Quantum Chromodynamics

Keith Ellis
Maria Laach, September 2004

Lecture 2: $\mathbf{Q C D}$ in $e^{+} e^{-}$annihilation and infrared safety

- $e^{+} e^{-}$annihilation
- Shape variables
- Parton branching
- $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$is a fundamental electroweak processes. Same type of process, $e^{+} e^{-} \rightarrow q \bar{q}$, will produce hadrons. Cross sections are roughly proportional.

- Since formation of hadrons is non-perturbative, how can PT give hadronic cross section? This can be understood by visualizing event in space-time:
- e^{+}and e^{-}collide to form γ or Z^{0} with virtual mass $Q=\sqrt{s}$. This fluctuates into
$q \bar{q}, q \bar{q} g, \ldots$, occupy space-time volume $\sim 1 / Q$. At large Q, rate for this short-distance process given by PT.

- Subsequently, at much later time $\sim 1 / \Lambda$, produced quarks and gluons form hadrons. This modifies outgoing state, but occurs too late to change original probability for event to happen.
- Well below Z^{0}, process $e^{+} e^{-} \rightarrow f \bar{f}$ is purely electromagnetic, with lowest-order (Born) cross section (neglecting quark masses)

$$
\sigma_{0}=\frac{4 \pi \alpha^{2}}{3 s} Q_{f}^{2}
$$

Thus (3 $=N=$ number of possible $q \bar{q}$ colours)

$$
R \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=\frac{\sum_{q} \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=3 \sum_{q} Q_{q}^{2}
$$

- On Z^{0} pole, $\sqrt{s}=M_{Z}$, neglecting γ / Z interference

$$
\sigma_{0}=\frac{4 \pi \alpha^{2} \kappa^{2}}{3 \Gamma_{Z}^{2}}\left(a_{e}^{2}+v_{e}^{2}\right)\left(a_{f}^{2}+v_{f}^{2}\right)
$$

where $\kappa=\sqrt{2} G_{F} M_{Z}^{2} / 4 \pi \alpha=1 / \sin ^{2}\left(2 \theta_{W}\right) \simeq 1.5$. Hence

$$
R_{Z}=\frac{\Gamma(Z \rightarrow \text { hadrons })}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}=\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}=\frac{3 \sum_{q}\left(a_{q}^{2}+v_{q}^{2}\right)}{a_{\mu}^{2}+v_{\mu}^{2}}
$$

- Measured cross section is about 5% higher than σ_{0}, due to QCD corrections. For massless quarks, corrections to R and R_{Z} are equal. To $\mathcal{O}\left(\alpha_{S}\right)$ we have:

(b)
- Real emission diagrams (b):
- Write 3-body phase-space integration as

$$
d \Phi_{3}=[\ldots] d \alpha d \beta d \gamma d x_{1} d x_{2}
$$

α, β, γ are Euler angles of 3-parton plane, $x_{1}=2 p_{1} \cdot q / q^{2}=2 E_{q} / \sqrt{s}$,
$x_{2}=2 p_{2} \cdot q / q^{2}=2 E_{\bar{q}} / \sqrt{s}$.

- Applying Feynman rules and integrating over Euler angles:

$$
\sigma^{q \bar{q} g}=3 \sigma_{0} C_{F} \frac{\alpha_{S}}{2 \pi} \int d x_{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Integration region: $0 \leq x_{1}, x_{2}, x_{3} \leq 1$ where $x_{3}=2 k \cdot q / q^{2}=2 E_{g} / \sqrt{s}=$ $2-x_{1}-x_{2}$.

- Integral divergent at $x_{1,2}=1$:

$$
\begin{aligned}
1-x_{1} & =\frac{1}{2} x_{2} x_{3}\left(1-\cos \theta_{q g}\right) \\
1-x_{2} & =\frac{1}{2} x_{1} x_{3}\left(1-\cos \theta_{\bar{q} g}\right)
\end{aligned}
$$

Divergences: collinear when $\theta_{q g} \rightarrow 0$ or $\theta_{\bar{q} g} \rightarrow 0$; soft when $E_{g} \rightarrow 0$, i.e. $x_{3} \rightarrow 0$. Singularities are not physical - simply indicate breakdown of PT when energies and/or invariant masses approach QCD scale Λ.

- R.K.Ellis, Maria Laach, September 2004 -
- Collinear and/or soft regions do not in fact make important contribution to R. To see this, make integrals finite using dimensional regularization, $D=4-2 \epsilon$. Then

$$
\begin{gathered}
\sigma^{q \bar{q} g}=2 \sigma_{0} \frac{\alpha_{S}}{\pi} H(\epsilon) \\
\times \quad \int \frac{d x_{1} d x_{2}}{P\left(x_{1}, x_{2}\right)}\left[\frac{(1-\epsilon)\left(x_{1}^{2}+x_{2}^{2}\right)+2 \epsilon\left(1-x_{3}\right)}{\left[\left(1-x_{1}\right)\left(1-x_{2}\right)\right]}-2 \epsilon\right] \\
\text { where } \quad H(\epsilon)=\frac{3(1-\epsilon)(4 \pi)^{2 \epsilon}}{(3-2 \epsilon) \Gamma(2-2 \epsilon)}=1+\mathcal{O}(\epsilon) \\
\text { and } \quad P\left(x_{1}, x_{2}\right)=\left[\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)\right]^{\epsilon}
\end{gathered}
$$

Hence

$$
\sigma^{q \bar{q} g}=2 \sigma_{0} \frac{\alpha}{\pi} H(\epsilon)\left[\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}-\pi^{2}+\mathcal{O}(\epsilon)\right]
$$

- Soft and collinear singularities are regulated, appearing instead as poles at $D=4$.
- Virtual gluon contributions (a): using dimensional regularization again

$$
\sigma^{q \bar{q}}=3 \sigma_{0}\left\{1+\frac{2 \alpha}{3 \pi} H(\epsilon)\left[-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\pi^{2}+\mathcal{O}(\epsilon)\right]\right\}
$$

- Adding real and virtual contributions, poles cancel and result is finite as $\epsilon \rightarrow 0$:

$$
R=3 \sum_{q} Q_{q}^{2}\left\{1+\frac{\alpha_{S}}{\pi}+\mathcal{O}\left(\alpha_{S}^{2}\right)\right\}
$$

Thus R is an infrared safe quantity.

- Coupling α_{S} evaluated at renormalization scale μ. UV divergences in R cancel to $\mathcal{O}\left(\alpha_{S}\right)$, so coefficient of α_{S} independent of μ. At $\mathcal{O}\left(\alpha_{S}^{2}\right)$ and higher, UV divergences make coefficients renormalization scheme dependent:

$$
\begin{aligned}
R & =3 K_{Q C D} \sum_{q} Q_{q}^{2} \\
K_{Q C D} & =1+\frac{\alpha_{S}\left(\mu^{2}\right)}{\pi}+\sum_{n \geq 2} C_{n}\left(\frac{s}{\mu^{2}}\right)\left(\frac{\alpha_{S}\left(\mu^{2}\right)}{\pi}\right)^{n}
\end{aligned}
$$

- In $\overline{\mathrm{MS}}$ scheme with scale $\mu=\sqrt{s}$,

$$
\begin{aligned}
C_{2}(1) & =\frac{365}{24}-11 \zeta(3)-[11-8 \zeta(3)] \frac{N_{f}}{12} \\
& \simeq 1.986-0.115 N_{f}
\end{aligned}
$$

Coefficient C_{3} is also known.

- Scale dependence of $C_{2}, C_{3} \ldots$ fixed by requirement that, order-by-order, series should be independent of μ. For example

$$
C_{2}\left(\frac{s}{\mu^{2}}\right)=C_{2}(1)-\frac{\beta_{0}}{4} \log \frac{s}{\mu^{2}}
$$

where $\beta_{0}=4 \pi b=11-2 N_{f} / 3$.

- Scale and scheme dependence only cancels completely when series is computed to all orders. Scale change at $\mathcal{O}\left(\alpha_{S}^{n}\right)$ induces changes at $\mathcal{O}\left(\alpha_{S}^{n+1}\right)$. The more terms are added, the more stable is prediction with respect to changes in μ.

- Residual scale dependence is an important source of uncertainty in QCD predictions. One can vary scale over some 'physically reasonable' range, e.g. $\sqrt{s} / 2<\mu<2 \sqrt{s}$, to try to quantify this uncertainty, but there is no real substitute for a full higher-order calculation.
- Shape variables measure some aspect of shape of hadronic final state, e.g. whether it is pencil-like, planar, spherical etc.
- For $d \sigma / d X$ to be calculable in PT, shape variable X should be infrared safe, i.e. insensitive to emission of soft or collinear particles. In particular, X must be invariant under $\boldsymbol{p}_{i} \rightarrow \boldsymbol{p}_{j}+\boldsymbol{p}_{k}$ whenever \boldsymbol{p}_{j} and \boldsymbol{p}_{k} are parallel or one of them goes to zero.
- Examples are Thrust and C-parameter:

$$
\begin{aligned}
T & =\max \frac{\sum_{i}\left|\boldsymbol{p}_{i} \cdot \boldsymbol{n}\right|}{\sum_{i}\left|\boldsymbol{p}_{i}\right|} \\
C & =\frac{3}{2} \frac{\sum_{i, j}\left|\boldsymbol{p}_{i}\right|\left|\boldsymbol{p}_{j}\right| \sin ^{2} \theta_{i j}}{\left(\sum_{i}\left|\boldsymbol{p}_{i}\right|\right)^{2}}
\end{aligned}
$$

After maximization, unit vector \boldsymbol{n} defines thrust axis.

- In Born approximation final state is $q \bar{q}$ and $1-T=C=0$. Non-zero contribution at $\mathcal{O}\left(\alpha_{S}\right)$ comes from $e^{+} e^{-} \rightarrow q \bar{q} g$. Recall distribution of $x_{i}=2 E_{i} / \sqrt{s}$:

$$
\frac{1}{\sigma} \frac{d^{2} \sigma}{d x_{1} d x_{2}}=C_{F} \frac{\alpha_{S}}{2 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Distribution of shape variable X is obtained by integrating over x_{1} and x_{2} with constraint $\delta\left(X-f_{X}\left(x_{1}, x_{2}, x_{3}=2-x_{1}-x_{2}\right)\right)$, i.e. along contour of constant X in $\left(x_{1}, x_{2}\right)$-plane.

- For thrust, $f_{T}=\max \left\{x_{1}, x_{2}, x_{3}\right\}$ and we find

$$
\begin{aligned}
\frac{1}{\sigma} \frac{d \sigma}{d T}= & C_{F} \frac{\alpha_{S}}{2 \pi}\left[\frac{2\left(3 T^{2}-3 T+2\right)}{T(1-T)} \log \left(\frac{2 T-1}{1-T}\right)\right. \\
& \left.-\frac{3(3 T-2)(2-T)}{(1-T)}\right] .
\end{aligned}
$$

This diverges as $T \rightarrow 1$, due to soft and collinear gluon singularities. Virtual gluon contribution is negative and proportional to $\delta(1-T)$, such that correct total cross section is obtained after integrating over $\frac{2}{3} \leq T \leq 1$, the physical region for two- and three-parton final states.

- $\mathcal{O}\left(\alpha_{S}^{2}\right)$ corrections also known. Comparisons with data provide test of QCD matrix elements, through shape of distribution, and measurement of α_{S}, from overall rate. Care must be taken near $T=1$ where (a) hadronization effects become large, and (b) large higher-order terms of the form $\alpha_{S}^{n} \log ^{2 n-1}(1-T) /(1-T)$ appear in $\mathcal{O}\left(\alpha_{S}^{n}\right)$.

- Figure shows thrust distribution measured at LEP1 (DELPHI data) compared with theory for vector gluon (solid) or scalar gluon (dashed).
- Leading soft and collinear enhanced terms in QCD matrix elements (and corresponding virtual corrections) can be identified and summed to all orders. Consider splitting of outgoing parton a into $b+c$.

- Can assume $p_{b}^{2}, p_{c}^{2} \ll p_{a}^{2} \equiv t$. Opening angle is $\theta=\theta_{a}+\theta_{b}$, energy fraction is

$$
z=E_{b} / E_{a}=1-E_{c} / E_{a}
$$

- For small angles

$$
\begin{aligned}
t & =2 E_{b} E_{c}(1-\cos \theta)=z(1-z) E_{a}^{2} \theta^{2} \\
\theta & =\frac{1}{E_{a}} \sqrt{\frac{t}{z(1-z)}}=\frac{\theta_{b}}{1-z}=\frac{\theta_{c}}{z}
\end{aligned}
$$

- Amplitude has triple-gluon vertex factor

$$
g f^{A B C} \epsilon_{a}^{\alpha} \epsilon_{b}^{\beta} \epsilon_{c}^{\gamma}\left[g_{\alpha \beta}\left(p_{a}-p_{b}\right) \gamma+g_{\beta \gamma}\left(p_{b}-p_{c}\right) \alpha+g_{\gamma \alpha}\left(p_{c}-p_{a}\right)_{\beta}\right]
$$

ϵ_{i}^{μ} is polarization vector for gluon i. All momenta defined as outgoing here, so $p_{a}=$ $-p_{b}-p_{c}$. Using this and $\epsilon_{i} \cdot p_{i}=0$, vertex factor becomes

$$
-2 g f_{a b c}\left[\left(\epsilon_{a} \cdot \epsilon_{b}\right)\left(\epsilon_{c} \cdot p_{b}\right)-\left(\epsilon_{b} \cdot \epsilon_{c}\right)\left(\epsilon_{a} \cdot p_{b}\right)-\left(\epsilon_{c} \cdot \epsilon_{a}\right)\left(\epsilon_{b} \cdot p_{c}\right)\right]
$$

- Resolve polarization vectors into $\epsilon_{i}^{\text {in }}$ in plane of branching and $\epsilon_{i}^{\text {out }}$ normal to plane, so that

$$
\begin{aligned}
\epsilon_{i}^{\text {in }} \cdot \epsilon_{j}^{\text {in }} & =\epsilon_{i}^{\text {out }} \cdot \epsilon_{j}^{\text {out }}=-1 \\
\epsilon_{i}^{\text {in }} \cdot \epsilon_{j}^{\text {out }} & =\epsilon_{i}^{\text {out }} \cdot p_{j}=0
\end{aligned}
$$

- For small θ, neglecting terms of order θ^{2}, we have

$$
\begin{aligned}
\epsilon_{a}^{\text {in }} \cdot p_{b} & =-E_{b} \theta_{b}=-z(1-z) E_{a} \theta \\
\epsilon_{b}^{\text {in }} \cdot p_{c} & =+E_{c} \theta=(1-z) E_{a} \theta \\
\epsilon_{c}^{\text {in }} \cdot p_{b} & =-E_{b} \theta=-z E_{a} \theta
\end{aligned}
$$

- Vertex factor proportional to θ, together with propagator factor of $1 / t \propto 1 / \theta^{2}$, gives $1 / \theta$ collinear singularity in amplitude.
- $(n+1)$-parton matrix element squared (in small-angle region) is given in terms of that for
n partons:

$$
\left|\mathcal{M}_{n+1}\right|^{2} \sim \frac{4 g^{2}}{t} C_{A} F\left(z ; \epsilon_{a}, \epsilon_{b}, \epsilon_{c}\right)\left|\mathcal{M}_{n}\right|^{2}
$$

where colour factor $C_{A}=3$ comes from $f^{A B C} f_{f} A B C$ and functions F are given below

ϵ_{a}	ϵ_{b}	ϵ_{c}	$F\left(z ; \epsilon_{a}, \epsilon_{b}, \epsilon_{c}\right)$
in	in	in	$(1-z) / z+z /(1-z)+z(1-z)$
in	out	out	$z(1-z)$
out	in	out	$(1-z) / z$
out	out	in	$z /(1-z)$

- Sum/averaging over polarizations gives

$$
C_{A}\langle F\rangle \equiv \hat{P}_{g g}(z)=C_{A}\left[\frac{1-z}{z}+\frac{z}{1-z}+z(1-z)\right]
$$

This is (unregularized) gluon splitting function.

- Enhancements at $z \rightarrow 0$ (b soft) and $z \rightarrow 1$ (c soft) due to soft gluon polarized in plane of branching.
- Correlation between polarization and plane of branching (angle ϕ):

$$
F_{\phi} \propto \sum_{\epsilon_{b, c}}\left|\cos \phi \mathcal{M}\left(\epsilon_{a}^{\text {in }}, \epsilon_{b}, \epsilon_{c}\right)+\sin \phi \mathcal{M}\left(\epsilon_{a}^{\text {out }}, \epsilon_{b}, \epsilon_{c}\right)\right|^{2}
$$

$$
=\frac{1-z}{z}+\frac{z}{1-z}+z(1-z)+z(1-z) \cos 2 \phi .
$$

Hence branching in plane of gluon polarization preferred.

- Consider next $g \rightarrow q \bar{q}$ branching:
- Vertex factor is

$$
-i g \bar{u}^{b} \gamma_{\mu} \epsilon_{a}^{\mu} v^{c}
$$

where u^{b} and v^{c} are quark and antiquark spinors.

- Spin-averaged splitting function is

$$
T_{R}\langle F\rangle \equiv \hat{P}_{q g}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right]
$$

No soft ($z \rightarrow 0$ or 1) singularities since these are associated only with gluon emission.

- Vector quark-gluon coupling implies (for $\left.m_{q} \simeq 0\right) q$ and \bar{q} helicities always opposite (helicity conservation).
- Correlation between gluon polarization and plane of branching:

$$
F_{\phi}=z^{2}+(1-z)^{2}-2 z(1-z) \cos 2 \phi
$$

i.e. strong preference for splitting perpendicular to polarization.

- Branching $q \rightarrow q g$:
- R.K.Ellis, Maria Laach, September 2004 -
- Spin-averaged splitting function is

$$
C_{F}\langle F\rangle \equiv \hat{P}_{q q}(z)=C_{F} \frac{1+z^{2}}{1-z}
$$

- Helicity conservation ensures that quark does not change helicity in branching.
- Gluon polarized in plane of branching preferred, polarization angular correlation being

$$
F_{\phi}=\frac{1+z^{2}}{1-z}+\frac{2 z}{1-z} \cos 2 \phi .
$$

- Phase space factors before and after branching are related by

$$
d \Phi_{n+1}=d \Phi_{n} \frac{1}{4(2 \pi)^{3}} d t d z d \phi
$$

- Hence cross sections before and after branching are related by

$$
d \sigma_{n+1}=d \sigma_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{S}}{2 \pi} C F
$$

where C and F are colour factor and polarization-dependent z-distribution introduced earlier. Integrating over azimuthal angle gives

$$
d \sigma_{n+1}=d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{S}}{2 \pi} \hat{P}_{b a}(z)
$$

where $\hat{P}_{b a}(z)$ is $a \rightarrow b$ splitting function.

4-jets angular distribution

- Angular correlations are illustrated by the angular distribution in $e^{+} e^{-} \rightarrow 4$ jets. BengtssonZerwas angle $\chi_{B Z}$ is angle between the planes of two lowest and two highest energy jets:

$$
\cos \chi_{B Z}=\frac{\left(\boldsymbol{p}_{1} \times \boldsymbol{p}_{2}\right) \cdot\left(\boldsymbol{p}_{3} \times \boldsymbol{p}_{4}\right)}{\left|\boldsymbol{p}_{1} \times \boldsymbol{p}_{2}\right|\left|\boldsymbol{p}_{3} \times \boldsymbol{p}_{4}\right|}
$$

- Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend to follow directions of primary $q \bar{q}$.

- "Double bremsstrahlung" diagrams give negligible correlations.
- $g \rightarrow q \bar{q}$ give strong anti-correlation ("Abelian" curve), because gluon tends to be polarized in plane of primary jets and prefers to split perpendicular to polarization.
- $g \rightarrow g g$ occurs more often parallel to polarization. Although its correlation is much weaker than in $g \rightarrow q \bar{q}, g \rightarrow g g$ is dominant in QCD due to larger colour factor and soft gluon enhancements.
- Thus B-Z angular distribution is flatter than in an Abelian theory.
- Asymptotic freedom implies that IR-safe quantities can be calculated in perturbation theory.
- Residual scale dependence is formally small, and often also small in practice.
- Shape distributions, (such as Thrust) can be used to measure α_{s}.
- In the leading approximation the emission of collinear/soft radiation is described by a splitting function.

