Quantum Chromodynamics

Keith Ellis

Maria Laach, September 2004

Lecture 2: QCD in e^+e^- annihilation and infrared safety

- e^+e^- annihilation
- Shape variables
- Parton branching

- R.K.Ellis, Maria Laach, September 2004 -

e^+e^- annihilation cross section

• $e^+e^- \rightarrow \mu^+\mu^-$ is a fundamental electroweak processes. Same type of process, $e^+e^- \rightarrow q\bar{q}$, will produce hadrons. Cross sections are roughly proportional.

- Since formation of hadrons is non-perturbative, how can PT give hadronic cross section? This
 can be understood by visualizing event in space-time:
 - e^+ and e^- collide to form γ or Z^0 with virtual mass $Q = \sqrt{s}$. This fluctuates into
- R.K.Ellis, Maria Laach, September 2004 -

 $q\bar{q}, q\bar{q}g, \ldots$, occupy space-time volume $\sim 1/Q$. At large Q, rate for this short-distance process given by PT.

- Subsequently, at much later time $\sim 1/\Lambda$, produced quarks and gluons form hadrons. This modifies outgoing state, but occurs too late to change original probability for event to happen.
- Well below Z^0 , process $e^+e^- \rightarrow f\bar{f}$ is purely electromagnetic, with lowest-order (Born) cross section (neglecting quark masses)

$$\sigma_0 = \frac{4\pi\alpha^2}{3s} Q_f^2$$

Thus $(3 = N = \text{number of possible } q\bar{q} \text{ colours})$

$$R \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = \frac{\sum_q \sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_q Q_q^2$$

- R.K.Ellis, Maria Laach, September 2004 -

 $\bullet~~{\rm On}~Z^0$ pole, $\sqrt{s}=M_Z$, neglecting γ/Z interference

$$\sigma_0 = \frac{4\pi \alpha^2 \kappa^2}{3\Gamma_Z^2} \left(a_e^2 + v_e^2\right) \left(a_f^2 + v_f^2\right)$$

where $\kappa=\sqrt{2}G_F M_Z^2/4\pi\alpha=1/\sin^2(2\theta_W)\simeq 1.5.$ Hence

$$R_Z = \frac{\Gamma(Z \to \text{hadrons})}{\Gamma(Z \to \mu^+ \mu^-)} = \frac{\sum_q \Gamma(Z \to q\bar{q})}{\Gamma(Z \to \mu^+ \mu^-)} = \frac{3\sum_q (a_q^2 + v_q^2)}{a_\mu^2 + v_\mu^2}$$

• Measured cross section is about 5% higher than σ_0 , due to QCD corrections. For massless quarks, corrections to R and R_Z are equal. To $\mathcal{O}(\alpha_S)$ we have:

- R.K.Ellis, Maria Laach, September 2004 -

Real emission diagrams (b):

• Write 3-body phase-space integration as

$$d\Phi_3 = [\ldots] d\alpha \, d\beta \, d\gamma \, dx_1 \, dx_2 \; ,$$

 α,β,γ are Euler angles of 3-parton plane, $x_1=2p_1\cdot q/q^2=2Eq/\sqrt{s},$ $x_2=2p_2\cdot q/q^2=2E\bar{q}/\sqrt{s}.$ • Applying Feynman rules and integrating over Euler angles:

$$\sigma^{q\bar{q}g} = 3\sigma_0 C_F \frac{\alpha_S}{2\pi} \int dx_1 \, dx_2 \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} \, .$$

Integration region: $0 \leq x_1, x_2, x_3 \leq 1$ where $x_3 = 2k \cdot q/q^2 = 2E_g/\sqrt{s} =$ $2 - x_1 - x_2$.

- R.K.Ellis, Maria Laach, September 2004 -

• Integral divergent at $x_{1,2} = 1$:

$$1 - x_1 = \frac{1}{2} x_2 x_3 (1 - \cos \theta_{qg})$$
$$1 - x_2 = \frac{1}{2} x_1 x_3 (1 - \cos \theta_{\bar{q}g})$$

Divergences: collinear when $\theta_{qg} \to 0$ or $\theta_{\bar{q}g} \to 0$; soft when $E_g \to 0$, i.e. $x_3 \to 0$. Singularities are not physical – simply indicate breakdown of PT when energies and/or invariant masses approach QCD scale Λ .

- R.K.Ellis, Maria Laach, September 2004 -

• Collinear and/or soft regions do not in fact make important contribution to R. To see this, make integrals finite using dimensional regularization, $D = 4 - 2\epsilon$. Then

$$\sigma^{q\bar{q}g} = 2\sigma_0 \frac{\alpha_S}{\pi} H(\epsilon)$$

$$\times \int \frac{dx_1 dx_2}{P(x_1, x_2)} \Big[\frac{(1-\epsilon)(x_1^2 + x_2^2) + 2\epsilon(1-x_3)}{[(1-x_1)(1-x_2)]} - 2\epsilon \Big]$$
where $H(\epsilon) = \frac{3(1-\epsilon)(4\pi)^{2\epsilon}}{(3-2\epsilon)\Gamma(2-2\epsilon)} = 1 + \mathcal{O}(\epsilon)$.
and $P(x_1, x_2) = [(1-x_1)(1-x_2)(1-x_3)]^{\epsilon}$

Hence

$$\sigma^{q\bar{q}g} = 2\sigma_0 \frac{\alpha_S}{\pi} H(\epsilon) \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} - \pi^2 + \mathcal{O}(\epsilon) \right] .$$

• Soft and collinear singularities are regulated, appearing instead as poles at D = 4.

- R.K.Ellis, Maria Laach, September 2004 -

• Virtual gluon contributions (a): using dimensional regularization again

$$\sigma^{q\bar{q}} = 3\sigma_0 \left\{ 1 + \frac{2\alpha_S}{3\pi} H(\epsilon) \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \pi^2 + \mathcal{O}(\epsilon) \right] \right\} .$$

• Adding real and virtual contributions, poles cancel and result is finite as $\epsilon \to 0$:

$$R = 3\sum_{q} Q_q^2 \left\{ 1 + \frac{\alpha_S}{\pi} + \mathcal{O}(\alpha_S^2) \right\}.$$

Thus R is an infrared safe quantity.

• Coupling α_S evaluated at renormalization scale μ . UV divergences in R cancel to $\mathcal{O}(\alpha_S)$, so coefficient of α_S independent of μ . At $\mathcal{O}(\alpha_S^2)$ and higher, UV divergences make coefficients renormalization scheme dependent:

$$R = 3 K_{QCD} \sum_{q} Q_q^2,$$

$$K_{QCD} = 1 + \frac{\alpha_S(\mu^2)}{\pi} + \sum_{n \ge 2} C_n \left(\frac{s}{\mu^2}\right) \left(\frac{\alpha_S(\mu^2)}{\pi}\right)^n$$

- R.K.Ellis, Maria Laach, September 2004 -

• In $\overline{\text{MS}}$ scheme with scale $\mu = \sqrt{s}$,

$$\begin{array}{lll} C_2(1) & = & \displaystyle \frac{365}{24} - 11 \zeta(3) - [11 - 8 \zeta(3)] \frac{N_f}{12} \\ \\ & \simeq & 1.986 - 0.115 N_f \end{array}$$

Coefficient C_3 is also known.

• Scale dependence of $C_2, C_3 \ldots$ fixed by requirement that, order-by-order, series should be independent of μ . For example

$$C_2\left(\frac{s}{\mu^2}\right) = C_2(1) - \frac{\beta_0}{4}\log\frac{s}{\mu^2}$$

where $\beta_0 = 4\pi b = 11 - 2N_f/3$.

- Scale and scheme dependence only cancels completely when series is computed to all orders. Scale change at $\mathcal{O}(\alpha_S^n)$ induces changes at $\mathcal{O}(\alpha_S^{n+1})$. The more terms are added, the more stable is prediction with respect to changes in μ .
- R.K.Ellis, Maria Laach, September 2004 -

• Residual scale dependence is an important source of uncertainty in QCD predictions. One can vary scale over some 'physically reasonable' range, e.g. $\sqrt{s}/2 < \mu < 2\sqrt{s}$, to try to quantify this uncertainty, but there is no real substitute for a full higher-order calculation.

- R.K.Ellis, Maria Laach, September 2004 -

Shape distributions

- Shape variables measure some aspect of shape of hadronic final state, e.g. whether it is pencil-like, planar, spherical etc.
- For $d\sigma/dX$ to be calculable in PT, shape variable X should be infrared safe, i.e. insensitive to emission of soft or collinear particles. In particular, X must be invariant under $p_i \rightarrow p_j + p_k$ whenever p_j and p_k are parallel or one of them goes to zero.
- Examples are Thrust and C-parameter:

$$T = \max \frac{\sum_{i} |\mathbf{p}_{i} \cdot \mathbf{n}|}{\sum_{i} |\mathbf{p}_{i}|}$$
$$C = \frac{3}{2} \frac{\sum_{i,j} |\mathbf{p}_{i}| |\mathbf{p}_{j}| \sin^{2} \theta_{ij}}{(\sum_{i} |\mathbf{p}_{i}|)^{2}}$$

After maximization, unit vector n defines *thrust axis*.

• In Born approximation final state is $q\bar{q}$ and 1 - T = C = 0. Non-zero contribution at $\mathcal{O}(\alpha_S)$ comes from $e^+e^- \rightarrow q\bar{q}g$. Recall distribution of $x_i = 2E_i/\sqrt{s}$:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{dx_1 dx_2} = C_F \frac{\alpha_S}{2\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} \,.$$

- R.K.Ellis, Maria Laach, September 2004 -

Distribution of shape variable X is obtained by integrating over x_1 and x_2 with constraint $\delta(X - f_X(x_1, x_2, x_3 = 2 - x_1 - x_2))$, i.e. along contour of constant X in (x_1, x_2) -plane.

For thrust, $f_T = \max\{x_1, x_2, x_3\}$ and we find

$$\frac{1}{\sigma} \frac{d\sigma}{dT} = C_F \frac{\alpha_S}{2\pi} \left[\frac{2(3T^2 - 3T + 2)}{T(1 - T)} \log\left(\frac{2T - 1}{1 - T}\right) - \frac{3(3T - 2)(2 - T)}{(1 - T)} \right].$$

This diverges as $T \to 1$, due to soft and collinear gluon singularities. Virtual gluon contribution is negative and proportional to $\delta(1-T)$, such that correct total cross section is obtained after integrating over $\frac{2}{3} \leq T \leq 1$, the physical region for two- and three-parton final states.

• $\mathcal{O}(\alpha_S^2)$ corrections also known. Comparisons with data provide test of QCD matrix elements, through shape of distribution, and measurement of α_S , from overall rate. Care must be taken near T = 1 where (a) hadronization effects become large, and (b) large higher-order terms of the form $\alpha_S^n \log^{2n-1}(1-T)/(1-T)$ appear in $\mathcal{O}(\alpha_S^n)$.

- R.K.Ellis, Maria Laach, September 2004 -

• Figure shows thrust distribution measured at LEP1 (DELPHI data) compared with theory for vector gluon (solid) or scalar gluon (dashed).

- R.K.Ellis, Maria Laach, September 2004 -

Parton branching

• Leading soft and collinear enhanced terms in QCD matrix elements (and corresponding virtual corrections) can be identified and summed to all orders. Consider splitting of outgoing parton a into b + c.

- Can assume p_b^2 , $p_c^2 \ll p_a^2 \equiv t$. Opening angle is $\theta = \theta_a + \theta_b$, energy fraction is $z = E_b/E_a = 1 E_c/E_a$.
- For small angles

$$t = 2E_b E_c (1 - \cos \theta) = z(1 - z) E_a^2 \theta^2$$

$$\theta = \frac{1}{E_a} \sqrt{\frac{t}{z(1 - z)}} = \frac{\theta_b}{1 - z} = \frac{\theta_c}{z}.$$

- R.K.Ellis, Maria Laach, September 2004 -

$g \rightarrow gg$ branching:

• Amplitude has triple-gluon vertex factor

$$gf^{ABC}\epsilon^{\alpha}_{a}\epsilon^{\beta}_{b}\epsilon^{\gamma}_{c}[g_{\alpha\beta}(p_{a}-p_{b})\gamma+g_{\beta\gamma}(p_{b}-p_{c})\alpha+g_{\gamma\alpha}(p_{c}-p_{a})_{\beta}]$$

 ϵ^{μ}_i is polarization vector for gluon i. All momenta defined as outgoing here, so $p_a=-p_b-p_c$. Using this and $\epsilon_i\cdot p_i=0$, vertex factor becomes

 $-2gf_{abc}[(\epsilon_a\cdot\epsilon_b)(\epsilon_c\cdot p_b) - (\epsilon_b\cdot\epsilon_c)(\epsilon_a\cdot p_b) - (\epsilon_c\cdot\epsilon_a)(\epsilon_b\cdot p_c)] \ .$

- Resolve polarization vectors into $\epsilon_i^{\rm \ in}$ in plane of branching and $\epsilon_i^{\rm \ out}$ normal to plane, so that

$$\begin{aligned} \epsilon_i^{\text{in}} \cdot \epsilon_j^{\text{in}} &= \epsilon_i^{\text{out}} \cdot \epsilon_j^{\text{out}} = -1 \\ \epsilon_i^{\text{in}} \cdot \epsilon_j^{\text{out}} &= \epsilon_i^{\text{out}} \cdot p_j = 0 . \end{aligned}$$

- R.K.Ellis, Maria Laach, September 2004 -

• For small θ , neglecting terms of order θ^2 , we have

$$\begin{split} \epsilon_a^{\ \ \text{in}} \cdot p_b &= -E_b \theta_b = -z(1-z)E_a \theta \\ \epsilon_b^{\ \ \text{in}} \cdot p_c &= +E_c \theta = (1-z)E_a \theta \\ \epsilon_c^{\ \ \text{in}} \cdot p_b &= -E_b \theta = -zE_a \theta \;. \end{split}$$

- Vertex factor proportional to θ , together with propagator factor of $1/t \propto 1/\theta^2$, gives $1/\theta$ collinear singularity in amplitude.
- (n+1)-parton matrix element squared (in small-angle region) is given in terms of that for

- R.K.Ellis, Maria Laach, September 2004 -

n partons:

$$|\mathcal{M}_{n+1}|^2 \sim \frac{4g^2}{t} C_A F(z;\epsilon_a,\epsilon_b,\epsilon_c) |\mathcal{M}_n|^2$$

where colour factor $C_{A}=3$ comes from $f^{ABC}f^{ABC}$ and functions ${\cal F}$ are given below

ϵ_a	ϵ_b	ϵ_{C}	$F(z;\epsilon_a,\epsilon_b,\epsilon_c)$
in	in	in	(1-z)/z + z/(1-z) + z(1-z)
in	out	out	z(1-z)
out	in	out	(1-z)/z
out	out	in	z/(1-z)

• Sum/averaging over polarizations gives

$$C_A \langle F \rangle \equiv \hat{P}_{gg}(z) = C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right] .$$

This is (unregularized) gluon splitting function.

- Enhancements at $z \to 0$ (b soft) and $z \to 1$ (c soft) due to soft gluon polarized in plane of branching.
- Correlation between polarization and plane of branching (angle ϕ):

$$F_{\phi} \propto \sum_{\epsilon_{b,c}} |\cos\phi \mathcal{M}(\epsilon_a^{\text{in}}, \epsilon_b, \epsilon_c) + \sin\phi \mathcal{M}(\epsilon_a^{\text{out}}, \epsilon_b, \epsilon_c)|^2$$

- R.K.Ellis, Maria Laach, September 2004 -

$$= \frac{1-z}{z} + \frac{z}{1-z} + z(1-z) + z(1-z)\cos 2\phi \; .$$

Hence branching in plane of gluon polarization preferred.

- Consider next $g \rightarrow q\bar{q}$ branching:
 - Vertex factor is

$$-ig\bar{u}^b\gamma_\mu\epsilon^\mu_a v^c$$

where \boldsymbol{u}^{b} and \boldsymbol{v}^{c} are quark and antiquark spinors.

• Spin-averaged splitting function is

$$T_R \left\langle F \right\rangle \equiv \hat{P}_{qg}(z) = T_R \left[z^2 + \left(1 - z \right)^2 \right] \,.$$

No soft $(z \rightarrow 0 \text{ or } 1)$ singularities since these are associated only with gluon emission.

- Vector quark-gluon coupling implies (for $mq \simeq 0$) q and \bar{q} helicities always opposite (helicity conservation).
- Correlation between gluon polarization and plane of branching:

$$F_{\phi} = z^2 + (1-z)^2 - 2z(1-z)\cos 2\phi$$

i.e. strong preference for splitting perpendicular to polarization.

• Branching $q \rightarrow qg$:

- R.K.Ellis, Maria Laach, September 2004 -

• Spin-averaged splitting function is

$$C_F\left< F \right> \equiv \hat{P}_{qq}(z) = C_F \frac{1+z^2}{1-z} \; . \label{eq:cf}$$

- Helicity conservation ensures that quark does not change helicity in branching.
- Gluon polarized in plane of branching preferred, polarization angular correlation being

$$F_{\phi} = \frac{1+z^2}{1-z} + \frac{2z}{1-z}\cos 2\phi$$
.

- R.K.Ellis, Maria Laach, September 2004 -

Phase space

Phase space factors before and after branching are related by

$$d\Phi_{n+1} = d\Phi_n \frac{1}{4(2\pi)^3} dt \, dz \, d\phi$$
.

• Hence cross sections before and after branching are related by

$$d\sigma_{n+1} = d\sigma_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_S}{2\pi} CF$$

where C and F are colour factor and polarization-dependent $z\mbox{-distribution}$ introduced earlier. Integrating over azimuthal angle gives

$$d\sigma_{n+1} = d\sigma_n \frac{dt}{t} dz \frac{\alpha_S}{2\pi} \hat{P}_{ba}(z) \; .$$

where $\hat{P}_{ba}(z)$ is $a \rightarrow b$ splitting function.

- R.K.Ellis, Maria Laach, September 2004 -

4-jets angular distribution

• Angular correlations are illustrated by the angular distribution in $e^+e^- \rightarrow 4$ jets. Bengtsson-Zerwas angle χ_{BZ} is angle between the planes of two lowest and two highest energy jets:

- R.K.Ellis, Maria Laach, September 2004 -

• Lowest-order diagrams for 4-jet production shown below. Two hardest jets tend to follow directions of primary $q\bar{q}$.

- "Double bremsstrahlung" diagrams give negligible correlations.
- $g \rightarrow q\bar{q}$ give strong anti-correlation ("Abelian" curve), because gluon tends to be polarized in plane of primary jets and prefers to split perpendicular to polarization.
- $g \rightarrow gg$ occurs more often parallel to polarization. Although its correlation is much weaker than in $g \rightarrow q\bar{q}$, $g \rightarrow gg$ is dominant in QCD due to larger colour factor and soft gluon enhancements.
- Thus B-Z angular distribution is flatter than in an Abelian theory.

- R.K.Ellis, Maria Laach, September 2004 -

Recap

- Asymptotic freedom implies that IR-safe quantities can be calculated in perturbation theory.
- Residual scale dependence is formally small, and often also small in practice.
- Shape distributions, (such as Thrust) can be used to measure α_s .
- In the leading approximation the emission of collinear/soft radiation is described by a splitting function.

- R.K.Ellis, Maria Laach, September 2004 -