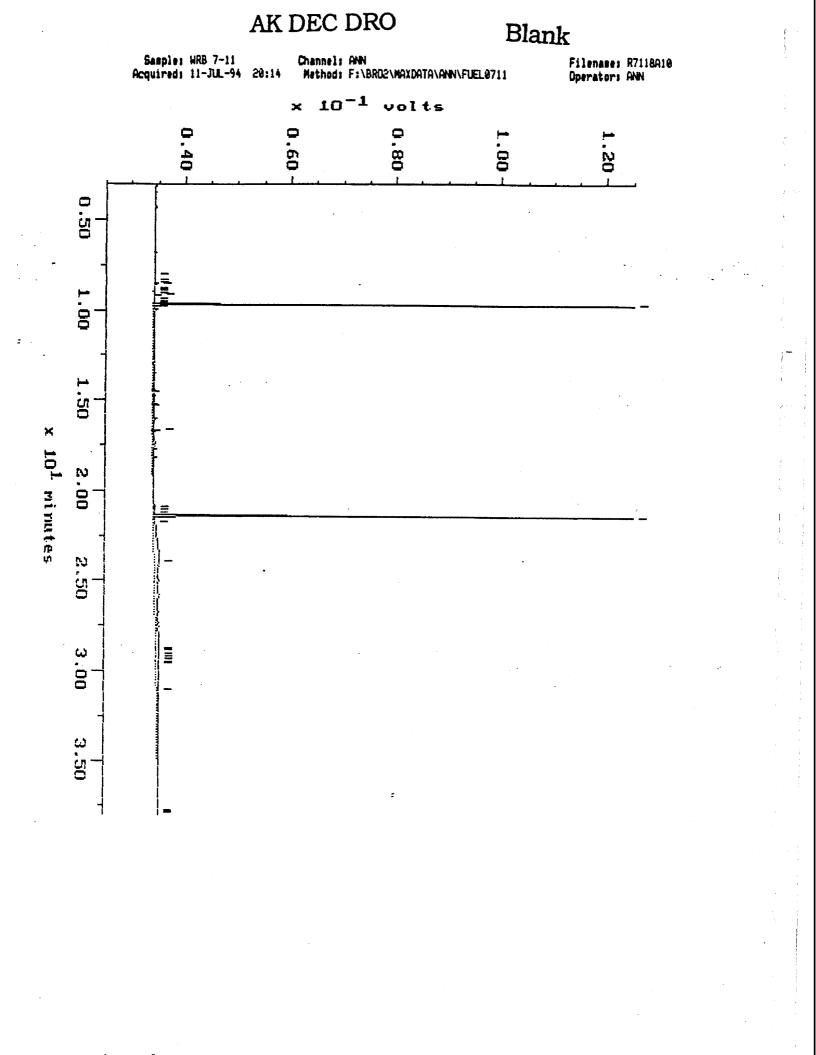

Saple: GGS 1400 Acquired: 13-JUL-94 20:53 Aethod: F:\BRD2\MAXDATA\ERNIE\FUEL0713 Comments: ATI: THE QUALITY TEAM Eilename: 87138E01 Operator: All

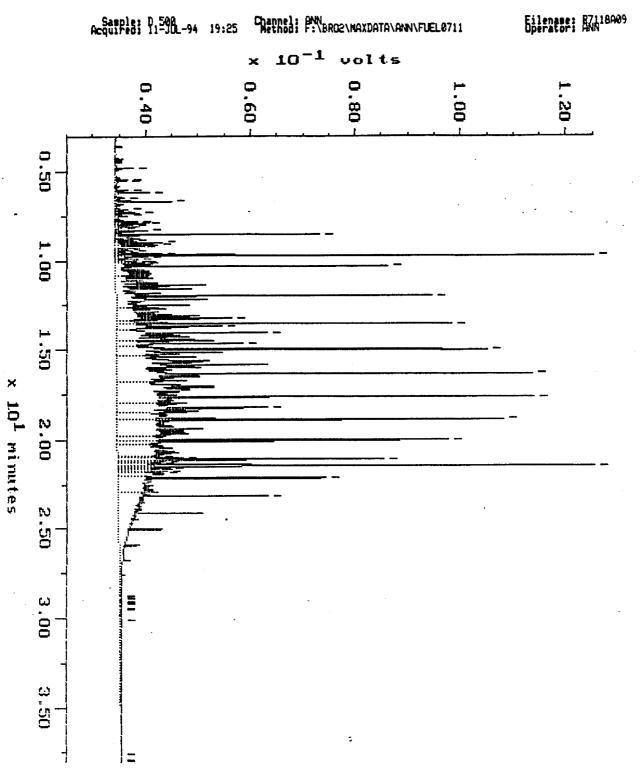


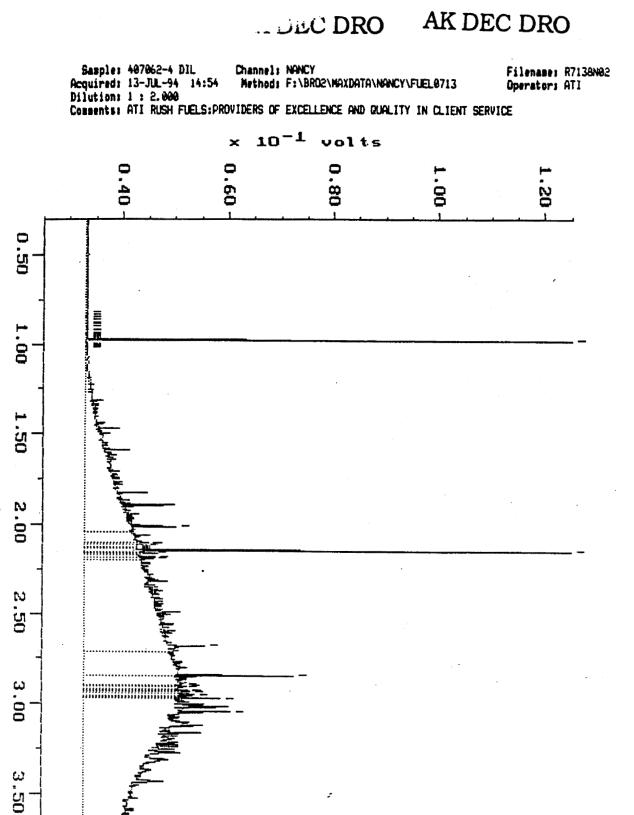

CUNTINUING CALIBRATION

Sample: D 500 Channel: ERNIE Acquired: 13-JUL-94 21:40 Method: F:\BRD2\MAXDATA\ERNIE\FUEL0713 Comments: ATI: THE QUALITY TEAM

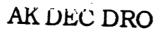
Filenase: R7138E82 Operator: ATI

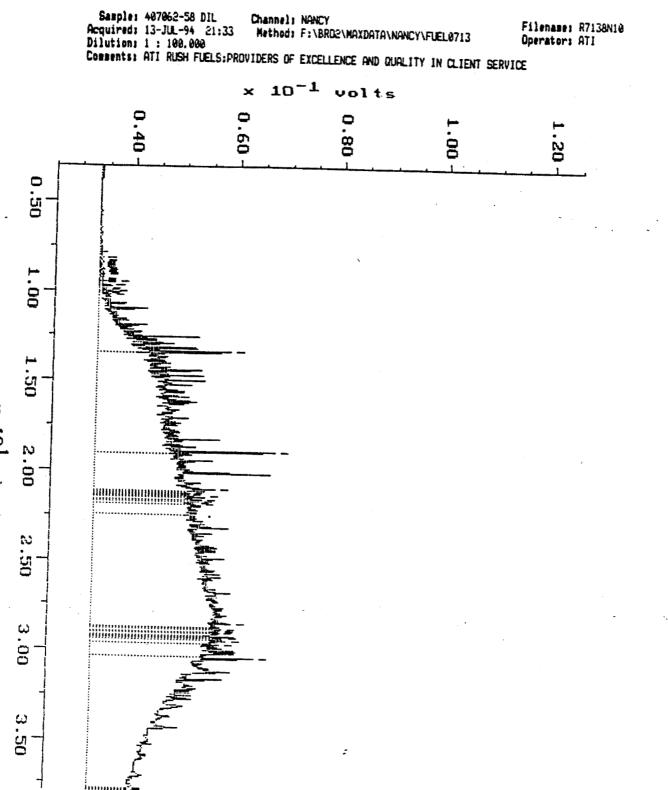




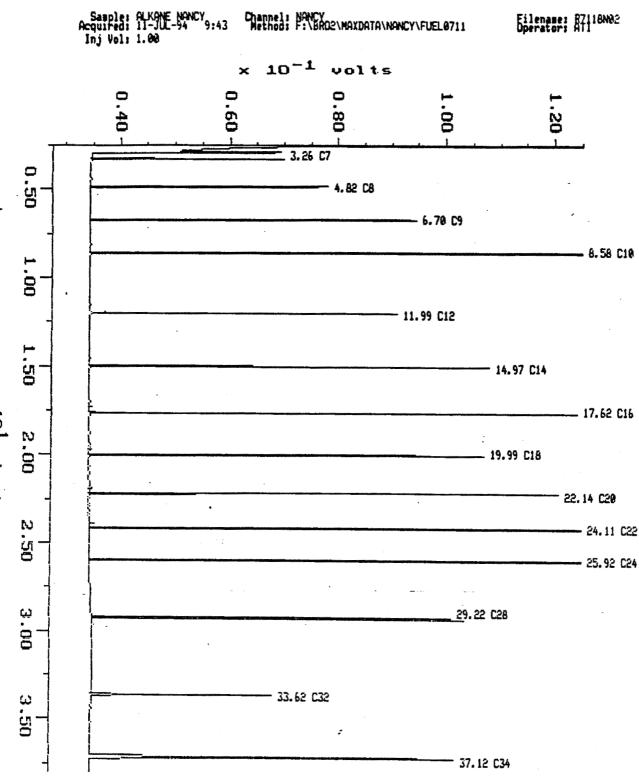

Ξ

Alkane




CONTINUING CALIBRATION

x 10¹ minutes

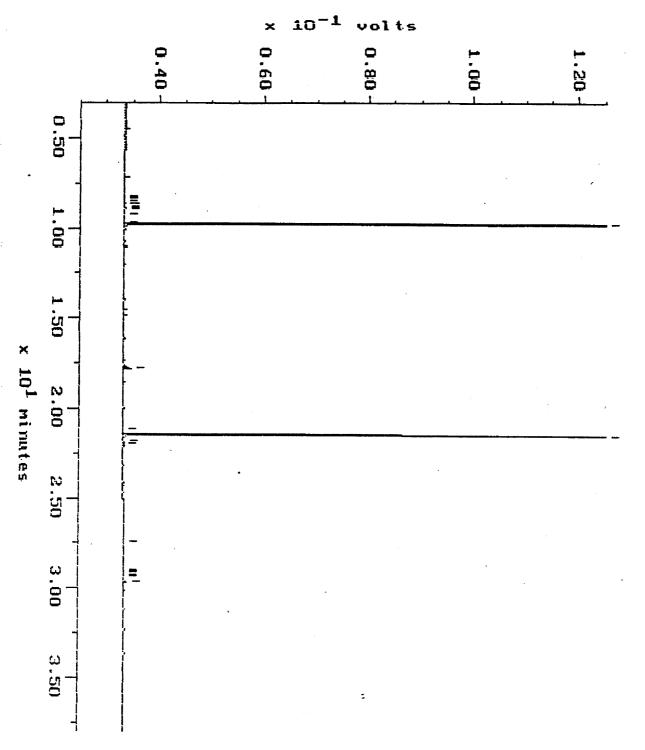


x 10¹ minutes

AK DEC DRO

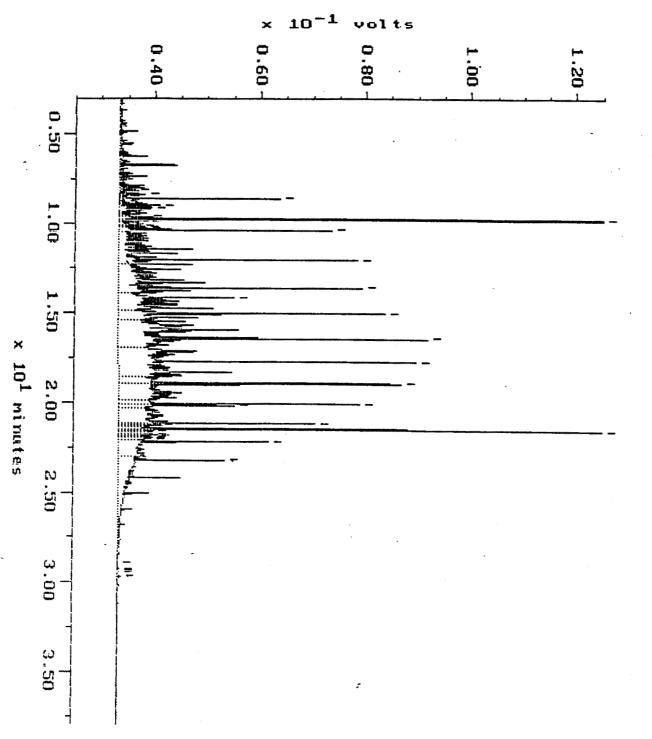
Alkane

x 10¹ minutes

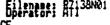

AK DEC DRO Blank

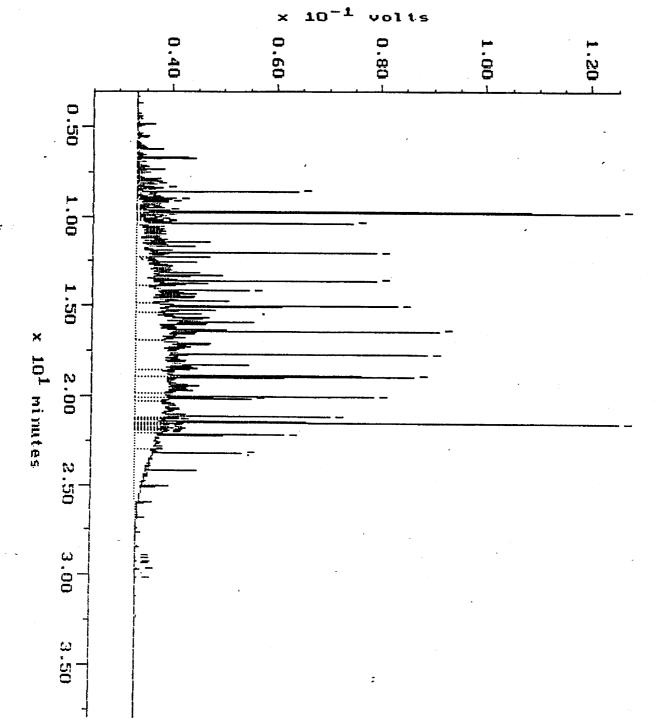
3

 Sample:
 SRB 7-12
 Channel:
 NANCY
 Filename:
 R7128N02


 Acquired:
 12-JUL-94
 20:26
 Method:
 F:\BR02\NAXDATA\NANCY\FUEL0712
 Operator:
 ATI

 Comments:
 ATI RUSH FUELS:
 PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE
 Service


CONTINUING CALIBRATION


Sample: D 500 Channel: NANCY Acquired: 12-JUL-94 19:37 Method: F:\BRO2\MAXDATA\NANCY\FUEL0712 Derator: All Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

CONTINUING CALIBRATION

Acquired: 13-JOL-94 14:05 Channel: NANCY Acquired: 13-JOL-94 14:05 Hethod: F:\BRO2\MAXDATA\NANCY\FUEL0713 Eilename: 87138N01 Comments: ATI RUSH FUELS:PROVIDERS OF EXCELLENCE AND QUALITY IN CLIENT SERVICE

	407062													HT	!-F	K	- 4	40-	70	[[
PROJ.			OF (то	DY REC	ORD		s			,	3	×.						[]		\square
	231				έτο	RT SITE A	SSESSN	MENT	NUMBER OF CONTAINERS		2	¥ v	10 10 10 10 10 10 10 10 10 10 10 10 10 1			L.	, , , , , ,					
SAMPL	ER (SIG.)		3	Z.					ER OF C	7	2) 	, . ,	7/					
ELS	MANN		2	4	5				łUMB	2	\sum	\$¢/	3	Ň	9A	y,				//	/	
DATE 94	TIME	PRES	•			SAMPLE No.			~	1			4)/4	Ŵ	9. v 0/						LOC	TION
6/28	1610	REf.T	10 9	4R	TM	1001			1	•	•		1							<	soil	
L	1615	4°C		4		1002				•	•		·								i_	
6/29	1020			U		1003				•	•											
	1040	1		11		1004			3	•	•	• •	•									
,	1120			11		1005				1	1											
	1125			11		006_			Ι			·						IT				
	1210			11		1007				T			1					IT				
	1215			11		008				Π	Π							.				
	1230			11		1009				Π					Τ		Τ		1			
	1235		1	11		1010				Π			1		T							
	1300			11		1011				Π	Π		-		1-						T	
	1310	-1		V		1012				Π				•	1	1	Ť				1	
	1325			lı		1013			-	Ť	T	-					T		1		1	
	1330			1		1014			1-	Ħ	T			-	1		1	T			1-	
	1335			1	1	1015				Ħ	iti	-			+-		Ť			-	1-	
	1345					1016				††	†††		-			İİ	1		1	1		
	1700					1017			\top	Ħ	Ħ	-					-		i		+	
	1710	V		<u>)</u>		1018			V	V	V							1		c	-1-	
NOT	FO 14	FASE	E AR		/E 1	/2 (4 0Z.)	OF SO			-		TE	DE	OR	742	1	AS	тне	SE			s
						A 1311 (T																
					-							_										
				WA	TER	SAMPLES	ARE F	PRESER	RVED) V	VITI	нн	NO:	3 (F	OL	Y')						
1						D HCL (GL																
i							· · · · · · · · · · · · · · · · · · ·															
SHIP	TO (LAB	ORATO	DRY A	ND AD	DRE	SS)												HAZ			SOCIA	
i I							CE A												WITH	I SAN	APLES	:
		7,	ļ		7:	ANCHORA	GE, A	LASKA	4									н	g, Po	DSSIB	LE PC	DL
6	RELIOUR	ED EY. IS	SIG., D	TP. TIM	E,	030 Mrs.	REC	EIVED BY	SIG. D	ATE.	TIME	,									A LEV	
/ /	1	\searrow	4		~		+ B.	nn	S	,,		z	-	ユト	<u>z.</u> k	.		:		IDARE El II I	DATA	•
f.	RELIQUISH	ED BY	<u> </u>	TE TIM	<u>9</u> 4	7	<u> </u>		(\$IG., D.		THE	-		17	[7]	M			11/5-5	0.00	0070	70
	B.V	N	Jø		-' 2 v	74999 <u>4</u>	Ki	Ma	U)	, A7	7 7-A	719 K	'Ψ 10);[]	-	UEL			ORTS	iU:
	RELIQUISH	ED BY: (S	SIG., DA	TE, TIM	E)	JIAU	RE	EWEB BY:	SIG., D	ATE.	ТІМЗ)	_	39				_	AC	2E, I	NC.	
K	KINSUD ATTAK 18:00						EN BY	siG., D	ATE.	TIME		•	:30	· /			AN	20 CI	ENTER AGE,	COUP AK 99		
								\mathcal{O}		_,		-								,		4

		407062									÷ 4	77-	AI	K	4	07	011
					DDY RECO	RD				en la	k /	[]			//		177
	proj. 52			TOP RETO	ORT SITE ASS	ESSMENT	NUMBER OF CONTAINERS		Ja K				; ; ; ; ; ; ;				
		MANN		X			ABER OF C	4	10000		3 19 9/3/5 /3/5	\$7.5	9 7 ה				
	DATE 94		PRES.	D,	SAMPLE No.		NUN	AN AN		2) 4) 4)	×~ ×~						
19-	6/29	1725	REF.TO	94RTM	11019		1			\uparrow	f	11				6	oil
20 -	-1	1740	4°C	N.	020		j	1	,					T			
21-		1805	(AII)	11	1 021												
22-		18/0	1	11	1022												
22- 23-		185		1/	1023	· · ·					++				\uparrow		
21+	-	1835		11	1024						+-+	++			+ †		
24+25+28+2728+2728+27331-		1030	-	11	1025			┼╂┼╴	╢─┼	++-	++	+	-		++		·····
25-	1125 11 1026								╟┼		++	+			++		
26					1020			┼╂┼╴							+-+		
27	1045 11 1027						┼╌╂╼	╢	}		+				++		
281		1050		11	1028		┼─┼			·	++						
29-		1230		11	1029					<u> </u>							
30 *		1235		11	1030					1	· - -	++	_				
317		1250		11	031												
32-		1300		11	1032						<u> </u> .	+					
32 + 33 + 34 - 35 - 36 -		1310		11	1032			1111			•	•	_				
34-	_	1320	-	11	1034	<u></u>		Ш.	+								
35		1325	-	11	1035												
36-	V	1330	V	li i	1036		V	NN		:						Sa	il
	NOTE	^{ES:} ⊁PL	EASE	ARCHIVE	1/2 (4 0Z.) OF A 1311 (TCL	SOIL SAN	APLE:	S SI	ATE	D FO	R 74	21,	AS	THE	SE	SAM	PLES
		MAY	ALSO	UNDERGO	A 1311 (TCL	P) EXTRAC	TION	, PE	NDIN	IG R	ESUL	TS (OF 1	гот,	AL H	Hg A	NALYSIS
			•	-													
				WATER	SAMPLES A	RE PRESE	RVED	WI	тн н	INO3	(PO	-Y')					
				AN	ID HCL (GLAS	S) EXCEP	T FO	R 8	100 /	ANAL	YSIS						
											.,						
	SHIP	TO (LABO	ORATOR	Y AND ADDRE	(SS)	·								HAZA	RDS	ASS	OCIATED
ļ																SAMP	
	(\sim	2		ANCHORAGE	, ALASK	Α							Hg	, POS	SSIBL	E POL
Ĩ	نر	AL QUE	Y. (SIA	DATE TIME	1030 HAS.	RECEIVED BY	SIG., DA	TE. TH	ME)		1			TAT	AND		LEVEL:
į	P	\nearrow	\searrow			B.M.				1	17/	74		S	TAND	ARD	TAT,
	Ý			7 51494	~ 7	D_{i} M	~~	ae	n		•	•			LEVE		ΑΤΑ
İ	(*	RELIQUISHE	BY: (SIG.	DATE, TIME)	TIGIAL	RECEIVED BY:	(SIG., DA	TE. TI	ME) 7	1719	411)×SJ		DELI	VER	REPO	RTS TO:
		B.W	1/20	war	K O	Kimx	fw	70	AT	7-A	K				C.J. E	ELSM	NNN
	, F	RELIQUISHEL	D BY: (SiG.	, DATE, TIME) 7	17/94	RECEIVED BY:	ISIG. DA	TE. TI	ME)	7.8.0	ìΨ				AQE	E, IN	С.
	Кï	MI	1 H	D m A	1/ 10.m		KA.	2		1.1.2							OURT
6	ιV	RELIQUISHE	DBYUSIG	. DATE, TIME,	12 18:00	RECEIVED BY:		TE T"		10:3	<u> </u>		(9				K 99518 3-0085 FAX
			/ / / / / /	, <u></u> , invicj	\rightarrow	HELEWED BY	(310.0)	ire, 11	nE)				зні	EET	2	0	of <u>4</u>
															·		

Record good condit 15.5%

ATT-AK 407011 407062 CHAIN OF CUSTODY RECORD PROJ. No. PROJECT NAME NUMBER OF CONTAINERS 5231 RED TOP RETORT SITE ASSESSMENT SAMPLER (SIG.) HIN ELSMANN 20/20 40/0/ DATE TIME PRES. SAMPLE No. 94 LOCATION 37 - 6/29 1535 REF. TO 94 RTM 6001 . wice • 1540 4°C 11 6002 387 39 -1543 (AII) 11 6003 . 40-1550 1/ 6004 • 6005 1553 11 • 41-0 1555 6006 . 42. 11 43-630 1450 037 11 ł ٠ . 1555 • . 44 1 • 11 • 1038 CATL. 1525 45 . 11 5∞ H2D 46-1635 • 500Z 1 702 (800 5003 • M 3 . 8 23 1800 5004 • 2 49* 1825 HD 5005 • 1200 50 EA 1 7001 ٠ • ols homogenize an 1 jan 51-3001 1907 • . Ľ 300z 1920 52-. ÷ • 1 er Bna71 534 1100 z*0*03 . i Н NOTES: * PLEASE ARCHIVE 1/2 (4 0Z.) OF SOIL SAMPLES SLATED FOR 7421, AS THESE SAMPLES MAY ALSO UNDERGO A 1311 (TCLP) EXTRACTION, PENDING RESULTS OF TOTAL Hg ANALYSIS WATER SAMPLES ARE PRESERVED WITH HNO3 (POLY') AND HCL (GLASS) EXCEPT FOR 8100 ANALYSIS 418.1 preserved with H2 SOL SHIP TO (LABORATORY AND ADDRESS) HAZARDS ASSOCIATED WITH SAMPLES: ATI ANCHORAGE, ALASKA Hg, POSSIBLE POL RECEIVED BY (SIG , DATE, TIME) OZOHUS. TAT AND DATA LEVEL: 7/7/9/ STANDARD TAT. 13.M LEVEL II DATA RELIQUISHED B SIG. DATE. TIME RECEIVED BY. (SIG., DATE, TIME) DELIVER REPORTS TO: K 10:55 C.J. ELSMANN BY: (SIG., DATE, TIME) RELIQUISHED BY: (SIG., DATE, TIME) 7.8.94 AQE, INC. 220 CENTER COURT 18:00 Nigo ANCHORAGE, AK 99518 (907) 563-0050, 563-0085 FAX RELIQUISHED BY: (SIG., DATE, TIME) VED BY : (SIG., DATE, TIME) SHEET 3 OF 4 Redd good condit 15.5°C

					40	1062					ATT	-A	κı	407	01	(
		СНА	IN OF	CUSTO	DDY REC	CORD				3	1	7/	[]]	77	1	[]]	777	
	PROJ.	No.	PROJEC	TNAME			ERS		`	X	5	$\circ/$						
	5	231	RED		ORT SITE A	SSESSMENT	NUMBER OF CONTAINERS) a	/X/h		7.7/ 	/1, ', ', ', , , ', ', ', ', ', ', ', ', ', ', ', ',					
	SAMPL	ER (SIG.	,	X		······································	3 OF C	٤.	×Y,	\$ } }	7.V		7.9×		//			
	ELS	MANN		\bigcirc	\int		JMBEI	¥ م	Ŷ		Ŵ	¥¥{	\$		[]	///		
	DATE 94	TIME	PRES.)	SAMPLE No		ž	\sim		Sa%i						/ / / ца		
54-	7/1	1128	REF. TO	94 RT 1	M-1034	1	1	•	•	7/ .		71		11		Soi	Q	
55677 5677 5077 5077 5077 5077 5077 5077		1130	4°C	N.	1040			•	•	1			-			· I		:
56-	•		(AII)	N	1041		1	•				\downarrow						
57-		1135	(11	1042	<u></u>	1	•				\downarrow			_	Ĺ		
5864	2	1336		1)	1043	-	13	76		•						Sar		1
19 76	•	1215		11	7002		6'	1	+-		•	++	_		1	Home	a genize	1
50-01		1230		11	7003)	6				•	• +				Ham	ogenize	<u> </u>
61-05		125			7004 8001	·	6	•	+		•					120	sauer_	
u -		1045		1	8002	7				-	\vdash				+	Ro		
63 +	<u> </u>	1045		11	200						┼╌┼╴	++			+	H		1
64 - 65 + 66 \$		1105		11	200				- 	1	×				+		<u>ل</u>	
, AF	1	1340	V	11	200		3		•		\uparrow	$\uparrow \uparrow$			1			
6675		101-				1		 -	+-				-		1			
E 4		+ 						\mathbf{T}				11						
,																		i
2										:				i I				
	NOT	^{ES:} ¥P	LEASE	ARCHIVE	1/2 (4 OZ.)	OF SOIL SA	MPLE	s s	LAT	ED F	OR	742	1. AS	THE	SE_	SAMP	LES	
	 	MAY	ALSO	UNDERGO) A 1311 (1	CLP) EXTRA	CTION	, PI	END	ING	RES	ULT	S OF	тот	AL	Hg Al	NALYSIS	:
~ J			<u>·</u>			<u></u>												
•																		
•••						ARE PRESE							<u></u>			<u> </u>	A	
																		1
	SHIP		ORATOR	AND ADDR	ESS)									HAZ	ARDS	5 ASSO	CIATED	
		10 (CA			-											SAMPL		
		A	\neg		ANCHOR	AGE, ALASK	Α							Hg	g, PC	SSIBLE	POL	
		RELIQUIS	Der 50	DATE THE	130 FINS.	RECEIVED BY	SIG. D	ATE, TI	ME)		Z	7/4	4			DATA		
	1-		X >			→ B.N	NA) eu	1		Π	רזי	7			DARD T	•	
		REMOULSE	ED BY: (SIG.	7 JULY	94-7	RECEIVED BY	USIG D	ATE TI		-11-	ND,	1		DEL		REBOR	TS TO:	1
	7	R V	2018		7/9/94_	+ Vino	1	INA	7	11	[44	10:	55	ULL				1
	1	2.71	$"\Delta a$	neu	Je	aun	H	VN)	477-	A1	;			C.J.	ELSMA	NN	
	/	RELIQUISH	ED BY: (SIG.	DATE. TIME) 7	17/94	RECEIVEDBY	: (SIG., D	ATE. TI	ME)	7.8	. 9'	1			AQ	E, INC	D.	
	AMALADAT-AK 18:00 TAKAS 220 CENTER COURT ANCHORAGE, AK 99518																	
	RELIQUISHED BY: (SIG., DATE, TIME) (907) 563-0050, 563-0085 FAX																	
	SHEET 4 OF 4																	
	Read good cinait 15.5°C																	
							R	2C	d	CA	\mathcal{F}	l	Un	dŰ	-/	5.5	C	
							. –		`	0								

APPENDIX

2221 Ross Way • Tacoma, WA 98421 • (206) 272-4850

July 19, 1994

Analytical Technologies, Inc. 560 Naches Ave. S.W., Suite #101 Renton WA 98055

Attn: Jeff Pettit

. .

PO #42862 Sample ID: 407062-50 Sample Matrix: Oil Date Sampled: 7-1-94 Date Received: 7-13-94 Spectra Project: S407-076 Spectra #8323

Total Metals, mg/Kg

Cadmium	(Cd)	·	<1
Chromium	(Cr)		<1
Lead	(Pb)		1
Arsenic	(As)		<1
PCB's, mg/Kg			<1
Flash, PMCC	Deg. F		>210
Total Halogen	(organic),	mg/Kg	<1

Total Metals testing performed by EPA Method AES 0029 PCB's by EPA Method 8080 Flash Point P.M.C.C. by ASTM D-93 Total Halogen testing performed by EPA Method 9076 Modified

SPECTRA LABORATORIES, INC.

Steven G. Hibbs, Chemist

2221 Ross Way • Tacoma, WA 98421 (206) 272-4850

July 19, 1994

Analytical Technologies, Inc. 560 Naches Ave. S.W., Suite #101 Renton WA 98055

Attn: Jeff Pettit

PO #42862 Sample ID: 407062-59 Sample Matrix: Oil Date Sampled: 7-1-94 Date Received: 7-13-94 Spectra Project: S407-076 Spectra #8321

Total Metals, mg/Kg

Cadmium	(Cd)		<1
Chromium	(Cr)		<1
Lead	(Pb)		12
Arsenic	(As)		<1
PCB's, mg/Kg	•		<1
Flash, PMCC I	Deg. F		>210
Total Halogen	(organic),	mg/Kg	<1

Total Metals testing performed by EPA Method AES 0029 PCB's by EPA Method 8080 Flash Point P.M.C.C. by ASTM D-93 Total Halogen testing performed by EPA Method 9076 Modified

SPECTRA LABORATORIES, INC.

Steven G. Hibbs, Chemist

Tacoma, WA 98421 2221 Ross Way (206) 272-4850 •

July 19, 1994

Analytical Technologies, Inc. 560 Naches Ave. S.W., Suite #101 Renton WA 98055

Attn: Jeff Pettit

PO #42862 Sample ID: 407062-60 Sample Matrix: Oil Date Sampled: 7-1-94 Date Received: 7-13-94 Spectra Project: S407-076 Spectra #8322

Total Metals, mg/Kg

Cadmium	(Cd)		<1
Chromium	(Cr)		<1
Lead	(Pb)		14
Arsenic	(As)		<1
PCB's, mg/Kg	• •		<1
Flash, PMCC I	Deg. F		>210
Total Halogen	(organic),	mg/Kg	<1

Total Metals testing performed by EPA Method AES 0029 PCB's by EPA Method 8080 Flash Point P.M.C.C. by ASTM D-93 Total Halogen testing performed by EPA Method 9076 Modified

SPECTRA LABORATORIES, INC.

Steven G. Hibbs, Chemist

,EAS	iX / JNEL		COLLETNS,	2 ¹ C0	PR ⁱ	E W		¥		į			-	1			
Ancilytical Technologies, Inc. 560 Naches Avenue SW, Sulte 101 Renton, WA 98055 (206)228-8335		Speedra Chain of Custody	Cus			DATE LABORATORY NUMBER:	TAT	OR	ž	Ψ.	DATI DATI	ਹੋ :	E	76		<u>ъ</u>	
PROJECT MANAGER: JEFE TEHIT						ANAL YSIS REQUEST	SIS F	EQL	EST								
ANALYTICAL TECHNOLOGIES, 560 NACHES AVE SW, SUITE RENTON, WA 98055 (206) 228-8335	INC. 101			••••••			TRITE		(IHZ) S'	, 			[670	1	رد		SHEWLATH
SAMPLE DISPOSAL INSTRUCTIONS			Herbi	0206 0000	301		IN/JTA	ATAM X	8540	8570	0518	0808	ISTURE	vively	<u>, फ्र</u> 'व		S TO F S
EID	TIME MATRIX LAB ID	8370 8520	8720 6CBv	XOT	COD	NAYO Raam					TCLP		& WO	301	<i>ব'</i> ऽ		BMUN
			X	\mathcal{F}			5	8	2	2	$+\infty$	M	$\frac{1}{2}$	X			<u> </u>
1 60			X	X							В	30	1	$\overline{\lambda}$	X		-
10101			X	지				\neg			Я	32	9	X	X		-
		+				+		+	-+	_					$\left \right $		
									+	-							T
												┝╌┤	┝─┤				
																	Ì
													_				
PROJECT INFORMATION																	
ATI PROJ #: 407 Ch2	TOTAL NUMBER OF CONTAINERS	UERS	Storatu		t	Hine: S	Signature:		EDB		Lime ''		RELINOU Signahur		RELINQUISHED BY: Signature:	ei E	Lime.
	COC SEALS/INTACT? YANNA		AN A	1 Kay	C L	$\overline{\mathbb{Q}}$,						b	i			į
CLIENT PROJ: P.O.A 42842	RECEIVED GOOD COND/COLD	(LD	Panal	Name:	0	Date: P	Printed Name:	Vame			Date:		inted	Printed Name:			Date:
	RECEIVED VIA:		let f	ery 1.	K4+1	$\frac{1}{2}$	3/41										
SPECIAL INSTRUCTIONS: 1			Company	Company (1)		_	отра	ž				121	Company:	ξ			
VERBALS DUE: $\frac{7}{27}$			Signature			Time: S	HECEIVED BY Signature:		5		Tine 2	14	RECEV	MED	RECEIVED BY: (LAB)		
HARDCOPY DUE: $\frac{7}{24}$			Q	Dec	wed		5.						20	ม้		lime:	
PRICE: DISC: 8					- 4 4 X		Printed Name	lame:			Date:		nted	Printed Name:		Dale:	:e:
1			Sompa	\cdot	4		Company:	1×				<u> </u>	alytic	al Tec	Analytical Technologios, Inc.	ios, In	6
ATI Labs: San Diego (619)458-9141 • Phoenix (602)438-1530	٠	Seattle (206)228-8335 •	Pensacrola (004)474-1001	VIONAVA	1001					1		ļ					٦

r

DISTRIBUTION: While, Canary ATI + Pink - ORIGINATOR I MILEIE/EAA

÷.

.'

.;)

2221 Ross Way • Tacoma, WA 98421 (206) 272-4850 ٠

July 27, 1994

Analytical Technologies, Inc. 560 Naches Ave. S.W., Suite #101 Renton WA 98055

Attn: Jeff Pettit

PO #43504 Sample ID: 407062-61 Sample Matrix: Oil Date Sampled: 7-1-94 Date Received: 7-22-94 Spectra Project: S407-148 Spectra #8555 RUSH

Total Metals, mg/Kg

Cadmium	(Cd)	<1
Chromium	(Cr)	<1
Lead	(Pb)	<1
Arsenic	(As)	<1
PCB's, mg/Kg	. •	<1
Flash, PMCC I	Deg. F	>210
Total Halogen,	mg/Kg	<1

Total Metals testing performed by EPA Method AES 0029 PCB's by EPA Method 8080 Flash Point P.M.C.C. by ASTM D-93 Total Halogen testing performed by EPA Method 9076 Modified

SPECTRA LABORATORIES, INC.

Steven G. Hibbs,

And the first firs	VX A NEE	The proper inpartment	s S	AMMA,	Sur Co		Ę		Î					•			
Analytical Technologies, Inc.		Spectro	je je	I	1		•.				ğ	DATE	11		Afface 1	 ا	_
560 Naches Avenue SW, Sulte 101 Renton, WA 98055 (206)228-83	ñ	nain o	1 C	Custody	<u>d</u>	LAE	LABORATORY NUMBER	IOI	RYN	IUN	JBE	<u>.</u>					-
PROJECT MANAGER. JEFF FEHLT		s l				AN	ANALYSIS REQUEST	S RE(SUES			ŀ					Γ
ANALYTICAL TECHNOLOGIES, 560 NACHES AVE SW, SUITE RENTON, WA 98055 (206) 228-8335	, INC. E 101	elijsfoV s'ANB s'ANP		səbio			TRITE	ST		(SHE)			[670	4	+C4		SHENIATW
SAMPLE DISPOSAL INSTRUCTIONS	TRUCTIONS	sw/	ίŢu	c			IN/					_	_		カ		∞ <u>-</u>
C ATI Disposal	C Return	ວ໑	0 5	906)Z06	JOI		IATAI	WE		518 228		SIO SIC	14	'q.		ORE
SAMPLEID	TIME MATRIX LABID	854(854(, 80a	201	COX XOJ	DOD NAYC	SA8N ATIV				LLP CLP	ato.		-]02	+5		
401062-61 11-14H	Fraduct		Z	L	3				\sim		┉┠┉┾╸	тĶ		īΧ			
																1	
								\dashv	_								<u> </u>
					1			-+									
			+							-+							
				1			\neg	+		-+							
			+							-+	:		_				T
			+				\square				\square	-+			-	-	- T
							-			-+	_	+				-+	
						\uparrow	+	+	İ	+	4				-		.
								_					+				
PROJECT INFORMATION	SAMPLE RECEIPT	ECEIPT	RE	RELINQUISHED BY	HED BV			RELINQUISHED BY		- ;						╢╴	ר
ATI PROJ #: 4000	TOTAL NUMBER OF CONTAINERS	TAINERS '	8	Signature:	V	Times	1.0	Signature:			Time:	-	Signature:	iei		Time:	6
ATI PROJ NAME: -	COC SEALS/INTACT? Y/N/NA	NNA	P	The second	LV4	14	<u>, </u>	1									
	RECEIVED GOOD COND/COLD	/cold		Ten par	-	ed /	e: Prin	Printed Name:	ie.		B	Date: P	nited	Printed Name:		Date:	6
PO264 4.0.7	RECEIVED VIA:		≯I I		7.1	4:0/2	4	į				.					
SPECIAL INSTRUCTIONS:			8	Company:			Con Lo	Company:					Company:	Ä			1
VERBALS DUE: 7/28		•*		RECEIVED BY:	BY:			RECEIVED	ΒY:			┝╼┥	REC	IVED	RECEIVED BY: (LAB)	3.	
HARDCOPY DIF. 8/1			<u>} \</u>	Zuue.		1 me:		Signature:			Time:	_	Signature:	:ei		Time:	
			<u> 신</u> 문	Printed Name:	1077	Date:		Printed Name	.g		Date:		1.1	Drinted Mamo			
PRICE: DISC: \$			Ă	Sur.	y y	erll			į		٥ د			Nali II d.		Dale:	
			ชิ	Company	4			Company:					ilylic	cal Te	Analytical Technologios, Inc.	os. Inc.	
ATI Labs: San Diego (619)458 9141 • Phoenix (602)438-1530	•	Seattle (206)228-8335	. Doneo	1.Z.C. 10C						ľ					'		٦

2 <u>9</u>

د ار

3

:

DISTRIBUTION: White, Canary - ATI • Pink • ORIGINATOR

560 Naches Avenue, S.W., Suite 101, Renton, WA 98055 (206) 228-8335 Karen L. Mixon, Laboratory Manager

ATI I.D. # 407209

August 8, 1994

AQE

220 Center Court Anchorage AK 99518-1621

Attention : Cliff Elsmann

Project Number : 5231

Project Name : Red Top Retort Site Assessment

Dear Mr. Elsmann:

On July 8, 1994, Analytical Technologies, Inc. (ATI), received 66 samples for analysis. The samples were analyzed with EPA methodology or equivalent methods. The results, sample cross reference, and quality control data are being issued under ATI accession number 407062.

Per client request, 12 samples were reaccessioned on July 22, 1994, for additional analyses. The report for the additionally requested analyses is enclosed.

Sincerely,

Jéffery L. Pettit Senior Project Manager

JLP/hal/elf

Enclosure

SAMPLE CROSS REFERENCE SHEET

CLIENT		:	AQE				
PROJECT	#	:	5231	L			
PROJECT	NAME	:	RED	TOP	RETORT	SITE	

ÁTI #	CLIENT DESCRIPTION	DATE SAMPLED	MATRIX
407209-1	94 RTM 1003	06/29/94	SOIL
407209-2	94 RTM 1004	06/29/94	SOIL
407209-3	94 RTM 1021	06/29/94	SOIL
407209-4	94 RTM 1022	06/29/94	SOIL
407209-5	94 RTM 1025	06/29/94	SOIL
407209-6	94 RTM 1026	06/29/94	SOIL
407209-7	94 RTM 1029	06/29/94	SOIL
407209-8	94 RTM 1031	06/29/94	SOIL
407209-9	94 RTM 1034	06/29/94	SOIL
407209-10	94 RTM 1038	06/30/94	SOIL
407209-11	94 RTM 8001	07/01/94	ROCK
407209-12	94 RTM 8002	07/01/94	ROCK

---- TOTALS -----

MATRIX	# SAMPLES
SOIL	10
ROCK	2

ATI STANDARD DISPOSAL PRACTICE

:

The samples from this project will be disposed of in thirty (30) days from the date of the report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ATI I.D. # 407209

ANALYTICAL SCHEDULE

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED TOP RETORT SITE			
ANALYSIS	TECHNIQUE	REFERENCE	LAB
TCLP PREPARATION	-	EPA 1311	R
MERCURY	AA/COLD VAPOR	EPA 7470	R

:

R	=	ATI - Renton
SD	=	ATI – San Diego
PHX	=	
PTL	=	ATI - Portland
ANC	=	ATI – Anchorage
PNR	=	ATI - Pensacola
FC	=	ATI - Fort Collins
SUB	=	Subcontract

ATI I.D. # 407209

P

ł.

TCLP METALS ANALYSIS

CLIENT : AQE PROJECT # : 5231 PROJECT NAME : RED	L TOP RETORT SITE	MATRIX : L	EACHATE
ELEMENT	DATE LEACHED	DATE DIGESTED	DATE ANALYZED
MERCURY (SAMPLES -1, -2)	07/22/94	07/25/94	07/26/94
MERCURY (SAMPLES -3, -4)	07/25/94	07/29/94	08/01/94
MERCURY (SAMPLES -5, -6)	07/25/94	08/02/94	08/03/94
MERCURY (SAMPLES -7, -8, -11, -12)	07/27/94	07/29/94	08/01/94
MERCURY (SAMPLES -9, -10)	07/27/94	08/02/94	08/03/94

12

ATI I.D. # 407209

TCLP METALS ANALYSIS DATA SUMMARY

	: AQE : 5231 : RED TOP RETORT SITE			LEACHATE mg/L
ATI I.D. #	CLIENT I.D.	MERCURY	· · · · · · · · · · · · · · · · · · ·	
407209-1 407209-2 407209-3 407209-4 407209-5 407209-6 407209-7 407209-7 407209-9 407209-10 407209-11 407209-11 407209-12 METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK TCLP BLANK TCLP BLANK TCLP BLANK	94 RTM 1003 94 RTM 1004 94 RTM 1021 94 RTM 1022 94 RTM 1025 94 RTM 1026 94 RTM 1029 94 RTM 1031 94 RTM 1031 94 RTM 1034 94 RTM 1038 94 RTM 8001 94 RTM 8002	0.0027 <0.00022 <0.00020 <0.00020 0.021 0.023 0.0045 0.00037 0.17 <0.0020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020		

:

ATI I.D. # 407209

TCLP METALS ANALYSIS QUALITY CONTROL DATA

	CLIENT PROJECT # PROJECT NAME	: AQE : 5231 : RED TOP RETO	RT SITE		MATRI		ΓE	
	ELEMENT	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED RESULT	SPIKE ADDED	¥ REC
Ŧ	MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY	BLANK BLANK BLANK BLANK 407145-1 407161-5 407174-15 820033-3	<0.000200 <0.000200 <0.000200 <0.000200 <0.000200 <0.000200 <0.000200 <0.000200	N/A N/A N/A <0.000200 <0.000200 <0.000200 0.00029	N/A N/A N/A NC NC NC NC	0.00120 0.00109 0.00104 0.00107 0.00110 0.00109 0.00104 0.00107	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	102 109 104 107 110 109 104 107

NC = Not calculable.

2

5

						-	4070)62	~						AT	1-A	K	4	07	ott	40	27209	l
			СНА	IN C	OF C	USTO	DDY R	ECO	RD					Ŋ	7	7	7	//		[]	17	//T	1
		PROJ	. No.	PRO.	JECT N	AME								\$	5	$\langle \rangle$	k	;/ /	[]]	,			
-		5	Z31	RE		P RETO	ORT SITE	E ASS	ESSMENT				202 10 x	$\langle \mathbf{x} \rangle$, u/ /		[] ,			
		SAMI	PLER (SIG.	/	Z						5	Ŷ		X),	Ţ.	y 10/8	75	1		[] ,	[]	/	
		EL	SMANN	_{.	Z	+							Y/Y	13	\mathcal{Y}		\$¥ /	//	[[]		/		
-		DATI 94	TIME	PRES	5.		SAMPLE	No.					n ja	9/49)		9. v 0/					LO	CATION	
÷	1-"	6/z		REf.		ARTM				1		• •	+		\prod						Śċ	L	
	2-'	L	1615	400		4	1002					• •	++								-1		-
-1	3-1	6/z	1 10ZO	(AII)		U	1003						+ +		ļļ						-1-		
24	54	<u> -</u>	1040			11	1004	-2			3	• •	•	• •	1						4		-
	5-'		1120			11	1005					14					\perp			\rightarrow	4		
	6.		1125			11	1006	-		$\downarrow \downarrow$	_	Щ									\rightarrow	<u>.</u>	-
	7		1210			v	1007		······	\square		Ш						\square					-
1	8		1215			11	1008					\prod									-		
	8		1230			11	1009							1									
	10-1		1235			11	1010							ļ									ļ
	11-+		1300			u	100																
	12-'		1310			N.	OIZ																
	13-1	Π	1325			ų	1013																
	4-1		1330			11	1014			Π													
	15-		1335			ų	1015													1			-;
	16+		1345			u	1016				-	Π		1						i			
~	17+		1700			n	1017							ł							-1		-
	18+	1	170	V			1018			V		VU	/	1						1.	انع		i
2	.0	NO	tes: ¥PI	LEASI	EAR	CHIVE	1/2 (4 0)	Z.) OF	SOIL SA	MPL	.ES	SL	ATI	ED	FOR	742	1. /	s 1	THES	E SA	MP	LES	-
1			ΜΑΥ	ALS	O UN	DERGO) A 1311	(TCL	.P) EXTRA	CTI	DN,	ΡĒ	ND	ING	RES	ULT	's c	OF T	OTA	L Hg	AN	ALYSIS	
								-												e			
						WATE	R SAMP	LES A	RE PRES	ERV	ED	wi	тн	HNC)3 (F	POL	Y')				<u>,</u> -		
						1A	ND HCL	(GLA	SS) EXCE	PT	OR	81	00	AN	ALYS	SIS							;
		SHI	P TO (LAE	BORATO	ORY AN	D ADDR	ESS)							_			1		HAZAF	DS A	ssoc		
		i				. —.													w	ITH SA	MPL	ÉS:	1
				7.			ANCHO	HAG	E, ALASI	KA									Hg,	POSSI	BLE	POL	:
			RELIOUR	EDEN IS	SIG., DAT	R. TIME,	1030A	23.	RECEIVED	Y ISIG	. DAT	E. TIK	AE)						TAT A	ND DA	TA L	EVEL:	-
	(\geq	7.7	rlig 9	4 7	,	B.M.		51	ىر	Zi	r	7/	7/7	7			ANDAP			1
			RELIQUISH			e, time)	HA	74	RECEIVEDE	Y: (SIG	DAT	E. TIN	AE)	7	7/9	ŶÝ		_		ER RE		τς το: IN	
			1-1-1		JO	ve	<u> </u>	Ý	IMINS	×1	NI	U	M		<u>qk</u>		5						
		11	RELIQUISH		SIG., DAT	E. IWE)	11714	7		Y:(SIG	., DAT	E, TIL	A=)	7	89	19				AQE,			
	C	K	RELIQUISH			TA	K 18%	00	RECEIVED		P. DAT	E. TH.	AE)	10	5:30	2		(9	ANCH	CENTE ORAGE 3-0050,	, AK		
								+	- 0			,	- r					SHE	EET_		0F	4	
										Do	01	1	~ ~	, 1		_	5.	1,		10			-
								•		FU	20		P	H	ĊI	nd	LΤ	15	5.50	Ċ			

707065 40720	9		-	V	A	17-	A	K	4	7011
CHAIN OF CUSTODY RECORD	ş		63		. ; .			[]	[]	
5Z31 RED TOP RETORT SITE ASSESSMENT	NUMBER OF CONTAINERS				\$/.*/	K.S. C.L.	5) /			
SAMPLER (SIG.)	ER OF CC	*				35 75				
ELSMANN	NUMB	N.					K) K)			
94 TIME PRES. SAMPLE NO.		/1/1	X/0/4	/4/2	/0/	2 2 2	/	4	///	
9- 6/29 1725 REF. TO 94 RTM 1019 0- 1 1740 4°C 11 1020		••	┠╌┠─╏				+-	$\left \right $	+	Goil
$0 - 1740 4^{\circ}C 11 020$ $13 1805 (A11) 11 021$			┝╌┼╌┤	-++		\vdash		┢┼┝	┼┼	
2-4 1810 1 11 102Z	+		┟╌┼╌┧	╧┼╾┼	+-	\vdash		+ +	++	
2-1-4 1810 1 11 1022 3-1 1825 11 1023		$\left \right\rangle$	+ + + + + + + + + + + + + + + + + + +			\vdash	+	┼╌┼╌	++	
3^{-1} 185 11 1023 14 185 11 1024	$\left - \right $	+++		++				++		
4+ 1835 11 1024 5+5 1030 11 1025	<u> -</u>	┝╫╋	┝╾┼╾╎			$\left \right $		+	++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	┥╉┥	┝╋┼┼	┝╌┼╾┤		+			++	++	
7- 1045 11 107.7		+++		++		\vdash		++	++	
7 1045 11 1027						+		++-	++	
8		╎┤┼╉	┝┼┼	-+-+		+			++	
$q_{-7} = -7 = 1230$ 11 1029		╎┼┼┼						++	++	
	+	┝╂┼╂╴	┝╌┼╌┼					+-	++	
518 1250 11 1031	┼╌┠╌	╎┦┼┠	- +				_	++	+	
52 - 1300 11 1032 53 1310 11 1033	┼╾╂╌	+++						+ + -		
53 1310 11 1033		┝┨╌╎┨╌			•	•				
34-11/320 11 1034									++	
5- 1325 11 1035 36- V 1330 11 1036	V		├ - ├ -;				_	++		
36 - V 1330 V 11 1036		VV					1			Soil
NOTES: * PLEASE ARCHIVE 1/2 (4 0Z.) OF SOIL SAN	MPLES	S SL	ATED	FOR	742	1.	AS	THE	SE S	AMPLES
MAY ALSO UNDERGO A 1311 (TCLP) EXTRAC	- TION,	, PE	NDING	RE		5 (JF	1017	AL H	g ANALYSIS
WATER SAMPLES ARE PRESE AND HCL (GLASS) EXCEP	RVED		H HN	03 (POL	(')		-		
					515					
SHIP TO (LABORATORY AND ADDRESS)										ASSOCIATED
ATI : ANCHORAGE, ALASK									WITH S	DAMPLES
	A									SAMPLES:
RELOUTED AT ISTO DATE TIME 1070 HINS RECEIVED BY		TE. TIM	E)			_		Hg	, POS	SIBLE POL
	ISIG., DA			7/	7/9	4		Hg TAT S	AND D	SIBLE POL
PELOUISHING Y ISID DATE TIME, 1030 MMS. RECEIVED BY 7 JULY 94 - B. M	ISIG., DA			7/	7/9	4		Hg TAT S	AND D	SIBLE POL
		ua	٨	7/ 7194	7/9	4		Hg TAT S	AND E	SIBLE POL
7 JUL 94 7 B. M		ua	٨	7/ 7194 A1	7/9 ' 10: K	4		Hg TAT S DELI	AND D TANDA LEVEL	SIBLE POL DATA LEVEL: ARD TAT, II DATA
7 JUL 94 7 B. M		TE. TIM	1 1) 7/1 ATT	7/ 7/94 <u>A1</u> 8.91	7/9 10: K	4		Hg TAT S DELI	AND E TAND/ LEVEL VER F	SIBLE POL DATA LEVEL: ARD TAT, II DATA REPORTS TO:
RELIQUISHED BY: (SIG. DATE. THME) 7/7/94 RECEIVED BY: RELIQUISHED BY: (SIG. DATE. THME) 7/7/94 RECEIVED BY: RELIQUISHED BY: (SIG. DATE. THME) 7/7/94 RECEIVED BY: KIMAL ATT-ALL 18:00		TE. TIM	л 17 АТТ 19 7.	7/ 7/94 - A1 8.91	7/9 10: K	4		Hg TAT S DELI 220 ANC	AND E TANDA LEVEL VER F C.J. E AQE 0 CENT	SIBLE POL DATA LEVEL: ARD TAT, II DATA REPORTS TO: LSMANN , INC. FER COURT IE, AK 99518
RELIQUISHED BY: (SIG., DATE, THAE) 7/7/94 RELIQUISHED BY: (SIG., DATE, T		TE. TIM	1 ATT 1: 1: 1:	7/ 7/94 - A1 8.91	7/9 10: K	4	(Hg TAT S DELI 220 ANC	AND E TANDA LEVEL VER F C.J. E AQE 0 CENT	SIBLE POL ATA LEVEL: ARD TAT, II DATA REPORTS TO: LSMANN , INC. FER COURT
RELIQUISHED BY: (SIG. DATE. THME) 7/7/94 RECEIVED BY: RELIQUISHED BY: (SIG. DATE. THME) 7/7/94 RECEIVED BY: RELIQUISHED BY: (SIG. DATE. THME) 7/7/94 RECEIVED BY: KIMAL ATT-ALL 18:00		TE. TIM	1 ATT 1: 1: 1:	7/ 7/94 -A1 8.91	7/9 10: K	4		Hg TAT S DELI DELI 22(ANC 907) 5	AND E TANDA LEVEL VER F C.J. E AQE 0 CENT HORAG 63-0050	SIBLE POL DATA LEVEL: ARD TAT, II DATA REPORTS TO: LSMANN , INC. FER COURT IE, AK 99518

1

Read good condit 15.5%

401000 40 1209 (1 ATT-AK 407011 CHAIN OF CUSTODY RECORD NUMBER OF CONTAINERS ANT COLORIDA PROJ. No. PROJECT NAME 523 RED TOP RETORT SITE ASSESSMENT SAMPLER (SIG) ELSMANN 40/2) 4000 DATE TIME PRES. SAMPLE No. LOCATION 94 37 - 6/29 1535 REF. TO 94 RTM 600 . unice • H° C 11 6007 38+ 1840 . 39 -11 6003 1543 (AII) 6004 40-1550 1/ . 6005 1553 11 ø 41-• 1555 ۲ 6006 11 6/30 1450 037 1 ٠ 11 . <u>Soil</u> 43 -10 1555 1 • . • • 038 V 1525 . H2D 45 11 5∞ 46-1635 . 500Z ł -02 (800 5003 • 47 N 3 • 48 23 1800 5004 • 1 2 H2O 49* 1825 5005 50 BA ols homeganize • 1200 11 7001 • 300/ حمذلا 51-• 1907 . 300z 1920 • . 527 1 per Bn sou 534 z*0*03 100 . $H_{2}O$ 11 . NOTES: FPLEASE ARCHIVE 1/2 (4 0Z.) OF SOIL SAMPLES SLATED FOR 7421, AS THESE SAMPLES MAY ALSO UNDERGO A 1311 (TCLP) EXTRACTION, PENDING RESULTS OF TOTAL Hg ANALYSIS WATER SAMPLES ARE PRESERVED WITH HNO3 (POLY') AND HCL (GLASS) EXCEPT FOR 8100 ANALYSIS preserved with HzSOY 418.1 HAZARDS ASSOCIATED SHIP TO (LABORATORY AND ADDRESS) WITH SAMPLES: ANCHORAGE, ALASKA ΔΤΙ Hg, POSSIBLE POL ORALLS. RECEIVED BY (SIG , DATE, TIME) TAT AND DATA LEVEL: STANDARD TAT, LEVEL II DATA RECEIVED BY: (SIG., DATE, TIME) DELIVER REPORTS TO: v 10:55 C.J. ELSMANN BY: (SIG., DATE, TIME) .8.94 AQE, INC. 220 CENTER COURT 1/ 18:00 NiBU ANCHORAGE. AK 99518 (907) 563-0050. 563-0085 FAX RELIQUISHED BY: (SIG., DATE, TIME) (SIG., DATE, TIME) VED B _of_<u>4</u> SHEET 3

Redd good condit 15.5°C

Ē							_	_	U62		· • 1	6	ィ	71		- ≺	e/ [Γ λ	- 4		ΛH	1		
		СН	AIN C	F C	USTC	DD											7	7	7	77	77	011	77	77	77
म	PROJ.			ECT NA													Å.		//	1	/ /.				//
	52	231	BED	TOP	PETO	DT	0171				NUMBER OF CONTAINERS				Ŕ	Ľ,	Ś	Q/		$\dot{\mathbf{v}}$		//	//	.	/
			neb	ТОР	REIU	RI	SIII	EAS	SSESS	SMENT	ATA			13		N‡	¥9	7.7/ ~~/	/5	, 	' / ,	///			
	SAMPL	ER (SI	3.)		>	Z		7			- 2					8	JA	γ_{\prime}	3	Ÿ,	[]		/ ,		
		_		-//	K					-			X	X	δ	23	7.V.	0/9	7, ry	//			/ /	/	
	ELSI	MANI	V C	\sim	Z	5				*	MBE		م /	X.	8	$\sqrt{\sqrt{2}}$	Ŵ	/.)/	₫		' / /	//		/	
	DATE	TIME	PRES.	T	\mathcal{T}					<u></u>	Ĩ	R	X	Ø	\mathbb{Z}	79	$\sqrt{3}$	8 8	¥ /	//			//		
. –	94						IPLE	NO.					/16/	<i>K</i> ja	Ø4	9/4	\times		/ /	/ /		' / <i> </i>	/ .		
• [-			REF.TO	94	RTN	1.1	0	39			1	Ť	1.		7-1	4	7	7-1	+	+		4. /-		OCATIO	NC NC
55 -		1130	4º C		<u>U</u>	1	04	10			i	•	,		\vdash	-+-	+-	┝╍┼╸	-+	+			50	l	
56-		1133	(AII)	ļ	V	1	04	1		·······	1	•		+	\vdash		+-	┝─┼╸	+-	╋╋				<u> </u>	
5++		1135			11		04	2			İ	•				- l·	+	┝╌┼		┼╌┼	+++		\rightarrow		
641		1336			1}		04	3			1	5/2	ber -	•		•	+		+-	++	+-+		_Ļ		<u> </u>
12.		1215			11		-00				6	7	Ħ	-			•	+	+	┼╌┼╴	++	-	Sur		[
	 	1230			11		-00				6	Ť		\vdash			+		+	┝╼┼╴	+		o Ma	gen;	122
H		1245			11		-00				6	1	\uparrow		<u> </u>	•	+•+		+	╞╌┼╴	++	H	om	<u>Zeni</u>	20
27		1045			<u>11</u>	É	300	1			l	•	$\uparrow \uparrow$		1	+-	\uparrow				┿┽			Juct	
3					11	_8	300	Z			1	•	$\uparrow \uparrow$	-+	i	+-	┼┥				++		6		
+		1103		1	<u>.</u>		200				1		•	1		╈	\uparrow	1	\uparrow		┾╁	+-!	Roc		
5+		1105 340				_2	00	2					•		i	1	ki		+		╈┼	+	<u>H</u> 2	0	`
05-1	<u> </u>	540	0	1	1	2	00	ร.			3			•		17	$ \uparrow $	+	+i	+	++				
		1												-		_						1			
																	Τ						_		
														+				+							
	DTES:	¥																							
	DTES:	¥ PLI MAY	EASE A	RCHIV	/E 1/0	(4	0Z.)		SOIL	SAM	PLES	S					74	21,	AS	TH	ESE	SAN		ES	
	DTES:	¥ PLE MAY	EASE A	RCHIV	/E 1/0	(4 13 ⁻	<u>0Z.)</u> 11 (1		SOIL P) EX	SAM	PLES TON,	SI					74 5UL	21. TS	AS	 ТН ТО	ESE	SAN Hg	MPL	ES	
	DTES:	<mark>¥</mark> РЦ1 МАУ	EASE A	RCHIV	/E 1/0	<u>(4</u> 13 ⁻	0Z.) 11 (1		SOIL P) EX	SAM	PLES TON,	SI					74 5UL	21. TS	AS	TH TO	ESE	SAN Hg	MPL	ES	
	DTES:	¥ ₽LE MAY	EASE A ALSO I		/ <u>E 1/2</u> IGO A														AS	TH TO	ESE	SAN Hg	<u>MPL</u> ANA	ES	
	DTES:	¥ _{РЦ}	EASE A ALSO (IGO A	AMF	PLES			FSED									AS	TH TO	ESE	SAN Hg		ES LYSIS	
		¥ _{РЦ}	EASE A ALSO (/ <u>E 1/2</u> IGO A	AMF	PLES			FSED									AS	TH TO	ESE	SAN Hg	MPL ANA	ES	
	· · · · · · · · · · · · · · · · · · ·			WAT	TER S	AMF	PLES			FSED									AS	TH TO	ESE	SAN Hg	MPL	ES	
	· · · · · · · · · · · · · · · · · · ·		EASE A ALSO U	WA1	TER S AND	AMF	PLES - (GI	OF TCLI	RE PR S) EX	ESER									AS	HAZ	ARDS			TED	
	· · · · · · · · · · · · · · · · · · ·			WA1	TER S	AMF	PLES - (GI	OF TCLI	RE PR S) EX	ESER									AS	HAZ	ARDS	ASS SAME	OCIA	TED	
	· · · · · · · · · · · · · · · · · · ·			WA1	TER S AND	AMF	PLES - (GI	OF TCLI	RE PR S) EX	ESER CEPT	VED FOR	W1 81	<u>TH</u> 100						AS	HAZ	ARDS WITH 9, PO	ASS SAME	OCIA PLES E PC	TED	
	P TO (WA1	TER S AND	AMF	PLES - (GI	OF TCLI	RE PR S) EX ALA	ESER CEPT	VED FOR	W1 81	<u>TH</u> 100		NO: NA	3 (F		Y')		HAZ	ARDS WITH g, PO	ASS SAME SSIBL	OCIA PLES E PC		
SHIF	P TO ((LABO)	RATORY /	WAT AND ADD ATI	TER S AND	AMF	PLES - (GI	OF TCLI S AF LAS	RE PR S) EX ALA RECEIVE		FOR FOR	WI 81	TH 100		NO: NA	3 (F	POL	Y')		HAZ	ARDS WITH g, PO AND	ASS SAME	OCIA PLES E PC LEV		
SHIF	P TO ((LABO)	RATORY /	WAT AND ADD ATI	TER S AND	AMF	PLES - (GI	OF TCLI S AF LAS	RE PR S) EX ALA		FOR FOR	WI 81	TH 100		NO: NA	3 (F LYS 71		Y") 74		HAZ	ARDS WITH 9, PO AND STANE LEVE	SSIBL	OCIA PLES E PC LEV TAT, ATA		
SHIF	P TO (TRELIOL	ILABOI	RATORY A	AND ADD ATI TE TTE, TE, TEAE	TER S AND	AMF	PLES - (GI	OF TCLI S AF LAS	RE PR S) EX ALA RECEIVE		FOR FOR	WI 81	TH 100		NO: NA	3 (F LYS 71	POL	Y") 74		HAZ HI TAT S	ARDS WITH 9, PO TANE LEVE	SASSI SAME SSIBLI DATA DATA DATA CATA CATA	OCIA PLES E PC LEV TAT, ATA RTS		
SHIF	P TO (TRELIOL	ILABOI	RATORY /	AND ADD ATI TE TTE, TE, TEAE	TER S AND	AMF	PLES - (GI	OF TCLI	ALA RECEIVE RECEIVE	SKA			TH 100 ε,	HN A 7 77	NO: NA	3 (1) LYS 71 94		Y") 74		HAZ HI TAT S	ARDS WITH g, PO AND TANC LEVE VER C.J. E	SASSI SAMI SSIBLI DATA DATA DATA CATA CATA CATA CATA CATA	OCIA PLES E PC LEV TAT, ATA RTS		
SHIF	P TO (TRELIOL	ILABOI	RATORY A	AND ADD ATI TE TTE, TE, TEAE	12 130 A TER S AND DRESS) : AN 1030 7/99 7/79 107 107 107 107 107 107 107 107	AMF HCL CHC HRS 7- LqL	PLES GI	OF TCLI	ALA RECEIVE RECEIVE				TH 100 ε,		NO: NA	3 (1) LYS 71 94		Y") 74		HAZ HI TAT S	ARDS WITH g, PO TANC LEVE C.J. E	SASSIBLE SAME SSIBLE DATA DATA DATA CARD L II DA REPOI	OCIA PLES E PC LEV TAT, ATA RTS	TED L EL: TO:	
SHIF	P TO O RELIOU RELIOU		RATORY DA	WAT AND ADD ATI TE THE, TE, THE TE, THE TE, THE	12 130 A TER S AND DRESS) : AN 1030 7/99 7/79 107 107 107 107 107 107 107 107	AMF	PLES GI		ALA RECEIVE RECEIVE	ESER CEPT SKA DBY: (SIG DBY: (SIG			TH 100	HN A 7 77	NO: NA	3 (1) LYS 71 94		Y") 74		HAZ HI TAT S DELI	ARDS WITH g, PO: AND LEVE VER C.J. E AQE C.J. E AQE	ASS SAME SSIBLI DATA DATA DATA DATA CALLINA REPOI	OCIA PLES E PC LEV TAT, ATA RTS NN C. OURT		
SHIF	P TO O RELIOU RELIOU		RATORY A	WAT AND ADD ATI TE THE, TE, THE TE, THE TE, THE	12 130 A TER S AND DRESS) : AN 1030 7/99 7/79 107 107 107 107 107 107 107 107	AMF HCL CHC HRS 7- LqL	PLES GI		ALA RECEIVE RECEIVE	SKA			TH 100	HN A 7 77	NO: NA	3 (1) LYS 71 94		Y") 74		HAZ HI TAT S DELI	ARDS WITH g, PO: AND LEVE VER C.J. E AQE C.J. E AQE	ASSIBLI DATA DATA DATA CATA CATA CATA CATA CATA	OCIA PLES E PC LEV TAT, ATA RTS NN C. OURT		
SHIF	P TO O RELIOU RELIOU		RATORY DA	WAT AND ADD ATI TE THE, TE, THE TE, THE TE, THE	12 130 A TER S AND DRESS) : AN 1030 7/99 7/79 107 107 107 107 107 107 107 107	AMF HCL CHC HRS 7- LqL	PLES GI		ALA RECEIVE RECEIVE	ESER CEPT SKA DBY: (SIG DBY: (SIG			TH 100	HN A 7 77	NO: NA	3 (1) LYS 71 94		Y') 74 55	{91	HAZ HAZ TAT S DELI 22(ANCI 27) 5(ARDS WITH g, PO TAND LEVE C.J. E C.J. E C.J. E C.J. E C.J. E C.J. E	ASSIBLI DATA DATA DATA DATA CATA CATA CATA CATA	OCIA PLES E PC LEV TAT, ATA RTS NN C. OURT S 9951 -0085	TED EL: TO: B FAX	
SHIF	P TO O RELIOU RELIOU		RATORY DA	WAT AND ADD ATI TE THE, TE, THE TE, THE TE, THE	12 130 A TER S AND DRESS) : AN 1030 7/99 7/79 107 107 107 107 107 107 107 107	AMF HCL CHC HRS 7- LqL	PLES GI		ALA RECEIVE RECEIVE	ESER CEPT SKA DBY: (SIG DBY: (SIG DBY: (SIG DBY: (SIG				11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7/ 7/ 3	3 (1) LYS 71 94 94		Y") 55	(91) SHE	HAZ HI TAT DELI	ARDS WITH g, PO AND ETANE LEVE VER C.J. E C.J. E C.Z. E E C.Z. E C.Z. C.Z. E C.Z. E E C.Z. E E E E E E E E E E E E E E E E E	ASS SAME SSIBLE DATA DATA DATA DATA CARD LIIDA REPOI	OCIA PLES E PC LEV TAT, ATA RTS NN C. OURT S951 -0085 F	TED IL EL: TO: FAX <u>4</u>	