DKAFI

10047 Ilmenite Basalt (low K) 138 grams

Figure 1: Photo of 10047 showing interior basaltic texture. NASA S75-26513. Cube is 1 cm.

Introduction

Lunar sample 10047 is a low-K, ilmenite basalt with a relatively coarse texture (figure 1). It has been extensively studied. The crystallization age of 10047 is 3.74 b.y. and it has a cosmic ray exposure age of 80 m.y.

Petrography

Schmitt et al. (1970) termed 10047 as a "coarsegrained, vuggy, ophitic, cristobalite basalt." James and Jackson (1970) termed it a "medium grained ophitic basalt". Beaty and Albee (1978) note that 10044, 10047 and 10058 "are so similar to one another that it seems quite likely that these rocks are fragments of a larger block." Smith et al. (1970) and others refer to this rock as a "micrograbbro".

Lunar Sample Compendium C Meyer 2006 Lovering and Ware (1970) and Beaty and Albee (1978) give a complete description of the mineral chemistry of 10047. Dence et al. (1970) reported pyroxene and plagioclase up to 2 mm in size. The residual mesostasis between the major minerals contains residual glass with fine-grained intergrowth of several minor phases.

Mineralogy

Olivine: Lovering and Ware (1970) reported fayalite in an "intergrowth region" and give an analysis. Beaty and Albee (1978) give an analysis (Fa_{99,5}).

Pyroxene: Lovering and Ware (1970), Mason et al. (1970) and Beaty and Albee (1978) determined the composition of pyroxene in 10047 (figure 3). Ross et

Figure 2: Photomicrograph of thin section of 10047. NASA S69-54011. Scale unknown (about 1 cm).

al. (1970) and Essene et al. (1970) determined the abundance and zoning in trace elements (Cr, Mn, Ti and Al) in pyroxene from 10047. They found the cores of the large pyroxenes were highly aluminous with coupled substitution by Ti etc.

Pyroxferroite: Frondel et al. (1970) and Chao et al. (1970) give the optical, chemical and crystallographic data for pyroxferroite in 10047. Mason et al. (1970) give the composition as $Wo_{28}En_4Fs_{78}$. Burnham (1971) determined the crystal structure.

Plagioclase: Lovering and Ware report plagioclase cores with An_{90} and rims An_{75} with elevated K₂O.

Mineralogical Mode for 10047									
	James and Jackson 70	Beaty and Albee 1978	Lovering and Ware 1970						
Olivine	ouclison to	11000 1970							
Pyroxene	44.8	46.53	45						
Plagioclase	37.8	34.91	30						
Ilmenite	10.1	11.2	17	S					
mesostasis	1.9	0.1							
silica	4.5	6.22		St					
troilite	0.5	0.43	1	G					
phosphate	0.1	0.36		N					

Figure 3: Pyroxene composition of 10047 (data from Beaty and Albee 1978).

Essene et al. (1970) determined zoning from $An_{90}Ab_{9.8}Or_{0.2}$ to $An_{75}Ab_{21}Or_4$. Stewart et al. (1970) determined crystal structure and cell size.

Ilmenite: Lovering and Ware determined the composition of ilmenite, while Stewart et al. (1970) determined cell size.

Ulvospinel: Smith et al. (1970) report that small subhedra of ulvospinel are found intergrown with ilmenite in the finely intergrown residuum.

Troilite: Lovering and Ware determined the composition of troilite (Fe:S = 1.0087). It contains blebs of Ni-free iron metal.

Cristobalite: Lovering and Ware determined the composition of silica and Dence et al. (1970) determined the cell dimensions.

K-rich Glass: Lovering and Ware (1970) and Beaty and Albee (1978) reported the composition of the residual glass ($K_2O = 7-10$ %). Dence et al. (1970) and Beaty and Albee found needles of Ba,K feldspar in the glass (6.7% Ba).

Summary of Age D	ata for 10047
• •	Ar/Ar plateau
Stettler et al. 1974	3.74 ± 0.03 b.y.
Guggisberg et al. 1979	3.71 ± 0.03

Lunar Sample Compendium C Meyer 2006

Figure 4: Composition of 10047 compared with that of other Apollo lunar samples.

Figure 6: Argon plateau by Stettler et al. (1974).

Fe, Ti, Zr- silicate: Dence et al. (1970) and other reported the analysis of a new mineral in 10047. Lovering et al. (1971) defined it as "tranquillityite", giving it a full analysis.

Phosphate: Beaty and Albee (1978) give an analysis of apatite. Lovering et al. (1974) reported the composition of a 15 micron grain of rare earth element phosphate (monazite?) they found included in heddenberrgite in the mesostasis of 10047.

Figure 5: Normalized rare-earth-element composition for low-K basalt 10047 (the line) compared with that of low-K basalt 10020 and high-K basalt 10049 (the dots) (data from Wiesmann et al. 1975).

Figure 7: Argon plateau age by Guggisberg et al. (1979).

Chemistry

Numerous labs analyzed 10047 in 1970 (table 1, figure 4 and 5). Rhodes and Blanchard (1980) reanalyzed the sample with the same result. Essene et al. (1970) and Beaty and Albee (1978) determined the composition of thin sections by measuring the mode and combining with average mineral compositions (table 1b).

Table 1a. Chemical composition of 10047.

reference weight	Compston70		Rose70		Goles70		Rhodes80		Wakita70) 563 mg		Ganapathy70		Anders71	
Vergini SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	42.16 9.43 9.89 19.11 0.28 5.67 12.15 0.45 0.11 0.11 0.18	 (a) 	41.3 10.2 9.8 19 0.29 6.1 12.2 0.65 0.11	(b) (b) (b) (b) (b) (b) (b) (b)	43 10 10.6 19.4 0.27 5.8 12.2 0.47	(c) (c) (c) (c) (c) (c) (c)	41.6 10.02 10.27 19.09 0.3 5.99 12.16 0.44 0.1 0.11	(a) (a) (a) (a) (a) (c) (a) (a)	44.5 10.8 7.4 21.9 0.35 6.8 13.6 0.35 0.082	46 9.5 11.1 19.8 0.29 4.8 12.6 0.49 0.06	(c) (c) (c) (c) (c) (c) (c) (c)				
Sc ppm V	13	(a)			92 63	(c) (c)	92	(c)	120 73	90 57	(c) (c)				
Cr Co	1220 16	(a) (a)	1505	(b)	1250 12.2	(c) (c)	1480 11.3	(c) (c)	1810 15	1380 19	(c) (c)	14.4	(d)	12	(d)
Cu Zn Ga Ge ppb	16 13 4	(a) (a) (a) (a)					8.9	(a)				13.3 5.76 5.35	(d) (d) (d)	1.8	(d)
As Se Rb Sr Y	1.11 209 134	(a) (a) (a)					1.3 219 128	(a) (a)				1.25	(d)	0.25 1.54	(d) (d)
Zr Nb Mo Ru	334 23	(a) (a)					120	(u)	70	800	(c)				
Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb												2 25 255 109	(d) (d) (d) (d)	1.89 2.8	(d) (d)
Sb ppb Te ppb Cs ppm												13 0.045	(d) (d)	0.06	(d)
Ba La Ce Pr	88 20 48 13	(a) (a) (a) (a)			11.3 46	(c) (c)	10.4 39	(c) (c)	250 8.5	290 12.2	(c) (c)		. ,		. ,
Nd Sm Eu	36	(a)			18.9 2.71	(c) (c)	15.8 2.51	(c) (c)	16.1 2.2	20.2 2.9	(c) (c)				
Gd Tb Dv					4.1	(c)	3.7	(c)							
Ho Er					7.9	(c)									
Tm Yb Lu Hf Ta W ppb Re ppb					18.2 2.88 13.2 2.6	(c) (c) (c) (c)	12.6 1.93 11.3 2.2	(c) (c) (c) (c)	18 2.3 15	18 2.3 16	(c) (c) (c)				
Os ppb Ir ppb												0.24	(d)	0.005	(d)
Au ppb Th ppm U ppm	0.6	(a)			0.16	(c)	0.8	(c)	2.4	1.6	(c)	0.33	(d)	0.029	(d)

technique: (a) XRF, (b) micro XRF, (c) INAA, (d) RNAA

Table 1b. Chemical composition of 10047.

reference	Essene70	Beaty78		Hurley 70		Silver 70	0					
weight SiO2 % TiO2 Al2O3	41.8 9.6 10 1	42.51 9.21 10 54	(f) (f) (f)									
FeO	18.6	19.31	(f)									
MgO	0.24 5.7	0.26 5.51	(T) (f)									
CaO No2O	11.9	11.82	(f)									
K2O	0.08	0.48	(f)									
P2O5 S %		0.13	(f) (f)									
sum		0.22	(')									
Sc ppm V												
Cr												
Ni												
Cu Zn												
Ga												
Ge ppb As												
Se												
Rb Sr				0.93 194	(e) (e)							
Y					(-)							
Zr Nb												
Mo												
Rh												
Pd ppb Ag ppb												
Cd ppb												
In ppb Sn ppb												
Sb ppb												
Cs ppm												
Ba La												
Ce												
Pr Nd												
Sm												
Eu Gd												
Tb												
Ho												
Er Tm												
Yb												
Lu Hf												
Та												
vv ppb Re ppb												
Os ppb												
Pt ppb												
Au ppb						0 849		16		(e)		
U ppm						0.246	Ì	0.203		(e)		
technique:	(a) XRF, (k	o) micro X	ΊRF,	(c) INAA	, (d) RNAA,	(e)	IDMS,	(f)	elec.	Prot	рe

Ganapathy et al. (1970) analyzed a powder prepared from 10047, but when Anders et al. (1971) analyzed a chip instead they obtained much lower values for trace elements. Reed and Jonvanovic (1970) reported Li, F, Cl, Br and I.

Radiogenic age dating

Stettler et al. (1974) and Guggisberg et al. (1979) determined crystallization ages of 3.74 and 3.71 b.y. by the Ar/Ar plateau technique (figure 6 and 7).

Cosmogenic isotopes and exposure ages

Marti et al. (1970), Arvidson et al. (1975) and Eugster et al. (1984) reported ⁸¹Kr exposure ages of 86 m.y., 84 m.y. (determined by Schwaller 1971) and 87.4 m.y., respectively. Stettler et al. (1974) and Guggisberg et al. (1979) determined an ³⁷Ar/³⁸Ar cosmic ray exposure age of 70 and 78 m.y. respectively. Eberhardt et al. (1970) calculated 110 m.y. from data by Funkhouser et al. (1970).

Other Studies

Oxygen isotopes were reported for mineral separates of 10047 by Onuma et al. (1970).

Rare gas abundance and isotopic ratios were reported by Eugster et al. (1984), Funkhouser et al. (1970) and Bogard et al. (1971).

Crozaz et al. (1970) studied the fossil comic ray track density as a function of depth in plagioclase and pyroxene crystals from 10047 (figure 8) and determined an exposure age of 16 m.y.

Figure 8: Track length in pyroxene from 10047 compared with Esterville meteorite (Crozaz et al. 1970).

List of Photo #s for 10047

S69-53977	B&W TS
S69-53980	
S69-54011 – 12	
S69-54044	
S69-54048	
S69-54064	
S69-59269	
869-59277	
869-59282	
870-48962 - 3	color TS
870-49212 - 3	
870-50541 - 2	
876-26298 – 9	B&W TS
\$72-32082	
875-25083 - 87	Processing
875-26511 – 14	
876-25537	
876-25542	
S82-27857	

Processing

Apollo 11 samples were originally described and cataloged in 1969 and then "re-cataloged" by Kramer et al. in 1977.

