Actual source code: mumps.c

  1: #define PETSCMAT_DLL

  3: /* 
  4:     Provides an interface to the MUMPS sparse solver
  5: */
 6:  #include ../src/mat/impls/aij/seq/aij.h
 7:  #include ../src/mat/impls/aij/mpi/mpiaij.h
 8:  #include ../src/mat/impls/sbaij/seq/sbaij.h
 9:  #include ../src/mat/impls/sbaij/mpi/mpisbaij.h

 12: #if defined(PETSC_USE_COMPLEX)
 13: #include "zmumps_c.h"
 14: #else
 15: #include "dmumps_c.h" 
 16: #endif
 18: #define JOB_INIT -1
 19: #define JOB_END -2
 20: /* macros s.t. indices match MUMPS documentation */
 21: #define ICNTL(I) icntl[(I)-1] 
 22: #define CNTL(I) cntl[(I)-1] 
 23: #define INFOG(I) infog[(I)-1]
 24: #define INFO(I) info[(I)-1]
 25: #define RINFOG(I) rinfog[(I)-1]
 26: #define RINFO(I) rinfo[(I)-1]

 28: typedef struct {
 29: #if defined(PETSC_USE_COMPLEX)
 30:   ZMUMPS_STRUC_C id;
 31: #else
 32:   DMUMPS_STRUC_C id;
 33: #endif
 34:   MatStructure   matstruc;
 35:   PetscMPIInt    myid,size;
 36:   PetscInt       *irn,*jcn,sym,nSolve;
 37:   PetscScalar    *val;
 38:   MPI_Comm       comm_mumps;
 39:   VecScatter     scat_rhs, scat_sol;
 40:   PetscTruth     isAIJ,CleanUpMUMPS;
 41:   Vec            b_seq,x_seq;
 42:   PetscErrorCode (*MatDestroy)(Mat);
 43: } Mat_MUMPS;

 45: EXTERN PetscErrorCode MatDuplicate_MUMPS(Mat,MatDuplicateOption,Mat*);

 47: /* convert Petsc mpiaij matrix to triples: row[nz], col[nz], val[nz] */
 48: /*
 49:   input: 
 50:     A       - matrix in mpiaij or mpisbaij (bs=1) format
 51:     shift   - 0: C style output triple; 1: Fortran style output triple.
 52:     valOnly - FALSE: spaces are allocated and values are set for the triple  
 53:               TRUE:  only the values in v array are updated
 54:   output:     
 55:     nnz     - dim of r, c, and v (number of local nonzero entries of A)
 56:     r, c, v - row and col index, matrix values (matrix triples) 
 57:  */
 58: PetscErrorCode MatConvertToTriples(Mat A,int shift,PetscTruth valOnly,int *nnz,int **r, int **c, PetscScalar **v)
 59: {
 60:   PetscInt       *ai, *aj, *bi, *bj, rstart,nz, *garray;
 62:   PetscInt       i,j,jj,jB,irow,m=A->rmap->n,*ajj,*bjj,countA,countB,colA_start,jcol;
 63:   PetscInt       *row,*col;
 64:   PetscScalar    *av, *bv,*val;
 65:   PetscTruth     isAIJ;

 68:   PetscTypeCompare((PetscObject)A,MATMPIAIJ,&isAIJ);
 69:   if (isAIJ){
 70:     Mat_MPIAIJ    *mat =  (Mat_MPIAIJ*)A->data;
 71:     Mat_SeqAIJ    *aa=(Mat_SeqAIJ*)(mat->A)->data;
 72:     Mat_SeqAIJ    *bb=(Mat_SeqAIJ*)(mat->B)->data;
 73:     nz = aa->nz + bb->nz;
 74:     ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
 75:     garray = mat->garray;
 76:     av=aa->a; bv=bb->a;
 77: 
 78:   } else {
 79:     Mat_MPISBAIJ  *mat =  (Mat_MPISBAIJ*)A->data;
 80:     Mat_SeqSBAIJ  *aa=(Mat_SeqSBAIJ*)(mat->A)->data;
 81:     Mat_SeqBAIJ    *bb=(Mat_SeqBAIJ*)(mat->B)->data;
 82:     if (A->rmap->bs > 1) SETERRQ1(PETSC_ERR_SUP," bs=%d is not supported yet\n", A->rmap->bs);
 83:     nz = aa->nz + bb->nz;
 84:     ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
 85:     garray = mat->garray;
 86:     av=aa->a; bv=bb->a;
 87:   }

 89:   if (!valOnly){
 90:     PetscMalloc(nz*sizeof(PetscInt) ,&row);
 91:     PetscMalloc(nz*sizeof(PetscInt),&col);
 92:     PetscMalloc(nz*sizeof(PetscScalar),&val);
 93:     *r = row; *c = col; *v = val;
 94:   } else {
 95:     row = *r; col = *c; val = *v;
 96:   }
 97:   *nnz = nz;

 99:   jj = 0; irow = rstart;
100:   for ( i=0; i<m; i++ ) {
101:     ajj = aj + ai[i];                 /* ptr to the beginning of this row */
102:     countA = ai[i+1] - ai[i];
103:     countB = bi[i+1] - bi[i];
104:     bjj = bj + bi[i];

106:     /* get jB, the starting local col index for the 2nd B-part */
107:     colA_start = rstart + ajj[0]; /* the smallest col index for A */
108:     j=-1;
109:     do {
110:       j++;
111:       if (j == countB) break;
112:       jcol = garray[bjj[j]];
113:     } while (jcol < colA_start);
114:     jB = j;
115: 
116:     /* B-part, smaller col index */
117:     colA_start = rstart + ajj[0]; /* the smallest col index for A */
118:     for (j=0; j<jB; j++){
119:       jcol = garray[bjj[j]];
120:       if (!valOnly){
121:         row[jj] = irow + shift; col[jj] = jcol + shift;

123:       }
124:       val[jj++] = *bv++;
125:     }
126:     /* A-part */
127:     for (j=0; j<countA; j++){
128:       if (!valOnly){
129:         row[jj] = irow + shift; col[jj] = rstart + ajj[j] + shift;
130:       }
131:       val[jj++] = *av++;
132:     }
133:     /* B-part, larger col index */
134:     for (j=jB; j<countB; j++){
135:       if (!valOnly){
136:         row[jj] = irow + shift; col[jj] = garray[bjj[j]] + shift;
137:       }
138:       val[jj++] = *bv++;
139:     }
140:     irow++;
141:   }
142: 
143:   return(0);
144: }

148: PetscErrorCode MatDestroy_MUMPS(Mat A)
149: {
150:   Mat_MUMPS      *lu=(Mat_MUMPS*)A->spptr;
152:   PetscMPIInt    size=lu->size;

155:   if (lu->CleanUpMUMPS) {
156:     /* Terminate instance, deallocate memories */
157:     if (size > 1){
158:       PetscFree(lu->id.sol_loc);
159:       VecScatterDestroy(lu->scat_rhs);
160:       VecDestroy(lu->b_seq);
161:       if (lu->nSolve && lu->scat_sol){VecScatterDestroy(lu->scat_sol);}
162:       if (lu->nSolve && lu->x_seq){VecDestroy(lu->x_seq);}
163:       PetscFree(lu->val);
164:     }
165:     lu->id.job=JOB_END;
166: #if defined(PETSC_USE_COMPLEX)
167:     zmumps_c(&lu->id);
168: #else
169:     dmumps_c(&lu->id);
170: #endif
171:     PetscFree(lu->irn);
172:     PetscFree(lu->jcn);
173:     MPI_Comm_free(&(lu->comm_mumps));
174:   }
175:   (lu->MatDestroy)(A);
176:   return(0);
177: }

181: PetscErrorCode MatSolve_MUMPS(Mat A,Vec b,Vec x)
182: {
183:   Mat_MUMPS      *lu=(Mat_MUMPS*)A->spptr;
184:   PetscScalar    *array;
185:   Vec            x_seq;
186:   IS             is_iden,is_petsc;
188:   PetscInt       i;

191:   lu->id.nrhs = 1;
192:   x_seq = lu->b_seq;
193:   if (lu->size > 1){
194:     /* MUMPS only supports centralized rhs. Scatter b into a seqential rhs vector */
195:     VecScatterBegin(lu->scat_rhs,b,x_seq,INSERT_VALUES,SCATTER_FORWARD);
196:     VecScatterEnd(lu->scat_rhs,b,x_seq,INSERT_VALUES,SCATTER_FORWARD);
197:     if (!lu->myid) {VecGetArray(x_seq,&array);}
198:   } else {  /* size == 1 */
199:     VecCopy(b,x);
200:     VecGetArray(x,&array);
201:   }
202:   if (!lu->myid) { /* define rhs on the host */
203: #if defined(PETSC_USE_COMPLEX)
204:     lu->id.rhs = (mumps_double_complex*)array;
205: #else
206:     lu->id.rhs = array;
207: #endif
208:   }
209:   if (lu->size == 1){
210:     VecRestoreArray(x,&array);
211:   } else if (!lu->myid){
212:     VecRestoreArray(x_seq,&array);
213:   }

215:   if (lu->size > 1){
216:     /* distributed solution */
217:     lu->id.ICNTL(21) = 1;
218:     if (!lu->nSolve){
219:       /* Create x_seq=sol_loc for repeated use */
220:       PetscInt    lsol_loc;
221:       PetscScalar *sol_loc;
222:       lsol_loc = lu->id.INFO(23); /* length of sol_loc */
223:       PetscMalloc((1+lsol_loc)*(sizeof(PetscScalar)+sizeof(PetscInt)),&sol_loc);
224:       lu->id.isol_loc = (PetscInt *)(sol_loc + lsol_loc);
225:       lu->id.lsol_loc = lsol_loc;
226: #if defined(PETSC_USE_COMPLEX)
227:       lu->id.sol_loc  = (mumps_double_complex*)sol_loc;
228: #else
229:       lu->id.sol_loc  = sol_loc;
230: #endif
231:       VecCreateSeqWithArray(PETSC_COMM_SELF,lsol_loc,sol_loc,&lu->x_seq);
232:     }
233:   }

235:   /* solve phase */
236:   /*-------------*/
237:   lu->id.job = 3;
238: #if defined(PETSC_USE_COMPLEX)
239:   zmumps_c(&lu->id);
240: #else
241:   dmumps_c(&lu->id);
242: #endif
243:   if (lu->id.INFOG(1) < 0) {
244:     SETERRQ1(PETSC_ERR_LIB,"Error reported by MUMPS in solve phase: INFOG(1)=%d\n",lu->id.INFOG(1));
245:   }

247:   if (lu->size > 1) { /* convert mumps distributed solution to petsc mpi x */
248:     if (!lu->nSolve){ /* create scatter scat_sol */
249:       ISCreateStride(PETSC_COMM_SELF,lu->id.lsol_loc,0,1,&is_iden); /* from */
250:       for (i=0; i<lu->id.lsol_loc; i++){
251:         lu->id.isol_loc[i] -= 1; /* change Fortran style to C style */
252:       }
253:       ISCreateGeneral(PETSC_COMM_SELF,lu->id.lsol_loc,lu->id.isol_loc,&is_petsc);  /* to */
254:       VecScatterCreate(lu->x_seq,is_iden,x,is_petsc,&lu->scat_sol);
255:       ISDestroy(is_iden);
256:       ISDestroy(is_petsc);
257:     }
258:     VecScatterBegin(lu->scat_sol,lu->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
259:     VecScatterEnd(lu->scat_sol,lu->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
260:   }
261:   lu->nSolve++;
262:   return(0);
263: }

265: #if !defined(PETSC_USE_COMPLEX)
266: /* 
267:   input:
268:    F:        numeric factor
269:   output:
270:    nneg:     total number of negative pivots
271:    nzero:    0
272:    npos:     (global dimension of F) - nneg
273: */

277: PetscErrorCode MatGetInertia_SBAIJMUMPS(Mat F,int *nneg,int *nzero,int *npos)
278: {
279:   Mat_MUMPS      *lu =(Mat_MUMPS*)F->spptr;
281:   PetscMPIInt    size;

284:   MPI_Comm_size(((PetscObject)F)->comm,&size);
285:   /* MUMPS 4.3.1 calls ScaLAPACK when ICNTL(13)=0 (default), which does not offer the possibility to compute the inertia of a dense matrix. Set ICNTL(13)=1 to skip ScaLAPACK */
286:   if (size > 1 && lu->id.ICNTL(13) != 1){
287:     SETERRQ1(PETSC_ERR_ARG_WRONG,"ICNTL(13)=%d. -mat_mumps_icntl_13 must be set as 1 for correct global matrix inertia\n",lu->id.INFOG(13));
288:   }
289:   if (nneg){
290:     if (!lu->myid){
291:       *nneg = lu->id.INFOG(12);
292:     }
293:     MPI_Bcast(nneg,1,MPI_INT,0,lu->comm_mumps);
294:   }
295:   if (nzero) *nzero = 0;
296:   if (npos)  *npos  = F->rmap->N - (*nneg);
297:   return(0);
298: }
299: #endif /* !defined(PETSC_USE_COMPLEX) */

303: PetscErrorCode MatFactorNumeric_MUMPS(Mat F,Mat A,const MatFactorInfo *info)
304: {
305:   Mat_MUMPS      *lu =(Mat_MUMPS*)(F)->spptr;
307:   PetscInt       rnz,nnz,nz=0,i,M=A->rmap->N,*ai,*aj,icntl;
308:   PetscTruth     valOnly,flg;
309:   Mat            F_diag;
310:   IS             is_iden;
311:   Vec            b;
312:   PetscTruth     isSeqAIJ,isSeqSBAIJ;

315:   PetscTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);
316:   PetscTypeCompare((PetscObject)A,MATSEQSBAIJ,&isSeqSBAIJ);
317:   if (lu->matstruc == DIFFERENT_NONZERO_PATTERN){
318:     (F)->ops->solve   = MatSolve_MUMPS;

320:     /* Initialize a MUMPS instance */
321:     MPI_Comm_rank(((PetscObject)A)->comm, &lu->myid);
322:     MPI_Comm_size(((PetscObject)A)->comm,&lu->size);
323:     lu->id.job = JOB_INIT;
324:     MPI_Comm_dup(((PetscObject)A)->comm,&(lu->comm_mumps));
325:     lu->id.comm_fortran = MPI_Comm_c2f(lu->comm_mumps);

327:     /* Set mumps options */
328:     PetscOptionsBegin(((PetscObject)A)->comm,((PetscObject)A)->prefix,"MUMPS Options","Mat");
329:     lu->id.par=1;  /* host participates factorizaton and solve */
330:     lu->id.sym=lu->sym;
331:     if (lu->sym == 2){
332:       PetscOptionsInt("-mat_mumps_sym","SYM: (1,2)","None",lu->id.sym,&icntl,&flg);
333:       if (flg && icntl == 1) lu->id.sym=icntl;  /* matrix is spd */
334:     }
335: #if defined(PETSC_USE_COMPLEX)
336:     zmumps_c(&lu->id);
337: #else
338:     dmumps_c(&lu->id);
339: #endif
340: 
341:     if (isSeqAIJ || isSeqSBAIJ){
342:       lu->id.ICNTL(18) = 0;   /* centralized assembled matrix input */
343:     } else {
344:       lu->id.ICNTL(18) = 3;   /* distributed assembled matrix input */
345:     }

347:     icntl=-1;
348:     lu->id.ICNTL(4) = 0;  /* level of printing; overwrite mumps default ICNTL(4)=2 */
349:     PetscOptionsInt("-mat_mumps_icntl_4","ICNTL(4): level of printing (0 to 4)","None",lu->id.ICNTL(4),&icntl,&flg);
350:     if ((flg && icntl > 0) || PetscLogPrintInfo) {
351:       lu->id.ICNTL(4)=icntl; /* and use mumps default icntl(i), i=1,2,3 */
352:     } else { /* no output */
353:       lu->id.ICNTL(1) = 0;  /* error message, default= 6 */
354:       lu->id.ICNTL(2) = 0;  /* output stream for diagnostic printing, statistics, and warning. default=0 */
355:       lu->id.ICNTL(3) = 0; /* output stream for global information, default=6 */
356:     }
357:     PetscOptionsInt("-mat_mumps_icntl_6","ICNTL(6): column permutation and/or scaling to get a zero-free diagonal (0 to 7)","None",lu->id.ICNTL(6),&lu->id.ICNTL(6),PETSC_NULL);
358:     icntl=-1;
359:     PetscOptionsInt("-mat_mumps_icntl_7","ICNTL(7): matrix ordering (0 to 7)","None",lu->id.ICNTL(7),&icntl,&flg);
360:     if (flg) {
361:       if (icntl== 1){
362:         SETERRQ(PETSC_ERR_SUP,"pivot order be set by the user in PERM_IN -- not supported by the PETSc/MUMPS interface\n");
363:       } else {
364:         lu->id.ICNTL(7) = icntl;
365:       }
366:     }
367:     PetscOptionsInt("-mat_mumps_icntl_8","ICNTL(8): scaling strategy (-2 to 7 or 77)","None",lu->id.ICNTL(8),&lu->id.ICNTL(8),PETSC_NULL);
368:     PetscOptionsInt("-mat_mumps_icntl_9","ICNTL(9): A or A^T x=b to be solved. 1: A; otherwise: A^T","None",lu->id.ICNTL(9),&lu->id.ICNTL(9),PETSC_NULL);
369:     PetscOptionsInt("-mat_mumps_icntl_10","ICNTL(10): max num of refinements","None",lu->id.ICNTL(10),&lu->id.ICNTL(10),PETSC_NULL);
370:     PetscOptionsInt("-mat_mumps_icntl_11","ICNTL(11): statistics related to the linear system solved (via -ksp_view)","None",lu->id.ICNTL(11),&lu->id.ICNTL(11),PETSC_NULL);
371:     PetscOptionsInt("-mat_mumps_icntl_12","ICNTL(12): efficiency control: defines the ordering strategy with scaling constraints (0 to 3","None",lu->id.ICNTL(12),&lu->id.ICNTL(12),PETSC_NULL);
372:     PetscOptionsInt("-mat_mumps_icntl_13","ICNTL(13): efficiency control: with or without ScaLAPACK","None",lu->id.ICNTL(13),&lu->id.ICNTL(13),PETSC_NULL);
373:     PetscOptionsInt("-mat_mumps_icntl_14","ICNTL(14): percentage of estimated workspace increase","None",lu->id.ICNTL(14),&lu->id.ICNTL(14),PETSC_NULL);
374:     PetscOptionsInt("-mat_mumps_icntl_19","ICNTL(19): Schur complement","None",lu->id.ICNTL(19),&lu->id.ICNTL(19),PETSC_NULL);

376:     PetscOptionsInt("-mat_mumps_icntl_22","ICNTL(22): in-core/out-of-core facility (0 or 1)","None",lu->id.ICNTL(22),&lu->id.ICNTL(22),PETSC_NULL);
377:     PetscOptionsInt("-mat_mumps_icntl_23","ICNTL(23): max size of the working memory (MB) that can allocate per processor","None",lu->id.ICNTL(23),&lu->id.ICNTL(23),PETSC_NULL);
378:     PetscOptionsInt("-mat_mumps_icntl_24","ICNTL(24): detection of null pivot rows (0 or 1)","None",lu->id.ICNTL(24),&lu->id.ICNTL(24),PETSC_NULL);
379:     PetscOptionsInt("-mat_mumps_icntl_25","ICNTL(25): computation of a null space basis","None",lu->id.ICNTL(25),&lu->id.ICNTL(25),PETSC_NULL);
380:     PetscOptionsInt("-mat_mumps_icntl_26","ICNTL(26): Schur options for right-hand side or solution vector","None",lu->id.ICNTL(26),&lu->id.ICNTL(26),PETSC_NULL);
381:     PetscOptionsInt("-mat_mumps_icntl_27","ICNTL(27): experimental parameter","None",lu->id.ICNTL(27),&lu->id.ICNTL(27),PETSC_NULL);

383:     PetscOptionsReal("-mat_mumps_cntl_1","CNTL(1): relative pivoting threshold","None",lu->id.CNTL(1),&lu->id.CNTL(1),PETSC_NULL);
384:     PetscOptionsReal("-mat_mumps_cntl_2","CNTL(2): stopping criterion of refinement","None",lu->id.CNTL(2),&lu->id.CNTL(2),PETSC_NULL);
385:     PetscOptionsReal("-mat_mumps_cntl_3","CNTL(3): absolute pivoting threshold","None",lu->id.CNTL(3),&lu->id.CNTL(3),PETSC_NULL);
386:     PetscOptionsReal("-mat_mumps_cntl_4","CNTL(4): value for static pivoting","None",lu->id.CNTL(4),&lu->id.CNTL(4),PETSC_NULL);
387:     PetscOptionsReal("-mat_mumps_cntl_5","CNTL(5): fixation for null pivots","None",lu->id.CNTL(5),&lu->id.CNTL(5),PETSC_NULL);
388:     PetscOptionsEnd();
389:   }

391:   /* define matrix A */
392:   switch (lu->id.ICNTL(18)){
393:   case 0:  /* centralized assembled matrix input (size=1) */
394:     if (!lu->myid) {
395:       if (isSeqAIJ){
396:         Mat_SeqAIJ   *aa = (Mat_SeqAIJ*)A->data;
397:         nz               = aa->nz;
398:         ai = aa->i; aj = aa->j; lu->val = aa->a;
399:       } else if (isSeqSBAIJ) {
400:         Mat_SeqSBAIJ *aa = (Mat_SeqSBAIJ*)A->data;
401:         nz                  =  aa->nz;
402:         ai = aa->i; aj = aa->j; lu->val = aa->a;
403:       } else {
404:         SETERRQ(PETSC_ERR_SUP,"No mumps factorization for this matrix type");
405:       }
406:       if (lu->matstruc == DIFFERENT_NONZERO_PATTERN){ /* first numeric factorization, get irn and jcn */
407:         PetscMalloc(nz*sizeof(PetscInt),&lu->irn);
408:         PetscMalloc(nz*sizeof(PetscInt),&lu->jcn);
409:         nz = 0;
410:         for (i=0; i<M; i++){
411:           rnz = ai[i+1] - ai[i];
412:           while (rnz--) {  /* Fortran row/col index! */
413:             lu->irn[nz] = i+1; lu->jcn[nz] = (*aj)+1; aj++; nz++;
414:           }
415:         }
416:       }
417:     }
418:     break;
419:   case 3:  /* distributed assembled matrix input (size>1) */
420:     if (lu->matstruc == DIFFERENT_NONZERO_PATTERN){
421:       valOnly = PETSC_FALSE;
422:     } else {
423:       valOnly = PETSC_TRUE; /* only update mat values, not row and col index */
424:     }
425:     MatConvertToTriples(A,1,valOnly, &nnz, &lu->irn, &lu->jcn, &lu->val);
426:     break;
427:   default: SETERRQ(PETSC_ERR_SUP,"Matrix input format is not supported by MUMPS.");
428:   }

430:   /* analysis phase */
431:   /*----------------*/
432:   if (lu->matstruc == DIFFERENT_NONZERO_PATTERN){
433:     lu->id.job = 1;

435:     lu->id.n = M;
436:     switch (lu->id.ICNTL(18)){
437:     case 0:  /* centralized assembled matrix input */
438:       if (!lu->myid) {
439:         lu->id.nz =nz; lu->id.irn=lu->irn; lu->id.jcn=lu->jcn;
440:         if (lu->id.ICNTL(6)>1){
441: #if defined(PETSC_USE_COMPLEX)
442:           lu->id.a = (mumps_double_complex*)lu->val;
443: #else
444:           lu->id.a = lu->val;
445: #endif
446:         }
447:       }
448:       break;
449:     case 3:  /* distributed assembled matrix input (size>1) */
450:       lu->id.nz_loc = nnz;
451:       lu->id.irn_loc=lu->irn; lu->id.jcn_loc=lu->jcn;
452:       if (lu->id.ICNTL(6)>1) {
453: #if defined(PETSC_USE_COMPLEX)
454:         lu->id.a_loc = (mumps_double_complex*)lu->val;
455: #else
456:         lu->id.a_loc = lu->val;
457: #endif
458:       }
459:       /* MUMPS only supports centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
460:       if (!lu->myid){
461:         VecCreateSeq(PETSC_COMM_SELF,A->cmap->N,&lu->b_seq);
462:         ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,&is_iden);
463:       } else {
464:         VecCreateSeq(PETSC_COMM_SELF,0,&lu->b_seq);
465:         ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_iden);
466:       }
467:       VecCreate(((PetscObject)A)->comm,&b);
468:       VecSetSizes(b,A->rmap->n,PETSC_DECIDE);
469:       VecSetFromOptions(b);

471:       VecScatterCreate(b,is_iden,lu->b_seq,is_iden,&lu->scat_rhs);
472:       ISDestroy(is_iden);
473:       VecDestroy(b);
474:       break;
475:     }
476: #if defined(PETSC_USE_COMPLEX)
477:     zmumps_c(&lu->id);
478: #else
479:     dmumps_c(&lu->id);
480: #endif
481:     if (lu->id.INFOG(1) < 0) {
482:       SETERRQ1(PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d\n",lu->id.INFOG(1));
483:     }
484:   }

486:   /* numerical factorization phase */
487:   /*-------------------------------*/
488:   lu->id.job = 2;
489:   if(!lu->id.ICNTL(18)) {
490:     if (!lu->myid) {
491: #if defined(PETSC_USE_COMPLEX)
492:       lu->id.a = (mumps_double_complex*)lu->val;
493: #else
494:       lu->id.a = lu->val;
495: #endif
496:     }
497:   } else {
498: #if defined(PETSC_USE_COMPLEX)
499:     lu->id.a_loc = (mumps_double_complex*)lu->val;
500: #else
501:     lu->id.a_loc = lu->val;
502: #endif
503:   }
504: #if defined(PETSC_USE_COMPLEX)
505:   zmumps_c(&lu->id);
506: #else
507:   dmumps_c(&lu->id);
508: #endif
509:   if (lu->id.INFOG(1) < 0) {
510:     if (lu->id.INFO(1) == -13) {
511:       SETERRQ1(PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: Cannot allocate required memory %d megabytes\n",lu->id.INFO(2));
512:     } else {
513:       SETERRQ2(PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: INFO(1)=%d, INFO(2)=%d\n",lu->id.INFO(1),lu->id.INFO(2));
514:     }
515:   }

517:   if (!lu->myid && lu->id.ICNTL(16) > 0){
518:     SETERRQ1(PETSC_ERR_LIB,"  lu->id.ICNTL(16):=%d\n",lu->id.INFOG(16));
519:   }

521:   if (lu->size > 1){
522:     if ((F)->factor == MAT_FACTOR_LU){
523:       F_diag = ((Mat_MPIAIJ *)(F)->data)->A;
524:     } else {
525:       F_diag = ((Mat_MPISBAIJ *)(F)->data)->A;
526:     }
527:     F_diag->assembled = PETSC_TRUE;
528:     if (lu->nSolve){
529:       VecScatterDestroy(lu->scat_sol);
530:       PetscFree(lu->id.sol_loc);
531:       VecDestroy(lu->x_seq);
532:     }
533:   }
534:   (F)->assembled   = PETSC_TRUE;
535:   lu->matstruc      = SAME_NONZERO_PATTERN;
536:   lu->CleanUpMUMPS  = PETSC_TRUE;
537:   lu->nSolve        = 0;
538:   return(0);
539: }


542: /* Note the Petsc r and c permutations are ignored */
545: PetscErrorCode MatLUFactorSymbolic_AIJMUMPS(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
546: {
547:   Mat_MUMPS      *lu = (Mat_MUMPS*)F->spptr;

550:   lu->sym                  = 0;
551:   lu->matstruc             = DIFFERENT_NONZERO_PATTERN;
552:   F->ops->lufactornumeric  = MatFactorNumeric_MUMPS;
553:   return(0);
554: }


557: /* Note the Petsc r permutation is ignored */
560: PetscErrorCode MatCholeskyFactorSymbolic_SBAIJMUMPS(Mat F,Mat A,IS r,const MatFactorInfo *info)
561: {
562:   Mat_MUMPS      *lu = (Mat_MUMPS*)(F)->spptr;

565:   lu->sym                          = 2;
566:   lu->matstruc                     = DIFFERENT_NONZERO_PATTERN;
567:   (F)->ops->choleskyfactornumeric = MatFactorNumeric_MUMPS;
568: #if !defined(PETSC_USE_COMPLEX)
569:   (F)->ops->getinertia            = MatGetInertia_SBAIJMUMPS;
570: #endif
571:   return(0);
572: }

576: PetscErrorCode MatFactorInfo_MUMPS(Mat A,PetscViewer viewer) {
577:   Mat_MUMPS      *lu=(Mat_MUMPS*)A->spptr;

581:   /* check if matrix is mumps type */
582:   if (A->ops->solve != MatSolve_MUMPS) return(0);

584:   PetscViewerASCIIPrintf(viewer,"MUMPS run parameters:\n");
585:   PetscViewerASCIIPrintf(viewer,"  SYM (matrix type):                  %d \n",lu->id.sym);
586:   PetscViewerASCIIPrintf(viewer,"  PAR (host participation):           %d \n",lu->id.par);
587:   PetscViewerASCIIPrintf(viewer,"  ICNTL(1) (output for error):        %d \n",lu->id.ICNTL(1));
588:   PetscViewerASCIIPrintf(viewer,"  ICNTL(2) (output of diagnostic msg):%d \n",lu->id.ICNTL(2));
589:   PetscViewerASCIIPrintf(viewer,"  ICNTL(3) (output for global info):  %d \n",lu->id.ICNTL(3));
590:   PetscViewerASCIIPrintf(viewer,"  ICNTL(4) (level of printing):       %d \n",lu->id.ICNTL(4));
591:   PetscViewerASCIIPrintf(viewer,"  ICNTL(5) (input mat struct):        %d \n",lu->id.ICNTL(5));
592:   PetscViewerASCIIPrintf(viewer,"  ICNTL(6) (matrix prescaling):       %d \n",lu->id.ICNTL(6));
593:   PetscViewerASCIIPrintf(viewer,"  ICNTL(7) (matrix ordering):         %d \n",lu->id.ICNTL(7));
594:   PetscViewerASCIIPrintf(viewer,"  ICNTL(8) (scalling strategy):       %d \n",lu->id.ICNTL(8));
595:   PetscViewerASCIIPrintf(viewer,"  ICNTL(9) (A/A^T x=b is solved):     %d \n",lu->id.ICNTL(9));
596:   PetscViewerASCIIPrintf(viewer,"  ICNTL(10) (max num of refinements): %d \n",lu->id.ICNTL(10));
597:   PetscViewerASCIIPrintf(viewer,"  ICNTL(11) (error analysis):         %d \n",lu->id.ICNTL(11));
598:   if (!lu->myid && lu->id.ICNTL(11)>0) {
599:     PetscPrintf(PETSC_COMM_SELF,"        RINFOG(4) (inf norm of input mat):        %g\n",lu->id.RINFOG(4));
600:     PetscPrintf(PETSC_COMM_SELF,"        RINFOG(5) (inf norm of solution):         %g\n",lu->id.RINFOG(5));
601:     PetscPrintf(PETSC_COMM_SELF,"        RINFOG(6) (inf norm of residual):         %g\n",lu->id.RINFOG(6));
602:     PetscPrintf(PETSC_COMM_SELF,"        RINFOG(7),RINFOG(8) (backward error est): %g, %g\n",lu->id.RINFOG(7),lu->id.RINFOG(8));
603:     PetscPrintf(PETSC_COMM_SELF,"        RINFOG(9) (error estimate):               %g \n",lu->id.RINFOG(9));
604:     PetscPrintf(PETSC_COMM_SELF,"        RINFOG(10),RINFOG(11)(condition numbers): %g, %g\n",lu->id.RINFOG(10),lu->id.RINFOG(11));
605: 
606:   }
607:   PetscViewerASCIIPrintf(viewer,"  ICNTL(12) (efficiency control):                         %d \n",lu->id.ICNTL(12));
608:   PetscViewerASCIIPrintf(viewer,"  ICNTL(13) (efficiency control):                         %d \n",lu->id.ICNTL(13));
609:   PetscViewerASCIIPrintf(viewer,"  ICNTL(14) (percentage of estimated workspace increase): %d \n",lu->id.ICNTL(14));
610:   /* ICNTL(15-17) not used */
611:   PetscViewerASCIIPrintf(viewer,"  ICNTL(18) (input mat struct):                           %d \n",lu->id.ICNTL(18));
612:   PetscViewerASCIIPrintf(viewer,"  ICNTL(19) (Shur complement info):                       %d \n",lu->id.ICNTL(19));
613:   PetscViewerASCIIPrintf(viewer,"  ICNTL(20) (rhs sparse pattern):                         %d \n",lu->id.ICNTL(20));
614:   PetscViewerASCIIPrintf(viewer,"  ICNTL(21) (solution struct):                            %d \n",lu->id.ICNTL(21));
615:   PetscViewerASCIIPrintf(viewer,"  ICNTL(22) (in-core/out-of-core facility):               %d \n",lu->id.ICNTL(22));
616:   PetscViewerASCIIPrintf(viewer,"  ICNTL(23) (max size of memory can be allocated locally):%d \n",lu->id.ICNTL(23));

618:   PetscViewerASCIIPrintf(viewer,"  ICNTL(24) (detection of null pivot rows):               %d \n",lu->id.ICNTL(24));
619:   PetscViewerASCIIPrintf(viewer,"  ICNTL(25) (computation of a null space basis):          %d \n",lu->id.ICNTL(25));
620:   PetscViewerASCIIPrintf(viewer,"  ICNTL(26) (Schur options for rhs or solution):          %d \n",lu->id.ICNTL(26));
621:   PetscViewerASCIIPrintf(viewer,"  ICNTL(27) (experimental parameter):                     %d \n",lu->id.ICNTL(27));

623:   PetscViewerASCIIPrintf(viewer,"  CNTL(1) (relative pivoting threshold):      %g \n",lu->id.CNTL(1));
624:   PetscViewerASCIIPrintf(viewer,"  CNTL(2) (stopping criterion of refinement): %g \n",lu->id.CNTL(2));
625:   PetscViewerASCIIPrintf(viewer,"  CNTL(3) (absolute pivoting threshold):      %g \n",lu->id.CNTL(3));
626:   PetscViewerASCIIPrintf(viewer,"  CNTL(4) (value of static pivoting):         %g \n",lu->id.CNTL(4));
627:   PetscViewerASCIIPrintf(viewer,"  CNTL(5) (fixation for null pivots):         %g \n",lu->id.CNTL(5));

629:   /* infomation local to each processor */
630:   if (!lu->myid) {PetscPrintf(PETSC_COMM_SELF, "      RINFO(1) (local estimated flops for the elimination after analysis): \n");}
631:   PetscSynchronizedPrintf(((PetscObject)A)->comm,"             [%d] %g \n",lu->myid,lu->id.RINFO(1));
632:   PetscSynchronizedFlush(((PetscObject)A)->comm);
633:   if (!lu->myid) {PetscPrintf(PETSC_COMM_SELF, "      RINFO(2) (local estimated flops for the assembly after factorization): \n");}
634:   PetscSynchronizedPrintf(((PetscObject)A)->comm,"             [%d]  %g \n",lu->myid,lu->id.RINFO(2));
635:   PetscSynchronizedFlush(((PetscObject)A)->comm);
636:   if (!lu->myid) {PetscPrintf(PETSC_COMM_SELF, "      RINFO(3) (local estimated flops for the elimination after factorization): \n");}
637:   PetscSynchronizedPrintf(((PetscObject)A)->comm,"             [%d]  %g \n",lu->myid,lu->id.RINFO(3));
638:   PetscSynchronizedFlush(((PetscObject)A)->comm);

640:   if (!lu->myid) {PetscPrintf(PETSC_COMM_SELF, "      INFO(15) (estimated size of (in MB) MUMPS internal data for running numerical factorization): \n");}
641:   PetscSynchronizedPrintf(((PetscObject)A)->comm,"             [%d] %d \n",lu->myid,lu->id.INFO(15));
642:   PetscSynchronizedFlush(((PetscObject)A)->comm);

644:   if (!lu->myid) {PetscPrintf(PETSC_COMM_SELF, "      INFO(16) (size of (in MB) MUMPS internal data used during numerical factorization): \n");}
645:   PetscSynchronizedPrintf(((PetscObject)A)->comm,"             [%d] %d \n",lu->myid,lu->id.INFO(16));
646:   PetscSynchronizedFlush(((PetscObject)A)->comm);

648:   if (!lu->myid) {PetscPrintf(PETSC_COMM_SELF, "      INFO(23) (num of pivots eliminated on this processor after factorization): \n");}
649:   PetscSynchronizedPrintf(((PetscObject)A)->comm,"             [%d] %d \n",lu->myid,lu->id.INFO(23));
650:   PetscSynchronizedFlush(((PetscObject)A)->comm);

652:   if (!lu->myid){ /* information from the host */
653:     PetscViewerASCIIPrintf(viewer,"  RINFOG(1) (global estimated flops for the elimination after analysis): %g \n",lu->id.RINFOG(1));
654:     PetscViewerASCIIPrintf(viewer,"  RINFOG(2) (global estimated flops for the assembly after factorization): %g \n",lu->id.RINFOG(2));
655:     PetscViewerASCIIPrintf(viewer,"  RINFOG(3) (global estimated flops for the elimination after factorization): %g \n",lu->id.RINFOG(3));

657:     PetscViewerASCIIPrintf(viewer,"  INFOG(3) (estimated real workspace for factors on all processors after analysis): %d \n",lu->id.INFOG(3));
658:     PetscViewerASCIIPrintf(viewer,"  INFOG(4) (estimated integer workspace for factors on all processors after analysis): %d \n",lu->id.INFOG(4));
659:     PetscViewerASCIIPrintf(viewer,"  INFOG(5) (estimated maximum front size in the complete tree): %d \n",lu->id.INFOG(5));
660:     PetscViewerASCIIPrintf(viewer,"  INFOG(6) (number of nodes in the complete tree): %d \n",lu->id.INFOG(6));
661:     PetscViewerASCIIPrintf(viewer,"  INFOG(7) (ordering option effectively uese after analysis): %d \n",lu->id.INFOG(7));
662:     PetscViewerASCIIPrintf(viewer,"  INFOG(8) (structural symmetry in percent of the permuted matrix after analysis): %d \n",lu->id.INFOG(8));
663:     PetscViewerASCIIPrintf(viewer,"  INFOG(9) (total real/complex workspace to store the matrix factors after factorization): %d \n",lu->id.INFOG(9));
664:     PetscViewerASCIIPrintf(viewer,"  INFOG(10) (total integer space store the matrix factors after factorization): %d \n",lu->id.INFOG(10));
665:     PetscViewerASCIIPrintf(viewer,"  INFOG(11) (order of largest frontal matrix after factorization): %d \n",lu->id.INFOG(11));
666:     PetscViewerASCIIPrintf(viewer,"  INFOG(12) (number of off-diagonal pivots): %d \n",lu->id.INFOG(12));
667:     PetscViewerASCIIPrintf(viewer,"  INFOG(13) (number of delayed pivots after factorization): %d \n",lu->id.INFOG(13));
668:     PetscViewerASCIIPrintf(viewer,"  INFOG(14) (number of memory compress after factorization): %d \n",lu->id.INFOG(14));
669:     PetscViewerASCIIPrintf(viewer,"  INFOG(15) (number of steps of iterative refinement after solution): %d \n",lu->id.INFOG(15));
670:     PetscViewerASCIIPrintf(viewer,"  INFOG(16) (estimated size (in MB) of all MUMPS internal data for factorization after analysis: value on the most memory consuming processor): %d \n",lu->id.INFOG(16));
671:     PetscViewerASCIIPrintf(viewer,"  INFOG(17) (estimated size of all MUMPS internal data for factorization after analysis: sum over all processors): %d \n",lu->id.INFOG(17));
672:     PetscViewerASCIIPrintf(viewer,"  INFOG(18) (size of all MUMPS internal data allocated during factorization: value on the most memory consuming processor): %d \n",lu->id.INFOG(18));
673:     PetscViewerASCIIPrintf(viewer,"  INFOG(19) (size of all MUMPS internal data allocated during factorization: sum over all processors): %d \n",lu->id.INFOG(19));
674:      PetscViewerASCIIPrintf(viewer,"  INFOG(20) (estimated number of entries in the factors): %d \n",lu->id.INFOG(20));
675:      PetscViewerASCIIPrintf(viewer,"  INFOG(21) (size in MB of memory effectively used during factorization - value on the most memory consuming processor): %d \n",lu->id.INFOG(21));
676:      PetscViewerASCIIPrintf(viewer,"  INFOG(22) (size in MB of memory effectively used during factorization - sum over all processors): %d \n",lu->id.INFOG(22));
677:      PetscViewerASCIIPrintf(viewer,"  INFOG(23) (after analysis: value of ICNTL(6) effectively used): %d \n",lu->id.INFOG(23));
678:      PetscViewerASCIIPrintf(viewer,"  INFOG(24) (after analysis: value of ICNTL(12) effectively used): %d \n",lu->id.INFOG(24));
679:      PetscViewerASCIIPrintf(viewer,"  INFOG(25) (after factorization: number of pivots modified by static pivoting): %d \n",lu->id.INFOG(25));
680:   }

682:   return(0);
683: }

687: PetscErrorCode MatView_MUMPS(Mat A,PetscViewer viewer)
688: {
689:   PetscErrorCode    ierr;
690:   PetscTruth        iascii;
691:   PetscViewerFormat format;

694:     PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_ASCII,&iascii);
695:   if (iascii) {
696:     PetscViewerGetFormat(viewer,&format);
697:     if (format == PETSC_VIEWER_ASCII_INFO){
698:       MatFactorInfo_MUMPS(A,viewer);
699:     }
700:   }
701:   return(0);
702: }

706: PetscErrorCode MatGetInfo_MUMPS(Mat A,MatInfoType flag,MatInfo *info)
707: {
708:     Mat_MUMPS  *lu =(Mat_MUMPS*)A->spptr;

711:   info->block_size        = 1.0;
712:   info->nz_allocated      = lu->id.INFOG(20);
713:   info->nz_used           = lu->id.INFOG(20);
714:   info->nz_unneeded       = 0.0;
715:   info->assemblies        = 0.0;
716:   info->mallocs           = 0.0;
717:   info->memory            = 0.0;
718:   info->fill_ratio_given  = 0;
719:   info->fill_ratio_needed = 0;
720:   info->factor_mallocs    = 0;
721:   return(0);
722: }

724: /*MC
725:   MAT_SOLVER_MUMPS -  A matrix type providing direct solvers (LU and Cholesky) for
726:   distributed and sequential matrices via the external package MUMPS. 

728:   Works with MATAIJ and MATSBAIJ matrices

730:   Options Database Keys:
731: + -mat_mumps_sym <0,1,2> - 0 the matrix is unsymmetric, 1 symmetric positive definite, 2 symmetric
732: . -mat_mumps_icntl_4 <0,...,4> - print level
733: . -mat_mumps_icntl_6 <0,...,7> - matrix prescaling options (see MUMPS User's Guide)
734: . -mat_mumps_icntl_7 <0,...,7> - matrix orderings (see MUMPS User's Guide)
735: . -mat_mumps_icntl_9 <1,2> - A or A^T x=b to be solved: 1 denotes A, 2 denotes A^T
736: . -mat_mumps_icntl_10 <n> - maximum number of iterative refinements
737: . -mat_mumps_icntl_11 <n> - error analysis, a positive value returns statistics during -ksp_view
738: . -mat_mumps_icntl_12 <n> - efficiency control (see MUMPS User's Guide)
739: . -mat_mumps_icntl_13 <n> - efficiency control (see MUMPS User's Guide)
740: . -mat_mumps_icntl_14 <n> - efficiency control (see MUMPS User's Guide)
741: . -mat_mumps_icntl_15 <n> - efficiency control (see MUMPS User's Guide)
742: . -mat_mumps_cntl_1 <delta> - relative pivoting threshold
743: . -mat_mumps_cntl_2 <tol> - stopping criterion for refinement
744: - -mat_mumps_cntl_3 <adelta> - absolute pivoting threshold

746:   Level: beginner

748: .seealso: PCFactorSetMatSolverPackage(), MatSolverPackage

750: M*/

755: PetscErrorCode MatFactorGetSolverPackage_mumps(Mat A,const MatSolverPackage *type)
756: {
758:   *type = MAT_SOLVER_MUMPS;
759:   return(0);
760: }

764: /*
765:     The seq and mpi versions of this function are the same 
766: */
769: PetscErrorCode MatGetFactor_seqaij_mumps(Mat A,MatFactorType ftype,Mat *F)
770: {
771:   Mat            B;
773:   Mat_MUMPS      *mumps;

776:   if (ftype != MAT_FACTOR_LU) {
777:     SETERRQ(PETSC_ERR_SUP,"Cannot use PETSc AIJ matrices with MUMPS Cholesky, use SBAIJ matrix");
778:   }
779:   /* Create the factorization matrix */
780:   MatCreate(((PetscObject)A)->comm,&B);
781:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
782:   MatSetType(B,((PetscObject)A)->type_name);
783:   MatSeqAIJSetPreallocation(B,0,PETSC_NULL);

785:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMUMPS;
786:   B->ops->view             = MatView_MUMPS;
787:   B->ops->getinfo          = MatGetInfo_MUMPS;
788:   PetscObjectComposeFunctionDynamic((PetscObject)B,"MatFactorGetSolverPackage_C","MatFactorGetSolverPackage_mumps",MatFactorGetSolverPackage_mumps);
789:   B->factor                = MAT_FACTOR_LU;

791:   PetscNewLog(B,Mat_MUMPS,&mumps);
792:   mumps->CleanUpMUMPS              = PETSC_FALSE;
793:   mumps->isAIJ                     = PETSC_TRUE;
794:   mumps->scat_rhs                  = PETSC_NULL;
795:   mumps->scat_sol                  = PETSC_NULL;
796:   mumps->nSolve                    = 0;
797:   mumps->MatDestroy                = B->ops->destroy;
798:   B->ops->destroy                  = MatDestroy_MUMPS;
799:   B->spptr                         = (void*)mumps;

801:   *F = B;
802:   return(0);
803: }

809: PetscErrorCode MatGetFactor_mpiaij_mumps(Mat A,MatFactorType ftype,Mat *F)
810: {
811:   Mat            B;
813:   Mat_MUMPS      *mumps;

816:   if (ftype != MAT_FACTOR_LU) {
817:     SETERRQ(PETSC_ERR_SUP,"Cannot use PETSc AIJ matrices with MUMPS Cholesky, use SBAIJ matrix");
818:   }
819:   /* Create the factorization matrix */
820:   MatCreate(((PetscObject)A)->comm,&B);
821:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
822:   MatSetType(B,((PetscObject)A)->type_name);
823:   MatSeqAIJSetPreallocation(B,0,PETSC_NULL);
824:   MatMPIAIJSetPreallocation(B,0,PETSC_NULL,0,PETSC_NULL);

826:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMUMPS;
827:   B->ops->view             = MatView_MUMPS;
828:   PetscObjectComposeFunctionDynamic((PetscObject)B,"MatFactorGetSolverPackage_C","MatFactorGetSolverPackage_mumps",MatFactorGetSolverPackage_mumps);
829:   B->factor                = MAT_FACTOR_LU;

831:   PetscNewLog(B,Mat_MUMPS,&mumps);
832:   mumps->CleanUpMUMPS              = PETSC_FALSE;
833:   mumps->isAIJ                     = PETSC_TRUE;
834:   mumps->scat_rhs                  = PETSC_NULL;
835:   mumps->scat_sol                  = PETSC_NULL;
836:   mumps->nSolve                    = 0;
837:   mumps->MatDestroy                = B->ops->destroy;
838:   B->ops->destroy                  = MatDestroy_MUMPS;
839:   B->spptr                         = (void*)mumps;

841:   *F = B;
842:   return(0);
843: }

849: PetscErrorCode MatGetFactor_seqsbaij_mumps(Mat A,MatFactorType ftype,Mat *F)
850: {
851:   Mat            B;
853:   Mat_MUMPS      *mumps;

856:   if (ftype != MAT_FACTOR_CHOLESKY) {
857:     SETERRQ(PETSC_ERR_SUP,"Cannot use PETSc SBAIJ matrices with MUMPS LU, use AIJ matrix");
858:   }
859:   /* Create the factorization matrix */
860:   MatCreate(((PetscObject)A)->comm,&B);
861:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
862:   MatSetType(B,((PetscObject)A)->type_name);
863:   MatSeqSBAIJSetPreallocation(B,1,0,PETSC_NULL);
864:   MatMPISBAIJSetPreallocation(B,1,0,PETSC_NULL,0,PETSC_NULL);

866:   B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SBAIJMUMPS;
867:   B->ops->view                   = MatView_MUMPS;
868:   PetscObjectComposeFunctionDynamic((PetscObject)B,"MatFactorGetSolverPackage_C","MatFactorGetSolverPackage_mumps",MatFactorGetSolverPackage_mumps);

870:   B->factor                      = MAT_FACTOR_CHOLESKY;

872:   PetscNewLog(B,Mat_MUMPS,&mumps);
873:   mumps->CleanUpMUMPS              = PETSC_FALSE;
874:   mumps->isAIJ                     = PETSC_TRUE;
875:   mumps->scat_rhs                  = PETSC_NULL;
876:   mumps->scat_sol                  = PETSC_NULL;
877:   mumps->nSolve                    = 0;
878:   mumps->MatDestroy                = B->ops->destroy;
879:   B->ops->destroy                  = MatDestroy_MUMPS;
880:   B->spptr                         = (void*)mumps;

882:   *F = B;
883:   return(0);
884: }

890: PetscErrorCode MatGetFactor_mpisbaij_mumps(Mat A,MatFactorType ftype,Mat *F)
891: {
892:   Mat            B;
894:   Mat_MUMPS      *mumps;

897:   if (ftype != MAT_FACTOR_CHOLESKY) {
898:     SETERRQ(PETSC_ERR_SUP,"Cannot use PETSc SBAIJ matrices with MUMPS LU, use AIJ matrix");
899:   }
900:   /* Create the factorization matrix */
901:   MatCreate(((PetscObject)A)->comm,&B);
902:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
903:   MatSetType(B,((PetscObject)A)->type_name);
904:   MatSeqSBAIJSetPreallocation(B,1,0,PETSC_NULL);
905:   MatMPISBAIJSetPreallocation(B,1,0,PETSC_NULL,0,PETSC_NULL);

907:   B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SBAIJMUMPS;
908:   B->ops->view                   = MatView_MUMPS;
909:   PetscObjectComposeFunctionDynamic((PetscObject)B,"MatFactorGetSolverPackage_C","MatFactorGetSolverPackage_mumps",MatFactorGetSolverPackage_mumps);
910:   B->factor                      = MAT_FACTOR_CHOLESKY;

912:   PetscNewLog(B,Mat_MUMPS,&mumps);
913:   mumps->CleanUpMUMPS              = PETSC_FALSE;
914:   mumps->isAIJ                     = PETSC_TRUE;
915:   mumps->scat_rhs                  = PETSC_NULL;
916:   mumps->scat_sol                  = PETSC_NULL;
917:   mumps->nSolve                    = 0;
918:   mumps->MatDestroy                = B->ops->destroy;
919:   B->ops->destroy                  = MatDestroy_MUMPS;
920:   B->spptr                         = (void*)mumps;

922:   *F = B;
923:   return(0);
924: }