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Abstract

Grand tours are a class of methods for visualizing multivariate data, or any finite set of points

in n-space. The idea is to create an animation of data projections by moving a 2-dimensional
projection plane through n-space. The path of planes used in the animation is chosen so that it
becomes dense, that is, it comes arbitrarily close to any plane. One of the original inspirations for

the grand tour was the experience of trying to comprehend an abstract sculpture in a museum.
One tends to walk around the sculpture, viewing it from many different angles. A useful class of

grand tours is based on the idea of continuously interpolating an infinite sequence of randomly

chosen planes. Visiting randomly (more precisely: uniformly) distributed planes guarantees
denseness of the interpolating path. In computer implementations, 2-dimensional orthogonal

projections are specified by two 1-dimensional projections which map to the horizontal and

vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs

of orthonormal projection vectors. This paper describes an interpolation scheme for smoothly

connecting two pairs of orthonormal vectors, and thus for constructing interpolating grand tours.
The scheme is optimal in the sense that connecting paths are geodesics in a natural Riemannian

geometry.
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Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create

an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the

animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane.

One inspiration for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends to
walk around the sculpture, viewing it from many different angles.

A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes.

Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path.

In computer implementations, 2-dimensional orthogonal projections are specified by two l-dimensional projections which

map to the horizontal and vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs of

orthonormal projection vectors.

This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for con-

structing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in anatural Rieman-
nian geometry.

1.0 Some terminolo_v

We define and discuss a number of key concepts that will be used in this paper.

A _plane in R n is any 2-dimensional linear subspace of Rn.

Note that in our usage, every 2-plane contains the origin 0 ¢ R n.

A 2.frame in R n is any ordered pair of orthonormal vectors in R n.

Note that any 2-frame uniquely determines a 2-plane.

Notation: Suppose v and w are orthonormal vectors in R n. Then the 2-frame determined by v and w (in that order) will

be denoted by (v,w).

Notation." The 2-plane determined by the 2-frame F - (v,w) will be denoted by span(F) or span(v,w).

The Grassnmnn manifold, or Grassmannian, G2_a of 2-planes in R n is the topological space each point of
which represents a distinct 2-plane in Rn.



The Stlefel manifold V_n of 2-frames in R n is the topological space each point of which represents a distinct

2-frame in Rn.

Note that G2_ end V2_ are each locally Euclidean of dimensions 2n-4 and 2n-3 respectively, and each is naturally endowed
with an intrinsic metric, or distance function (arising from a natural Riemarmian metric structure). Thus it makes sense to dis-

cuss the distance between any two points of either of these spaces.

The distance between points x and y of a metric, space M will be denoted by d(x, y).

A subset X of a metric space M is called dense if for any point m _ M and any 8 > 0, there exists some x 8 X

such thatd(x,m) < 8.

Intuitively,a densesubsetis"allovertheplace."For everypointofM, a pointofthesubsetcan be found asnearasdesired.

A grand tour Implementation inR n isan algorithmtforcalculatingan arbitrarilylong sequencePl,P2....of

2-planesinR n such thatX - (Pl,P2....)isa dense subsetof G2_.

2.0 How _rand tours work

The purpose of finding grand tours is to display multivariate data as an animation on a computer screen, allowing the observer

to detect patterns in the data. Here is the method that is used. Let S c R n represent any finite set of multivariate data. Given a

grand tour implementation Pl, P2 ..... we can now create an animation of S. First, we simply project S orthogonally onto each

2-plane Pi- Now we need some way of identifying the 2-plane Pi with the computer screen. For this purpose, we need to
choose, for each i, a 2-frame F i - (v i, wi) such that span(F i ) - Pi. Finally, we map the plane Pi to the computer screen via a lin-

ear map that takes vi and wi to the x- and y-directions, respectively, on the computer screen.

The animation now comes from rapidly displaying on the computer screen the result of this procedure for i - 1,2 .... in turn. At

about 10 frames per second, the eye perceives motion; at 24 or more frames per second, the motion is perceived without

flicker.

If we have chosen the Pi and the Fi carefully, the result will be a smooth animation of the multivariate data contained in the set

S. Each point will appear to be moving on the computer screen along its own smooth trajectory, and points that are actually
near each other in S will follow trajectories that remain close to each other throughout the animation. The many different

views of S afforded by the dense sequence of 2-planes will offer an observer the opportunity to find patterns in S that may be

otherwise difficult to see.

FIGURE 1. Schenmtlc view of 3 planes of a grand tour showing the data (a tetrahedron) projected onto each plane.
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3.0 The imnortance of cnntinnitv

Unless we are very careful to make our choices continuous, the animation just described will appear chaotic and will be of no
use to a human observer. If either the sequence of 2-planes is not continuous, or the choice of 2-frames is not continuous, then

the resulting grand tour implementation will fail to appear continuous. For this reason we refine our original definition of a
grand tour implementation as follows:

A grand tour in R n is a continuous family of 2-frames (F(t), 0 _<t < _o } such that the corresponding set

of 2-planes X - (span(F(t)), 0 < t < 0o ) is dense in O2.n.

A grand tour will give rise to a grand tour implementation that appears continuous if we choose a sequence of parameter val-

ues 0 - t I < t2 < ... approaching oo and sufficiently close to one another. For then the sequence of 2-planes given by Pi -
span(F(t_), i - 1, 2 .... will be dense in G2j v In addition, the Pi will appear to vary continuously, and the 2-frames F(ti) will

give us a continuous way to map the image of the data that has been projected onto the planes Pi onto the computer screen.

4.0 Some geometry of the Gl'_smannlan

The aim of this section is to describe geodesic curves in the Grassmann manifold G2.n. In the next section these curves will be
used to construct a particular grand tour.

In this section P and Q denote any two 2-planes in Rn, or in other words any two points in the Grassmann manifold GZn.

A lineina 2-planeisa l-dimensionallinearsubspaccof the 2-plane.(Inotherwords,itisan ordinary

straightlineinthe2-plancthatpassesthroughtheoriginofthe2-plane.)

Definition: The first principal angle between two 2-planes P and Q in R n is the smallest angle between any line in P
and any line in Q. The first principal directions between P and Q are the (usually unique) lines in P and Q that realize the first
principalangle.

_fmlfion.- The secondprincipaldirectionsbetween two 2-planesP and Q inR narethelinesinP and Q, respectively,

thatlieperpendiculartothcfirstprincipaldirections.The secondprincipalanglebetween P and Q isthesmallestangleformed

between the second principal directions.

The first and second principal angles will be denoted by Ol and 02, respectively..

Note that 01 and 02 will always satisfy the inequalities 0 < 01 < 02 < 90 °.

FIGURE 2. Schematic drawing shows prindpai angles between two ?.-planes in R n. (In R 3 the first principal angle
would necessarily be 0.)

_fmlflon." The distance between P and Q (considered as two points of the Grassmann manifold G2,a) will be taken as
d(P, Q) = (012 + 022)t/2.



Although we are couching this as a definition, in fact this is a consequence of the natural Riemannian met-

ric on G2,n.

]_jttiglK A geodesic between any two points p and q of a Riemannian manifold M is a curve in M connecting p to

q, which locally minimizes distance.

Suppose that a : [a,b] _ M is a geodesic with ct(a) = p and a(b) = q. Suppose we have any sufficiently fine partition of the
interval [a, b], say a = to < tt < ... < tn = b. Then the definition of geodesic means that for each i = l,...,n, the curve

c_ : [ti.t, ti] --_ M will be the shortest of all curves in M connecting a(ti.l) to o-(ti).

Denote by SOk the group ofk x k orthogonal matrices (A"l = A t) with determinant +I.

SOl, is called the special orthogonal group on Rk and is just the group of rotations of Rk.

Definition: Suppose u and v are any two unit vectors in Rn that are an angle 0 less than 180° apart. Then slerp(u, v; t)

(spherical interpolation) will denote the unique element of SOn that executes a rotation in span(u, v) by angle tO, and is the

identity on the complementary (n-2)-plane (span (u, v) )±.

Fact: Let P and Q be any two 2-planes of Rn. Let ut and v I denote unit vectors in the first principal directions of
P and Q respectively. Let u2 and v2 denote unit vectors in the second principal directions of P and Q, respectively. Consider the

one-parameter family of SO n rotations given by the concatenation

M (t) -- slerp (u I, v ! ;t) slerp (u 2, v2;t) = slerp (u 2, v2;t) slerp (u 1, v I ;t)

for 0 < t g 1. Then the shortest Grassmaunian geodesic 17 between P and Q in G2,n is given by a : [0, 1] _ G2_ via

¢t (t) -- M (t) P

Of course, C0) - P and _I) = Q.

5.0 A Gray.mann tour

We review the following method 2"3"9"t3for creating grand tours: Start with an arbitrary 2-plane P in Rn. Pick at random a sec-

ond arbitrary 2-plane Q in Rn. If u l, v !, u2, v2 are just as in the previous section, then Ml(t) - slerp(ul, vt; t) slerp(u2, v2; t)
defines a continuous 1-parameter family of rotations in SO4. As above, the 2-planes Mt(t)P, for 0 < t < 1, clearly traverse the

geodesic from P to Q.

We attempt to iterate this process to obtain a grand tour. Pick a third 2-plane R in R n at random. We now do for Q and R the

same thing that we just did for P and Q, respectively. Let us denote the resulting one-parameter family of rotations by M2(t) for

0 < t < 1. Again, we have a geodesic in the Grassmannian between Q and R, given by M2(t)Q for 0 < t <- 1. We then pick a

fourth 2-plane, S, at random and continue this procedure indefinitely to obtain a piecewise geodesic curve in G2,n which "con-

nects the dots" (2-planes).

What we really need, though, is a curve of 2-frames whose underlying 2-planes are precisely the curve we have just described.

Fortunately, the l-parameter families Mi(t) of rotations in R n provide the means for this. Since Mi(O) is the identity in SOn for
each i, we may define a grand concatenation M of all the Mi's as follows: For any s > 0, let s = n + t, where n is a positive

integer and 0 < t < I. Then we define M(s) = Mn(t)Mn.t(1)Ma.2(1).--M2(1)Ml(1)" It is easy to verify that this forms a continu-
ous curve of rotations in SO n, for all real s > 0. Any 2-frame F fed into this "pipeline" leads to a continuous l-parameter family

M(t)F of 2-frames whose underlying 2-planes, span(M(t)F), form exactly the piecewise geodesic curve of 2-planes described

in the previous paragraph. Thus (with probability I) we will have constructed a grand tour ( M(t)F 0 ) in this manner.
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Note that this method is implemented in XGobi software, available 13 by ftp from Statlib at CMU.

A grand tour constructed in the fashion described above will be called the Grassnmnn tour.

Notation: Let K denote any subset of M, and let S - (s l, s2,...} denote any sequence of points of M. Then #(K,S; n)

denotes the number of elements among {m l, m 2..... ran} which lie in the subset K.

_finlflon: Let M denote a probability space (a measure space whose total measure is 1). We say that a sequence S -

(s t, s2,... } in M is well-distributed in M if for all measurable subsets K of M, the limit as n _ oo of #(K,S; n)/n is equal to the
measure of K.

Intuitively, this just says that the sequence S ultimately visits each part of M in proportion to its measure. A typical application

of this concept will be a compact manifold supplied with a measure such that every non-empty open set has positive measure.
Note that any weE-distributed sequence on such a manifold must automatically be dense.

Note that as a compact Riemannian manifold, the Grassmannian G_.n is naturally a probability space (there is an essentially

unique measure, the uniform distribution, arising from the intrinsic metric on G2,n). One particularly attractive quality of the

Grassmann tour described above is that by its construction, it can be shown to be well-distributed in G2_. The advantage of a

grand tour's being well-distributed in G2_ is that the views seen on the screen will not prejudice the observer by lingering dis-
proportionately in one or another region of the Grassmannian. Instead they will give a true impression of what different kinds
of views of the data are possible.

6.0 From the Grammann tour to the Stiefel tour

The Grassmann tour satisfies all the abstract requirements for a grand tour:, continuity and denseness. In fact, much more holds

true: the Grassmann tour is not only continuous but piecewise optimally smooth, a consequence of the piecewise geodesic

property. In addition, this tour is not only dense in the G-rassmannian, but well-distributed, a consequence of the independent
uniform distribution of each of the randomly-selected planes in its construction.

Yet, the Grassmann tour has a shortcoming: it is impossible to prescribe the orientations (i.e., rotational positions) in which the

visited planes are seen on the computer screen. This is not a surprise: the Grassmann tour only claims to interpolate 2-planes,

not specific 2-frames. This is clear from the construction: if the starting frame in the starting plane P is F, then the ending frame

in the target plane Q is M(1)E This ending frame is uniquely determined by P, Q, and F and is not subject to the viewer's pref-

erences. The construction of M(t) depends, of course, only on P and Q but not on E

This lack of control over specific 2-frames can be a problem in interactive implementations: grand tours are not very useful

unless they are embedded in a set of interactive tools that permit a viewer to manipulate projections generated by a grand tour.

Some basic manipulations include storage and reaieval of projections, and revisiting them at any given moment by steering
the grand tour back to them (not by backtracking but by direct interpolation). At this point, however, it is essential that each

old projection be presented in the screen orientation in which the viewer saw it the first time around; otherwise it may not be

recognizable.

At other times, a viewer may wish to visit specific planes, such as the projection onto the first two variables. Since the scre_

orientation of such a plane cannot be prescribed in the Grassmann tour, a CJrassmann geodesic will in all likelihood place the

variables in oblique screen orientations on the screen, rather than in the natural horizontal-vertical position.

Thus arises the need for schemes that permit interpolation of a sequence of specific frames rather than just planes. Although

the minimum requirements for a grand tour ate satisfied by the Grassmarm tour, larger implementation and usability issues dic-

tate frame interpolation in some contexts.

Construction of the optimal flame interpolation is the subject of the remainder of this paper. In precise terms, we show how to

construct geodesics on the Stiefel manifold V2.n rather than on the Grassmannian Gz_.



Stiefel geodesics can be used to construct an interpolating grand tour by choosing a sequence of 2-frames in R n independently
and at random. Call this sequence 9"- (F1, F2,...}. Now if we could only compute the geodesic of 2-frames in V2. n between

each successive pair of 2-frames Fi, Fi+l in the sequence, we could "connect the dots" with Stiefel geodesics. Applying this

method, then, to each successive pair Fi, Fi+l will give us a continuous curve of 2-frames that is piecewise geodesic, threading

through each of the Fi's.

Dfflaltlam The grand tour just described is what we call the Stlefel tour.

7.0 How to t-_lin_et tWO 2.franllffl bv Sttefel _eod_lcs

This section will describe how to calculate the geodesic in V2:_ between two 2-frames F s and F 2 in Rn. (Of necessity, this sec-

tion will be more technical than the preceding.)

7.1 ltedm,tion m 4 dimen._ions

First of all, we can simplify matters by restricting attention to the 4-dimensional subspace of Rn that is generated by the two 2-

planes PI - span(Fl) and 1'2 = span(F2)" (In the unlikely event that Pl and 1'2 generate only a 3- or 2-dimensional subspace, we

may choose any convenient 4-dimensional subspace that contains it.) By an orthogonal change of coordinates, we may assume
without loss of generality that this d-dimensional subspace constitutes the first 4 coordinates of R n, so we shall call it R 4. By

the change of coordinates, our 2-frames F1 and F 2 must in fact be 2-frames in R 4, i.e., points in V2,4. We may assume that this

change of coordinates has been chosen so that the 2-frame F 1consists of the first two standard basis vectors: Ft - (et, e2).

7.2 The relatlan hetw_n _eod_ics in V2, 4 and feodeslcs in SO_

The mathematical justification for the construction of Stiefel geodesics that we are about to give stems from the theory of Lie

groups. Hence we provide some statements that will allow the interested reader to link this material to Lie group theory 11.

There is an important mapping p : SOt --* V2.4 defined as follows. Let g be any element of SO4. Then p(g) is the 2-frame

(g(et) , g(e2)). (Intuitively, p maps an orthogonal 4x4 matrix to the 2-frame consisting of its first two columns.) Let 12 x SO 2
denote the subgroup of SO4 consisting of those rotations of R t which leave fixed the coordinate plane span(e t, e2). Then con-

sideration of the mapping p shows that V2. t is in fact a coset manifold, that is, the result of factoring the group SOt out by this

subgroup 12 x SO 2. This is expressed by saying that V2. t - SO4/(12 x SO2).

Consequently, SO4 may be viewed as a principal fibre bundle 12 over the base space V2,t with fibre SO2.

We can describe the structure of the fibres in greater detail. Let our second 2-frame F 2 be given by the ordered pair of vectors

(ut, uT.). Using Gram-Schmidt orthogonalization, we may easily extend this to an ordered a-tuple of orthonormal vectors,

(ut, u2, u3, u4). Of we are unlucky, the Gram-Schmidt process gives us a matrix that has determinant -1, but this is easily cor-

rected by replacing the last column with its negative.) We may view these ui's as columns of a special orthogonal matrix U

such that p(U) - F2. Thus, the matrices of SOt which project down to F 2 by applying p are the matrices

U 0 = (u 1' u2' cos (0) u 3 + sin (0) u 4, -sin (0) u 3 + cos (0) u 4)

for 0 < 0 < 2x. The set of these matrices forms one fibre of the fibre bundle, so it is topologically just a circle in SOt.

The usefulness of SOt stems from the fact that any Stiefel geodesic which starts at F ! - (el, e2) and ends at F2 = (Ul, u2) is the

image under p of some SOt geodesic that starts at the identity 14 - (et, e2, e3, e4) and ends at some specific Uo. The Stiefel

geodesic is obtained from that SO4 that has the shortest length over all values of 0.

We need to find the shortest geodesic ¢t of V2,4 which connects the 2-frames F ! and F2. According to the previous paragraph,

we may determine (z by looking at geodesics "upstairs" in SO4, as follows.



7.3 Geodesics in SO, and their normal fnrm_

We need a few facts about S04 geodesics tl. For any squm-e matrix M, denote by exp(M) the matrix exponential, which can be

defined in terms of the usual exponential power series.

Fact." Every element of SO4 is of the form exp(S), where S is a skew-symmetric matrix.

Note that this representation is not unique. Below we will see what the nature of this non-uniqueness is.

Fact: If U - exp(S), S skew-symmetric, then the curve ct(t) - exp(tS) is a geodesic in SO4 that connects 14 and
U.

Fact.- The length of this geodesic is equal to IIS II = S_j. (Here the su denote the elements of S.)
Vl=lj=l

This is also the so-called Frobenius norm of S. The matrix S is also called the "tangent vector" or "Lie algebra element" for

the geodesic ¢x(t) at the starting point _0) - 14. In fact, the derivative of _t) at t - 0 is just S.

tact.- By an orthogonal change of coordinates, any element U of SO4 may be put in the normal form N, where

N __.

I_ (K) -sin(K) 0 0

(g) cos(g) 0 0

0 0 co6 (L) -sin (L)

0 0 sin(L) cos(L)

The advantage of this normal form is that it is easy to determine a Lie algebra element S such that exp(S) - N. Namely, S may
be chosenas the matrix

i 1S= g o o

0 0 0

0 0 L

Obviously,thevaluesofK and L areuniqueonly up toadditivemultiplesof2_, whence thenon-uniquenessoftheLie algebra
elementsS.

The squared norm of this matrix S is just the sum of the squares of its elements, that is, 2(K 2 + L2). Since N - A'tUA for some

orthogonal matrix A, it follows that U - ANA "t - Aexp(S)A 4 - exp(ASA'l). Thus T - ASA 4 is a Lie algebra element such

that exp(T) - U.

Sinceconjugationby anorthogonalmatrixleavesthenorm ofa matrixunchanged,itfollowsthatthesquarednorm ofT isalso

2(K 2 + L2).

7,4 Making_ sense of the above for the present nurnose

The relevance of the above for our problem is that we now know how to cast the problem of finding Stiefel geodesics in to'ms

of the shortest SO4 geodesic from 14 to each of the Ue's. Our problem at this point is to determine how we can compute the

length of these SO4 geodesics from the original matrix Ue, and then find the value of O which minimizes it.

If the above normal form is computed from each 0, one obtains K = K(0) and L = L(0). Hence also the squared length of a geo-
desic 2(I( 2 + Lz) is a function of 0 as well. This is the function that we need to minimize.



The quantifies K and L derived from the normal form are generally not eacy to get at, unless one computes these normal forms

explicitly. The method for finding a solution to our problem is to circumvent normal forms by getting at easily computable
qu_tities of U s that determine the K(0) and L(0) directly. These quantities are the u-aces of Uo and its matrix square. Here is

how this works:

Notation: In what follows we shall denote cos(K) by C K and cos(L) by C L.

Through an easy calculation and application of trigonometric identifies, we get that

trace (N) = 2 (C K + C L) and

trace (N 2) = 2(cos (2K) +cos (2L)) = 4(C2+C_-I)

Since conjugation by an orthogonal matrix leaves the trace unchanged, it follows that _a_e 2(_e)- 2(CK.+. C O and tra_.. ((Us:!

.4(CK 2 + CL 2 . 1). Now we set the variable a - traceCtJo) and the variable 13- tracettuo) ). tne resumng two equanons aria
two unknowns boil down to the quadratic equation

C2_ (2)C+ (a2-b-4)/8 = 0

where C stands for either Cx or CL. Solving this quadratic equation, we obtain

C = (a+_/2b-a2+8)/4

for Cx and C L. Hence we may set

K = cos'l 4
and

where cos "1 denotes inverse cosine. Consequently K2 + L2, which is half of the squared norm 2(K 2 + L2) of Uo, can be

expressed a¢

2 2

Since a = trace(Uo) end b = trace(CO0) 2) are easily calculated from the matrix U o, this expression for frO) may be evaluated

numerically for any value of 0. We now numerically minimize f(0) over all 0 in the range 0 < 0 < 2_.

Let 0m_, be the value of 0 which minimizes frO). Substituting 0min for 0 in the matrix Uo we get a matrix that we shall call

Um_,. Now we know that the geodesic from 14to Umin is the shortest SO4 geodesic from 14 to any element of SOt that projects
to the second 2-frame, F2 by the mapping p. As above, we may make use of the normal form Nmm for Umln in order to deter-

mine the skew-symmetric matrix Tmm such that exp(Tnm) - Umi_. Finally we can now express the shortest geodesic between

the original 2-frames Ft and 1:2 as _t) = p(exp(tTmin)) for 0 < t < 1.
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