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SUMMARY

The problem of developing guidance information for changing the orbit of

a vehicle by using its aerodynamic lifting capability is considered. Aero-

dynamic maneuvers reduce propulsive control system requirements to achieve a

range of orbit transfers of practical interest. As a consequence, rocket

fuel, and hence, the tremendous cost of transporting additional fuel mass to

orbit are saved. In order to achieve these savings, guidance laws must be

developed for the aerodynamic portion of the maneuver sequence. When the

atmospheric maneuver is accomplished entirely aerodynamically, it is termed an

aeroglide maneuver. The approach taken for developing the aeroglide guidance

law is to analytically approximate the solutions to those control problems

which optimize the final path angles for a given energy loss. A detailed

analysis of the optimal heading angle problem is provided, but the methods

used are equally applicable to the coplanar, orbit transfer problem wherein

the final flight path angle is optimized.

The optimal heading angle problem for a given energy loss is equivalent

to the minimum energy loss problem that accomplishes a desired change in the

orbital inclination of the vehicle. Analytic expressions for the optimal

controls (bank angle and lift) are developed as solutions to the approximate

state/Euler system of differential equations for the optimal heading angle

problem. The optimal control solutions are characterized by three approxima-

tions, valid in separate regions of the flight, which are derived using asymp-

totic theory of linear differential equations containing a small parameter.

The perturbation parameter depends on the scale height of the atmosphere,

assumed to be exponentially varying with altitude, and the planet's radius.

The optimal control solutions are a composite of two slowly varying (outer)

solutions, that are valid in the region of flight near the boundaries, and a

rapidly varying (inner) solution that is valid in the region where the minimum

altitude for the flight occurs. Numerical analyses, required to determine the

matching conditions that continue the two outer solutions through the inner,

transition zone are not included. Nevertheless, the analytic formulas for the

optimal controls form the basis for an on-board guidance algorithm and are

also useful for developing engineering insight into the optimal steering

policy.

Aerodynamic heating constraints, neglected in this analysis, need to be

imposed to obtain useful guidance laws. Additionally. guidance corrections

for off-nominal atmospheres must be made for on-board use.
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INTRODUCTION

Aerodynamically assisted, orbit transfers are known to be more fuel

efficient than all propulsive (Hohmann) transfers (ref. 1.). One application

for aero-assisted maneuvers is a high-Earth-orbit to low-Earth-orbit transfer

for returning vehicles, that service satellites, to the Shuttle. Another

application is for the Mars mission where aero-assisted maneuvers can be used

for rendezvous operations with other vehicles. NASA soon plans to launch an

aero-assist flight experiment to make measurements of the environment

surrounding the vehicle during sustained high altitude, hypersonic flight.

Recent numerical studies have appeared in the literature to determine

atmospheric trajectories that will minimize the amount of fuel needed for an

orbit transfer. In reference 2 optimal atmospheric trajectories are presented

for a coplanar transfer in which the apogee of the orbit is lowered. In

reference 3 optimal trajectories are computed for changing the orbital incli-

nation of a vehicle. Implementation of optimal control policies on-board a

vehicle, to take advantage of the aero-assist maneuver's fuel efficiency,

requires either the storage of optimal controls and trajectories for a large

number of boundary conditions or rapid on-board computations of optimal

trajectories for specific boundary conditions corresponding to the desired

mission. Thus, either large storage requirements or fast. on-board computa-

tional capabilities are necessary to implement optimal maneuvers. An alter-

native to either of these methods of implementing optimal steering is to

approximate the optimal control problem so that it may be solved analytically.

If sufficiently accurate guidance solutions can be found, the demands upon on-

board computational capability are reduced.

In references 3, 4. and 5. different approximations have been made to

determine guidance laws for the orbit plane change problem. In reference 3.

the term appearing in the differential equation for the flight path angle,

known as Loh's "constant," is assumed to be constant on an optimal trajectory,

which makes possible the derivation of an optimal guidance approximation. In

reference 4, a regular perturbation approach is used to derive optimal guid-

ance approximations by first neglecting Loh's "constant" and then correcting

the solution by allowing variation in Loh's constant. In reference 5, a

singular perturbation approximation is derived which simplifies the optimal

control problem by reducing the order of the state/Euler system, resulting in

a relatively simple guidance solution. The approach taken herein-is similar

to those cited above in that the equations of motion.are written in terms of a

small parameter so that asymptotic theory for differential equations can be

applied to arrive at a solution to the guidance problem. This research was

undertaken to improve the accuracy of the approximations cited above.



MODELINGANDPROBLEMSTATEMENT

The problem of developing a guidance schemefor transferring a vehicle
from one orbital plane above the Earth to another, using a minimumof fuel. is
considered. If heating constraints on the vehicle are not imposed, the
maneuversequence consists of exoatmospheric portions, during which the
vehicle maneuversusing its rocket motor, and an atmospheric portion, during
which the vehicle maneuversaerodynamically to change heading by modulating
angle of attack and bank angle. The imposition of heating constraints on the
vehicle during atmospheric flight may lead to additional thrusting arcs to
avoid overheating, reference 6. but such constraints are not considered in the
present formulation. The maneuversequencebegins with a deorbit impulse to
cause the vehicle to descend toward the Earth's atmosphere. After entering
the atmosphere, the vehicle maneuversto change its heading to the desired
orbital inclination by modulating angle of attack and bank angle. A boost
phase follows the aerodynamic maneuverto increase altitude of the vehicle to
a desired apogee. Finally. a rocket burn is used to circularize the orbit.
Becausethe exoatmospheric portions of the flight can be calculated in closed
form using Kepler's equations and AV impulses to approximate fuel usage,
interest centers on the atmospheric phase of flight for obtaining analytical
expressions that can be used for guiding the vehicle. The atmospheric maneu-
ver problem can be stated in terms of the AV impulses of the minimumfuel
problem, resulting in a one-dimensional parameterization of the atmospheric
guidance problem in terms of the deorbit AV impulse and a performance index
which minimizes the energy lost during the aerodynamic turn, reference 3. The
vehicle's motion is described in terms of six state variables: specific
energy. E=V2/2 _/r: flight path and heading angles, ?and _; downrange and
cross range angles, Oand _; and the radial distance, r of the vehicle from
the Earth's center. The controls for the vehicle are lift. L; and bank angle.
B. The velocity of the vehicle is denoted by V° _ is the universal
gravitational constant for the Earth, m is the vehicle's mass. and D is the
drag force on the vehicle, which is assumedto be parabolic with respect to
lift. Time, t, is replaced by nondimensional arc length.

s = I (V/r) dt (I)

as the independent variable. The point-mass equations of motion of the
vehicle may be written with respect to a vehicle centered reference frame that
rotates above a spherical Earth. inertial frame as depicted in figure i.

dr/ds - rsin? (2)

dS/ds = cosycos_/cos_ (3)

d#/ds = cosysin_ (4)

dE/ds = -Dr/m (5)

dy/ds - LrcosB/(mV 2) [ _/(rV2)-l]cos? (6)

d_/ds = LrsinB/(mV2cos?) - cos_cosytan# (7)

The cross range angle. _, is small near a node so that the last term on the

right-hand side of equation (7) may be neglected if the turn is made in the



vicinity of a node. If the boundary conditions on _ and 8are not prescribed,
these state variables are ignorable since neither couples into the remaining

equations. Thus, the order of the system is reduced by two. Since # is

small, the equation for orbit inclination.

cosi=cos0cosV _ cosy (8)

and the heading angle approximates tile inclination angle near a node.

r' = rsin? (9)

E' = -Dr/m (i0)

_'= Lrsin_(mV2cos?)
(ii)

?'= Lrcos_/mV2-[ _(rV2)-l]cosy
(12)

The following nondimensional variables are introduced to determine if any

further simplifications can be made. Let

Z = prSCLrre-h/2m

h = _(H - H r)

(13)

(14)

where H is the altitude of the vehicle above the Earth's surface, H r is the

reference altitude for the exponentially varying atmosphere. Or is the air

density at Hr, S is the vehicle's reference area. and

rr = R + H r
(15)

where, R is the radius of the Earth and

C L = C L at max (L/D)
(16)

The drag coefficient is assumed to be parabolic

2 * "

CD = CD o + KC L = CDo(I+k2) = CL (i+12)/2E'
(17)

where. E" = (L/D) max and I = CL/CL. Also let

V = V _rr/_

= Err/_ = v2/2-(I + eh) "I

r/r r = (I + eh)

(18)

(19)

(20)



be the nondimensional speed, energy, and radius variables, respectively, where

e = (_r r)-I is a small parameter (of order 10 .3 for the Earth). Substituting

equations (13) through (20) into equations (9) throu_,h (12). one may rewrite

tile governing equations of motion fo_ the vehicle as

h" = 6"l(l+eh)siny (21)

E" = -Zre-h(l+12)(£ + i + eh£)/E* (22)

_' = Zre-h(l+eh)isin_/cosy (23)

?' = Zre-hkcos_(l+eh) - {l+61h/(£+l)-h] -i}/[2(£+l)]cosy (24)

to 0(62). where the binomial theorem has been used to expand r/r r. After

making a final change of variables

u = in (£+I) (25)

and substituting equation (25) into tile system. (21) through (24). one obtains

to 0(6) the following approximate model, describing the vehicle's motion:

u " = -Zre-h(l+l 2)/E" (26)

IS' = Zre-hlsin_/cos? (27)

? = Zre-hlcos_ qcosy (28)

h' -- 6-I(i+6h) siny (29)

where.

q = e-U/2 - I. (30)

The approximate model of the vehicle. (26) through (29). retains the term. q.

which is a factor in Loh's "constant" but does not account for variations in

gravitational acceleration due to altitude. Additionally. the model assumes

that the effect of altitude changes on the motion are dominated by changes in

air density rather than changes in potential energy. Thus. potential energy

changes are neglected on the right-hand sides of equations (26) through (29).

Finally. variations with Mach number of the aerodynamic coefficients, C L and

E'. have been neglected at this order of approximation so that Z r is regarded

as constant.

OPTIMAI, COtlTROI. PROBLEM

If the final path angles are specified, a minimum energy loss trajectory

to a specified final altitude will result in minimum _V fuel burns to achieve

a desired final orbit. By restating this problem in terms of a specified

energy loss. one may instead, optimize the final path angles. The purpose of

the restatement is to simplify the final boundary conditions on the optimal

vertical lift component, which equals zero in this instance. Only the plane



change problem is discussed in detail herein. The plane change problem is
equivalent to extremizing the final heading angle for a specified energy loss,

so that the payoff is

J = _f - ; _' ds. (31)

The Hamiltonian for this problem is

• • t

H = _'o¥' + XuU + khh + Xyy.
(32)

where,

+I _ max_f _ max i

ko = { (33)

-1 _ min _f _min i

By choosing lo = + I, one seeks the optimal bank ang]e and lift controls to

maximize the final heading angle with starting conditions, u e. h e . 7e. and

final conditions uf, hf, so that the final path angles are optimized.

Substituting the state equations. (26) through (29), into equation (32). one

obtains

H = Zre -hksin_/cosT- kuZre -h (i+12)/E* + _h e - 1 (1 + _h) sinT + _(Zre'hlcos_ -

qcosy)

Since the final arc length is not specified, H=O on an extre,nal.

controls are given by

o%H/c_k= -2luk/E* + sin_ + kycos_t = 0 (35)

and

_H/_ = cos_ _sin_ ffi0. (36)

where second-order terms in y have been neglected.

Solving equations (35) and (36) simultaneously, one obtains

k=E'_+_2/(2ku) with k u >0 (37)

cot_ = k7 (38)

The Lagrange multipliers satisfy

ku'= - _Hl _u = " lye -u/2 (39)

k7 = -_Hl_y= - e " ik h (l+e h) cosy- (lTq + Zksin_sec2y) sinT (40)

%h 'ffi -aH/ah = H lhC l(l+eh)siny+qIy cosy-%hsiny

= -kh 6-1[l+e(h+l)! siny + qky c'o:;y (41)

(34)

The optimal



since H = 0. Differentiating equation (40). one obtains

e_T"-- -sinT_ q_Y + O(E) + O(sin2T)

The solution to equation (42). rewritten as

(42)

e kT + T %y'+qkT = 0 (43)

for small T. gives the cotangent of the optimal bank angle control. Equation

(43) is regarded as a linear equation with coefficients depending on the inde-

pendent variable, s. The behavior of the solution depends on the coefficient

of the damping term. which is the path angle, ?. According to reference 7, if

?(s e) <0, there will be no boundary layer for the solution of iT at s e. and

that if y(sf) > 0. there can be no boundary layer for IT at sf. In the

present problem y(Se) < 0 for entry into the atmosphere and T(sf) > 0 for

exit. Thus. no boundary layers are expected in the solution of (43). Since ?

(s e) < 0and ?(sf) > 0, y(s t) = 0 for some s t . such that s e < st < sf. The

simplest possible situation is that ? vanishes only once on the interval so

that

? < 0 for s o N s < s t

?> 0 for s t <s Nsf

?(st) = 0. (44)

The solution to equation (43) can be sought in two steps with the aid of

assumptions (44). The first step is to find the solutions for s away from st.

which break down at s = s t . The second step is to find a solution in a neigh-

borhood of s = s t which is asymptotic to the two solutions found in the first

step. Problems that contain internal transition zones, such as this, are

known as turning point problems, reference 8. with the turning point, in this

case. occurring at s = st when ? =0.

ANALYSIS OF THE TURNING POINT PROBLEM

The optimal bank angle is found from the solution to equation (43),

which can be placed in a standard form whose solution is known. For

convenience later, the independent variable is translated by letting

x = (s - st)

so that x(0) = -s t and x(s t) = 0. The del_endent variable is transformed

from _? to w by letting

_XIT = w exp(- o(Y/26)dz).

(45)

(46)

Substituting equation (46) into equation (43) and factoring off exponential

terms, one obtains

w" (2e)-2Q(x)w = 0 (47)

9



where,

Q(x) " y2 + 2Ey-46q • (48)

Equation (47) is the standard form fo_; analyzing turning point problems with a

large parameter. (2E) -2 reference 8

Outer Solutions

The general solution to equation (47) is given by

W: IQ(x)l-1/4 [Aexp (fx(%_/2E)dl) + Bexp (- _x(N_/2e)d,) ] + 0(_) (49)

where A. B. and c are constants to be determined. The fractional powers of

Q(x) in (49) are determined using the binomial expansion, assuming y(x) is

away from zero. outside the transition zone. From equation (48)

%_ : y + ey'/T- 2 6qly (50)

Iel !/_ - _+ o(e). (51)

Substituting equation (46) into equation (49). together with (50) and (51),

one obtains for the zeroth-order approximation to ),y to the left of the
turning point

I$o_ " )E/y; × <0 (52)=al E-I + a2e (h-hmi n

where.

E = exp (_x (q/T)d_)
Xe

(53)

To the right of the turning point,

r

)_To = bl F -i + h2 e-(h-hmln)F/Y:

where,

F exp ( [xf(= -_x q/y) d_)

x > 0 (54)

(55)

The zeroth-order solutions for k7 given by equations (52) and (54) describe

the cotangent of the bank angle control outside the transition zone, i.e., for
Ixl>O

The solutions may be regarded as a mixture of terms (al E'I a2E/Y, blF-l,

b2F/?) which are functions of the slow scale x and of the term, e'(h'hmin).

i0



which is a function of the fast scale, x/e, since h-hmin = f(y/e)dx. The

solutions (52) and (54) break down in the transition zone where y:--0. When x

is small in the transition zone. y is assumed to h_ve the Taylor series

expansion

y=y'Ix=0 x +. = _x + (56)

where. _ > 0. Likewise

?'-)= and q -_ q(0) - qt (57)

as x -+0 +. Under assumptions (56) and (57). the differential equation for w,

in (47). becomes

We"- (2E)-2[(_x) 2 + 26 (_ - 4eqt]Wo = 0 (58)

where, W o denotes the zeroth-order inner v_riable for the solution to equation

(47) when x is small. Likewise. under the small x assumptions, the outer

solutions are. from equations (52) and (54):

I (Ix
_7o = alexp ( xxe(qt/a_)d_) + a2(c_x) exp e(qt/a_)d_) (59)

r
k?o = blexp x (qt/(z_)dl + b2(_x)-le-_X2/2e xfexp (-;x qt/e_)dz ) " (6O)

The inner solution to equation (58) can be expressed in terms of the stretched

dependent variable. X = _/6 x. This solution leads to an inner expansion

for 17, denoted by ATe. The inner solution. Aye. for large X can be matched

with the outer solutions, equations (59) and (60), for small x.

Snner Solution

Equation (58) for lhe inner variable W o can be rewritten in terms of the

stretched dependent variable X = _/6 x as

d2Wo /dX 2 (X2/4 + 1/2 qt/_) W o = 0. (61)

Equation (61) is the parabolic cylinder equation whose solution is known in

terms of the parabolic cylinder functions. DD(X) and Dn(-X), when D is not a

nonnegative integer. The solution to equation (61) is given in reference 9 as

W o (X) = ClDD(X) + c2DD(-X) (62)

where. D = qt/_-l, so that the solution for Aye is giw_n by

ii



ATo(X) = e-X2/4 [ClDD(X)+ c2DD(-X)] . (63)

The asymptotic properties of the parabolic cylinder functions for large X are
used to match with the outer solut:ions for small x. The asymptotic properties
of the parabolic cylinder functions are given by

DI)(X) - (X)I) e-X2/4 as X -9+_ (64)

DD(-X) - (X) -1)-I eX2/4 2_/F(- D) as X -)+co (65)

where F denotes the gammafunction.

_LtchiDg_and the Formatio_!a Uniform Expansion for _ (ref. I0)

The inner expansion, equation (63), is first expressed in terms of the

asymptotic limits of the parabolic cylinder functions as X -_ ±_ and then

matched with the outer expansions for small x as x --)0 ±. From equations

(63) through (65) as X -9 +_,

Ayo(X) = Cl(X)qt/_-!e-X2/2 + c2(X)-qt I_ 2_Ir(l-qtl_) "
(66)

Since the first term on the right-hand side of (66) is exponentially small

compared with the second, the first term can be neglected in comparison with

the second. Next. the inner limit may be expressed in terms of the outer

dependent variable, x, in preparation fo_ matching, as

- /_ as X -+ + _ (67)
Ayo-C 2 C -I x qt

where,

C = (_E/-_)qt/_ [F(1-qtl_)] / 2_/_. (68)

Similarly, to the left of the turning point the inner limit is given by

ATo c I C l(-x)-qt/¢_ as X--_- o_
(69)

r

Equation (67) is matched with _o as x _ 0+. and equation (69) is matched

Q r

with l_ as x -9 0-. The second term in equation (60) for _o is, for small
o

e. exponentially small compared to the first so that the second term may be

neglected in comparison with the first. Thus.

r - l_)inlx/x I
Iy - b I e (qt f as x -_0 +

o

(70)

12



Similarly, from equation (59)

_._ -a I e-(qt/_)in['x/(-x )] as x --)0- (71)
?o e

r

A digression to discuss the boundary condition on kYo is necessary before

r

proceeding with the matching process. The boundary condition on _'_o is zero

since the final value of 7 is unspecified. This boundary condition can only

be satisfied asymptotically for large x (since b 1 _0). This is possible

since q > 0 and 7 > 0 to the right of the turning point so that the outer
r

solution, t , from equation (54) decays from the turning point. Thus. b 1 is
7o

r

simply a scale factor for 17o. Thus, the upper limits on the integrals in

equation (60) are set equal to + _ to indicate that the final boundary
r

condition on _7 is satisfied asymptotically, i.e., tTo(x) ->0 as x --_+_, and

b 1 _1. Returning to the matching procedure, one matches equation (54) with

equation (67), using (70), by equating the two limits as X-_+_ and x -_0+:

c 2 -+C exp _xf(q/y-qt/(x_)d%. (72)

so that

c 2 = C exp o (q/Y- qt/cz'c) d'c.
(73)

Similarly, to the left of the turning point, equation (52) is matched with

equation (69), using (71), by equating the two limits as X_-_and x --)0-:

Cl _ a1(.xe)qt/_Cex p ;_e(q/y_ q /a%)dT.
t

(74)

so that

fxc I = a I (-xe)qt/_Cexp oe(q/y-qt/_%) d_. (75)

Equations (73) and (75) provide the connections between the coefficients, Cl

and c 2, of the inner solution and the coefficients of the outer solutions, al

and bl, that are determined by the boundary conditions. Thus, the two outer

solutions have been continued through the transition zone. The matching

procedure showed that exponentially small terms were neglected in forming a

leading order uniform approximation. Thus, a 2 = b 2 = 0 for the leading order

13



approximation. These terms enter into the solution at the next higher approx-

imation (ref. I0). The leading order uniform approximation for _ is con-
structed by combining equation (66) with the connection formulas. (72) and

(74):

Uniform Approxima%ion for

Iyu= C e "ax2/4e {A(x)Du(_/ex)+ B(x)DD(_-_x) }

where,

A(x) = a I (-xe)qt/_ exp fXe(q/Yx qt/O_T)d_

(76)

(77)

_X c_
B(x) -- exp (q/y-qt/aT)dT (78)

C = (_TE) qt la [r(l_qtIs) ] I_

I) = qt/OL-l=-(nt-2)/(nt-l)

n t = (L cos_7(W-mV2/rr)x = O.

(19)

(80)

(81)

In equation (81), n t is the "reduced" vertical load factor, evaluated at the

turning point: that is. n t is the ratio of the verticsl lift force at the

turning point to the weight of the vehicle, reduced by the centrifugal force

at the turning point.

The results of tills section are summarized by equations (76) through

(81) and the following equations for the outer and inner solutions:

Outer Solutions:

r f+._.y = exp (q/y)d_,
O X

x >> 0 (82)

Q fx
ly =l_x e) exp (

O Xe

(q/y)d_), x << 0 (83)

Inner Solution:

-_x2/4e

Ay =e; O {ClOl)(_-_e-Ex) + c2DD(-_e x} (84)

14



cI = c A (0) (85)

c 2 = C B (0) (86)

Equations (76) through (81) give the leading order uniform approximation for

the cotangent of the optimal bank angle control over the entire interval,

x o _x _+_. In equation (79), C is a constant for a fixed atmosphere,

"reduced" load factor at the turning point and desired minimum altitude for

the maneuver. The coefficients A(x) and B(x) are functions of the slow depen-

dent variable, x, while the parabolic cylinder functions and the exponential

factor are functions of the fast dependent variable, X=_x, in the

transition zone. The uniform expansion, for large IXl, is asymptotic to the

outer solutions, which are functions of the slow variable, x, and satisfy the

boundary conditions on bat the two end points. The inner solution, equation

(84). depends on the minimum altitude for the maneuver and the "reduced" load

factor at the turning point. With the uniform approximation for the bank

angle control in hand. the reader's attention is focused on determining the

optimal, normalized lift. I.

Determination of Normalized Lift

The approximation for the multiplier, _, has been derived in terms of
M-

can be determined in
the state and dependent variables, so that _ . also,

terms of the state and dependent variables. The Hamiltonian can thus be

expressed in terms of the state and dependent variables and the unknown

multiplier, Iu. needed to determine the optimal normalized lift, k

F

The Hamiltonian can be rewritten in terms of kT and (2)_u/E*) as

2

H = (21u/E*)2+ 2b(2ku/E*)-(l +_yu ) = 0
(87)

using equations (34). (37). (38), and (40). In equation (87)

b = z-l(TkTu + kYuq ) (88)

Z = PrSC[rre-h/2m (eq. 13) (89)

_u=Ce-_X2/4e(A(x)DD(_-_ x) + B(x)DD(-_-_ x)} (eq.80) (9O)

Thus, (21u/E*) is determined as the positive root of equation (87),

(2_u/E)=-b + + (I + _Tu 2) (91)
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Thus, the approximation for the optimal normalized lift is, from equation

(37).

_=a + _a 2 + 1 (92)

where.

2a=b/ 1 +_Yu
(93)

The variable, b, in equation (93) depends on k?u' from equation (88).

Differentiating equation (90). one obtains

%'7u = C e-aX2/4e{-(q/_qt/_x)A(x)OD(X)-(q/y-qt/ax)B(x)DD(-X)

+ A(x) d[e "_x2/4e DD(X)]/dx + B(x) d[e -¢Ix2/46 DD(-X)]/dx
(94)

The derivatives in (94) can be found from the recurrence relation (refs. ii

and 12)

d [e-_ 2/4 D__ 1 (_)] /d_ = -e- _ 2/4 DD(F_) . (95)

so that equation (94) may be simplified as

Yu (q/y-qt/_x) %yu + Ce -_x2/4e _-_[-A(x) Dqt/a(X) + B(x) Dqt/(z(-X)]

(96)

From equation (88)

b = Z-Iy{(qt/_x)IYu + C e -_x2/4 6 _ {_A(x)Dqt/_(X) + B(X)Dqt/_(_X)]}

(97)

so that the coefficient of (21u/E') in equation (87) can be determined, and

hence, the value of _ can be determix_ed from equations (92) and (93),

The value of i for large IXl can be determined from the asymptotic

properties of Dqt/_(X):

Dqt/_(X) -(x)-qt/_-i 2_e X2/4/F(-qt/_)

= F(l-qt/_)Dqt/__l(X)/r(-qt/_)

= (-qt/_)Dqt/_-l(X). as X -> + (98)

Thus. for large positive X. equation (97) has the asymptotic property.

b - Z" i ? {(qt/(xx)kyu_(qt/o_x)kYu) = O, (99)

where exponentially small terms have been neglected. Thus, outside the

transition zone. b -0. so that
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k-i as X -9+_ (lO0)

which implies

C L -C L_ as X -->+oo. (i01)

Similarly.

C L -C L" as X ->-oo (102)

also.

Formulas have been derived for an approximation to the optimal

normalized lift coefficient. I, by solving a quadratic algebraic equation for

the unknown multiplier. 21u/E*, from which k is obtained from the extremal

control formula in terms of 2ku/E*. The value of k was shown to be asymptotic

to one. outside the transition zone. This implies that the lift coefficient

is asymptotic to its value at max (L/D), outside the transition zone.

The next section contains a summary of the formulas needed to synthesize

the optimal guidance commands.

Summary of Opl/lial Guidance Ce_mands

Formulas have been derived in the previous two sections for the optimal

bank angle and lift controls for the problem of maximizing heading angle for a

given energy loss. The formulas assume that full. reduced-order state and

dependant variable estimates are available from the vehicle's navigation

computer. For preliminary simulation studies one may assume that the reduced-

order model, derived herein, supplies these estimates perfectly (i.e..

uncorrupted by noise and other uncertainties).

The following is a summary of the optimal control formulas:

__allk___liK/___C on t r o 1

= arccot (ITu)

where,

XYu=Ce-°_x2/Ae [A(x) DU( _6 x) + B(x) DD(-%/_ x)]

A(x) = l_(x e) (-xe)qt/gex p x (q"Y-qt/ex'c)dT

(103)

(104)

(lO5)

B(x) = exp (q/y- qt/(_I)dI
X

C = (q-_7_) qt/_ [r(l_qtIs)lIV-2-_

(106)

(107)

17



I)= qt/O_- l=-(n t 2)/(n t i)

n t = [L cos_7(W- mV2/rr)] x=O

6 = i/(_r r)

DD(X). DD(-X) are given in tabular form (ref. 13)

x = st + o(V/r)d'c ; Xe = -st

(108)

(109)

(110)

(111)

q = e-U/2 -i = ( _V2rr

y= ;_dx

= Z kcos_-q : _=yix= 0

Z = Zr e-h ; h = _(H-Hr)

= *rZr PrSCL r/2m

i) : qt = q(O) (112)

(113)

(114)

(115)

(116)

L_

l=a + Va 2 + 1 (117)

where,

a--b + (118)

b=Z-iy{(qt/_x)X?u+Ce_X2/4e NF_E [-A(x)Dqt/_(NV_Te x) + B(x)Dqt/(_(-N_-EE x)]

(119)

_alues of the State and IR_l_ted_V__riables

h = fh" dx u = J'u'dx, _ =_'dx

h" = e-l(l+ Eh)?

u' = Z (l+l 2) /E"

_/= Z _.sin_

E= _(eU- i) Irr

V = "_/2[E + B/(rr + H)]

(120)

(121)

(122)

(123)

(124)

(125)
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In order to implement the feedback formulas for the optimal guidance
commands,one must write a numerical simulation to determine the integrals for
the state equations as well as the integrals needed for matching. While this

has not been completed, herein, an analytical example of the procedure for

conducting numerical studies is provided in the next section.

ANALYTICAL EXAMPLE AND DISCUSSION

Although numerical simulations are necessary to complete the matching

procedure and to determine the accuracy of the optimal guidance approximation.

the behavior of the bank angle control may be examined in the transition zone

where the guidance law reduces to an analytical formula. Data from reference

3. listed in Table i. are used for the vehicle model in this example and tabu-

lated values of the parabolic cylinder and gamma functions, given in reference

13, are used to calculate the guidance commands.

Table 2 contains estimates of the guidance parameters as a function of

minimum altitude for the maneuver. The constants, cl = -.0542 and c2 - .2748.

were selected to form the inner approximation, Ayo, as a linear combination

of parabolic cylinder functions multiplied by e "x2/G. The index. D = -.5. for

the parabolic cylinder functions was selected for this example, which corre-

sponds approximately to a 150.000 foot altitude trajectory with a bank angle

at the turning point of 75 ° and a normalized lift coefficient, l= I,

The index for the parabolic cylinder functions. D. depends on the

vertical, "reduced" load factor, n t. at the turning point, n t is a function

of Hmi n. V. and kcosB at the turning point, so that care must be exercised in

estimating D. The values for D given in Table 2 lie in the range, -i< D<0,

which corresponds to a range of reduced load factors, n t > 2. For I_ n t _2.

D is non-negative, and when D is a non-negative integer, the guidance formulas

are not valid since D D (X)and DD(-X) are linearly dependent in this case.

Although the guidance solutions can be formulated more generally in terms of

other linearly independent solutions of the parabolic cylinder equation, one

would expect, for most applications, that the reduced load factor exceeds a

value of two. In this event D is a negative number greater than -I.

Data for AYo and the corresponding bank angle. M o, are tabulated in

Q

Table 3 and plotted in figure 2. Values for the two outer solutions, I?o and

r

kyo, are tabulated in table 4 as functions of the inner variable. X. The

outer solution approximations for small x:

r

_o -- c°t-l[c2 (X/2)-I/2] ; X > 0 (126)

_o = c°t-l[cl('X/2)'i/2] : X < 0 (127)

are also plotted in figure 2 So that the behavior of the inner and outer solu-

tions can be observed in the overlapping regions, where these solutions match.
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For purposes of comparison the optimal bank angle control, given in
reference 3. is superimposed on figure 2. The agreement between the inner
solution guidance approximation. Mo. and the optimal bank angle control. _[opt.
is excellent in the neighborhood of the turning point, X = O. Tlle agreement
between the optimal bank angle. _cpt. and its approximation. _x. near the
turning point is also good. Away from the turning point the outer solution

r Q
approximations for small Ixl, _o and _o' are asymptotic the inner solution M O.

for large IXl. The outer solutions for large X are not in numerical agreement

with the optimal solution for the bank angle, indicating the need to adjust

the initial condition on _o by adjusting IYo(Xe). Matching the inner and

outer solutions for specified initial conditions requires a numerical

simulation, which is not included in this report.

For numerical studies one could begin by integrating trajectories from

the turning point to the boundaries using the estimates for the state given in

Table 2. The integration to the right of the turning point could start at

x _ 0 +. by extrapolating the state from x = 0 to x = 0 + using a Taylor expan-

sion. Using the guidance formulas as feedback controls, the reduced state

equations would be integrated to determine the change in the state from the

turning point. The flight path angle must remain positive to the right in
r

order to satisfy the boundary condition on %Yo" At the terminal point the

energy lost and heading angle change from the turning point would be
available. These values would be added to the values of "delta" heading angle

and energy loss for a similar state-equation integration to the left of the

turning point. The integration to the left, however, will undoubtedly not

match the initial conditions on the state. In this case the initial condition

on _o can be adjusted to change the outer solution to the left of the turning

Q

point. An interative process ensues because Iyo(X e) is proportional to c I of

the inner expansion, Ayo. The numerical analysis would proceed by adjusting

not only Cl but also some of the parameters in Table 2. New values for the

index of the parab$1ic cylinder functions and a new estimate for AyoWOUld be

calculated. This procedure would be repeated until the initial conditions are
r

satisfied sufficiently accurately and the final condition, %?o-0as x -++_

with y>0 . holds. A numerical procedure such as that outlined above should

produce bank angle commands that are qualitatively similar to those computed

with a numerical optimization computer code.

To complete the numerical analysis, one would use the uniform guidance

law, obtained by matching with the reduced model, as a feedback law for the

full system, equations (2) through (7). to compare optimally guided trajec-

tories with trajectories computed using a numerical optimization procedure.

This analytical example has shown that optimal trajectories for the

minimum fuel/plane change problem can be parameterized by the minimum altitude

for the maneuver in the following sense. Each minimum altitude corresponds to

a trajectory that satisfies initial conditions and results in a loss of energy
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and change in heading angle to the left of the turning point. The energy loss
and "reduced" vertical load factor at the turning point determine the index of
the parabolic cylinder functions. The loss of energy and change in heading
angle to the right of the turning point, whenadded to the corresponding
values to the left of the turning point, result in an energy loss and maximum
(minimum)heading angle change for the entire maneuver, parameterized by the
minimum altitude of the maneuver.

CONCLUDING REMARKS

Formulas have been derived for computing approximations to extremal

controls, normalized lift and bank angle, for the problem of minimizing energy

loss to change the orbital inclination of a vehicle. Asymptotic analysis was

used to derive formulas for the bank angle control that were valid in three

different regions of the trajectory. Two outer solutions were found to

approximate the bank angle control near the upper limits of the Earth's atmo-

sphere. These solutions break down at the minimum altitude of the maneuver,

when the flight path angle is zero. In the transition zone. near y= 0, the

optimal bank angle control was described in terms of parabolic cylinder

functions. The two outer solutions were connected through the transition zone

by forming a uniform solution, in terms of the parabolic cylinder functions,

to approximate the optimal bank angle control over the entire trajectory. The

approximate, optimal lift coefficient was subsequently determined by solving a

quadratic algebraic equation. The lift coefficient was determined to be

asymptotic to its value at max (L/D) when the trajectory is far from the

turning point. The guidance formulas are in terms of state and dependent

variables and parameters that define the index and argument of the parabolic

cylinder function. A numerical example was given to illustrate the utility of

the method used to construct the guidance formulas. Construction of the inner

solution showed that optimal trajectories will be parameterized by the minimum

altitude selected for the flight and the "reduced" vertical load factor at the

turning point, which determines the index of the parabolic cylinder function.

Numerical studies, however, must be conducted to obtain matching conditions

and to verify the accuracy of the guidance law. The guidance formulas require

feedback of energy, altitude, and flight path angle from the vehicle's

navigation computer and are suitable for forming the basis for an on-board

optimal guidance system.
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TABK__3_

VEHICLE/MODEL PARAMETERS

S = 126 ft 2 = 1.409 x 1016 ftB-sec "2

m = 332 slugs e=1.29 10 .3

C " = 151
L tt r = 180,000 ft

= (27000 ft) -I Pr = .356 x 10 -4 ibm/ft 3

r r = 20,900,000 ft gc = 32.2 ibm/slug

Z r = CL'PrSrr/2mg c = .662 (eq. 116) E" = 2.36

TABLE 2

GUIDANCE SYSTEM PARAMETER ESTIMATES

(Ref. 3)

Hmi n (Est) Z(Hmin) Vt (Est) qt

(ftxl000) (eq 115) (ftxl000) (eq i]2)

nt(_ t = 75 °) D _

(eq 109) (eq 108) (eq 114)

175 .797 25 .0787 2.62 -.383 .128 i0.0

150 2.01 24 .170 3.06 .515 .350 16.5

125 5.08 23 .274 4.80 .737 1.04 28.5
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TABLE 3

Inner Solution

Ayo(X) - [-.0542 D-I/2(X) + .2748 D-I/2(-X)]e -x2/4

Mo(X) = cot-l(Ayo)

Multipliers Bank Angles (deg)

x Ay(X) Ay(-X) M(X) M(-X)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

.2688

.3420

.3640

.3433

3045

2668

2375

2159

1998

1871

1767

2688

1620

0621

0050

0368

0459

-.0455

-.0425

-.0396

-.0371

-.0350

75.0

71.1

70.0

71.1

73.1

75.1

76.6

77.8

78.7

79.4

80.0

75 0

80 8

86 4

90 3

92 1

92 6

92.6

92.4

92.3

92.1

92.0
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T_&_L!E_

Outer Solutions

kr = r -I r )To .2748 (X/2) "I/2 ; #o = cot (l_o

_ = .0542 (-X12)-i12 ; ;/_o= cot-l( 4 )o o

MultipJiers Bank Angles (deg)

x

.25

.50

1.0

2.0

3.0

4.0

5.0

7773 -.1533 52.1

5496 -.i084 61.2

3886 -.0767 68.8

2748 -.0542 • 74.6

2248 -.0443 - 77.4

1943 -.0383 79.0

1738 -.0343 80.1

98 7

96 2

94 4

93 1

92 5

92 2

92 0
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