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Lecture 2: QCD in et e annihilation
and infrared safety

® e annihilation
® Shape variables
® Parton branching
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et e annihilation cross section

® e — u+u_ is a fundamental electroweak processes. Same type of process, eTe™ — qq,
will produce hadrons. Cross sections are roughly proportional.
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® Since formation of hadrons is non-perturbative, how can PT give hadronic cross section? This
can be understood by visualizing event in space-time:

e ¢T and e collide to form ~y or 70 with virtual mass Q = /s. This fluctuates into
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qd, 9qg,. - ., occupy space-time volume ~ 1/Q. At large Q, rate for this short-distance
process given by PT.

e Subsequently, at much later time ~ 1 /A, produced quarks and gluons form hadrons. This
modifies outgoing state, but occurs too late to change original probability for event to
happen.

® Well below ZO, process ete™ — f f is purely electromagnetic, with lowest-order (Born) cross
section (neglecting quark masses)
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Thus (3 = N = number of possible ¢qg colours)

R

o(eTe™ — hadrons) B >2q o(ete™ — qq) B 32@2
olete™ —uTp™) oleTe™ — ptu™) -
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e OnzY pole, \/s = My, neglecting v/Z interference

4ﬂa2ﬁ2

2
3FZ

where Kk = \/§GFM%/47704 =1/ sin2(29W) ~ 1.5. Hence

o0 = (ag +vZ) (aF +v7)

_ I'(Z — hadrons) >qT(Z — qq) B 32(](@3 + ’Ug)
0(Z—pTp™) T(Z—ptp) a? +v?

Ry

® Measured cross section is about 5% higher than o, due to QCD corrections. For massless
quarks, corrections to R and R are equal. To O(ag) we have:

Vs O
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® Real emission diagrams (b):

e \Write 3-body phase-space integration as

d®g = [...]dadB dydxq dzy ,

o, 3,y are Euler angles of 3-parton plane, 1 = 2pq - q/q2 = 2Eq/+/s,

2
o = 2pg - q/q” = 2Eg/+/s.
e Applying Feynman rules and integrating over Euler angles:

x%—l—x%
(1—21)(1 —xzg9)

o149 — SUocF(;—S/dajl daj2
T

Integration region: 0 < xzq1,x9,z3 < 1 where x3 = 2k - q/q2 = 2Eqg/\/s =
2—x1 — x9.
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e Integral divergent at T 9= 1:
1
1—x = 55132:133(1 — Cos qu)
1 ! (1 Oqa)
—x = —x1T — cos O
2 571%3 a9

Divergences: collinear when 0qg — 0 or qu — 0; soft when Eg — 0, i.e. z3 — O.
Singularities are not physical — simply indicate breakdown of PT when energies and/or
invariant masses approach QCD scale A.

— R.K_.Ellis, Maria Laach, September 2004 — 5



e Collinear and/or soft regions do not in fact make important contribution to R. To see this,
make integrals finite using dimensional regularization, D = 4 — 2¢. Then

7 o
o119 = 20'0—SH(€)
0

2 2
y dxqdxo [(1 — 6)(331 + :I:2) + 2¢(1 — z3) B 26]
P(xy,z9) (1T =z1)(1 = x9)]
3(1 — €)(4m)2€
(3 —2¢)T'(2 — 2e¢)

and  P(zqy,z9) =[(1 —21)(1 —2z9)(1 — xS)]E

where  H(e) = =1+ O(e) .

Hence 9 3 19
— o
o199 — 200 S H(e€) St -+ 5 - w2 + O(e)} :
T € € 2

e Soft and collinear singularities are regulated, appearing instead as poles at D = 4.
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® \Virtual gluon contributions (a): using dimensional regularization again

€

5 2 2 3
o194 — 300 {1—'—&[{(6) |:—————8+7T2+O(€):|} .
37 2 €

® Adding real and virtual contributions, poles cancel and result is finite as € — 0:
= 33007 {1+ 55 o |

Thus R is an infrared safe quantity.

® Coupling o g evaluated at renormalization scale p. UV divergences in R cancel to O(ag), so

coefficient of arg independent of u. At O(a%’) and higher, UV divergences make coefficients
renormalization scheme dependent:

R = 3KQCDZQ(2],
q
(1?) s\ [as®\"
Koep = 14=27=+4 3 On <—2> (ST>
n>2
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® In MS scheme with scale u = Vs,

N
Co(1) = T2 11¢(8) — [11 - 8¢(3)] L

1.986 — O.115Nf

12

Coefficient C'g is also known.

® Scale dependence of U9, C4g ... fixed by requirement that, order-by-order, series should be
independent of . For example

s Bo s
Co <—> = Co(1) — =~ log —
p? 4 7 p2

where ﬁo =47b =11 — 2Nf/3'

® Scale and scheme dependence only cancels completely when series is computed to all orders.
Scale change at O(ag) induces changes at O(ag+1). The more terms are added, the more

stable is prediction with respect to changes in p.
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Deviation from QPM result in QCD

for e'e” total cross—section, Vs=33 GeV
A® (two loop) = 230 MeV.

L+NL —
L+NL+NNL -

w [GeV]

® Residual scale dependence is an important source of uncertainty in QCD predictions. One can
vary scale over some ‘physically reasonable’ range, e.g. \/s/2 < pu < 24/s, to try to quantify
this uncertainty, but there is no real substitute for a full higher-order calculation.
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Shape distributions

® Shape variables measure some aspect of shape of hadronic final state, e.g. whether it is pencil-like,
planar, spherical etc.

® For do/dX to be calculable in PT, shape variable X should be infrared safe, i.e. insensitive to
emission of soft or collinear particles. In particular, X must be invariant under p; — p; + Py
whenever p; and p;. are parallel or one of them goes to zero.

® Examples are Thrust and C-parameter:

> lpi -
> i Pl
.2
3 24,5 1P;lIpjl sin® 6,
2 (i lpih)?

After maximization, unit vector n defines thrust axis.

T = max

cC =

® In Born approximation final state is gg and 1 —T" = C' = 0. Non-zero contribution at O(ag)
comes from eTe™ — qqg. Recall distribution of z; = 2E; /+/s:

1 d2a ag x%+x%

— C :
odxidxo Fon (1 —21)(1 —x9)

— R.K.Ellis, Maria Laach, September 2004 — 10



Distribution of shape variable X is obtained by integrating over x1 and x9 with constraint
(X —fx(xq,z9,23 = 2—21 —x9)), i.e. along contour of constant X in (x1, x9)-plane.

® For thrust, fp = max{x{,z9, x5} and we find

1 do ag [2(3T2% — 3T + 2) 2T — 1
o dl CF27T|: T(1-T) 1g<1—T>
337 —2)(2 - T)
- a-1) }

This diverges as T — 1, due to soft and collinear gluon singularities. Virtual gluon contribution
is negative and proportional to d(1 — T"), such that correct total cross section is obtained after

integrating over % < T < 1, the physical region for two- and three-parton final states.

[ O(a%) corrections also known. Comparisons with data provide test of QCD matrix elements,
through shape of distribution, and measurement of ag, from overall rate. Care must be taken
near T" = 1 where (a) hadronization effects become large, and (b) large higher-order terms of

the form ag log2n_1(1 —T)/(1 —T) appear in O(ag).
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® Figure shows thrust distribution measured at LEP1 (DELPHI data) compared with theory for
vector gluon (solid) or scalar gluon (dashed).
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Parton branching

® Leading soft and collinear enhanced terms in QCD matrix elements (and corresponding virtual
corrections) can be identified and summed to all orders. Consider splitting of outgoing parton a
into b + c.

Oy
0.

e (Can assume p%, pg < pg = t. Opening angle is 0 = 0q + 0}, energy fraction is

Z:Eb/Ea = 1—Ec/Ea .

e For small angles

t = 2EpEc(1 —cosf) = z(1 — z)EC%QZ

P B 1 t N Qb _Qc
 Eg\lz—-2) 1—2z =z
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g — gg branching:

e Amplitude has triple-gluon vertex factor

gfABC 2, 5eg[ga5(pa — Pp)y T 98~ (Pp — Pe)a + gya(pe — pa)gl

eé’b is polarization vector for gluon 4. All momenta defined as outgoing here, so pg =

—pp — pc- Using this and €; - p; = 0, vertex factor becomes

—29fabcl(€a - €p)(ec - pp) — (€ - €c)(€a - pp) — (€c - €a)(ep - pe)l -

e Resolve polarization vectors into eim in plane of branching and eiOUt normal to plane, so
that
In In _ out out 1
€ "€ = € € =
In out . out -0
€ "€ = € pj =
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e For small 6, neglecting terms of order 92, we have

ecin “Pp = —Ebeb = —Z(l - Z)Eae
Ebin - Pc = —|—Ece = (1 — Z)Ea@
ecin Py = —Ep0 = —zEqb .

e Vertex factor proportional to 6, together with propagator factor of 1/t o 1/02, gives 1/6
collinear singularity in amplitude.
e (n 4+ 1)-parton matrix element squared (in small-angle region) is given in terms of that for
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N partons:

2

2 4g 2
My 11l NTCAF(Z;ea,éb,EcHMM

and functions F are given below

where colour factor C'4 = 3 comes from fABCfABC
€a €p €c F(z;€a, €, €c)
in in in 1—-2)/z+2/(1 —2)+ 2(1 — 2)
in out  out z(1 - 2)
out in out (1—2)/z
out  out in z/(1 — =)

e Sum/averaging over polarizations gives

C g (F) = Pgg(z) = Cy [ —

1— 2 z

1 —

This is (unregularized) gluon splitting function.
e Enhancements at z — 0 (b soft) and z — 1 (c soft) due to soft gluon polarized in plane

of branching.

. + z(1 —z)_

e Correlation between polarization and plane of branching (angle ¢):

Fe

XX

Z | cos ng(e(,iJn, €ps €c) + sin gb./\/l(eaf)Ut, €p ec)|2

€b,c
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= + c +2(1 —2)+ 2(1 — z)cos2¢ .
z 1—=z

Hence branching in plane of gluon polarization preferred.

® Consider next g — ¢q branching:

e \ertex factor is
. b U c
—1gU Y €q v
where ub and v€ are quark and antiquark spinors.
e Spin-averaged splitting function is

TR (F) = Pyg(z) = TR [2* + (1 - 2)°] .

No soft (z — 0 or 1) singularities since these are associated only with gluon emission.
e Vector quark-gluon coupling implies (for mg ~ 0) g and ¢ helicities always opposite

(helicity conservation).
e Correlation between gluon polarization and plane of branching:

Fy = 22 + (1 — z)2 —22(1 — z)cos 2¢
i.e. strong preference for splitting perpendicular to polarization.

® Branching ¢ — qg:
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e Spin-averaged splitting function is

1+z2

CF<F>quq(Z):CF 1_ 2

e Helicity conservation ensures that quark does not change helicity in branching.
e Gluon polarized in plane of branching preferred, polarization angular correlation being

P _1+z2+ 2z 26
(/5—1_2 1 cos )

— Z
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Phase space

® Phase space factors before and after branching are related by

1
dd = dbn——=dtdzdo .
nHl T Ty (23 ’
® Hence cross sections before and after branching are related by

dt  d
dop 1 = daanz2—¢a—SC’F

where C' and F' are colour factor and polarization-dependent z-distribution introduced earlier.
Integrating over azimuthal angle gives

dt ag -~
do =dopn—dz—=PF,(z) .
n+1 n + o ba( )

where pba(z) is @ — b splitting function.
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4-jets angular distribution

® Angular correlations are illustrated by the angular distribution in e

+

e

— 4 jets. Bengtsson-

Zerwas angle x 7 is angle between the planes of two lowest and two highest energy jets:

(p1 X P2) - (P3 X Pyg)

Ccos X =
Bz Ip1 X p2| |P3 X P4
40 T T T T
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e Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend to follow
directions of primary qq.

(d) (e) () ()
e "“Double bremsstrahlung” diagrams give negligible correlations.
e g — qq give strong anti-correlation (“Abelian” curve), because gluon tends to be polarized
in plane of primary jets and prefers to split perpendicular to polarization.
e g — gg occurs more often parallel to polarization. Although its correlation is much weaker
than in g — q@, g — gg is dominant in QCD due to larger colour factor and soft gluon

enhancements.
e Thus B-Z angular distribution is flatter than in an Abelian theory.
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Recap

Asymptotic freedom implies that IR-safe quantities can be calculated in perturbation theory.
Residual scale dependence is formally small, and often also small in practice.

Shape distributions, (such as Thrust) can be used to measure as.

In the leading approximation the emission of collinear/soft radiation is described by a splitting
function.
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