
z/OS

XL C/C++
Messages

GC09-4819-03

���

z/OS

XL C/C++
Messages

GC09-4819-03

���

Note!

Before using this information and the product it supports, be sure to read the information in “Notices” on page 203.

Fourth Edition (September 2005)

This edition applies to Version 1 Release 7 of z/OS XL C/C++ (5694-A01), Version 1 Release 7 of z/OS.e C/C++

(5655-G52), and to all subsequent releases until otherwise indicated in new editions. This edition replaces

GC09-4819-02. Make sure that you use the correct edition for the level of the program listed above. Also, ensure that

you apply all necessary PTFs for the program.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are

not stocked at the address below. You can also browse the books on the World Wide Web by clicking on ″The

Library″ link on the z/OS home page. The web address for this page is

http://www.ibm.com/servers/eserver/zseries/zos/bkserv

IBM welcomes your comments. You can send your comments to the following Internet address:

compinfo@ca.ibm.com. Be sure to include your e-mail address if you want a reply.

Include the title and order number of this book, and the page number or topic related to your comment. When you

send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes

appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

z/OS XL C/C++ and related publications v

Softcopy documents . x

Softcopy examples . x

z/OS XL C/C++ on the World Wide Web xi

Where to find more information xi

Summary of Changes . xiii

Chapter 1. About IBM z/OS XL C/C++ 1

Changes for z/OS V1R7 . 1

The XL C/C++ compilers . 2

The C language . 2

The C++ language . 3

Common features of the z/OS XL C and XL C++ compilers 3

z/OS XL C compiler specific features 4

z/OS XL C++ compiler specific features 5

Class libraries . 5

Utilities . 5

dbx . 6

z/OS Language Environment . 6

z/OS Language Environment downward compatibility 7

About prelinking, linking, and binding 8

Notes on the prelinking process 8

File format considerations . 9

The program management binder 9

z/OS UNIX System Services . 10

z/OS XL C/C++ applications with z/OS UNIX System Services C functions . . . 11

Input and output . 12

I/O interfaces . 12

File types . 12

Additional I/O features . 13

The System Programming C facility 14

Interaction with other IBM products 14

Additional features of z/OS XL C/C++ 16

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 19

Return Codes . 19

Compiler Messages . 19

Chapter 3. Utility Messages 195

Other Return Codes and Messages 195

DSECT Utility Messages . 195

Return Codes . 195

Messages . 195

CXXFILT Utility Messages . 198

Return Codes . 198

Messages . 198

Chapter 4. z/OS XL C/C++ Legacy Class Libraries Messages 199

Appendix. Accessibility . 201

Accessibility . 201

© Copyright IBM Corp. 1996, 2005 iii

||

Using assistive technologies 201

Keyboard navigation of the user interface 201

z/OS information . 201

Notices . 203

Programming interface information 204

Trademarks . 204

Standards . 205

Bibliography . 207

z/OS . 207

z/OS XL C/C++ . 207

z/OS Run-Time Library Extensions 207

Debug Tool . 207

z/OS Language Environment 208

Assembler . 208

COBOL . 208

PL/I . 208

VS FORTRAN . 208

CICS Transaction Server for z/OS 208

DB2 . 209

IMS/ESA . 209

MVS . 209

QMF . 209

DFSMS . 209

INDEX . 211

iv z/OS V1R7.0 XL C/C++ Messages

||

About this document

This edition of z/OS XL C/C++ Messages is intended for users of the z/OS® or

z/OS.e XL C/C++ compiler with the z/OS or z/OS.e Language Environment®

product. It provides you with information on the compiler return codes, compiler

messages, utility messages, and C/C++ legacy class libraries messages.

Note: As of z/OS V1R7, the z/OS C/C++ compiler has been rebranded to z/OS XL

C/C++.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line (|) to

the left of the change.

You may notice changes in the style and structure of some of the contents in this

document; for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

z/OS XL C/C++ and related publications

This section summarizes the content of the z/OS XL C/C++ publications and shows

where to find related information in other publications.

© Copyright IBM Corp. 1996, 2005 v

|
|

Table 1. z/OS XL C/C++ publications

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Programming Guide,

SC09-4765

Guidance information for:

v XL C/C++ input and output

v Debugging z/OS XL C programs that use input/output

v Using linkage specifications in C++

v Combining C and assembler

v Creating and using DLLs

v Using threads in z/OS UNIX® System Services applications

v Reentrancy

v Handling exceptions, error conditions, and signals

v Performance optimization

v Network communications under z/OS UNIX System Services

v Interprocess communications using z/OS UNIX System Services

v Structuring a program that uses C++ templates

v Using environment variables

v Using System Programming C facilities

v Library functions for the System Programming C facilities

v Using run-time user exits

v Using the z/OS XL C multitasking facility

v Using other IBM® products with z/OS XL C/C++ (CICS® Transaction Server

for z/OS, CSP, DWS, DB2®, GDDM®, IMS™, ISPF, QMF™)

v Internationalization: locales and character sets, code set conversion

utilities, mapping variant characters

v POSIX® character set

v Code point mappings

v Locales supplied with z/OS XL C/C++

v Charmap files supplied with z/OS XL C/C++

v Examples of charmap and locale definition source files

v Converting code from coded character set IBM-1047

v Using built-in functions

v Programming considerations for z/OS UNIX System Services C/C++

z/OS XL C/C++ User’s Guide,

SC09-4767

Guidance information for:

v z/OS XL C/C++ examples

v Compiler options

v Binder options and control statements

v Specifying Language Environment run-time options

v Compiling, IPA Linking, binding, and running z/OS XL C/C++ programs

v Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and

Locale, ar and make, BPXBATCH, c89, xlc)

v Diagnosing problems

v Cataloged procedures and REXX EXECs supplied by IBM

v Customizing default options for the z/OS XL C/C++ compiler

z/OS XL C/C++ Language Reference,

SC09-4815

Reference information for:

v The C and C++ languages

v Lexical elements of z/OS XL C and C++

v Declarations, expressions, and operators

v Implicit type conversions

v Functions and statements

v Preprocessor directives

v C++ classes, class members, and friends

v C++ overloading, special member functions, and inheritance

v C++ templates and exception handling

v z/OS XL C and C++ compatibility

vi z/OS V1R7.0 XL C/C++ Messages

|
|

|

Table 1. z/OS XL C/C++ publications (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Messages,

GC09-4819

Provides error messages and return codes for the compiler, and its related

application interface libraries and utilities. For the XL C/C++ Run-Time Library

messages, refer to z/OS Language Environment Run-Time Messages,

SA22-7566. For the c89 and xlc utility messages, refer to z/OS UNIX System

Services Messages and Codes, SA22-7807.

z/OS XL C/C++ Run-Time Library

Reference, SA22-7821

Reference information for:

v header files

v library functions

z/OS C Curses, SA22-7820 Reference information for:

v Curses concepts

v Key data types

v General rules for characters, renditions, and window properties

v General rules of operations and operating modes

v Use of macros

v Restrictions on block-mode terminals

v Curses functional interface

v Contents of headers

v The terminfo database

z/OS XL C/C++ Compiler and

Run-Time Migration Guide for the

Application Programmer, GC09-4913

Guidance and reference information for:

v Common migration questions

v Application executable program compatibility

v Source program compatibility

v Input and output operations compatibility

v Class library migration considerations

v Changes between releases of z/OS

v C/370™ to current compiler migration

v Other migration considerations

Standard C++ Library Reference,

SC09-4949

The documentation describes how to use the following three main

components of the Standard C++ Library to write portable C/C++ code that

complies with the ISO standards:

v ISO Standard C Library

v ISO Standard C++ Library

v Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51 C++

library headers (along with the additional 18 Standard C headers) constitute a

hosted implementation of the C++ library. Of these 51 headers, 13 constitute

the Standard Template Library, or STL.

C/C++ Legacy Class Libraries

Reference, SC09-7652

Reference information for:

v UNIX System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

This reference is part of the Run-Time Library Extensions documentation.

IBM Open Class Library Transition

Guide, SC09-4948

The documentation explains the various options to application owners and

users for migrating from the IBM Open Class® library to the Standard C++

Library.

z/OS Common Debug Architecture

User’s Guide, SC09-7653

This documentation is the user’s guide for IBM’s libddpi library. It includes:

v Overview of the architecture

v Information on the order and purpose of API calls for model user

applications and for accessing DWARF information

v Information on using the Common Debug Architecture with C/C++ source

This user’s guide is part of the Run-Time Library Extensions documentation.

About this document vii

Table 1. z/OS XL C/C++ publications (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS Common Debug Architecture

Library Reference, SC09-7654

This documentation is the reference for IBM’s libddpi library. It includes:

v General discussion of Common Debug Architecture

v Description of APIs and data types related to stacks, processes, operating

systems, machine state, storage, and formatting

This reference is part of the Run-Time Library Extensions documentation.

DWARF/ELF Extensions Library

Reference, SC09-7655

This documentation is the reference for IBM’s extensions to the libdwarf and

libelf libraries. It includes information on:

v Consumer APIs

v Producer APIs

This reference is part of the Run-Time Library Extensions documentation.

Debug Tool documentation, available

on the Debug Tool for z/OS library

page on the World Wide Web

The documentation, which is available at

www.ibm.com/software/awdtools/debugtool/library/, provides guidance and

reference information for debugging programs, using Debug Tool in different

environments, and language-specific information.

APAR and BOOKS files (Shipped with

Program materials)

Partitioned data set CBC.SCCNDOC on the product tape contains the

members, APAR and BOOKS, which provide additional information for using

the z/OS XL C/C++ licensed program, including:

v Isolating reportable problems

v Keywords

v Preparing an Authorized Program Analysis Report (APAR)

v Problem identification worksheet

v Maintenance on z/OS

v Late changes to z/OS XL C/C++ publications

Note: For complete and detailed information on linking and running with Language Environment and using the

Language Environment run-time options, refer to z/OS Language Environment Programming Guide, SA22-7561. For

complete and detailed information on using interlanguage calls, refer to z/OS Language Environment Writing

Interlanguage Communication Applications, SA22-7563.

The following table lists the z/OS XL C/C++ and related publications. The table

groups the publications according to the tasks they describe.

 Table 2. Publications by task

Tasks Documents

Planning, preparing, and migrating to z/OS XL

C/C++

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the

Application Programmer, GC09-4913

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Run-Time Application Migration

Guide, GA22-7565

v z/OS UNIX System Services Planning, GA22-7800

v z/OS and z/OS.e Planning for Installation, GA22-7504

Installing v z/OS Program Directory

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Language Environment Customization, SA22-7564

Coding programs v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

viii z/OS V1R7.0 XL C/C++ Messages

http://www.ibm.com/software/awdtools/debugtool/library/

Table 2. Publications by task (continued)

Tasks Documents

Coding and binding programs with

interlanguage calls

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Writing Interlanguage Communication

Applications, SA22-7563

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling, binding, and running programs v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling and binding applications in the z/OS

UNIX System Services environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Debugging programs v README file

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Run-Time Messages, SA22-7566

v z/OS UNIX System Services Messages and Codes, SA22-7807

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Programming Tools, SA22-7805

v Debug Tool documentation, available on the Debug Tool Library

page on the World Wide Web

(www.ibm.com/software/awdtools/debugtool/library/)

v z/OS messages database, available on the z/OS Library page at

www.ibm.com/servers/eserver/zseries/zos/bkserv/ through the

LookAt Internet message search utility.

Developing debuggers and profilers v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Using shells and utilities in the z/OS UNIX

System Services environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Messages and Codes, SA22-7807

Using sockets library functions in the z/OS

UNIX System Services environment

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

Using the ISO Standard C++ Library to write

portable C/C++ code that complies with ISO

standards

v Standard C++ Library Reference, SC09-4949

Migrating from the IBM Open Class Library to

the Standard C++ Library

v IBM Open Class Library Transition Guide, SC09-4948

About this document ix

|

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Table 2. Publications by task (continued)

Tasks Documents

Porting a z/OS UNIX System Services

application to z/OS

v z/OS UNIX System Services Porting Guide

This guide contains useful information about supported header files

and C functions, sockets in z/OS UNIX System Services, process

management, compiler optimization tips, and suggestions for

improving the application’s performance after it has been ported.

The Porting Guide is available as a PDF file which you can

download, or as web pages which you can browse, at the following

web address:

www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html

Working in the z/OS UNIX System Services

Parallel Environment

v z/OS UNIX System Services Parallel Environment: Operation and

Use, SA22-7810

v z/OS UNIX System Services Parallel Environment: MPI

Programming and Subroutine Reference, SA22-7812

Performing diagnosis and submitting an

Authorized Program Analysis Report (APAR)

v z/OS XL C/C++ User’s Guide, SC09-4767

v CBC.SCCNDOC(APAR) on z/OS XL C/C++ product tape

Tuning Large C/C++ Applications on OS/390®

UNIX System Services

v IBM Redbook called Tuning Large C/C++ Applications on OS/390

UNIX System Services, which is available at:

www.redbooks.ibm.com/abstracts/sg245606.html

C/C++ Applications on z/OS and OS/390 UNIX v IBM Redbook called C/C++ Applications on z/OS and OS/390

UNIX, which is available at:

www.redbooks.ibm.com/abstracts/sg245992.html

Performance considerations for XPLINK v IBM Redbook called XPLink: OS/390 Extra Performance Linkage,

which is available at:

www.redbooks.ibm.com/abstracts/sg245991.html

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS XL C/C++ programs in

z/OS XL C/C++ User’s Guide.

Softcopy documents

The z/OS XL C/C++ publications are supplied in PDF and BookMaster® formats on

the following CD: z/OS Collection, SK3T-4269. They are also available at

www.ibm.com/software/awdtools/czos/library/.

To read a PDF file, use the Adobe Acrobat Reader. If you do not have the Adobe

Acrobat Reader, you can download it for free from the Adobe Web site at

www.adobe.com.

You can also browse the documents on the World Wide Web by visiting the z/OS

library at www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and

using BookManager®, see z/OS Information Roadmap.

Softcopy examples

Most of the larger examples in the following documents are available in

machine-readable form:

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Programming Guide, SC09-4765

x z/OS V1R7.0 XL C/C++ Messages

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.redbooks.ibm.com/abstracts/sg245606.html
http://www.redbooks.ibm.com/abstracts/sg245992.html
http://www.redbooks.ibm.com/abstracts/sg245991.html
http://www.ibm.com/software/awdtools/czos/library/
http://www.adobe.com
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

In the following documents, a label on an example indicates that the example is

distributed as a softcopy file:

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

The label is the name of a member in the data set CBC.SCCNSAM. The labels begin

with the form CCN or CLB. Examples labelled as CLB appear only in the z/OS XL

C/C++ User’s Guide, while examples labelled as CCN appear in all three

documents, and are further distinguished by x following CCN, where x represents

one of the following:

v R and X refer to z/OS XL C/C++ Language Reference, SC09-4815

v G refers to z/OS XL C/C++ Programming Guide, SC09-4765

v U refers to z/OS XL C/C++ User’s Guide, SC09-4767

z/OS XL C/C++ on the World Wide Web

Additional information on z/OS XL C/C++ is available on the World Wide Web on

the z/OS XL C/C++ home page at: www.ibm.com/software/awdtools/czos/

This page contains late-breaking information about the z/OS XL C/C++ product,

including the compiler, the class libraries, and utilities. There are links to other

useful information, such as the z/OS XL C/C++ information library and the libraries

of other z/OS elements that are available on the Web. The z/OS XL C/C++ home

page also contains links to other related Web sites.

Where to find more information

Please see z/OS Information Roadmap for an overview of the documentation

associated with z/OS, including the documentation available for z/OS Language

Environment.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message explanations

for z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux®:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System

Services).

v Your Microsoft® Windows® workstation. You can install code to access IBM

message explanations on the z/OS Collection (SK3T-4269), using LookAt from a

Microsoft Windows command prompt (also known as the DOS command line).

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt Web

site.

About this document xi

http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book may

refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. z/OS V1R4, V1R5, and V1R6

users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page

at http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Information updates on the web

For the latest information updates that have been provided in PTF cover letters and

Documentation APARs for z/OS and z/OS.e, see the online document at:

publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are

incorporated into z/OS publications.

xii z/OS V1R7.0 XL C/C++ Messages

http://www.ibm.com/servers/eserver/zseries/zos/downloads/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Summary of Changes

Summary of Changes

for GC09-4819-03

z/OS Version 1 Release 7

 This document contains information previously presented in z/OS C/C++ Messages,

GC09-4819-02, which supports z/OS Version 1 Release 2 through to, and including,

z/OS Version 1 Release 6.

 New Information

The following are new messages:

v CCN2497

v CCN3265

v CCN4137

v CCN4140

v CCN4197 to CCN4198

v CCN4230 to CCN4234

v CCN4254 to CCN4256

v CCN4266

v CCN4271

v CCN4278 to CCN4279

v CCN4307 to CCN4308

v CCN4312

v CCN4319 to CCN4320

v CCN4334

v CCN5052

v CCN5183

v CCN5312

v CCN5563

v CCN5886 to CCN5888

v CCN5901 to CCN5905

v CCN6086

v CCN6393

v CCN6644

v CCN7649 to CCN7650

v CCN8155

v CCN8429 to CCN8431

v CCN8611 to CCN8612

v CCN8614 to CCN8619

v CCN8621 to CCN8623

v CCN8739 to CCN8747

v CCN8889

v CCN8899 to CCN8902

v CCN8904 to CCN8912

v EDC5520

v EDC5521

v EDC5522

Changed Information

The following are changed messages:

v CCN0015

v CCN0460

© Copyright IBM Corp. 1996, 2005 xiii

v CCN0463

v CCN0624 to CCN0633

v CCN0635

v CCN0745

v CCN0750

v CCN0767 to CCN0768

v CCN0770

v CCN0795

v CCN1506

v CCN2013

v CCN2015

v CCN2030 to CCN2033

v CCN2125 to CCN2128

v CCN2250

v CCN3003

v CCN3009

v CCN3017

v CCN3043

v CCN3056

v CCN3070

v CCN3108

v CCN3159

v CCN3219

v CCN3264

v CCN3289

v CCN3398 to CCN3400

v CCN3555

v CCN3564 to CCN3565

v CCN3572 to CCN3573

v CCN3576

v CCN3600

v CCN3610

v CCN3671

v CCN3677 to CCN3680

v CCN3682 to CCN3683

v CCN3694

v CCN3729

v CCN3731

v CCN3740

v CCN3789

v CCN3937

v CCN3991

v CCN3995

v CCN3997

v CCN4119

v CCN5016

v CCN5020

v CCN5069

v CCN5079

v CCN5220

v CCN5246

v CCN5274

v CCN5284

v CCN5420 to CCN5421

v CCN5507

v CCN5523

xiv z/OS V1R7.0 XL C/C++ Messages

v CCN5534

v CCN5539

v CCN5601

v CCN5709

v CCN5724

v CCN6090

v CCN6128

v CCN6131

v CCN6197

v CCN6220

v CCN6271

v CCN6394

v CCN6405

v CCN6411 to CCN6412

v CCN6418

v CCN6461

v CCN6627

v CCN6639

v CCN6641

v CCN6645

v CCN7500 to CCN7504

v CCN7506 to CCN7509

v CCN7520

v CCN7599

v CCN7619

v CCN7639

v CCN7642

v CCN8125

v CCN8413

v CCN8707

v CCN8709 to CCN8713

v CCN8717 to CCN8719

v CCN8722 to CCN8725

v CCN8728

v CCN8731

v CCN8734 to CCN8735

v CCN8737

v CCN8802

v CCN8805

v CCN8846

v CCN8876 to CCN8884

v EDC5514

Deleted Information

The following are deleted messages:

v CCN3577

v CCN3871

v CCN3956 to CCN3960

v CCN3964

v CCN6648 to CCN6651

v CCN6669

v CCN6679

v CCN6681

v CCN6688 to CCN6692

v CCN6697

Summary of Changes xv

v CCN8420

v CCN8800 to CCN8801

v CCN8816 to CCN8818

xvi z/OS V1R7.0 XL C/C++ Messages

Chapter 1. About IBM z/OS XL C/C++

The C/C++ feature of the IBM z/OS licensed program provides support for C and

C++ application development on the z/OS platform.

z/OS XL C/C++ includes:

v A C compiler (referred to as the z/OS XL C compiler)

v A C++ compiler (referred to as the z/OS XL C++ compiler)

v Performance Analyzer host component, which supports the IBM C/C++

Productivity Tools for OS/390 product

v A set of utilities for C/C++ application development

Notes:

1. The Run-Time Library Extensions base element was introduced in z/OS V1R5.

It includes the Common Debug Architecture (CDA) Libraries, the c89 utility, and,

as of z/OS V1R6, the xlc utility. The Common Debug Architecture provides a

consistent and common format for debugging information across the various

languages and operating systems that are supported on the IBM eServer™

zSeries® platform. Run-Time Library Extensions also includes legacy libraries to

support existing programs. These are the UNIX System Laboratories (USL) I/O

Stream Library, USL Complex Mathematics Library, and IBM Open Class DLLs.

Application development using the IBM Open Class Library is not supported.

2. The Standard C++ Library is included with the Language Environment.

3. The z/OS XL C/C++ compiler works with the mainframe interactive Debug Tool

product.

IBM offers the C and C++ compilers on other platforms, such as the AIX, Linux,

OS/400®, z/VM and Mac OS X operating systems. The C compiler is also available

on the VSE/ESA platform.

Changes for z/OS V1R7

z/OS XL C/C++ has made the following performance and usability enhancements

for the V1R7 release:

C99 (ISO/IEC 9899:1999) standard

z/OS V1R7 XL C is designed to support the Programming

languages - C (ISO/IEC 9899:1999) standard. The c99 command is

used (through the xlc utility) to invoke the compiler.

New compiler suboptions

z/OS V1R7 XL C/C++ introduces the following new compiler

suboptions:

v ARCHITECTURE(7)

v LANGLVL(ANSISINIT)

v LANGLVL(EXTC89)

v LANGLVL(EXTC99)

v LANGLVL(STDC89)

v LANGLVL(STDC99)

v TARGET(zOSV1R7)

v TUNE(7)

Removal of OS/390 V2R10 C/C++ compiler

The OS/390 V2R10 C/C++ compiler is removed in z/OS V1R7.

© Copyright IBM Corp. 1996, 2005 1

|

|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

For z/OS V1R7, the Language Environment provides the following:

C99 (ISO/IEC 9899:1999) standard

z/OS XL C/C++ Run-Time Library is designed to support the latest

level of the C standard, including:

v Date and time enhancements

v Numeric conversion functions, including wide enhancements

v printf() and scanf(), including wide enhancements

v fwide()

For more information, see z/OS XL C/C++ Run-Time Library

Reference.

Hexadecimal floating point support for AMODE 64 C/C++ applications

z/OS XL C/C++ applications compiled using LP64 and FLOAT(HEX)

can use the z/OS XL C/C++ Run-Time Library math, numeric

conversion, and formatted I/O functions that work with float,

double, and long double data types. The initial C/C++ run-time

library for AMODE 64 applications on z/OS V1R6 provided floating

point support for applications compiled using FLOAT(IEEE). This new

support completes IBM’s planned floating point support within the

C/C++ run-time library for AMODE 64 C/C++ applications.

 For more information, see z/OS XL C/C++ Run-Time Library

Reference .

New SUSv3 APIs

Language Environment provides interfaces for

pthread_key_delete() and pthread_sigmask()

 For more information, see z/OS XL C/C++ Run-Time Library

Reference.

fork() in a multi-threaded environment

The fork() function is supported in a multi-threaded environment.

 For more information, see z/OS XL C/C++ Run-Time Library

Reference.

IPv6 advanced socket application programming interface (API) functions

support IPv6 support is provided for advanced socket APIs.

 For more information, see z/OS XL C/C++ Run-Time Library

Reference.

Large format data set support

Large format data sets are not supported except when reading a

large format sequential data set that has no more than 65535

tracks on the volume. For more information on large format data

support, see z/OS DFSMS Using Data Sets.

The XL C/C++ compilers

The following sections describe the C and C++ languages and the z/OS XL C/C++

compilers.

The C language

The C language is a general purpose, versatile, and functional programming

language that allows a programmer to create applications quickly and easily. C

2 z/OS V1R7.0 XL C/C++ Messages

|

|
|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
||

|
|

|
|
|
|
|

provides high-level control statements and data types as do other structured

programming languages. It also provides many of the benefits of a low-level

language.

The C++ language

The C++ language is based on the C language and includes all of the advantages

of C listed above. In addition, C++ also supports object-oriented concepts, generic

types or templates, and an extensive library. For a detailed description of the

differences between z/OS XL C++ and z/OS XL C, refer to z/OS XL C/C++

Language Reference.

The C++ language introduces classes, which are user-defined data types that may

contain data definitions and function definitions. You can use classes from

established class libraries, develop your own classes, or derive new classes from

existing classes by adding data descriptions and functions. New classes can inherit

properties from one or more classes. Not only do classes describe the data types

and functions available, but they can also hide (encapsulate) the implementation

details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access

control to data and functions, and better type checking and exception handling. It

also supports polymorphism and the overloading of operators.

Common features of the z/OS XL C and XL C++ compilers

The C and C++ compilers, when used with z/OS Language Environment, offer

many features to increase your productivity and improve program execution times:

v Optimization support:

– Extra Performance Linkage (XPLINK) function calling convention, which has

the potential for a significant performance increase when used in an

environment of frequent calls between small functions. XPLINK makes

subroutine calls more efficient by removing non-essential instructions from the

main path.

– Algorithms to take advantage of the z/Series architecture to achieve improved

optimization and memory usage through the OPTIMIZE and IPA compiler

options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the

machine instructions it generates to produce faster-running object code, which

improves application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across procedural and

compilation unit boundaries, thereby optimizing application performance at run

time.

– Additional optimization capabilities are available with the INLINE compiler

option.

v DLLs (dynamic link libraries) to share parts among applications or parts of

applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use

a definition located in another executable at run time.

You can use DLLs to split applications into smaller modules and improve system

memory usage. DLLs also offer more flexibility for building, packaging, and

redistributing applications.

v Full program reentrancy

Chapter 1. About IBM z/OS XL C/C++ 3

|

|
|
|
|
|

|
|

|
|

With reentrancy, many users can simultaneously run a program. A reentrant

program uses less storage if it is stored in the LPA (link pack area) or ELPA

(extended link pack area) and simultaneously run by multiple users. It also

reduces processor I/O when the program starts up, and improves program

performance by reducing the transfer of data to auxiliary storage. z/OS XL C

programmers can design programs that are naturally reentrant. For those

programs that are not naturally reentrant, z/OS XL C programmers can use

constructed reentrancy. To do this, compile programs with the RENT option and

use the program management binder supplied with z/OS or the z/OS Language

Environment prelinker and program management binder. The z/OS XL C++

compiler always uses the constructed reentrancy algorithms.

v Locale-based internationalization support derived from IEEE POSIX 1003.2-1992

standard. Also derived from X/Open CAE Specification, System Interface

Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to use

locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,

PL/1, compiled Java™, and Fortran, to enable programmers to integrate z/OS XL

C/C++ code with existing applications.

v Exploitation of z/OS and z/OS UNIX System Services technology.

z/OS UNIX System Services is an IBM implementation of the open operating

system environment, as defined in the XPG4 and POSIX standards.

v Support for the following standards at the system level:

– A subset of ISO/IEC 9899:1999

– ISO/IEC 9945-1:1990 (POSIX-1)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX

committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), as applicable to the S/390® environment.

– X/Open CAE Specification, Networking Services, Issue 4

v Support for the Euro currency

z/OS XL C compiler specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C

compiler provides you with the following capabilities:

v The ability to write portable code that supports the following standards:

– ISO/IEC 9899:1999

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Languages, Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use z/OS XL C in place of

assembler

v Extensions of the standard definitions of the C language to provide programmers

with support for the z/OS environment, such as fixed-point (packed) decimal data

support

4 z/OS V1R7.0 XL C/C++ Messages

|

|

|

z/OS XL C++ compiler specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C++

compiler supports the Programming languages - C++ (ISO/IEC 14882:1998)

standard. Also, it further conforms to the Programming languages - C++ (ISO/IEC

14882:2003(E)) standard, which incorporates the latest Technical Corrigendum 1.

Class libraries

z/OS V1R7 XL C/C++ uses the following thread-safe class libraries:

v Standard C++ Library, including the Standard Template Library (STL), and other

library features of Programming languages - C++ (ISO/IEC 14882:1998) and

Programming languages - C++ (ISO/IEC 14882:2003(E)).

v UNIX System Laboratories (USL) C++ Language System Release I/O Stream

and Complex Mathematics Class Libraries

Note: Starting with z/OS V1R5, all application development using the C/C++ IBM

Open Class Library (Application Support Class and Collection Class

Libraries) is not supported. Run-time support for the execution of existing

applications, which use the IBM Open Class, is provided with z/OS V1R7 but

is planned to be removed in a future release. For additional information, see

IBM Open Class Library Transition Guide.

For new code and enhancements to existing applications, the Standard C++ Library

should be used. The Standard C++ Library includes the following:

v Stream classes for performing input and output (I/O) operations

v The Standard C++ Complex Mathematics Library for manipulating complex

numbers

v The Standard Template Library (STL) which is composed of C++ template-based

algorithms, container classes, iterators, localization objects, and the string class

Utilities

The z/OS XL C/C++ compilers provide the following utilities:

v The xlc utility to invoke the compiler using a customizable configuration file.

v The c89 utility to invoke the compiler using host environment variables.

v The CXXFILT utility to map z/OS XL C++ mangled names to their original function

names.

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into

z/OS XL C/C++ data structures.

v The makedepend utility to derive all dependencies in the source code and write

these into the makefile for the make command to determine which source files to

recompile, whenever a dependency has changed. This frees the user from

manually monitoring such changes in the source code.

z/OS Language Environment provides the following utilities:

v The Object Library Utility (C370LIB; also known as EDCALIAS) to update

partitioned data set (PDS and PDSE) libraries of object modules. The Object

Library Utility supports XPLINK, IPA, and LP64 compiled objects.

v The prelinker which combines object modules that comprise a z/OS XL C/C++

application to produce a single object module. The prelinker supports only object

and extended object format input files, and does not support GOFF.

Chapter 1. About IBM z/OS XL C/C++ 5

|
|
|
|

|

|
|
|

|
|

|
|

dbx

You can use the dbx shell command to debug programs, as described in z/OS UNIX

System Services Command Reference.

Please refer to www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html for

further information on dbx.

z/OS Language Environment

z/OS XL C/C++ exploits the C/C++ run-time environment and library of run-time

services available with z/OS Language Environment (formerly OS/390 Language

Environment, Language Environment for MVS™ & VM, Language Environment/370

and LE/370).

z/OS Language Environment consists of four language-specific run-time libraries,

and Base Routines and Common Services, as shown below. z/OS Language

Environment establishes a common run-time environment and common run-time

services for language products, user programs, and other products.

The common execution environment is composed of data items and services that

are included in library routines available to an application that runs in the

environment. The z/OS Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These

include support for the initialization and termination of applications, allocation of

storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. z/OS XL C/C++

contains these functions within a library of callable routines, and includes

interfaces to operating system functions and a variety of other commonly used

functions.

v Run-time options that help in the execution, performance, and diagnosis of your

application.

v Access to operating system services; z/OS UNIX System Services are available

to an application programmer or program through the z/OS XL C/C++ language

bindings.

v Access to language-specific library routines, such as the z/OS XL C/C++ library

functions.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in z/OS Language Environment

6 z/OS V1R7.0 XL C/C++ Messages

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html

Note: The z/OS Language Environment run-time option TRAP(ON) should be set

when using z/OS XL C/C++. Refer to z/OS Language Environment

Programming Reference for details on the z/OS Language Environment

run-time options.

z/OS Language Environment downward compatibility

z/OS Language Environment provides downward compatibility support. Assuming

that you have met the required programming guidelines and restrictions, described

in z/OS Language Environment Programming Guide, this support enables you to

develop applications on higher release levels of z/OS for use on platforms that are

running lower release levels of z/OS. In XL C and XL C++, downward compatibility

support is provided through the XL C/C++ TARGET compiler option. See TARGET in

z/OS XL C/C++ User’s Guide for details on this compiler option.

For example, a company may use z/OS V1R7 with Language Environment on a

development system where applications are coded, link-edited, and tested, while

using any supported lower release of z/OS Language Environment on their

production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases

of the operating system. Applications developed that exploit the downward

compatibility support must not use any Language Environment function that is

unavailable on the lower release of z/OS where the application will be used.

The downward compatibility support includes toleration PTFs for lower releases of

z/OS to assist in diagnosing applications that do not meet the programming

requirements for this support. (Specific PTF numbers can be found in the PSP

buckets.)

The diagnosis assistance that will be provided by the toleration PTFs includes

detection of an unsupported program object format. If the program object format is

at a level which is not supported by the target deployment system, then the

deployment system will produce an abend when trying to load the application

program. The abend will indicate that DFSMS was unable to find or load the

application program. Correcting this problem does not require the installation of any

toleration PTFs. Instead, the application developer will need to recreate the program

object which is compatible with the older deployment system.

The downward compatibility support provided by z/OS Language Environment and

by the toleration PTFs does not change Language Environment’s upward

compatibility. That is, applications coded and link-edited with one release of z/OS

Language Environment will continue to run on later releases of z/OS Language

Environment without the need to recompile or re-link edit the application,

independent of the downward compatibility support.

The current z/OS level header files and SYSLIB can be used (the user no longer has

to copy header files and SYSLIB data sets from the deployment release).

Note: As of z/OS V1R3, the executables produced with the binder’s

COMPAT=CURRENT setting will not run on lower levels of z/OS. You will have to

explicitly override to a particular program object level, or use the COMPAT=MIN

setting introduced in z/OS V1R3.

Chapter 1. About IBM z/OS XL C/C++ 7

About prelinking, linking, and binding

When describing the process to build an application, this document refers to the

bind step.

Normally, the program management binder is used to perform the bind step.

However, in many cases the prelink and link steps can be used in place of the bind

step. When they cannot be substituted, and the program management binder alone

must be used, it will be stated. For more information, refer to Prelinking and linking

z/OS XL C/C++ programs and Binding z/OS XL C/C++ programs in z/OS XL C/C++

User’s Guide.

The terms bind and link have multiple meanings.

v With respect to building an application:

In both instances, the program management binder is performing the actual

processing of converting the object file(s) into the application executable module.

Object files with longname symbols, reentrant writable static symbols, and

DLL-style function calls require additional processing to build global data for the

application.

The term link refers to the case where the binder does not perform this additional

processing, due to one of the following:

– The processing is not required, because none of the object files in the

application use constructed reentrancy, use long names, are DLL or are C++.

– The processing is handled by executing the prelinker step before running the

binder.

The term bind refers to the case where the binder is required to perform this

processing.

v With respect to executing code in an application:

The linkage definition refers to the program call linkage between program

functions and methods. This includes the passing of control and parameters.

Refer to Program Linkage in z/OS XL C/C++ Language Reference for more

information on linkage specification.

Some platforms have a single linkage convention. z/OS has a number of linkage

conventions, including standard operating system linkage, Extra Performance

Linkage (XPLINK), and different non-XPLINK linkage conventions for C and C++.

Notes on the prelinking process

Note that you cannot use the prelinker if you are using the XPLINK, GOFF, or LP64

compiler options. Also, IBM recommends using the binder instead of the prelinker

whenever possible.

The prelinker was designed to process long names and support constructed

reentrancy in earlier versions of the C complier on the MVS and OS/390 operating

systems. The prelinker, shipped with the z/OS XL C/C++ Run-Time Library, provides

output that is compatible with the linkage editor, that is shipped with the binder.

The binder is designed to include the function of the prelinker, the linkage editor, the

loader, and a number of APIs to manipulate the program object. Thus, the binder is

a superset of the linkage editor. Its functionality provides a high level of compatibility

with the prelinker and linkage editor, but provides additional functionality in some

areas. Generally, the terms binding and linking are interchangeable. In particular,

the binder supports:

v Inputs from the object module

8 z/OS V1R7.0 XL C/C++ Messages

v XOBJ, GOFF, load module and program object

v Auto call resolutions from HFS archives and C370LIB object directories

v Long external names

v All prelinker control statements

Note: You need to use the binder for 64-bit objects.

For more information on the compatibility between the binder, and the linker and

prelinker, see z/OS MVS Program Management: User’s Guide and Reference.

Updates to the prelinking, linkage-editing, and loading functions that are performed

by the binder are delivered through the binder. If you use the prelinker shipped with

the z/OS XL C/C++ Run-Time Library and the linkage editor (supplied through the

binder), you have to apply the latest maintenance for the run-time library as well as

the binder.

If you still need to use the prelinker and linkage editor, see Prelinker and linkage

editor options in z/OS XL C/C++ User’s Guide.

File format considerations

You can use the binder in place of the prelinker and linkage editor but there are

exceptions, which are file format considerations. For further information, on when

you cannot use the binder, see Binding z/OS XL C/C++ programs in z/OS XL

C/C++ User’s Guide.

The program management binder

The binder provided with z/OS combines the object modules, load modules, and

program objects comprising an application. It produces a single z/OS output

program object or load module that you can load for execution. The binder supports

all C and C++ code, provided that you store the output program in a PDSE

(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++

code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA compiler

options, you must use the prelinker. C and C++ code compiled with the GOFF or

XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the

IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:

– Long names do not get converted into prelinker generated names

– Long names appear in the binder maps, enabling full cross-referencing

– Variables do not disappear after prelink

– Fewer steps in the process of producing your executable program

The prelinker provided with z/OS Language Environment combines the object

modules comprising a z/OS XL C/C++ application and produces a single object

module. You can link-edit the object module into a load module (which is stored in a

PDS), or bind it into a load module or a program object (which is stored in a PDS,

PDSE, or HFS file).

Chapter 1. About IBM z/OS XL C/C++ 9

z/OS UNIX System Services

z/OS UNIX System Services provides capabilities under z/OS to make it easier to

implement or port applications in an open, distributed environment. z/OS UNIX

System Services are available to z/OS XL C/C++ application programs through the

C/C++ language bindings available with z/OS Language Environment.

Together, the z/OS UNIX System Services, z/OS Language Environment, and z/OS

XL C/C++ compilers provide an application programming interface that supports

industry standards.

z/OS UNIX System Services provides support for both existing z/OS applications

and new z/OS UNIX System Services applications through the following:

v C programming language support as defined by ISO C

v C++ programming language support as defined by ISO C++

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;

subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:

System Interfaces and Headers, Issue 4, Version 2, which provides standard

interfaces for better source code portability with other conforming systems; and

X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open

UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v z/OS UNIX System Services extensions that provide z/OS-specific support

beyond the defined standards

v The z/OS UNIX System Services Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, based on the C shell, csh

– Tools and utilities that support the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide

z/OS support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,

scripts, or z/OS XL C/C++ executable files in HFS files from a

shell session

c89 Uses host environment variables to compile, assemble, and

bind z/OS UNIX System Services C/C++ and assembler

applications

dbx Provides an environment to debug and run programs

gencat Merges the message text source files (usually *.msg) into a

formatted message catalog file (usually *.cat)

iconv Converts characters from one code set to another

lex Automatically writes large parts of a lexical analyzer based on

a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects containing a set of interdependent

files, such as a program with many z/OS source and object

files, keeping all such files up to date with one another

xlc Allows you to invoke the compiler using a customizable

configuration file

10 z/OS V1R7.0 XL C/C++ Messages

yacc Allows you to write compilers and other programs that parse

input according to strict grammar rules

– Support for other utilities such as:

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

mkcatdefs Preprocesses a message source file for input to the gencat

utility

runcat Invokes mkcatdefs and pipes the message catalog source

data (the output from mkcatdefs) to gencat

v Access to a hierarchical file system (HFS), with support for the POSIX.1 and

XPG4 standards

v Access to zSeries File System (zFS), which provides performance improvements

over HFS

v z/OS XL C/C++ I/O routines, which support using HFS files, standard z/OS data

sets, or a mixture of both

v Application threads (with support for a subset of POSIX.4a)

v Support for z/OS XL C/C++ DLLs

z/OS UNIX System Services offers program portability across multivendor operating

systems, with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft

6), and XPG4.2.

For application developers who have worked with other UNIX environments, the

z/OS UNIX System Services Shell and Utilities are a familiar environment for XL

C/C++ application development. If you are familiar with existing MVS development

environments, you may find that the z/OS UNIX System Services environment can

enhance your productivity. Refer to z/OS UNIX System Services User’s Guide for

more information on the Shell and Utilities.

z/OS XL C/C++ applications with z/OS UNIX System Services C

functions

All z/OS UNIX System Services C functions are available at all times. In some

situations, you must specify the POSIX(ON) run-time option. This is required for the

POSIX.4a threading functions, POSIX system(), and signal handling functions

where the behavior is different between POSIX/XPG4 and ISO. Refer to z/OS XL

C/C++ Run-Time Library Reference for more information about requirements for

each function.

You can invoke a z/OS XL C/C++ program that uses z/OS UNIX System Services C

functions using the following methods:

v Directly from a shell.

v From another program, or from a shell, using one of the exec family of functions,

or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time

option.

Chapter 1. About IBM z/OS XL C/C++ 11

Input and output

The z/OS XL C/C++ Run-Time Library that supports the z/OS XL C/C++ compiler

supports different input and output (I/O) interfaces, file types, and access methods.

The Standard C++ Library provides additional support.

I/O interfaces

The z/OS XL C/C++ Run-Time Library supports the following I/O interfaces:

C Stream I/O

This is the default and the ISO-defined I/O method. This method processes

all input and output on a per-character basis.

Record I/O

The library can also process your input and output by record. A record is a

set of data that is treated as a unit. It can also process VSAM data sets by

record. Record I/O is a z/OS XL C/C++ extension to the ISO standard.

TCP/IP Sockets I/O

z/OS UNIX System Services provides support for an enhanced version of

an industry-accepted protocol for client/server communication that is known

as sockets. A set of C language functions provides support for z/OS UNIX

System Services sockets. z/OS UNIX System Services sockets correspond

closely to the sockets used by UNIX applications that use the Berkeley

Software Distribution (BSD) 4.3 standard (also known as Berkeley sockets).

The slightly different interface of the X/Open CAE Specification, Networking

Services, Issue 4, is supplied as an additional choice. This interface is

known as X/Open Sockets.

 The z/OS UNIX System Services socket application program interface (API)

provides support for both UNIX domain sockets and Internet domain

sockets. UNIX domain sockets, or local sockets, allow interprocess

communication within z/OS, independent of TCP/IP. Local sockets behave

like traditional UNIX sockets and allow processes to communicate with one

another on a single system. With Internet sockets, application programs can

communicate with each other in the network using TCP/IP.

In addition, the Standard C++ Library provides stream classes, which support

formatted I/O in C++. You can code sophisticated I/O statements easily and clearly,

and define input and output for your own data types. This helps improve the

maintainability of programs that use input and output.

File types

In addition to conventional files, such as sequential files and partitioned data sets,

the z/OS XL C/C++ Run-Time Library supports the following file types:

Virtual Storage Access Method (VSAM) data sets

z/OS XL C/C++ has native support for three types of VSAM data

organization:

v Key-Sequenced Data Sets (KSDS). Use KSDS to access a record

through a key within the record. A key is one or more consecutive

characters that are taken from a data record that identifies the record.

v Entry-Sequenced Data Sets (ESDS). Use ESDS to access data in the

order it was created (or in reverse order).

v Relative-Record Data Sets (RRDS). Use RRDS for data in which each

item has a particular number (for example, a telephone system where a

record is associated with each telephone number).

12 z/OS V1R7.0 XL C/C++ Messages

For more information on how to perform I/O operations on these VSAM file

types, see Performing VSAM I/O operations in z/OS XL C/C++

Programming Guide.

Hierarchical File System files

z/OS XL C/C++ recognizes Hierarchical File System (HFS) file names. The

name specified on the fopen() or freopen() call has to conform to certain

rules. See Opening Files in z/OS XL C/C++ Programming Guide for the

details of these rules. You can create regular HFS files, special character

HFS files, or FIFO HFS files. You can also create links or directories.

Memory files

Memory files are temporary files that reside in memory. For improved

performance, you can direct input and output to memory files rather than to

devices. Since memory files reside in main storage and only exist while the

program is executing, you primarily use them as work files. You can access

memory files across load modules through calls to non-POSIX system()

and C fetch(); they exist for the life of the root program. Standard streams

can be redirected to memory files on a non-POSIX system() call using

command line redirection.

Hiperspace™ expanded storage

Large memory files can be placed in Hiperspace expanded storage to free

up some of your home address space for other uses. Hiperspace expanded

storage or high performance space is a range of up to 2 GB of contiguous

virtual storage space. A program can use this storage as a buffer

(1 gigabyte(GB) = 230 bytes).

zSeries File System

zSeries File System (zFS) is a z/OS UNIX file system that can be used in

addition to the Hierarchical File System (HFS). zFS provides performance

gains in accessing files that are frequently accessed and updated. The I/O

functions in the z/OS XL C/C++ Run-Time Library support zFS.

Additional I/O features

z/OS XL C/C++ provides additional I/O support through the following features:

v Large file support, which enables I/O to and from Hierarchical File System (HFS)

files that are larger than 2 GB (see large file support in z/OS XL C/C++

Language Reference)

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the

DFSMS support for 31-bit sequential data buffers and sequential data striping on

extended format data sets

v Full support of PDSEs on z/OS (including support for multiple members opened

for write)

v Overlapped I/O support under z/OS (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD

or tape

v Support for Generation Data Group I/O

Chapter 1. About IBM z/OS XL C/C++ 13

The System Programming C facility

The System Programming C (SPC) facility allows you to build applications that

require no dynamic loading of z/OS Language Environment libraries. It also allows

you to tailor your application for better utilization of the low-level services available

on your operating system. SPC offers a number of advantages:

v You can develop applications that can be executed in a customized environment

rather than with z/OS Language Environment services. Note that if you do not

use z/OS Language Environment services, only some built-in functions and a

limited set of z/OS XL C/C++ Run-Time Library functions are available to you.

v You can substitute the z/OS XL C language in place of assembler language

when writing system exit routines, by using the interfaces that are provided by

SPC.

v SPC lets you develop applications featuring a user-controlled environment, in

which a z/OS XL C environment is created once and used repeatedly for C

function execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application

service routines. In this model, the application calls on the service routine to

perform services independent of the user. The application is then suspended

when control is returned to the user application.

Interaction with other IBM products

When you use z/OS XL C/C++, you can write programs that utilize the power of

other IBM products and subsystems:

v CICS Transaction Server for z/OS

You can use the CICS Command-Level Interface to write C/C++ application

programs. The CICS Command-Level Interface provides data, job, and task

management facilities that are normally provided by the operating system.

v DB2 Universal Database™ (UDB) for z/OS

DB2 programs manage data that is stored in relational databases. You can

access the data by using a structured set of queries that are written in Structured

Query Language (SQL).

A DB2 program uses SQL statements that are embedded in the application

program. The SQL translator (DB2 preprocessor) translates the embedded SQL

into host language statements, which are then compiled by the z/OS XL C/C++

compilers. Alternatively, use the SQL compiler option to compile a DB2 program

with embedded SQL without using the DB2 preprocessor. The DB2 program

processes requests, then returns control to the application program.

v Debug Tool

z/OS XL C/C++ supports program development by using the Debug Tool. This

tool allows you to debug applications in their native host environment, such as

CICS Transaction Server for z/OS, IMS, and DB2. Debug Tool provides the

following support and function:

– Step mode

– Breakpoints

– Monitor

– Frequency analysis

– Dynamic patching

You can record the debug session in a log file, and replay the session. You can

also use Debug Tool to help capture test cases for future program validation, or

to further isolate a problem within an application.

14 z/OS V1R7.0 XL C/C++ Messages

|

|

|

You can specify either data sets or Hierarchical File System (HFS) files as source

files.

For further information, see www.ibm.com/software/awdtools/debugtool/.

v IBM C/C++ Productivity Tools for OS/390

Note: Starting with z/OS V1R5, both the C/C++ compiler optional feature and

the Debug Tool product will need to be installed if you wish to use IBM

C/C++ Productivity Tools for OS/390. For more information on Debug Tool,

refer to www.ibm.com/software/awdtools/debugtool/.

With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your

z/OS application development environment out to the workstation, while

remaining close to your familiar host environment. IBM C/C++ Productivity Tools

for OS/390 includes the following workstation-based tools to increase your

productivity and code quality:

– A Performance Analyzer to help you analyze, understand, and tune your C

and C++ applications for improved performance

– A Distributed Debugger that allows you to debug C or C++ programs from the

convenience of the workstation

– A workstation-based editor to improve the productivity of your C and C++

source entry

– Advanced online help, with full text search and hypertext topics as well as

printable, viewable, and searchable Portable Document Format (PDF)

documents

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host

components:

– Debug Tool

– Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and

analyze a profile of the execution of your host z/OS XL C or C++ application. Use

this information to time and tune your code so that you can increase the

performance of your application.

Use the Distributed Debugger to debug your z/OS XL C or C++ application

remotely from your workstation. Set a breakpoint with the simple click of the

mouse. Use the windowing capabilities of your workstation to view multiple

segments of your source and your storage, while monitoring a variable at the

same time.

Use the workstation-based editor to quickly develop C and C++ application code

that runs on z/OS. Context-sensitive help information is available to you when

you need it.

References to Performance Analyzer in this document refer to the IBM OS/390

Performance Analyzer included in the C/C++ Productivity Tools for OS/390

product.

v Fault Analyzer for z/OS

The IBM Fault Analyzer helps developers analyze and fix application and system

failures. It gathers information about an application and the surrounding

environment at the time of the abend, providing the developer with valuable

information needed for developing and testing new and existing applications. For

more information, please refer to: www.ibm.com/software/awdtools/faultanalyzer/

v Application Monitor for z/OS

The IBM Application Monitor provides resource utilization information for your

applications. This resource information can be the current system data (online

Chapter 1. About IBM z/OS XL C/C++ 15

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/faultanalyzer/

analysis) or data collected over a certain time period (historical analysis). It helps

you to isolate performance problems in applications, improve response time in

online transactions and improve batch turnaround time. It also collects samples

from the monitored address space and analyzes the system or resource

application. For more information please refer to:

www.ibm.com/software/awdtools/applicationmonitor/

v Software Configuration and Library Manager facility (SCLM)

The ISPF Software Configuration and Library Manager facility (SCLM) maintains

information about the source code, objects and load modules. It also keeps track

of other relationships in your application, such as test cases, JCL, and

publications. The SCLM Build function translates input to output, managing not

only compilation and linking, but all associating processes required to build an

application. This facility helps to ensure that your production load modules match

the source in your production source libraries.

v Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print

applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts (including support for the double-byte character set)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)

z/OS XL C supports the Query Management Facility (QMF), a query and report

writing facility, which allows you to write applications through a callable interface.

You can create applications to perform a variety of tasks, such as data entry,

query building, administration aids, and report analysis.

v z/OS Java Support

The Java language supports the Java Native Interface (JNI) for making calls to

and from C/C++. These calls do not use ILC support but rather the Java defined

JNI, which is supported by both compiled and interpreted Java code. Calls to C

or C++ do not distinguish between these two.

Additional features of z/OS XL C/C++

 Feature Description

long long Data Type The z/OS XL C/C++ compiler supports long long as a native data type when the

compiler option LANGLVL(LONGLONG) is turned on. This option is turned on by default by

the compiler option LANGLVL(EXTENDED). As of z/OS V1R7, the XL C compiler supports

long long as a native data type (according to the ISO/IEC 9899:1999 standard), when

the LANGLVL(STDC99) option or LANGLVL(EXTC99) option is in effect.

Multibyte Character Support z/OS XL C/C++ supports multibyte characters for those national languages such as

Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by z/OS XL C library functions and encoded in

units of one length. These normalized characters are called wide characters.

Conversions between multibyte and wide characters can be performed by string

conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),

as well as the family of wide-character I/O functions. Wide-character data can be

represented by the wchar_t data type.

16 z/OS V1R7.0 XL C/C++ Messages

|
|
|

http://www.ibm.com/software/awdtools/applicationmonitor/

Feature Description

Extended Precision

Floating-Point Numbers

z/OS XL C/C++ provides three S/390 floating-point number data types: single precision

(32 bits), declared as float; double precision (64 bits), declared as double; and

extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical

calculations.

As of OS/390 V2R6, C/C+ also supports IEEE 754 floating-point representation. By

default, float, double, and long double values are represented in IBM S/390 floating

point format. However, the IEEE 754 floating-point representation is used if you specify

the FLOAT(IEEE754) compiler option. For details on this support, see the description of

the FLOAT option in z/OS XL C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command

line or when calling programs using the system() function.

National Language Support z/OS XL C/C++ provides message text in either American English or Japanese. You

can dynamically switch between these two languages.

Coded Character Set (Code

Page) Support

The z/OS XL C/C++ compiler can compile C/C++ source written in different EBCDIC

code pages. In addition, the iconv utility converts data or source from one code page to

another.

Selected Built-in Library

Functions

For selected library functions, the compiler generates an instruction sequence directly

into the object code during optimization to improve execution performance. String and

character functions are examples of these built-in functions. No actual calls to the

library are generated when built-in functions are used.

Multi-threading Threads are efficient in applications that allow them to take advantage of any

underlying parallelism available in the host environment. This underlying parallelism in

the host can be exploited either by forking a process and creating a new address

space, or by using multiple threads within a single process. For more information, refer

to Using Threads in z/OS UNIX Applications in z/OS XL C/C++ Programming Guide.

Packed Structures and

Unions

z/OS XL C provides support for packed structures and unions. Structures and unions

may be packed to reduce the storage requirements of a z/OS XL C program or to

define structures that are laid out according to COBOL or PL/I structure alignment rules.

Fixed-point (Packed)

Decimal Data

z/OS XL C supports fixed-point (packed) decimal as a native data type for use in

business applications. The packed data type is similar to the COBOL data type COMP-3

or the PL/I data type FIXED DEC, with up to 31 digits of precision.

Long Name Support For portability, external names can be mixed case and up to 32 K - 1 characters in

length. For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under

z/OS, z/OS UNIX System Services, and TSO. You can also use the system() function

to call EXECs on z/OS and TSO, or Shell scripts using z/OS UNIX System Services.

Exploitation of Hardware Use the ARCHITECTURE compiler option to select the minimum level of machine

architecture on which your program will run. Note that certain features provided by the

compiler require a minimum architecture level. The highest level currently supported is

ARCH(6), which exploits instructions available on model 2084-xxx (z/900) in

z/Architecture™ mode. For more information, refer to the ARCHITECTURE compiler option

in z/OS XL C/C++ User’s Guide.

Use the TUNE compiler option to optimize your application for a specific machine

architecture within the constraints imposed by the ARCHITECTURE option. The TUNE level

must not be lower than the setting in the ARCHITECTURE option. For more information,

refer to the TUNE compiler option in z/OS XL C/C++ User’s Guide.

Built-in Functions for

Floating-Point and Other

Hardware Instructions

Use built-in functions for floating-point and other hardware instructions that are

otherwise inaccessible to XL C/C++ programs. For more information, see the appendix

on built-in functions in z/OS XL C/C++ Programming Guide.

Chapter 1. About IBM z/OS XL C/C++ 17

18 z/OS V1R7.0 XL C/C++ Messages

Chapter 2. z/OS XL C/C++ Compiler Return Codes and

Messages

This chapter contains information about the compiler messages and should not be

used as programming interface information.

Return Codes

For every compilation job or job step, the compiler generates a return code that

indicates to the operating system the degree of success or failure it achieved:

 Table 3. Return Codes from Compilation of a z/OS XL C/C++ Program

Return Code Type of Error Detected Compilation Result

0 No error detected; informational

messages may have been

issued.

Compilation completed.

Successful execution

anticipated.

4 Warning error detected. Compilation completed.

Execution may not be

successful.

8 Error detected. Compilation may have been

completed. Successful

execution not possible.

12 Severe error detected. Compilation may have been

completed. Successful

execution not possible.

16 Terminating error detected. Compilation terminated

abnormally. Successful

execution not possible.

33 A library level prior to z/OS

Language Environment V1R7

was used.

Compilation terminated

abnormally. Successful

execution not possible.

The return code indicates the highest possible error severity that the compiler

detected. Therefore, a particular entry under the Types of Error column includes all

error types above it. For example, return code 12 indicates that the compiler has

issued a Severe Error and may have also issued any combination of Error,

Warning, and Informational messages. But it does not necessarily mean that all

these error types are present in that particular compile.

Compiler Messages

Message Format: CCNnnnn text <&n> or CCNnnnn text <&n$s> where:

nnnn error message number

text message which appears on the screen

&n or &n$s

compiler substitution variable

CCN0008 Source file &1 cannot be opened.

Where: &1 is a file name, enclosed in quotes or angle

brackets as specified in the corresponding ″include″

directive.

Explanation: The compiler could not open the

specified source file.

© Copyright IBM Corp. 1996, 2005 19

|

|

User Response: Ensure the source file name is

correct. Ensure that the correct file is being read and

has not been corrupted. If the file is located on a LAN

drive, ensure the LAN is working properly. Also, the file

may be locked by another process or access may be

denied because of insufficient permission.

CCN0015 The compiler could not open the

output file ″&1″.

Where: &1 is a file name.

Explanation: The compiler could not open the

specified output file.

User Response: Ensure the output file name is

correct. Also, ensure that the location of the output file

has sufficient storage available. If using a LAN drive,

ensure that the LAN is working properly and you have

permission to write to the disk.

CCN0049 The option ″&1″ is not supported.

Where: &1 is an option

Explanation: The command line contained an option

that is not supported. Note that some option parameters

must not have spaces between the option and the

parameter.

User Response: Remove the option. Check the

syntax of the options.

CCN0358 The ″&1″ option is not allowed with the

″&2″ option.

Where: &1 and &2 are both option names.

Explanation: The specified options cannot be used

together. The first option specified in the message is

ignored.

User Response: Remove one of the options.

CCN0459 An incomplete compile option for ″&1″

has been specified. ″&2″ was expected.

Where: &1 is the option name. &2 is the token that

was missing

Explanation: The command line contained an

incomplete option. The message identifies what the

compiler expected and what it actually found.

User Response: Complete the compile option.

CCN0460 Negative form of option ″&1″ is not

allowed.

Where: &1 is the option name.

Explanation: Specified option is not allowed in

negative form.

User Response: Remove the option or change it to

the positive form.

CCN0461 ″&1″ is not a valid sub-option for ″&2″.

Option is ignored.

Where: &1 is the option name.

Explanation: The command line contained an option

with an invalid sub-option.

User Response: Remove the sub-option.

CCN0462 ″&1″ must have a sub-option specified.

Where: &1 is the option name.

Explanation: The command line contained an option

that was missing a suboption.

User Response: Specify a sub-option.

CCN0463 Sub-option is not allowed in ″&1″

option.

Where: &1 is the option name.

Explanation: Sub-option is not allowed in the specified

option.

User Response: Remove the sub-option.

CCN0464 ″&1″ requires exactly ″&2″

sub-option(s) to be specified. ″&3″

were given.

Where: &1 is the option name. &2 is the number of

options expected.

Explanation: The command line contained an option

that had an incorrect number of sub-options specified.

The message identifies the number of sub-options the

compiler expected and the number it actually found.

User Response: Ensure the correct number of

sub-option(s) are given.

CCN0465 ″&1″ requires at most ″&2″

sub-option(s) to be specified. ″&3″

were given.

Where: &1 is the option name. &2 is the number of

options expected.

Explanation: The command line contained an option

that more sub-options than is allowed for this options.

The message identifies the most number of sub-options

the compiler expected and the number it actually found.

User Response: Ensure the maximum number of

sub-options is not exceeded.

20 z/OS V1R7.0 XL C/C++ Messages

||
|

|

|
|

|
|
|
|
|

||
|

|

|
|

 |
 |

 | |
 |

 |

 |
 |

 |

CCN0466 ″&1″ requires at least ″&2″

sub-option(s) to be specified. ″&3″

were given.

Where: &1 is the option name. &2 is the number of

options expected.

Explanation: The command line contained an option

that fewer sub-options than is allowed for this options.

The message identifies the least number of sub-options

the compiler expected and the number it actually found.

User Response: Ensure the minimum number of

sub-options are specified.

CCN0569 Option ″&1″ is not supported for &2.

Explanation: The option is not supported by this

compiler.

User Response: Remove the option.

CCN0611 Unable to access options file &1.

Where: &1 is the options file name specified on

OPTFILE option.

Explanation: The compiler could not access the

specified options file. It was either unable to open it or

unable to read it.

User Response: Ensure the options file name and

other specifications are correct. Ensure that the access

authority is sufficient. Ensure that the file being

accessed has not been corrupted.

CCN0612 Option &1 specified in an options file

is ignored.

Where: &1 is an option name specified in the options

file.

Explanation: Option &1 is not allowed in an options

file.

User Response: Remove the &1 option from the

options file. Option OPTFILE can not be nested.

CCN0613 The continuation character on the last

line of the options file &1 is ignored.

Explanation: The continuation character on the last

line of a file is useless.

User Response: Remove the continuation character

on the last line of the options file. Make sure that it is

not a typo for something else.

CCN0614 Macro name ″&1″ contains characters

not valid on the ″&2″ option.

Where: &1 is the invalid macro name and &2 is the

option name.

Explanation: Macro names can contain only

alphanumeric characters and the underscore character

and must not begin with a numeric character.

User Response: Change the macro name.

CCN0615 Semantic function for processing ″&1″

option is missing.

Where: &1 is the option name.

Explanation: Option &1 cannot be processed because

its semantic function is missing.

User Response: Provide the option semantic function.

CCN0623 Option ″&1″ ignored because option

″&2″ specified.

Explanation: Specifying the second option indicated

means the first has no effect.

User Response: Remove one of the options.

CCN0624 &1 is not a valid dataset name.

Explanation: The dataset name is not valid because it

is too long.

User Response: Use a shorter dataset name.

CCN0625 &1 does not exist.

Where: &1 is a dataset name.

Explanation: The dataset does not exist.

User Response: Supply an existing dataset.

CCN0626 There are no members in &1 to

compile.

Where: &1 is a dataset name.

Explanation: There are no members in the partitioned

dataset to compile.

User Response: Supply a partitioned dataset that

contains members.

CCN0627 &1 should be a partitioned dataset.

Where: &1 is a dataset name.

Explanation: A partitioned dataset is expected.

User Response: Supply a partitioned dataset.

CCN0628 &1 should not be a partitioned dataset.

Where: &1 is a dataset name.

Explanation: A non-partitioned dataset is expected.

User Response: Supply a non-partitioned dataset.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 21

 | |

 |
 |

 |

 | |

 |

 |

 |

 | |
 |

 |

 |
 |

 |
 |

 | |

 |

 |

 |

 | |

 |

 |

 |

CCN0629 &1 has invalid attributes.

Where: &1 is a dataset name.

Explanation: The attributes of the dataset do not

match the attributes expected by the compiler.

User Response: Check the informational messages

issued with this message and change the dataset

attributes accordingly.

CCN0630 &1 has attributes &2.

Where: &1 is a dataset name, &2 is a set of dataset

attributes.

Explanation: The dataset has the attributes indicated.

User Response: None.

CCN0631 The attributes should be &1.

Where: &1 is a set of dataset attributes.

Explanation: The dataset should have the attributes

indicated.

User Response: None.

CCN0632 The attributes should be one of the

following:

Explanation: The dataset should have one of the sets

of attributes indicated.

User Response: None.

CCN0633 Unable to allocate &1.

Where: &1 is a dataset name.

Explanation: Unable to allocate the dataset.

User Response: Check that the dataset has a valid

name and can be accessed.

CCN0634 Unable to load &1. Compilation

terminated.

Where: &1 is the name of a program module.

Explanation: Unable to fetch one of the compiler

phases.

User Response: Check that the compiler is installed

correctly. Make sure there is enough memory in the

region to fetch the module. You may need to specify the

runtime option HEAP(,,,FREE,,) to prevent the compiler

from running out of memory.

CCN0635 Timestamp error on &1.

Where: &1 is a dataset name.

Explanation: Timestamp error while compiling a

partitioned dataset.

User Response: Check to see if the dataset is

corrupted.

CCN0636 The file allocated to &1 cannot be

opened, because it is already opened

by another process.

Where: &1 is a DD name.

Explanation: The file allocated to the DD name was

opened for output by another process.

User Response: Ensure that the file is not shared for

output.

CCN0702 An error was encountered in accessing

the alternate ddname table. The default

ddnames will be used.

Explanation: The compiler could not access the

alternate ddname table. Compilation will continue, using

the default ddname table.

User Response: Check that the alternate ddname

table was coded correctly.

CCN0703 An error was encountered in a call to

&1 while processing &2.

Where: &1 is the name of the library function. &2 is

the name of the file or path.

Explanation: A library function called by the compiler

encountered an error. The compiler will issue a perror()

message with more specific information on the failure.

User Response: If the file was created by the user,

verify that it was created correctly; See the programmer

response for the accompanying perror() message for

additional information.

CCN0704 There are no files with the default

extension in &1.

Where: &1 is a directory name.

Explanation: There are no files in the given directory

which match the default extension. The compiler

returned without compiling any files.

User Response: Supply a directory which contains

files with the appropriate extension. The default

extension for C is ″.c″ and the default extension for C++

is ″.C″.

CCN0705 The output file &1 is not supported in

combination with source file &2.

Where: &1 is an output file specified in a compiler

option, and &2 is the source file to be compiled.

Explanation: The output file specified in a compiler

option is of a type which is not supported in combination

with the type of the source file. An informational

22 z/OS V1R7.0 XL C/C++ Messages

||

|

|
|

|
|
|

||

|
|

|

|

||

|

|
|

|

||
|

|
|

|

||

|

|

|
|

||

|

|
|

 |
 |

message describing supported output file types for the

given source file type follows.

User Response: Supply an output file of one of the

supported types in the compiler sub-option, or let the

compiler generate a default output file name.

CCN0706 The source file is a CMS file. The

suboption should specify a CMS file or

a BFS file in an existing directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0707 The source file is a BFS file. The

suboption should specify a CMS file, a

BFS file in an existing directory, or an

existing BFS directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0708 The source file is a BFS directory. The

suboption should specify an existing

BFS directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0709 The source file is a Sequential data

set. The suboption should specify a

sequential data set, a PDS member, or

an HFS file in an existing directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0710 The source file is a PDS member. The

suboption should specify a sequential

data set, a PDS member, a PDS, an

HFS file in an existing directory, or an

existing HFS directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0711 The source file is a PDS. The

suboption should specify a PDS or an

existing HFS directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0712 The source file is a HFS file. The

suboption should specify a sequential

data set, a PDS member, an HFS file in

an existing directory, or an existing

HFS directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0713 The source file is a HFS directory. The

suboption should specify an existing

HFS directory.

Explanation: The output file specified in the suboption

has a type that is incompatible with the source file type.

User Response: Specify an output file with a

compatible type as indicated in the message.

CCN0721 Option ″&1″ cannot be specified with

option ″&2″. Option ″&3″ is ignored.

Where: &1 option name, &2 option name, &3 option

name.

Explanation: A SEARCH or LSEARCH option cannot

be specified on the same compiler invocation with a

SYSPATH or USERPATH option. All previous

specifications of the conflicting options are ignored.

User Response: Use the correct syntax for specifying

the option

CCN0745 &1 should be a partitioned dataset or

HFS directory.

Where: &1 is a dataset name.

Explanation: A partitioned dataset or HFS directory is

expected.

User Response: Supply a partitioned dataset or HFS

directory.

CCN0750 Suboptions ″&1″ and ″&2″ of option

″&3″ conflict.

Where: &3 is the option name. &1 and &2 are the

sub-option names.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 23

 | |
 |

 |

 |
 |

 |
 |

 | |
 |

 |
 |

Explanation: Sub-options of the specified option are in

conflict with each other.

User Response: Change the sub-option.

CCN0764 Compiler cannot create temporary

files.

Explanation: The intermediate code files could not be

created. Please verify that the target file system exists,

is writable and is not full.

User Response: Ensure that the designated location

for temporary objects exists, is writable and is not full.

CCN0767 The ″&1″ feature of z/OS is not

enabled. Contact your system

programmer.

Explanation: This feature of z/OS is not enabled at

your installation.

User Response: Your system programmer can

contact IBM z/OS service to have this element enabled.

CCN0768 Compiling ″&1″.

Explanation: Informational message issued during

PDS or HFS directory compiles to indicate when the

compiler has started compiling the next member.

User Response: No user action is required.

CCN0770 The name &1 is invalid. Please correct

and recompile.

Explanation: The name shown is invalid.

User Response: Please correct the name and retry.

CCN0791 Options ″&1″ and ″&2″ are not

compatible.

Where: &1 and &2 are both option names.

Explanation: The specified options cannot be used

together.

User Response: Change option values.

CCN0793 Compilation failed for file &1. Object

file not created.

Where: &1 is a file name

Explanation: The compiler detected an error and

terminated the compilation. Object file was not created.

User Response: Correct the reported errors and

recompile.

CCN0795 Unable to open existing dataset &1.

Where: &1 is a dataset name.

Explanation: Although the dataset exists, the compiler

was unable to open and/or obtain file information about

it.

User Response: Check the informational messages

issued with this message and correct the corresponding

problems associated with the dataset.

CCN0796 This compiler requires a runtime

environment __librel() value of &1.

Where: &1 is the required runtime level in the

__librel() format.

Explanation: The compiler cannot run with the current

runtime environment because it needs the runtime

release indicated.

User Response: Check the informational message

issued with this message to determine your current

runtime release. Make sure you are running with the

runtime environment required.

CCN0797 You are currently running with the

runtime environment &1.

Where: &1 is the current runtime level in the __librel()

format.

Explanation: The message displays the current

runtime level installed on your system.

User Response: None.

CCN0822 Option &1 is locked and cannot be

changed.

Where: &1 is an option name.

Explanation: The option has been locked during

system installation. The option settings cannot be

changed.

User Response: Remove the option from the

command line, or ask the system programmer to unlock

the option.

CCN0823 Lock suboption &1 is not supported.

Where: &1 is an option name.

Explanation: The lock suboption specified is not

supported and is ignored.

User Response: The suboption to the lock option

must itself be a valid option. The lock option is set

during compiler installation. Check with the system

programmer.

24 z/OS V1R7.0 XL C/C++ Messages

|
|

|

||
|
|

|
|

|
|

||

|
|
|

|

||
|

|

|

 | |

 |

 |
 |
 |

 |
 |
 |

CCN1001 INTERNAL COMPILER ERROR: &1.

Explanation: An internal compiler error occurred

during compilation.

User Response: Contact your Service Representative.

CCN1002 Virtual storage exceeded.

Explanation: The compiler ran out of memory trying to

compile the file. This sometimes happens with large

files or programs with large functions. Note that very

large programs limit the amount of optimization that can

be done.

User Response: Shut down any large processes that

are running or increase your TSO region size. You can

also divide the file into several small sections or shorten

the function.

CCN1003 &1.

Where: &1 is the detailed message text.

Explanation: General error message.

User Response: There is no user response for this

message.

CCN1031 Unable to open file ″&1″.

Where: &1 is a file name.

Explanation: The compiler could not open the

specified file.

User Response: Ensure the file name is correct.

Ensure that the correct file is specified. If the file is

located on a LAN drive, ensure the LAN is working

properly. Also, the file may be locked by another

process or access may be denied because of

insufficient permission.

CCN1032 An error occurred while reading file

″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while

reading from the specified file.

User Response: Ensure that the correct file is being

read and has not been damaged. If the file is located on

a LAN drive, ensure the LAN is working properly.

CCN1033 An error occurred while writing to file

″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while

writing to the specified file.

User Response: Ensure that the correct file is

specified. If the file is located on a LAN drive, ensure

the LAN is working properly.

CCN1034 Read-only pointer initialization of

dynamically allocated object &1 is not

valid.

Explanation: The value of a read-only pointer must be

known at compile time; a pointer cannot be read-only

and point to a dynamically allocated object at the same

time because the address of the pointee is known at run

time only.

User Response: Modify the code so that the pointer is

initialized with a read-only value or make the pointer

read-write.

CCN1051 Function &1 exceeds size limit.

Explanation: The ACU for the function exceeds the

LIMIT specified in the INLINE suboption.

User Response: Increase LIMIT if feasible to do so.

CCN1052 Function &1 is (or grows) too large to

be inlined.

Explanation: A function is too large to be inlined into

another function.

User Response: Use #pragma inline if feasible to do

so.

CCN1053 Some calls to function &1 cannot be

inlined.

Explanation: At least one call is either directly

recursive, or the wrong number of parameters were

specified.

User Response: Check all calls to the function

specified and make that number of parameters match

the function definition.

CCN1054 Automatic storage for function &1

increased to over &2.

Explanation: The size of automatic storage for

function increased by at least 4 KB due to inlining.

User Response: Avoid inlining of functions which

have large automatic storage.

CCN1055 Parameter area overflow while

compiling &1. Parameter area size

exceeds the allowable limit of &2.

Explanation: The parameter area for a function

resides in the first 4K of automatic storage for that

function. This message indicates that the parameter

area cannot fit into 4K.

User Response: Reduce the size of the parameter

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 25

area by passing fewer parameters or by passing the

address of a large structure rather than the structure

itself.

CCN1057 &1 section size cannot exceed

16777215 bytes. Total section size is

&2 bytes.

Explanation: A Data or Code section cannot exceed

16M in size.

User Response: Partition input source files into

multiple source files which can be compiled separately.

CCN1101 Maximum spill size of &2 is exceeded

in function &1.

Explanation: Spill size is the size of the spill area.

Spill area is the storage allocated if the number of

machine registers is not sufficient for program

translation.

User Response: Reduce the complexity of the

program and recompile.

CCN1102 Spill size for function &1 is not

sufficient. Recompile specifying option

SPILL(n) where &2 < n <= &3.

Explanation: Spill size is the size of the spill area.

Spill area is the storage allocated if the number of

machine registers is not sufficient for program

translation.

User Response: Recompile using the SPILL(n) option

&2 < n <= &3 or with a different OPT level.

CCN1103 Internal error while compiling function

&1. &2.

Explanation: An internal compiler error occurred

during compilation.

User Response: Contact your Service Representative

or compile with a different OPT level.

CCN1104 Internal error while compiling function

&1. &2. Compilation terminated.

Explanation: An internal compiler error of high

severity has occurred.

User Response: Contact your Service Representative.

Be prepared to quote the text of this message.

CCN1105 Constant table overflow compiling

function &1. Compilation terminated.

Explanation: The constant table is the table that

stores all the integer and floating point constants.

User Response: Reduce the number of constants in

the program and recompile.

CCN1106 Instruction in function &1 on line &2 is

too complex. Compilation terminated.

Explanation: The specified instruction is too complex

to be optimized.

User Response: Reduce the complexity of the

instruction and recompile, or recompile with a different

OPT level.

CCN1107 Program too complex in function &1.

Explanation: The specified function is too complex to

be optimized.

User Response: Reduce the complexity of the

program and recompile, or recompile with a different

OPT level.

CCN1108 Expression too complex in function

&1. Some optimizations not performed.

Explanation: The specified expression is too complex

to be optimized.

User Response: Reduce the complexity of the

expression or compile with a different OPT level.

CCN1109 Infinite loop detected in function &1.

Program may not stop.

Explanation: An infinite loop has been detected in the

given function.

User Response: Recode the loop so that it will end.

CCN1110 Loop too complex in function &1.

Some optimizations not performed.

Explanation: The specified loop is too complex to be

optimized.

User Response: No action is required.

CCN1111 Division by zero detected in function

&1. Runtime exception may occur.

Explanation: A division by zero has been detected in

the given function.

User Response: Recode the expression to eliminate

the divide by zero.

CCN1112 Exponent is non-positive with zero as

base in function &1. Runtime exception

may occur.

Explanation: This is a possible floating-point divide by

zero.

User Response: Recode the expression to eliminate

the divide by zero.

26 z/OS V1R7.0 XL C/C++ Messages

CCN1113 Unsigned division by zero detected in

function &1. Runtime exception may

occur.

Explanation: A division by zero has been detected in

the given function.

User Response: Recode the expression to eliminate

the divide by zero.

CCN1114 Internal error while compiling function

&1. &2.

Explanation: An internal compiler error of low severity

has occurred.

User Response: Contact your Service Representative

or compile with a different OPT level.

CCN1115 Control flow too complex in function

&1; number of basic blocks or edges

exceeds &2.

Explanation: Basic blocks are segments of executable

code without control flow. Edges are the possible paths

of control flow between basic blocks.

User Response: Reduce the complexity of the

program and recompile.

CCN1116 Too many expressions in function &1;

number of symbolic registers exceeds

&2.

Explanation: Symbolic registers are the internal

representation of the results of computations.

User Response: Reduce the complexity of the

program and recompile.

CCN1117 Too many expressions in function &1;

number of computation table entries

exceeds &2.

Explanation: The computation table contains all

instructions generated in the translation of a program.

User Response: Reduce the complexity of the

program and recompile.

CCN1118 Too many instructions in function &1;

number of procedure list entries

exceeds &2.

Explanation: The procedure list is the list of all

instructions generated by the translation of each

subprogram.

User Response: Reduce the complexity of the

program and recompile.

CCN1119 Number of labels in function &1

exceeds &2.

Explanation: Labels are used whenever the execution

path of the program could change; for example: if

statements, switch statements, loops or conditional

expressions.

User Response: Reduce the complexity of the

program and recompile.

CCN1120 Too many symbols in function &1;

number of dictionary entries exceeds

&2.

Explanation: Dictionary entries are used for variables,

aggregate members, string literals, pointer

dereferences, function names and internal compiler

symbols.

User Response: Compile the program at a lower level

of optimization or simplify the program by reducing the

number of variables or expressions.

CCN1121 Program is too complex in function &1.

Specify MAXMEM option value greater

than &2.

Explanation: Some optimizations not performed.

User Response: Recompile specifying option

MAXMEM with the suggested value for additional

optimization.

CCN1122 Parameter area overflow while

compiling &1. Parameter area size

exceeds &2.

Explanation: The parameter area is used to pass

parameters when calling functions. Its size depends on

the number of reference parameters, the number and

size of value parameters, and on the linkage used.

User Response: Reduce the size of the parameter

area by passing fewer parameters or by passing the

address of a large structure rather than the structure

itself.

CCN1123 Spill size for function &1 is exceeded.

Recompile specifying option SPILL(n)

where &2 < n <= &3 for faster spill

code.

Explanation: Spill size is the reserved size of the

primary spill area. Spill area is the storage allocated if

the number of machine registers is not sufficient for

program translation.

User Response: Recompile using the SPILL(n) option

&2 < n <= &3 for improved spill code generation.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 27

CCN1130 An error occurred while opening file

″&1″.

Where: &1 is a file name

Explanation: The compiler could not open the

specified file.

User Response: Ensure the file name is correct.

Ensure that the correct file is being opened and has not

been damaged. If the file is located on a LAN drive,

ensure the LAN is working properly. Also, the file may

be locked by another process or access may be denied

because of insufficient permission.

CCN1131 An error occurred while writing file

″&1″.

Where: &1 is a file name

Explanation: The compiler could not read from the

specified file.

User Response: Ensure the file name is correct.

Ensure that the correct file is being written to and has

not been damaged. If the file is located on a LAN drive,

ensure the LAN is working properly. Also, the file may

be locked by another process or access may be denied

because of insufficient permission.

CCN1132 An error occurred while closing file

″&1″.

Where: &1 is a file name

Explanation: The compiler could not write to the

specified file.

User Response: Ensure the file name is correct.

Ensure that the correct file is being closed and has not

been damaged. If the file is located on a LAN drive,

ensure the LAN is working properly. Also, the file may

be locked by another process or access may be denied

because of insufficient permission.

CCN1141 Automatic area for &1 is too large.

Explanation: Automatic data resides in the stack; the

stack size is limited by the target machine addressabilty.

User Response: Avoid large structures and / or arrays

as local variables; try using dynamically allocated data.

Alternatively, try to break down the procedure into

several smaller procedures.

CCN1142 NOSTRICT may alter the semantics of

a program.

Explanation: The NOSTRICT option has the potential

to alter the semantics of a program. NOSTRICT is the

default for high levels of optimization, such as OPT(3).

Please refer to documentation on the

STRICT/NOSTRICT option for more information.

User Response: Please refer to the documentation of

the STRICT/NOSTRICT option to ensure that this option

will not alter the semantics of your program.

CCN1501 INTERNAL COMPILER ERROR:

Procedure %1$s.

Explanation: An internal compiler error occurred

during compilation.

User Response: Contact your service representative.

CCN1502 Unable to open file %1$s for

processing.

Explanation: The system can not open the file for

processing.

User Response: Make sure the file is available and

not in use.

CCN1503 Unable to allocate memory for

processing.

Explanation: The compiler ran out of memory

generating debug information for this file. This

sometimes happens with large files. Note that a very

large program may produce a very large amount of

debugging information.

User Response: Shut down any large processes that

are running or increase your TSO region size. You can

also divide the file into several small sections or shorten

the function.

CCN1504 Unable to find any debug information.

Explanation: No debug information is generated for

this compilation unit.

User Response: Make sure the source file contains

code or data.

CCN1505 Debug information may be incomplete.

Explanation: The debug information generated may

be corrupted or incomplete.

User Response: Contact your service representative.

CCN1506 Unable to resolve the absolute

pathname for the generated debug side

file.

Explanation: The compiler can not record the

absolute pathname of the generated debug side file into

an object file. A relative pathname is used instead.

User Response: Make sure all the components for the

generated debug side file have the proper read and

execute permission set.

28 z/OS V1R7.0 XL C/C++ Messages

 | |
 |
 |

 |
 |
 |

 |
 |
 |

CCN2000 Option ″&1″ is not recognized.

Where: &1 is the option name

Explanation: An invalid option was specified.

User Response: Correct the spelling of the option.

CCN2001 Suboption ″&1″ of option ″&2″ is not

supported.

Where: &2 is the option name. &1 is the suboption

name.

Explanation: The invocation option contained an

unsupported suboption.

User Response: Change the suboption. Check the

syntax of the suboption.

CCN2002 Required parameters for option ″&1″

are not specified.

Where: &1 is the option name

Explanation: This option requires that one or more

parameters be specified.

User Response: Specify appropriate parameters for

the option. Check the option syntax for details.

CCN2003 Parameter ″&1″ of option ″&2″ is not

supported.

Where: &2 is the option name. &1 is the option

parameter.

Explanation: The parameter for the specified option

has invalid syntax.

User Response: Change the option parameter. Check

the syntax of the option parameter.

CCN2004 Option ″&1″ parameter error; ″&2″ is

not a digit.

Where: &1 is the option name. &2 is invalid character.

Explanation: A non-numeric character was found in

the option parameter.

User Response: Change the option parameter. Check

the syntax of the option.

CCN2005 ″&1″ is not a decimal number.

Where: &1 is the invalid character.

Explanation: A non-numeric character was found in

the option parameter.

User Response: Change the option parameter. Check

the syntax of the option.

CCN2006 The name in option LOCALE (&1) is

not valid.

Explanation: The specified locale is not installed on

the host system.

User Response: Change the value of the LOCALE

option to the name of a locale which has been installed

on the host system.

CCN2010 ″&1″ requires ″&2″ suboptions to be

specified. ″&3″ are specified.

Where: &1 is the option name. &2 is the number of

options expected. &3 is the number of options specified.

Explanation: An incorrect number of suboptions was

specified for this option. The message identifies the

number of suboptions the compiler expected and the

number it actually found.

User Response: Ensure the correct number of

suboptions are specified.

CCN2011 At most ″&2″ suboptions must be

specified for &1. ″&3″ are specified.

Where: &1 is the option name. &2 is the number of

options expected. &3 is the number of options specified.

Explanation: Too many suboptions were specified for

this option.

User Response: Ensure that the maximum number of

suboptions is not exceeded.

CCN2012 ″&1″ requires at least ″&2″ suboptions

to be specified. ″&3″ are specified.

Where: &1 is the option name. &2 is the number of

options expected. &3 is the number of options specified.

Explanation: Not enough suboptions were specified

for this option.

User Response: Ensure that the minimum number of

suboptions are specified.

CCN2013 Suboptions ″&1″ and ″&2″ of option

″&3″ conflict.

Where: &3 is the option name. &1 and &2 are the

suboption names.

Explanation: The specified suboptions of the specified

option are in conflict.

User Response: Determine which suboption is

required. Remove the other suboption to eliminate the

conflict.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 29

 | |
 |

 |
 |

 |
 |

 |
 |
 |

CCN2015 Incompatible specifications for options

ARCH and TUNE.

Explanation: As documented in the User Guide, only

certain ARCH/TUNE combinations are compatible.

User Response: Determine what target

machine/architecture family is desired and select a

compatible target machine for tuning.

CCN2020 Option ″&1″ is turned on because

option ″&2″ is specified.

Where: &1 and &2 are both option names.

Explanation: If you specify option &2, the compiler

turns on option &1 to achieve a better options

combination.

User Response: Specify option &1 to eliminate this

message.

CCN2021 Option ″&1″ is ignored because option

″&2″ was specified.

Where: &1 and &2 are both option names.

Explanation: Specifying the second option indicated

means the first has no effect.

User Response: Remove one of the options.

CCN2022 Option ″&1″ is not supported for IPA

processing.

Where: &1 is an option name.

Explanation: The specified option (or corresponding

#pragma) is not supported for an IPA compilation.

Processing is terminated.

User Response: Correct the option or #pragma

specification, as appropriate.

CCN2023 Option ″&1″ has been promoted to

″&2″ because option ″&3″ was

specified.

Where: &1, &2 and &3 are all option names.

Explanation: Specifying the &3 option caused

sufficient information to be available to support the &2

option instead of the &1 option.

User Response: None

CCN2030 &1

Where: &1 is the detailed message text.

Explanation: General informational message.

User Response: The user response is based on the

text of the message. For further information contact your

Service Representative.

CCN2031 &1

Where: &1 is the detailed message text.

Explanation: General warning message.

User Response: The user response is based on the

text of the message. For further information contact your

Service Representative.

CCN2032 &1

Where: &1 is the detailed message text.

Explanation: General error message.

User Response: The user response is based on the

text of the message. For further information contact your

Service Representative.

CCN2033 &1

Where: &1 is the detailed message text.

Explanation: General severe error message.

User Response: The user response is based on the

text of the message. For further information contact your

Service Representative.

CCN2050 IPA Link control file: Syntax error.

Explanation: A syntax error was detected in the IPA

Link control file. Processing is terminated.

User Response: Correct the IPA Link control file

syntax.

CCN2051 IPA Link control file: Unmatched quote.

Explanation: A quoted string representing a directive

operand was detected in the IPA Link control file, but

this string was not terminated by a matching quote

before the end of file. Processing is terminated.

User Response: Correct the IPA Link control file

operand syntax.

CCN2052 IPA Link control file: Directive ″&1″ is

incorrect.

Where: &1 is the directive in error.

Explanation: An incorrectly specified directive was

detected in the IPA Link control file. The directive is

ignored, and processing continues.

User Response: Correct the specified directive in the

IPA Link control file.

30 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|

|
|
|

||

|

|

|
|
|

 | |

 |

 |

 |
 |
 |

 | |

 |

 |

 |
 |
 |

 | |

 |

 |

 |
 |
 |

CCN2053 IPA Link control file: &1.

Where: &1 is the detailed message text.

Explanation: An error was detected in the IPA Link

control file. Processing is terminated.

User Response: Correct the specified IPA Link control

file error.

CCN2059 IPA Link control file: INTERNAL

COMPILER ERROR - &1.

Where: &1 is the detailed message text.

Explanation: An internal compiler error occurred

during processing of the IPA Link control file.

User Response: Contact your Service Representative

and provide the detailed message text.

CCN2060 CSECT name entry &1 (″&2″) is not

unique. It conflicts with entry &3.

Where: &1 and &3 are CSECT name entry numbers,

&2 is the CSECT name entry.

Explanation: The specified CSECT name prefix entry

in the IPA Link control file duplicates an previous

CSECT name prefix entry.

User Response: Provide a unique value for the

CSECT name prefix that caused the conflict.

CCN2061 A CSECT name prefix is not specified

for partition &1. The CSECT option is

active.

Where: &1 is the number of the current partition.

Explanation: The CSECT option is active, which

requires that a CSECT name prefix entry be specified in

the IPA Link control file for each partition in the

generated object module. A system-generated name

prefix has been provided for the current partition.

User Response: Provide one or more additional

CSECT name prefixes so that each partition will have a

unique name.

CCN2062 A CSECT name prefix is not specified

for partition &1.

Where: &1 is the number of the current partition.

Explanation: One or more CSECT name prefixes

were specified in the IPA Link control file, but there were

insufficient entries for all partitions in the generated

object module. The CSECT option is not active, so

these missing names are not considered an error. A

system-generated name prefix has been provided for

the current partition.

User Response: Provide one or more additional

CSECT name prefixes so that each partition will have a

unique name.

CCN2100 No object files were specified as input

to the IPA Link step.

Explanation: No object files were specified for IPA

Link step processing.

User Response: Specify at least one object file.

CCN2101 No IPA object was found.

Explanation: IPA object information was not found

during IPA Link step processing.

User Response: Ensure that the appropriate object

files include IPA object information.

CCN2102 IPA object information is missing ″&1″

records.

Where: &1 is an object record type.

Explanation: A damaged IPA object file was

encountered during IPA Link step processing.

User Response: Recompile the source file and retry

IPA Link step processing. If the problem persists, call

your Service Representative.

CCN2103 IPA object information has invalid ″&1″

record.

Where: &1 is an object record type.

Explanation: A damaged IPA object file was

encountered during IPA Link step processing.

User Response: Recompile the source file and retry

IPA Link step processing. If the problem persists, call

your Service Representative.

CCN2104 Object information is missing ″&1″

records.

Where: &1 is an object record type.

Explanation: A damaged non-IPA object file was

encountered during IPA Link step processing.

User Response: Recompile the source file and retry

IPA Link step processing. If the problem persists, call

your Service Representative.

CCN2105 Object information has an invalid ″&1″

record.

Where: &1 is an object record type.

Explanation: A damaged non-IPA object file was

encountered during IPA Link step processing.

User Response: Recompile the source file and retry

IPA Link step processing. If the problem persists, call

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 31

your Service Representative.

CCN2106 An error was encountered during

object information processing.

Where: &1 is an object record type.

Explanation: A damaged or incompatible object file

was encountered during IPA Link step processing.

User Response: Recompile the source file and retry

IPA Link step processing. If the problem persists, call

your Service Representative.

CCN2107 ″&1″ is not the first symbol on the

object record.

Where: &1 is an object record type.

Explanation: A damaged IPA object file was

encountered during IPA Link step processing.

User Response: Recompile the source file and retry

IPA Link step processing. If the problem persists, call

your Service Representative.

CCN2108 Object information has incorrect

format.

Explanation: An object file with an incorrect format

was encountered during IPA Link step processing.

User Response: Recompile the source file and retry

IPA Link step processing. If the problem persists, call

your Service Representative.

CCN2109 Generated file is too big. Reduce

partition size or turn off IPA.

Explanation: The file generated by IPA exceeds

encoding limits.

User Response: Relink with a reduced partition size

or without IPA.

CCN2110 ″&1″ IPA Link control statement has no

specifications.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,

IMPORT or ENTRY.

Explanation: An IPA Link control statement object

record without any specifications was encountered

during processing. The record is ignored. Processing

continues.

User Response: If the IPA Link control statement is

required, provide appropriate INCLUDE, LIBRARY, or

AUTOCALL, IMPORT or ENTRY specifications and

repeat the step. If the record is not required, the

warning message can be removed by deleting the

invalid record.

CCN2111 Invalid syntax specified on ″&1″ IPA

Link control statement.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,

IMPORT, ENTRY, or UNKNOWN.

Explanation: An IPA Link control statement object

record with invalid syntax was encountered during

processing. The record is processed up to the syntax

error and the remainder of the record is ignored.

Processing continues. If unmatched quotes were

encountered, the IPA LINK control statement type will

be listed as ″UNKNOWN″.

User Response: If the IPA Link control statement is

required, correct the syntax errors and repeat the step.

If the record is not required, the warning message can

be removed by deleting the invalid record.

CCN2112 Continuation record missing for ″&1″

IPA Link control statement.

Where: &1 is the IPA Link control statement type.

Explanation: An IPA Link control statement object

record of type &1 was encountered with the continuation

column set, but there was no subsequent record or the

subsequent record was not a valid continuation record.

The record is ignored and processing continues.

User Response: Add the appropriate continuation

record, or set continuation column 72 to blank if no

continuation record is required.

CCN2113 Continuation records not allowed for

″&1″ IPA Link control statement. This

statement was ignored.

Where: &1 is the IPA Link control statement type.

Explanation: An IPA Link control statement of type &1

had a nonblank character in column 72. Information for

a statement of this type must be specified in one record,

so continuation of this record is not valid. The statement

is ignored and IPA Link step processing continues.

User Response: Correct the record if necessary, set

continuation column 72 to blank, and repeat the step.

CCN2114 More than one ″&1″ IPA Link control

statement found.

Where: &1 is the IPA Link control statement type.

Explanation: More than one IPA Link control

statement object record of type &1 was encountered

during the processing of &2.

User Response: No recovery is necessary unless the

incorrect IPA Link control statement is selected by IPA

Link error recovery, or incorrect processing was

performed. In this case, remove the offending record

and repeat the step.

32 z/OS V1R7.0 XL C/C++ Messages

CCN2115 ″&1″ IPA Link control statement is

ignored.

Where: &1 is the control statement type.

Explanation: An IPA Link control statement of type &1

was found to be invalid. The record is ignored and

processing continues.

User Response: Correct the record if necessary, set

continuation column 72 to blank, and repeat the step.

CCN2116 An error occurred processing the ″&1″

IPA Link control statement.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,

IMPORT or ENTRY.

Explanation: An error was encountered during

processing of the IPA Link control statement. The record

is ignored and processing continues.

User Response: Ensure that the files referenced by

this IPA Link control statement object record are

available and in the correct format. If the problem

persists, call your Service Representative.

CCN2117 ″&1″ IPA Link control statement

specification not supported.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,

IMPORT or ENTRY.

Explanation: An IPA Link control statement with a

specification syntax that is unsupported by IPA Link was

encountered during processing. The record is processed

up to this specification, and the remainder of the record

is ignored. Processing continues.

User Response: Alter the specification to a format

supported by IPA Link, or remove the specification. If

the record is not required, the warning message can be

removed by deleting the invalid record.

CCN2119 Noobject files used in non-IPA link

step.

Explanation: One or more files generated with

″NOOBJECT″ were being linked directly by the linker.

User Response: Recompile and link with ″OBJECT″

or recompile the file containing the entry point with IPA.

CCN2120 IPA Link control statement has invalid

syntax:

Explanation: An IPA Link control statement object

record (related to DLL resolution) with invalid syntax

was encountered during processing.

User Response: Prelink the DLL and generate a valid

definition side-deck file.

CCN2121 IPA Link control statement not properly

continued:

Explanation: An IPA Link control statement object

record (related to DLL resolution) with the continuation

column set was encountered, but there was no

subsequent record or the subsequent record was not a

valid continuation record. The record is ignored and

processing continues.

User Response: Prelink the DLL and generate a valid

definition side-deck file.

CCN2122 Module name ″&1″ chosen for

generated ″IMPORT″ IPA Link control

statements.

Where: &1 is a module name.

Explanation: The default name TEMPNAME was

assigned to the module in the DLL definition side-deck

file.

User Response: Provide a ″NAME″ IPA Link control

statement.

CCN2125 File ″&1″ uses a sequential format. The

member name ″&2″ can not be

specified on the ″&3″ IPA Link control

statement.

Where: &1 is a file name. &2 is a member name. &3

is INCLUDE.

Explanation: An IPA Link control statement

specification is syntactically correct, but is incorrect for

the sequential file which has been allocated. This

specification is ignored, and processing continues.

User Response: Ensure the file allocation

specification is correct. Correct the file allocation or IPA

Link control statement as necessary and repeat the

step.

CCN2126 File ″&1″ uses a partitioned format. A

member name must be specified on

the ″&2″ IPA Link control statement.

Where: &1 is a file name. &2 is INCLUDE.

Explanation: An IPA Link control statement

specification is syntactically correct, but is incorrect for

the partitioned file which has been allocated. This

specification is ignored, and processing continues.

User Response: Ensure the file allocation

specification is correct. Correct the file allocation or IPA

Link control statement as necessary and repeat the

step.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 33

 | |
 |
 |
 |

 |
 |

 |
 |
 |
 |

 |
 |
 |
 |

 | |
 |
 |

 |

 |
 |
 |
 |

 |
 |
 |
 |

CCN2127 File ″&1″ uses a sequential format. A

partitioned file or UNIX System

Services archive is required for a ″&2″

IPA Link control statement.

Where: &1 is a file name. &2 is LIBRARY.

Explanation: An IPA Link control statement

specification is syntactically correct, but the

corresponding file uses a sequential format. This

specification is ignored, and processing continues.

User Response: Ensure the file allocation

specification is correct. Correct the file allocation as

necessary and repeat the step.

CCN2128 File ″&1″ uses a sequential format. A

partitioned file or UNIX System

Services archive is required for

Autocall processing.

Where: &1 is a file name.

Explanation: The specified file is allocated to a

sequential file, and is unavailable for autocall

processing.

User Response: Ensure the file allocation

specification is correct. Correct the file allocation as

necessary and repeat the step.

CCN2130 A ″RENAME″ IPA Link control

statement can not be used for short

name ″&1″.

Where: &1 is a short name.

Explanation: A ″RENAME″ IPA Link control statement

object record that attempted to rename a short name &1

to another name was encountered. ″RENAME″

statements are only valid for long names for which there

are no corresponding short names. The ″RENAME″

statement is ignored and processing continues.

User Response: The warning message can be

removed by deleting the invalid ″RENAME″ statement.

CCN2131 Multiple ″RENAME″ IPA Link control

statements are found for ″&1″. The first

valid one is used.

Where: &1 is a name.

Explanation: More than one ″RENAME″ IPA Link

control statement object record was encountered for

name &1. The first ″RENAME″ statement with a valid

output name is chosen. The ″RENAME″ statement is

ignored and processing continues.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object File Map”

section of the listing to determine which output name

was chosen. If it was not the intended name, remove

the duplicate ″RENAME″ statements and repeat the

step.

CCN2132 May not ″RENAME″ long name ″&1″ to

another long name ″&2″.

Where: &1 and &2 are both long names.

Explanation: A ″RENAME″ IPA Link control statement

object record that attempted to rename a long name &1

to another long name &2 was encountered. The

″RENAME″ statement is ignored and processing

continues.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object File Map”

section of the listing to determine which output name

was chosen. If it was not the intended name, replace

the invalid ″RENAME″ statement with a valid output

name and repeat the step. The warning message can

be removed by deleting the invalid RENAME statement.

CCN2133 May not ″RENAME″ defined long name

″&1″ to defined name ″&2″.

Where: &1 is a long name. &2 is a defined name.

Explanation: A ″RENAME″ IPA Link control statement

object record that attempted to rename a defined long

name &1 to another defined name &2 was encountered.

The ″RENAME″ statement is ignored and processing

continues.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object File Map”

section of the listing to determine which output name

was chosen. If it was not the intended name, replace

the invalid ″RENAME″ statement with a valid output

name and repeat the step. The warning message can

be removed by deleting the invalid RENAME statement.

CCN2134 ″RENAME″ of ″&1″ to ″&2″ is ignored

since ″&2″ is the target of another

″RENAME″.

Where: &1 is a long name. &2 is a defined name.

Explanation: Multiple ″RENAME″ IPA Link control

statement object records that attempted to rename two

different names to the same name &2 were

encountered. The ″RENAME″ statement is ignored and

processing continues.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object File Map”

section of the listing to determine which name was

renamed to &2. If it was not the intended name, change

the name and repeat the step. The warning message

can be removed by deleting the extra ″RENAME″

statements.

34 z/OS V1R7.0 XL C/C++ Messages

||
|
|
|

|

|
|
|
|

|
|
|

||
|
|
|

|

|
|
|

|
|
|

CCN2140 ″&1″ is mapped to ″&2″ by the

IPA(UPCASE) option. ″&3″ is an

alternative matching definition name.

Where: &1, &2 and &3 are names.

Explanation: ″&1″ is an external symbol reference

that maps to multiple definitions due to the

IPA(UPCASE) option. Definition ″&2″ was selected.

″&3″ is another definition which matches this name, but

was not used.

User Response: If both names (&1 and &2)

correspond to the same object the warning can be

ignored. If the names do not correspond to the same

object or if the warning is to be removed, do one of the

following:

v Change one of the names in the source routine.

v Use #pragma map in the source routine for one of

the names.

CCN2141 ″&1″ is mapped to ″&2″.

Where: &1 and &2 are names.

Explanation: External name ″&1″ has been replaced

by ″&2″. IPA Link processing required a name that was

limited to 8 characters.

User Response: None. If you require a specific

external name for ″&1″, use #pragma map in the

program source. Any additional names that were

mapped to ″&1″ (and hence ″&2″) because of

IPA(UPCASE) will require equivalent #pragma map

statements.

CCN2142 Unable to map ″&1″ and ″&2″ to a

common name during IPA(UPCASE)

processing.

Where: &1 and &2 are names.

Explanation: Due to references by non-IPA objects, a

common external name can not be determined during

IPA(UPCASE) processing. This will occur if both ″&1″

and ″&2″ are referenced by non-IPA objects, or if either

is referenced by non-IPA objects and the common name

is longer than 8 characters.

User Response: Modify the program source so that

the external names are consistent, and 8 characters or

less in length.

CCN2143 Unable to map ″&1″ to ″&2″ within

same Compilation Unit during

IPA(UPCASE) processing.

Where: &1 and &2 are names.

Explanation: ″&1″ is an external symbol that maps to

the symbol ″&2″ within the same Compilation Unit due

to the IPA(UPCASE) option. Mapping of symbols in this

manner is not supported.

User Response: Modify the program source so that

the external names are consistent. If IPA(UPCASE)

resolution is desired, split the program source so that

each symbol is defined in a different Compilation Unit.

CCN2150 Invalid C370LIB-directory encountered.

Explanation: The specified library file contains an

invalid or damaged C370LIB-directory.

User Response: Use the C370LIB DIR command to

recreate the C370LIB-directory, and repeat the step.

CCN2151 Library does not contain a

C370LIB-directory.

Explanation: The specified library file does not contain

a C370LIB-directory required to perform the command.

User Response: The library was not created with the

C370LIB command. Use the C370LIB DIR command to

create the C370LIB-directory, and repeat the step.

CCN2152 Member ″&1″ not found in library.

Where: &1 is a library member name.

Explanation: The specified member &1 was not found

in the library. Processing continues.

User Response: Use the C370LIB MAP command to

display the names of library members.

CCN2153 Unable to access library file.

Explanation: An error was encountered during

processing of the specified ″LIBRARY″ IPA Link control

statement. The record is ignored and processing

continues.

User Response: Ensure that the files referenced by

this IPA Link control statement object record are

available and in the correct format. If the problem

persists, call your Service Representative.

CCN2155 &1 sequential files in library ″&2″

allocation were ignored.

Where: &1 is the number of sequential files. &2 is a

library DD name.

Explanation: When the list of files allocated to the

specified DD was extracted, both sequential and

partitioned format files were found. The sequential files

were ignored.

User Response: Correct the library allocation to

eliminate the sequential files.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 35

CCN2160 Invalid symbol table encountered in

archive library.

Explanation: The specified archive library file contains

invalid information in its symbol table. Processing

continues.

User Response: Rebuild the archive library.

CCN2161 Archive library does not contain a

symbol table.

Explanation: The symbol table for the specified

archive library file could not be found.

User Response: Rebuild the archive library.

CCN2170 Unresolved ″IMPORT″ references are

detected.

Explanation: Unresolved objects were encountered at

IPA Link processing termination. Other user objects are

required.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the objects in

question. To correct unresolved references to user

objects, include the user objects during IPA Link

processing.

CCN2171 Unresolved ″IMPORT″ references are

detected:

Explanation: The listed unresolved objects were

encountered at IPA Link processing termination. Other

user objects are required.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the objects in

question. To correct unresolved references to user

objects, include the user objects during IPA Link

processing.

CCN2172 Unresolved references could not be

imported.

Explanation: The same symbol was referenced in

both DLL and non-DLL code. The DLL reference could

have been satisfied by an ″IMPORT″ IPA Link control

statement which was processed, but the non-DLL

reference could not.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the symbols in

question. You must either supply a definition for the

referenced symbol, or use the DLL compiler option to

recompile the code containing the non-DLL reference so

that it becomes a DLL reference.

CCN2173 Unresolved references could not be

imported:

Explanation: The listed symbols were referenced in

both DLL and non-DLL code. The DLL reference could

have been satisfied by an ″IMPORT″ IPA Link control

statement which was processed, but the non-DLL

reference could not.

User Response: You must either supply a definition

for the referenced symbol, or use the DLL compiler

option to recompile the code containing the non-DLL

reference so that it becomes a DLL reference.

CCN2174 Duplicate ″IMPORT″ definitions are

detected.

Explanation: A name referenced in DLL code was not

defined within the application, but more than one

″IMPORT″ IPA Link control statement was detected with

that symbol name. The first one encountered was used.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the objects in

question, and define these objects once.

CCN2175 Duplicate ″IMPORT″ definitions are

detected:

Explanation: The listed objects were defined multiple

times.

User Response: Define these objects once.

CCN2177 ″ENTRY″ symbol ″&1″ not found.

Where: &1 is a symbol name.

Explanation: An ″ENTRY″ IPA Link control statement

object record that attempted to specify a program entry

point was encountered, but no symbol by this name is

present in the application program.

User Response: If the IPA Link control statement is

required, provide an object file which defines the

symbol, and repeat the step. If the record is not

required, the error message can be removed by deleting

the invalid record.

CCN2178 ″ENTRY″ symbol ″&1″ not valid.

Where: &1 is a symbol name.

Explanation: An ″ENTRY″ IPA Link control statement

object record that attempted to specify a program entry

point was encountered, but the specified symbol is a

reference, or aggregate member.

User Response: If the IPA Link control statement is

required, provide an object file which defines a valid

symbol, and repeat the step. If the record is not

required, the error message can be removed by deleting

the invalid record.

36 z/OS V1R7.0 XL C/C++ Messages

CCN2180 Load Module information has invalid

″&1″ record.

Where: &1 is an Load Module record type.

Explanation: A damaged or incompatible Load Module

library member was encountered during IPA Link

processing.

User Response: Recompile the source file and retry

IPA Link processing. If the problem persists, call your

Service Representative.

CCN2181 An error was encountered during Load

Module information processing.

Where: &1 is an Load Module record type.

Explanation: A damaged or incompatible Load Module

library member was encountered during IPA Link

processing.

User Response: Recompile the source file and retry

IPA Link processing. If the problem persists, call your

Service Representative.

CCN2182 Load Module information has incorrect

format.

Explanation: A Load Module library member with an

incorrect format was encountered during IPA Link

processing.

User Response: Recompile the source file and retry

IPA Link processing. If the problem persists, call your

Service Representative.

CCN2183 Program Object file format is not

supported by IPA Link step processing.

Explanation: During the link portion of IPA Link step

processing, an attempt was made to extract object

information from a Program Object file. IPA Link step

processing supports object information in the form of

object modules, and Load Module library members.

Program Object files which are generated by the

Program Management Binder are not supported.

User Response: Repackage the Program Object as

either an object module or a Load Module library

member, and retry IPA Link processing.

CCN2184 IPA Object file ″&1″ has been compiled

with an incompatible version of IPA.

Explanation: The IPA Object format in ″&1″ is

incompatible with the current compiler.

User Response: Recompile the file with the current

compiler.

CCN2185 The correct decryption key for object

file ″&1″ was not specified.

Explanation: The file ″&1″ was encrypted with

different key than the one(s) specified.

User Response: Include the correct key or link without

IPA.

CCN2200 Unresolved references to writable

static objects are detected.

Explanation: Undefined writable static objects were

encountered at IPA Link step processing termination.

Other user objects are required.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the objects in

question, and include these objects during IPA Link

processing.

CCN2201 Undefined writable static objects are

detected:

Explanation: The listed writable static objects were

undefined at IPA Link processing termination.

User Response: Include these objects during IPA Link

processing.

CCN2202 Unresolved references to writable

static objects are detected:

Explanation: Undefined writable static objects or

unresolved objects referring to writable static objects

were encountered at IPA Link processing termination.

Other user objects are required.

User Response: Include these objects during IPA Link

processing.

CCN2203 Unresolved references to objects are

detected.

Explanation: Unresolved objects were encountered at

IPA Link processing termination. Other user objects are

required.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the objects in

question. To correct unresolved references to user

objects, include the required objects during IPA Link

processing.

CCN2204 Unresolved references to objects are

detected:

Explanation: The listed unresolved objects were

encountered at IPA Link processing termination. Other

user objects are required.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 37

User Response: To correct the unresolved references,

include the required objects during IPA Link step

processing.

CCN2205 Unresolved reference to symbol ″&1″.

Explanation: The listed unresolved objects were

encountered at IPA Link processing termination. Other

user objects are required.

User Response: To correct the unresolved references,

include the required objects during IPA Link step

processing.

CCN2206 Unresolved reference to symbol ″&1″.

Explanation: The listed unresolved objects were

encountered at IPA Link processing termination. Other

user objects are required.

User Response: To correct the unresolved references,

include the required objects during IPA Link step

processing.

CCN2210 Duplicate writable static objects are

detected.

Explanation: Writable static objects were defined

multiple times.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the objects in

question, and define the required objects once.

CCN2211 Duplicate writable static objects are

detected:

Explanation: The listed writable static objects were

defined multiple times.

User Response: Define these objects once.

CCN2212 Duplicate objects are detected.

Explanation: Objects were defined multiple times.

User Response: Specify the IPA(LINK,MAP) option

during processing. Examine the “Object Resolution

Warnings” section of the listing to find the objects in

question, and define these objects once.

CCN2213 Duplicate objects are detected:

Explanation: The listed objects were defined multiple

times.

User Response: Define the objects once.

CCN2220 Duplicate writable static object ″&1″ is

detected with different sizes. The

largest size is used.

Where: &1 is a writable static object name.

Explanation: The listed writable static object was

defined multiple times with different sizes. The larger of

the different sizes was used. Incorrect execution could

occur unless the object is defined consistently.

User Response: Define the objects consistently.

CCN2221 Duplicate object ″&1″ is detected with

different sizes. The largest size is

used.

Where: &1 is an object name.

Explanation: The listed object was defined multiple

times with different sizes. The larger of the different

sizes is used. Incorrect execution could occur unless

the object is defined consistently.

User Response: Define these objects consistently.

CCN2229 No exported symbols found.

Explanation: After the IPA object files were linked, an

unsuccessful attempt was made to locate at least one

exported symbols.

User Response: Specify at least one exported symbol

contained in the IPA object files.

CCN2230 Program entry point not found.

Explanation: After the IPA object files were linked, an

unsuccessful attempt was made to identify the program

entry point (normally the ″main″ function).

User Response: Provide the IPA object file containing

the program entry point.

CCN2231 More than one entry point was found.

Explanation: After the IPA object files were linked,

multiple possible program entry points were found.

User Response: Eliminate the IPA object files

containing the extra program entry points.

CCN2232 Duplicate definition of symbol ″&1″

ignored.

Where: &1 is the symbol name.

Explanation: A duplicate definition of the specified

symbol has been encountered in the specified file. It is

ignored.

User Response: If possible, eliminate the duplicate

symbol definition from the set of input files provided to

the IPA Link step.

38 z/OS V1R7.0 XL C/C++ Messages

CCN2233 Duplicate definition of symbol ″&1″ in

import list is ignored.

Where: &1 is the symbol name.

Explanation: A duplicate definition of the specified

symbol has been encountered in an import list in the

specified file. It is ignored.

User Response: Eliminate the duplicate import

definition for the specified symbol.

CCN2240 IPA object files ″&1″ and ″&2″ have

been compiled with differing settings

for the ″&3″ option.

Where: &1 and &2 are object file names, and &3 is an

option name.

Explanation: The IPA object files were compiled using

conflicting settings for the specified option. A final

common option setting will be selected. Alternatively, a

common override can be specified during IPA Link

invocation.

User Response: Ensure that the final option setting is

appropriate. The warning message can be removed by

recompiling one or both source files with the same

option setting.

CCN2241 The ″&1″ option will be used.

Where: &1 is an option name.

Explanation: This is the final common option setting

selected after IPA object files were found to be in

conflict.

User Response: Ensure that the final option setting is

appropriate. The warning message can be removed by

recompiling one or both source files with the same

option setting.

CCN2242 IPA object files ″&1″ and ″&2″ contain

code targeted for different machine

architectures.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were compiled with

conflicting machine architectures. A final common

machine architecture will be selected.

User Response: Ensure that the final machine

architecture is appropriate. The warning message can

be removed by recompiling one or both source files so

that consistent ARCH options that specify the same

machine architecture are used.

CCN2243 The ″&1″ machine architecture will be

used.

Where: &1 is a machine architecture id.

Explanation: This is the final machine architecture

selected after IPA object files were found to be in

conflict.

User Response: Ensure that the final machine

architecture is appropriate. The warning message can

be removed by recompiling one or both source files so

that consistent ARCH options that specify the same

machine architecture are used.

CCN2244 IPA object files ″&1″ and ″&2″ contain

code targeted for different operating

environments.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were compiled using

conflicting operating environments. A final common

operating environment will be selected.

User Response: Ensure that the final target operating

environment is appropriate. The warning message can

be removed by recompiling one or both source files for

the same operating environment.

CCN2245 The ″&1″ operating environment will be

used.

Where: &1 is an operating environment id.

Explanation: This is the final operating environment

selected after IPA object files were found to be in

conflict.

User Response: Ensure that the final target operating

environment is appropriate. The warning message can

be removed by recompiling one or both source files for

the same operating environment.

CCN2246 IPA object files ″&1″ and ″&2″ were

generated from different source

languages.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were produced by

compilers for different languages. The IPA object has

been transformed as required to handle this situation.

User Response: None.

CCN2247 IPA object files ″&1″ and ″&2″ were

generated by different compiler

versions.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were produced by

different versions of the compiler. The older IPA object

has been transformed to the later version.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 39

User Response: None.

CCN2248 The code page for one or more IPA

object files differs from the code page

″&1″, used during IPA Link processing.

Where: &1 is a code page name.

Explanation: IPA object files contain code page

identification if the LOCALE option is active when they

are originally compiled. During IPA Link processing with

the LOCALE option active, one or more IPA object files

were encountered that had a code page (specified via

the LOCALE option) which differs from that used during

IPA Link processing. Character data will remain in the

code page in which it was originally compiled.

User Response: None.

CCN2250 Option ″&1″ not available because one

or more IPA object files were compiled

with option ″&2″.

Where: &1 and &2 are option names.

Explanation: The specified option is not available

during code generation for the current partition, because

one or more IPA object files contain insufficient

information to support it. A final common option will be

selected.

User Response: No recovery is required. However,

greater optimization potential may occur if one or both

of the module objects were recompiled to eliminate the

option setting conflict.

CCN2260 Subprogram specified exceeds size

limit: &1

Where: &1 is the Subprogram name.

Explanation: The ACU for the subprogram exceeds

the LIMIT specified in the INLINE suboption.

User Response: Increase LIMIT if it is feasible to do

so.

CCN2261 Subprogram specified is (or grows) too

large to be inlined: &1

Where: &1 is the subprogram name.

Explanation: This occurs when a subprogram is too

large to be inlined into another subprogram.

User Response: Use #pragma inline if it is feasible to

do so.

CCN2262 Some calls to subprogram specified

cannot be inlined: &1

Where: &1 is the subprogram name.

Explanation: At least one call is either directly

recursive, or the wrong number of parameters were

specified.

User Response: Check all calls to the subprogram

specified and make sure that the number of parameters

match the subprogram definition.

CCN2263 Automatic storage for subprogram

specified increased to over &1 bytes:

&2

Where: &1 is the automatic storage limit. &2 is the

subprogram name.

Explanation: The size of automatic storage for

subprogram increased by at least 4 KB due to inlining.

User Response: If feasible to do so, prevent the

inlining of subprograms that have large auto storage.

CCN2265 Inlining of specified subprogram failed

due to the presence of a global label:

&1

Where: &1 is the subprogram name.

Explanation: At least one call could not be inlined due

to the presence of a global label.

User Response: Minimize the use of global labels in

your application. Their presence will inhibit global

inlining.

CCN2266 Inlining of specified subprogram failed

due to the presence of a C++ exception

handler: &1

Where: &1 is the subprogram name.

Explanation: At least one call could not be inlined due

to the presence of a C++ exception handler.

User Response: Minimize the use of C++ exception

handlers in your application. Their presence will inhibit

global inlining.

CCN2267 Inlining of specified subprogram failed

due to the presence of variable

arguments: &1

Where: &1 is the subprogram name.

Explanation: At least one call could not be inlined due

to the presence of variable arguments.

User Response: None.

CCN2268 Inlining of subprogram ″&1″ into

subprogram ″&2″ failed due to a

conflict in options settings.

Where: &1 and &2 are subprogram names.

Explanation: The specified call could not be inlined

due to incompatible options settings for the IPA object

40 z/OS V1R7.0 XL C/C++ Messages

||
|
|

|

|
|
|
|
|

|
|
|
|

files that contain the two programs.

User Response: Use compatible options during the

IPA Compile step.

CCN2269 Inlining of subprogram ″&1″ into

subprogram ″&2″ failed due to a type

mismatch in argument ″&3″.

Where: &1 and &2 are subprogram names. &3 is the

parameter index

Explanation: The specified call could not be inlined

due to incompatible types for the specified argument

number, where ″&1″ is the first argument.

User Response: Correct the program to use

compatible types for all arguments.

CCN2270 Subprogram ″&1″ has been inlined into

subprogram ″&2″. One or more

unexpected extra parameters were

ignored.

Where: &1 and &2 are subprogram names.

Explanation: The specified call was inlined, but one or

more parameters on the call were not required and

were ignored.

User Response: Eliminate the extra parameters.

CCN2271 Subprogram ″&1″ has been inlined into

subprogram ″&2″. One or more

arguments were not supplied, so the

values are undefined.

Where: &1 and &2 are subprogram names.

Explanation: The specified call was inlined, but one or

more parameters were omitted on the call. Values for

these arguments are indeterminate, so the operation of

the subprogram is undefined.

User Response: Specify all parameters actually

required by the called subprogram.

CCN2280 A type mismatch was detected for

symbol ″&1″.

Where: &1 is a subprogram name.

Explanation: An instance of the specified subprogram

was found where one or more parameters were of an

unexpected type.

User Response: Correct the program to use

parameter types compatible with the function definition. .

CCN2281 Function return types ″&1″ and ″&2″

for subprogram ″&3″ do not match.

Where: &1 and &2 are return type names. &3 is a

subprogram name.

Explanation: An instance of the specified subprogram

was found with an unexpected type for the function

return value.

User Response: Correct the program to use a return

type compatible with the function definition.

CCN2282 Subprogram ″&1″ has the wrong

number of formal parameters.

Where: &1 is a subprogram name.

Explanation: The number of formal parameters for the

definition of the given subprogram does not match the

number of formal parameters for the declaration of the

subprogram.

User Response: Correct the program to use a

consistent number of formal parameters for the

subprogram.

CCN2283 A linkage mismatch was detected for

symbol ″&1″.

Where: &1 is a symbol name.

Explanation: An instance of the specified subprogram

was found which uses a linkage incompatible with the

calling function.

User Response: Correct the program to ensure

consistent linkage across all objects.

CCN2299 Some optimizations may be inhibited.

Explanation: During optimization of the IPA object, a

problem was encountered that prevent the use of all

available optimization techniques. These specific

problems are identified in separate messages.

User Response: Correct the problem which inhibits

optimization.

CCN2300 Export symbol ″&1″ not found.

Where: &1 is a symbol name.

Explanation: An ″export″ directive entry for the

specified symbol was present in the IPA Link control file,

but no symbol by this name is present in the application

program.

User Response: Correct the IPA Link control file

directive.

CCN2301 External subprogram ″&1″ not found.

Could not mark as ″pure″.

Where: &1 is a subprogram name.

Explanation: A ″pure″ directive entry for the specified

subprogram was present in the IPA Link control file, but

no subprogram by this name is present in the

application program.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 41

User Response: Correct the IPA Link control file

directive.

CCN2302 External subprogram ″&1″ not found.

Could not mark as ″isolated″.

Where: &1 is a subprogram name.

Explanation: A ″isolated″ directive entry for the

specified subprogram was present in the IPA Link

control file, but no subprogram by this name is present

in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2303 External subprogram ″&1″ not found.

Could not mark as ″safe″.

Where: &1 is a subprogram name.

Explanation: A ″safe″ directive entry for the specified

subprogram was present in the IPA Link control file, but

no subprogram by this name is present in the

application program.

User Response: Correct the IPA Link control file

directive.

CCN2304 External subprogram ″&1″ not found.

Could not mark as ″unknown″.

Where: &1 is a subprogram name.

Explanation: An ″unknown″ directive entry for the

specified subprogram was present in the IPA Link

control file, but no subprogram by this name is present

in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2305 External subprogram ″&1″ not found.

Could not mark as ″low frequency″.

Where: &1 is a subprogram name.

Explanation: A ″lowfreq″ directive entry for the

specified subprogram was present in the IPA Link

control file, but no subprogram by this name is present

in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2306 External subprogram ″&1″ not found.

Could not mark as ″an exit″.

Where: &1 is a subprogram name.

Explanation: A ″exits″ directive entry for the specified

subprogram was present in the IPA Link control file, but

no subprogram by this name is present in the

application program.

User Response: Correct the IPA Link control file

directive.

CCN2307 External symbol ″&1″ not found. Could

not mark as ″retain″.

Where: &1 is a symbol name.

Explanation: A ″retain″ directive entry for the specified

symbol was present in the IPA Link control file, but no

symbol by this name is present in the application

program.

User Response: Correct the IPA Link control file

directive.

CCN2308 Regular expression ″&1″ error: &2.

Where: &1 is a regular expression.

Explanation: The regular expression is incorrectly

specified.

User Response: Correct the regular expression ″&1″.

CCN2310 External subprogram ″&1″ not found.

Could not mark as ″inline″.

Where: &1 is a subprogram name.

Explanation: An ″inline″ directive entry for the

specified subprogram was present in the IPA Link

control file, but no subprogram by this name is present

in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2311 EXternal subprogram ″&1″ not found.

Could not mark as ″do not inline″.

Where: &1 is a subprogram name.

Explanation: A ″noinline″ directive entry for the

specified subprogram was present in the IPA Link

control file, but no subprogram by this name is present

in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2312 Could not inline calls from ″&1″ to ″&2″

as neither external subprogram was

found.

Where: &1 and &2 are subprogram names.

Explanation: An ″inline″ directive entry for calls

between the specified subprograms was present in the

IPA Link control file, but no subprograms by these

names are present in the application program.

User Response: Correct the IPA Link control file

directive.

42 z/OS V1R7.0 XL C/C++ Messages

CCN2313 Could not inhibit inlining calls from

″&1″ to ″&2″ as neither external

subprogram was found.

Where: &1 and &2 are subprogram names.

Explanation: A ″noinline″ directive entry for calls

between the specified subprograms was present in the

IPA Link control file, but no subprograms by these

names are present in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2314 Could not inline calls from ″&1″ to ″&2″

as external subprogram ″&3″ was not

found.

Where: &1, &2 and &3 are subprogram names.

Explanation: An ″inline″ directive entry for calls

between the specified subprograms was present in the

IPA Link control file, but no subprogram with the

specified name is present in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2315 Could not inhibit inlining calls from

″&1″ to ″&2″ as external subprogram

″&3″ was not found.

Where: &1, &2 and &3 are subprogram names.

Explanation: A ″noinline″ directive entry for calls

between the specified subprograms was present in the

IPA Link control file, but no subprogram with the

specified name is present in the application program.

User Response: Correct the IPA Link control file

directive.

CCN2316 Could not find any calls from ″&1″ to

″&2″ to inline.

Where: &1 and &2 are subprogram names.

Explanation: An ″inline″ directive entry for calls

between the specified subprograms was present in the

IPA Link control file, but no such calls are present in the

application program.

User Response: Delete the IPA Link control file

directive.

CCN2317 Could not find any calls from ″&1″ to

″&2″ to inhibit from inlining.

Where: &1 and &2 are subprogram names.

Explanation: A ″noinline″ directive entry for calls

between the specified subprograms was present in the

IPA Link control file, but no such calls are present in the

application program.

User Response: Delete the IPA Link control file

directive.

CCN2320 The minimum size of partition &1

exceeds the partition size limit.

Where: &1 is the number of the current partition.

Explanation: The program information which must be

contained within the current partition is larger than the

current partition size limit. This may be because the

partition contains a single large subprogram.

User Response: Use the IPA Link ″partition″ directive

to specify a larger partition size limit.

CCN2340 Code generation was not performed

due to previously detected errors.

Object file not created.

Explanation: The completion of the IPA Link step is

not possible due to errors that were previously detected.

The generation of code and data from the IPA object

information will not be performed, and no object file will

be generated.

User Response: Eliminate the cause of the error

conditions.

CCN2341 Code generation for partition &1

terminated due to previous errors.

Where: &1 is the number of the current partition.

Explanation: The generation of object code and data

for the current partition has been terminated due to

error conditions detected during processing. Processing

continues to allow further errors to be detected, but an

incomplete object file will be generated.

User Response: Eliminate the cause of the error

conditions.

CCN2342 Code generation for partition &1

bypassed due to previous errors.

Where: &1 is the number of the current partition.

Explanation: The generation of object code and data

for the current partition has been bypassed due to error

conditions detected when processing a previous

partition. Processing continues to allow further errors to

be detected, but an incomplete object file will be

generated.

User Response: Eliminate the cause of the error

conditions.

CCN2345 An error occurred during code

generation. The code generation return

code was &1.

Where: &1 is the code generation return code.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 43

Explanation: During the generation of code for the

current partition, an error was detected. One or more

messages may be issued when this occurs.

User Response: Refer to the responses for these

messages, and perform the suggested error recovery

actions.

CCN2400 File ″&1″ not found.

Where: &1 is a file name.

Explanation: The compiler could not locate the

specified file.

User Response: Ensure the file name is correct. Also,

the file may be locked by another process or access

may be denied because of insufficient permission.

CCN2401 Object file ″&1″ not found.

Where: &1 is an object file name.

Explanation: The compiler could not locate the

specified object file.

User Response: Ensure the file name is correct. Also,

the file may be locked by another process or access

may be denied because of insufficient permission.

CCN2404 IPA Link control file ″&1″ not found.

Where: &1 is an IPA Link control file name.

Explanation: The compiler could not locate the

specified IPA Link control file.

User Response: Ensure the file name is correct. Also,

the file may be locked by another process or access

may be denied because of insufficient permission.

CCN2406 Load Module library member ″&1″ not

found.

Where: &1 is a Load Module library member name.

Explanation: The compiler could not locate the

specified member of the Load Module library.

User Response: Ensure the member name and Load

Module library names are correct. Also, the file may be

locked by another process or access may be denied

because of insufficient permission.

CCN2420 File ″&1″ has invalid format.

Where: &1 is a file name.

Explanation: The specified file was located, but did

not have the correct format.

User Response: Ensure the file name is correct.

Correct the file as necessary and repeat the step.

CCN2425 File ″&1″ has invalid attributes.

Where: &1 is a file name.

Explanation: The specified file was located, but did

not have the correct attributes.

User Response: Ensure the file name is correct.

Correct the file as necessary and repeat the step.

CCN2430 File ″&1″ is not allocated.

Where: &1 is a file name.

Explanation: The specified file is not allocated, and is

unavailable for processing.

User Response: Ensure the file allocation

specification is correct. Correct the file allocation as

necessary and repeat the step.

CCN2431 File ″&1″ is not allocated. Autocall will

not be performed.

Where: &1 is a file name.

Explanation: The specified file is not allocated, and is

unavailable for autocall processing.

User Response: Ensure the file allocation

specification is correct. Correct the file allocation as

necessary and repeat the step.

CCN2440 Unable to open file ″&1″, for read.

Where: &1 is a file name.

Explanation: The compiler could not open the

specified file. This file was being opened with the intent

of reading the file contents.

User Response: Ensure the file name is correct.

Ensure that the correct file is being read and has not

been damaged. Also, the file may be locked by another

process or access may be denied because of

insufficient permission.

CCN2441 Unable to open file ″&1″, for write.

Where: &1 is a file name.

Explanation: The compiler could not open the

specified file. This file was being opened with the intent

of writing new information.

User Response: Ensure the file name is correct.

Ensure that the correct file is specified. Also, the file

may be locked by another process or access may be

denied because of insufficient permission.

44 z/OS V1R7.0 XL C/C++ Messages

CCN2442 An error occurred while reading file

″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while

reading from the specified file.

User Response: Ensure that the correct file is being

read and has not been damaged.

CCN2443 An error occurred while writing to file

″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while

writing to the specified file.

User Response: Ensure that the correct file is

specified.

CCN2446 File ″&1″ is empty.

Where: &1 is a file name.

Explanation: The compiler opened the specified file,

but it was empty when an attempt was made to read

the file contents.

User Response: Ensure the file name is correct.

Ensure that the correct file is being read and has not

been damaged.

CCN2447 Premature end occurred while reading

file ″&1″.

Where: &1 is a file name.

Explanation: The compiler opened the specified file

and began processing the file contents. The end of file

was reached before all data was processed. Processing

continues with the next file.

User Response: Ensure that the correct file is being

read and has not been damaged.

CCN2451 Unable to create temporary file ″&1″.

Where: &1 is a file name.

Explanation: The compiler could not create the

specified temporary file.

User Response: The file may be locked by another

process or access may be denied because of

insufficient permission.

CCN2460 Listing file ″&1″ is full.

Where: &1 is the listing file name.

Explanation: The compiler detected that there is

insufficient free space to continue writing to the listing

file. Compilation continues, without further updates to

the listing file.

User Response: Ensure that the correct listing file is

specified, and that there is sufficient free space.

CCN2461 Listing file ″&1″ closed prematurely.

Where: &1 is the listing file name.

Explanation: The compiler detected an error while

writing to the listing file. Compilation continues, without

further updates to the listing file.

User Response: Ensure that the correct listing file is

specified.

CCN2462 Unable to write to temporary file ″&1″.

Where: &1 is the temporary file name.

Explanation: The compiler detected an error while

writing to the temporary file.

User Response: Ensure there is enough disk space.

CCN2463 Unable to create a temporary file.

Explanation: The compiler could not create a

temporary file.

User Response: Check the system documentation on

creating temporary files.

CCN2490 COMPILER LIMIT EXCEEDED:

Insufficient virtual storage.

Explanation: The compiler ran out of memory

attempting to compile the file. This sometimes happens

with large files or programs with large functions. Note

that very large programs limit the amount of optimization

that can be done.

User Response: Redefine your virtual storage to a

larger size. If sufficient storage is not available, you can

try various approaches, such as shut down any large

processes that are running, ensure your swap path is

large enough, try recompiling the program with a lower

level of optimization or without interprocedural analysis.

CCN2492 INTERNAL COMPILER ERROR: Error

&1 in Procedure &2.

Explanation: An internal compiler error occurred

during compilation.

User Response: Contact your Service Representative.

CCN2493 INTERNAL COMPILER ERROR: &1.

Explanation: An internal compiler error occurred

during compilation.

User Response: Contact your Service Representative.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 45

CCN2497 File &1 call failed. System error

description: ″&2″.

Explanation: The specified file operation failed. The

system error description describes the reason for the

failure.

User Response: Based on the system error

description, change the environment in order to facilitate

the given file system call. For example, if the process is

not authorized to perform the given action, then change

the appropriate permissions.

CCN3001 INTERNAL COMPILER ERROR:

Procedure &1.

Explanation: An internal compiler error occurred

during compilation.

User Response: Contact your VisualAge for C++

Service Representative.

CCN3002 COMPILER ERROR: Feature not

implemented: &1.

Explanation: An error occurred during compilation.

User Response: See the C/C++ Language Reference

for a description of supported features.

CCN3003 Width of a bit field of type ″&1″ cannot

exceed &2.

Explanation: The length of the bit field must not

exceed the maximum bit size of the bit field’s type.

User Response: Define the bit field length to be less

than or equal to the maximum bit size of the bit field

type.

CCN3004 pragma must appear before use of

identifier &1. pragma ignored.

Explanation: The identifier is modified by the pragma

after the pragma is seen.

User Response: Move the pragma so that it appears

before the identifier is used.

CCN3005 Error in message set &1, unable to

retrieve message &2.

Explanation: Message cannot be retrieved from the

message catalog.

User Response: Check the installation procedure to

see if the message catalog has been properly installed.

CCN3006 Label &1 is undefined.

Explanation: A label must be visible in the current

function scope if it is used in an expression.

User Response: Declare a label of that name in the

current function scope.

CCN3007 ″&1″ is undefined.

Explanation: A C identifier must be declared before it

is used in an expression.

User Response: Declare an identifier of that name in

the current scope or in a higher scope.

CCN3008 The argument is not valid for the

pragma directive.

Explanation: pragma does not recognize the

argument.

User Response: Remove the argument or change its

format.

CCN3009 Bit field &1 must be of type signed int,

unsigned int or int.

Explanation: The type of the bit field is not a signed

int, unsigned int nor an int.

User Response: Define the bit field with a type signed

int or unsigned int.

CCN3010 Macro &1 invoked with a null argument

for parameter &2.

Explanation: No argument was specified for

parameter.

User Response: Specify arguments for all macro

parameters.

CCN3012 Operand of bitwise complement must

be an integral type.

Explanation: The operand of the bitwise complement

operator does not have an integral type. Valid integral

types include: signed and unsigned char; signed and

unsigned short, long, and int; and enum.

User Response: Change the type of the operand, or

use a different operand.

CCN3013 Operand of unary + or - operator must

be an arithmetic type.

Explanation: The operand of the unary + or - operator

does not have an arithmetic type. Valid arithmetic types

include: signed and unsigned char; signed and

unsigned short, long, and int; enum, float, double, and

long double.

46 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|
|

|
|
|
|
|

||
|

|
|

|
|
|

 | |
 |

 |
 |

 |
 |

User Response: Change the type of the operand, or

use a different operand.

CCN3014 Operand of logical negation must be a

scalar type.

Explanation: The operand of the logical negation

operator (!) does not have a scalar type. Valid scalar

types include: signed and unsigned char; signed and

unsigned short, long, and int; enum, float, double, long

double, and pointers.

User Response: Change the type of the operand, or

use a different operand.

CCN3017 Operand of address operator must be

an lvalue or function designator.

Explanation: The operand of the address operator

(unary &) is not valid. The operand must be either a

function designator or an lvalue that designates an

object that is not a bit field and is not declared with

register storage class.

User Response: Change the operand.

CCN3018 Operand of indirection operator must

be a pointer expression.

Explanation: The operand of the indirection operator

(unary *) is not a pointer.

User Response: Change the operand to a pointer.

CCN3019 Expecting an array or a pointer to

object type.

Explanation: Index operator ([]) operates only on

arrays or pointer to objects.

User Response: Change the operand.

CCN3020 Expression must be an integral type.

Explanation: The expression does not evaluate to an

integral type. Valid integral types include: signed,

unsigned and plain char, signed and unsigned short, int,

long, and enum.

User Response: Change the type of the operand.

CCN3021 Expecting struct or union.

Explanation: The left hand operand of the dot

operator (.) must have a struct or union type.

User Response: Change the operand.

CCN3022 ″&1″ is not a member of ″&2″.

Explanation: The specified member does not belong

to the structure or union given. One of the following has

occurred:

1. The right hand operand of the dot (.) operator is not

a member of the structure or union specified on the

left hand side of the operator.

2. The right hand operand of the arrow (->) operator is

not a member of the structure or union pointed to by

the pointer on the left hand side of the operator.

User Response: Change the identifier.

CCN3023 Expecting function or pointer to

function.

Explanation: The expression is followed by an

argument list but does not evaluate to a function

designator.

User Response: Change the expression to be a

function or a pointer to a function.

CCN3025 Operand must be a modifiable lvalue.

Explanation: A modifiable lvalue is an expression

representing an object that can be changed.

User Response: Change the operand.

CCN3026 Number of initializers cannot be

greater than the number of aggregate

members.

Explanation: Too many initializers were found in the

initializer list for the indicated declaration.

User Response: Check the number of initializers and

change it to correspond to the number of declared

members. Make sure the closing brace at the end of the

initializer list is positioned correctly.

CCN3027 Function &1 cannot be initialized.

Explanation: An attempt was made to assign an initial

value to a function identifier. You can not assign a value

to a function identifier.

User Response: Remove the assignment operator

and the initializer.

CCN3028 Storage class ″&1″ cannot be used

with external data.

Explanation: The storage class is not appropriate for

this declaration. Restrictions include: 1) Storage class

specifier not allowed on aggregate members, casts,

sizeof or offsetof declarations. 2) Declarations at file

scope cannot have ″register″ or ″auto″ storage class.

User Response: Specify a different storage class.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 47

||
|

|
|
|
|
|

|

CCN3029 pragma ignored, identifiers are already

disjoint.

Explanation: The identifiers that are specified in the

pragma are already known to be disjoint so the pragma

is ignored.

User Response: Nothing, or remove the pragma as it

is redundant.

CCN3030 Identifier &1 cannot be redeclared.

Explanation: The identifier has already been declared.

User Response: Remove one of the declarations.

CCN3031 All dimensions except the first must be

specified for a multidimensional array.

Explanation: Only the first dimension of an initialized

array can be unspecified. All the other dimensions must

be specified on the declaration.

User Response: Specify all the other dimensions in

the array declaration.

CCN3032 Elements of an array cannot be

functions.

Explanation: An array must be composed of elements

that are an object type. Functions are not object types

and thus cannot be elements of an array.

User Response: Use a pointer to the function, or

change the type of the element.

CCN3033 Function &1 is not valid. Function

cannot return a function.

Explanation: A function cannot have a return type of

function.

User Response: Return a pointer to the function or

specify a different return type.

CCN3034 Function &1 is not valid. Function

cannot return an array.

Explanation: A function cannot return an array and

the specified return type of the function is an array.

User Response: Return a pointer to the array or

specify a different return type.

CCN3035 Storage class ″&1″ cannot be used

with functions.

Explanation: A function can only have a storage class

of extern or static.

User Response: Remove the storage class specifier

for the function identifier, or change it to either extern or

static.

CCN3036 Range error.

Explanation: The value is outside of the valid range.

User Response: Change value to be within the

required limits.

CCN3037 Member of struct or union cannot be a

function.

Explanation: Members of structs or unions must have

object type. Functions do not have object type and

cannot be members of a struct or union.

User Response: Use a pointer to the function or

remove the function from the member list.

CCN3039 Expecting a parameter after # operator.

Explanation: The # preprocessor operator can only be

applied to a macro parameter.

User Response: Place a parameter after the # token,

or remove the token.

CCN3041 The invocation of macro &1 contains

fewer arguments than required by the

macro definition.

Explanation: The number of arguments supplied to

the macro must match the number of parameters in the

macro definition. There are not enough arguments

supplied.

User Response: Complete the specification of the

macro argument list.

CCN3043 The operand of the sizeof operator is

not valid.

Explanation: Sizeof operator cannot be used with

functions, void types, bit fields, incomplete types, or

arrays of unknown size. The sizeof operator cannot be

applied to an expression that has a function type or an

incomplete type, to the parenthesized name of such a

type, or to an lvalue that designates a bit field object.

User Response: Change the operand.

CCN3044 Expression must be a non-negative

integer constant.

Explanation: The supplied expression must evaluate

to a non-negative integer constant.

User Response: Change the constant expression to

yield a non-negative value.

48 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |
 |
 |
 |
 |

 |

CCN3045 Undeclared identifier &1.

Explanation: You must declare a C identifier before

you use it in an expression.

User Response: Declare an identifier of that name in

the current scope or in a higher scope.

CCN3046 Syntax error.

Explanation: See the C/C++ Language Reference for

a complete description of C syntax rules.

User Response: Correct the syntax error and compile

again.

CCN3047 Incorrect hexadecimal escape

sequence \x. \ ignored.

Explanation: \x is used to indicate an hexadecimal

escape sequence but the sequence immediately

following is not a valid hexadecimal number.

User Response: Change the sequence to a valid

hexadecimal number.

CCN3048 Unable to initialize source conversion

from codepage &1 to codepage &2.

Explanation: An error occurred when attempting to

convert source between the codepages specified.

User Response: Ensure the codepages are correct

and that conversion between these codepages is

supported.

CCN3049 The object &1 has a size &2 which

exceeds the compiler limit &3.

Explanation: The size of the object is too large for the

compiler to represent internally.

User Response: Reduce the size of the object.

CCN3050 Return type ″&1″ in redeclaration is not

compatible with the previous return

type ″&2″.

Explanation: The second declaration of the function

declares a different return type from the first. The

declaration must be identical. When you redeclare a

function, the return type and parameter types must be

the same in both declarations.

User Response: Change the declaration of one or

both functions so that their return types are compatible.

CCN3051 Case expression must be a valid

integral constant.

Explanation: The expression in the case statement

must be a constant integral expression. Valid integral

expressions are: char, signed and unsigned int, and

enum.

User Response: Change the expression.

CCN3052 Duplicate case label for value &1.

Labels must be unique.

Explanation: Two case labels in the same switch

statement cannot evaluate to the same integer value.

User Response: Change one of the labels.

CCN3053 Default label cannot be placed outside

a switch statement.

Explanation: A statement is labeled with default,

which can only be used as a statement label within a

switch statement.

User Response: Remove the default case label, or

place it inside a switch statement. Check for misplaced

braces on a previous switch statement.

CCN3054 Switch statement cannot contain more

than one default label.

Explanation: Only one default label is allowed within a

switch statement. Nested switch statements may each

have one default label. This error may have been

caused by a default label that is not properly placed

within a nested switch statement.

User Response: Remove one of the default labels or

check for misplaced braces on nested switch

statements..

CCN3055 Case label cannot be placed outside a

switch statement.

Explanation: Case labels are only allowed within a

switch statement.

User Response: Remove the case label, or place it

within a switch statement group. Check for misplaced

braces on the previous switch statement.

CCN3056 Break statement cannot be placed

outside a while, do, for, or switch

statement.

Explanation: Break statements are only allowed within

a while, do, for, or switch statement.

User Response: Remove the break statement or

place it inside a while, do, for or switch statement.

Check for misplaced braces on a previous statement.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 49

 | |
 |
 |

 |
 |

 |
 |
 |

CCN3057 Continue cannot be placed outside a

while, do, or for statement.

Explanation: Continue is only valid as, or within, a

loop body.

User Response: Remove the continue statement or

place it inside a while, do or for loop. Check for

misplaced braces on a previous loop.

CCN3058 Label &1 has already been defined on

line &2 of ″&3″.

Explanation: You already used the label to identify a

section of code in the file indicated. You cannot redefine

a label.

User Response: Change the name of one of the

labels.

CCN3059 Comment that started on line &1 must

end before the end of file.

Explanation: A comment that was not terminated has

been detected. The comment started on the line

indicated.

User Response: End the comment before the file

ends.

CCN3062 Escape sequence &1 is out of the

range 0-&2. Value is truncated.

Explanation: Character constants specified in an

escape sequence exceeded the decimal value of 255,

or the octal equivalent of 377, or the hexadecimal

equivalent of FF.

User Response: Change the escape sequence so

that the value does not exceed the maximum value.

CCN3067 A struct or union can only be assigned

to a compatible type.

Explanation: The assignment is invalid between the

given aggregate types.

User Response: Change the operands so that they

have the same type.

CCN3068 Operation between types ″&1″ and ″&2″

is not allowed.

Explanation: The operation specified is not valid

between the operands having the given types.

User Response: Either change the operator or the

operands.

CCN3070 Register is the only storage class that

can be used with parameters.

Explanation: Parameters can have either no storage

class specifier or the register storage class specifier.

User Response: Remove the storage class specified

in the parameter declaration or use the register storage

class.

CCN3073 Empty character constant.

Explanation: An empty character constant is not valid.

There must be at least one character between the

single quotation marks.

User Response: Put at least one character inside the

pair of single quotation marks.

CCN3076 Character constant &1 has more than 4

characters. No more than rightmost 4

characters are used.

Explanation: A character constant can only have up to

four bytes.

User Response: Change the character constant to

contain four bytes or less.

CCN3077 The wchar_t value &1 is not valid.

Explanation: The value is not a valid wchar_t value.

See the C/C++ Language Reference for information on

wide characters.

User Response: Change character to a valid wchar_t.

See the C/C++ Language Reference for information

about the wchar_t type.

CCN3078 #&1 directive has no effect.

Explanation: A preprocessor directive has been

specified that has no effect.

User Response: Remove the preprocessor directive.

CCN3085 Predefined macro &1 cannot be

undefined.

Explanation: The macro is predefined. You cannot

undefine predefined macros.

User Response: Remove the statement that

undefines the macro.

CCN3095 Unexpected parameter &1.

Explanation: A parameter was declared in the

parameter declaration list of the K&R function definition.

The parameter did not appear in the parameter identifier

list. It is also possible that the K&R function definition

had more parameters than the function prototype.

User Response: Change the number of parameters.

50 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |
 |
 |

CCN3098 Missing argument(s).

Explanation: The function call contains fewer

arguments than specified in the parameter list of the

function prototype.

User Response: Make sure the function call has the

same number of arguments as the function prototype

has parameters.

CCN3099 Unexpected argument.

Explanation: The function call contains more

arguments than specified in the parameter list of the

function prototype.

User Response: Change the number of arguments in

the function call or change the function prototype.

CCN3103 Tag &1 requires a complete definition

before it is used.

Explanation: Only pointer declarations can include

incomplete types. A struct or union tag is undefined if

the list describing the name and type of its members

has not been specified.

User Response: Define the tag before it is used in the

declaration of an identifier or complete the declaration.

CCN3104 The value of an enumeration constant

must be an integral constant

expression.

Explanation: If an enum constant is initialized in the

definition of an enum tag, the initial value of the

constant must be an integral expression that has a

value representable as an int.

User Response: Remove the initial value, or ensure

that the initial value is an integral constant expression

with a value representable as an int.

CCN3108 Bit fields with zero width must be

unnamed bit fields.

Explanation: A named bit field must have a positive

length; a zero length bit field is used for alignment only

and must not be named.

User Response: Redefine the bit field with a length

greater than zero or remove the name of the bit field.

CCN3112 Duplicate type qualifier ″&1″ ignored.

Explanation: The indicated qualifier appears more

than once in the type declaration.

User Response: Remove one of the duplicate

qualifiers.

CCN3115 Duplicate type specifier ″&1″ ignored.

Explanation: A duplicate type specifier appears in the

type declaration.

User Response: Remove one of the duplicate type

specifiers.

CCN3117 Operand must be a scalar type.

Explanation: Valid scalar types include: signed and

unsigned char; signed and unsigned short, long, and int;

enum, float, double, long double, and pointers.

User Response: Change the type of the operand, or

use a different operator.

CCN3119 Duplicate storage class specifier &1

ignored.

Explanation: A duplicate storage class specifier

appears in the declaration.

User Response: Remove one of the duplicate storage

class specifiers.

CCN3120 Function cannot return a &1 qualified

type.

Explanation: The const or volatile qualifier cannot be

used to qualify a function’s return type.

User Response: Remove the qualifier or return a

pointer to the qualified type.

CCN3122 Expecting pointer to struct or union.

Explanation: The left hand operand of the arrow

operator (->) must have type pointer to structure or

pointer to union.

User Response: Change the operand.

CCN3127 The second and third operands of the

conditional operator must have

compatible struct or union types.

Explanation: If one operand in the conditional

expression has type struct or union, the other operand

must also have type struct or union.

User Response: Make the operands compatible.

CCN3131 Explicit dimension specification or

initializer required for an auto or static

array.

Explanation: For arrays of automatic or static storage

class, all dimensions of the array must be specified in

the declaration. If the declaration provides an

initialization, the first dimensions may be unspecified

because the initialization will determine the size needed.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 51

||
|

|
|
|

|
|

User Response: Specify all of the dimensions in the

array declaration.

CCN3134 Array bound is too large.

Explanation: The size of the array is too large for the

compiler to represent internally.

User Response: Reduce the size of the array.

CCN3137 Declaration must declare at least one

declarator, tag, or the members of an

enumeration.

Explanation: The declaration specifier was the only

component of the declaration. eg. int ;

User Response: Specify at least one declarator, tag,

or member of an enumeration.

CCN3152 A register array may only be used as

the operand to sizeof.

Explanation: The only operator that can be applied to

an array declared with storage class specifier register is

sizeof.

User Response: Remove the operation or remove the

register storage class specifier.

CCN3155 Option &1 requires suboption(s).

Explanation: The option is not completely specified; a

suboption is required.

User Response: Add a suboption.

CCN3159 Bit field type specified for &1 is not

valid. Type &2 assumed.

Explanation: The type of a bit field must be a

(possibly qualified) version of int, signed int or unsigned

int.

User Response: Define the bit field with a type signed

int or unsigned int.

CCN3160 Object &1 cannot be declared as type

void.

Explanation: The type void can only be used as the

return type or parameter list of a function, or with a

pointer. No other object can be of type void.

User Response: Ensure that the declaration uses type

void correctly.

CCN3162 No definition was found for function

&1. Storage class changed to extern.

Explanation: A static function was declared and

referenced in this file. The definition of the function was

not found before the end of the file. When a function is

declared to be static, the function definition must appear

in the same file.

User Response: Change the storage class to extern

or provide a function definition in this file.

CCN3164 Expression must be a scalar type.

Explanation: Valid scalar types include: signed and

unsigned char; signed and unsigned short, long, and int;

enum, float, double, long double, and pointers.

User Response: Change the expression.

CCN3166 Definition of function &1 requires

parentheses.

Explanation: The syntax of the declaration is not

correct. The compiler assumes it is the declaration of a

function in which the parentheses surrounding the

parameters are missing.

User Response: Check the syntax of the declaration.

Ensure the object name and type are properly specified.

Check for incorrect spelling or missing parentheses.

CCN3167 String literal is longer than target array.

Literal is truncated on the right.

Explanation: An attempt was made to initialize an

array with a string that is too long. The largest possible

prefix of the string has been placed in the array.

User Response: Increase the size of the array. Make

sure you include space for the terminating null

character.

CCN3168 Initializer must be enclosed in braces.

Explanation: The initializer list for a declarator must

be enclosed in braces.

User Response: Check for misplaced or missing

braces.

CCN3169 Too many suboptions specified for

option FLAG. Specify only two

suboptions.

Explanation: The FLAG option takes two suboptions

separated by ’:’. The suboptions indicate the level of

errors to be reported in the source listing and in stderr.

User Response: Only specify two suboptions to the

FLAG option.

CCN3170 Parameter &1 has already been defined

on line &2 of ″&3″.

Explanation: A parameter can only be defined once

but more than one definition for the parameter has been

specified. Parameters names must be unique.

User Response: Remove one of the parameter

52 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|
|

|
|

declarations or change the name of the identifier.

CCN3172 Parameter type list for function &1

contains parameters without

identifiers.

Explanation: In a C function definition, all parameters

must be named in the parameter list. The only

exceptions are parameters of type void.

User Response: Name the parameter or remove it.

CCN3173 Option &1 is not recognized.

Explanation: An invalid option was specified.

User Response: Correct the spelling of the option.

CCN3174 Option &1 must be specified on the

command line.

Explanation: The option can only be specified on the

command line and is not valid as part of an options

pragma.

User Response: Specify option on command line.

CCN3175 Option &1 must be specified on the

command line or before the first C

statement in the program.

Explanation: The option is specified in a pragma

options after the first C token in the compilation unit. It

must be specified before the first token.

User Response: Specify the option on the command

line or move the pragma options before the first token.

CCN3176 Option &1 cannot take more than one

suboption.

Explanation: More than one suboption was specified

for an option that can only accept one suboption.

User Response: Remove the extra suboptions.

CCN3178 Unexpected argument for built-in

function &1.

Explanation: The function call contains more

arguments than specified in the parameter list of the

built-in function.

User Response: Change the number of arguments in

the function call.

CCN3180 Redeclaration of built-in function &1

ignored.

Explanation: Built-in functions are declared by the

compiler and cannot be redeclared.

User Response: Remove the declaration.

CCN3181 Definition of built-in function &1

ignored.

Explanation: Built-in functions are defined by the

compiler and cannot be redefined.

User Response: Remove the function definition.

CCN3182 Arguments missing for built-in function

&1.

Explanation: The function call contains fewer

arguments than specified in the parameter list of the

built-in function.

User Response: Change the number of arguments in

the function call.

CCN3183 Builtin function &1 cannot change a

read-only string literal.

Explanation: Read-only strings cannot be modified.

User Response: Modify a copy of the string or change

the string’s read-only status.

CCN3184 Too few suboptions specified for

option FLAG. Specify two suboptions.

Explanation: The FLAG option takes two suboptions

separated by ’:’. The suboptions indicate the level of

errors to be reported in the source listing and in stderr.

User Response: Specify two suboptions to the FLAG

option.

CCN3185 #line number &1 must be greater than

zero.

Explanation: The #line directive tells the compiler to

treat the following source lines as starting from the

specified line. This number must be a non-negative

offset from the beginning of the file.

User Response: Change line number to a

non-negative integer.

CCN3186 String literal must be ended before the

end of line.

Explanation: String literals must end before the end of

the line. To create a string literal longer than one line,

use the line continuation sequence (a backslash (\) at

the end of the line), or concatenate adjacent string

literal.

User Response: End the string with a quotation mark

before the end of the line or use the continuation

sequence.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 53

CCN3188 Reserved name &1 cannot be defined

as a macro name.

Explanation: The name is reserved for the compiler’s

use.

User Response: Choose another name.

CCN3189 Floating point constant &1 is not valid.

Explanation: See the C/C++ Language Reference for

a description of a floating-point constant.

User Response: Ensure that the floating-point

constant does not contain any characters that are not

valid.

CCN3190 Automatic constant &1 does not have

a value. Zero is being assumed.

Explanation: Const qualified variable declarations

should contain an initializer. Otherwise you cannot

assign the variable a value.

User Response: Initialize the const variable when you

declare it.

CCN3191 The character &1 is not a valid C

source character.

Explanation: Refer to the C/C++ Language Reference

for information on valid characters.

User Response: Change the character.

CCN3192 Cannot take address of built-in

function &1.

Explanation: You cannot take the address of a built-in

function or declare a pointer to a built-in function.

User Response: Remove the operation that takes the

address of the built-in function.

CCN3193 The size of this type is zero.

Explanation: You cannot take the address of an array

of size zero.

User Response: Remove the operation that takes the

address of the zero-sized array.

CCN3194 Incomplete type is not allowed.

Explanation: Except for pointers, you cannot declare

an object of incomplete type.

User Response: Complete the type declaration.

CCN3195 Integral constant expression with a

value greater than zero is required.

Explanation: The size of an array must be an

expression that evaluates to a compile-time integer

constant that is larger than zero.

User Response: Change the expression.

CCN3196 Initialization between types ″&1″ and

″&2″ is not allowed.

Explanation: An attempt was made to initialize a

variable with an incompatible type.

User Response: Ensure types are compatible.

CCN3197 Expecting header file name in #include

directive.

Explanation: There was no header filename after the

#include directive.

User Response: Specify the header file name.

Enclose system header names in angle brackets and

user header names in double quotes.

CCN3198 #if, #else, #elif, #ifdef, #ifndef block

must be ended with #endif.

Explanation: Every #if, #ifdef, and #ifndef must have

a corresponding #endif.

User Response: End the conditional preprocessor

statements with a #endif.

CCN3199 #&1 directive requires a macro name.

Explanation: There must be a macro name after

every #define, #undef, #ifdef or #ifndef.

User Response: Ensure that a macro name follows

the #define, #undef, #ifdef, or #ifndef preprocessor

directive.

CCN3200 #elif can only appear within a #if, #elif,

#ifdef, or #ifndef block.

Explanation: #elif is only valid within a conditional

preprocessor block.

User Response: Remove the #elif statement, or place

it within a conditional preprocessor block.

CCN3201 #else can only appear within a #if,

#elif, #ifdef or #ifndef block.

Explanation: #else is only valid within a conditional

preprocessor block.

User Response: Remove the #else statement, or

place it within a conditional preprocessor block.

54 z/OS V1R7.0 XL C/C++ Messages

CCN3202 #endif can only appear at the end of a

#if, #elif, #ifdef or #ifndef block.

Explanation: Every #endif must have a corresponding

#if, #ifdef, or #ifndef.

User Response: Remove the #endif statement, or

place it after a conditional preprocessor block.

CCN3204 Unexpected end of file.

Explanation: The end of the source file has been

encountered prematurely.

User Response: Check for misplaced braces.

CCN3205 &1

Explanation: The #error directive was encountered.

Compilation terminated.

User Response: Recompile with correct macro

definitions.

CCN3206 Suffix of integer constant &1 is not

valid.

Explanation: Valid integer suffixes are u or U for

unsigned, or l or L for long. Unsuffixed constants are

given the smallest data type that can hold the value.

Refer to the C/C++ Language Reference.

User Response: Change or remove the suffix.

CCN3207 Integer constant &1 out of range.

Explanation: The specified constant is too large to be

represented by an unsigned long int.

User Response: The constant integer must have a

value less than UINT_MAX defined in <limits.h>.

CCN3208 Compilation ended due to an I/O error.

Explanation: A file read or write error occurred.

User Response: Ensure that you have read access to

all source files, and read and write access to the TMP

directory. You also need write access to the object

output directory.

CCN3209 Character constants must end before

the end of a line.

Explanation: Character literals must be terminated

before the end of the line.

User Response: End the character literal before the

end of the line. Check for misplaced quotation marks.

CCN3210 The ## operator requires two

operands.

Explanation: The ## operator must be preceded and

followed by valid tokens in the macro replacement list.

Refer to the C/C++ Language Reference for information

on the ## operator.

User Response: Provide both operands for the ##

operator.

CCN3211 Parameter list must be empty, or

consist of one or more identifiers

separated by commas.

Explanation: The macro parameter list must be

empty, contain a single identifier, or contain a list of

identifiers separated by commas.

User Response: Correct the parameter list.

CCN3212 Duplicate parameter &2 in definition of

macro &1.

Explanation: The identifiers in the macro parameter

list must be unique.

User Response: Change the identifier name in the

parameter list.

CCN3213 Macro name &1 cannot be redefined.

Explanation: You can define a macro multiple times

only if the definitions are identical except for white

space separating the tokens.

User Response: Change the macro definition to be

identical to the preceding one, or remove it.

CCN3215 Too many arguments specified for

macro &1.

Explanation: The number of arguments specified in

the macro invocation is different from the number of

parameters specified in the macro definition.

User Response: Make the number of arguments

consistent with the macro definition.

CCN3218 Unknown preprocessing directive #&1.

Explanation: An unrecognized preprocessing directive

has been encountered.

User Response: Check the spelling and syntax or

remove the directive.

CCN3219 The #line value &1 is outside the range

0 to &2.

Explanation: The value for a #line directive must not

exceed &2.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 55

 | |
 |

 |
 |

User Response: Ensure that the #line value does not

exceed &2.

CCN3220 #line value &1 must contain only

decimal digits.

Explanation: A nonnumerical character was

encountered in the #line value.

User Response: Check the syntax of the value given.

CCN3221 Initializer must be a valid constant

expression.

Explanation: The initializers for objects of static

storage duration, for elements of an array, or for

members of a structure or union must be valid constant

expressions.

User Response: Remove the initialization or change

the indicated initializer to a valid constant expression.

CCN3224 Incorrect pragma ignored.

Explanation: An unrecognized pragma directive was

encountered. See the C/C++ Language Reference for

the list of valid pragma directives.

User Response: Change or remove the pragma

directive.

CCN3226 The ″:″ operator is not allowed

between ″&1″ and ″&2″.

Explanation: The operands must be of compatible

type.

User Response: Change the type of the operands.

CCN3229 File is empty.

Explanation: The source file contains no code.

User Response: Check that the file name and path

are correct. Add source code to the file.

CCN3231 Error occurred while opening

preprocessor output file.

Explanation: The preprocessor was unsuccessful in

attempting to open the output file.

User Response: Ensure you have write access to the

file.

CCN3232 Divisor for modulus or division

operator cannot be zero.

Explanation: The value of the divisor expression

cannot be zero.

User Response: Change the expression used as the

divisor.

CCN3234 Expecting a new-line character on #&1

directive.

Explanation: A character sequence was encountered

when the preprocessor required a new-line character.

User Response: Add a new-line character.

CCN3235 Incorrect escape sequence &1. \

ignored.

Explanation: An escape sequence that is not valid

has been encountered in a string literal or a character

literal. It is replaced by the character following the

backslash (\).

User Response: Change or remove the escape

sequence.

CCN3236 Macro name &1 has been redefined.

Explanation: You can define a macro multiple times in

extended mode. In ANSI mode macro redefinitions are

ignored.

User Response: Change the language level to

extended (with the /Se compiler option or pragma

langlvl directive), or remove the macro redefinitions.

CCN3238 Function argument cannot be type

void.

Explanation: The void type cannot appear in the

argument list of a function call. The void type can

appear in a parameter list only if it is a non-variable

argument function. It is the only parameter in the list,

and it is unnamed.

User Response: Correct the argument or remove the

argument.

CCN3242 An object with external linkage

declared at block scope cannot be

initialized.

Explanation: You cannot declare a variable at block

scope with the storage class extern and give it an

explicit initializer.

User Response: Initialize the external object in the

external declaration.

CCN3243 Value of enumeration constant must be

in range of signed integer.

Explanation: If an enum constant is initialized in the

definition of an enum tag, the initial value must be an

integral expression that has a value representable as an

int.

User Response: Remove the initial value, or ensure

that it is an integral constant expression that has a

value representable as an int.

56 z/OS V1R7.0 XL C/C++ Messages

|
|

CCN3244 External variable &1 cannot be

redefined.

Explanation: An attempt was made to redefine an

external variable.

User Response: Remove the redefinition.

CCN3245 Incompatible sign adjective ″&1″.

Explanation: Adjectives ″signed″ and unsigned can

only modify integer type specifiers.

User Response: Either remove the sign adjective or

use a different type specifier.

CCN3246 Incompatible length adjective ″&1″.

Explanation: Length adjectives short and long can

only be applied to particular scalar types. See the

C/C++ Language Reference for valid types.

User Response: Either remove the length adjective or

use a different type specifier.

CCN3247 Incompatible type specifier ″&1″.

Explanation: The type specifier is not compatible with

the type adjectives used. See the C/C++ Language

Reference for valid combinations of type specifiers and

adjectives.

User Response: Either remove the adjective or use a

different type specifier.

CCN3248 More than one storage class specifier

&1.

Explanation: A C declaration must only have one

storage class specifier.

User Response: Ensure only one storage class is

specified.

CCN3249 Identifier contains a $ character.

Explanation: You cannot use the $ character in an

identifier. An identifier can contain alphanumeric

characters and underscores. An identifier must start with

either an underscore or alphabetic character.

User Response: Remove the $ character.

CCN3250 Floating point constant &1 out of

range.

Explanation: The compiler detected a floating-point

overflow either in scanning a floating-point constant, or

in performing constant arithmetic folding.

User Response: Change the floating-point constant

so that it does not exceed the maximum value.

CCN3251 Static function &1 is undefined.

Explanation: A static function was declared and

referenced in this file. The definition of the function was

not found before the end of the file. When a function is

declared to be static, the function definition must appear

in the same file.

User Response: Define the function in the file or

remove the static storage class.

CCN3255 pragma &1 is out of sequence.

Explanation: The pragma directive was out of

sequence. See the C language Reference Manual for

the restrictions on placement.

User Response: Change or remove the pragma

directive.

CCN3258 Hexadecimal integer constant &1 is not

valid.

Explanation: An invalid hexadecimal integer constant

was specified. See the C/C++ Language Reference for

details on specifying hexadecimal characters.

User Response: Change the value to a valid

hexadecimal integer constant.

CCN3260 Octal integer constant &1 is not valid.

Explanation: An invalid octal integer constant was

specified. See the C/C++ Language Reference for

details on specifying octal characters.

User Response: Change the value to a valid octal

integer constant.

CCN3261 Suboption &1 is not valid for option

&2.

Explanation: An invalid suboption was specified for

some option.

User Response: Change the suboption.

CCN3262 pragma &1 must occur before first C

statement in program. pragma ignored.

Explanation: This pragma must be specified before

the first C token in the input (including header files).

User Response: Place the pragma directive in the file

before any C code, or remove it.

CCN3263 pragma strings directive can be

specified only once per source file.

pragma ignored.

Explanation: This pragma specifies whether string

literals are placed in read-only memory. It must appear

only once and before any C code.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 57

User Response: Change the location of the directive

and ensure that it appears only once in the translation

unit.

CCN3264 pragma &1 directive can be specified

only once per source file.

Explanation: There can only be one pragma &1 per

source file.

User Response: Ensure that it occurs only once in the

translation unit.

CCN3265 pragma chars directive can be

specified only once per source file.

pragma ignored.

Explanation: This pragma specifies the sign of char

data. It must appear only once and before any C code.

User Response: Change the location of the directive

and ensure that it appears only once in the translation

unit.

CCN3266 Parameter(s) for pragma are out of

range.

Explanation: The pragma parameters were invalid.

See the C/C++ Language Reference for details on valid

pragma parameters.

User Response: Change the parameter.

CCN3267 Unrecognized pragma ignored.

Explanation: An invalid pragma was encountered and

ignored.

User Response: Ensure that the pragma name is

spelled correctly. A pragma with equivalent function, but

a different name may exist. See the C/C++ Language

Reference for a list of pragma directives.

CCN3268 Macro &1 invoked with an incomplete

argument for parameter &2.

Explanation: The parameter for the macro invocation

must have a complete argument.

User Response: Complete the specification of the

macro argument list. Check for missing commas.

CCN3271 The indirection operator cannot be

applied to a void pointer.

Explanation: The indirection operator requires a

pointer to a complete type. A void pointer is an

incomplete type that can never be completed.

User Response: Cast the pointer to a type other than

void before this operation.

CCN3272 Identifier not allowed in cast or sizeof

declarations.

Explanation: Only abstract declarators can appear in

cast or sizeof expressions.

User Response: Remove the identifier from the cast

or sizeof expression and replace it with an abstract

declarator.

CCN3273 Missing type in declaration of &1.

Explanation: A declaration was made without a type

specifier.

User Response: Insert a type specifier into the

declaration.

CCN3274 Missing declarator in member

declaration.

Explanation: An aggregate member declaration must

specify a name. A type cannot be followed by a

semicolon.

User Response: Declare the member with a name.

CCN3275 Unexpected text &1 encountered.

Explanation: A syntax error has occurred. This

message lists the tokens that were discarded by the

parser when it tried to recover from the syntax error.

User Response: Correct the syntax error and compile

again.

CCN3276 Syntax error: possible missing &1?

Explanation: A syntax error has occurred. This

message lists the token that the parser expected and

did not find.

User Response: Correct the syntax error and compile

again.

CCN3277 Syntax error: possible missing &1 or

&2?

Explanation: A syntax error has occurred. This

message lists the tokens that the parser expected and

did not find.

User Response: Correct the syntax error and compile

again.

CCN3278 The structure definition must specify a

member list.

Explanation: The declaration of a struct or a union

that includes an empty member list enclosed between

braces is not a valid struct or union definition.

User Response: Specify the members of the struct or

union in the definition or remove the empty braces to

58 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|

|
|

||
|
|

|
|

|
|
|

make it a simple struct or union tag declaration.

CCN3279 A function declarator cannot have a

parameter identifier list if it is not a

function definition.

Explanation: A function declarator that is not also a

function definition may not have a K&R style parameter

identifier list. An example is the ″x,y″ in ″int (*fred(a,b))

(x,y) {}″.

User Response: Remove the parameter identifier list.

CCN3280 Function argument assignment

between types ″&1″ and ″&2″ is not

allowed.

Explanation: The type of the argument in the function

call should match the corresponding parameter type in

the function declaration.

User Response: Cast the argument to a different

type, change the type or change the function prototype.

CCN3281 Prefix and postfix increment and

decrement operators cannot be applied

to ″&1″.

Explanation: Increment and decrement operators

cannot operate on pointers to function or pointers to

void.

User Response: Change the pointer to point to an

object type.

CCN3282 The type of the parameters must be

specified in a prototype.

Explanation: A prototype specifies the number and

the type of the parameters that a function requires. A

prototype that does not specify the type of the

parameters is not correct, for example,

 fred(a,b);

User Response: Specify the type of the parameters in

the function prototype.

CCN3283 Functions cannot be declared &1 at

block scope, &2 is ignored.

Explanation: Functions declared at block scope can

only have extern as an explicit storage class specifier

and cannot be inline.

User Response: Place the declaration of the function

at file scope, or remove the storage class specifier or

the inline specifier.

CCN3285 The indirection operator cannot be

applied to a pointer to an incomplete

struct or union.

Explanation: A structure or union type is completed

when the definition of its tag is specified. A struct or

union tag is defined when the list describing the name

and type of its members is specified.

User Response: Complete the struct or union

definition.

CCN3286 A struct or union with no named

members cannot be explicitly

initialized.

Explanation: Only aggregates containing named

members can be explicitly initialized.

User Response: Name the members of the struct or

union.

CCN3287 The parameter list on the definition of

macro &1 is not complete.

Explanation: There is a problem with the parameter

list in the definition of the macro.

User Response: Complete the parameter list. Look for

misplaced or extra commas.

CCN3288 Expecting file name or new-line

character on #line directive.

Explanation: The #line directive requires a line

number argument as its first parameter and a file name

as an optional second parameter. No other arguments

are allowed. A new-line character must be present after

the argument list.

User Response: Change the directive syntax.

CCN3289 Macro &1 redefined with identical

definition.

Explanation: Identical macro redefinitions are allowed

but not necessary. The amount of white space

separating the tokens have no bearing on whether

macros are considered identical.

User Response: Remove the redefinition.

CCN3290 Unknown macro name &1 on #undef

directive.

Explanation: An attempt is being made to undefine a

macro that has not been previously defined.

User Response: Check the spelling of the macro

name or remove the #undef directive.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 59

 | |
 |

 |
 |
 |
 |

 |

CCN3291 Expecting decimal constant on #line

directive.

Explanation: The value for a #line directive must be a

decimal constant.

User Response: Specify a line number on the #line

directive.

CCN3292 Multibyte character literal not allowed

on #&1 directive.

Explanation: The directive does not allow a multibyte

character literal.

User Response: Remove the multibyte character

literal.

CCN3293 Identifier &1 assigned default value of

zero on &2 directive.

Explanation: The indicated identifier in a #if or #elif

expression was assigned the default value of zero. The

identifier may have been intended to be expanded as a

macro.

User Response: Add a #define for the macro before

using it in a preprocessor conditional.

CCN3294 Syntax error in expression on #&1

directive.

Explanation: The expression for a preprocessor

directive contains a syntax error.

User Response: Replace the expression that controls

the directive by a constant integral expression.

CCN3295 File ended with a continuation

sequence.

Explanation: The file ended unexpectedly with a

backslash character followed by a new-line character.

User Response: Remove the continuation character

from the last line of the file, or add code after the

continuation character.

CCN3296 #include file &1 not found.

Explanation: The file specified on the #include

directive could not be found. See the C/C++ Language

Reference for file search order.

User Response: Ensure the #include file name and

the search path are correct.

CCN3297 Unable to open input file &1. (&2)

Explanation: The compiler was unable to open the

input file.

User Response: Ensure file exists and is accessible

by compiler.

CCN3298 Unable to read input file &1. (&2)

Explanation: The compiler was unable to read the

input file.

User Response: Ensure file exists and is accessible

by compiler.

CCN3299 Maximum #include nesting depth of &1

has been exceeded.

Explanation: The included files have been nested too

deeply.

User Response: Reduce the number of nested

include files.

CCN3300 Insufficient storage available.

Explanation: The compiler ran out of memory trying to

compile the file. This sometimes happens with large

files or programs with large functions. Note that very

large programs limit the amount of optimization that can

be done.

User Response: Increase your region size on MVS, or

your virtual storage on VM. You can also divide the file

into several small sections or shorten the function.

CCN3301 Redeclaration cannot specify fewer

parameters than previous declaration.

Explanation: The function definition has fewer

parameters than the prototype.

User Response: Modify one of the function

declarations so that the number and types of the

parameters match.

CCN3302 The declarations of the function &1

must be consistent in their use of the

ellipsis.

Explanation: The prototyped redeclaration of the

function is not correct. Fewer parameters appear before

the ellipsis in this function redeclaration than the

previous declaration.

User Response: Ensure that the redeclaration is

consistent with the previous declaration.

CCN3303 The type of the parameter &1 cannot

conflict with the previous declaration

of function &2.

Explanation: Nonprototype function declarations,

popularly known as K&R prototypes, specify only the

function return type. The function parentheses are

empty; no information about the parameters is given.

 Nonprototype function definitions specify a list of

parameter names appearing between the function

parentheses followed by a list of declarations (located

60 z/OS V1R7.0 XL C/C++ Messages

between the parentheses and the opening left brace of

the function) that indicates the type of the parameters. A

nonprototype function definition is also known as a K&R

function definition.

 A prototype function declaration or definition specifies

the type and the number of the parameters in the

parameter declaration list that appears inside the

function parenthesis. A prototype function declaration is

better known as an ANSI prototype, and a prototype

function definition is better known as an ANSI function

definition.

 When the nonprototype function declarations/definitions

are mixed with prototype declarations, the type of each

prototype parameter must be compatible with the type

that results from the application of the default argument

promotions.

 Most types are already compatible with their default

argument promotions. The only ones that aren’t are

char, short, and float. Their promoted versions are,

respectively, int, int, and double.

 This message can occur in several situations. The most

common is when mixing ANSI prototypes with K&R

function definitions. If a function is defined using a

K&R-style header, then its prototype, if present, must

specify widened versions of the parameter types. Here

is an example.

 int fn(short); int fn(x)

short x; {}

This is not valid because the function has a K&R-style

definition and the prototype does not specify the

widened version of the parameter. To be correct, the

prototype should be

int fn(int);

because int is the widened version of short.

 Another possible solution is to change the function

definition to use ANSI syntax. This particular example

would be changed to

 int fn(short); int fn(short x) {}

This second solution is preferable, but either solution is

equally valid.

User Response: Give a promoted type to the

parameter in the prototype function declaration.

CCN3304 No function prototype given for ″&1″.

Explanation: A prototype declaration of the function

specifying the number and type of the parameters was

not found before the function was used. Errors may

occur if the function call does not respect the function

definition.

User Response: Add an appropriate function

prototype before calling the function.

CCN3306 Subscript operator requires an array

operand in the offsetof macro.

Explanation: A subscript was specified in the offsetof

macro but the operand is not an array.

User Response: Either change the operand to be an

array type or remove the subscript operator.

CCN3307 Array index must be a constant

expression in the offsetof macro.

Explanation: The offsetof macro is evaluated at

compile time. Thus all arguments must be constant

expressions.

User Response: Change the expression.

CCN3308 Operand of the offsetof macro must be

a struct or a union.

Explanation: The first operand of the offsetof macro

must be a structure or union type.

User Response: Change the operand.

CCN3309 The offsetof macro cannot be used

with an incomplete struct or union.

Explanation: An incomplete struct or union is not a

valid argument to the offsetof macro. A structure or

union type is completed when the definition of its tag is

specified.

User Response: Ensure the struct or union is a

complete type.

CCN3310 The type ″&1 &2″ was introduced in a

parameter list, and will go out of scope

at the end of the function declaration

or definition.

Explanation: The tag will be added to parameter

scope in ANSI mode. Thus it will go out of scope at the

end of the declaration or function definition. In extended

mode, the tag is added to the closest enclosing block

scope.

User Response: If the tag is needed for declarations

outside its scope, move the tag declaration outside of

parameter scope.

CCN3311 Wide character constant &1 has more

than one character. Last character is

used.

Explanation: All but the last character in the constant

will be discarded.

User Response: Remove all but one character or

change the character constant into a string literal.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 61

CCN3312 Compiler internal name &1 has been

defined as a macro.

Explanation: Do not redefine internal compiler names.

User Response: Remove the macro definition or

change the name of the macro being defined.

CCN3313 Compiler internal name &1 has been

undefined as a macro.

Explanation: Do not redefine internal compiler names.

User Response: Remove the macro undefinition.

CCN3314 The tag of this expression’s type has

gone out of scope.

Explanation: The tag used in the type declaration of

the object has gone out of scope, however the object is

still referenced in the expression.

User Response: Either remove the reference to the

object or move the tag’s definition to a scope that

encloses both the referenced object and the object’s

declaration.

CCN3320 Operation is not allowed because the

size of &1 is unknown.

Explanation: The operand must be a complete type

for the compiler to determine its size.

User Response: Provide a complete type definition.

CCN3321 You can specify an initializer only for

the first named member of a union.

Explanation: There can only be an initializer for the

first named member of a union.

User Response: Remove all union initializers other

than the one attached to the first named member.

CCN3322 Illegal multibyte character &1.

Explanation: The multibyte character specified is not

valid.

User Response: Correct the multibyte character.

CCN3323 ″double″ should be used instead of

″long float″.

Explanation: The type long float is not valid; it is

treated as a double.

User Response: Remove the long type specifier or

use double instead of float.

CCN3324 ″&1″ cannot be converted to ″&2″.

Explanation: The cast between the two types is not

allowed.

User Response: Remove the cast.

CCN3327 An error occurred while opening the

listing file, &1.

Explanation: The compiler was unable to open the

listing file.

User Response: Ensure the file exists and that the

compiler can access it.

CCN3328 ″″&1″ is not a valid hex digit.″

Explanation: Valid hex digits are the letters

A,B,C,D,E,F,0,1,2,3,4,5,6,7,8,9.

User Response: Change the digit.

CCN3329 Byte string must have an even length.

Explanation: The byte string for a pragma mcfunc

must be of even length.

User Response: Ensure that the machine code string

is of even length.

CCN3332 Option &1 is ignored because option

&2 is not specified.

Explanation: The option &1 is only valid when used in

conjunction with &2.

User Response: Compile with &2.

CCN3334 Identifier &1 has already been defined

on line &2 of ″&3″.

Explanation: There is more than one definition of an

identifier.

User Response: Remove one of the definitions or

change the name of the identifier.

CCN3335 Parameter identifier list contains

multiple occurrences of &1.

Explanation: Identifier names in a parameter list must

be unique.

User Response: Change the name of the identifier or

remove the parameter.

CCN3339 A character string literal cannot be

concatenated with a wide string literal.

Explanation: A string that has a prefix L cannot be

concatenated with a string that is not prefixed.

Concatenation requires that both strings be of the same

type.

62 z/OS V1R7.0 XL C/C++ Messages

User Response: Check the syntax of the value given.

CCN3341 #include header must be ended before

the end of the line.

Explanation: A #include directive was specified across

two or more lines.

User Response: Ensure that the #include directive

and its arguments are contained on a single line.

CCN3342 ″″/*″ detected in comment.″

Explanation: You can ignore this message if you

intended ″/*″ to be part of the comment. If you intended

it to start a new comment, move it out of the enclosing

comment.

User Response: Remove ″/*″ or ensure that ″/*″ was

intended in the comment.

CCN3343 Redeclaration of &1 differs from

previous declaration on line &2 of

″&3″.

Explanation: The redeclaration is not compatible with

the previous declaration.

User Response: Either remove one declaration or

make the types compatible.

CCN3344 Member &1 has already been defined

on line &2 of ″&3″.

Explanation: Member names must be unique within

the same aggregate.

User Response: Change the name.

CCN3345 The data in precompiled header file &1

does not have the correct format.

Explanation: The precompiled header file may have

become corrupt and is ignored.

User Response: Regenerate the precompiled header

files.

CCN3346 Unable to open precompiled header file

&1 for input. The original header will

be used.

Explanation: The compiler was unable to open the

precompiled header file for reading and will use the

original header.

User Response: Regenerate the precompiled header

files.

CCN3347 Precompiled header file &1 was

created by a more recent release of the

compiler. The original header will be

used.

Explanation: The compiler cannot understand the

format of the precompiled header, since it was

generated using a more recent version of the compiler.

The original text version of the header will be used.

User Response: Regenerate the precompiled header

files.

CCN3348 Unable to write to precompiled header

file &1.

Explanation: The compiler was unable to write to the

precompiled header files.

User Response: Ensure that the compiler has write

access to the precompiled header files.

CCN3349 Value of enumeration constant must be

in range of unsigned integer.

Explanation: If an enum constant is initialized in the

definition of an enum tag, the value that it is initialized

to must be an integral expression that has a value

representable as an int.

User Response: Remove the initial value, or ensure

that it is an integral constant expression that has a

value representable as an int.

CCN3350 Error writing to intermediate files. &1.

Explanation: An error occurred during compilation.

Ensure the compiler has write access to the work files

and that there is enough space free.

User Response: Recompile compilation unit.

CCN3351 Error opening intermediate files.

Explanation: An error occurred during compilation.

Ensure the compiler has write access to the work files

and that there is enough space free.

User Response: Recompile compilation unit.

CCN3352 Incompatible specifications for options

arch and tune.

Explanation: The values specified for tune option

cannot be smaller than that of arch.

User Response: Change option values.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 63

CCN3356 Compilation unit is empty.

Explanation: There is no code in the compilation unit.

User Response: Ensure the correct source file is

specified. Recompile.

CCN3357 Unable to generate prototype for ″&1″

because one or more enum, struct, or

union specifiers did not have a tag.

Explanation: A prototype could not be generated for

the function because the enum, struct or union

declaration did not have a tag.

User Response: Specify a tag.

CCN3358 ″&1″ is defined on line &2 of &3.

Explanation: This message indicates where a

previous definition is located.

User Response: Remove one of the definitions or

change the name of the identifier.

CCN3359 Automatic variable &1 contains a const

member and is not initialized. It will be

initialized to zero.

Explanation: An automatic variable that has a const

member is not initialized. The compiler is using zero as

the initializer.

User Response: Initialize the const member.

CCN3360 Same pragma &1 has already been

specified for object ″&2″; this

specification is ignored.

Explanation: The repetition of the pragma is

redundant and is ignored.

User Response: Remove the duplicate pragma.

CCN3361 A different pragma &1 has already

been specified for object ″&2″, this

specification is ignored.

Explanation: A previous pragma for the object is

taking precedence over this pragma.

User Response: Remove one of the pragma

directives.

CCN3362 Identifier ″&1″ was referenced in

pragma &2, but was never actually

declared.

Explanation: A pragma refers to an identifier that has

not been declared.

User Response: Declare identifier or remove pragma.

CCN3363 Packing boundary must be specified

as one of 1, 2, 4, 8 or 16.

Explanation: Objects must be packed on 1, 2, 4, 8 or

16 byte boundaries.

User Response: Change the packing specifier.

CCN3364 main must have C calling convention.

Explanation: An inappropriate linkage has been

specified for the main function. This function is the

starting point of the program so only C linkage is

allowed.

User Response: Change the calling convention of

main.

CCN3366 Declaration cannot specify multiple

calling convention specifiers.

Explanation: A declaration can specify only one

calling convention. Valid calling conventions include:

OS, COBOL, PLI, FORTRAN

User Response: Remove extra calling convention

specifiers.

CCN3367 Only functions or typedefs of functions

can be given a calling convention.

Explanation: A calling convention protocol keyword

has been applied to an identifier that is not a function

type or a typedef to a function type.

User Response: Check that correct identifier is

specified or remove pragma.

CCN3369 The function cannot be redeclared with

a different calling convention.

Explanation: The redeclaration of this function cannot

have a different calling convention than the previous

declaration. The function could have been given a

calling convention through a typedef, or via a previous

declaration.

User Response: Make sure all declarations of the

function specify the same calling convention.

CCN3374 Pointer types ″&1″ and ″&2″ are not

compatible.

Explanation: The types pointed to by the two pointers

are not compatible.

User Response: Change the types to be compatible.

64 z/OS V1R7.0 XL C/C++ Messages

CCN3376 Redeclaration of &1 has a different

number of fixed parameters than the

previous declaration.

Explanation: The number of fixed parameters in the

redeclaration of the function does not match the original

number of fixed parameters.

User Response: Change the declarations to have the

same number of parameters, or rename or remove one

of the declarations.

CCN3377 The type ″&1″ of parameter &2 differs

from the previous type ″&3″.

Explanation: The type of the corresponding parameter

in the previous function declaration is not compatible.

User Response: Change the parameter declaration or

rename the function declaration.

CCN3378 Prototype for function &1 cannot

contain ″...″ when mixed with a

nonprototype declaration.

Explanation: A function prototype and a nonprototype

declaration can not be compatible if one contains ″...″.

User Response: Convert nonprototype declaration to

a prototyped one or remove the ″...″.

CCN3379 Prototype for function &1 must contain

only promoted types if prototype and

nonprototype declarations are mixed.

Explanation: Nonprototype declarations have their

parameters automatically promoted. Integral widening

conversions are applied to integral types and float is

converted into double.

User Response: Promote the parameter types in the

prototyped declaration.

CCN3380 Parameter &1 has type ″&2″ which

promotes to ″&3″.

Explanation: Nonprototype declarations have their

parameters automatically promoted. Integral widening

conversions are applied to integral types and float is

converted into double.

User Response: Promote the parameter types in the

prototyped declaration.

CCN3381 The type ″&1″ of parameter &2 in the

prototype declaration is not compatible

with the corresponding parameter type

″&3″ in the nonprototype declaration.

Explanation: The types of the parameters must be

compatible.

User Response: Change the parameters so that they

are compatible.

CCN3382 The type ″&1″ of identifier &2 differs

from previous type ″&3″.

Explanation: The two types are not compatible.

User Response: Change the parameter types so that

they are compatible.

CCN3383 Expecting ″&1″ to be an external

identifier.

Explanation: The identifier must have external

linkage.

User Response: Change the storage class to extern.

CCN3384 Expecting ″&1″ to be a function name.

Explanation: ″&1″ should be a function symbol.

User Response: Specify a different name or change

the type of the symbol.

CCN3387 The enum cannot be packed to the

requested size. Change the

enumeration value or change the

pragma enum().

Explanation: Enums may be 1, 2, or 4 bytes in size.

User Response: Change the enumeration value or

change the pragma enum().

CCN3388 Value &1 specified in pragma &2 is out

of range.

Explanation: Refer to the C/C++ Language Reference

for more information about the valid values for the

pragmas.

User Response: Specify a different value.

CCN3389 Some program text not scanned due to

&1 option or pragma &2.

Explanation: MARGINS or SEQUENCE option, or

pragma margins or sequence was used to limit the valid

text region in a source file.

User Response: Remove the MARGINS or

SEQUENCE option, or remove the pragma margins or

sequence, or specify a more inclusive text region.

CCN3390 The function or variable &1 cannot be

declared as an import in the same

compilation unit in which it is defined.

Explanation: An object or function has both a

definition and an import directive in this compilation unit.

This creates a conflict, since the function or object can

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 65

be defined either here or where it is exported from, but

not both.

User Response: Remove the pragma import directive

or __import keyword or change the definition of the

object or function into an extern declaration.

CCN3393 &1 value must contain only decimal

digits.

Explanation: A nonnumerical character was

encountered in the &1 value.

User Response: Check the syntax of the value given.

CCN3394 Ordinal value on pragma &1 is out of

range.

Explanation: The specified ordinal number should be

between 0 and 65535, inclusive.

User Response: Change the value accordingly.

CCN3395 Variable &1 must be an external object

or a function name for use with

pragma import.

Explanation: The identifier specified by the pragma is

not a function or external object.

User Response: Declare the object with storage class

″extern″.

CCN3396 Option &1 is incompatible with option

&2 and is ignored.

Explanation: The option is not compatible with

another option so it is ignored.

User Response: Remove one of the options.

CCN3397 Undefined function or variable &1

cannot have a pragma export.

Explanation: Only defined variables or functions can

be specified as an export.

User Response: Define the function or variable.

CCN3398 Bit field type specified for &1 is

non-portable. The type should be

signed int, unsigned int or int.

Explanation: The specification of the bit field type may

cause problems with porting the code to another

system.

User Response: Change the type specifier.

CCN3399 The alignment of a structure/union is

determined at the left brace of the

definition.

Explanation: The alignment of an aggregate is

constant throughout its definition.

User Response: No response required.

CCN3400 pragma &1 must appear only once in

any C file.

Explanation: The specified pragma can only be used

once.

User Response: Remove all but one of the specified

pragma directives.

CCN3401 Function &1 must be defined for

pragma entry.

Explanation: The function must be defined for it to be

specified using pragma entry.

User Response: Define the function.

CCN3402 &1 must be an externally-defined

function for use with pragma entry.

Explanation: The identifier must be defined as a

function with external linkage for it to be specified using

pragma entry.

User Response: Define the function.

CCN3408 The linkage protocol is not supported

on the target platform.

Explanation: An attempt to use an unsupported

linkage protocol was made.

User Response: Remove the linkage protocol

keywords.

CCN3409 The static variable ″&1″ is defined but

never referenced.

Explanation: A variable that is defined but never used

probably serves no purpose.

User Response: Remove the variable definition if you

are not going to use the variable.

CCN3410 The automatic variable ″&1″ is defined

but never referenced.

Explanation: A variable that is defined but never used

likely serves no purpose.

User Response: Remove the variable definition.

66 z/OS V1R7.0 XL C/C++ Messages

||
|
|

|
|
|

|

 | |
 |
 |

 |
 |

 |

 | |
 |

 |
 |

 |
 |

CCN3411 An array that is not an lvalue cannot

be subscripted.

Explanation: A non-lvalue array is created when a

function returns a structure that contains an array. This

array cannot be dereferenced.

User Response: Remove the subscript.

CCN3412 Referenced variable ″&1″, which was

not initialized in its declaration.

Explanation: The variable referenced was not

initialized in its declaration. At the point of the first

reference, the variable might or might not have already

been set to a value, depending on the code executed

prior to the point of the first reference.

User Response: This is an informational message to

aid debugging. Either initialize the variable in its

declaration, or trace the code carefully to make sure

that it is set to a value prior to the first reference.

CCN3413 A goto statement is used.

Explanation: The use of goto statements may result in

code that is more difficult to trace.

User Response: Replace the goto statement with

equivalent structured-programming constructs.

CCN3414 The parameter ″&1″ is never

referenced.

Explanation: The parameter is passed to the function,

but is not referenced anywhere within the function body.

User Response: Remove the parameter from the

function prototype.

CCN3415 The external function definition ″&1″ is

never referenced.

Explanation: A function that is defined but never used

likely serves no purpose.

User Response: Remove the function definition,

unless needed in another compilation unit.

CCN3416 Taking the negative of the most

negative value, ’&1’, of a signed type

will cause truncation.

Explanation: The negative of the most negative value

cannot be represented as a positive value of the same

type.

User Response: Change the value or use a larger

data type.

CCN3417 The function &1 is not defined but has

pragma inline directive specified.

Explanation: A pragma inline has been applied to an

identifier which does not exist or does not correspond to

a function.

User Response: Check that correct identifier is

specified or remove pragma.

CCN3418 ’&1’ does not evaluate to a constant

that fits in its signed type.

Explanation: The expression evaluates to a number

that is not within the range that can be stored by the

target.

User Response: Change the expression so it

evaluates to a value in the valid range.

CCN3419 Converting &1 to type ″&2″ does not

preserve its value.

Explanation: The user cast converts &1 to a type that

cannot contain the value of the original type.

User Response: Change the cast.

CCN3420 An unsigned comparison is performed

between an unsigned value and a

negative constant.

Explanation: Comparing an unsigned value with a

signed value may produce unexpected results.

User Response: Type-cast the unsigned value to a

signed type if a signed comparison is desired, or

type-cast the negative constant to an unsigned type if

an unsigned comparison is desired.

CCN3421 The comparison is always true.

Explanation: The type specifiers of the values being

compared result in a constant result.

User Response: Simplify or remove the conditional

expression.

CCN3422 The comparison is always false.

Explanation: The type specifiers of the values being

compared result in a constant result.

User Response: Simplify or remove the conditional

expression.

CCN3423 The comparison may be rewritten as

’&1’.

Explanation: The type specifiers of the values being

compared may allow the expression to be simplified.

User Response: Simplify the comparison expression.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 67

CCN3424 The condition is always true.

Explanation: Because the value of the conditional

expression is constant, it may be possible to simplify or

remove the conditional test.

User Response: Change the conditional expression or

remove the conditional test.

CCN3425 The condition is always false.

Explanation: Because the value of the conditional

expression is constant, it may be possible to simplify or

remove the conditional test.

User Response: Change the conditional expression or

remove the conditional test.

CCN3426 An assignment expression is used as a

condition. An equality comparison (==)

may have been intended.

Explanation: A single equal sign ’=’ is often

mistakenly used as an equality comparison operator.

User Response: Ensure an assignment operation was

intended.

CCN3427 A constant expression is used as a

switch condition.

Explanation: The same code path will be taken

through every execution of the switch statement.

User Response: Change the switch expression to be

a non-constant value or remove the unused portions of

the switch structure.

CCN3428 The left-hand side of a shift expression

is an unparenthesized arithmetic

expression which has a higher

precedence.

Explanation: The left-hand expression is evaluated

before the shift operator.

User Response: Place parentheses around the

left-hand expression to make the order of operations

explicit.

CCN3429 The right-hand side of a shift

expression is an unparenthesized

arithmetic expression which has a

higher precedence.

Explanation: The right-hand expression is evaluated

before the shift operator.

User Response: Place parentheses around the

right-hand expression to make the order of operations

explicit.

CCN3430 The result of a comparison is either 0

or 1, and may not be appropriate as

operand for another comparison

operation.

Explanation: The comparison expression may be

malformed.

User Response: Ensure that the resulting value from

the comparison is appropriate for use in the following

comparison.

CCN3431 The left-hand side of a bitwise &&, |, or

^ expression is an unparenthesized

relational, shift, or arithmetic

expression which has a higher

precedence.

Explanation: The left-hand expression is evaluated

before the bitwise operator.

User Response: Place parentheses around the

left-hand expression to make the order of operations

explicit.

CCN3432 The right-hand side of a bitwise &&, |,

or ^ expression is an unparenthesized

relational, shift, or arithmetic

expression which has a higher

precedence.

Explanation: The right-hand expression is evaluated

before the bitwise operator.

User Response: Place parentheses around the

right-hand expression to make the order of operations

explicit.

CCN3433 The right-hand side of a bitwise shift

expression should be positive and less

than the width in bits of the promoted

left operand.

Explanation: This expression may not be portable.

User Response: Change the shift expression.

CCN3434 The left-hand side of a bitwise right

shift expression has a signed

promoted type.

Explanation: This expression may not be portable.

User Response: Change the shift expression.

CCN3435 An expression statement should have

some side effects because its value is

discarded.

Explanation: If an expression statement has no side

effects, then it may be possible to remove the statement

with no change in program behavior.

68 z/OS V1R7.0 XL C/C++ Messages

User Response: Change or remove the expression

statement.

CCN3436 Left-hand side of comma expression

should have side effects because its

value is discarded.

Explanation: A comma expression evaluates to its

right-hand operand.

User Response: Change the expression.

CCN3437 The init or re-init expression of a for

statement should have some side

effects since its value is discarded.

Explanation: If the init and/or the re-init expression of

a for statement have no side effects, the loop may not

execute as desired.

User Response: Change the init and/or re-init

expressions.

CCN3438 The value of the variable ″&1″ may be

used before being set.

Explanation: Because the variable has not been

initialized, its value is undefined. The results of using an

undefined variable are unpredictable.

User Response: Add an initialization statement or

change the expression.

CCN3439 Assigning enum type ″&1″ to enum

type ″&2″ may not be correct.

Explanation: The values of the enumerated types may

be incompatible.

User Response: Change the types of the values

being assigned.

CCN3440 Cannot assign an invalid enumerator

value to enum type ″&1″.

Explanation: The value being assigned is not a

member of the enumeration.

User Response: Change the value being assigned, or

make it an enumeration member.

CCN3441 The macro definition will override the

keyword ″&1″.

Explanation: Overriding a C keyword with a

preprocessor macro may cause unexpected results.

User Response: Change the name of the macro or

remove it.

CCN3442 A trigraph sequence occurs in a

character literal.

Explanation: The trigraph sequence will be converted.

A literal interpretation may have been desired.

User Response: Change the value of the character

literal.

CCN3443 A trigraph sequence occurs in a string

literal.

Explanation: The trigraph sequence will be converted.

A literal interpretation may have been desired.

User Response: Change the value of the string literal.

CCN3444 The opening brace is redundant.

Explanation: The initialization expression contains

extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CCN3445 The closing brace is redundant.

Explanation: The initialization expression contains

extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CCN3446 Array element(s) [&1] will be initialized

with a default value of 0.

Explanation: Some array elements were not explicitly

initialized. They will be assigned the default value.

User Response: Add initializations if necessary.

CCN3447 The member(s) starting from ″&1″ will

be initialized with a default value of 0.

Explanation: Some members were not explicitly

initialized. They will be assigned the default value.

User Response: Add initializations if necessary.

CCN3448 Assigning a packed struct to an

unpacked struct, or vice versa,

requires remapping.

Explanation: Assignments between packed/unpacked

structures may produce incorrect results.

User Response: Change the type qualifiers of the

values in the assignment.

CCN3449 Missing return expression.

Explanation: If a function has a non-void return type,

then all return statements must have a return

expression of the correct type.

User Response: Add a return expression.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 69

CCN3450 Obsolete non-prototype-style function

declaration.

Explanation: The K&R-style function declaration is

obsolete.

User Response: Change the function declaration to

the prototyped style.

CCN3451 The target integral type cannot hold all

possible values of the source integral

type.

Explanation: Data loss or truncation may occur

because of the type conversions.

User Response: Change the types of the values in

the expression.

CCN3452 Assigning a floating point type to an

integral type may result in truncation.

Explanation: Data loss or truncation may occur

because of the type conversions.

User Response: Change the types of the values in

the expression.

CCN3453 Assigning a floating point type to

another floating point type with less

precision.

Explanation: Data loss or truncation may occur

because of the type conversions.

User Response: Change the types of the values in

the expression.

CCN3454 &1 condition evaluates to &2.

Explanation: This message traces preprocessor

expression evaluation.

User Response: No response required.

CCN3455 defined(&1) evaluates to &2.

Explanation: This message traces preprocessor #ifdef

and #ifndef evaluation.

User Response: No response required.

CCN3456 Stop skipping tokens.

Explanation: This messages traces conditional

compilation activity.

User Response: No response required.

CCN3457 File &1 has already been included.

Explanation: This #include directive is redundant.

User Response: Remove the #include directive.

CCN3458 #line directive changing line to &1 and

file to &2.

Explanation: This message traces #line directive

evaluation.

User Response: No response required.

CCN3459 #line directive changing line to &1.

Explanation: This message traces #line directive

evaluation.

User Response: No response required.

CCN3460 &1 nesting level is &2.

Explanation: This message traces conditional

compilation activity.

User Response: No response required.

CCN3461 Generating precompiled header file &1.

Explanation: This message traces precompiled

header generation activity.

User Response: No response required.

CCN3462 Precompiled header file &1 is found

but not used because it is not up to

date.

Explanation: This message traces precompiled

header file generation activity.

User Response: No response required.

CCN3463 Using precompiled header file &1.

Explanation: This message traces precompiled

header file generation activity.

User Response: No response required.

CCN3464 Begin skipping tokens.

Explanation: This messages traces conditional

compilation activity.

User Response: No response required.

CCN3465 #undef undefining macro name &1.

Explanation: This message traces #undef

preprocessor directive evaluation.

User Response: No response required.

70 z/OS V1R7.0 XL C/C++ Messages

CCN3466 Unary minus applied to an unsigned

type.

Explanation: The negation operator is inappropriate

for unsigned types.

User Response: Remove the operator or change the

type of the operand.

CCN3467 String literals concatenated.

Explanation: Two string literals, each delimited by

quotation marks, have been combined into a single

literal.

User Response: No response is necessary. This is an

informational message.

CCN3468 Macro name &1 on #define is also an

identifier.

Explanation: The name of the macro has already

been used.

User Response: Change the name of the macro.

CCN3469 The static function ″&1″ is declared or

defined but never referenced.

Explanation: A function that is defined but never used

serves no purpose.

User Response: Remove the function definition.

CCN3470 Function ″main″ should return int, not

void.

Explanation: According to the ANSI/ISO standard,

main should return int not void. Earlier standards (such

as k&R) allowed a void return type for main.

User Response: Change the return type of the

function.

CCN3471 Case label is not a member of enum

type ″&1″

Explanation: Case labels must be members of the

type of the switch expression.

User Response: Change the value of the case label.

CCN3472 Statement is unreachable.

Explanation: The flow of execution causes this

statement to never be reached.

User Response: Change the control flow in the

program, or remove the unreachable statement.

CCN3473 An unintended semi-colon may have

created an empty loop body.

Explanation: The loop body has no statements, and

the conditional expression has no side effects.

User Response: If this is what was intended, use ″{}″

instead of a semi-colon as empty loop body to avoid

this message.

CCN3474 Loop may be infinite.

Explanation: The value of the conditional expression

and/or the lack of exit points may result in an infinite

loop.

User Response: Adjust the conditional expression or

add loop exit statements.

CCN3475 The real constant arithmetic

expression folds to positive infinity.

Explanation: Constant folding results in an overflow.

User Response: Change the expression.

CCN3476 The real constant arithmetic

expression folds to negative infinity.

Explanation: Constant folding results in an overflow.

User Response: Change the expression.

CCN3478 The then branch of conditional is an

empty statement.

Explanation: If the condition is true, then no statement

is executed.

User Response: Add a statement to be executed, or

remove the conditional statement.

CCN3479 Both branches of conditional

statement are empty statements.

Explanation: A conditional statement with empty

branches is possibly degenerate.

User Response: Add code to the conditional

branches.

CCN3480 Missing break statement allows

fall-through to this case.

Explanation: The preceding case did not end with a

break, return, or goto statement, allowing the path of

execution to fall-through to the code in this case.

User Response: Add an appropriate terminating

statement to the previous case, unless the fall-through

was intentional.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 71

CCN3481 The end of the function may be

reached without returning a value.

Explanation: A return statement should be used to

exit any function whose return type is non-void.

User Response: Add a return statement, or change

the function to return void.

CCN3482 The opening brace before this point is

redundant.

Explanation: The initialization expression contains

extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CCN3483 Switch statement contains no cases or

only default case.

Explanation: Code within a switch statement block

that is not preceded by either ″default″ or ″case″ is

never executed, and may be removed. Switch

statements with neither ″default″ or ″case″ are probably

incorrect.

User Response: Change the switch statement to

include cases.

CCN3484 External name &1 has been truncated

to &2.

Explanation: The external name exceeds the

maximum length and has been truncated. This may

result in unexpected behavior if two different names

become the same after truncation.

User Response: Reduce the length of the external

name.

CCN3485 Parameter declaration list is

incompatible with declarator for &1.

Explanation: An attempt has been made to attach a

parameter declaration list with a declarator which cannot

have one.

User Response: Change declarator or remove

parameter declaration list.

CCN3486 A pointer to an incomplete type cannot

be indexed.

Explanation: An index has been used with a pointer

to an incomplete type.

User Response: Declare the type that is pointed at or

remove the index.

CCN3487 An argument cannot be an incomplete

struct or union.

Explanation: An incomplete aggregate cannot be

used as an argument to a function.

User Response: Declare the type that is pointed at or

use a pointer to the aggregate.

CCN3489 The incomplete struct or union tag &1

was not completed before going out of

scope.

Explanation: A struct or union tag was declared inside

a parameter list or a function body, but no member

declaration list was provided.

User Response: If the struct or union tag was

declared inside a parameter list, provide a member

declaration list at file scope. If the tag was declared

inside a function body, provide a member declaration list

within that function body.

CCN3490 The static variable ″&1″ is set but

never referenced.

Explanation: A variable that is initialized but never

used serves no purpose.

User Response: Remove the variable definition if you

do not intend to use it.

CCN3491 The automatic variable ″&1″ is set but

never referenced.

Explanation: A variable that is initialized but never

used likely serves no purpose.

User Response: Remove the variable definition if you

do not intend to use it.

CCN3492 Redefinition of &1 hides previous

definition.

Explanation: The definition within the current scope

hides a definition with the same name in an enclosing

scope.

User Response: Change the name to avoid redefining

it.

CCN3493 The external variable ″&1″ is defined

but never referenced.

Explanation: A variable that is defined but never used

likely serves no purpose.

User Response: Remove the variable definition,

unless needed in another compilation unit.

72 z/OS V1R7.0 XL C/C++ Messages

CCN3494 The external variable ″&1″ is set but

never referenced.

Explanation: A variable that is initialized but never

used serves no purpose.

User Response: Remove the variable definition,

unless needed in another compilation unit.

CCN3495 Pointer type conversion found.

Explanation: An attempt is being made to convert a

pointer of one type to a pointer of another type.

User Response: Check the types of the values

involved in the expression, and make them compatible.

CCN3496 Parameter(s) for pragma &1 are of the

wrong type.

Explanation: The parameter for the pragma is

incorrect and of the wrong type.

User Response: Look up correct type in the C/C++

Language Reference.

CCN3497 Incomplete enum type not allowed.

Explanation: An incomplete enum is being used

where a complete enum type is required.

User Response: Complete the type declaration.

CCN3498 Member of struct or union cannot be

incomplete type.

Explanation: An incomplete aggregate is being used

where a complete struct or union is required.

User Response: Complete the type declaration.

CCN3499 Function ″main″ should return int.

Explanation: A return type other than int was specified

for function main.

User Response: Change the return type to int.

CCN3503 Option ″&1″ is not supported for &2.

Explanation: The option specified is not supported on

this operating system.

User Response: Remove the option.

CCN3505 Type ″&1″ of identifier ″&2″ was

incomplete at the end of its scope.

Explanation: A incomplete declaration was made of

some identifier and it is still incomplete at the end of its

scope.

User Response: Complete the declaration.

CCN3508 Option &1 for pragma &2 is not

supported.

Explanation: For a list of all valid options for pragma

directives, see the C/C++ Language Reference.

User Response: Ensure the pragma syntax and

options are correct.

CCN3509 Symbol &1 on a pragma &2 was not

found.

Explanation: For a list of all valid options for pragma

directives, see the C/C++ Language Reference.

User Response: Ensure the pragma syntax and

options are correct.

CCN3512 An initializer is not allowed for ″&1″.

Explanation: An attempt was made to initialize an

identifier whose type does not permit initialization.

User Response: Remove the initializer.

CCN3513 Array element designator exceeds the

array dimension. Designator will be

ignored.

Explanation: The value of the designator was larger

than the dimension declared for the array object.

User Response: Change the expression forming the

array index.

CCN3514 Array element designator cannot be

applied to an object of type ″&1″.

Explanation: An array element designator can only be

applied to an object of array type.

User Response: Remove subscript.

CCN3515 Member designator cannot be applied

to an object of type ″&1″.

Explanation: A member designator can only be

applied to an object of type struct or union.

User Response: Remove member designator.

CCN3517 Option &1 for pragma is not supported.

Explanation: For a list of all valid options for pragma

directives, see the C/C++ Language Reference.

User Response: Ensure the pragma syntax and

options are correct.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 73

CCN3518 Option(s) for pragma &1 are missing or

incorrectly specified.

Explanation: pragma &1 is not correctly specified.

User Response: Ensure the pragma syntax and

options are correct.

CCN3519 Index operator ([]) cannot be applied to

pointer to void.

Explanation: Index operator ([]) can only be applied to

arrays or pointers to objects.

User Response: Change the operand.

CCN3520 Switch block begins with declarations

or unlabeled statements that are

unreachable.

Explanation: Code within a switch block must be

labeled with either ″case″ or ″default″ to be reachable.

User Response: Add a label or remove the

unreachable code.

CCN3521 Pointer arithmetic can only be applied

to a arrays that are lvalues.

Explanation: Because the array is

compiler-generated, it is not an lvalue. Therefore, you

cannot apply pointer arithmetic to it.

User Response: Change the expression.

CCN3522 Unable to open precompiled header &1

for output.

Explanation: The compiler was unable to open the

precompiled header file.

User Response: Ensure that the compiler has write

access to the precompiled header files.

CCN3524 The _Packed qualifier can only qualify

a struct or union.

Explanation: The _Packed qualifier is only valid for

structures and unions.

User Response: Remove _Packed qualifier.

CCN3531 End of precompiled header processing.

Explanation: The compiler has finished processing a

precompiled header.

User Response: No response required. This message

merely traces the activity of the precompiled header

processing.

CCN3532 Macro ″&1″ is required by the

precompiled header and is defined

differently than when the precompiled

header was created.

Explanation: The referenced macro was expanded

during the creation of the precompiled header and is

now defined differently. This prevents the precompiled

header from being used for this compilation.

User Response: If necessary, redefine the macro, or

regenerate the precompiled header using the new

macro definition.

CCN3533 One or more assertions are defined

that were not defined when the

precompiled header was created.

Explanation: An assertion is defined that was not

defined when the precompiled header was generated.

Because the effect of the new assertion is unknown, the

precompiled header cannot be used for this compilation.

User Response: Do not define the assertion, or

regenerate the precompiled header with the new

assertion.

CCN3534 One or more macros are defined that

were not defined when the

precompiled header was created.

Explanation: A macro is defined that was not defined

when the precompiled header was generated. Because

the effect of the new macro is unknown, the

precompiled header cannot be used for this compilation.

User Response: Do not define the macro or

regenerate the precompiled header with the new macro.

CCN3535 Compiler options do not match those

in effect when the precompiled header

was created.

Explanation: The compiler options in use are not

compatible with those used when the precompiled

header was generated. The precompiled header cannot

be used.

User Response: Use the same options as when the

precompiled header was generated or regenerate the

precompiled header with the new options.

CCN3536 Assertion ″&1″ is required by the

precompiled header and is not defined.

Explanation: The referenced assertion was tested

during the creation of the precompiled header and is not

defined. This prevents the precompiled header from

being used for this compilation.

User Response: If necessary, redefine the assertion,

or regenerate the precompiled header without the

assertion.

74 z/OS V1R7.0 XL C/C++ Messages

CCN3537 Macro ″&1″ is required by the

precompiled header and is not defined.

Explanation: The referenced macro was expanded

during the creation of the precompiled header and is not

defined. This prevents the precompiled header from

being used for this compilation.

User Response: If necessary, redefine the macro, or

regenerate the precompiled header without the macro.

CCN3538 Unable to use precompiled header &1.

Explanation: The precompiled header cannot be used

for this compilation. A subsequent message will explain

the reason.

User Response: Correct the problem indicated by the

subsequent message.

CCN3539 Expecting &1 and found &2.

Explanation: The header file being included is not the

next header in the sequence used to generate the

precompiled header. The precompiled header cannot be

used for this compilation.

User Response: #include the correct header or

regenerate the precompiled header using the new

sequence of #include directives.

CCN3545 The decimal size is outside the range

of 1 to &1.

Explanation: The specified decimal size should be

between 1 and DEC_DIG.

User Response: Specify the decimal size between 1

and DEC_DIG.

CCN3546 The decimal precision is outside the

range of 0 to &1.

Explanation: The specified decimal precision should

be between 0 and DEC_PRECISION.

User Response: Specify the decimal precision

between 0 and DEC_PRECISION.

CCN3547 The decimal size is not valid.

Explanation: The decimal size must be a positive

constant integral expression.

User Response: Specify the decimal size as a

positive constant integral expression.

CCN3548 The decimal precision is not valid.

Explanation: The decimal precision must be a

constant integral expression.

User Response: Specify the decimal precision as a

constant integral expression.

CCN3549 The decimal precision is bigger than

the decimal size.

Explanation: The specified decimal precision should

be less than or equal to the decimal size.

User Response: Specify the decimal precision less

than or equal to the decimal size.

CCN3550 The decimal constant is out of range.

Explanation: The compiler detected a decimal

overflow in scanning a decimal constant.

User Response: Change the decimal constant so that

it does not exceed the maximum value.

CCN3551 The fraction part of the result was

truncated.

Explanation: Due to limitations on the number of

digits representable, the calculated intermediate result

may result in truncation in the decimal places after the

operation is performed.

User Response: Check to make sure that no

significant digit is lost.

CCN3552 The pre- and post- increment and

decrement operators cannot be applied

to type &1.

Explanation: The decimal types with no integral part

cannot be incremented or decremented.

User Response: Reserve at least one digit in the

integral part of the decimal types.

CCN3553 Only decimal types can be used with

the &1 operator.

Explanation: The operand of the digitsof or

precisionof operator is not valid. The digitsof and

precisionof operators can only be applied to decimal

types.

User Response: Change the operand.

CCN3554 Whole-number-part digits in the result

may have been lost.

Explanation: Due to limitations on the number of

digits representable, the calculated intermediate result

may result in loss of digits in the integer portion after

the operation is performed.

User Response: Check to make sure that no

significant digit is lost.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 75

CCN3555 Digits have been lost in the

whole-number part.

Explanation: In performing the operation, some

nonzero digits in the whole-number part of the result are

lost.

User Response: Check to make sure that no

significant digit is lost.

CCN3556 Digits may have been lost in the

whole-number part.

Explanation: In performing the operation, some digits

in the whole-number part of the result may have been

lost.

User Response: Check to make sure that no

significant digit is lost.

CCN3557 The name in option &1 is not valid. The

option is reset to &2.

Explanation: The name specified as a suboption of

the option is syntactically or semantically incorrect and

thus can not be used.

User Response: Make sure that the suboption

represents a valid name. For example, in option

LOCALE(localename), the suboption ″localename″ must

be a valid locale name which exists and can be used. If

not, the LOCALE option is reset to NOLOCALE.

CCN3558 pragma &1 is ignored because the

locale compiler option is not specified.

Explanation: The locale compiler option is required for

pragma &1

User Response: Remove all the pragma &1 directives

or specify the locale compiler option.

CCN3559 pragma filetag is ignored because the

conversion table from &1 to &2 cannot

be opened.

Explanation: During compilation, source code is

converted from the code set specified by pragma filetag

to the code set specified by the locale compiler option, if

they are different. A conversion table form &1 to &2

must be loaded prior to the conversion. No conversion

is done when the conversion table is not found.

User Response: Create the conversion table from &1

to &2 and ensure it is accessible from the compiler. If

message files are used in the application to read and

write data, a conversion table from &2 to &1 must also

be created to convert data from runtime locale to the

compile time locale.

CCN3560 Error messages are not converted

because the conversion table from &1

to &2 cannot be opened.

Explanation: Error messages issued by C/370 are

written in code page 1047. These messages must be

converted to the code set specified by the locale

compiler option because they may contain variant

characters, such as #. Before doing the conversion, a

conversion table from &1 to &2 must be loaded. The

error messages are not converted because the

conversion table cannot be found.

User Response: Make sure the conversion table from

&1 to &2 is accessible from the compiler.

CCN3561 No conversion on character &1

because it does not belong to the input

code set &2.

Explanation: No conversion has be done for the

character because it does not belong to the input code

set.

User Response: Remove or change the character to

the appropriate character in the input code set.

CCN3562 Incomplete character or shift sequence

was encountered during the

conversion of the source line.

Explanation: Conversion stops because an

incomplete character or shift sequence was

encountered at the end of the source line.

User Response: Remove or complete the incomplete

character or shift sequence at the end of the source

line.

CCN3563 Only conversion table that map single

byte characters to single byte

characters is supported.

Explanation: Compiler is expected single byte to

single byte character mapping during conversion.

Conversion stops when there is insufficient space in the

conversion buffer.

User Response: Make sure the conversion table is in

single byte to single byte mapping.

CCN3564 Invalid conversion descriptor was

encountered during the conversion of

the source line.

Explanation: No conversion was performed because

conversion descriptor is not valid.

User Response: No response required.

76 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|
|

|
|

 | |
 |
 |

 |
 |

 |

CCN3565 pragma &1 must appear on the first

directive before any C code.

Where: &1 pragma type *CHAR 100

Explanation: The specified pragma must be the first

directive before any C code.

User Response: Put this pragma as the first directive

before any C code.

CCN3566 Option DECK ignored because option

OBJECT specified.

Explanation: The second option must not be specified

for the first to have an effect.

User Response: Remove the first or second option.

CCN3567 Option OFFSET ignored because

option LIST not specified.

Explanation: The second option must be specified for

the first to have an effect.

User Response: Specify the second option, or remove

the first.

CCN3568 The external name &1 in pragma csect

conflicts with another csect name.

Explanation: A pragma csect was specified with a

name which has already been specified as a csect

name.

User Response: Ensure that the two csect names are

unique.

CCN3569 A duplicate pragma csect(&1) is

ignored.

Explanation: Only one pragma csect may be specified

for either CODE or STATIC.

User Response: Remove the duplicate pragma csect.

CCN3570 The pragma map name &1 must not

conflict with a pragma csect name or

the csect name generated by the

compiler.

Explanation: The external name used in the pragma

map is identical to the external name specified on the

pragma csect or the name generated by the compiler.

User Response: Change the name on the pragma

csect or turn off the CSECT option.

CCN3571 The external name &1 must not conflict

with the name in pragma csect or the

csect name generated by the compiler.

Explanation: The external name specified is identical

to the name specified on a pragma csect or the name

generated by the CSECT option.

User Response: Change the name on the pragma

csect or turn off the CSECT option.

CCN3572 Expected text &1 was not encountered

on option &2.

Explanation: Missing text &1 for option &2.

User Response: Use the correct syntax for specifying

the option

CCN3573 To use the builtin form of the &1

function add the #include <&2>

directive.

Explanation: Include the header file &2 to use the &1

builtin function.

User Response: Add the specified #include in order to

optimize code.

CCN3574 Unable to open event file &1.

Explanation: The compiler was unable to open the

event file.

User Response: Ensure that there is enough disk

space.

CCN3575 Csect option is ignored due to naming

error.

Explanation: The compiler was unable to generate

valid csect names.

User Response: Use pragma csect to name the code

and static control sections.

CCN3576 Csect name &1 has been truncated to

&2.

Explanation: The static, data and test csect names

have been truncated to 8 characters.

User Response: Use the GOFF or LONGNAME

option.

CCN3578 The csect name &1 must not conflict

with a csect name generated by the

compiler.

Explanation: The code and static csect names are

identical. Either the compiler is unable to generate

unique names or a pragma csect is using a duplicate

name.

User Response: Use pragma csect to name the code

and static control sections.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 77

||
|

|

|
|

|
|

 | |
 |

 |

 |
 |

 | |
 |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

CCN3585 Obsolete option HWOPTS defaults to

corresponding ARCHITECTURE option.

Explanation: HWOPTS is no longer supported and

has been replaced by ARCHITECTURE.

User Response: Use the ARCHITECTURE option to

take advantage of hardware.

CCN3586 Test csect name &1 has been

truncated to &2.

Explanation: The compiler generated test csect name

has been truncated to 8 characters.

User Response: Use the CSECT() option to allow test

csect names longer than 8 chars.

CCN3600 3600 - 3631 are LE messages.

Explanation: Refer to the LE manuals for further

information about these messages

User Response: Refer to the LE manuals for the

appropriate user response.

CCN3610 ″&1″ is not allowed as an array element

type.

Explanation: The type &1 can not be used as an

array element type.

User Response: Use a different array element type.

CCN3671 The header file name in the #include

directive cannot be empty.

Explanation: The #include directive must specify a

header file.

User Response: Specify a non-empty header file

name in the #include directive.

CCN3675 The return type is not valid for a

function of this linkage type.

Explanation: The function definition violates the

restriction on the return type for the specified linkage.

User Response: Check the linkage type restrictions

and change the return type.

CCN3676 Function ″&1″ which returns a return

code cannot be defined.

Explanation: This function has been specified with

FORTRAN linkage type with the RETURNCODE option.

It should be a FORTRAN function defined in a

FORTRAN source file and referenced in this compilation

unit.

User Response: Either remove the FORTRAN linkage

or move the FORTRAN function definition into a

FORTRAN source file.

CCN3677 Option LONGNAME is turned on

because option DLL is specified.

Explanation: Option LONGNAME is turned on by the

compiler because DLL option is specified.

User Response: Specify the LONGNAME option

when compiling with the DLL option.

CCN3678 Option RENT is turned on because

option DLL is specified.

Explanation: Option RENT is turned on by the

compiler because DLL option is specified.

User Response: Specify the RENT option when

compiling with the DLL option.

CCN3679 Option LONGNAME is turned on

because option EXPORTALL is

specified.

Explanation: Option LONGNAME is turned on by the

compiler because EXPORTALL option is specified.

User Response: Specify the LONGNAME option

when compiling with the EXPORTALL option.

CCN3680 Option RENT is turned on because

option EXPORTALL is specified.

Explanation: Option RENT is turned on by the

compiler because EXPORTALL option is specified.

User Response: Specify the RENT option when

compiling with the EXPORTALL option.

CCN3681 pragma export(&1) is ignored; both

LONGNAME and RENT options must

be specified.

Explanation: The variable/function is not exported

because both LONGNAME and RENT must be

specified to export functions/variables.

User Response: Make sure both LONGNAME and

RENT options are specified.

CCN3682 ″&1″ will not be exported because

pragma variable(&2,NORENT) is

specified.

Explanation: Variables with NORENT option cannot

be exported.

User Response: Remove the pragma variable

directive.

78 z/OS V1R7.0 XL C/C++ Messages

||

|
|

|
|

||
|

|
|

|

||
|

|
|

|
|

 | |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 | |
 |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 | |
 |
 |

 |
 |

 |
 |

CCN3683 ″&1″ will not be exported because it

does not have external storage class.

Explanation: Only objects with external storage class

can be exported.

User Response: Change the storage class for &1 to

extern.

CCN3684 Exporting function main is not allowed.

Explanation: Main cannot be exported.

User Response: Remove the pragma export for main.

CCN3685 ″&1″ will not be exported because it is

not externally defined.

Explanation: The variable cannot be exported

because it is not defined here.

User Response: Remove the pragma export for the

variable.

CCN3686 Unexpected keyword(s). One or more

keywords were found in an invalid

location.

Explanation: One or more keywords were found in an

invalid location.

User Response: Remove the keyword(s) or place

them immediately to the left of the identifier to which

they apply.

CCN3687 The &1 keyword cannot be applied to

the return type of a function.

Explanation: The keyword is being applied to the

return type of a function.

User Response: Remove the keyword.

CCN3688 Declaration cannot specify conflicting

keywords &1 and &2.

Explanation: The keywords conflict and cannot both

be used in the same declaration.

User Response: Remove one of the keywords.

CCN3689 The &1 keyword was specified more

than once in the declaration.

Explanation: The keyword was used more than once

in the same declaration.

User Response: Remove the duplicate keywords.

CCN3690 Builtin function &1 is unrecognized.

The default linkage convention is used.

Explanation: The function specified in the pragma

linkage builtin is not a builtin function.

User Response: Check the function name and

correct; or remove the pragma if it is not a builtin

function.

CCN3691 The &1 keyword can only be applied to

functions.

Explanation: The keyword has been applied to an

identifier which does not correspond to a function type.

User Response: Check that the correct identifier is

specified or remove the keyword.

CCN3693 The &1 keyword conflicts with a

previously specified keyword.

Explanation: The keyword conflicts with another

keyword specified in the same declaration.

User Response: Remove one of the keywords.

CCN3694 Option LONGNAME is turned on

because a qualifier is specified on the

CSECT option.

Explanation: Option LONGNAME is turned on by the

compiler when the CSECT option is specified with a

qualifier.

User Response: Specify the LONGNAME option

when compiling with the CSECT option with a qualifier

specified.

CCN3695 pragma export(&1) is ignored;

LONGNAME option must be specified.

Explanation: The variable/function is not exported

because LONGNAME must be specified to export

functions/variables.

User Response: Make sure LONGNAME option is

specified.

CCN3708 Only functions or typedefs of functions

can be specified on pragma linkage

directive.

Explanation: The name specified on pragma linkage

is not a function.

User Response: Check for typo errors; remove the

pragma linkage.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 79

||
|

|
|

|
|

 | |
 |
 |

 |
 |
 |

 |
 |
 |

CCN3709 Structure members cannot follow

zero-sized array.

Explanation: The zero-sized array must be the last

member in the structure.

User Response: Remove members that occur after

the zero-sized array.

CCN3710 Option &1 ignored because option &2

specified.

Explanation: The second option must not be specified

for the first to have an effect.

User Response: Remove the first or second option.

CCN3712 Duplicate function specifier ″&1″

ignored.

Explanation: The indicated function specifier appears

more than once.

User Response: Remove one of the duplicate function

specifiers.

CCN3713 Keyword ″&1″ is not allowed in this

context.

Explanation: The specified keyword cannot be used in

this context.

User Response: Ensure that the keyword is correct

and remove if necessary.

CCN3714 #include searching for file &1.

Explanation: A compiler informational message used

to show include file searching.

User Response: No action required.

CCN3715 Storage class &1 cannot be used for

structure members.

Explanation: The storage class is not appropriate for

this declaration. Restrictions include: 1) Storage class

specifier not allowed on aggregate members, casts,

sizeof or offsetof declarations. 2) Declarations at file

scope cannot have ″register″ or ″auto″ storage class.

User Response: Specify a different storage class.

CCN3721 The ″&1″ qualifier is not supported on

the target platform.

Explanation: The specified qualifier is not supported

on the target platform and will have no effect.

User Response: Remove the qualifier.

CCN3722 pragma linkage &1 ignored for function

&2.

Explanation: A conflicting linkage type, or a pragma

environment, has been specified for this function.

User Response: Check what has been specified

before and remove the conflicts.

CCN3723 pragma environment is ignored

because function &1 already has

linkage type &2.

Explanation: A pragma linkage has already been

specified and used for this function, and is in conflict

with the pragma environment directive. The latter is

ignored.

User Response: Remove the pragma linkage or

environment directive.

CCN3724 Undefined identifier ″&1″ was

referenced in pragma &2 directive.

Explanation: A pragma is referring to an identifier that

has not been defined.

User Response: Define the identifier or remove the

pragma.

CCN3728 Operation between types ″&1″ and ″&2″

is not recommended.

Explanation: The operation specified is improper

between the operands having the given types.

User Response: Either change the operator or the

operands.

CCN3729 ″&1″ should not be declared inline or

static.

Explanation: Although ″&1″ is not a keyword, it is a

special function that cannot be inlined or declared as

static.

User Response: Remove the inline or static specifier

from the declaration of ″&1″.

CCN3730 The pragma is accepted by the

compiler. The pragma will have no

effect.

Explanation: The pragma is not supported by this

compiler.

User Response: The pragma can be removed if

desired.

80 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |
 |

 |
 |

CCN3731 The &1 keyword is not supported on

the target platform. The keyword is

ignored.

Explanation: The specified keyword is not supported

on the target platform and will have no effect.

User Response: Remove the keyword.

CCN3732 pragma &1 is not supported on the

target platform.

Explanation: The specified pragma is not supported

on the target platform and will have no effect. See the

C/C++ Language Reference for the list of valid pragma

directives.

User Response: Change or remove the pragma

directive.

CCN3733 Processing #include file &1.

Explanation: This message traces #include file

processing.

User Response: No response required.

CCN3735 Suboption &1 of &2 ignored because

&3 is specified.

Explanation: Suboption &1 of &2 cannot be specified

with option &3. &1 is ignored.

User Response: Remove the suboption &1 or the

option &3.

CCN3736 &1 conflicts with previous &2

declaration.

Explanation: The compiler cannot resolve the

conflicting declarations.

User Response: Remove one of the declarations.

CCN3737 The preprocessor macro ″&1″ was

expanded inside a pragma directive.

Explanation: A macro was expanded in the context of

a pragma directive. Please ensure that this is the

desired result.

User Response: Ensure that the macro was intended

for expansion.

CCN3739 Cannot create/use precompiled header

file because of memory address space

conflict. GENPCH/USEPCH options are

ignored.

Explanation: (1) If this is a USEPCH compile, the

PCH address space (heap area) is not the same as in

the GENPCH compile. (2) If this is a GENPCH compile,

the persistent heap area is full. In either case, the

compilation will continue by ignoring the

GENPCH/USEPCH options.

User Response: (1) If this is a USEPCH compile,

make sure all the options/pragmas are the same as in

GENPCH compile, and the run-time environment of the

compiler is the same (e.g. region size). (2) If this is a

GENPCH compile, try to reduce the number/size of

#include files in the initial sequence.

CCN3740 Timestamp information is not available

for #include header file &1.

Explanation: Timestamp information must be present

in ALL #include header files when using PCH.

Timestamp is absent in sequential data sets, and may

be absent in PDS.

User Response: Change any sequential data set

header files into a PDS member. Make sure all PDS

member header files contain timestamp information.

CCN3741 Cannot use precompiled header file

because pragmas mismatch before the

Initial Sequence.

Explanation: pragmas appearing before the Initial

Sequence must be the same between the GENPCH

and USEPCH compile.

User Response: Make sure the pragmas before the

Initial Sequence are the same. Using GENPCH to

regenerate the PCH file would also solve the problem.

CCN3742 64-bit portability: possible loss of

digits through conversion of &1 type

into &2 type.

Explanation: A long type is assigned into an int type

which may cause truncation in 64-bit mode.

User Response: Check the possible value ranges of

the long type or change the assignment from an int type

to a long type.

CCN3743 64-bit portability: possible change of

result through conversion of &1 type

into &2 type.

Explanation: An int type is assigned into a long type

which may cause unexpected results in 64-bit mode.

User Response: Check if a possible sign extension of

int type into long type causes unexpected results.

CCN3744 64-bit portability: possible truncation

of pointer through conversion of

pointer type into &1 type.

Explanation: A pointer type is assigned into an int

type leading to loss of the high-order bytes of the

pointer in 64-bit mode.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 81

||
|
|

|
|

|

 | |
 |

 |
 |
 |
 |

 |
 |
 |

User Response: Use a long type to hold a pointer

type.

CCN3745 64-bit portability: possible incorrect

pointer through conversion of &1 type

into pointer.

Explanation: An int type is assigned into a pointer

type leading to a possibly invalid address in 64-bit

mode.

User Response: Use a long type to hold the address.

CCN3746 64-bit portability: possible change of

constant value through conversion into

long type.

Explanation: A constant is assigned into long type

leading to possible change of value in 64-bit mode.

User Response: Check the possible value ranges of

the constant when stored in a long type.

CCN3747 64-bit portability: constant given type

″&1″ when compiling in 32-bit mode

may be given type ″&2″ when

compiling in 64-bit mode.

Explanation: A constant which is given type unsigned

long int in 32-bit mode may fit into a long int in 64-bit

mode. A constant which is given type long long int in

32-bit mode may fit into a long int in 64-bit mode. A

constant which is given type unsigned long long int in

32-bit mode may fit into an unsigned long int in 64-bit

mode.

User Response: Check the use of the constant for

possible changes in usual arithmetic conversion rules as

it propagates through expressions.

CCN3748 64-bit portability: constant which will

overflow in 32-bit mode may select

unsigned long int or long int in 64-bit

mode

Explanation: A constant larger than UINT_MAX but

smaller than ULONGLONG_MAX will overflow in 32-bit

mode, but be acceptable in an unsigned long or signed

long in 64-bit mode.

User Response: Make sure you intend this constant

to be acceptable in 64-bit mode.

CCN3750 Value of enumeration constant must be

in range of signed long.

Explanation: If an enum constant is initialized in the

definition of an enum tag, the initial value must be an

integral expression that has a value representable as a

long.

User Response: Remove the initial value, or ensure

that it is an integral constant expression that has a

value representable as a long.

CCN3751 Value of enumeration constant must be

in range of unsigned long.

Explanation: If an enum constant is initialized in the

definition of an enum tag, the value that it is initialized

to must be an integral expression that has a value

representable as a long.

User Response: Remove the initial value, or ensure

that it is an integral constant expression that has a

value representable as a long.

CCN3752 Number of enumerator constants

exceeds &1.

Explanation: The number of enumerator constants

must not exceed the value of &1.

User Response: Remove additional enum constants.

CCN3754 The parameter type is not valid for a

function of this linkage type

Explanation: The linkage type of the function puts

certain restrictions on the parameter type, which the

function definition violated.

User Response: Check the linkage type restrictions

and change the parameter type.

CCN3755 The &1 option is not supported in this

release.

Explanation: The specified option is not supported in

this release.

User Response: Remove the option.

CCN3763 Option &1 ignored because pragma &2

is specified.

Explanation: The pragma must not be specified for

the option to have an effect.

User Response: Remove the pragma or the option.

CCN3764 Option &1 ignored for variable &2

because pragma &3 is specified.

Explanation: The pragma must not be specified for

the option for the variable indicated to have an effect.

User Response: Remove the pragma or the option for

the variable indicated.

CCN3767 Packed decimal constant &1 is not

valid.

Explanation: See the C/C++ Language Reference for

a description of a packed decimal constant.

User Response: Ensure that the packed decimal

82 z/OS V1R7.0 XL C/C++ Messages

constant does not contain any characters that are not

valid.

CCN3775 The pragma datamodel directive must

appear at file scope.

Explanation: pragma datamodel must be specified at

file scope.

User Response: Move the directive so that it appears

at file scope.

CCN3776 The required conditions for using the

builtin function ″&1″ are not met.

Explanation: The builtin function ″&1″ requires one or

more compiler options that are not currently active.

User Response: Specify the correct options to use the

builtin function.

CCN3777 The parameter in position &1 must be

a constant literal for the builtin

function ″&2″.

Explanation: The builtin function ″&2″ requires

parameter &1 to be a constant literal.

User Response: Specify a constant literal for the

parameter.

CCN3778 Type ″&1″ is not valid. Type specifier

″&2″ is assumed.

Explanation: The type ″&1″ is not valid; it is treated

as ″&2″.

User Response: Replace the unknown type specifier

with a correct one.

CCN3779 Definition of modifiable static variable

″&1″ is not allowed within inline

definition of ″&2″.

Explanation: An inline definition of function ″&2″ with

external linkage shall not contain a definition of

modifiable object ″&1″ with static storage duration. The

static keyword is ignored.

User Response: Remove the static storage class

specifier.

CCN3780 Reference to ″&1″ with internal linkage

is not allowed within inline definition of

″&2″.

Explanation: An inline definition of function ″&2″ with

external linkage shall not contain a reference to an

identifier ″&1″ with internal linkage.

User Response: Remove the reference to the

identifier with internal linkage.

CCN3781 Inline function ″&1″ is undefined.

Explanation: An inline function was declared and

referenced in this file. The definition of the function was

not found before the end of the file. When a function is

declared to be inline, the function definition must appear

in the same file.

User Response: Define the function in the file or

remove the inline function specifier.

CCN3782 One or more error messages have

been disabled.

Explanation: One or more error messages have been

suppressed via user’s request.

User Response: Fix the errors to proceed with the

compilation.

CCN3784 Decimal integer constant ″&1″ is out of

range.

Explanation: The specified decimal constant is too

large to be represented by a signed long long int.

User Response: The constant integer must have a

value less than LONGLONG_MAX defined in <limits.h>.

CCN3785 Illegal suffix ″&1″ for integer constant

″&2″.

Explanation: Valid integer suffixes for a long long

integer constant are ll or LL. Valid integer suffixes for an

unsigned long long integer constant are ull, uLL, Ull, or

ULL.

User Response: Change or remove the suffix.

CCN3787 Hexadecimal floating point constant

″&1″ cannot be represented exactly in

its evaluated format.

Explanation: Due to limits on the number of significant

digits, the hexadecimal floating point constant is

rounded.

User Response: Change the hexadecimal floating

point constant so that it fits in the evaluation format.

CCN3789 The operand of __alignof__ cannot be

a bit field.

Explanation: The __alignof__ operator cannot be

applied to an lvalue that designates a bit field object.

User Response: Change the operand.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 83

 | |
 |

 |
 |

 |

CCN3795 Private variable ″&1″ appears in the &2

clause.

Explanation: Private variable cannot appear in that

clause.

User Response: Remove variable from the clause.

CCN3797 &1 directive cannot appear within &2

construct.

Explanation: Directive is incorrectly nested.

User Response: Correct the directive.

CCN3805 String literal exceeded the compiler

limit of &1.

Explanation: String literal size cannot be larger than

the compiler limit

User Response: Reduce the size of the string literal.

CCN3810 pragma runopts syntax (&1): &2

Explanation: Syntax error in the pragma. The

suboption syntax is the same as the corresponding LE

runtime option. Please refer to the LE manual for details

of the CEEnnnn message number.

User Response: Correct the syntax error.

CCN3811 Option &1 forces &2 to take effect.

Explanation: The first option in the message forces

the second one to take effect. Specify the second option

explicitly to suppress this message.

User Response: Specify the second option explicitly.

CCN3812 Option FLOAT(IEEE) may cause slow

execution time when used with ARCH

less than 3.

Explanation: Binary floating point operations (BFP)

needs hardware architecture (ARCH option) of 3 or

higher. For ARCH less than 3, BFP will work on OS

level V2R6 or higher, which provides software

emulation, but will significantly slow down the execution

time.

User Response: If the target hardware architecture is

3 or higher, specify it explicitly in ARCH.

CCN3813 Option FLOAT(AFP) may cause slow

execution time when used with ARCH

less than 3.

Explanation: The AFP suboption needs hardware

architecture (ARCH option) of 3 or higher. For ARCH

less than 3, BFP will work on OS level V2R6 or higher,

which provides software emulation, but will significantly

slow down the execution time.

User Response: If the target hardware architecture is

3 or higher, specify it explicitly in ARCH.

CCN3815 Conflicting qualifiers &1 and &2

specified.

Explanation: The identified qualifiers cannot both be

specified at the same time.

User Response: Remove one of the qualifiers.

CCN3862 Unable to read &1.

Where: &1 file *CHAR 100

Explanation: The compiler encountered an error while

reading from the specified file.

CCN3863 Unable to write to &1.

Where: &1 file *CHAR 100

User Response: Ensure that the disk drive is not in

an error mode and that there is enough disk space left.

CCN3870 The program name &1 has been

truncated to &2.

Explanation: The program name exceeds the

maximum length of 10 characters and has been

truncated. This may result in unexpected behavior if two

different names become the same name after

truncation.

User Response: Reduce the length of the program

name. Alternatively, use pragma map to shorten

program name.

CCN3885 An anonymous union or struct

declared at file scope must be static.

Explanation: Anonymous unions and structs are not

allowed at global scope if they are not static.

User Response: Declare all anonymous tags to be

static at file scope.

CCN3886 The member ″&1″ is at offset ″&2″, not

at offset ″&3″ as specified in pragma

assert_field_offset.

Explanation: The offset of member ″&1″ is not at the

offset specified by the pragma.

User Response: Either fix the aggregate that contains

the member or fix the offset in the pragma.

CCN3887 The first operand in pragma

assert_field_offset must be a struct,

union, or a typedef of struct or union.

The pragma is ignored.

Explanation: The pragma assert_field_offset can only

84 z/OS V1R7.0 XL C/C++ Messages

be used with a struct, a union, or a typedef of a struct

or a union.

User Response: Change the first operand or remove

the pragma.

CCN3888 A structure or union type must be

complete when it is used with pragma

assert_field_offset.

Explanation: An incomplete struct or union is not a

valid argument to pragma assert_field_offset.

User Response: Ensure the struct or union is a

complete type.

CCN3889 The specified member ″&1″ does not

belong to the structure or union

specified in the pragma.

Explanation: The identifier must be a member of the

structure or union.

User Response: Make sure the member is in the

structure or union specified in the pragma.

CCN3890 The declaration ″&1″ specified in

pragma assert_field_offset cannot be

found.

Explanation: The declaration specified in pragma

assert_field_offset has not been declared.

User Response: Declare the type.

CCN3891 Subscript operator requires an array

operand in pragma assert_field_offset.

Explanation: A subscript was specified in pragma

assert_field_offset but the operand is not an array.

User Response: Either change the operand to be an

array type or remove the subscript operator.

CCN3892 Array index must be a constant

expression in pragma

assert_field_offset.

Explanation: The pragma assert_field_offset is

evaluated at compile time. All arguments must be

constant expressions.

User Response: Change the expression.

CCN3894 The &1 is not valid in 64-bit mode and

it is ignored.

Explanation: The &1 is not valid in 64-bit mode. It is

only supported in 32-bit mode.

User Response: Either remove &1 or compile it in

32-bit mode.

CCN3897 Unstructured goto statement

encountered.

Explanation: The target label of a goto statement

should not be located in an inner block such as a loop.

User Response: Ensure the target label of the goto

statement is not located in an inner block.

CCN3913 The enum constants must be specified

when the enum tag is declared.

Explanation: When an enumeration tag is declared,

the list of the enumeration constants must be included

in the declaration.

User Response: Add the list of enumeration constants

in the enum tag declaration.

CCN3914 Code page (CCSID) &1 specified on

pragma convert directive is not valid.

Explanation: The CCSID &1 specified on the pragma

convert directive is either not supported by the system

or an error occurred while the compiler was trying to

access code page information.

User Response: Use a valid code page (CCSID).

CCN3919 Variable &1 was not explicitly

initialized.

Explanation: If not explicitly initialized, variables with

storage class auto or register contain indeterminate

values.

User Response: Initialize the variable.

CCN3920 Bitwise operator is applied to a signed

type.

Explanation: Bitwise operators may change the value

of a signed type by shifting the bit used to indicate the

sign of the value.

User Response: Change the operand to an unsigned

type or remove the bitwise operation.

CCN3931 Dependency file &1 cannot be opened.

Where: &1 is a file name.

Explanation: Makedepend could not open the

specified dependency file.

User Response: Ensure the source file name is

correct. Ensure that the correct file is being read and

has not been corrupted. If the file is located on a LAN

drive, ensure the LAN is working properly. Also, the file

may be locked by another process or access may be

denied because of insufficient permission

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 85

CCN3932 Too few options specified for

makedepend.

User Response: Specify correct number of options for

makedepend.

CCN3933 Specify at least one source operand to

be processed.

Explanation: No source files were specified for

makedepend processing.

User Response: Specify at least one source operand.

CCN3934 Compiler option &1 is invalid for

compiler version &2.

Where: &1 is a compiler option, &2 is compiler

version.

Explanation: An invalid option was specified for the

compiler version specified for makedepend.

User Response: Change the compiler version to the

version that accepts this option, or remove this option.

CCN3935 Specify a valid -W phase code (0 or

c=compile, m=makedepend) instead of

&1.

Explanation: An invalid compiler phase was specified

for makedepend.

User Response: Specify a phase that is accepted by

makedepend.

CCN3936 Specify a series of options, separated

by commas, for the -W m option.

Explanation: No options were specified for the -W m

option.

User Response: Remove the -W m option.

CCN3937 &1 has a dependency on include file

&2 which is located in an MVS data

set.

Where: &1 is an object file. &2 is a #include file.

Explanation: The specified #include file was found in

an MVS data set. No dependency information will be

recorded for this #include file.

User Response: No response required.

CCN3938 Unknown compiler version &1 for

makedepend option V. Using default

compiler version.

Where: &1 is a compiler version.

Explanation: An invalid compiler version was specified

for the makedepend option V.

User Response: Correct the compiler version.

CCN3941 Applying &1 may cause unexpected

run-time behavior.

Where: &1 is an option or pragma.

Explanation: Compile may be successful but it may

cause unexpected run-time behavior.

User Response: Change or remove the offending

option or pragma.

CCN3942 Attribute ″&1″ causes a conflict and is

ignored.

Where: &1 is an attribute name.

Explanation: The identified attribute is in conflict with

a previously specified attribute or pragma and is

ignored.

User Response: Change or remove the conflicting

attribute specifier.

CCN3943 Attribute ″&1″ is not supported on the

target platform and is ignored.

Where: &1 is an attribute name.

Explanation: The identified attribute specifier is not

supported on the target platform and is ignored.

User Response: Remove the attribute specifier.

CCN3944 Attribute ″&1″ is not supported and is

ignored.

Where: &1 is an attribute name.

Explanation: The identified attribute is not supported

and is ignored.

User Response: Remove the attribute specifier.

CCN3945 The number of arguments specified for

attribute ″&1″ is incorrect; this attribute

is ignored.

Where: &1 is an attribute name.

Explanation: The number of arguments specified for

the identified attribute is incorrect.

User Response: Check the syntax rules for the

specified attribute, and correct the arguments.

CCN3946 Incorrect argument type specified for

attribute ″&1″; this attribute is ignored.

Where: &1 is an attribute name.

Explanation: The argument specified for the identified

attribute has the wrong data type.

User Response: Check the syntax rules for the

86 z/OS V1R7.0 XL C/C++ Messages

||
|
|

|

|
|
|

|

specified attribute, and correct the argument.

CCN3947 The explicit register specifier is

unexpected and is ignored.

Explanation: An explicit register cannot be specified

on this type of declaration.

User Response: Remove the explicit register specifier.

CCN3955 Type ″int″ is assumed for declaration

of ″&1″.

Explanation: A declaration was made without a type

specifier.

User Response: Add the type specifier into the

declaration.

CCN3962 Previous unmatched pragma &1

directive &2.

Explanation: pragma &1 directive pair must be

matched by a corresponding directive.

User Response: Ensure the pragma &1 directive pair

is matched.

CCN3963 The attribute ″&1″ is not a valid

variable attribute and is ignored.

Where: &1 is an attribute name.

Explanation: The identified attribute specifier is

ignored because it does not apply to variables.

User Response: Remove the attribute specifier.

CCN3970 Incorrect _Pragma operator.

Explanation: Error in _Pragma operator.

User Response: Correct the syntax in the _Pragma

Operator.

CCN3971 Invalid standard pragma.

Explanation: Error(s) in a standard pragma.

User Response: Correct the error in the standard

pragma.

CCN3974 Attribute ″&1″ has been specified more

than once; the last specification is

used.

Explanation: The identified attribute was specified

more than once; the last specification is used.

User Response: Remove the duplicate attribute

specifier.

CCN3975 Alias specification does not match the

specification of ″&1″ on line &2 of

″&3″.

Explanation: The specification of the aliased function

is not compatible with the alias specification.

User Response: Modify the function specification or

the alias specification so that the number and types of

the parameters match.

CCN3976 Alias specification cannot be provided

for a function definition.

Explanation: An alias specification is not allowed

within a function definition.

User Response: Remove the alias specification or

change the function definition into a function

declaration.

CCN3982 Variable ″&1″ must be shared in

enclosing context.

Explanation: Variable cannot be privatized.

User Response: Remove private clause for the

variable.

CCN3985 The current locale for the compilation

is not &1. The option &2 is ignored.

Explanation: The option supports only certain locales.

Check the Compiler Reference on the option for more

details.

User Response: Remove the option or specify the

required locale. Note that the locale for the compilation

can be set using the LANG environment variable.

CCN3986 This option requires &1 or higher. The

option &2 is ignored.

Explanation: The option has a pre-requisite on the

operating system level.

User Response: Remove the option.

CCN3987 The invalid character ″&1″ was found

in a wide character or wide string

literal. The character will be ignored.

Explanation: The wide character is not valid. The

character is displayed as one or more hexadecimal byte

values.

User Response: Correct the literal.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 87

CCN3988 The __align specifier cannot be used in

conjunction with attribute ″aligned″.

Explanation: The __align specifier conflicts with

attribute ″aligned″ because the former causes padding

while the later does not.

User Response: Remove the usage of either the

__align specifier or of attribute ″aligned″.

CCN3989 The alignment option &1 is not valid in

64-bit mode.

Explanation: The alignment option &1 and the 64-bit

option are incompatible.

User Response: To apply the alignment rule, compile

in 32-bit mode.

CCN3990 The maximum size of the stack has

been exceeded.

Explanation: The size of the stack has reached its

maximum size, no more entries may be added.

User Response: Remove some entries from the

stack.

CCN3991 Only a variable can be declared in the

declaration part of a ″for″ statement.

Explanation: A tag, a function declaration, or a

typedef definition is not allowed in the declaration part

of a ″for″ statement.

User Response: Correct the declaration part of the for

statement.

CCN3992 Storage class ″&1″ cannot be used in

this context.

Where: &1 is a storage class specifier.

Explanation: Only variables having storage class

″register″ or ″auto″ can be declared in the declaration

part of a ″for″ statement.

User Response: Delete the storage class specifier or

use a different storage class specifier.

CCN3994 A flexible array member is not allowed.

Explanation: A flexible array member is permitted as

the last member of a structure containing more than one

named member. Unions cannot contain flexible array

members.

User Response: Correct the usage of the flexible

array member.

CCN3995 An aggregate containing a flexible

array member cannot be used as a

member of a structure or as an array

element.

Explanation: A flexible array member is permitted as

the last member of a structure containing more than one

named member. Such a structure cannot be a member

of another structure or an array element, although it can

be a member of a union and such a union cannot be a

member of a structure or an array element.

User Response: Remove the aggregate containing

the flexible array member.

CCN3996 Definition of tag ″&1″ is not allowed.

Explanation: A tag cannot be defined in the

declaration part of a ″for″ statement.

User Response: Move the declaration of the tag prior

to the ″for″ statement.

CCN3997 Structure members cannot follow a

flexible array member/zero extent

array.

Explanation: The flexible array member/zero extent

array must be the last member in the structure.

User Response: Move the flexible array member/zero

extent array to the end of the structure.

CCN3998 A different section was specified for

″&1″; the new specification is used.

Explanation: The new section specification overwrites

the previous one.

User Response: Remove the previous specification of

attribute ″section″.

CCN4100 A section attribute that is not applied

to a global or static variable is ignored.

Explanation: The section attribute is not supported for

automatic variables, parameters, or variables with

external linkage.

User Response: Remove the section attribute

specifier.

CCN4102 Hexadecimal floating-point constants

are not supported in the current

language level.

Explanation: A hexadecimal floating-point constant is

not allowed in the current language level.

User Response: Change the language level to one

that supports the hexadecimal floating-point constant

notation, or use the decimal floating-point notation

instead.

88 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|
|

|
|

 | |
 |
 |
 |

 |
 |
 |
 |
 |
 |

 |
 |

 | |
 |
 |

 |
 |

 |
 |

CCN4104 The static keyword or type qualifiers

are ignored unless they are in the

outermost array index of a function

parameter.

Explanation: The array index contains the static

keyword or type qualifiers. When the static keyword or

type qualifiers are used to specify the dimension of an

array, they can only be used for the declaration of

function parameters and only in the outermost array

dimension.

User Response: Remove the static keyword or type

qualifiers.

CCN4106 Initializer does not evaluate to a

constant that fits in the target type.

Explanation: The expression used as an initializer

evaluates to a number that is not within the range that

can be stored by the target.

User Response: Change the expression so it

evaluates to a value in the valid range.

CCN4107 Initialization of function pointer ″&1″

with a function that has ″&2″ linkage is

not allowed.

Explanation: An attempt was made to initialize a

function pointer with the address of a function that has

incompatible linkage.

User Response: Ensure the function pointer is

initialized with the address of a function that has

compatible linkage.

CCN4108 The use of keyword &1 is non-portable.

Explanation: The specified keyword may cause

problems when porting the code to another system.

User Response: Change the language level to one

that supports the specified keyword or remove the use

of the specified keyword.

CCN4118 Character constant &1 has more than 1

character.

Explanation: A character constant can only have up to

four bytes.

User Response: Change the character constant to

contain four bytes or less.

CCN4119 The initializer list should not be empty.

Explanation: An initializer list should contain at least

one initializer.

User Response: Remove the empty initializer list or

add an initializer to the list.

CCN4124 The use of directive &1 is

non-portable.

Explanation: The specified directive may cause

problems when porting the code to another system.

User Response: Remove the use of the specified

directive.

CCN4125 Option &1 forces &2 to take effect due

to &3.

Explanation: The first option in the message forces

the second one to take effect due to the third option.

User Response: Specify the second option explicitly

to suppress this message.

CCN4137 Only one &1 pragma may be specified

for the same loop. This pragma is

ignored.

Explanation: Only the pragma immediately preceding

a loop will have effect.

User Response: Specify only one pragma for a loop.

Remove any multiple pragmas.

CCN4140 The &1 pragma cannot be applied to a

&2 loop. This pragma is ignored.

Explanation: Only specific unrolling optimizations are

appropriate for certain loops.

User Response: Apply a different unrolling pragma to

the loop, or remove the pragma.

CCN4197 The use of &1 in designated initializer

syntax is non-portable.

Explanation: The use of the specified token in a

designated initializer is obsolete and non-portable. To

maximize code portability, use the standard conforming

syntax for a designated initializer.

User Response: Use the standard conforming syntax

for a designated initializer.

CCN4198 Missing &1 in designated initializer

syntax.

Explanation: The designated initializer syntax used is

obsolete and non-portable. To maximize code portability,

use the standard conforming syntax for a designated

initializer.

User Response: Use the standard conforming syntax

for a designated initializer.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 89

||

|
|

|
|

 | |
 |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 | |
 |

 |
 |
 |
 |

 |
 |

 | |
 |

 |
 |
 |
 |

 |
 |

CCN4230 The builtin function ″&1″ is not valid

for the target system.

Explanation: The builtin function is not valid for the

target operating system.

User Response: User cannot use this builtin in the

current operating system.

CCN4231 The builtin function ″&1″ is not valid

for the target architecture.

Explanation: The builtin function is not valid for the

target hardware architecture.

User Response: User cannot use this builtin in the

target architecture.

CCN4232 The builtin function ″&1″ requires

option ″&2″.

Explanation: The builtin function is not valid with the

current compilation options.

User Response: In order to use the builtin, the user

has to specify the required option.

CCN4233 The parameter in position &1 must be

a power of 2 and must be a constant

literal for the builtin function ″&2″.

Explanation: The builtin function requires the

argument be a power of 2 and a constant literal.

User Response: In order to use the builtin, the

argument must be a power of 2 and a constant literal.

CCN4234 The argument &2 of the builtin function

″&1″ must be in the range &3.

Explanation: The builtin function requires the

argument be in the range.

User Response: Modify the argument’s value to meet

the range requirement.

CCN4254 Wide string literals (L, U or u) of

different types cannot be

concatenated.

Explanation: A string that is prefixed by L, U or u can

only be concatenated with one that is similarly prefixed,

or with a normal string literal.

User Response: Check the string literal prefix and

correct the syntax.

CCN4255 Source file encoding cannot be

converted to Unicode using iconv. The

UTF option is ignored.

Explanation: The compiler converts string literals that

are prefixed by U or u to Unicode using iconv. The

required UTF-8 converter is not found on the system.

User Response: Check that the source file encoding

can be converted to UTF-8 by iconv.

CCN4256 Specify the UTF option to process

string literals prefixed by u or U.

Explanation: The compiler encountered a syntax error

possibly caused by string literals prefixed by u or U. The

UTF option is needed to process these string literals.

User Response: Check if the program is using string

literals prefixed by u or U.

CCN4266 This designation of a range of array

elements is non-portable.

Explanation: The designator used to initialize a range

of array elements is a non-portable extension. To

maximize code portability, use the standard conforming

syntax for designating array elements.

User Response: Use the standard conforming syntax

to designate array elements.

CCN4271 Subption &1 of option &2 is ignored

because option &3 is not specified.

Explanation: The option &1 is only valid when used in

conjunction with &3.

User Response: Compile with &3.

CCN4278 Duplicate or overlapping range

expression specified for case label.

Labels must be unique.

Explanation: Two case label ranges in the same

switch statement cannot overlap.

User Response: Change one of the label ranges.

CCN4279 The &1 pragma cannot be applied to a

#pragma block_loop.

Explanation: Only other block_loop pragmas or loopid

pragmas can be applied to a #pragma block_loop.

User Response: Remove the erroneous loop pragma

directive.

CCN4307 Skipping a declaration with variably

modified type at line &1 is invalid.

Explanation: A goto statement shall not jump from

outside the scope of an identifier having a variably

modified type to inside the scope of that identifier.

User Response: Change the program so that the goto

statement is inside the scope of the identifier having a

variably modified type.

90 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|

|
|

||
|

|
|

|
|

||
|

|
|

|
|

||
|
|

|
|

|
|

||
|

|
|

|
|

||
|
|

|
|
|

|
|

||
|
|

|
|

 |

 |
 |

 | |
 |

 |
 |
 |

 |
 |

 | |
 |

 |
 |
 |
 |

 |
 |

 | |
 |

 |
 |

 |

 | |
 |
 |

 |
 |

 |

 | |
 |

 |
 |

 |
 |

 | |
 |

 |
 |
 |

 |
 |
 |

CCN4308 Operand of unary ++ or -- operator

must be a real or pointer type.

Explanation: The operand of the unary ++ or --

operator does not have a real type or pointer type.

User Response: Change the type of the operand, or

use a different operand.

CCN4312 pragma noinline conflicts with inline

function specifier for function ″&1″.

pragma ignored.

Explanation: A pragma noinline is specified with a

function name which has an inline function specifier.

User Response: Remove either the pragma noinline

or the inline function specifier.

CCN4319 The string literal specified may not

exceed &1 characters. The pragma is

ignored.

Explanation: The length of the string literal exceeds a

limit, so the pragma is ignored.

User Response: Reduce the length of the string

literal.

CCN4320 A flexible array member is not

supported in the current language

level.

Explanation: A flexible array member as the last

member of a structure containing more than one named

member is not allowed in the current language level.

User Response: Change the language level to one

that supports flexible array members.

CCN4334 &1 value must contain only decimal

digits or only ’*’.

Explanation: A non-numerical and non-asterisk

character was encountered in the &1 value.

User Response: Check the syntax of the value given.

CCN5001 A typedef must not have an initializer.

Explanation: A typedef represents a type, and a type

must not have an initializer.

User Response: Remove the initializer.

CCN5002 A typedef must not be specified on a

function.

Explanation: A typedef represents a type and must

not be specified on a function definition.

User Response: Remove the typedef keyword.

CCN5003 A destructor must be a class member.

Explanation: A destructor is a special member

function that cannot be declared outside a class

declaration.

User Response: Remove the destructor declaration or

move it inside the class declaration.

CCN5004 A conversion operator must be a class

member.

Explanation: A conversion operator is a special

member function that converts an object of the class

type to an object of the conversion type.

User Response: Move the conversion operator

declaration inside the class from which you want to

convert.

CCN5005 ″%1$s″ must have ″C″ linkage.

Where: ″%1$s″ is the string representing the main

function.

Explanation: The main function ″%1$s″ cannot be

specified with any linkage type other than extern ″C″.

User Response: Remove the linkage specification or

change it to extern ″C″.

CCN5006 The ″%1$s″ specifier must not be

specified for an explicit template

specialization.

Where: ″%1$s″ is the invalid specifier.

Explanation: The ″%1$s″ specifier is not correct on

an explicit template specialization.

User Response: Remove the invalid specifier.

CCN5007 The ″%1$s″ specifier must not be

specified for an explicit template

instantiation.

Where: ″%1$s″ is the invalid specifier.

Explanation: The ″%1$s″ specifier is not correct on

an explicit template instantiation.

User Response: Remove the invalid specifier.

CCN5008 An initializer is not allowed here.

Explanation: A function declaration cannot have an

initializer.

User Response: Remove the initializer.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 91

||
|

|
|

|
|

||
|
|

|
|

|
|

||
|
|

|
|

|
|

||
|
|

|
|
|

|
|

||
|

|
|

|

CCN5009 A union must not have base classes.

Explanation: Only a struct or a class can have a base

class.

User Response: Change the union to a class or

struct.

CCN5010 A name must not be used more than

once within a template parameter list.

Explanation: Duplicated template parameter names

are not allowed.

User Response: Change the name of one of the

template parameters.

CCN5011 ″%1$s″ is not a namespace.

Where: ″%1$s″ is the name used in the source.

Explanation: Only namespaces can be used in using

directives, but the entity named is not a namespace.

User Response: Remove the using directive or

change the name to be that of a namespace.

CCN5012 A using declaration for a member is

allowed only in a class or struct.

Explanation: The using declaration is in a union, but

using declarations are only allowed in classes and

structs.

User Response: Remove the using declaration.

CCN5013 ″%1$s″ is not a destructor.

Where: ″%1$s″ is the name in error.

Explanation: The name following the ″~″ must denote

a destructor when it is used in a member list, but the

name specified is not a destructor.

User Response: Change the name to be a destructor.

CCN5014 The literal type is unknown.

Explanation: The type of literal specified is not

recognized.

User Response: Change the literal to a recognized

type.

CCN5015 A declaration that is ″const″ must have

an initializer.

Explanation: The declaration has the const specifier

so it must also have an initializer.

User Response: Supply an initializer or remove the

″const″ specifier.

CCN5016 The expression must be an integral

non-volatile constant expression.

Explanation: Only a constant expression can be used

in this context, but a non-constant expression is

specified.

User Response: Change the non-constant expression

to a constant expression.

CCN5017 A class or struct declaration must have

a class name, a declarator, or both.

Explanation: Anonymous classes and structs are

extensions to the language and may result in code that

is not portable to other compilers.

User Response: Name the class or add a declarator

list.

CCN5018 An enumeration must not be a

template.

Explanation: A template can only be a class, struct, or

function.

User Response: Remove the template keyword and

template arguments, or nest the enumerator within a

template.

CCN5019 A typedef declaration must not be a

template.

Explanation: A template can only be a class, struct, or

function.

User Response: Remove the template keyword and

template arguments, or nest the typedef within a

template.

CCN5020 A bit field must not have a ″%1$s″

specifier.

Where: ″%1$s″ is the specifier that is not valid for a

bit field.

Explanation: A bit field should have integral or

enumeration type, and it should not be static.

User Response: Remove the incorrect specifier from

the bit field or use an array rather than a bit field.

CCN5021 The named class is not defined.

Explanation: The class named in the elaboration is

qualified but does not exist.

User Response: Change the name to refer to a

declared class.

92 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 |
 |

CCN5022 The named class is not a class name.

Explanation: The name specified in the elaboration is

not a class or struct.

User Response: Change the name to be a class or

struct, or remove the elaboration.

CCN5023 The named struct is not defined.

Explanation: The struct named in the elaboration is

qualified but does not exist.

User Response: Change the name to refer to a

declared struct.

CCN5024 Statements are not allowed within

expressions.

Explanation: The extension of having statements

within expressions is not allowed.

User Response: Remove the construct or set the

appropriate options to allow this extension.

CCN5025 The named union is not defined.

Explanation: The union named in the elaboration is

qualified but does not exist.

User Response: Change the name to refer to a

declared union.

CCN5026 The named union is not a union name.

Explanation: The name specified in the elaboration is

not a union.

User Response: Change the name to be a union.

CCN5027 A function template must not be a

qualifier.

Explanation: Qualifiers can only be namespaces or

classes.

User Response: Correct the qualifier name or remove

it.

CCN5028 A qualified name is not allowed in the

definition of ″%1$s″.

Where: ″%1$s″ is the name in error.

Explanation: A name specified as a parameter, in a

enumeration definition, or as an enumerator must not be

a qualified name.

User Response: Remove the qualifiers from the

name.

CCN5029 The named enumeration is not defined.

Explanation: Either the enumeration named in the

elaboration is not defined or a forward declaration of an

incorrect enumeration is being attempted.

User Response: Change the name to be a defined

enumeration or define the enumeration.

CCN5030 The named enumeration is not an

enumeration name.

Explanation: The name specified in the elaboration is

not an enumeration.

User Response: Change the name to be an

enumeration.

CCN5031 A function template must not be the

class referred to by a

pointer-to-member.

Explanation: Only classes can form

pointer-to-members.

User Response: Correct the class or remove the

pointer-to-member.

CCN5032 The destructor name is not valid.

Explanation: A destructor name cannot be a qualifier.

User Response: Change the name to be a destructor.

CCN5033 A typedef declaration must declare a

name.

Explanation: A typedef declaration declares a type but

no name is specified for the declaration.

User Response: Add a name to the typedef

declaration.

CCN5034 The attributes are not attached to any

type, function or variable. The

attributes are ignored.

Explanation: Type attributes must immediately follow

the class, struct, or union keyword.

User Response: Remove the attributes or move them

to immediately after the class, struct, or union keyword.

CCN5035 A simple namespace name is

expected.

Explanation: The name specified in a namespace

declaration or a namespace alias cannot be qualified.

User Response: Remove the qualifiers from the

name.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 93

CCN5036 A namespace name is expected.

Explanation: The name specified in the namespace

alias declaration must refer to a namespace.

User Response: Change the name to be a

namespace name.

CCN5037 A qualified name is expected in a

using declaration.

Explanation: An unqualified name has been specified

in a using declaration. A using declaration must

nominate a member of a namespace or class.

User Response: Change the name to be a qualified

name.

CCN5038 The name ″%1$s″ is not a type.

Where: ″%1$s″ is the name in error.

Explanation: The name is elaborated with ″typename″

but the name specified in the template instantiation is

not a type.

User Response: Change the name to refer to a type

in the instantiation.

CCN5039 A label must be a simple identifier.

Explanation: The label specified was a qualified

name, but only unqualified names can be used for

labels.

User Response: Remove the qualifiers from the label.

CCN5040 The text ″%1$s″ is unexpected. ″%2$s″

may be undeclared or ambiguous.

Where: ″%1$s″ is the symbol causing the syntax error.

″%2$s″ is the name that may be causing the error if it is

expected to be a type.

Explanation: There is a syntax error in the

declaration. It may be that a name that is expected to

be a type is unknown or ambiguous.

User Response: Remove the offending symbol or

ensure that the name used as a type name is actually a

type.

CCN5041 A pointer-to-member must not be

specified because ″%1$s″ is not a

class.

Where: ″%1$s″ is the erroneous class type.

Explanation: The final qualifier in a pointer-to-member

must be a class.

User Response: Change the final qualifier to be a

class.

CCN5042 The value given for init_priority

attribute must be a constant integral

expression in the range between 101

and 65535. The attribute is ignored.

Explanation: The attribute is ignored because the

argument is not a constant integral expression in the

range between 101 and 65535.

User Response: Change the argument to evaluate to

the required range.

CCN5043 The explicit register specifier is

unexpected. It is ignored.

Explanation: An explicit register cannot be specified

on this type of declaration.

User Response: Remove the explicit register specifier.

CCN5044 Only function declarations can have

default arguments.

Explanation: A default initializer has been specified in

the parameter list of a function but the function is not

being declared.

User Response: Remove the default initializers.

CCN5045 The attribute ″%1$s″ has too many

parameters. The attribute is ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The attribute is ignored because it has

more comma-separated parameters specified than

needed.

User Response: Remove offending parameters.

CCN5046 The attributes ″%1$s″ must not be

specified for a parameter.

Where: ″%1$s″ is the invalid specifier.

Explanation: It is not valid to specify the attribute

″%1$s″ for a function parameter or template parameter.

User Response: Remove the specifier.

CCN5047 A template class declaration or

definition must have a class name.

Explanation: Anonymous class templates are not

allowed.

User Response: Add a name.

CCN5048 The attribute ″%1$s″ is not a valid

function parameter attribute. The

attribute is ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The attribute is ignored because it

94 z/OS V1R7.0 XL C/C++ Messages

cannot be specified for function parameters.

User Response: Remove the offending attribute.

CCN5049 A template function must not be

explicitly specialized as a class.

Explanation: A template function can only be

specialized as a function.

User Response: Correct the specialization or the

template.

CCN5050 A default template-argument should

not be specified in a friend template

declaration.

Explanation: A friend declaration cannot introduce a

new default argument for a template parameter.

User Response: Remove the default

template-argument.

CCN5051 A template parameter must be a simple

identifier.

Explanation: A template parameter is a type

parameter or a parameter declaration.

User Response: Correct the template parameter

name.

CCN5052 The text ″%1$s″ is unexpected. The

keyword ″template″ may need to prefix

″%2$s″.

Where: ″%1$s″ is the symbol causing the syntax error.

″%2$s″ is the name used as a template but is not

known to be a template.

Explanation: There is a syntax error in the

declaration. It may be that the name is intended to be

used as a template but does not have a template

keyword.

User Response: Add the template keyword or ensure

that the name used as a template is actually a template.

CCN5053 The declaration of a class member

within the class definition must not be

qualified.

Explanation: A class member that is declared in the

member list of a class must not be a qualified name.

User Response: Remove the qualifier.

CCN5054 A class or struct declaration must have

a tag, a declarator, or both.

Explanation: Anonymous classes and structs are

extensions to the language, and the option allowing

them is turned off.

User Response: Name the class, add a declarator list,

or use the appropriate language level option to allow

anonymous structs.

CCN5055 ″%1$s″ is specified more than once.

Where: ″%1$s″ is the extra specifier.

Explanation: The specifier is used in the declaration

more than once but the extra specifiers are ignored.

User Response: Remove the extra specifiers.

CCN5056 Incorrect argument type specified for

attribute ″%1$s″. The attribute is

ignored.

Where: ″%1$s″ is the attribute name.

Explanation: The argument specified for the identified

attribute has the wrong data type.

User Response: Check the syntax rules for the

specified attribute, and correct the argument.

CCN5057 The declaration specifier is missing.

Explanation: Implicit int types are no longer valid in

C++.

User Response: Add a complete type to the

declaration or use the appropriate language level option

to allow implicit int types.

CCN5058 The declaration of a class member

within the class definition must not be

qualified.

Explanation: A class member that is declared in the

member list of a class must not be a qualified name.

User Response: Remove the qualifier.

CCN5059 The parameter of attribute ″%1$s″ is

missing. The attribute is ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The attribute ″%1$s″ has specific

parameter type.

User Response: Add the right parameter type to the

attribute.

CCN5060 An internal parser error has occurred:

″%1$s″.

Where: ″%1$s″ is a description of the error.

Explanation: The parser has detected an

unrecoverable error.

User Response: Report the problem to your IBM C++

service representative.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 95

||
|
|

|
|
|

|
|
|
|

|
|

CCN5061 This message is no longer used.

Explanation: This message is an internal error caught

in the C++ front end.

User Response: Report the problem to your IBM C++

service representative.

CCN5062 The incomplete class ″%1$s″ must not

be used as a qualifier.

Where: ″%1$s″ is the incomplete class.

Explanation: A class that is incomplete because it is

only declared or because of some error in the

declaration cannot be used as a qualifier.

User Response: Define the class.

CCN5063 The text ″%1$s″ is unexpected.

Where: ″%1$s″ is the first invalid token.

Explanation: A syntax error has occurred and the first

unexpected token is ″%1$s″.

User Response: Change or remove the offending text.

CCN5064 Syntax error: ″%1$s″ was expected but

″%2$s″ was found.

Where: ″%2$s″ is the invalid text. ″%1$s″ is expected

correct text.

Explanation: A syntax error has occurred and the first

unexpected token is ″%1$s″. The only valid token at

this point is ″%2$s″.

User Response: Change the incorrect token to the

expected one.

CCN5065 The qualifier ″%1$s″ is neither a class

nor a namespace.

Where: ″%1$s″ is the invalid qualifier.

Explanation: Only names representing classes and

namespaces can be used as qualifiers.

User Response: Change the qualifier to a class name

or namespace name.

CCN5066 A function must not be defined in this

scope.

Explanation: Function definitions are only allowed in

namespace scope or in a member list of a class.

User Response: Move the definition into an

appropriate scope.

CCN5067 A return type must not be specified for

″%1$s″.

Where: ″%1$s″ is the function that cannot have a

return type.

Explanation: Return types cannot be specified for

conversion functions.

User Response: Remove the return type.

CCN5068 No member except a constructor can

have the same name as its class,

struct, or union.

Explanation: An attempt was made to declare a

member of a class that has the same name as the class

itself.

User Response: Change the name of the member.

CCN5069 The bit field length must be greater

than, or equal to, zero.

Explanation: A bit field length must not be a negative

number.

User Response: Change the bit field length to zero or

a positive number.

CCN5070 The friend class declaration must use

the ″%1$s″ keyword in the friend

declaration of ″%2$s″.

Where: ″%1$s″ is the expected elaboration. ″%2$s″ is

the offending text.

Explanation: The C++ language has changed. Now

declarations of friend classes must contain an

elaborated type specifier.

User Response: Add the elaboration of class, struct,

or union to the declaration.

CCN5071 A class or union must not be defined

in this context.

Explanation: An attempt was made to define a class

in a context where this is not valid.

User Response: Move the definition to an appropriate

context.

CCN5072 The attribute ″%1$s″ is not supported

on the target platform. The attribute is

ignored.

Where: ″%1$s″ is an attribute name.

Explanation: The identified attribute specifier is not

supported on the target platform and it is ignored.

User Response: Remove the attribute specifier.

96 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |
 |

CCN5073 A template specialization must not be

declared here.

Explanation: An explicit specialization can only be

declared in namespace scope, either in the namespace

in which the primary template is declared or, for a

member template, in the namespace of which the

enclosing class is declared.

User Response: Remove the specialization or move it

to a valid location.

CCN5074 The ″%1$s″ specifier must not be

specified for a friend.

Where: ″%1$s″ is the invalid specifier.

Explanation: The ″%1$s″ specifier is not correct on a

friend declaration.

User Response: Remove the invalid specifier.

CCN5075 A static member function must not be

virtual.

Explanation: The virtual specifier must not be used on

a member function that is declared static.

User Response: Remove the virtual or static specifier.

CCN5076 The pure-specifier (= 0) is not valid for

a static member function.

Explanation: The pure-specifier must not be used on

a member function that is declared static.

User Response: Remove the pure-specifier or static

specifier.

CCN5077 The array bound is too large.

Explanation: The specified array bound is too large

for the system to handle.

User Response: Use a smaller array bound.

CCN5078 A template must not be defined here.

Explanation: A template can only be defined at

namespace or class scope.

User Response: Remove the template definition or

move it to a valid location.

CCN5079 The bit field length is too large.

Explanation: The specified bit field length is larger

than the system allows.

User Response: Use a smaller bit field length.

CCN5080 Template specializations must be

prefixed with ″template<>″.

Explanation: Old-style template specializations are

accepted but are no longer compliant.

User Response: Add the ″template <>″ syntax.

CCN5081 The attribute ″%1$s″ is not a valid type

attribute. The attribute is ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The attribute is ignored because it is not

a valid type attribute.

User Response: Remove the offending attribute.

CCN5082 The attribute ″%1$s″ is not a valid

variable attribute. The attribute is

ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The attribute is ignored because it does

not apply to variables.

User Response: Remove offending attribute.

CCN5083 An explicit template specialization

must not be an untagged class.

Explanation: An identifier is required for this

declaration.

User Response: Supply the identifier of the template

that is being explicitly specialized.

CCN5084 An explicit template instantiation must

not be an untagged class.

Explanation: An identifier is required for this

declaration.

User Response: Supply the identifier of the template

that is being explicitly instantiated.

CCN5085 The attribute ″%1$s″ is not a valid

function attribute. The attribute is

ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The attribute is ignored because it does

not apply to functions.

User Response: Remove offending attribute.

CCN5086 The declaration of the template

parameters is missing for template

″%1$s″.

Where: ″%1$s″ is the incorrect template declaration.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 97

||

|
|

|

Explanation: A template must have at least one

template parameter.

User Response: Correct the template parameters or

remove the invalid template declaration.

CCN5087 The arguments of the template qualifier

do not match those of ″%1$s″.

Where: ″%1$s″ is the matching template declaration.

Explanation: The types and order of template

arguments must match the original template.

User Response: Correct the arguments in the

template qualifier.

CCN5088 An enumeration must not be defined in

this context.

Explanation: An attempt is being made to define an

enumeration in a context where it is not valid to define

an enumeration.

User Response: Move the definition to an appropriate

context.

CCN5089 Too many template prefixes are

specified for the declaration of ″%1$s″.

Where: ″%1$s″ is the incorrect declaration.

Explanation: The number of template scopes must

match the template nesting level of the declaration.

User Response: Remove some of the template

scopes.

CCN5090 Not enough template prefixes are

specified for the declaration of ″%1$s″.

Where: ″%1$s″ is the incorrect declaration.

Explanation: The number of template scopes must

match the template nesting level of the declaration.

User Response: Add the correct number of template

scopes.

CCN5091 A function explicit instantiation must

specify only ″template

instantiation-name″.

Explanation: You cannot provide a definition or use

the pure virtual specification on a function explicit

instantiation.

User Response: Correct the function explicit

instantiation.

CCN5092 An explicit instantiation must

instantiate a template function

definition.

Explanation: There must be a function body to

instantiate.

User Response: Define the template function or

remove the explicit instantiation.

CCN5093 A partial specialization of a function is

not allowed.

Explanation: Only class templates can be partially

specialized.

User Response: Remove the function partial

specialization.

CCN5094 The template parameter must not be

qualified.

Explanation: A template parameter defines the

parameter to be a type in the scope of the template and

therefore cannot be qualified.

User Response: Remove all qualifiers.

CCN5095 The friend function declaration ″%1$s″

will cause an error when the enclosing

template class is instantiated with

arguments that declare a friend

function that does not match an

existing definition. The function

declares only one function because it

is not a template but the function type

depends on one or more template

parameters.

Where: ″%1$s″ is the non-template friend declaration

that depends on template parameters.

Explanation: This friend function makes use of one or

more of the enclosing template’s parameters. Therefore

different instantiations of the template will create

different friend functions. If a created friend function

does not exist, the program will not link.

User Response: Change the friend declaration to a

template function (by adding explicit template

arguments) or ensure that all instantiations will match

an existing function.

CCN5096 No primary class template ″%1$s″ is

found for a partial specialization.

Where: ″%1$s″ is the incorrect class template partial

specialization.

Explanation: A primary class template must exist for a

partial specialization.

User Response: Declare the primary template or

remove the partial specialization.

98 z/OS V1R7.0 XL C/C++ Messages

CCN5098 The partial specialization ″%1$s″ must

be declared in the same scope as the

primary template or in a namespace

scope that encloses the primary

template.

Where: ″%1$s″ is the incorrect class template partial

specialization.

Explanation: The primary template must be visible at

the point the partial specialization is made.

User Response: Move the partial specialization into a

correct scope.

CCN5099 The explicit specialization ″%1$s″ must

be made in the same scope as the

primary template.

Where: ″%1$s″ is the incorrect class template explicit

specialization.

Explanation: The primary template must be visible at

the point the explicit specialization is made.

User Response: Move the explicit specialization into a

correct scope.

CCN5100 The class qualifier ″%1$s″ contains a

circular reference back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the classes with

circular references.

Explanation: The two classes contain references to

each other that require each class to be defined before

the other.

User Response: Change one of the classes so that it

does not require the other class to be defined.

CCN5101 A typedef declaration must not contain

the specifier ″%1$s″.

Where: ″%1$s″ is the invalid specifier.

Explanation: A typedef defines another name to use

in place of the declared type. The indicated specifier is

not valid in this context.

User Response: Remove the specifier.

CCN5102 A declaration with a ″%1$s″ specifier

must contain a declarator ID.

Where: ″%1$s″ is the specifier in question.

Explanation: The type for the declaration contains a

specifier that requires an object to be declared.

User Response: Remove the specifier or declare an

object.

CCN5103 An anonymous union, struct or class

declared at namespace scope must be

declared static.

Explanation: Data members of an anonymous union,

struct, or class declared at namespace scope have

internal linkage so they must be declared static.

User Response: Add the static specifier to the union,

struct, or class.

CCN5104 The ″%1$s″ specifier must be applied

only to objects declared in a block or

to function parameters.

Where: ″%1$s″ is the specifier in question.

Explanation: The ″%1$s″ specifier has been used on

a declaration that is not in an appropriate scope.

User Response: Remove the specifier.

CCN5105 Functions declared within a block must

not be ″%1$s″.

Where: ″%1$s″ is the specifier in question.

Explanation: A function declared in a lexical block

scope cannot have the ″%1$s″ specifier.

User Response: Remove the specifier.

CCN5106 The ″static″ specifier must be applied

only to objects, functions, and

anonymous unions, structs and

classes.

Explanation: The ″static″ specifier has been applied

to an inappropriate object.

User Response: Remove the specifier.

CCN5107 The ″extern″ specifier must be applied

only to objects and functions.

Explanation: The ″extern″ specifier cannot be applied

to an out-of-line member variable or a type.

User Response: Remove the ″extern″ specifier.

CCN5108 Class members must not be declared

″extern″.

Explanation: The ″extern″ specifier cannot be applied

to an out-of-line member variable.

User Response: Remove the ″extern″ specifier.

CCN5109 The ″mutable″ specifier must be

applied only to non-reference class

data members.

Explanation: The ″mutable″ specifier is being applied

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 99

to a declaration that is not a member of a class or a

member that is a reference.

User Response: Remove the ″mutable″ specifier.

CCN5110 The ″inline″ specifier must be applied

only to function declarations.

Explanation: The ″inline″ specifier is being applied to

something other than a function.

User Response: Remove the ″inline″ specifier.

CCN5111 The ″explicit″ specifier must be applied

only to declarations of constructors

within a class declaration.

Explanation: The ″explicit″ specifier is being applied

to something other than a constructor that is being

declared in-line in the class.

User Response: Remove the ″explicit″ specifier.

CCN5112 The ″virtual″ specifier must be applied

only to declarations of non-static class

member functions within a class

declaration.

Explanation: An attempt is being made to apply the

″virtual″ specifier inappropriately.

User Response: Remove the ″virtual″ specifier from

member functions using classes that are not static, or

do not use it outside of a class.

CCN5113 The ″static″ specifier must be applied

only to class member declarations

within a class declaration.

Explanation: An attempt is being made to apply the

″static″ specifier inappropriately.

User Response: Remove the ″static″ specifier.

CCN5114 A parameter name must not be the

same as another parameter of this

function.

Explanation: All parameter names for a given function

must be unique.

User Response: Give the parameter a unique name.

CCN5115 A member variable must have the

″%1$s″ attribute to be initialized in the

definition of a class.

Where: ″%1$s″ is the missing specifier.

Explanation: Only constants that are also static may

be initialized in the definition of a class.

User Response: Remove the initializer or ensure that

the member is specified as both static and const.

CCN5116 A template declaration must declare a

function, a class, a static member of a

template class, or a template member

of a class.

Explanation: An attempt is being made to create an

invalid template.

User Response: Change the declaration so it is not a

template, or correct the template declaration.

CCN5117 Linkage specification must be at

namespace scope.

Explanation: Linkage specifications are only valid for

declarations at namespace scope.

User Response: Remove the linkage specification.

CCN5118 A class name is expected in the base

specifier.

Explanation: The name given in the base specifier is

not a class.

User Response: Remove the base specifier or

change it to refer to a class.

CCN5119 A friend template must not be declared

in a local class.

Explanation: A friend of a class defined in a lexical

block must not be a template.

User Response: Move the class to namespace scope

or remove the friend declaration.

CCN5120 The out-of-line member definition

″%1$s″ of an explicit specialization

should not use a template prefix.

Where: ″%1$s″ is the identifier of the out-of-line

member.

Explanation: Out-of-line members of explicit

specializations are defined in the same manner as

members of non-template classes.

User Response: Remove the template prefix.

CCN5121 A template cannot have ″C″ linkage.

Explanation: Any linkage other than C++ is defined by

implementation. The behavior with any linkage other

than C++ is implementation-defined.

User Response: Remove the ″C″ linkage.

CCN5122 The duplicate attribute ″%1$s″ is

ignored.

Where: ″%1$s″ is the duplicate attribute.

100 z/OS V1R7.0 XL C/C++ Messages

Explanation: The attribute ″%1$s″ has been specified

more than once.

User Response: Remove the extra attributes.

CCN5123 The operator symbol is not recognized.

Explanation: The operator symbol specified is not

valid.

User Response: Change the operator symbol to a

valid symbol.

CCN5124 The text ″typename″ is unexpected

because it cannot be used to modify a

base specifier.

Explanation: A name specified in a base specifier list

must be a type so typename is not required for template

dependent names in a base specifier list.

User Response: Remove the ″typename″ elaboration

from the name.

CCN5125 The duplicate specifier ″%1$s″ is

ignored.

Where: ″%1$s″ is the duplicate specifier.

Explanation: The specifier ″%1$s″ has been specified

more than once.

User Response: Remove the extra specifiers.

CCN5126 Taking the address of a label is not

supported.

Explanation: The gcc extension of taking the address

of a label is not supported.

User Response: Remove the ″&&″ from in front of the

identifier.

CCN5127 The text ″typename″ is unexpected

because it cannot be used to modify a

name in a constructor initializer list.

Explanation: A name specified in a constructor

initializer list must be a member or a base class so

typename is not required for template dependent names

in a constructor initializer list.

User Response: Remove the ″typename″ elaboration

from the name.

CCN5128 ″%1$s″ is an ambiguous qualifier.

Where: ″%1$s″ is the ambiguous qualifier.

Explanation: The qualifier ″%1$s″ is ambiguous since

there is more than one name to which it resolves.

User Response: Add extra qualification to remove the

ambiguity.

CCN5129 The qualifier ″%1$s″ is not defined in

the current scope.

Where: ″%1$s″ is the unknown qualifier.

Explanation: The name being used as a qualifier has

not been declared in a visible scope.

User Response: Change the qualifier to a name that

has been declared.

CCN5130 ″%1$s″ is not declared.

Where: ″%1$s″ is the unknown name.

Explanation: The name ″%1$s″ is not declared in any

visible scope.

User Response: Change the name to one that has

been declared.

CCN5131 Only one calling convention can be

specified here.

Explanation: More than one calling convention is

being specified.

User Response: Remove the extra calling

conventions.

CCN5132 The expression must be a constant

expression.

Explanation: A constant expression is expected but

the expression specified is not a constant expression.

User Response: Make the expression a constant

expression.

CCN5133 The attributes ″%1$s″ are not allowed.

Where: ″%1$s″ is the invalid attributes.

Explanation: The specifier or qualifier ″%1$s″ is

incorrect on this type of declaration.

User Response: Remove the invalid attributes.

CCN5134 A function return type must not be a

type definition. There may be a

missing ″;″ after a ″}″.

Explanation: An attempt has been made to define a

class in the return type of a function. This is usually

caused by a missing ″;″ after the class definition.

User Response: Change the return type or ensure

that a previous class definition has a ″;″ at the end of it.

CCN5135 The array bound cannot be zero.

Explanation: An array cannot be declared with zero

elements.

User Response: Change the array bound.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 101

CCN5136 A return type must not be specified for

a constructor.

Explanation: Constructors cannot have return types. A

member or member function that has the same name

as the class is considered a constructor, even if it is

ill-formed.

User Response: Remove the return type or rename

the member.

CCN5137 The attribute ″%1$s″ is not allowed for

a constructor.

Where: ″%1$s″ is the invalid attribute.

Explanation: A declaration of a constructor cannot

have the ″%1$s″ attribute.

User Response: Remove the attribute.

CCN5138 The undefined template ″%1$s″ must

not be explicitly instantiated.

Where: ″%1$s″ is the identifier of the undefined

template.

Explanation: An explicit instantiation requires a

definition.

User Response: Define the template or remove the

explicit instantiation.

CCN5139 In the context of the forward

declaration, the name ″%1$s″ must not

be qualified.

Where: ″%1$s″ is the qualified name.

Explanation: A qualified name cannot be used in a

forward declaration for a class.

User Response: Remove the qualifiers from the

name.

CCN5140 The text ″%1$s″ is unexpected. ″%2$s″

may be undeclared, ambiguous, or

may require ″typename″ qualification.

Where: ″%1$s″ is the symbol causing the syntax error.

″%2$s″ is the name that may be causing the error if it is

expected to be a type.

Explanation: There is a syntax error in the

declaration. A name may be expected to be a type that

is unknown or ambiguous, or the type specified may be

template-dependent and require typename qualification.

User Response: Remove the offending symbol,

ensure that the name used as a type name is actually a

type, or add typename qualification to the type.

CCN5141 The declaration ″%1$s″ must not

become a function because of a

template argument.

Where: ″%1$s″ is the declaration that is acquiring

function type.

Explanation: Only a declaration that uses the

syntactic form of a function can be a function.

User Response: Change the template argument, or

change the declaration.

CCN5142 cv-qualifiers must not be added to a

typedef of function type.

Explanation: The const and volatile qualifiers cannot

be specified on a type where a typedef that refers to a

function is used.

User Response: Remove the const or volatile

specifiers.

CCN5143 The qualifier ″%1$s″ is not a class.

Where: ″%1$s″ is the invalid qualifier.

Explanation: A typedef that does not refer to a class

is being used as a qualifier.

User Response: Change the qualifier to refer to a

class.

CCN5144 A non-local declaration is not allowed

in a function body.

Explanation: Only local declarations are allowed in a

function body.

User Response: Change the declaration to be a local

declaration, or move it to the correct scope.

CCN5145 The explicit instantiation ″%1$s″ of the

class template does not match the

primary template.

Where: ″%1$s″ is the explicit instantiation.

Explanation: If the primary template is a union, the

explicit instantiation must be a union as well. If the

primary template is a class, the explicit instantiation

must be a class.

User Response: Make sure that the class keys match.

CCN5147 Friend declarations are allowed only in

classes and structs.

Explanation: Friends allow access to protected and

private members. Because only classes and structs

have members, only classes and structs can have friend

declarations.

User Response: Remove the friend declaration.

102 z/OS V1R7.0 XL C/C++ Messages

CCN5148 A friend declaration must not be an

explicit specialization.

Explanation: An explicit specialization declaration

must not be a friend declaration.

User Response: Remove the friend or change it so it

is not an explicit specialization.

CCN5149 A template defined in an unnamed

namespace must not be exported.

Explanation: Exported namespace scope template

definitions must be in a named namespace.

User Response: Do not export the template, give the

namespace a name, or move the template to another

namespace scope.

CCN5150 A using declaration must not specify a

template-id.

Explanation: You cannot specify a template ID in a

using declaration.

User Response: Remove or change the using

declaration.

CCN5151 A friend function that is qualified must

not be defined.

Explanation: Only friend functions without qualification

can be defined in the friend declaration.

User Response: Define the friend function in a

different declaration.

CCN5152 A template dependent name that is a

type must be qualified with

″typename″.

Explanation: The keyword ″typename″ is used to

identify a name in a template as a type.

User Response: Add the keyword typename.

CCN5153 The attribute ″%1$s″ is ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The identified attribute is not supported

and it is ignored.

User Response: Remove the attribute specifier.

CCN5154 A class, struct, or union must not be

defined in a friend declaration.

Explanation: Only functions can be defined in friend

declarations.

User Response: Define the friend in another

declaration.

CCN5155 A template parameter must not be

used in an elaborated type specifier.

Explanation: If the identifier in an elaborated type

specifier resolves to a typedef or a template type

parameter, it is ill-formed.

User Response: Remove the construct.

CCN5156 ″%1$s″ keyword is not supported on

this platform. The keyword is ignored.

Where: ″%1$s″ is the ignored keyword.

Explanation: The keyword has no meaning for the

current platform and is ignored.

User Response: Remove the keyword for this

platform.

CCN5157 The text ″>″ is unexpected. It may be

that this token was intended as a

template argument list terminator but

the name is not known to be a

template.

Explanation: An unexpected ″>″ was seen. This

situation can arise when a template name is misspelled

and is thus interpreted as a variable name rather than a

template.

User Response: Check that previous template names

are correct.

CCN5158 The attribute ″%1$s″ is not supported

on the target platform. The attribute is

ignored.

Where: ″%1$s″ is the invalid attribute.

Explanation: The identified attribute specifier is not

supported on the target platform, and it is ignored.

User Response: Remove the attribute specifier.

CCN5159 A storage class cannot be specified on

a declaration directly contained in a

linkage specification.

Explanation: This declaration is contained within a

linkage specification and therefore cannot have a

storage class.

User Response: Remove the storage class.

CCN5160 ″__thread″ is not allowed on a class.

Explanation: The ″__thread″ specifier cannot be used

on a declaration for a class.

User Response: Remove the ″__thread″ specifier.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 103

CCN5161 ″%1$s″ is already specified.

Where: ″%1$s″ is the name that has been already

specified.

Explanation: The name has already been specified.

User Response: Remove the duplicate name.

CCN5162 ″__thread″ is not allowed on an

enumeration.

Explanation: The ″__thread″ specifier cannot be used

in a declaration for an enumeration.

User Response: Remove the ″__thread″ specifier.

CCN5163 The array bound must not be negative.

Explanation: An array cannot be declared with a

negative number of elements.

User Response: Change the array bound.

CCN5164 The operator ″%1$s″ is ambiguous.

Where: ″%1$s″ is the ambiguous operator.

Explanation: The specified operator is ambiguous

because it can resolve to more than one declaration.

User Response: Add more qualifiers to resolve the

ambiguity.

CCN5165 Only a positive integral constant which

is a power of 2 is allowed in the

__align specifier.

Explanation: The __align specifier must have a power

of two since these are the only boundaries that align

with memory.

User Response: Change the integral constant to be a

power of two.

CCN5166 The __align specifier can only be

applied to the definition of an

aggregate tag or the declaration of a

global or static variable.

Explanation: The __align specifier has been applied

to an inappropriate type of declaration.

User Response: Remove the __align specifier.

CCN5167 Only a positive integral constant which

is a power of 2 is allowed in the

aligned attribute specifier.

Explanation: The aligned attribute must have a power

of two since these are the only boundaries that align

with memory.

User Response: Change the integral constant to be a

power of two.

CCN5168 The specified alignment of ″%1$s″

exceeds the maximum supported value

of ″%2$s″. The attribute is ignored.

Where: ″%1$s″ is the specified alignment. ″%2$s″ is

the maximum supported value for alignment.

Explanation: An alignment value exceeded the

maximum supported value. The alignment will be

ignored.

User Response: Use an alignment less than or equal

to the maximum.

CCN5169 __align specifier and

__attribute__((aligned)) are both

specified. Only the last one will be

accepted.

Where: __align is a keyword __attribute__((aligned)) is

a keyword

Explanation: Only a one of __align specifier or

__attribute__((aligned)) will have an effect on alignment.

User Response: Specify only one of __align specifier

or __attribute__((aligned))

CCN5170 Attribute ″%1$s″ is not supported for

type specifications, and is ignored.

Where: ″%1$s″ is a type attribute name.

Explanation: The specified attribute is not supported

as a type attribute, and it is ignored.

User Response: Remove the type attribute.

CCN5171 The value given for ″%1$s″ attribute is

not a valid number. The attribute is

ignored.

Where: ″%1$s″ is an attribute name.

Explanation: The attribute is ignored because the

argument is not a valid number.

User Response: Change the argument to evaluate to

the required range.

CCN5172 Arguments to be formatted must follow

the format string argument.

Explanation: The attribute is ignored because an

incorrect argument value is specified.

User Response: Change the argument to evaluate to

the required range.

CCN5173 ″{″ is expected.

Explanation: An opening brace is expected for the

function or member list.

User Response: Add appropriate bracing.

104 z/OS V1R7.0 XL C/C++ Messages

CCN5174 Arguments to be formatted cannot be

specified for strftime formats.

Explanation: The attribute is ignored because an

incorrect argument value is specified.

User Response: Change the argument to evaluate to

the required range.

CCN5178 An enumeration must not contain both

a negative value and an unsigned

value greater than LONG_MAX.

Explanation: An enumeration cannot contain both

negative values and unsigned values greater than

LONG_MAX because they cannot both be represented

by the same type.

User Response: Remove the invalid enumerators.

CCN5179 The enumeration value is too large.

Explanation: The enumeration value cannot be

represented because it is too large for the underlying

type.

User Response: Remove the invalid enumeration

value.

CCN5183 The explicit instantiation ″%1$s″

should either be explictly qualified or

be declared in the namespace

containing the template.

Where: ″%1$s″ is the explicit instantiation.

Explanation: The primary template and an explicit

instantiation declaration must be in the same scope or

explicitly qualified.

User Response: Move the explicit instantiation

declaration to the correct scope or properly qualify it.

CCN5184 The ″{″ has no matching ″}″.

Explanation: There are not enough ″}″s in the source

so some construct is not complete.

User Response: Add the appropriate number of ″}″s.

CCN5185 The ″%1$s″ linkage specifier must only

be applied to a function or a pointer to

a function.

Where: ″%1$s″ is the linkage specifier from the user’s

source code.

Explanation: The ″%1$s″ linkage specifier is being

applied to something other than a function or pointer to

function.

User Response: Remove the linkage specifier.

CCN5186 A ″;″ or ″,″ is expected following the

initializer.

Explanation: An initializer was incomplete.

User Response: Add ″;″ after the initializer.

CCN5187 The ″(″ has no matching ″)″.

Explanation: There is an imbalance of left and right

parentheses.

User Response: Ensure that each left parenthesis has

a matching right parenthesis.

CCN5188 A ″)″ or ″,″ is expected following the

initializer.

Explanation: The initializer is not properly formed.

User Response: Add the appropriate ending token to

complete in the initializer.

CCN5189 Only static member variables of

templates can be instantiated.

Explanation: A non-static data member of a template

cannot be explicitly instantiated.

User Response: Remove the explicit instantiation, or

explicitly instantiate the class.

CCN5190 A ″{″ must follow a constructor

initializer.

Explanation: A body for the constructor must follow

the constructor initializer list.

User Response: Add a body for the constructor.

CCN5191 A handler must be a compound

statement.

Explanation: A catch handler must be a lexical block

enclosed by ″{″ and ″}″.

User Response: Add a well-formed catch handler.

CCN5192 A ″{″ must follow a base specifier list.

Explanation: Only class definitions can have a base

specifier list. All class definitions must include a member

list.

User Response: Add a member list to the class

definition.

CCN5193 A typedef name cannot be used in this

context.

Explanation: Only actual class names, and not

typedef names, can be used in elaborations.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 105

||
|
|
|

|

|
|
|

|
|

User Response: Replace the typedef name with the

class it represents.

CCN5194 The ″%1$s″ declaration must declare a

function.

Where: ″%1$s″ is the declaration from the user’s

source code.

Explanation: An operator or conversion function name

in a declaration can only be used in a function

declaration.

User Response: Change the name in the declaration.

CCN5195 The initializer has a syntax error.

Explanation: The initializer is not well-formed.

User Response: Correct the syntax error in the

initializer.

CCN5196 A friend declaration must not declare a

partial specialization.

Explanation: The partial specialization of a template

class cannot be declared in a friend declaration.

User Response: Remove the friend declaration or

change it from a partial specialization.

CCN5197 The ″asm″ keyword declaration is not

supported.

Explanation: Inserting inline assembler instructions

using the ″asm″ declaration is not supported. It is

ignored.

User Response: Remove the ″asm″ declaration.

CCN5198 The omitted keyword ″private″ is

assumed for base class ″%1$s″.

Where: ″%1$s″ is the name of the base class which is

assumed to be private.

Explanation: The access to the base class is not

specified and is assumed to be private.

User Response: Add either ″public,″ ″protected,″ or

″private″ to the base class specifier.

CCN5199 An explicit instantiation must specify

only a template class instantiation

name.

Explanation: An explicit instantiation cannot contain a

class definition. It must have a template argument list.

User Response: Correct or remove the explicit

instantiation.

CCN5200 The ″%1$s″ operator is not allowed

between ″%2$s″ and ″%3$s″.

Where: ″%1$s″ is the operator. ″%2$s″ and ″%3$s″

are the operands.

Explanation: The ″%1$s″ operator cannot be used

between the two specified expressions because the

operator is not defined for the types of the expression.

User Response: Change the operator or one or both

of the operands.

CCN5201 The ″%1$s″ operator is not allowed for

type ″%2$s″.

Where: ″%1$s″ is the operator. ″%2$s″ is the

operand.

Explanation: The ″%1$s″ operator cannot be used

with the specified expression because the operator is

not defined for the type of the expression.

User Response: Change the operator or the operand.

CCN5202 An expression of type ″%1$s″ is not

allowed on the left side of

″%2$s%3$s″.

Where: ″%2$s%3$s″ are the operands. ″%1$s″ is the

operator.

Explanation: The type of the expression on the left

side of the operator is not correct.

User Response: Change the left operand.

CCN5203 The member expression ″.%1$s″ or

″->%1$s″ must be used with the

function call operator ().

Where: where ″%1$s″ is the name of the member

function.

Explanation: The member expression refers to a

member function so it must be used with the function

call operator.

User Response: Add the function call operator with

the parameters required for the member function call.

CCN5204 An expression of type ″%1$s″ must not

be followed by the function call

operator ().

Where: where ″%1$s″ is the type of the name

referenced with the function call operator ().

Explanation: Only functions can be followed by a

function call operator ().

User Response: Remove the function call operator ().

106 z/OS V1R7.0 XL C/C++ Messages

CCN5205 An expression of type ″%1$s″ is not

allowed where an rvalue is expected.

Where: ″%1$s″ is the type of the expression.

Explanation: The expression cannot be used in this

situation since it has void type.

User Response: Change the expression.

CCN5206 An rvalue of type ″%1$s″ cannot be

converted to an rvalue of type bool.

Where: ″%1$s″ is the type of expression.

Explanation: There is no valid conversion sequence

for converting the expression to an expression of type

bool.

User Response: Change the expression or provide a

conversion sequence.

CCN5207 No common type found for operands

with type ″%1$s″ and ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the types of the

operands.

Explanation: There is no standard conversion

sequence between the two types.

User Response: Define a conversion sequence

between the two types.

CCN5208 The operand for ″%1$s″ is of type

″%2$s″ but a pointer-to-member type is

required.

Where: ″%1$s″ is the operator. ″%2$s″ is the

unexpected type.

Explanation: The operator is expecting a

pointer-to-member as an operand but the operand is of

type ″%2$s″.

User Response: Change the operand to be a

pointer-to-member.

CCN5209 The result of this pointer-to-member

operator must be the operand of the

function call operator ().

Explanation: This expression is expected to be a

function call.

User Response: Change the expression to be a

function call.

CCN5210 ″%1$s″ is not a base class of ″%2$s″.

Where: ″%1$s″ is the problematic class. ″%2$s″ is the

expected derived class.

Explanation: The class specified is not a base class,

so the devirtualization or destructor name is not valid.

User Response: Change the name to refer to a base

class.

CCN5211 The array operator must have one

operand that is a pointer to a complete

type and an operand that is of integral

type.

Explanation: Either the variable is not an array or

pointer or the index is not an integral type.

User Response: Change the variable to be an array

or pointer or the index to be an integer.

CCN5212 The operand of the ″%1$s″ operator

must be an lvalue.

Where: ″%1$s″ is the operator.

Explanation: The operator expects an object as its

operand.

User Response: Change the operand to be an object.

CCN5213 The local label ″%1$s″ is not defined.

Where: ″%1$s″ is the label that is not defined.

Explanation: The label is declared but it is not

defined.

User Response: Create the label statement.

CCN5214 The conditional expression of a switch

statement must be of integral or

enumeration type.

Explanation: Integral types are all sizes of int and

char as well as enumerations. A switch statement

condition must have an integral type or something that

can be converted to an integral type.

User Response: Modify the switch condition or use an

if statement instead of a switch.

CCN5215 The wrong number of arguments have

been specified for ″%1$s″.

Where: Where ″%1$s″ is the name of the function

being called.

Explanation: When a function is called, the arguments

are matched against the actual parameters in the

function declaration. There must be the same number of

arguments in the call as there are parameters in the

declaration unless there are default arguments

specified.

User Response: Verify the function declaration and

provide the correct number of arguments in your call.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 107

CCN5216 An expression of type ″%1$s″ cannot

be converted to type ″%2$s″.

Where: ″%1$s″ is the type being converted from.

″%2$s″ is the type being converted to.

Explanation: To convert between types, the compiler

uses a set of specific rules defined in the C++

language. In this case the compiler was unable to

convert between the specified types.

User Response: Modify the expression so that the

conversion can be made, or define a conversion

function to do the conversion.

CCN5217 ″%1$s″ is not a member of ″%2$s″.

Where: ″%1$s″ is the name of the member you are

attempting to access. ″%2$s″ is the name of the class.

Explanation: When using the . or -> operators to

access a class member, the name after the operator

must be a member of the class.

User Response: Verify with the class declaration to

see that you are accessing a member.

CCN5218 The call does not match any parameter

list for ″%1$s″.

Where: ″%1$s″ is the name of the function.

Explanation: The compiler will attempt to match the

arguments in your function call against all functions

defined with the name you are calling. It cannot match

the number and types or arguments in your call with

one of the declarations for the function.

User Response: Check the declaration of the function

you want to call and modify your arguments so that they

match.

CCN5219 The call to ″%1$s″ has no best match.

Where: ″%1$s″ is the name of the function being

called.

Explanation: When a function is called, the compiler

will check all the function declarations it has for the

name you are calling. In this case, the compiler was

unable to determine which one to call because there is

not a single version that is a best match. The criteria for

a best match is based on the types of the parameters

and the conversions required to match them with the

arguments in your call.

User Response: Check the declarations for functions

with that name and modify your arguments so that the

correct one can be matched.

CCN5220 The address of a bit field cannot be

taken.

Explanation: C++ language standards indicate that

the & operator cannot be applied to bit fields.

User Response: Change the bit field to an array or

remove the line which attempts to take the address of

the bit field.

CCN5221 The case expression must be an

integral constant expression.

Explanation: Integral types are all sizes of int and

char as well as enumerations. A case expression must

be an integral constant expression which is an

expression which results in an integral type.

User Response: Modify the expression so that it is an

integral constant expression, or change the switch

statement to an if statement.

CCN5222 The function must not have a return

value.

Explanation: The function was declared with a return

type of void, so it cannot have a return value specified.

User Response: Remove the return value, or modify

the function declaration to return the required type.

CCN5223 A return value of type ″%1$s″ is

expected.

Where: ″%1$s″ is the type of the expected return

value.

Explanation: The function was declared with a

specific return type, so it should return a value of that

type.

User Response: Modify the return type to match the

declaration, or modify the declaration.

CCN5224 The type name ″%1$s″ is used where a

variable or function name is expected.

Where: ″%1$s″ is the type name.

Explanation: The expression was expected to be an

object or function name but a type name was found.

User Response: Replace the type with an object or

function name.

CCN5225 The initializer list has too many

initializers.

Explanation: An initializer list should not have more

initializers than the number of elements to initialize.

User Response: Remove some initializers or increase

the number of elements to initialize.

108 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |
 |
 |

CCN5226 The initializer must not be enclosed in

braces.

Explanation: Only initializers for classes and arrays

can have braces ″{″ and ″}″.

User Response: Remove the braces.

CCN5227 ″%1$s″ cannot be initialized with an

initializer list.

Where: ″%1$s″ is the type that cannot be initialized

with an initializer list.

Explanation: The specified type cannot be initialized

with an initializer list in braces ″{″ and ″}″.

User Response: Verify that the type is one that may

be used with an initializer list. References cannot be

initialized with an initializer list.

CCN5228 A ″&″ must precede the qualified

member ″%1$s″ to form an expression

with type pointer-to-member.

Where: ″%1$s″ is the member.

Explanation: A non-static member of a class was

referred to with a qualified name, but no object is

specified.

User Response: Refer to an object.

CCN5229 The best viable function ″%1$s″ uses

an ambiguous conversion sequence.

Where: ″%1$s″ is the overloaded function.

Explanation: The overloaded function that has the

closest match requires a conversion where one of the

steps has more than one valid choice.

User Response: Provide a closer matching overload

for the function being called.

CCN5230 The overloaded function name is not

used in a valid context.

Explanation: It is not valid to use an overloaded

function here.

User Response: Use a non-overloaded function.

CCN5231 The array bound must be specified and

must be a positive integral constant

expression.

Explanation: Only the first array bound in a series of

array bounds can be omitted when declaring a

multi-dimensional array.

User Response: Add the missing array bounds.

CCN5232 The implicit constructor for ″%1$s″

initializes a const member.

Where: ″%1$s″ is the class.

Explanation: The class contains a const member

which must be initialized so a constructor must be

provided.

User Response: Provide a constructor.

CCN5233 The implicit constructor for ″%1$s″

initializes a reference member.

Where: ″%1$s″ is the class.

Explanation: The class contains a reference member

which must be initialized so a constructor must be

provided.

User Response: Provide a constructor.

CCN5234 The implicit constructor for ″%1$s″

initializes a member of class type with

an ill-formed constructor.

Where: ″%1$s″ is the class.

Explanation: The class contains a member of class

type which does not have a default constructor so a

constructor must be provided.

User Response: Provide a constructor.

CCN5235 The implicit constructor for ″%1$s″

initializes a base class with an

ill-formed constructor.

Where: ″%1$s″ is the class.

Explanation: The class has a base class which does

not have a default constructor so a constructor must be

provided.

User Response: Provide a constructor.

CCN5236 The constructor initializer is

unexpected. All bases and members

have been initialized.

Explanation: The constructor initializer list has more

elements being initialized than exist in the class. Either

objects are initialized more than once or non-members

are in the initializer list.

User Response: Remove the extra initializers from the

constructor initializer list.

CCN5237 ″%1$s″ designates both a direct

non-virtual base class and an inherited

virtual base class.

Where: ″%1$s″ is the ambiguous base class name.

Explanation: The class is ambiguous because it refers

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 109

to both a virtual base class and a non-virtual base

class.

User Response: Add qualifiers to make the name

unambiguous.

CCN5238 The data member ″%1$s″ cannot be

initialized because there is no

corresponding default constructor.

Where: ″%1$s″ is the class member.

Explanation: The data member was not in the

constructor initializer list, but the type does not have a

default constructor so the type cannot be constructed.

User Response: Add the member to the constructor

initializer list.

CCN5239 The base class ″%1$s″ cannot be

initialized because it does not have a

default constructor.

Where: ″%1$s″ is the base class.

Explanation: The base class was not in the

constructor initializer list. The type does not have a

default constructor so the base class cannot be

constructed.

User Response: Add the base class to the constructor

initializer list.

CCN5240 A duplicate case value is not allowed.

Explanation: The switch statement cannot choose a

single case if there are duplicate case values.

User Response: Remove or modify the duplicate case

value.

CCN5241 A ″%1$s″ statement is not allowed in

this scope.

Where: ″%1$s″ is the type of statement.

Explanation: It is not valid to have this type of

statement in this scope.

User Response: Remove the statement.

CCN5242 ″goto %1$s″ bypasses the initialization

of ″%2$s″.

Where: ″%1$s″ is the label. ″%2$s″ is the missed

variable.

Explanation: The goto statement skips over the

initialization of an automatic variable.

User Response: Move the label before the variable

declaration.

CCN5243 Label ″%1$s″ is already defined.

Where: ″%1$s″ is the duplicate label.

Explanation: A label can only refer to one location in

a function.

User Response: Rename the label.

CCN5244 Label ″%1$s″ is not declared in this

function.

Where: ″%1$s″ is the missing label.

Explanation: Labels are only visible within the function

in which they exist; either the label is not defined or it is

in a different function than the goto.

User Response: Add the label to the function.

CCN5245 The switch statement already has a

″default″ statement.

Explanation: A switch statement may contain only one

default statement.

User Response: Remove the extra default statement.

CCN5246 The ″%1$s″ statement bypasses the

initialization of ″%2$s″.

Where: ″%1$s″ is the case or default statement.

″%2$s″ is the bypassed variable.

Explanation: A case in the switch statement contains

automatic variables that are not contained within a

compound statement.

User Response: Add a pair of braces {} to enclose

the code containing the automatic variable.

CCN5248 ″%1$s″ is not a class name.

Where: ″%1$s″ is the name.

Explanation: The name was expected to be a class

name but it is not.

User Response: Change the name to be a class

name.

CCN5249 Default arguments are not available

due to other errors.

Explanation: This error is a cascade error. The default

initializers cannot be used because of other errors.

User Response: Fix the errors in the default

initializers.

110 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |
 |
 |

 |
 |

CCN5250 The keyword ″this″ is only allowed in a

non-static class member function body

or in a constructor member initializer.

Explanation: The ″this″ keyword has been used in the

wrong context.

User Response: Remove the ″this″ keyword.

CCN5251 The ″%1$s″ operator cannot be applied

to the undefined class ″%2$s″.

Where: ″%1$s″ is the operator. ″%2$s″ is the

undefined class.

Explanation: The use of the ″%1$s″ operator requires

that the class that is being used as the operand be

defined and not just declared.

User Response: Define the class.

CCN5252 ″%1$s″ contains a circular reference

back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the classes with

circular references.

Explanation: The two classes contain references to

each other that require each class to be defined before

the other.

User Response: Change one of the classes so that it

does not require the other class to be defined.

CCN5253 This use of undefined class ″%1$s″ is

not valid.

Where: ″%1$s″ is the class.

Explanation: The usage requires that the class be

defined and not just declared.

User Response: Define the class.

CCN5254 The non-static member ″%1$s″ must

be associated with an object or a

pointer to an object.

Where: ″%1$s″ is the member.

Explanation: A member of a class has been referred

to without an object but it is not a static member.

User Response: Specify an object.

CCN5255 The implicit member function ″%1$s″

cannot be defined.

Where: ″%1$s″ is the member function that cannot be

defined.

Explanation: This is a cascading error. The implicit

member function cannot be defined due to other errors

in the class.

User Response: Fix the errors in the class.

CCN5256 A parameter of type ″%2$s″ cannot be

initialized with an expression of type

″%1$s″.

Where: ″%2$s″ is the parameter type. ″%1$s″ is the

initialization expression type.

Explanation: The type of the argument for the function

does not match the type of the parameter.

User Response: Change the type of the parameter to

match the expected type.

CCN5257 An object or reference of type ″%2$s″

cannot be initialized with an

expression of type ″%1$s″.

Where: ″%2$s″ is the object or reference type. ″%1$s″

is the initialization expression type.

Explanation: The type of the expression is not correct

for initializing the object or reference.

User Response: Change the type of the initializer.

CCN5258 A return value of type ″%2$s″ cannot

be initialized with an expression of

type ″%1$s″.

Where: ″%2$s″ is the return value type. ″%1$s″ is the

initialization expression type.

Explanation: The type of the expression in the return

statement does not match the return type of the

function.

User Response: Change the type of the expression to

the return type of the function.

CCN5259 The name lookups of ″%1$s″ do not

yield the same type in the context of

the expression and in the context of

the class of the object expression.

Where: ″%1$s″ is the name being looked up.

Explanation: When a qualified name is specified in a

member access, it is looked up in the context specified

on the left side of the ″.″ or ″->″ and in the context of

the entire expression. It must resolve in only one of

these lookups or it must resolve to the same declaration

in both lookups.

User Response: Change the name.

CCN5260 A goto must not enter a try block or

handler.

Explanation: A goto has been specified to a label that

is in a try block or catch handler that does not also

contain the goto statement.

User Response: Change the label.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 111

CCN5261 The header <typeinfo> must be

included before using the typeid

operator.

Explanation: The use of the typeid operator requires

that the standard header <typeinfo> be included using a

#include directive before it is used.

User Response: Include the <typeinfo> header.

CCN5262 The first argument to the ″offsetof″

macro must be a class type.

Explanation: The ″offsetof″ macro can only be used

with class types.

User Response: Change the first argument to be a

class type.

CCN5263 The non-const member function

″%1$s″ is called for ″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the object.

Explanation: Only const member functions can be

called with a const object.

User Response: Change the member function to be

const or change the object to be non-const.

CCN5264 The non-volatile member function

″%1$s″ is called for ″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the object.

Explanation: Only volatile member functions can be

called with a volatile object.

User Response: Change the member function to be

volatile or change the object to be non-volatile.

CCN5265 A pointer to non-const member

function type ″%1$s″ is called for

″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the type.

Explanation: Only const member functions can be

called with a const pointer-to-member.

User Response: Change the member function to be

const or change the pointer-to-member to be const.

CCN5266 A pointer to non-volatile member

function type ″%1$s″ is called for

″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the type.

Explanation: Only volatile member functions can be

called with a volatile pointer-to-member.

User Response: Change the member function to be

volatile or change the pointer-to-member to be volatile.

CCN5267 The second operand to the ″offsetof″

macro is not valid.

Explanation: The second operand of the ″offsetof″

macro is expected to be a member.

User Response: Change the second operand to be a

member.

CCN5268 ″%1$s″ has more than one default

constructor.

Where: ″%1$s″ is the class.

Explanation: A class can only have one default

constructor. A constructor with default initializers for all

but the first parameter is considered a default

constructor if all of the defaults are used.

User Response: Remove one of the default initializers

or specify more arguments when calling the constructor.

CCN5269 ″%1$s″ has no default constructor.

Where: ″%1$s″ is the class.

Explanation: The class has no default constructor and

one cannot be generated since the class contains

objects that do not have default constructors.

User Response: Specify a default constructor.

CCN5270 An object of type ″%2$s″ cannot be

constructed from an lvalue of type

″%1$s″.

Where: ″%2$s″ and ″%1$s″ are the types of the target

and the expression.

Explanation: There is no constructor for the object

that can be used for constructing the object.

User Response: Add an appropriate constructor or

change the type.

CCN5271 ″%1$s″ is an ambiguous base class of

″%2$s″.

Where: ″%1$s″ is the base. ″%2$s″ is the class.

Explanation: The base class is ambiguous because

the class has more than one base class with the same

name.

User Response: Add qualifiers to uniquely specify the

base class.

CCN5272 An array allocated by ″new″ cannot

have an initializer.

Explanation: An initializer cannot be specified for an

array that is allocated using new.

User Response: Remove the initializer.

112 z/OS V1R7.0 XL C/C++ Messages

CCN5273 The array bound must have a positive

value.

Explanation: An array cannot be declared with a

negative number of elements.

User Response: Change the array bound.

CCN5274 The name lookup for ″%1$s″ did not

find a declaration.

Where: ″%1$s″ is the unresolved name.

Explanation: The name is not declared within this or

an enclosing scope.

User Response: Declare the variable or change the

name to a name in this or an enclosing scope.

CCN5275 The array boundary must have integral

type or enumeration type.

Explanation: Only integral types can be used to

specify an array bound.

User Response: Change the array bound to be an

integral type.

CCN5276 The local variable ″%1$s″ cannot be

used in this context.

Where: ″%1$s″ is the local variable.

Explanation: A local variable cannot be used to

specify default initializers for a function.

User Response: Remove the default initializers.

CCN5277 The local variable ″%1$s″ from

function ″%2$s″ cannot be used in

function ″%3$s″.

Where: ″%1$s″ is the variable. ″%2$s″ is the

enclosing function. ″%3$s″ is the current function.

Explanation: A local variable from an enclosing

function cannot be used in this context.

User Response: Remove the variable usage.

CCN5278 The reference variable ″%1$s″ must be

initialized.

Where: ″%1$s″ is the reference variable.

Explanation: All reference variables must be initialized

but no initializer is specified.

User Response: Specify an initializer.

CCN5279 The class member ″%1$s″ of type

″%2$s″ must be initialized in the

initializer list of the constructor.

Where: ″%1$s″ is the member. ″%2$s″ is the class

type.

Explanation: The member must be initialized in the

constructor initializer list.

User Response: Add an initializer to the constructor

initializer list.

CCN5280 The initializer is too long.

Explanation: The initializer for the array has too many

initializers.

User Response: Remove the extra initializers.

CCN5281 An expression of type ″%1$s″ cannot

be modified.

Where: ″%1$s″ is the type that cannot be modified.

Explanation: The expression on the left side of the

assignment or reference parameter cannot be modified.

User Response: Substitute an object that can be

modified.

CCN5282 The const variable ″%1$s″ is

uninitialized.

Where: ″%1$s″ is the const variable.

Explanation: All const variables must be initialized.

User Response: Initialize the variable.

CCN5283 ″%1$s″ is not a valid type for a

function-style cast.

Where: ″%1$s″ is the type that is attempting to be

cast to.

Explanation: Only simple type specifiers (built-in types

and named types) can be used in a function-style cast.

User Response: Change the type of the cast.

CCN5284 The bit field ″%1$s″ cannot be bound

to a non-const reference.

Where: ″%1$s″ is the bit field.

Explanation: A bit field can only be bound to a

non-volatile const reference.

User Response: Change the reference type.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 113

||
|

|

|
|

|
|

 | |
 |

 |

 |
 |

 |

CCN5285 The expression calls the undefined

pure virtual function ″%1$s″.

Where: ″%1$s″ is the function.

Explanation: Undefined pure virtual functions cannot

be directly called.

User Response: Change the function being called.

CCN5286 The unqualified member ″%1$s″ should

be qualified with ″%2$s::″ and

preceded by an ″&″ when forming an

expression with type

pointer-to-member.

Where: ″%1$s″ is the member. ″%2$s″ are the

qualifiers.

Explanation: A non-static member must be associated

with an object.

User Response: Add the qualifiers and address

operator.

CCN5287 ″offsetof″ must not be applied to

″%1$s″. It is not a POD (plain old data)

type.

Where: ″%1$s″ is the type.

Explanation: ″offsetof″ cannot be applied to a class

that is not a POD. POD types do not have non-static

pointers-to-member, non-POD members, destructors, or

copy assignment operators (that is, they are similar to

C-style structs).

User Response: Change the type to be a POD type.

CCN5288 The function template parameter of

type ″%2$s″ cannot be initialized with

an argument of type ″%1$s″.

Where: ″%2$s″ is the function template parameter

type. ″%1$s″ erroneous argument specified.

Explanation: The type of the argument is not

appropriate for the type expected.

User Response: Change the type of the argument.

CCN5289 The function template parameter

″%1$s″ has been found to have two

types: type ″%2$s″ and type ″%3$s″.

Where: ″%1$s″ is the template parameter. ″%2$s″ and

″%3$s″ are the two conflicting deduced types.

Explanation: Template argument deduction has

arrived at two equally likely types for the same template

type parameter.

User Response: Explicitly specify the template

arguments.

CCN5290 The function template parameter

″%1$s″ has been found to have two

values: ″%2$s″ and ″%3$s″.

Where: ″%1$s″ is the template parameter. ″%2$s″ and

″%3$s″ are the two conflicting deduced values.

Explanation: Template argument deduction has

arrived at two equally likely values for the same

non-type template parameter.

User Response: Explicitly specify the template

arguments.

CCN5291 The template argument for ″%1$s″

cannot be found.

Where: ″%1$s″ is the template parameter.

Explanation: Template argument deduction has failed.

Either nothing matched or there was an ambiguity.

User Response: Explicitly specify the template

argument, or change the template.

CCN5292 Jumping to a %1$s statement must not

enter a try block or handler.

Where: ″%1$s″ is the label.

Explanation: A case or default statement has been

specified in a try block or catch handler that does not

also contain the enclosing switch statement.

User Response: Change the location of case or

default statement.

CCN5293 The argument to va_start must be a

parameter name.

Explanation: A non-parameter has been specified to

va_start.

User Response: Change the argument to a parameter

name.

CCN5294 An object or reference of type ″%2$s″

cannot be initialized with an rvalue of

type ″%1$s″.

Where: ″%2$s″ is the type of the object. ″%1$s″ is the

type of the rvalue.

Explanation: This object or reference must be

initialized with an object.

User Response: Change the type of the object or

reference.

CCN5295 A parameter of type ″%2$s″ cannot be

initialized with an rvalue of type

″%1$s″.

Where: ″%2$s″ is the type of the parameter. ″%1$s″ is

the type of the rvalue.

114 z/OS V1R7.0 XL C/C++ Messages

Explanation: This parameter must be initialized with

an object.

User Response: Change the type of the parameter.

CCN5296 A return value of type ″%2$s″ cannot

be initialized with an rvalue of type

″%1$s″.

Where: ″%2$s″ is the return type. ″%1$s″ is the type

of the rvalue.

Explanation: The return value must be initialized with

an object.

User Response: Change the return type.

CCN5297 The call to ″%1$s″ resolves to a

function for which multiple default

arguments for a given parameter have

been specified.

Where: ″%1$s″ is the function call. ″%2$s″ is the

declaration of the best match function.

Explanation: Function overload resolution has failed.

The best match function has been declared in different

namespaces with conflicting default arguments.

User Response: Two declarations of ″%2$s″ in

different namespaces have specified default arguments

for a given parameter. Only one such declaration may

be visible at a point of call utilizing default arguments.

CCN5298 Template argument deduction cannot

be performed using the function

″%1$s″.

Where: ″%1$s″ is the name of the function.

Explanation: Argument deduction can only be

performed with a function if the set of overloaded

functions does not contain a template function.

User Response: Explicitly specify the template

argument or change the template.

CCN5299 The ″%1$s″ operator cannot be applied

to a pointer to incomplete type:

″%2$s″.

Where: ″%1$s″ is the operator. ″%2$s″ is the

incomplete type.

Explanation: The ″%1$s″ operator requires that the

type of its operand be defined and not just declared.

User Response: Define the type of the operand.

CCN5300 The ″private″ member ″%1$s″ cannot

be accessed.

Where: ″%1$s″ is the member.

Explanation: The member is declared in a private

section of the class and cannot be accessed.

User Response: Change the access of the member.

CCN5301 The ″protected″ member ″%1$s″

cannot be accessed.

Where: ″%1$s″ is the member.

Explanation: The member is declared in a protected

section of the class and cannot be accessed.

User Response: Change the access of the member or

remove the reference.

CCN5302 ″%1$s″ is a ″private″ base class of

″%2$s″.

Where: ″%1$s″ is the base class. ″%2$s″ is the

derived class.

Explanation: The base class is private and cannot be

accessed.

User Response: Change the access of the base

class.

CCN5303 ″%1$s″ is a ″protected″ base class of

″%2$s″.

Where: ″%1$s″ is the base class. ″%2$s″ is the

derived class.

Explanation: The base class is protected and cannot

be accessed.

User Response: Change the access of the base

class.

CCN5304 The ″private″ copy constructor ″%1$s″

cannot be accessed to create a

temporary object.

Where: ″%1$s″ is the copy constructor.

Explanation: The creation of a temporary object

requires access to the copy constructor, but the copy

constructor is private.

User Response: Change the access of the copy

constructor.

CCN5305 The ″protected″ copy constructor

″%1$s″ cannot be accessed to create a

temporary object.

Where: ″%1$s″ is the copy constructor.

Explanation: The creation of a temporary object

requires access to the copy constructor, but the copy

constructor is protected.

User Response: Change the access of the copy

constructor.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 115

CCN5306 The ″private″ copy constructor ″%1$s″

cannot be accessed.

Where: ″%1$s″ is the copy constructor.

Explanation: Access to the copy constructor is

required but the copy constructor is private.

User Response: Change the access of the copy

constructor.

CCN5307 The ″protected″ copy constructor

″%1$s″ cannot be accessed.

Where: ″%1$s″ is the copy constructor.

Explanation: Access to the copy constructor is

required but the copy constructor is protected.

User Response: Change the access of the copy

constructor.

CCN5308 The semantics specify that a

temporary object must be constructed.

Explanation: Informational message indicating that the

semantics of the language require a temporary object to

be constructed.

User Response: See the primary message.

CCN5309 The temporary is not constructed, but

the copy constructor must be

accessible.

Explanation: Informational message that the

temporary is not constructed as an optimization but the

language semantics require that the copy constructor be

accessible.

User Response: See the primary message.

CCN5310 The assignment-style initialization of

an object of type ″%1$s″ with an

expression of type ″%2$s″ requires

access to the copy constructor.

Where: ″%1$s″ is the type of the object. ″%2$s″ is the

type of the expression.

Explanation: An assignment-style initialization

requires access to the copy constructor, but the

parentheses-style initialization does not.

User Response: Make the assignment operator a

friend of the class or use parenthesis-style initialization.

CCN5311 Access to the copy constructor is not

required if parentheses-style

initialization is used.

Explanation: An assignment-style initialization

requires access to the copy constructor, but the

parentheses-style initialization does not.

User Response: Make the assignment operator a

friend of the class or use parenthesis-style initialization.

CCN5312 ″%1$s″ is a ″private″ base class of

″%2$s″. Injected-class-name ″%1$s″ is

inaccessible.

Where: ″%1$s″ is the base class. ″%2$s″ is the

derived class.

Explanation: The base class is private and cannot be

accessed.

User Response: Change the access of the base

class.

CCN5400 ″%1$s″ has a conflicting declaration.

Where: ″%1$s″ is the name which has a conflicting

declaration

Explanation: The specified name has already been

given a different declaration.

User Response: Change the name for this

declaration, or use the existing declaration.

CCN5401 The member ″%1$s″ is already

declared.

Where: ″%1$s″ is the name of the member.

Explanation: The member name has already been

used in this class. The compiler cannot tell the

difference between two members with the same name

unless they are both member functions with different

parameters.

User Response: Change the name of the member, or

use the existing declaration. If the member name is a

member function, modify the parameters to overload the

function.

CCN5402 The non-static member ″%1$s″ must

not be defined outside of the class

definition.

Where: ″%1$s″ is the member.

Explanation: Only static members can have a

definition outside of the class definition. Non-static

members only exist when a object is created from the

class.

User Response: Move the definition of the member

inside the class constructor or make the member static.

CCN5403 ″%1$s″ is already defined.

Where: ″%1$s″ is the name which has already been

defined.

Explanation: The specified name has already been

defined in another location.

116 z/OS V1R7.0 XL C/C++ Messages

 | |
 |
 |

 |
 |

 |
 |

 |
 |

User Response: Remove one of the definitions for

this name, or use another name.

CCN5404 The out-of-line member function

declaration for ″%1$s″ must have a

body.

Where: ″%1$s″ is the name of the member function.

Explanation: A member function must be declared

inside its class and may be defined either inside its

class or outside its class. It may not be redeclared

outside its class.

User Response: Add the definition for the body of this

function.

CCN5405 The default arguments for ″%1$s″ must

not be redefined.

Where: ″%1$s″ is the name of the function.

Explanation: If there is more than one declaration for

the specified function, the default arguments should be

given the same values in both.

User Response: Remove the duplicate declaration, or

change the default arguments so that they match.

CCN5406 The namespace alias ″%1$s″ is already

defined.

Where: ″%1$s″ is the namespace alias.

Explanation: A namespace alias in a declarative

region can only be redefined to denote the same

namespace.

User Response: Remove or change the namespace

alias.

CCN5407 The base class ″%1$s″ contains a

circular reference back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the names of the

conflicting classes.

Explanation: A reference in the base class requires

that the derived class be complete. There is no way to

complete both classes.

User Response: Change one of the classes to

remove the circularity.

CCN5408 The base class ″%1$s″ is declared but

not defined.

Where: ″%1$s″ is the name of the base class.

Explanation: A base class must be a complete class.

User Response: Define the base class before it is

used in a base specifier list.

CCN5409 ″%1$s″ must not be used more than

once in the list of base classes.

Where: ″%1$s″ is the name of the duplicate base

class.

Explanation: Listing the same class twice or more in a

base specifier list is not allowed.

User Response: Remove the duplicate base class.

CCN5410 The direct base ″%1$s″ of class ″%2$s″

is ignored because ″%1$s″ is also an

indirect base of ″%2$s″.

Where: ″%1$s″ is the name of the base class. ″%2$s″

is the name of the derived class.

Explanation: The base class has been specified

directly as well as indirectly.

User Response: None needed, but the redundant

base class can be removed.

CCN5411 The default arguments for ″%1$s″ are

in error.

Where: ″%1$s″ is the template parameter declaration.

Explanation: A default template argument cannot refer

to the template parameter.

User Response: Correct the default arguments.

CCN5412 The union ″%1$s″ cannot be used as a

base class.

Where: ″%1$s″ is the name of the union.

Explanation: A union must not have, or be used as a

base class.

User Response: Remove the union base specifier or

change it to a class.

CCN5413 ″%1$s″ is already declared with a

different access.

Where: ″%1$s″ is the name of the member.

Explanation: A member declaration must have only

one access.

User Response: Remove the offending declaration or

declare it with the same access.

CCN5414 ″%1$s″ is declared differently in the

body of function ″%2$s″.

Where: ″%1$s″ is the duplicate local declaration.

″%2$s″ is the function containing it.

Explanation: The specified local name has already

been given a different declaration.

User Response: Change the name for this

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 117

declaration, or remove the conflicting duplicate

declaration.

CCN5415 ″%1$s″ is already declared with default

template arguments.

Where: ″%1$s″ is the name of the template

parameter.

Explanation: A template parameter may not be given

default arguments in two different declarations.

User Response: Remove the default argument on one

of the declarations.

CCN5416 ″%1$s″ cannot be declared because its

name has already been used.

Where: ″%1$s″ is the member name.

Explanation: A member can only be declared once in

a class.

User Response: Change or remove one of the uses.

CCN5417 The qualified id-declarator ″%1$s″

cannot refer to a name introduced by a

using declaration.

Where: ″%1$s″ is the qualified ID.

Explanation: The qualified ID collides with a name in

a using declaration.

User Response: Change the declaration or remove

the using declaration.

CCN5418 The definition of ″%1$s″ cannot

contain an initializer because the

initializer was specified in the class

definition.

Where: ″%1$s″ is the data member.

Explanation: The out-of-line definition of a static data

member can only have an initializer when there is no

initializer on the declaration in the class.

User Response: Remove one of the initializers.

CCN5419 An exception-specification must be

specified as ″%1$s″ to match the

implicit declaration.

Where: ″%1$s″ is the exception specification.

Explanation: All declarations of a function including

definitions and explicit specializations must have either

no exception specification or the same set of types

listed in their exception specifications.

User Response: Correct the exception specification.

CCN5420 ″%1$s″ is declared differently than the

implicit declaration ″%2$s″.

Where: ″%1$s″ is the declaration. ″%2$s″ is the

implicit declaration.

Explanation: A duplicate declaration of an implicit

declaration is in error.

User Response: Correct or remove the declaration.

CCN5421 ″%1$s″ is declared differently than the

internally generated declaration

″%2$s″.

Where: ″%1$s″ is the declaration. ″%2$s″ is the

internally generated declaration.

Explanation: A duplicate declaration of an internal

declaration is in error.

User Response: Correct or remove the declaration.

CCN5422 ″%1$s″ cannot be declared before

″%2$s″, and ″%2$s″ cannot be

declared before ″%1$s″.

Where: ″%1$s″ and″%2$s″ are the two declarations.

Explanation: Each of the two declarations is coded so

that it requires the other declaration first.

User Response: Change the dependence between

the two declarations.

CCN5423 The new declaration ″%1$s″ cannot be

added.

Where: ″%1$s″ is the declaration.

Explanation: The IDE is browsing and can’t add a

new declaration to the code store.

User Response: Reincorporate with the changed

source.

CCN5424 ″%1$s″ is declared on line %3$s of

″%2$s″.

Where: ″%1$s″ is the declaration. %3$s is the line

number. ″%2$s″ is the source.

Explanation: An informational message giving the

location of a declaration.

User Response: See the primary message.

CCN5425 ″%1$s″ is defined on line %3$s of

″%2$s″.

Where: ″%1$s″ is the declaration. %3$s is the line

number. ″%2$s″ is the source.

Explanation: An informational message giving the

location of a definition.

118 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |
 |

 |

 | |
 |
 |

 |
 |

 |
 |

 |

User Response: See the primary message.

CCN5426 The name ″%1$s″ is used on line %3$s

of ″%2$s″.

Where: ″%1$s″ is the name. %3$s is the line number.

″%2$s″ is the source.

Explanation: An informational message giving the

location of the use of a name.

User Response: See the primary message.

CCN5427 The using declaration introduces

″%1$s″ in conflict with a declaration in

this scope.

Where: ″%1$s″ is the declaration in conflict.

Explanation: A using declaration is a declaration, so

the restrictions on declaring the same name twice in the

same region apply.

User Response: Remove the using declaration or

remove the conflicting declaration.

CCN5428 The using declaration ″%1$s″ must not

introduce a name into its own scope.

Where: ″%1$s″ is the using declaration.

Explanation: A using declaration is a declaration, so

the restrictions on declaring the same name twice in the

same region apply.

User Response: Remove or change the using

declaration.

CCN5429 ″%1$s″ must not be repeated at block

scope.

Where: ″%1$s″ is the using declaration.

Explanation: A using declaration is a declaration, so

the restrictions on declaring the same name twice in the

same region apply (a variable at lexical block scope in

this case).

User Response: Remove the repeated using

declaration.

CCN5430 The out-of-line member declaration for

″%1$s″ must be in a namespace scope

that encloses the class definition.

Where: ″%1$s″ is the out-of-line member declaration.

Explanation: The class definition cannot be seen in

the scope that the out-of-line member declaration exists.

User Response: Move the out-of-line member

declaration into the same scope as its class definition or

a scope that encloses its class definition.

CCN5431 The declarator cannot be qualified with

the enclosing namespace ″%1$s″.

Where: ″%1$s″ is the namespace declaration.

Explanation: A nested-name-specifier cannot name

any of the namespaces that enclose the member’s

definition.

User Response: Remove the qualifiers.

CCN5432 The qualified declarator ″%1$s″ must

refer to an existing declaration.

Where: ″%1$s″ is the qualified declarator.

Explanation: When the declarator-id is qualified, the

declaration has to refer to a previously declared

member of a class or namespace and the member

cannot have been introduced by a using declaration

already.

User Response: Remove the qualified ID, or add it to

the class or namespace.

CCN5433 The explicitly specialized template

class member ″%1$s″ cannot be

defined unless the template class is

specialized.

Where: ″%1$s″ is the explicitly specialized template

class member.

Explanation: An out-of-line class member definition

can only be made for an existing class. A class template

explicit specialization is a separate class with different

members from the primary template.

User Response: Write the class template explicit

specialization or remove this declaration.

CCN5434 The friend function must also be

declared in the enclosing block scope.

Explanation: If a friend declaration appears in a local

class and the name specified is an unqualified name, a

prior declaration is looked up without considering

scopes that are outside the innermost enclosing

non-class scope. For a friend function declaration, if

there is no prior declaration, the program is ill-formed.

User Response: Remove the local friend function or

add the declaration to the enclosing block scope.

CCN5435 The template ″%1$s″ must not be

explicitly specialized more than once

with the same set of template

arguments.

Where: ″%1$s″ is the template.

Explanation: This is a violation of the one definition

rule.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 119

User Response: Remove the duplicate explicit

specialization.

CCN5436 The template ″%1$s″ must not be

explicitly instantiated more than once

with the same set of template

arguments.

Where: ″%1$s″ is the template.

Explanation: Only one explicit instantiation of a

template with the same set of arguments is allowed in a

program.

User Response: Remove the duplicate explicit

instantiation.

CCN5437 The template ″%1$s″ must not be

explicitly specialized after explicit

instantiation with the same set of

template arguments.

Where: ″%1$s″ is the template.

Explanation: A program cannot have explicit

specialization after explicit instantiation of a template

with the same set of arguments.

User Response: Remove either the explicit

specialization or the explicit instantiation or change the

order.

CCN5438 The template parameter ″%1$s″ must

not be redeclared.

Where: ″%1$s″ is the template parameter.

Explanation: A template parameter can be declared at

most once in a template parameter list.

User Response: Remove or change the template

parameter.

CCN5439 The template parameters ″%1$s″ do

not match the parameters for the

previous declaration for ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the template

parameters.

Explanation: A redeclaration of a template must agree

in the number and type of the template parameters.

User Response: Correct the template parameters.

CCN5440 ″%1$s″ may have different

pass-by-value semantics.

Where: ″%1$s″ is the declaration. %3$s is the line

number. ″%2$s″ is the source.

Explanation: If you are linking with code from some

older compilers, they may use a different set of rules to

decide whether a class is passed by value.

User Response: Use pragma pass_by_value or, if

available, the compiler option which changes

pass-by-value semantics.

CCN5441 The init_priority attribute can only be

used in objects of class type in

namespace scope. The attribute is

ignored.

Explanation: The attribute is ignored because it is not

attached to an object in namespace scope.

User Response: Remove offending attribute.

CCN5442 Priority values in successive

init_priority attribute specifiers and

pragma priority directives must

increase.

Explanation: Last init_priority or pragma priority has a

lower or equal priority value than the current one.

User Response: Check previous init_priority attribute

or pragma priority value and make sure that it has a

higher priority than current specification.

CCN5443 The specified function has already

been given a different linkage.

Explanation: Two or more declarations for a function

must have matching language linkages if the linkages

are specified.

User Response: Ensure that the specified language

linkages match.

CCN5444 The function can only have C++

language linkage specified because the

function has already been given C++

linkage.

Explanation: A previous declaration did not have a

language linkage specification so the only valid

language linkage specification is C++.

User Response: Ensure that the specified language

linkages match.

CCN5500 The configuration file ″%1$s″ cannot

be opened: %2$s.

Where: ″%1$s″ is the name of the configuration file

that could not be opened. ″%2$s″ is the string returned

by the operating system when the file open failed.

Explanation: The configuration file could not be

opened.

User Response: Check the permissions on the

configuration file and that it exists.

120 z/OS V1R7.0 XL C/C++ Messages

CCN5501 The directive in the configuration file is

not recognized.

Explanation: The directive in the configuration file is

not recognized.

User Response: Change the directive.

CCN5502 The build was interrupted.

Explanation: The compilation was interrupted and

stopped.

User Response: Start the compile again.

CCN5503 The name is already used in the

configuration file.

Explanation: The identifier has already been used in

the configuration file.

User Response: Change the name to be another

name that is not already used.

CCN5504 The template argument must be a

constant integral expression.

Explanation: The argument for the template was not

an integral constant expression.

User Response: Change the expression to be an

integral constant expression.

CCN5505 The build failed and there are no

messages.

Explanation: The compiler has experienced an

internal failure.

User Response: Report the problem to your IBM C++

service representative.

CCN5506 The configuration file ″%1$s″ is empty.

Where: ″%1$s″ is the name of the configuration file.

Explanation: The configuration file is empty.

User Response: Check that the right configuration file

has been specified.

CCN5507 The attempt to load ″%1$s″ from the

default library path failed.

Where: ″%1$s″ is the name of the extension that

failed to load.

Explanation: The dynamic load of the compiler

extension failed.

User Response: Check the tool option on the

command line or in the configuration file.

CCN5508 The file ″%1$s″ cannot be loaded: the

program file is not an ordinary file, or

its mode does not allow execution, or

search permission is denied on a

component of the path prefix.

Where: ″%1$s″ is the name of the file.

Explanation: The loading of the file failed because of

access permissions or it was incorrectly specified.

User Response: Check the tool option on the

command line or in the configuration file.

CCN5509 The file ″%1$s″ cannot be loaded: the

program file has a valid magic number

in its header, but the header is

damaged or is incorrect for the

machine on which the file is to be run.

Where: ″%1$s″ is the name of the file.

Explanation: The program could not be loaded

because the header for the file is corrupt.

User Response: Ensure that the file has not been

corrupted.

CCN5510 The file ″%1$s″ cannot be loaded: too

many symbolic links were encountered

in translating the path name.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because

there were too many symbolic links in the path name.

User Response: Remove some of the symbolic links

in the path name.

CCN5511 The file ″%1$s″ cannot be loaded:

incorrect XCOFF header or some

problems in linking.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the

header is corrupt or improperly linked.

User Response: Ensure that the file has not been

corrupted.

CCN5512 The file ″%1$s″ cannot be loaded: the

program requires more memory than is

allowed by the system.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because it

requires too much memory.

User Response: Increase the allocated memory to the

program.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 121

||
|

|
|

|
|

|
|

CCN5513 The file ″%1$s″ cannot be loaded: the

file is currently open for writing by a

process.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because it

is currently open for writing.

User Response: Ensure that the file is not being used

by another process and recompile.

CCN5514 The file ″%1$s″ cannot be loaded: a

component of a path name exceeded

255 characters, or an entire path name

exceeded 1023 characters.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the

path or some component of the path is too long.

User Response: Shorten the length of the path or of

the component of the path that is too long.

CCN5515 The file ″%1$s″ cannot be loaded: a

component of the file name does not

exist.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because

some component of the name does not exist.

User Response: Ensure that all directories in the path

name exist or change the path for the file.

CCN5516 The file ″%1$s″ cannot be loaded: a

component of the path prefix is not a

directory.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because

one of the components of the name is not a directory.

User Response: Change the path so that all

components in the path prefix are directories.

CCN5517 The file ″%1$s″ cannot be loaded: the

process root or current directory is

located in a virtual file system that has

been unmounted.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the

file system is not mounted.

User Response: Mount the required file system.

CCN5518 The file ″%1$s″ cannot be loaded: the

file name is null.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the

file name is null.

User Response: Ensure that the file name is not null.

CCN5519 The file ″%1$s″ cannot be loaded: the

file cannot be found.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the

could not be found.

User Response: Ensure that the file exists.

CCN5522 The file ″%1$s″ cannot be loaded:

DosLoadModule return code is %2$s.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because of

operating system errors.

User Response: Ensure that the file is correctly

specified for the operating system.

CCN5523 Linkage %1$s is not known. extern ″C″

is assumed.

Where: %1$s is the unrecognized linkage.

Explanation: The specified linkage is unknown and

extern ″C″ will be used.

User Response: Change the linkage specification.

CCN5524 The file ″%1$s″ cannot be loaded.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because of

operating system errors.

User Response: Ensure that the file is correctly

specified for the operating system.

CCN5525 The enum cannot be packed to the

requested size of %1$s bytes.

Where: %1$s is the number of bytes specified.

Explanation: The range of values specified for the

enumeration is too large to be packed into the specified

number of bytes.

User Response: Change the number of bytes allowed

for the enumeration or change the enumerators to have

a smaller range.

122 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |

 |
 |

 |

CCN5526 One or more error messages have

been disabled.

Explanation: An error was encountered but the error

message has been suppressed.

User Response: Do not suppress the error message

or fix the error.

CCN5527 The build failure may be because of an

Internal Compiler Error or because a

tool failed to generate a message.

Explanation: Informational message about why the

build failed with no message.

User Response: Report the problem to your IBM C++

service representative.

CCN5530 Unable to load server rc = %1$s.

Where: %1$s is the return code from the DB2

coprocessor API call.

Explanation: Call to the DB2 coprocessor API to load

the server failed.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5531 Unable to open DBRM file.

Explanation: Call to open DBRM file failed.

User Response: Ensure the file name is correctly

specified.

CCN5532 Unable to initialize SQL coprocessor

services: rc = %1$s.

Where: %1$s is the return code from the DB2

coprocessor API call.

Explanation: Call to initialize SQL Statement

Coprocessor failed.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5533 Unable to compile SQL statement: rc =

%1$s.

Where: %1$s is the return code from the DB2

coprocessor API call.

Explanation: Call to the DB2 coprocessor API to

compile SQL statement failed.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5534 Unrecognized SQL TYPE: flag = %1$s.

Where: %1$s is the function flag that is not

recognized.

Explanation: The SQL type is unrecognized.

User Response: Refer to the DB2 documentation for

the cause of the problem and the corrective action.

CCN5535 Unable to terminate services: rc =

%1$s.

Where: %1$s is the return code from the DB2

coprocessor API call.

Explanation: Call to terminate SQL statement

coprocessor failed.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5536 Unable to print SQL message: rc =

%1$s.

Where: %1$s is the return code from the DB2

coprocessor API call.

Explanation: Call to extract formatted message for

SQLCODE failed.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5537 Unable to register a: rc = %1$s.

Where: %1$s is the return code from the DB2

coprocessor API call.

Explanation: Call to register a host variable failed.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5538 Unable to register host variable:%1$s,

rc = %2$s.

Where: %1$s is the name of the host variable. %2$s

is the return code from the DB2 coprocessor API call.

Explanation: Call to register a host variable failed.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5539 Compiling an SQL statement resulted

in the following message: %1$s.

Where: %1$s is a diagnostic message emitted by the

DB2 coprocessor API call.

Explanation: Call to compile an SQL statement failed.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 123

 | |

 |
 |

 |

 |
 |

 | |
 |

 |
 |

 |

User Response: Refer to the DB2 documentation for

the cause of the problem and the corrective action.

CCN5540 Unable to find host variable %1$s.

Where: %1$s is the return code from the DB2

coprocessor API call.

Explanation: The host variable does not exist.

User Response: Refer to the DB2 documentation for

the cause of the problem and use a corrective action for

the return code.

CCN5563 An instantiation of ″%1$s″ was not

possible because the function

definition was not found.

Where: ″%1$s″ is the function being instantiated.

Explanation: There must be a function body to

instantiate this function, either the body was not defined

or it failed to compile.

User Response: Check that the function was defined

correctly.

CCN5600 The reference to ″%1$s″ is ambiguous.

Where: ″%1$s″ is the ambiguous name.

Explanation: More than one declaration was found for

the reference.

User Response: Fully qualify the reference.

CCN5601 The reference to ″%1$s″ is ambiguous

because ″%1$s″ is declared in base

classes ″%2$s″ and ″%3$s″.

Where: ″%1$s″ is the ambiguous reference. ″%2$s″

and ″%3$s″ are two base classes.

Explanation: Multiple inheritance has supplied more

than one declaration with the same name.

User Response: Fully qualify the reference, or if it is a

template, either change it to a template id, or change

the base classes.

CCN5602 The reference to ″%1$s″ is ambiguous

because ″%1$s″ can be accessed via

multiple paths to base class ″%2$s″.

Where: ″%1$s″ is the ambiguous reference. ″%2$s″ is

the base class.

Explanation: Multiple inheritance has resulted in a

declaration that can be reached in more than one way

through the class hierarchy.

User Response: Fully qualify the reference or change

the base classes.

CCN5603 The template declaration ″%1$s″

cannot be found. An extra ″template

<>″ may be specified on this

declaration.

Where: ″%1$s″ is the template declaration.

Explanation: Nested template explicit specializations

and out-of-line declarations require a template scope for

each level of nesting.

User Response: Check and correct the template

scopes on the declaration.

CCN5700 The previous message was produced

while processing ″%1$s″.

Where: ″%1$s″ is the declaration (usually a template)

that was being processed when the error occurred.

Explanation: An informational message giving trace

back information.

User Response: See the primary message.

CCN5701 The limit on nested template

instantiations has been exceeded while

instantiating ″%1$s″.

Where: ″%1$s″ is the last instantiation done.

Explanation: A template instantiation that requires

another instantiation can set off a chain of instantiations

with no end.

User Response: Change the template implementation

to avoid the recursion or write an explicit specialization

that will stop the instantiation chain at a reasonable

point.

CCN5702 The template argument ″%1$s″ is not

valid.

Where: ″%1$s″ is the template argument.

Explanation: The template argument does not match

the template parameter.

User Response: Correct the template argument.

CCN5704 The definitions of ″%1$s″ and ″%2$s″

have the same linkage signature

″%3$s″.

Where: ″%1$s″ and ″%2$s″ are the two declarations.

″%3$s″ is the linkage signature.

Explanation: The two definitions have the same

mangled names and the linker will be unable to

distinguish them.

User Response: Remove one of the definitions or

change its linkage.

124 z/OS V1R7.0 XL C/C++ Messages

|
|

||
|
|

|

|
|
|

|
|

||
|
|

|
|

|
|

|
|
|

CCN5705 The definition of ″%1$s″ has the same

linkage signature, ″%2$s″, as a symbol

from ″%3$s″.

Where: ″%1$s″ is the declaration. ″%2$s″ is the

linkage signature. ″%3$s″ is the library with the

conflicting symbol.

Explanation: Two definitions have the same mangled

names and the linker will be unable to distinguish them.

User Response: Remove one of the definitions or

change its linkage.

CCN5706 The symbol ″%1$s″ is already defined

by ″%2$s″ in target ″%3$s″.

Where: ″%1$s″ is the duplicate symbol. ″%2$s″ is the

source file or source library. ″%3$s″ is the target

executable, library, or object file.

Explanation: A symbol is being redefined by another

compilation unit.

User Response: Remove one of the symbols so that

only one definition exists.

CCN5707 The symbol ″%1$s″ has the same

signature as ″%2$s″ in target ″%3$s″.

Where: ″%1$s″ is the duplicate symbol. ″%2$s″ is the

name of the definition that is resolving to the same

symbol as ″1s″. ″%3$s″ is the target executable,

library, or object file to which ″%2$s″ belongs.

Explanation: A symbol is being redefined by another

compilation unit.

User Response: Remove one of the symbols so that

only one definition exists.

CCN5708 The template argument %1$s does not

match the corresponding template

parameter of ″%2$s″.

Where: %1$s is the template argument. ″%2$s″ is the

template.

Explanation: Template arguments must match the

type and kind of the template parameter.

User Response: Correct the template argument.

CCN5709 The wrong number of template

arguments have been specified for

″%1$s″, from line %3$s of ″%2$s″.

Where: ″%1$s″ is the template. ″%2$s″ is the source

file. %3$s is the line number.

Explanation: The number of template arguments must

match the number of template parameters.

User Response: Remove the extra template

arguments.

CCN5710 The static function ″%1$s″ is not

defined, but is referenced from ″%2$s″.

Where: ″%1$s″ is the static function, ″%2$s″ is the

referencing location.

Explanation: A referenced static function must be

defined.

User Response: Define the function.

CCN5711 Too few template arguments have been

specified.

Explanation: The number of template arguments must

match the number of template parameters.

User Response: Add the missing template arguments.

CCN5712 Too many template arguments have

been specified.

Explanation: The number of template arguments must

match the number of template parameters.

User Response: Remove the extra template

arguments.

CCN5713 The template argument ″%1$s″ is not

valid for a non-type template

parameter.

Where: ″%1$s″ is the invalid argument.

Explanation: A non-type template parameter cannot

be satisfied with a type.

User Response: Change the template argument to a

valid value.

CCN5714 The template argument must be a type,

to match the template parameter.

Explanation: Only a type-id can be used for a type

template argument.

User Response: Change the template argument to a

valid value.

CCN5715 The local type ″%1$s″ cannot be used

in a template argument.

Where: ″%1$s″ is the local type.

Explanation: A type defined in a function body or any

type compounded from a local type cannot be used as

a template argument.

User Response: Change the argument to be a

non-local type, or move the local type to namespace

scope.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 125

||
|
|

|
|

|
|

|
|

CCN5716 The template argument ″%1$s″ does

not match the template parameter

″%2$s″.

Where: ″%1$s″ is the invalid argument, ″%2$s″ is the

template parameter.

Explanation: A template parameter must have a

template argument and a regular type template

parameter cannot have a template as an argument.

User Response: Change the argument to correctly

match the template parameter.

CCN5717 The template argument cannot use an

unnamed type.

Explanation: An unnamed type or any type

compounded from an unnamed type cannot be used as

a template argument.

User Response: Change the argument to be a

non-local type, or give the type a name.

CCN5718 An implicit copy assignment operator

cannot be created for class with a

member of type ″%1$s″.

Where: The type of the member which prohibits the

generation of an implicit copy assignment operator.

Explanation: The class does not have a user

specified copy assignment operator and one cannot be

generated because of the type of the members of the

class.

User Response: Provide a copy assignment operator.

CCN5719 The previous message was produced

while processing the implicit member

function ″%1$s″.

Where: The name of the member function.

Explanation: Informational message indicating which

implicit member function caused the generation of the

error or warning message.

User Response: See the primary message.

CCN5720 Function ″%1$s″ has internal linkage

but is undefined.

Where: The name of the function that is not defined.

Explanation: A function was declared to have internal

linkage, possibly because it was declared to be static,

but it is not defined.

User Response: Define the function.

CCN5721 The explicit specialization ″%1$s″ must

be declared before it is used.

Where: ″%1$s″ is the explicit specialization.

Explanation: A use with no explicit specialization will

cause an implicit instantiation. This will conflict with the

explicit specialization.

User Response: Move the use or the declaration of

the explicit specialization.

CCN5722 The partial specialization ″%1$s″ must

be declared before it is used.

Where: ″%1$s″ is the partial specialization.

Explanation: A use with no partial specialization will

cause an implicit instantiation of the primary template.

This will give different behavior than an instantiation of

the partial specialization.

User Response: Move the use or the declaration of

the partial specialization.

CCN5723 The inline function ″%1$s″ is

referenced, but it is not defined.

Where: ″%1$s″ is the inline function.

Explanation: A referenced inline function must be

defined.

User Response: Define the function.

CCN5724 The non-type template argument

″%1$s″ of type ″%2$s″ has wrapped.

Where: ″%1$s″ is the argument value and ″%2$s″ is

its type.

Explanation: A non-type template argument has been

provided that is outside the range for the argument type.

User Response: If this is not intended, change the

argument value.

CCN5725 The physical size of an array is too

large.

Explanation: The maximum allowable size for this

target system has been exceeded.

User Response: Reduce the size of the array.

CCN5726 The physical size of a class or union is

too large.

Explanation: The maximum allowable size for this

target system has been exceeded.

User Response: Reduce the size of the class or

union.

126 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |
 |

 |
 |

CCN5727 The static storage is too large.

Explanation: A limit on static storage has been

exceeded.

User Response: Decrease the amount of storage

required.

CCN5728 The keyword _Packed must be used in

a typedef.

Explanation: The _Packed type specifier can only be

used in a typedef declaration.

User Response: Use _Packed in a typedef

declaration to declare the _Packed class type, then use

the typedef name to declare the variable.

CCN5729 The keyword _Packed must be

associated with a class definition.

Explanation: The _Packed specifier is only valid on a

typedef declaration with a class definition.

User Response: Define the _Packed class type in the

typedef declaration.

CCN5730 Alias specification cannot be provided

for a function definition.

Explanation: Alias specification can only be provided

for a function declaration.

User Response: Remove alias specification from the

indicated function definition.

CCN5731 The external name ″%1$s″ must not

conflict with the name in #pragma

csect or the csect name generated by

the compiler.

Where: ″%1$s″ is the external name in conflict.

Explanation: The external name specified is identical

to the name specified on a #pragma csect or the name

generated by the CSECT option.

User Response: Change the name on the #pragma

csect, turn off the CSECT option, or change the external

name.

CCN5800 The conversion from codepage ″%1$s″

to ″%2$s″ cannot be initialized.

Where: ″%1$s″ is the source codepage. ″%2$s’ is the

target codepage.

Explanation: The specified codepage does not exist.

User Response: Change the codepage specified to a

valid one.

CCN5801 The character literal is empty.

Explanation: The character literal is invalid because it

is empty.

User Response: Change the character literal.

CCN5802 The character literal %1$s contains

more than one character.

Where: ″%1$s″ is the character literal in error.

Explanation: The character literal is invalid because it

has more than one character.

User Response: Change the character literal to a

single character.

CCN5803 The value of the character literal %1$s

contains more bytes than sizeof(int).

Only the right-most bytes are retained.

Where: ″%1$s″ is the character literal in error.

Explanation: The character literal is invalid because it

has too many bytes. The extra bytes to the left are

ignored.

User Response: Change the character literal.

CCN5804 The characters ″/*″ are detected in a

comment.

Explanation: The start of what may be a comment

has been seen inside a comment. The first string ″*/″

will finish the comment which may result in unexpected

behavior if this truly is a nested comment.

User Response: Remove the nested comment or the

string ″/*″ from the comment.

CCN5805 Division by zero occurs on the

″#%1$s″ directive.

Where: ″%1$s″ is the preprocessor directive in the

source code.

Explanation: An attempt was made to divide by zero

in a preprocessor directive.

User Response: Change the preprocessor directive to

not divide by zero.

CCN5806 The parameter ″%2$s″ has already

been used for the macro ″%1$s″.

Where: ″%1$s″ is the name of the preprocessor

macro in error. ″%2$s″ is the reused parameter from the

macro in error.

Explanation: The same identifier has been used for

more than one parameter for a macro.

User Response: Change the parameter name.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 127

CCN5807 The #elif directive has no matching #if,

#ifdef, or #ifndef directive.

Explanation: The #elif directive requires a previous

#if, #ifdef, or #ifndef. It may be that a #endif was added

inappropriately.

User Response: Remove the #elif directive.

CCN5808 The #else directive has no matching

#if, #ifdef, or #ifndef directive.

Explanation: The #else directive requires a previous

#if, #ifdef, or #ifndef. It may be that a #endif was added

inappropriately.

User Response: Remove the #else directive.

CCN5809 The source file is empty.

Explanation: Informational message indicating that the

source file contains no preprocessing tokens.

User Response: See the primary message.

CCN5810 An empty argument is specified for

parameter ″%2$s″ of the macro ″%1$s″.

Where: ″%1$s″ is the name of the macro. ″%2$2″ is

the parameter receiving the empty argument.

Explanation: The argument specified to the macro is

empty.

User Response: Change the argument.

CCN5811 The #endif directive has no matching

#if, #ifdef, or #ifndef directive.

Explanation: The #endif directive requires a previous

#if, #ifdef, or #ifndef. It may be that a #endif was added

inappropriately.

User Response: Remove the #endif directive.

CCN5812 The escape sequence ″%1$s″ is out of

range. Value is truncated.

Where: ″%1$s″ is the escape sequence from the

source code.

Explanation: The specified escape sequence is not

valid.

User Response: Change the escape sequence.

CCN5813 One or more #endif directives are

missing at the end of the file.

Explanation: There must be a #endif for every #if,

#ifdef, or #ifndef. It may be that a #endif was removed

inappropriately.

User Response: Add the missing #endif.

CCN5814 Expecting a macro name on the #%1$s

directive but found ″%2$s″.

Where: ″%1$s″ is the preprocessor directive. ″%2$s″

is the text found where the macro name was expected.

Explanation: The text specified for the macro name is

invalid.

User Response: Change the text for the macro name.

CCN5815 Expecting the end of the line on the

#%1$s directive but found ″%2$s″.

Where: ″%1$s″ is the preprocessor directive. ″%2$s″

is the unexpected input.

Explanation: The end of line that was expected to

terminate the preprocessing directive was not found.

User Response: Change the preprocessing directive.

CCN5816 Too many arguments are specified for

the macro ″%1$s″. The extra

arguments are ignored.

Where: ″%1$s″ is the name of the macro.

Explanation: The extra arguments specified for the

macro are ignored.

User Response: Remove the extra arguments.

CCN5817 The comment which began on line

%1$s did not end before the end of the

file.

Where: ″%1$s″ is the line number on which the

comment began.

Explanation: The ″*/″ ending the comment was not

found before the end of the file.

User Response: Add ″*/″ to finish the comment.

CCN5818 The continuation sequence at the end

of the file is ignored.

Explanation: End of file is unexpected after the

continuation sequence.

User Response: Remove the continuation sequence.

CCN5819 Unable to open the file %1$s. %2$s.

Where: ″%1$s″ is the file name that could not be

opened. ″%2$s″ is the text returned by the system

when the file open failed.

Explanation: The file could not be opened because of

the reason indicated.

User Response: Ensure that the file can be opened.

128 z/OS V1R7.0 XL C/C++ Messages

CCN5820 Unable to read the file %1$s. %2$s.

Where: ″%1$s″ is the file name that could not be

opened. ″%2$s″ is the text returned by the system

when the file open failed.

Explanation: The file could not be read because of

the reason indicated.

User Response: Ensure that the file exists and can be

read.

CCN5821 The floating point literal ″%1$s″ is out

of range.

Where: ″%1$s″ is the incorrect literal.

Explanation: The floating point literal is not valid.

User Response: Change the floating point literal.

CCN5822 The name ″%1$s″ must not be defined

as a macro.

Where: ″%1$s″ is the name of the reserved macro

name.

Explanation: The name cannot be used as a macro.

User Response: Change the name of the macro.

CCN5823 The name ″%1$s″ must not be

undefined as a macro.

Where: ″%1$s″ is the name of the reserved macro

name.

Explanation: The name cannot be undefined as a

macro.

User Response: Change the name of the macro.

CCN5824 The header of the #include directive is

empty.

Explanation: The #include directive is improperly

specified.

User Response: Change the #include specification.

CCN5825 The character ″%1$s″ is not allowed.

Where: ″%1$s″ is the character.

Explanation: The character is not valid.

User Response: Change the character.

CCN5826 The use of the ## operator in the

macro ″%1$s″ is not valid.

Where: ″%1$s″ is the name of the macro in error.

Explanation: The use of the ## operator is not valid.

User Response: Change the ## operator.

CCN5827 The constant expression on the #%1$s

directive contains a syntax error at

″%2$s″.

Where: ″%1$s″ is the preprocessor directive. ″%2$s″

is the token that is causing the syntax error.

Explanation: There is a syntax error in the constant

expression.

User Response: Fix the syntax of the constant

expression.

CCN5828 The escape sequence ″%1$s″ is not

known. The backslash is ignored.

Where: ″%1$s″ is the escape sequence.

Explanation: The escape sequence is not valid and

the backslash is ignored.

User Response: Remove the backslash or change the

escape sequence to a valid one.

CCN5829 The suffix of the floating point literal

″%1$s″ is not valid.

Where: ″%1$s″ is the floating point literal.

Explanation: The floating point literal is improperly

specified.

User Response: Change the floating point literal.

CCN5830 The suffix of the integer literal ″%1$s″

is not valid.

Where: ″%1$s″ is the floating point literal.

Explanation: The integer literal is improperly specified.

User Response: Change the integer literal.

CCN5831 The parameter list for the macro

″%1$s″ contains a syntax error at

″%2$s″.

Where: ″%1$s″ is the name of the macro. ″%2$s″ is

the token that is causing the syntax error.

Explanation: There is a syntax error in the parameter

list for the macro.

User Response: Fix the syntax error in the parameter

list.

CCN5832 The value, ″%1$s″, of the wide

character is not valid.

Where: ″%1$s″ is the value of the wide character.

Explanation: The value of the wide character is not

valid.

User Response: Change the value of the wide

character.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 129

CCN5833 The multibyte character ″%1$s″ is

unknown.

Where: ″%1$s″ is the multibyte character in error.

Explanation: The multibyte character is unknown.

User Response: Change the multibyte character.

CCN5834 A header name is expected on the

#include directive but ″%1$s″ is found.

Where: ″%1$s″ is the unexpected text found.

Explanation: The #include directive is not valid.

User Response: Change the #include directive.

CCN5835 The file ″%1$s″ cannot be included

because the maximum nesting of %2$s

has been reached.

Where: ″%1$s″ is the file name. ″%2$s’ is the

maximum include file nesting limit for the compiler.

Explanation: The maximum number of nested include

files has been reached.

User Response: Remove some of the included files or

change the include structure to not nest as deeply.

CCN5836 The #include file %1$s is not found.

Where: ″%1$s″ is the file name.

Explanation: The specified include file was not found.

User Response: Ensure that the file exists, change

the name of the included file, or use the include path

option to specify the path to the file.

CCN5837 An incomplete argument is specified

for the parameter ″%2$s″ of the macro

″%1$s″.

Where: ″%1$s″ is the name of the macro. ″%2$s″ is

the macro parameter.

Explanation: The argument to the macro is invalid.

User Response: Change the argument to the macro.

CCN5838 An incomplete parameter list is

specified for the macro ″%1$s″.

Where: ″%1$s″ is the macro name.

Explanation: The parameter list to the macro is

incomplete.

User Response: Change the parameter list.

CCN5839 Preprocessor internal error in ″%1$s″.

File ″%2$s″: Line %3$s.

Where: ″%1$s″ is the name of the compiler function at

the time of the error. ″%2$s″ is the source file that was

being processed at the time of the error. ″%3$s″ is the

line number that was being processed at the time of the

error.

Explanation: An internal error has occurred in the

preprocessor.

User Response: Contact your IBM C++ service

representative.

CCN5840 The integer literal ″%1$s″ is out of

range.

Where: ″%1$s″ is the integer literal that is out of

range.

Explanation: The integer literal is not valid.

User Response: Change the integer literal.

CCN5841 The wide character literal %1$s

contains more than one character. The

last character is used.

Where: ″%1$s″ is the literal.

Explanation: More than one character has been

specified for a wide character literal.

User Response: Remove the extra characters from

the wide character literal.

CCN5842 The line number %1$s on the #line

directive must contain only decimal

digits.

Where: ″%1$s″ is the invalid line number specified in

the #line directive.

Explanation: The #line directive contains an invalid

number.

User Response: Change the number in the #line

directive or remove the #line directive.

CCN5843 Expecting a file name or the end of line

on the #line directive but found

″%1$s″.

Where: ″%1$s″ is the unexpected text.

Explanation: The #line directive is invalid.

User Response: Remove the extra symbols from the

#line directive.

130 z/OS V1R7.0 XL C/C++ Messages

CCN5844 Expecting a line number on the #line

directive but found ″%1$s″.

Where: ″%1$s″ is the unexpected text.

Explanation: The line number specified in the #line

directive is invalid.

User Response: Change the #line directive.

CCN5845 The #line value ″%1$s″ must not be

zero.

Where: ″%1$s″ is the invalid value specified in the

#line directive.

Explanation: The line number for a #line directive

must not be zero.

User Response: Change the line number for the #line

directive.

CCN5846 The #line value ″%1$s″ is outside the

range 0 to 32767.

Where: ″%1$s″ is the invalid value specified in the

#line directive.

Explanation: The line number for a #line directive is

too large.

User Response: Change the line number for the #line

directive.

CCN5847 Expected an identifier but found

″%2$s″ in the parameter list for the

macro ″%1$s″.

Where: ″%1$s″ is the macro name. ″%2$s″ is the

unexpected text found.

Explanation: The parameter to the macro is invalid.

User Response: Change the parameter to the macro.

CCN5848 The macro name ″%1$s″ is already

defined with a different definition.

Where: ″%1$s″ is the macro name.

Explanation: An attempt is being made to redefine the

macro.

User Response: Change the name of the macro

being defined.

CCN5849 The octal literal ″%1$s″ contains

non-octal digits.

Where: ″%1$s″ is the octal literal.

Explanation: The octal literal can only contain the

digits 0-7.

User Response: Change the literal.

CCN5850 Expecting ″(″ on the #%1$s directive,

but found ″%2$s″

Where: ″%1$s″ is the preprocessor directive. ″%2$s″

is the unexpected input.

Explanation: The ″(″ that was expected following the

preprocessing directive was not found.

User Response: Change the preprocessing directive.

CCN5851 The #line directive has no effect.

Explanation: The context for the #line directive gives

it no additional meaning.

User Response: Delete the #line directive.

CCN5857 The macro name ″%1$s″ is reserved

but the directive is processed.

Where: ″%1$s″ is the macro name.

Explanation: The macro name is a reserved name.

User Response: Change the name of the macro.

CCN5858 The macro name ″%1$s″ is reserved

but the directive is processed.

Where: ″%1$s″ is the macro name.

Explanation: The macro name is a reserved name.

User Response: Change the name of the macro to

one that is not reserved.

CCN5859 #error directive: %1$s.

Where: ″%1$s″ is the text that was specified by the

#error directive in the source.

Explanation: A #error directive has been processed.

User Response: Remove the #error directive.

CCN5860 A parameter name is expected after the

operator in the macro ″%1$s″ but

″%2$s″ is found.

Where: ″%1$s″ is the macro name. ″%2$s″ is the

unexpected text.

Explanation: The right operand to the # operator is

invalid.

User Response: Change the right operand to the #

operator.

CCN5861 Too few arguments are specified for

macro ″%1$s″. Empty arguments are

used.

Where: ″%1$s″ is the macro name.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 131

Explanation: Not enough arguments have been

specified for the macro.

User Response: Add more arguments to the macro.

CCN5862 The unknown preprocessing directive

″%1$s″ is ignored.

Where: ″%1$s″ is the unknown directive.

Explanation: The preprocessing directive is unknown.

User Response: Change the preprocessing directive.

CCN5863 A character literal must end before the

end of the source line.

Explanation: The character literal is improperly

specified.

User Response: Change the character literal.

CCN5864 A #include header must end before the

end of the source line.

Explanation: The #include directive is improperly

specified.

User Response: Change the #include directive.

CCN5865 A character literal must end before the

end of the source line.

Explanation: The character literal is improperly

specified.

User Response: Change the character literal.

CCN5866 A string literal must end before the end

of the source line.

Explanation: The string literal is improperly specified.

User Response: Change the string literal.

CCN5868 A string literal must end before the end

of the source line.

Explanation: The string literal is improperly specified.

User Response: Change the string literal.

CCN5869 %1$s digits are required for the

universal-character-name ″%2$s″.

Where: ″%1$s″ is the required number of digits.

″%2$s″ is the universal-character-name.

Explanation: The universal-character-name is

improperly specified.

User Response: Change the universal-character-
name.

CCN5870 The universal-character-name ″%1$s″

is not in the allowable range for an

identifier.

Where: ″%1$s″ is the universal-character name.

Explanation: The universal-character-name is

improperly specified.

User Response: Change the universal-character-
name.

CCN5871 Incomplete or invalid multibyte

character, conversion failed.

Explanation: The multibyte character is invalid.

User Response: Change the multibyte character.

CCN5872 A string literal cannot be longer than

32765 characters.

Explanation: The string literal is too long.

User Response: Change the string literal.

CCN5873 Syntax error in _Pragma operator:

″%1$s″ was expected but ″%2$s″ was

found. The pragma is ignored.

Where: ″%2$s″ is the invalid text. ″%1$s″ is expected

correct text.

Explanation: A syntax error has occurred and the first

unexpected token is ″%1$s″. The only valid token at

this point is ″%2$s″.

User Response: Change the incorrect token to the

expected one.

CCN5874 #include_next in primary source file.

Explanation: A #include_next was found in the

primary source file. It will be treated as a #include.

User Response: Change the #include_next to a

#include.

CCN5875 A header name is expected on the

#include_next directive but ″%1$s″ is

found.

Where: ″%1$s″ is the unexpected text found.

Explanation: The #include_next directive is not valid.

User Response: Change the #include_next directive.

CCN5876 A #include_next header must end

before the end of the source line.

Explanation: The #include_next directive is improperly

specified.

User Response: Change the #include_next directive.

132 z/OS V1R7.0 XL C/C++ Messages

CCN5877 The #include_next file %1$s is not

found.

Where: ″%1$s″ is the file name.

Explanation: The specified include file was not found.

User Response: Ensure that the file exists, change

the name of the included file, or use the include path

option to specify the path to the file.

CCN5878 The header of the #include_next

directive is empty.

Explanation: The #include_next directive is improperly

specified.

User Response: Change the #include_next

specification.

CCN5879 #warning directive: %1$s.

Where: ″%1$s″ is the text that was specified by the

#warning directive in the source.

Explanation: A #warning directive has been

processed.

User Response: Remove the #warning directive.

CCN5880 The invalid character ″%1$s″ was

found in a wide character or wide

string literal. The character will be

ignored.

Where: ″%1$s″ is the invalid character.

Explanation: The wide character or wide string literal

contains an invalid character that will be ignored.

User Response: Remove the character.

CCN5881 The pragma GCC system_header

directive is only permitted in an

include file. The pragma will be

ignored.

Explanation: The pragma should not be used in the

primary source file so it will be ignored.

User Response: Remove the pragma.

CCN5882 Expected ’)’ but found ″%2$s″ in the

parameter list for the macro ″%1$s″.

Where: ″%1$s″ is the macro name. ″%2$s″ is the

unexpected text found.

Explanation: A variable argument parameter cannot

appear anywhere but the end of a parameter list.

User Response: Move the variable argument

parameter to the end of the parameter list.

CCN5883 Use of __VA_ARGS__ in macro ″%1$s″

is unexpected; expected ″%2$s″.

Where: ″%1$s″ is the macro name. ″%2$s″ is the

variable argument parameter identifier.

Explanation: The ISO C99 variable argument identifier

__VA_ARGS__ has been used in a GNU variadic

macro.

User Response: Replace __VA_ARGS__ with

″%2$s″.

CCN5884 The GNU variable argument identifier

″%2$s″ of macro ″%1$s″ is not

permitted in the current langlvl mode.

Where: ″%1$s″ is the macro name. ″%2$s″ is the

variable argument parameter identifier.

Explanation: Possibly missing ’,’ or a GNU variable

argument identifier has been specified in an illegal

langlvl mode.

User Response: Set the langlvl option appropriately.

CCN5885 The universal character is out of range

for this platform.

Explanation: This platform only supports valid

universal characters less than \u0100.

User Response: Provide a valid universal character.

CCN5886 The universal character ″%1$s″ is not

valid.

Where: ″%1$s″ is the invalid character.

Explanation: The universal character is out of the

allowable ranges.

User Response: Provide a valid universal character.

CCN5887 The hexadecimal literal ″%1$s″ is not

valid.

Where: ″%1$s″ is the invalid hexadecimal literal.

Explanation: The hexadecimal literal is incomplete or

contains an invalid hex character.

User Response: Provide a valid hexadecimal literal.

CCN5888 The current option settings do not

allow the use of ″long long″. The suffix

of the integer literal ″%1$s″ is not

valid.

Where: ″%1$s″ is the integer literal.

Explanation: The suffix of the integer literal is ″LL″,

but this is disallowed due to option settings.

User Response: Delete the integer suffix or change

the option settings to allow ″long long″.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 133

 | |
 |

 |

 |
 |

 |

 | |
 |

 |

 |
 |

 |

 | |
 |
 |
 |

 |

 |
 |

 |
 |

CCN5900 #include search attempted to open the

file ″%1$s″.

Where: ″%1$s″ is the file name.

Explanation: Informational message about the search

path when attempting to find an include file.

User Response: See the primary message.

CCN5901 The expression on the #%1$s directive

evaluates to %2$s.

Where: ″#%1$s″ is the directive name. ″%2$s″ is

either 1 or 0. If the expression on the #%1$s is defined

or evaluates to True, ″%2$s″ is 1; 0 otherwise.

Explanation: Informational message about the

condition directive value.

User Response: See the primary message.

CCN5902 The nesting level of the #%1$s

directive is %2$s.

Where: ″#%1$s″ is the directive name. ″%2$s″ is an

integer, starting from 1. It indicates the nesting level of

the condition directive #%1$s.

Explanation: Informational message about the

conditional nesting level.

User Response: See the primary message.

CCN5903 defined(%1$s) evaluates to %2$s.

Where: ″%1$s″ is the directive name. ″%2$s″ is either

1 or 0. If %1$s is defined, %2$s is 1; %2$s is 0

otherwise.

Explanation: Informational message about the defined

value.

User Response: See the primary message.

CCN5904 Token skipping due to conditional

compilation begins here.

Explanation: Informational message about token

skipping due to conditional compilation.

User Response: See the primary message.

CCN5905 Token skipping due to conditional

compilation ends here.

Explanation: Informational message about token

skipping due to conditional compilation.

User Response: See the primary message.

CCN5921 ″%1$s″ is defined in the file ″%2$s″ on

line %3$s.

Where: ″%1$s″ is the macro name. ″%2$s″ is the file

name. ″%3$s″ is the line number.

Explanation: Informational message about where a

macro is defined.

User Response: See the primary message.

CCN5922 #include_next search attempted to

open the file ″%1$s″.

Where: ″%1$s″ is the file name.

Explanation: Informational message about the search

path when attempting to find an include file.

User Response: See the primary message.

CCN6086 The initializer list in the compound

literal expression must be a constant

expression.

Explanation: If a compound literal expression is used

outside a function body, its initializer list must be a

constant expression.

User Response: Change the initializer list to a

constant expression.

CCN6087 The catch block(s) has no effect.

Explanation: The NOEXH option indicates that no

exception will be thrown.

User Response: Don’t use NOEXH option or don’t

use catch blocks in the program.

CCN6088 The exception specification is being

ignored.

Explanation: The NOEXH option indicates that no

exception will be thrown.

User Response: Don’t use NOEXH option or don’t

use exception specification.

CCN6089 The throw expression is being ignored.

Explanation: The NOEXH option indicates that no

exception will be thrown.

User Response: Don’t use NOEXH option or don’t

use throw expression.

CCN6090 The destructor of ″%1$s″ might not be

called.

Where: ″%1$s″ is the object.

Explanation: The NOEXH option indicates that no

exception will be thrown.

134 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|
|

|
|

|

||
|

|
|
|

|
|

|

||

|
|
|

|
|

|

||
|

|
|

|

||
|

|
|

|

 | |
 |
 |

 |
 |
 |

 |
 |

 | |
 |

 |

 |
 |

User Response: No response required.

CCN6091 The friend declaration ″%1$s″ specifies

a default argument expression and is

not a definition.

Where: ″%1$s″ is the name of the function.

Explanation: If a friend declaration specifies a default

argument expression, that declaration must be a

definition.

User Response: Add the definition with the function

declaration.

CCN6092 The declaration ″%1$s″ is also

declared as a friend with a default

argument expression in file ″%2$s″, on

%3$s.

Where: ″%1$s″ is the name of the function, ″%2$s″ is

the file name, ″%3$s″ is the line and column number

where the friend function is declared.

Explanation: If a friend declaration specifies a default

argument expression, that declaration shall be the only

declaration of the function or function template in the

translation unit.

User Response: Remove the default argument or

move it to the non-friend declaration.

CCN6100 A local variable or compiler temporary

variable is being used to initialize

reference member ″%1$s″.

Where: ″%1$s″ is the reference member.

Explanation: Initializing a reference member with a

temporary or local variable is dangerous since it will

result in a dangling reference if the object’s life-span is

longer than the temporary or local variable.

User Response: Initialize the member with another

object.

CCN6101 A return value of type ″%1$s″ is

expected.

Where: ″%1$s″ is the expected type.

Explanation: The function is expected to return a

value but no return statement is given.

User Response: Add a return statement to the

function.

CCN6102 ″%1$s″ might be used before it is set.

Where: ″%1$s″ is the variable.

Explanation: The compiler cannot determine that the

variable is initialized before it is used.

User Response: Initialize the variable.

CCN6103 The address of a local variable or

temporary is used in a return

expression.

Explanation: The address of a local object is being

returned by the function but this object’s life-span will

end at the function return, resulting in a dangling

reference.

User Response: Return a different value.

CCN6104 The condition evaluates to a constant

value.

Explanation: The condition is a constant expression

which may result in code that can never be reached or

a loop that may not terminate.

User Response: Change the condition to be

non-constant.

CCN6105 The condition contains a

non-parenthesized assignment.

Explanation: An assignment is being performed in a

condition.

User Response: Change the expression; this warning

is often caused by an assignment being used when an

equality comparison is desired.

CCN6106 The local type ″%1$s″ must not be

used in a declaration with external

linkage.

Where: ″%1$s″ is the type used in the source code

declaration.

Explanation: The function has external linkage but is

using a local type so the linkage signature of the

function cannot be described.

User Response: Use a non-local type in the function

prototype.

CCN6107 An object of abstract class ″%1$s″

cannot be created.

Where: ″%1$s″ is the class.

Explanation: The class has pure virtual functions so

an object of this class type cannot be created.

User Response: Ensure that the class contains no

pure virtual functions.

CCN6108 ″%1$s″ is not a valid type.

Where: ″%1$s″ is the type.

Explanation: The specified type is not a legal type.

User Response: Change the type.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 135

|

CCN6109 The use of undefined class ″%1$s″ is

not valid.

Where: ″%1$s″ is the class.

Explanation: The use requires that the type be

defined and not just declared.

User Response: Define the class.

CCN6110 The referenced type ″%1$s″ contains a

circular reference back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the types in question.

Explanation: The two types contain references to

each other that both require definitions.

User Response: Change the first class to only require

a declaration of the second class.

CCN6111 Only function declarations can have

default arguments.

Explanation: An attempt has been made to have

default arguments for a parameter in a declaration that

is not a function declaration.

User Response: Remove the default initializers.

CCN6112 ″%1$s″ is a pure virtual function.

Where: ″%1$s″ is the name of the function.

Explanation: Informational message for listing pure

virtual functions.

User Response: See the primary message.

CCN6113 The class template name ″%1$s″ must

be followed by a < in this context.

Where: ″%1$s″ is the name of the template class.

Explanation: The template must have its template

arguments specified.

User Response: Add the < and the appropriate

template arguments followed by >.

CCN6114 ″%1$s″ is not allowed as a function

return type.

Where: ″%1$s″ is the type that the function is

attempting to return.

Explanation: The return type of the function is not

valid.

User Response: Change the function return type.

CCN6115 ″%1$s″ cannot be declared to have

type ″void″.

Where: ″%1$s″ is the name of the declaration.

Explanation: The type ″void″ is not valid for this

declaration.

User Response: Change the type.

CCN6116 If ″%1$s″ is a function name, one of its

parameters may contain an undeclared

type name.

Where: ″%1$s″ is the name of the attempted function

or variable declaration.

Explanation: A function declaration that has an

unknown type as a parameter may have been

incorrectly parsed as a variable declaration with a

paren-style initializer.

User Response: See the primary message.

CCN6117 ″%1$s″ cannot use the abstract class

″%2$s″ as the type of an object,

parameter type, or return type.

Where: ″%1$s″ is what is attempting to use the

abstract base class ″%2$s″.

Explanation: The class has pure virtual functions so

an object cannot be created.

User Response: Change the type of the object being

created.

CCN6118 The declaration of ″%1$s″ uses the

undefined class ″%2$s″ when the class

must be complete.

Where: ″%1$s″ is the name of the declaration. ″%2$s″

is the type being declared.

Explanation: The usage requires the class to be

defined.

User Response: Define the class.

CCN6119 The weak declaration of ″%1$s″ must

be public.

Where: ″%1$s″ is the function declaration.

Explanation: Weak attribute must be attached to

declarations that have external linkage.

User Response: Remove offending attribute.

CCN6120 ″using %1$s″ must refer to a member

of a base class.

Where: ″%1$s″ is the argument of the using directive.

Explanation: The using declaration must refer to a

member of a base class.

136 z/OS V1R7.0 XL C/C++ Messages

User Response: Change the declaration.

CCN6121 ″%1$s″ is a class member and can be

declared only in a member declaration.

Where: ″%1$s″ is a class member.

Explanation: A using declaration for a class member

shall be a member declaration

User Response: Remove the using declaration, or

move it into a class derived from the class that contains

the member declaration.

CCN6122 A non-type template parameter cannot

have type ″%1$s″.

Where: ″%1$s″ is the invalid type.

Explanation: Only integral, enumeration, pointer or

reference types (or cv-qualified versions) are allowed as

non-type template parameters.

User Response: Correct the non-type template

parameter.

CCN6123 An initializer is not allowed for ″%1$s″.

Where: ″%1$s″ is the name of the declaration.

Explanation: An initializer has been specified for a

declaration that does not create an object.

User Response: Remove the initializer.

CCN6124 A union cannot contain a static data

member.

Explanation: Static data members have external

linkage. They cannot be used in unions, because

members of a union share the same memory.

User Response: Change the union into a class or

struct, or remove the static data member.

CCN6125 The data member ″%1$s″ cannot have

the same name as its containing class.

Where: ″%1$s″ is the name of a class data member.

Explanation: Every data member of a class must

have a name different from the name of the containing

class

User Response: Change the name of the data

member so that it is not the same as the class name.

CCN6126 The static data member ″%1$s″ is not

allowed in a local class.

Where: ″%1$s″ is a data member of a local class.

Explanation: Since static data members have external

linkage it makes no sense to have one inside a local

class. If this were permitted, the static data member

would be visible in scopes where the class itself is not

visible.

User Response: Remove the static data member or

move the class to global scope.

CCN6127 Only static data members with const

integral or const enumeration type can

specify an initializer in the class

definition.

Explanation: The declaration of a static data member

is not a definition. The definition should appear in a

namespace scope enclosing the class that contains this

member. Only static data members of const integral or

const enumeration type may be initialized inside the

class declaration. In this case, they must still be defined

in the enclosing scope without an initializer.

User Response: Move the initializer to the definition in

the containing scope, or make the type a const integral

or const enumeration.

CCN6128 The bit field ″%1$s″ must have integral

or enumeration type.

Where: ″%1$s″ is the name of the bit field.

Explanation: A bit field is used to represent a

sequence of bits. Only integral or enumeration types

makes sense for bit fields.

User Response: Change the type of the bit field or

remove the bit field.

CCN6129 The ″mutable″ specifier must not be

applied to a member with type ″%1$s″.

Where: ″%1$s″ is the type of the data member.

Explanation: The mutable specifier cannot be applied

to const, static or reference members.

User Response: Remove the mutable specifier from

the data member or change the type of the data

member

CCN6130 A static data member cannot be a

direct or indirect member of an

unnamed class.

Explanation: Static data members are defined and

accessed using the name of the class in which they are

defined. If the class has no name, the static data

member cannot be defined or accessed.

User Response: Give the class a name, or make the

data member non-static.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 137

 | |
 |

 |

 |
 |
 |

 |
 |

CCN6131 A zero-length bit field must not have a

name.

Explanation: Bit fields with zero-length are used to

specify alignment of the next bit field at the boundary of

an allocation unit. They have no data and are therefore

not accessed for any reason.

User Response: Change the length of the bit field or

remove the name.

CCN6132 ″%1$s″ must not be a member of a

union. ″%2$s″ has a non-trivial copy

assignment operator.

Where: ″%1$s″ is the declaration of the union

member. ″%2$s″ is the name of the class that has a

non-trivial copy assignment operator.

Explanation: Unions can only contain members that

do not have copy assignment operators.

User Response: Change the member to be a

POD-type.

CCN6133 A union must not contain a member of

type ″%1$s″.

Where: ″%1$s″ is the type.

Explanation: Reference variables are not allowed in

unions.

User Response: Change the type of the member.

CCN6134 An anonymous %1$s must not have

private or protected members.

Where: %1$s is the keyword union, struct or class.

Explanation: Only public members are allowed in

anonymous aggregates.

User Response: Ensure that all members are public.

CCN6135 The anonymous %1$s member ″%2$s″

must not have the same name as its

containing class.

Where: ″%1$s″ is either union, struct or class. ″%2$s″

is the name of the member.

Explanation: Every data member of a class must

have a name different from the name of the containing

class. Members of anonymous struct, class, or union

are referenced as members of their containing class, so

their name must also be different from the name of

containing class.

User Response: Change the name of the member.

CCN6136 ″%1$s″ cannot be a union member,

because ″%2$s″ has a non-trivial

constructor.

Where: ″%1$s″ is the declaration of the union

member. ″%2$s″ is the name of the class that has a

non-trivial constructor.

Explanation: A trivial constructor is created by the

compiler for a class with: no virtual functions and no

virtual base classes. All the direct base classes of its

class must have trivial constructors, and all of its

nonstatic data members that are of class type have

must have trivial constructors. An object with a

non-trivial constructor may not be a member of a union.

User Response: Change the union to a struct or a

class or remove the member which has a non-trivial

constructor.

CCN6137 ″%1$s″ cannot be a union member,

because ″%2$s″ has a non-trivial

destructor.

Where: ″%1$s″ is the declaration of the union

member. ″%2$s″ is the name of the class that has a

non-trivial destructor.

Explanation: Unions can only contain members that

do not have destructors.

User Response: Change the member to be a

POD-type.

CCN6138 Ellipsis (...) cannot be used for ″%1$s″.

Where: ″%1$s″ is the function.

Explanation: An overloaded operator cannot have an

ellipsis as a parameter.

User Response: Change the ellipsis parameter.

CCN6139 An exception-specification can appear

only in a function or pointer

declaration.

Explanation: An exception-specification is not valid for

this type.

User Response: Remove the exception-specification.

CCN6140 The member ″%1$s″ must be declared

in its containing class definition.

Where: ″%1$s″ is the member.

Explanation: The member that is being defined out of

line is not declared in the class.

User Response: Declare the variable or function as a

member of the class.

138 z/OS V1R7.0 XL C/C++ Messages

||
|

|
|
|
|

|
|

CCN6141 An anonymous %1$s can define only

non-static data members.

Where: ″%1$s″ is the keyword union, struct, or class.

Explanation: Static members are not allowed in

anonymous aggregates.

User Response: Remove the static member

declaration.

CCN6142 ″%1$s″ is ill-formed because ″%2$s″

does not have a unique final overrider.

Where: ″%1$s″ is the name of the derived class.

″%2$s″ is the qualified name of the virtual function with

no final overrider.

Explanation: The virtual function has more than one

final overrider because of virtual base classes.

User Response: Ensure that only base class has a

final overrider for the function or define the virtual

function in the class.

CCN6143 ″%1$s″ cannot be used as a base class

because it contains a zero-dimension

array.

Where: ″%1$s″ is the base class.

Explanation: The base class cannot be used since it

contains an array that has zero elements.

User Response: Change the base class.

CCN6144 All array dimensions for non-static

members must be specified and be

greater than zero.

Explanation: An array dimension is missing or is

negative.

User Response: Ensure that all dimensions are

specified as non-negative numbers.

CCN6145 A using-directive cannot appear in a

class scope.

Explanation: Using directives can only be specified in

namespace or lexical block scope.

User Response: Remove the using directive.

CCN6146 The enumerator ″%1$s″ cannot have

the same name as its containing class.

Where: ″%1$s″ is the enumerator.

Explanation: This is a name collision.

User Response: Change the name of either the

enumerator or the class.

CCN6147 ″%1$s″ cannot be declared as inline or

static.

Where: ″%1$s″ is the function name.

Explanation: There are restrictions on ″main″ since it

is the program starting point.

User Response: Remove the inline or static

specifiers.

CCN6148 The non-member function ″%1$s″

cannot be declared ″%2$s″.

Where: ″%1$s″ is the name of the function. ″%2$s″ is

the specifier.

Explanation: The specifier is only valid for member

functions.

User Response: Remove the specifier.

CCN6149 ″%1$s″ is not originally declared in

namespace ″%2$s″.

Where: ″%1$s″ is the declared name. ″%2$s″ is the

namespace.

Explanation: The qualifiers specify a namespace

which does not have a corresponding declaration.

User Response: Change the qualifiers to refer to the

proper namespace.

CCN6150 A constructor for ″%1$s″ cannot be

declared ″%2$s″.

Where: ″%1$s″ is the struct, or class. ″%2$s″ is the

specifier.

Explanation: The specifier is not valid for a

constructor.

User Response: Remove the specifier.

CCN6151 When the first parameter to the

constructor has type ″%1$s″, the

constructor must have other

parameters without default arguments.

Where: ″%1$s″ is the type.

Explanation: This is an ill-formed copy constructor

since the first parameter is not a reference.

User Response: Change the first parameter to be a

reference to make this a copy constructor.

CCN6152 The destructor for ″%1$s″ cannot be

declared ″%2$s″.

Where: ″%1$s″ is the struct, or class. ″%2$s″ is the

specifier.

Explanation: The specifier is not valid for a destructor.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 139

User Response: Remove the specifier.

CCN6153 A destructor must not have a return

type or parameter.

Explanation: A return type or parameter has been

specified for a destructor.

User Response: Remove the return type or

parameter.

CCN6154 The destructor ″%1$s″ must not be

declared as a template.

Where: ″%1$s″ is the destructor.

Explanation: A destructor must not be a member

template.

User Response: Remove or change the destructor to

be a regular non-template destructor.

CCN6155 The static member function ″%1$s″

must not be declared ″%2$s″.

Where: ″%1$s″ is the name of the function. ″%2$s″ is

the specifier.

Explanation: A static function cannot have

cv-qualifiers.

User Response: Remove the cv-qualifiers.

CCN6156 A conversion operator must not have

parameters.

Explanation: A conversion operator has been

specified with parameters.

User Response: Remove the parameters.

CCN6157 The conversion operator of type

″%1$s″ will never be directly called to

perform a conversion.

Where: ″%1$s″ is the type.

Explanation: A conversion operator has been

specified with void type.

User Response: Change the void specifier to another

type.

CCN6158 The function template ″%1$s″ must not

be declared as virtual.

Where: ″%1$s″ is the function.

Explanation: A member function template cannot be

virtual.

User Response: Change the function so that it is not

virtual or not a template.

CCN6159 The ″%1$s″ qualifier must not be

applied to ″%2$s″.

Where: ″%1$s″ is the qualifier. ″%2$s″ is the

declarator.

Explanation: The qualifier is not valid for this

declaration.

User Response: Remove the qualifier.

CCN6160 The virtual function ″%1$s″ is not

allowed in a union.

Where: ″%1$s″ is the name of the function.

Explanation: Unions cannot have virtual member

functions.

User Response: Remove the virtual specifier.

CCN6161 The default arguments for ″%1$s″ must

not be followed by uninitialized

parameters.

Where: ″%1$s″ is the name of the function.

Explanation: All parameters following a parameter

with a default initializer must also have default

initializers.

User Response: Add default initializers for all

parameters after the first parameter with a default

initializer.

CCN6162 The pure-specifier (= 0) is not valid for

the non-virtual function ″%1$s″.

Where: ″%1$s″ is the name of the function.

Explanation: The pure-specifier (= 0) is used to state

that a virtual function does not have a definition. It has

no meaning for non-virtual functions.

User Response: Make the function virtual or remove

the pure-specifier.

CCN6163 The exception-specification for ″%1$s″

is less restrictive than the

exception-specification for ″%2$s″.

Where: ″%1$s″ is the overriding function. ″%2$s″ is

the original function.

Explanation: The exception specification for an

overriding function must not list more types than the

exception specification for the original function.

User Response: Match the exception specification for

the overriding function with the original function or

modify the exception specification of the original

function.

140 z/OS V1R7.0 XL C/C++ Messages

CCN6164 The return type for ″%1$s″ differs from

the return type of ″%2$s″ that it

overrides.

Where: ″%1$s″ and ″%2$s″ are the names of the

functions.

Explanation: When overriding a function, the name,

parameters and the return type should match.

User Response: Modify the return type of the

overriding function to match the original function.

CCN6165 The virtual function ″%1$s″ is not a

valid override of ″%2$s″ because the

qualifiers are not compatible.

Where: ″%1$s″ is the function. ″%2$s″ is the function

being overridden.

Explanation: The return for an override must be more

cv-qualified than the function in the base class.

User Response: Add the missing qualifiers to the

override.

CCN6166 The virtual function ″%1$s″ is not a

valid override because ″%2$s″ is an

inaccessible base class of ″%3$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the base

class. ″%3$s″ is the derived class.

Explanation: The override is not correct because the

base class containing the function is not accessible.

User Response: Remove the override.

CCN6167 The virtual function ″%1$s″ is not a

valid override because ″%2$s″ is an

ambiguous base class of ″%3$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the base

class. ″%3$s″ is the derived class.

Explanation: The override is not correct because

there are multiple base classes containing the function.

User Response: Remove the override.

CCN6168 The virtual function ″%1$s″ is not a

valid override because ″%2$s″ is not a

base class of ″%3$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the base

class. ″%3$s″ is the derived class.

Explanation: The override is not correct because the

return type is not complete nor the containing class.

User Response: Change the return type to be a

complete class or the containing class.

CCN6169 The function template ″%1$s″ cannot

have default template arguments.

Where: ″%1$s″ is the function template.

Explanation: Default template arguments are not

allowed on a function template.

User Response: Remove the default template

arguments.

CCN6170 Both ″main″ and ″WinMain″ are

defined.

Explanation: Only one of ″main″ and ″WinMain″ can

be defined in a program.

User Response: Remove either ″main″ or ″WinMain″.

CCN6171 The friend function ″%1$s″ cannot be

defined in a local class.

Where: ″%1$s″ is the friend function.

Explanation: A class defined in a function body can

not contain a definition of a friend function.

User Response: Remove the definition of the friend in

the local class.

CCN6172 More than one function ″%1$s″ has

non-C++ linkage.

Where: ″%1$s″ is the function.

Explanation: Only functions with C++ linkage can be

overloaded.

User Response: Change the name of the function so

that it is unique.

CCN6173 ″%1$s″ is not a valid parameter type.

Where: ″%1$s″ is the type.

Explanation: The type of the parameter is not valid.

User Response: Change the type of the parameter.

CCN6174 The member ″%1$s″ is not declared as

a template in its containing class

definition.

Where: ″%1$s″ is the member.

Explanation: This out-of-line template class member

does not exist in the class template.

User Response: Declare the member in the class

template or remove the out-of-line declaration.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 141

CCN6175 The class template partial

specialization ″%1$s″ does not match

the primary template ″%2$s″.

Where: ″%1$s″ is the partial specialization, ″%2$s″ is

the primary template.

Explanation: Either both the primary template and the

partial specialization must be unions or neither of them

must be unions.

User Response: Make the class key match.

CCN6176 ″%1$s″ is declared with a conflicting

linkage.

Where: ″%1$s″ is the declarator.

Explanation: The linkage is not compatible with the

linkage specified in a previous declaration.

User Response: Change the linkage of one of the

declarations so that they are compatible.

CCN6177 Only variables with static storage can

be declared to have thread local

storage.

Explanation: The __thread is specified but the

declaration is not for a variable, or the variable is not

declared static.

User Response: Remove the __thread specifier.

CCN6178 ″%1$s″ is declared to have both %2$s

and %3$s linkage.

Where: ″%1$s″ is the declarator. ″%2$s″ is the linkage

specifier. ″%3$s″ is the linkage specifier.

Explanation: The linkage is not compatible with the

linkage specified in a previous declaration.

User Response: Change the linkage of one of the

declarations so that they are compatible.

CCN6179 ″%1$s″ contains conflicting linkages.

Where: ″%1$s″ is the declaration.

Explanation: The linkage is not compatible with the

linkage specified in a previous declaration.

User Response: Change the linkage of one of the

declarations so that they are compatible.

CCN6180 Namespace ″%1$s″ must be global.

Where: ″%1$s″ is the namespace.

Explanation: A namespace can only be declared

within another namespace or in the global namespace.

User Response: Move the namespace to be within

another namespace.

CCN6181 The number of function parameters

exceeds the target operating system

limit of %1$s.

Where: %1$s is the maximum number of function

parameters allowed.

Explanation: Too many function parameters have

been specified.

User Response: Reduce the number of function

parameters.

CCN6182 ″%1$s″ must have two or more

parameters.

Where: ″%1$s″ is the function.

Explanation: The declaration of operator new does

not have enough parameters.

User Response: Ensure that the function has at least

two parameters.

CCN6183 The non-member function ″%1$s″ must

have at least one parameter of type

class or enumeration, or a reference to

class or enumeration.

Where: ″%1$s″ is the function.

Explanation: The operator overload does not have the

correct type for its parameters.

User Response: Change the types of the parameters.

CCN6184 Wrong number of parameters for

″%1$s″.

Where: ″%1$s″ is the function.

Explanation: The declaration for the operator overload

does not have the correct number of parameters.

User Response: Change the declaration to have the

proper number of parameters.

CCN6185 ″%1$s″ must be a non-static member

function.

Where: ″%1$s″ is the function.

Explanation: The operator overload is only valid as a

non-static member function.

User Response: Change the declaration to be a

non-static member function.

CCN6186 The last parameter for postfix ″%1$s″

must be of type ″int″.

Where: ″%1$s″ is the function.

Explanation: The last parameter for the operator

overload must be of type int.

142 z/OS V1R7.0 XL C/C++ Messages

User Response: Change the last parameter to be of

type int.

CCN6187 ″%1$s″ must not have default

arguments.

Where: ″%1$s″ is the function.

Explanation: The overloaded operator must not have

default arguments.

User Response: Remove the default arguments.

CCN6188 The return type for the ″%1$s″ must

not be the containing class.

Where: ″%1$s″ is the operator.

Explanation: The return type for the overloaded

function cannot be the containing class.

User Response: Change the return type.

CCN6189 The return type for ″operator new″

must be ″void *″.

Explanation: The specified return type is invalid.

User Response: Change the return type.

CCN6190 The first parameter for ″operator new″

must have type ″size_t″.

Explanation: The type of the first parameter is

incorrect.

User Response: Change the type of the first

parameter.

CCN6191 The first parameter of ″operator new″

cannot have a default argument.

Explanation: It is invalid to specify a default argument

for ″operator new″.

User Response: Remove the default argument.

CCN6192 ″%1$s″ must not be declared static in

global scope.

Where: ″%1$s″ is the function.

Explanation: Overloaded versions of ″operator new″

and ″operator delete″ must not be declared static.

User Response: Remove the static specifier.

CCN6193 The member function ″%1$s″ must not

be declared virtual.

Where: ″%1$s″ is the member function.

Explanation: ″Operator new″ and ″operator delete″

cannot be declared virtual in a member list.

User Response: Remove the virtual specifier.

CCN6194 ″%1$s″ must be a class member

function or a global function.

Where: ″%1$s″ is the function.

Explanation: The scope for the overloaded ″operator

new″ or ″operator delete″ is invalid.

User Response: Remove the declaration.

CCN6195 The return type for ″operator delete″

must be ″void″.

Explanation: A return type other than ″void″ has been

specified for ″operator delete″.

User Response: Change the return type to be ″void″.

CCN6196 The return type cannot be ″%1$s″

because ″%2$s″ does not have an

″operator->″ function.

Where: ″%1$s″ is the type. ″%2$s″ is the class or

struct.

Explanation: The return type must have an

″operator->″ function.

User Response: Add an ″operator->″ function to the

return type.

CCN6197 Parameter number %1$s for ″operator

delete″ must have type ″%2$s″.

Where: ″%1$s″ is the function parameter number.

″%2$s″ is the required type.

Explanation: The parameter has a wrong type.

User Response: Change the parameter to the

required type.

CCN6198 Too many parameters are specified for

″operator delete″.

Explanation: There are too many parameters

specified.

User Response: Remove the extra parameters.

CCN6199 ″main″ must have a return type of type

″int″.

Explanation: A return type other than ″int″ has been

specified for ″main″.

User Response: Change the return type of ″int″ to be

″int″.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 143

 | |
 |

 |
 |

 |

 |
 |

CCN6200 An ellipsis (...) handler must not be

followed by another handler.

Explanation: An ellipsis handler will match all thrown

objects, and the handlers are tried in the order that they

are specified. Therefore the ellipsis handler must be

last.

User Response: Move the ellipsis handler to be the

last handler.

CCN6201 A ″new″ expression with type ″%1$s″

must have an initializer.

Where: ″%1$s″ is the type.

Explanation: A const type must be initialized even

when it is allocated with new.

User Response: Add an initializer.

CCN6202 No candidate is better than ″%1$s″.

Where: ″%1$s″ is the match.

Explanation: Informational message indicating one of

the best matches for operator overloading.

User Response: See the primary message.

CCN6203 The conversion from ″%1$s″ to ″%2$s″

matches more than one conversion

function.

Where: ″%1$s″ and ″%2$s″ are the types.

Explanation: There is more than one conversion

sequence so it is an ambiguous conversion.

User Response: Provide a closer matching

conversion.

CCN6204 The conversion matches ″%1$s″.

Where: ″%1$s″ is the conversion sequence.

Explanation: Informational message indicating a

matched conversion sequence.

User Response: See the primary message.

CCN6205 The error occurred while converting to

parameter %1$s of ″%2$s″.

Where: ″%1$s″ is the parameter number. ″%2$s″ is

the function.

Explanation: Informational message about conversion

sequences.

User Response: See the primary message.

CCN6206 The class template instantiation of

″%1$s″ is ambiguous.

Where: ″%1$s″ is the template.

Explanation: The instantiation cannot be performed

since the template is not uniquely identified.

User Response: Qualify the instantiation to make it

uniquely identify a template.

CCN6207 The template arguments match ″%1$s″.

Where: ″%1$s″ is the matched template.

Explanation: Informational message indicating what

the template arguments match.

User Response: See the primary message.

CCN6208 The use of ″%1$s″ is not valid.

Where: ″%1$s″ is the invalid name.

Explanation: The name is being incorrectly used.

User Response: Fix the usage of the name.

CCN6209 The name lookup in the context of

″%1$s″ resolved to ″%2$s″.

Where: ″%1$s″ is the context. ″%2$s″ is the

resolution.

Explanation: Informational message indicating the

resolution of the name.

User Response: See the primary message.

CCN6210 Name lookup in the context of the

expression resolved to ″%1$s″.

Where: ″%1$s″ is the resolution.

Explanation: Informational message indicating what

the resolution of the name.

User Response: See the primary message.

CCN6211 The conversion type must represent

the same type in the context of the

expression as in the context of the

class of the object expression.

Explanation: The conversion type is resolved in the

left side of the member access and in the current scope

and it can only resolve in one or it must resolve to the

same entity in both.

User Response: Change the context so that the

lookups match.

144 z/OS V1R7.0 XL C/C++ Messages

CCN6212 The type of the conversion function

cannot be resolved.

Explanation: Some names in the type of the

conversion function are not declared.

User Response: Change the conversion function so

that all elements are declared.

CCN6213 The temporary for the throw

expression is of type ″%2$s″ and

cannot be initialized with an

expression of type ″%1$s″.

Where: ″%2$s″ is the type of the throw expression.

″%1$s″ is the initialization type.

Explanation: Throw expressions throw a copy (rather

than the object itself) and the temporary cannot be

initialized with the given expression.

User Response: Change the initializer or provide

appropriate constructors.

CCN6214 The member expression resolves to

the type ″%1$s″.

Where: ″%1$s″ is the type being accessed.

Explanation: The left side of the class member

access refers to type ″%1$s″.

User Response: Change the class member access

expression.

CCN6215 ″%1$s″ must not have an initializer list.

Where: ″%1$s″ is the function.

Explanation: Only constructors can have constructor

initializer lists and this function is not a constructor.

User Response: Remove the constructor initializer list.

CCN6216 The unqualified member ″%1$s″ must

be qualified with ″%2$s::″ and

preceded by an ″&″ to form an

expression with type

pointer-to-member.

Where: ″%1$s″ is the member. ″%2$s″ are the

qualifiers.

Explanation: A pointer-to-member expression is of the

form: ″&className::member ″.

User Response: Add the qualifiers and address

operator.

CCN6217 The second and third operands of the

conditional operators must not both be

throw expressions.

Explanation: Only one of the second and third

operands in a ternary operator can be a throw

expression.

User Response: Change one of the second and third

operators to not be a throw expression or replace the

ternary expression with a conditional statement.

CCN6218 When defining the implicitly declared

function ″%1$s″, the header ″<new>″

should be included.

Where: ″%1$s″ is the function being implicitly

declared.

Explanation: The header ″<new>″ contains

declarations that are necessary for creating some

implicitly declared functions and must therefore be

included using the #include directive.

User Response: Include the header ″<new>″ using an

include directive.

CCN6219 ″%1$s″ must be preceded by an ″&″ to

form an expression with type

pointer-to-member.

Where: ″%1$s″ is the member.

Explanation: A non-static member must be associated

with an object.

User Response: Add the address operator.

CCN6220 The qualified type name ″%1$s″ used

in the explicit destructor call does not

match the destructor type ″~%2$s″.

Where: ″%1$s″ is the expected destructor

specification. ″~%2$s″ is the destructor name.

Explanation: The form used to indicate a destructor in

a pseudo-destructor call is not valid.

User Response: Change the specification of the

destructor.

CCN6221 The explicit destructor call must be

invoked for an object.

Explanation: An attempt is being made to call a

destructor without an object.

User Response: Call the destructor as a member

access on an object.

CCN6222 The destructor type ″%1$s″ does not

match the object type ″%2$s″.

Where: ″%1$s″ is the type of the destructor. ″%2$s″ is

the type of the object.

Explanation: The destructor indicated does not match

the type of the object.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 145

 | |
 |
 |

 |
 |

 |
 |

 |
 |

User Response: Change the destructor to match the

type of the object.

CCN6223 ″%1$s″ is not valid as an identifier

expression.

Where: ″%1$s″ is the invalid form for an identifier.

Explanation: The form of the identifier is invalid.

User Response: Change the form to a valid form for

an identifier.

CCN6224 ″%1$s″ cannot be dynamically cast to

″%2$s″ because ″%1$s″ does not

declare or inherit virtual functions.

Where: ″%1$s″ is the source class. ″%2$s″ is the

target class.

Explanation: Only polymorphic classes can be

dynamically cast.

User Response: Remove the dynamic cast.

CCN6225 Name lookup did not find ″%1$s″ in the

context of the template definition.

Where: ″%1$s″ is the unresolved name.

Explanation: This may cause an error when the

template is instantiated. Declarations for non-dependent

names are resolved in the template definition.

User Response: Correct the unresolved name by

removing the reference or declaring it.

CCN6226 Declarations for non-dependent names

are resolved in the template definition.

Explanation: This is a submessage.

User Response: See the primary message.

CCN6227 ″%1$s″ does not depend on a template

argument.

Where: ″%1$s″ is the name that is not dependent on

the template.

Explanation: This is a submessage.

User Response: See the primary message.

CCN6228 Argument number %1$s is an lvalue of

type ″%2$s″.

Where: ″%1$s″ is the argument number. ″%2$s″ is the

lvalue type.

Explanation: Informational message describing the

type of a parameter to a function.

User Response: See the primary message.

CCN6229 Argument number %1$s is an rvalue of

type ″%2$s″.

Where: ″%1$s″ is the argument number. ″%2$s″ is the

rvalue type.

Explanation: Informational message describing the

type of a parameter to a function.

User Response: See the primary message.

CCN6230 Argument number 1 is the implicit

″this″ argument.

Explanation: Informational message describing the

implicit ″this″ argument in a member function.

User Response: See the primary message.

CCN6231 The conversion from argument number

%1$s to ″%2$s″ uses %3$s.

Where: %1$s is the argument number. ″%2$s″ is the

parameter type. %3$s is more detailed text.

Explanation: Informational message describing a

conversion sequence.

User Response: See the primary message.

CCN6232 ″″%1$s″″

Where: ″%1$s″ is more detailed generated text.

Explanation: Informational message describing a

standard conversion sequence.

User Response: See the primary message.

CCN6233 ″″%1$s″ followed by ″%2$s″″

Where: ″%1$s″ is more detailed generated text.

″%2$s″ is more detailed generated text.

Explanation: Informational message describing a

standard conversion sequence.

User Response: See the primary message.

CCN6234 ″″%1$s″ followed by ″%2$s″ followed

by ″%3$s″″

Where: ″%1$s″ is more detailed generated text.

″%2$s″ is more detailed generated text. ″%3$s″ is more

detailed generated text.

Explanation: Informational message describing a

standard conversion sequence.

User Response: See the primary message.

146 z/OS V1R7.0 XL C/C++ Messages

CCN6235 the user-defined conversion ″%1$s″

Where: ″%1$s″ is the name of a user-defined

conversion function.

Explanation: Informational message describing a

user-defined conversion sequence.

User Response: See the primary message.

CCN6236 the user-defined conversion ″%1$s″

followed by %2$s

Where: ″%1$s″ is the name of a user-defined

conversion function. %2$s is more detailed generated

text.

Explanation: Informational message describing a

user-defined conversion sequence.

User Response: See the primary message.

CCN6237 %1$s followed by the user-defined

conversion ″%2$s″

Where: %1$s is more detailed generated text. ″%2$s″

is the name of a user-defined conversion function.

Explanation: Informational message describing a

user-defined conversion sequence.

User Response: See the primary message.

CCN6238 %1$s followed by the user-defined

conversion ″%2$s″ followed by %3$s

Where: %1$s is more detailed generated text. ″%2$s″

is the name of a user-defined conversion function. %3$s

is more detailed generated text.

Explanation: Informational message describing a

user-defined conversion sequence.

User Response: See the primary message.

CCN6239 an ellipsis conversion sequence

Explanation: Informational message about a

conversion sequence.

User Response: See the primary message.

CCN6240 the resolved overloaded function

″%1$s″

Where: ″%1$s″ is the function.

Explanation: Informational message about a

conversion sequence.

User Response: See the primary message.

CCN6255 The local label ″%1$s″ has already

been declared as a label.

Where: ″%1$s″ is a invalid local label.

Explanation: An attempt was made to declare a local

label in the same scope as an existing label or local

label.

User Response: Remove the local label declaration.

CCN6257 An rvalue of type ″%1$s″ cannot be

converted to an rvalue of type

__complex__.

Where: ″%1$s″ is the type of expression.

Explanation: There is no valid conversion sequence

for converting the expression to an expression of type

__complex__.

User Response: Change the expression.

CCN6258 Conversion from ″%1$s″ to ″%2$s″

may cause truncation.

Where: ″%1$s″ is a C++ type ″%2$s″ is a C++ type

Explanation: The specified conversion from a wider to

a narrower type may cause the loss of significant data.

User Response: Remove the conversion from a wider

to a narrower type.

CCN6259 The initializer list has too few

initializers.

Explanation: An initializer list should have the same

number of initializers as the number of elements to

initialize.

User Response: Add some initializers or decrease the

number of elements to initialize.

CCN6260 An object of type ″%2$s″ cannot be

constructed from an rvalue of type

″%1$s″.

Where: ″%2$s″ is the type being constructed. ″%1$s″

is the type of the expression.

Explanation: There is no valid way to construct the

desired object from the given type.

User Response: Change the expression.

CCN6261 The qualified member ″%1$s″ should

not be in parentheses when forming an

expression with type

pointer-to-member.

Where: ″%1$s″ is the member.

Explanation: Informational message indicating that

removing the parentheses may resolve the error.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 147

User Response: See the primary message.

CCN6262 The scope of ″%1$s″ extends only to

the end of the for-statement.

Where: ″%1$s″ is the variable.

Explanation: Informational message indicating the

scoping of variables introduced in for-statements. This

behavior is different in the language standard than in

previous levels of the working draft.

User Response: Move the declaration above the

for-statement.

CCN6263 Build with

″lang(ISOForStatementScopes, no)″ to

extend the scope of the

for-init-statement declaration.

Explanation: Informational message describing a

compatibility option.

User Response: See the primary message.

CCN6264 The template argument must be

preceded by an ampersand (&).

Explanation: The template argument is expected to

be the address of an object.

User Response: Add the address operator.

CCN6265 The template argument must be the

address of an object or function with

extern linkage.

Explanation: For example string literals are not

allowed because they have internal linkage.

User Response: Correct the template argument.

CCN6266 A template argument with type ″%1$s″

cannot be converted to a template

parameter with type ″%2$s″.

Where: ″%1$s″ is the argument type. ″%2$s″ is the

parameter type.

Explanation: Only certain standard conversion

sequences can be applied.

User Response: Correct the template argument type.

CCN6267 ″%1$s″ is declared with internal

linkage in source ″%2$s″.

Where: ″%1$s″ is the variable. ″%2$s″ is the source.

Explanation: Informational message about where an

object is declared with internal linkage.

User Response: See the primary message.

CCN6268 ″%1$s″ conflicts with the definition in

source ″%2$s″ because ″%3$s″ has

internal linkage.

Where: ″%1$s″ is the variable or function. ″%2$s″ is

the source. ″%3$s″ is the other variable or function with

internal linkage.

Explanation: The variable or function is defined as

static in another source file.

User Response: Remove the static from the other

definition.

CCN6269 The template argument for the

non-type template parameter of type

″%1$s″ must be an integral constant

expression.

Where: ″%1$s″ it the template parameter type.

Explanation: Only constant expressions are allowed

for integral or enumeration non-type template

arguments.

User Response: Correct the non-type template

parameter.

CCN6270 A function or object name must be

expressed as an id-expression.

Explanation: A function or object name used as a

non-type template argument must be an id-expression

with external linkage.

User Response: Correct the template argument to be

a name with external linkage.

CCN6271 The ″sizeof″ operator cannot be

applied to a bit field.

Explanation: It is invalid to use the ″sizeof″ operator

on a bit field.

User Response: Remove the ″sizeof″ operator.

CCN6272 The incomplete class ″%1$s″ is not a

valid ″catch″ type.

Where: ″%1$s″ is the class.

Explanation: Only complete types can be used in the

type for catch handlers but the specified type has only

been declared and not defined.

User Response: Define the type.

CCN6273 A pointer or reference to the

incomplete class ″%1$s″ is not a valid

″catch″ type.

Where: ″%1$s″ is the incomplete class type.

Explanation: Only pointers to complete types can be

used in the type for catch handlers but the type has

148 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |

only been declared and not defined.

User Response: Change the type in the catch or

define the class.

CCN6274 The ″catch(%1$s)″ cannot be reached

because of a previous ″catch(%2$s)″.

Where: ″%1$s″ is the current handler. ″%2$s″ is the

previous handler.

Explanation: Catch handlers are tried sequentially and

this catch is unreachable because a previous handler

catches everything that this handler can catch.

User Response: Remove or change the handler.

CCN6275 Too many explicit template arguments

are specified for ″%1$s″.

Where: ″%1$s″ is the template.

Explanation: The number and type of template

arguments must match the template parameters.

User Response: Remove the extra template

arguments.

CCN6276 The explicit template specialization

″%1$s″ matches more than one

template.

Where: ″%1$s″ is the explicit specialization.

Explanation: The explicit specialization of this function

matches multiple function templates. Probably because

of allowable non-type template argument conversions.

User Response: Remove the explicit specialization,

remove one of the primary templates, or add

namespaces to separate the templates.

CCN6277 The explicit template specialization

″%1$s″ does not match any template.

Where: ″%1$s″ is the explicit specialization.

Explanation: An explicit specialization must specialize

a primary template.

User Response: Declare the primary template or

correct the explicit specialization.

CCN6278 The deduced type ″%1$s″ does not

match the specialized type ″%2$s″.

Where: ″%1$s″ is the deduced type, ″%2$s″ is the

specialized type.

Explanation: The template argument type deduced

from the function call does not match the type in the

specialization.

User Response: Explicitly specify the template

arguments or change the call.

CCN6279 A return statement cannot appear in a

handler of the function-try-block of a

constructor.

Explanation: A return statement is in a handler for a

function-try-block of a constructor.

User Response: Remove the return statement.

CCN6280 An rvalue of type ″%1$s″ cannot be

converted to ″%2$s″.

Where: ″%1$s″ is the original type. ″%2$s″ is the

target type.

Explanation: No conversion sequence exists for

converting ″%1$s″ to ″%2$s″.

User Response: Change the types or provide

conversion functions.

CCN6281 ″offsetof″ cannot be applied to ″%1$s″.

It is not a POD (plain old data) type.

Where: ″%1$s″ is the type.

Explanation: ″offsetof″ cannot be applied to a class

that is not a POD. POD types do not have non-static

pointers-to-member, non-POD members, destructors nor

copy assignment operators (ie, they are similar to

C-style structs).

User Response: Change the type to be a POD type.

CCN6282 An enumerator from an enumeration

that is in error is being referenced.

Explanation: This is a cascading error caused by an

error in the definition of the enumeration.

User Response: Fix the error in the definition of the

enumeration.

CCN6283 ″%1$s″ is not a viable candidate.

Where: ″%1$s″ is the potential resolution.

Explanation: Informational message indicating that

this was not a viable candidate for overload resolution.

User Response: See the primary message.

CCN6284 Predefined ″%1$s″ is not a viable

candidate.

Where: ″%1$s″ is the potential resolution.

Explanation: Informational message indicating that

this was not a viable candidate for overload resolution.

User Response: See the primary message.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 149

CCN6285 The specialization matches ″%1$s″.

Where: ″%1$s″ is the matched specialization.

Explanation: Informational message indicating what a

specialization matches.

User Response: See the primary message.

CCN6286 The specialization does not match

″%1$s″.

Where: ″%1$s″ is what the specialization cannot

match.

Explanation: Informational message indicating what a

specialization cannot match.

User Response: See the primary message.

CCN6287 ″%1$s″ has internal linkage but is

undefined.

Where: ″%1$s″ is the undefined member variable or

static function.

Explanation: A static member variable or static

function must be defined.

User Response: Define the member variable or static

function.

CCN6288 The explicit template instantiation

″%1$s″ matches more than one

template.

Where: ″%1$s″ is the explicit instantiation.

Explanation: The explicit instantiation of this function

matches multiple function templates. Probably because

of allowable non-type template argument conversions.

User Response: Remove the explicit instantiation,

remove one of the primary templates, or add

namespaces to separate the templates.

CCN6289 The implicit object parameter of type

″%2$s″ cannot be initialized with an

implied argument of type ″%1$s″.

Where: ″%2$s″ is the implicit object parameter type.

″%1$s″ is the implied argument type.

Explanation: A function is being called implicitly and

the parameters do not match the expected parameters.

User Response: Provide an explicit conversion

function.

CCN6290 An rvalue cannot be converted to a

reference to a non-const type.

Explanation: Informational message indicating that the

target of the conversion must be const.

User Response: See the primary message.

CCN6291 To initialize the reference with an

rvalue, ″%1$s″ must have a copy

constructor with a parameter of type

″%2$s″.

Where: ″%1$s″ is the type of the object. ″%2$s″ is the

type of the parameter.

Explanation: Informational message indicating that a

copy constructor must be supplied.

User Response: See the primary message.

CCN6292 Static declarations are not considered

for a function call if the function is not

qualified.

Explanation: Informational message describing why a

static function cannot be considered.

User Response: See the primary message.

CCN6293 The explicit instantiation matches

″%1$s″.

Where: ″%1$s″ is the matched explicit instantiation.

Explanation: Informational message about matching

of explicit instantiations.

User Response: See the primary message.

CCN6294 The explicit instantiation does not

match ″%1$s″.

Where: ″%1$s″ is the explicit instantiation that is not

matched.

Explanation: Informational message about matching

of explicit instantiations.

User Response: See the primary message.

CCN6295 The explicit template instantiation

″%1$s″ does not match any template.

Where: ″%1$s″ is the explicit template instantiation.

Explanation: There is no primary template matching

this explicit template instantiation.

User Response: Remove the explicit template

instantiation or declare the primary template..

CCN6296 The const object ″%1$s″ requires

″%2$s″ to have a user-declared default

constructor.

Where: ″%1$s″ is the const object. ″%2$s″ is the

class.

Explanation: This class has a const object so the

class must have a user-declared default constructor.

User Response: Provide a user default-constructor.

150 z/OS V1R7.0 XL C/C++ Messages

CCN6297 The const object ″%1$s″ needs an

initializer or requires ″%2$s″ to have a

user-declared default constructor.

Where: ″%1$s″ is the const object. ″%2$s″ is the

class.

Explanation: This class has a const object so the

class must have a user-declared default constructor.

User Response: Provide a user default-constructor.

CCN6298 ″%1$s″ needs to be declared in the

containing scope to be found by name

lookup.

Where: ″%1$s″ is the class.

Explanation: Informational message about declaring

friend classes in the containing scope for the class to be

found by name lookup.

User Response: Declare the class in the enclosing

scope.

CCN6299 ″%1$s″ is undefined. Every variable of

type ″%2$s″ will assume ″%3$s″ has

no virtual bases and does not use

multiple inheritance.

Where: ″%1$s″ is the undefined class. ″%2$s″ is the

pointer type. ″%3$s″ is the class.

Explanation: The pointer refers to an incomplete class

so it will be assumed that the class has no virtual bases

nor multiple inheritance.

User Response: Define the class.

CCN6300 ″%1$s″ includes the file ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the two files in the

include chain.

Explanation: This is a submessage. This message is

used to specify that a certain file includes the file

″%2$s″.

User Response: See the primary message.

CCN6301 The previous error occurs during the

processing of file ″%1$s″.

Where: ″%1$s″ is the file.

Explanation: This is a submessage.

User Response: See the primary message.

CCN6302 The conflicting declaration was

encountered during the processing of

the file ″%1$s″.

Where: ″%1$s″ is the file name.

Explanation: This message describes the include

hierarchy that caused the preceding error.

User Response: Remove the conflicting declaration.

CCN6303 ″%1$s″ is not visible.

Where: ″%1$s″ is the declaration.

Explanation: This message indicates that the

declaration is not visible at the current location.

User Response: Move the declaration to a position

prior to the current location.

CCN6304 ″%1$s″ is not visible from ″%2$s″.

Where: ″%1$s″ is the declaration. ″%2$s″ is the

location.

Explanation: This message indicates that the

declaration is not visible at the current location.

User Response: Move the declaration to a position

prior to the current location.

CCN6305 ″%1$s″ is not complete when included

by ″%2$s″.

Where: ″%1$s″ is the class. ″%2$s″ is the header file.

Explanation: The class or struct is incomplete when

included from a particular header file location.

User Response: Instantiate the direct nullifier of the

virtual function table operator.

CCN6393 ″pragma %1$s″ must be specified in

namespace scope. The pragma is

ignored.

Where: ″%1$s″ is the name of the ignored pragma.

Explanation: The pragma is ignored because it has

been specified in an invalid scope such as a function

body or class member list.

User Response: Move the pragma to namespace

scope.

CCN6394 The ″pragma %1$s″ and ″pragma

%2$s″ are incompatible for the same

declaration. The ″pragma %3$s″ is

ignored.

Where: ″%1$s″ and ″2$s″ are the names of two

conflicting pragma derectives. ″%3$s″ is the name of

the ignored pragma.

Explanation: The ″pragma ″%1$s″ is not supported

with the use of ″pragma %2$s″.

User Response: Remove one of the pragma

directives for the declaration.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 151

 | |
 |
 |

 |

 |
 |
 |

 |
 |

 | |
 |
 |
 |

 |
 |
 |

 |
 |

 |
 |

CCN6395 The pragma argopt and pragma

descriptor are incompatible for the

same declaration.

Explanation: Only one of the pragmas is supported

for each declaration.

User Response: Remove either the pragma

descriptor, or the pragma argopt for the declaration.

CCN6396 The value given for ″pragma priority″

must be a constant integral expression

in the range between 101 and 65535.

The pragma is ignored.

Explanation: The pragma is ignored when the system

supports GNU Attributes because the value is not a

constant integral expression in the range between 101

and 65535.

User Response: Change the value to evaluate to the

required range.

CCN6397 The Csect option is ignored due to a

naming error.

Explanation: The compiler was unable to generate

valid csect names.

User Response: Use the pragma csect to name the

code and static control sections.

CCN6399 There is more than one pragma csect

statement.

Explanation: A duplicate pragma csect is ignored.

User Response: Remove the duplicate pragma csect

statement.

CCN6400 The incorrect pragma is ignored.

Explanation: The pragma is incorrect and is ignored.

User Response: Correct the pragma.

CCN6401 An unknown ″pragma %1$s″ is

specified.

Where: The name of the unknown pragma.

Explanation: The specified pragma is not recognized.

User Response: Change the name of the pragma to

one that is applicable to the compiler.

CCN6402 The options for ″pragma %1$s″ are

incorrectly specified: expected %2$s

and found %3$s. The pragma is

ignored.

Where: The name of the pragma and the expected

and found options.

Explanation: The options for the pragma are not

correctly specified and the pragma is ignored.

User Response: Change the options to the pragma as

indicated.

CCN6403 The function ″%2$s″ specified in

″pragma %1$s″ cannot be found. The

pragma is ignored.

Where: The names of the pragma and the undeclared

function, respectively.

Explanation: The pragma is ignored because it refers

to a function that is not declared.

User Response: Change the pragma to refer to a

declared function or declare the function.

CCN6404 The parameter ″%1$s″ specified for

″pragma %2$s″ is not valid. The

pragma is ignored.

Where: The invalid parameter and the pragma,

respectively.

Explanation: The pragma is ignored because the

parameter specified is not valid.

User Response: Change the pragma parameter.

CCN6405 Syntax error in ″pragma %1$s″:

expected ″%2$s″ and found ″%3$s″.

The pragma is ignored.

Where: The name of the pragma, the expected text

and the incorrect input, respectively.

Explanation: The pragma is ignored because there is

a syntax error in the pragma directive.

User Response: Correct the syntax of the pragma

specification.

CCN6406 ″pragma %1$s″ is already specified.

The pragma is ignored.

Where: The name of the pragma that is ignored.

Explanation: The pragma is ignored because it has

already been specified.

User Response: Remove the pragma specification.

CCN6407 The function ″%2$s″ specified in

″pragma %1$s″ does not have an

implementation. The pragma is

ignored.

Where: The name of the ignored pragma and the

name of the function that must be defined.

Explanation: The pragma is ignored because it

requires that the specified function be defined but it is

only declared.

152 z/OS V1R7.0 XL C/C++ Messages

 | |
 |
 |

 |
 |

 |
 |

 |
 |

User Response: Define the function.

CCN6408 ″pragma %1$s″ has no effect. The

pragma is ignored.

Where: The name of the ignored pragma.

Explanation: Informational message that the pragma

is ignored because it has no effect. It may be that the

pragma specifies options that are already in effect.

User Response: See the primary message.

CCN6409 ″pragma %1$s″ is not supported on the

target platform. The pragma is ignored.

Where: The name of the ignored pragma.

Explanation: Informational message that the pragma

is ignored because it is not valid on the target platform.

User Response: See the primary message.

CCN6410 The function ″%2$s″ specified in

″pragma %1$s″ is an overloaded

function. The pragma is ignored.

Where: The name of the ignored pragma and the

name of the overloaded function, respectively.

Explanation: The pragma is ignored because the

function specified is overloaded so it is not clear which

function is being specified.

User Response: Remove the pragma or ensure that

the function is not overloaded.

CCN6411 ″pragma %1$s″ must be specified in

global scope. The pragma is ignored.

Where: The name of the ignored pragma.

Explanation: The pragma is ignored because it has

been specified in an invalid scope such as a function

body or class member list.

User Response: Move the pragma to global scope.

CCN6412 The declaration ″%2$s″ specified in

″pragma %1$s″ cannot be found. The

pragma is ignored.

Where: ″%1$s″ is the name of the ignored pragma

and ″%2$s″ is the name of the variable or the type

indicated in the pragma.

Explanation: The pragma is ignored because it names

a variable or type that has not been declared.

User Response: Change the pragma to refer to a

declared variable or type or declare the indicated

variable or type.

CCN6413 The conflicting pragma is specified on

line %1$s of ″%2$s″.

Where: The coordinates of the conflicting pragma.

Explanation: Informational message about the

coordinates of the conflicting pragma.

User Response: See the primary message.

CCN6414 The function ″%2$s″ specified in

″pragma %1$s″ is a member function.

The pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the

function name.

Explanation: Member functions are not allowed for the

pragma specified.

User Response: Specify a non-member function in

the pragma or remove the pragma.

CCN6415 The declaration ″%2$s″ specified in

″pragma %1$s″ is a member variable.

The pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the

declaration.

Explanation: Member variables are not allowed for the

pragma specified.

User Response: Specify a non-member variable in

the pragma or remove the pragma.

CCN6416 The declaration ″%2$s″ specified in

″pragma %1$s″ is a structure tag. The

pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the

declaration.

Explanation: Structure tags are not allowed for the

pragma specified.

User Response: Fix the declaration in the pragma or

remove the pragma.

CCN6417 The declaration ″%2$s″ specified in

″pragma %1$s″ must have ″%3$s″

linkage. The pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the

declaration specified in the pragma. ″%3$s″ is the

required linkage for the pragma.

Explanation: The pragma is only valid for declarations

with specific linkage.

User Response: Specify a declaration with the correct

linkage or remove the pragma.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 153

||
|

|

|
|
|

|

||
|
|

|
|
|

|
|

|
|
|

CCN6418 The declaration ″%1$s″ specified in

pragma ″%2$s″ is not compatible with

the declaration ″%3$s″, which is also

specified in the pragma. The pragma

will be ignored.

Where: ″%1$s″, and ″%3$s″ are declarations, ″%2$s″

is the pragma name.

Explanation: The two declarations specified in the

pragma are incompatible.

User Response: Change the declarations or remove

the pragma.

CCN6420 The packing boundary for ″pragma

pack″ must be 1, 2, 4, 8, or 16. The

pragma is ignored.

Explanation: A ″pragma pack″ has been specified

with an invalid boundary.

User Response: Change the pack boundary for the

″pragma pack″ to one of the accepted boundaries or

remove the pragma.

CCN6421 The ″pragma pack″ stack is empty. The

current alignment may change.

Explanation: The current alignment may change

because the stack for the pragma pack is empty.

User Response: Remove the pragma or ensure that

the pragma stack is not empty by making sure that

there is an appropriate number of push pragmas.

CCN6422 The identifier does not exist within the

″pragma pack″ stack. The current

alignment may change.

Explanation: The current alignment may change

because the identifier does not exist on the pragma

pack stack.

User Response: Change the name of the identifier

specified in the pragma.

CCN6423 The declaration in ″pragma map″ has

already been mapped to ″%1$s″. The

pragma is ignored.

Where: ″%1$s″ is the previous mapping of the

declaration.

Explanation: The pragma is ignored because the

declaration has already been mapped.

User Response: Remove the pragma or change the

declaration.

CCN6424 Priority values in successive ″pragma

priority″ statements must increase.

Explanation: The priority specified is lower than a

priority specified in a previous pragma.

User Response: Increase the priority specified in the

pragma.

CCN6425 The value given for the ″pragma

priority″ is in the range reserved for

the system.

Explanation: The priority specified in the pragma is in

the range reserved for the system. This may cause

unexpected behavior because the declaration may have

a higher priority than system variables.

User Response: Lower the specified priority.

CCN6426 The function ″%1$s″ in ″pragma

alloc_text″ is already specified. The

pragma is ignored.

Where: ″%1$s″ is the name of the function specified in

the pragma.

Explanation: The pragma is ignored because the

function has already been specified in a previous

pragma alloc_text.

User Response: Remove the pragma.

CCN6427 The specified object model ″%1$s″ is

not known. The pragma is ignored.

Where: ″%1$s″ is the unrecognized object model.

Explanation: The pragma is ignored because the

object model is not recognized.

User Response: Change the specified object model to

one that is known.

CCN6428 The ″pragma object_model″ stack is

empty. The pragma is ignored.

Explanation: The pragma is ignored because the

object model stack is empty.

User Response: Remove the pragma or ensure that

the stack is not empty.

CCN6429 The identifier ″%1$s″ in ″pragma

import″ is already specified on line

%2$s of ″%3$s″. The pragma is

ignored.

Where: ″%1$s″ is the name of the repeated identifier

and %2$s and ″%3$s″ are the coordinates of the

previous pragma.

Explanation: The pragma is ignored because the

154 z/OS V1R7.0 XL C/C++ Messages

||
|
|
|
|

|
|

|
|

|
|

identifier has already been specified in a previous

pragma import.

User Response: Remove the pragma.

CCN6430 The identifier ″%1$s″ in ″pragma

export″ is already specified. The

pragma is ignored.

Where: ″%1$s″ is the name of the repeated identifier.

Explanation: The pragma is ignored because the

identifier has already been specified in a previous

pragma export.

User Response: Remove the pragma.

CCN6431 The ″pragma enum″ stack is empty.

The pragma is ignored.

Explanation: The pragma is ignored because the

pragma enum stack is empty.

User Response: Remove the pragma or ensure that

the pragma stack is not empty.

CCN6432 The function ″%1$s″ in ″pragma

alloc_text″ is already specified with

″pragma code_seg″.

Where: ″%1$s″ is the name of the function indicated

in the pragma.

Explanation: The pragma is in conflict with a previous

pragma code_seg.

User Response: Remove the current or the previous

pragma.

CCN6433 The function ″%1$s″ in ″pragma weak″

is already specified. The pragma is

ignored.

Where: ″%1$s″ is the name of the function specified in

the pragma.

Explanation: The pragma is ignored because it has

already been specified in a pragma weak.

User Response: Remove the pragma.

CCN6434 The message id ″%1$s″ in ″pragma

report″ is not a valid. The pragma is

ignored.

Where: ″%1$s″ is the message id that must be

changed.

Explanation: The pragma is ignored because the

message id is not valid.

User Response: Change the message id.

CCN6435 The function ″%1$s″ in ″pragma

mc_func″ is already specified. The

pragma is ignored.

Where: ″%1$s″ is the name of the function specified in

the pragma.

Explanation: The pragma is ignored because the

function has already been specified in a pragma

mc_func.

User Response: Remove the pragma.

CCN6436 The function ″%1$s″ in ″pragma

reg_killed_by″ is already specified. The

pragma is ignored.

Where: ″%1$s″ is the name of the function specified in

the pragma.

Explanation: The pragma is ignored because the

function has already been specified in a pragma

reg_killed_by.

User Response: Remove the pragma.

CCN6437 ″pragma reg_killed_by″ must be used

with a corresponding ″pragma

mc_func″.

Explanation: The function specified in the pragma

must have been previously specified in a pragma

mc_func.

User Response: Provide the pragma mc_func before

the pragma reg_killed_by.

CCN6438 The file ″%1$s″ should be specified in

an ″#include″ directive or as a source

file in the configuration file.

Where: ″%1$s″ is the name of the file that should be

included.

Explanation: Informational message indicating that the

file should be an included file or it should be specified in

the configuration file.

User Response: Ensure that the file is specified in an

include directive.

CCN6439 Two or more expressions must be

specified in ″pragma disjoint″. The

pragma is ignored.

Explanation: The pragma is ignored because it must

have two or more expressions specified.

User Response: Ensure that at least two expressions

are specified in the pragma.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 155

CCN6440 The expressions ″%1$s″ and ″%2$s″

specified in ″pragma disjoint″ have

incompatible types. The pragma is

ignored.

Where: ″%1$s″ and ″%2$s″are the two incompatible

expressions, one of which must be changed.

Explanation: The pragma is ignored because the

types specified in the two expressions are incompatible.

User Response: Change one of the expressions to

have a compatible type with the other.

CCN6441 The expression ″%1$s″ specified in

″pragma disjoint″ is not a valid type.

The pragma is ignored.

Where: ″%1$s″ is the expression specifying the invalid

type.

Explanation: The pragma is ignored because the type

specified in the expression is not correct.

User Response: Change the expression to specify a

valid type.

CCN6442 The ″pragma align″ stack is empty. The

pragma is ignored.

Explanation: The pragma is ignored because the

pragma align stack is empty.

User Response: Remove the pragma or ensure that

the pragma align stack is not empty.

CCN6443 ″pragma %1$s″ overrides the original

option value.

Where: ″%1$s″ is the name of the pragma that is

overriding the option value.

Explanation: Informational message indicating that the

pragma is overriding the option value.

User Response: See the primary message.

CCN6444 The ″pragma namemangling″ stack is

empty. The pragma is ignored.

Explanation: The pragma is ignored because the

pragma namemangling stack is empty.

User Response: Remove the pragma or ensure that

the pragma namemangling stack is not empty.

CCN6445 The size specified for ″pragma

pointer_size″ must be 32 or 64. The

pragma is ignored.

Explanation: The pragma is ignored because the size

specified was not 32 or 64.

User Response: Change the size specified to be 32

or 64.

CCN6446 The ″pragma pointer_size″ stack is

empty.

Explanation: The pragma is ignored because the

pragma pointer_size stack is empty.

User Response: Remove the pragma or ensure that

the pragma pointer_size stack is not empty.

CCN6447 The argument ″%2$s″ specified in

″pragma %1$s″ is not a defined class.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the name of the class that must be defined.

Explanation: The pragma is ignored because the

argument does not specify a defined class.

User Response: Change the argument or ensure that

the class is defined.

CCN6448 ″A pragma IsHome″ is defined for

″%1$s″, but there is no matching

″pragma HasHome″. The pragma is

ignored.

Where: ″%1$s″ is the argument that must have a

corresponding pragma HasHome.

Explanation: The pragma is ignored because there

must be a previously specified pragma HasHome for the

argument.

User Response: Remove the pragma or ensure that

there is a previous corresponding pragma HasHome.

CCN6449 More than one ″pragma IsHome″ for

″%1$s″ in different targets.

Where: ″%1$s″ is the argument that has multiple

pragma IsHome directives.

Explanation: There are more than one pragma

IsHome specified for the arguments in different targets.

User Response: Remove the extra pragma IsHome

directives.

CCN6454 The declaration ″%1$s″ specified in

pragma ″%2$s″ for communications

area was not resolved or is invalid.

Where: ″%1$s″ is the declaration in error. ″%2$s″ is

the name of the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the declaration or remove the

pragma.

156 z/OS V1R7.0 XL C/C++ Messages

CCN6455 Member ″%1$s″ is not declared as

specified in pragma ″%2$s″. The

pragma is ignored.

Where: ″%1$s″ is the class member. ″%2$s″ is the

name of the pragma.

Explanation: The declaration of the member in the

pragma does not match the declaration for that member

in the member’s class.

User Response: Fix the declaration in the pragma or

remove the pragma.

CCN6456 Only dot member access is allowed in

pragma ″%1$s″. The pragma is

ignored.

Where: ″%1$s″ is the name of the pragma.

Explanation: Pragma ″%1$s″ is only allowed to use

class member access with the dot operator.

User Response: Change the pragma to use dot

member access or remove the pragma.

CCN6457 Member ″%1$s″ is at offset ″%2$s″, not

at offset ″%3$s″ as specified in pragma

assert_field_offset.

Where: ″%1$s″ is the member name. ″%2$s″ is the

actual offset. ″%3$s″ is the offset specified in the

pragma.

Explanation: The assertion in the pragma

assert_field_offset has been violated. The member is

not at the specified offset.

User Response: Fix the offset or remove the pragma.

CCN6458 The name ″%1$s″ specified in pragma

argopt is not a function, function

pointer, function typedef, or function

pointer typedef. The pragma will be

ignored.

Where: ″%1$s″ is the name specified in the pragma.

Explanation: The pragma argopt only applies to

functions. This is an OS/400 (iSeries) message.

User Response: Specify a valid name or remove the

pragma.

CCN6459 The function ″%1$s″ specified in

pragma argopt has a variable length

argument list. The pragma will be

ignored.

Where: ″%1$s″ is the function name.

Explanation: The pragma argopt cannot be used with

a function that uses an ellipsis in its parameter list. This

is an OS/400 (iSeries) message.

User Response: Specify a function without a variable

length argument list or remove the pragma.

CCN6460 ″%1$s″ has not been declared before

the pragma pointer directive.

Where: ″%1$s″ is the type.

Explanation: ″%1$s″ must be declared before the

pragma.

User Response: Add a declaration for ″%1$s″ before

the pragma or remove the pragma.

CCN6461 ″%1$s″ is not a 16 byte void pointer.

Where: ″%1$s″ is the argument to the pragma.

Explanation: The pragma has an argument.

User Response: Fix the argument to the pragma or

remove the pragma.

CCN6462 ″%1$s″ is not a valid ILE pointer type.

Where: ″%1$s″ is the argument to the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: ″Fix the argument to the pragma or

remove the pragma.

CCN6463 ″%1$s″ has been used in a declaration,

the pragma is ignored.

Where: ″%1$s″ is the argument to the pragma.

Explanation: The name has already been used

previously and cannot be used again by the pragma.

User Response: Fix the argument to the pragma or

remove the pragma.

CCN6464 ″%1$s″ is not a typedef name.

Where: ″%1$s″ is the argument to the pragma.

Explanation: The pragma requires a typedef name as

an argument and the one provided is not one.

User Response: Fix the argument to the pragma or

remove the pragma.

CCN6465 Instruction sequence for ″pragma

mc_func″ contains the character

″%1$s″ that is not a hexadecimal digit.

Where: ″%1$s″ is the invalid character specified in the

pragma.

Explanation: The pragma requires a hexadecimal

argument and one has not been provided.

User Response: Fix the instruction sequence for the

pragma or remove the pragma.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 157

 | |

 |

 |

 |
 |

CCN6466 Instruction sequence for ″pragma

mc_func″ contains odd number of

hexadecimal digits.

Explanation: The pragma requires an argument which

is an instruction sequence consisting of an even number

of hexadecimal digits.

User Response: Fix the instruction sequence for the

pragma or remove the pragma.

CCN6467 The include directive for the primary

source file ″%1$s″ is ignored.

Where: ″%1$s″ is the source file name.

Explanation: It was not possible for the compiler to

process the file as a primary source file.

User Response: Remove the include directive from

the configuration file.

CCN6468 The function ″%1$s″ specified in

″pragma %2$s″ has ″%3$s″ linkage.

The pragma is ignored.

Where: ″%1$s″ is the function name. ″%2$s″ is the

name of the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Specify a function with the correct

linkage or remove the pragma.

CCN6469 The function ″%2$s″ specified in

″pragma %1$s″ cannot be found.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the function name.

Explanation: Name lookup failed for the function

specified in the pragma.

User Response: Fully qualify the function, specify a

different function, or remove the pragma.

CCN6470 The source file ″%1$s″ is being

included by the source file ″%2$s″,

which has different options in effect.

Where: ″%1$s’ is the included source file. ″″%2$s″ is

the source file including ″%1$s″″

Explanation: The source file ″%1$s″ has been

specified as a primary source file in the configuration file

and it’s options do not match the options specified by

another primary source file that includes ″%1$s″.

User Response: Change the options to be consistent

or change ″1s″ to not be a primary source file.

CCN6471 The function or label ″%1$s″ specified

in ″pragma exception_handler″ was not

resolved or is invalid.

Where: ″%1$s″ is the function or label.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the argument to the pragma or

remove the pragma.

CCN6472 The expression ″%1$s″ specified in

″pragma exception_handler″ for

parameter ″%2$s″ is not a valid type.

Where: ″%1$s″ is the expression. ″%2$s″ is the

parameter to the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the

pragma.

CCN6473 The expression ″%1$s″ specified in

″pragma exception_handler″ for

parameter ″%2$s″ is a non-const or

non-integral expression.

Where: ″%1$s″ is the expression. ″%2$s″ is the

parameter to the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the

pragma.

CCN6474 The value for control action parameter

expression ″%1$s″ is only valid for a

function handler (not a label as was

given or interpreted).

Where: ″%1$s″ is the expression specified in the

pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the

pragma.

CCN6475 The value for control action parameter

expression ″%1$s″ is not valid.

Where: ″%1$s″ is the expression specified in the

pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the

pragma.

158 z/OS V1R7.0 XL C/C++ Messages

CCN6476 Invalid message identifier ″%1$s″ in

message ID list parameter on ″pragma

exception_handler″.

Where: ″%1$s″ is the invalid message identifier

specified in the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the message identifier or remove

the pragma.

CCN6477 Invalid message identifier list ″%1$s″

on ″pragma exception_handler″.

Where: ″%1$s″ is the invalid message identifier list

specified in the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the message identifier list or

remove the pragma.

CCN6478 The function ″%1$s″ specified in

″%2$s″ was not resolved to a correctly

defined and prototyped function.

Where: ″%1$s″ is the function name. ″%2$s″ is the

name of the pragma.

Explanation: Name lookup for ″%1$s″ failed. This is

an OS/400 (iSeries) message.

User Response: Provide a declaration for ″%1$s″ or

remove the pragma.

CCN6479 Disable handler has no matching

cancel/exception handler, or

cancel/exception handler is out of

scope.

Explanation: This is an OS/400 (iSeries) message.

User Response: Add a matching cancel/exception

handler or remove the pragma.

CCN6480 Function ″%1$s″ has not been declared

before the pragma descriptor directive.

Where: ″%1$s″ is the function name argument to the

pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Declare ″%1$s″ before the pragma

descriptor directive or remove the pragma.

CCN6482 Function cannot have C++ or OS

linkage.

Explanation: This is an OS/400 (iSeries) message.

User Response: Remove the linkage.

CCN6484 More parameters than the function

prototype.

Explanation: This is an OS/400 (iSeries) message.

User Response: Remove superfluous parameters

CCN6485 Invalid operational descriptor specifier

″%1$s″.

Where: %1$s″ is the operational descriptor specifier.

Explanation: This is an OS/400 (iSeries) message.

User Response: Use an valid operationl descriptor

specifier.

CCN6486 Descriptor specifier ″%1$s″ invalid for

type ″%2$s″.

Where: %1$s″ is the operational descriptor specifier,

″%2$s″ is the type

Explanation: This is an OS/400 (iSeries) message.

User Response: Use an valid operationl descriptor

specifier.

CCN6492 No argument is specified for ″pragma

define″. The pragma is ignored.

Explanation: The pragma requires an argument and

one was not specified.

User Response: Specify an argument or remove the

pragma.

CCN6493 Duplicate argument ″%1$s″ in ″pragma

disjoint″. The pragma is ignored.

Where: ″%1$s″ is the duplicate argument specified in

the pragma.

Explanation: The argument indicated was duplicated

in the argument list specified for the pragma.

User Response: Remove the duplicate argument or

remove the pragma.

CCN6494 The suboption ″%1$s″ for ″pragma

%2$s″ is not supported on the target

platform. The pragma is ignored.

Where: ″%1$s″ is the name of the suboption that is

unsupported. ″%2$s″ is the name of the pragma.

Explanation: The suboption for the pragma indicated

is not supported on this operating system.

User Response: Specify a different suboption or

remove the pragma.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 159

CCN6495 Unexpected text ″%2$s″ found in

″pragma %1$s″. The pragma is

ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the text causing the syntax error.

Explanation: A syntax error has been found while

processing the pragma, causing it to be ignored.

User Response: Fix the syntax of the pragma or

remove the pragma.

CCN6496 Unexpected text ″%2$s″ found in

″pragma %1$s″. The rest of the pragma

directive is ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the text causing the syntax error.

Explanation: A syntax error has been found while

processing part of the pragma, causing part of it to be

ignored.

User Response: Fix the syntax of the pragma or

remove the pragma.

CCN6497 An implicit ″}″ does not find a

matching implicit ’extern ″C″ {’. An

extra ″}″ may be present.

Explanation: An unmatched ″}″ was detected while

processing a linkage specification.

User Response: Remove the extra ″}″ if one exists.

CCN6498 The function ″%2$s″ specified in

″pragma %1$s″ has already been

defined. The pragma is ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the name of the function.

Explanation: The pragma specified must be placed

before the definition of the function to which it refers.

User Response: Move the pragma to before the

definition of the function or remove the pragma.

CCN6499 The function ″%2$s″ specified in

″pragma %1$s″ is virtual. The pragma

is ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the name of the function.

Explanation: The pragma specified requires an

argument that is not a virtual function.

User Response: Change the pragma to specify a

non-virtual function or remove the pragma.

CCN6600 ″main″ should have a return type of

type ″int″.

Explanation: A return type other than ″int″ has been

specified for ″main″.

User Response: Change the return type of ″main″ to

be ″int″.

CCN6601 A local class cannot have member

templates.

Explanation: Member templates can only be defined

in namespace scope classes.

User Response: Remove the template from the local

class, or move the class to non-local scope.

CCN6602 The partial specialization ″%1$s″

cannot have template parameters that

have default values.

Where: ″%1$s″ is the partial specialization.

Explanation: Default template arguments are not

allowed on partial specializations.

User Response: Remove the default template

arguments.

CCN6603 Default template parameter arguments

cannot be followed by uninitialized

template parameters.

Explanation: Just like function parameters, all

template parameters following a template parameter

with a default argument must also have default

arguments.

User Response: Add the missing default arguments

or remove the existing one.

CCN6604 The template parameter ″%1$s″ cannot

be used in a partially specialized

non-type argument expression.

Where: ″%1$s″ is the template parameter.

Explanation: The use of a template parameter in an

expression for a non-type template argument in partial

specialization is not allowed.

User Response: Correct the non-type template

argument expression.

CCN6605 The argument list for the partial

specialization ″%1$s″ is equivalent to

the implicit argument list of the

primary template.

Where: ″%1$s″ is the partial specialization.

Explanation: A partial specialization must specialize

something in the argument list.

160 z/OS V1R7.0 XL C/C++ Messages

User Response: Change the argument list of the

partial specialization.

CCN6606 A non-type template parameter ″%1$s″

must have integral, enumeration,

pointer, reference, or

pointer-to-member type.

Where: ″%1$s″ is the non-type template parameter.

Explanation: No other types are allowed.

User Response: Correct the non-type template

parameter type.

CCN6607 All array dimensions for ″%1$s″ should

be specified and should be greater

than zero.

Where: ″%1$s″ is the array.

Explanation: An array dimension is missing or is

negative.

User Response: Ensure that all dimensions are

specified as non-negative numbers.

CCN6608 An anonymous %1$s should only

define non-static data members.

Where: %1$s is the keyword union, struct, or class.

Explanation: Static members are not allowed in

anonymous aggregates.

User Response: Remove the static member

declaration.

CCN6609 A using declaration cannot be used to

declare ″%1$s″.

Where: ″%1$s″ is the declarator.

Explanation: The using declaration cannot be used

here.

User Response: Remove the using declaration.

CCN6610 ″%1$s″ must not be declared as import

and defined.

Where: ″%1$s″ is the function.

Explanation: The ″_Import″ specifier cannot be

specified on a definition.

User Response: Remove the ″_Import″ specifier.

CCN6611 The current option settings do not

allow the use of ″long long″.

Explanation: The declaration type is ″long long″ but

this type is disallowed due to option settings.

User Response: Change the type of the declaration or

the option settings to allow ″long long″.

CCN6612 The static variable ″%1$s″ is not

visible where ″%2$s″ is used in a

#include directive.

Where: ″%1$s″ is the static variable. ″%2$s″ is the

header file.

Explanation: A static variable is being referenced in

an include file and is not visible.

User Response: Remove the static specifier from the

declaration.

CCN6613 The static function ″%1$s″ is not

visible where ″%2$s″ is used in a

#include directive.

Where: ″%1$s″ is the static function. ″%2$s″ is the

header file.

Explanation: A static function is being referenced in

an include file and is not visible.

User Response: Remove the static specifier from the

declaration.

CCN6614 ″%1$s″ must be the last data member

in its class because ″%2$s″ contains a

zero-dimension array.

Where: ″%1$s″ is the member. ″%2$s″ is the union,

struct, or class.

Explanation: Only the last non-static data member

can have a zero dimension.

User Response: Move the declaration to be the last in

the class.

CCN6615 Only the first array bound can be

omitted.

Explanation: For a multi-dimensional array, the

compiler can determine the size of the first bound based

on the number of initializers. It is unable to compute any

other omitted array bounds.

User Response: Specify all array bounds or leave

only the first bound unspecified.

CCN6616 A pointer-to-member should not be

converted from the virtual base ″%1$s″

to the derived class ″%2$s″.

Where: ″%1$s″ is the virtual base. ″%2$s″ is the

derived class.

Explanation: The conversion is from a virtual base

class to a derived class.

User Response: See the primary message.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 161

CCN6617 The incomplete type ″%1$s″ is not

allowed in an exception-specification .

Where: ″%1$s″ is the incomplete type.

Explanation: Only complete types are allowed in an

exception-specification.

User Response: Correct the exception specification

type list.

CCN6618 ″%1$s″ is not allowed in an

exception-specification because

″%2$s″ is incomplete.

Where: ″%1$s″ is the pointer type. ″%2$s″ is the

incomplete type.

Explanation: Only pointers to complete types are

allowed in pointer exception-specification types.

User Response: Correct the exception-specification

type list.

CCN6619 The type ″%1$s″ is not valid in this

context.

Where: ″%1$s″ is the type.

Explanation: The type ″void″ is not valid for this

declaration.

User Response: Change the type.

CCN6620 ″%1$s″ must be declared to have

″stdcall″ linkage.

Where: ″%1$s″ is the function.

Explanation: The ″stdcall″ specifier must be specified.

User Response: Add the ″stdcall″ specifier.

CCN6621 The explicit specialization ″%1$s″ must

be declared in the namespace

containing the template.

Where: ″%1$s″ is the explicit specialization.

Explanation: The primary template and an explicit

specialization declaration must be in the same scope.

User Response: Move the explicit specialization

declaration to the correct scope.

CCN6622 The explicit specialization ″%1$s″ must

be defined in a namespace that

encloses the declaration of the explicit

specialization.

Where: ″%1$s″ is the explicit specialization.

Explanation: An explicit specialization must be

defined at namespace scope, in the same or an

enclosing namespace as the declaration.

User Response: Move the explicit specialization

definition to the correct scope.

CCN6623 The explicit specialization ″%1$s″

cannot have default function

arguments.

Where: ″%1$s″ is the explicit specialization.

Explanation: Default function arguments are not

allowed on an explicit specialization.

User Response: Remove the default function

arguments.

CCN6624 The partial specialization ″%1$s″ must

be declared in the same scope as the

primary template or in a namespace

scope that encloses the primary

template.

Where: ″%1$s″ is the partial specialization.

Explanation: A partial specialization declaration must

be in the same scope or in an enclosing namespace

scope of the primary template.

User Response: Move the partial specialization

declaration to the correct scope.

CCN6625 The explicit specialization ″%1$s″ must

not be declared in the scope of a

template.

Where: ″%1$s″ is the explicit specialization.

Explanation: An explicit specialization must be

declared in the namespace containing the primary

template.

User Response: Remove the explicit specialization.

CCN6626 At least one template argument in a

partial specialization must depend on a

template parameter.

Explanation: A partial specialization cannot be fully

specialized.

User Response: Change the declaration to an explicit

specialization or change the template arguments to be

partially specialized.

CCN6627 The bit field ″%1$s″ cannot be greater

than 32 bits.

Where: ″%1$s″ is the bit field.

Explanation: The size of the bit field is too large.

User Response: Use a smaller size for the bit field.

162 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |

 |

 |

CCN6628 Every template parameter for a

constructor template must be used in

the parameter list of the constructor.

Explanation: There is no way to specify an explicit

template argument list for a constructor template.

User Response: Change the template parameter list

of the constructor template.

CCN6629 Every template parameter for a

conversion function template must be

used in the return type.

Explanation: There is no way to specify an explicit

template argument list for a conversion function

template.

User Response: Change the template parameter list

of the conversion function template

CCN6630 Every template parameter for a partial

specialization must be used in the

template argument list.

Explanation: The extra template parameters are not

used so they are not allowed.

User Response: Change the parameter list of the

partial specialization.

CCN6631 A template parameter should not be

used in its own default argument.

Explanation: A template parameter can be used in

subsequent template parameters and their default

arguments.

User Response: Change or remove the default

argument.

CCN6632 The length of the identifier exceeds the

maximum limit of ″%1$s″ for a name

with ″%2$s″ linkage.

Where: ″%1$s″ is the maximum permitted identifier

length. ″%2$s″ is the linkage specifier.

Explanation: The identifier name is too large.

User Response: Replace the identifier with a smaller

identifier.

CCN6633 The name ″%1$s″ is not a recognized

built-in declaration.

Where: ″%1$s″ is the function name.

Explanation: The function specified is not a built-in

function.

User Response: Change the declaration so that it

does not specify that the function is built in.

CCN6634 An array element must not have type

″%1$s″.

Where: ″%1$s″ is the type.

Explanation: The type of the array is invalid.

User Response: Change the type of the array.

CCN6635 There cannot be a reference to a

reference.

Explanation: A reference to a reference is invalid.

User Response: Remove the extra reference.

CCN6636 There cannot be a pointer to a

reference.

Explanation: A pointer to a reference is invalid.

User Response: Change the declaration.

CCN6637 There cannot be a pointer-to-member

with reference type.

Explanation: A pointer to a member reference is

invalid.

User Response: Change the declaration.

CCN6638 There cannot be an array of

references.

Explanation: The element type of an array cannot be

a reference type, void type, function type, or an abstract

class type.

User Response: Change the element type of the

array to a valid type.

CCN6639 The behavior of long type bit fields has

changed from previous releases of this

compiler. In 64-bit mode, long type bit

fields now default to long, not int.

Explanation: The bit field will default to long, this is a

change in behavior.

User Response: None.

CCN6640 Cannot take the address of the

machine-coded function ″%1$s″.

Where: ″%1$s″ is the function.

Explanation: It is invalid to take the address of a

machine-coded function.

User Response: Change the expression.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 163

 | |
 |
 |
 |

 |
 |

 |

CCN6641 The aligned attribute may not be

specified for variable ″%1$s″. The

attribute is ignored.

Where: ″%1$s″ is the variable name.

Explanation: The aligned attribute has no effect on

function or template parameters.

User Response: Remove the aligned attribute.

CCN6642 The packed attribute is valid only for

class and struct nonstatic data

members. The attribute is ignored.

Explanation: The packed attribute has no effect on

static members or function or namespace scoped

variables.

User Response: Remove the packed attribute.

CCN6643 ″main″ cannot be declared as a

template function.

Explanation: ″main″ implicitly has ″C″ linkage; a

template function may not have ″C″ linkage.

User Response: Do not define ″main″ as a template

function.

CCN6644 The unnamed bit field is too small:

%1$s bits are needed for ″%2$s″.

Where: %1$s is the number of bits. ″%2$s″ is the

name of the enumerated type.

Explanation: The size of the unnamed bit field is not

large enough to contain all of the possible values.

User Response: Increase the size of the unnamed bit

field.

CCN6645 The bit field ″%1$s″ is too small: %2$s

bits are needed for ″%3$s″.

Where: ″%1$s″ is the bit field. %2$s is the number of

bits. ″%3$s″ is the name of the enumerated type.

Explanation: The size of the bit field is not large

enough to contain all of the possible values.

User Response: Increase the size of the bit field.

CCN6646 The explicit instantiation of member

″%1$s″ must have a definition.

Where: ″%1$s″ is the member.

Explanation: The definition must be available in order

for an instantiation to be done.

User Response: Define the static member.

CCN6647 The sizes of the pointer types of the

argv or the envp parameter of function

main are different.

Explanation: The sizes of the pointer types must

match. This is an OS/400 (iSeries) message.

User Response: Use one of these for argv or envp (if

present), or an equivalent for the type of the argv or

envp parameter on main: int main(int argc,

char*__ptr128*__ptr128 argv,char*__ptr128*__ptr128

envp); or int main(int argc, char*__ptr64*__ptr64 argv,

char*__ptr64*__ptr64 envp); Other combinations of

pointer size are not allowed.

CCN6652 ″%1$s″ is not allowed in a structured

block.

Where: ″%1$s″ is the statement.

Explanation: The statement is not allowed in a

structured block

User Response: Remove the statement.

CCN6653 Branching out of a structured block is

not allowed.

Explanation: The label statement must be within the

lexical block

User Response: Don’t branch out of a structured

block

CCN6654 Branching into a structured block is

not allowed.

Explanation: The label statement must be out of the

lexical block

User Response: Don’t branch in a structured block

CCN6655 The for-init-statement is missing, the

for loop is not in the canonical form.

Explanation: The for-init-statement is missing, the for

loop is not in the canonical form.

User Response: Check the for-init-statement.

CCN6656 The for-init-statement of the for loop is

not in the canonical form.

Explanation: The for-init-statement of the for loop is

not in the canonical form.

User Response: Check the for-init-statement.

CCN6657 The iteration variable must be a signed

integer variable.

Explanation: The iteration variable must be a signed

integer variable.

164 z/OS V1R7.0 XL C/C++ Messages

||
|
|

|

|
|

|

||
|

|
|

|
|

|
|

||
|

|
|

|
|

|

User Response: Check if the iteration variable is a

signed integer variable.

CCN6658 The condition is missing, the for loop

is not in the canonical form.

Explanation: The condition is missing, the for loop is

not in the canonical form.

User Response: Add the condition in the for loop.

CCN6659 The condition of the for loop is not in

the canonical form.

Explanation: The condition of the for loop is not in the

canonical form.

User Response: Check the condition in the for loop.

CCN6660 The increment expression is missing,

the for loop is not in the canonical

form.

Explanation: The for loop is missing the increment

expression.

User Response: Add the increment expression in the

for loop.

CCN6661 The increment expression of the for

loop is not in the canonical form.

Explanation: The increment expression of the for loop

is not in the canonical form.

User Response: Check the increment expression in

the for Loop.

CCN6662 Function ″%1$s″ with OS linkage

cannot be defined.

Where: The ″%1$s″ is the string representing function

name.

Explanation: Function with OS linkage can only be

declared. This is an OS/400 (iSeries) message.

User Response: Remove the function definition.

CCN6663 Incorrect assignment of a restrict

qualified pointer. Only outer-to-inner

scope assignments between restrict

pointers are allowed. This may result

in incorrect program behavior.

Explanation: Only outer-to-inner scope assignments

between restrict pointers are allowed.

User Response: Check the assignment.

CCN6664 The variable ″%1$s″ has undefined

data scope.

Where: ″%1$s″ is the variable.

Explanation: The variable should have a defined data

scope.

User Response: Specify a data scope for the variable.

CCN6665 The value of the expression must be

greater than zero.

Explanation: The value of the expression must be

greater than zero.

User Response: Change the chunk size to a positive

value.

CCN6666 An ″ordered″ directive must be within a

dynamic extent of a ″for″ or ″parallel

for″ construct.

Explanation: An ″ordered″ directive must be within a

dynamic extent of a ″for″ or ″parallel for″ construct.

User Response: Check if the ″ordered″ directive is

within a ″for″ or ″parallel for″ construct.

CCN6667 The related ″for″ or ″parallel for″

construct must have an ″ordered″

clause.

Explanation: The related ″for″ or ″parallel for″

construct must have an ″ordered″ clause.

User Response: Check if the related ″for″ or ″paraller

for″ construct have an ″ordered″ clause.

CCN6668 The ″ordered″ directive must not be

executed more than once.

Explanation: The ″ordered″ directive must not be

executed more than once.

User Response: Check if the ″ordered″ directive is

executed more than once.

CCN6670 Invalid statement type in ″atomic″

construct.

Explanation: Invalid statement type in ″atomic″

construct.

User Response: Change the statement type in

″atomic″ construct.

CCN6671 Invalid statement type in ″atomic″

construct.

Explanation: Invalid statement type in ″atomic″

construct.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 165

User Response: Check the statement type in ″atomic″

construct.

CCN6672 Expression in ″atomic″ construct is not

scalar type.

Explanation: Expression in ″atomic″ construct is not

scalar type.

User Response: Change the expression to scalar

type.

CCN6673 The variable ″%1$s″ has already been

specified in one of the data scope

clauses.

Where: ″%1$s″ is the variable

Explanation: The same variables appear on same

named clauses.

User Response: Change the variable.

CCN6674 The variable ″%1$s″ must not have a

reference type.

Where: ″%1$s″ is the variable.

Explanation: A reference type is not applied for the

variable.

User Response: Change the variable’s type.

CCN6675 The variable ″%1$s″ must not have an

incomplete type.

Where: ″%1$s″ is the variable.

Explanation: The variable should have a complete

type.

User Response: Check the variable’s type.

CCN6676 The class of variable ″%1$s″ must

have a default constructor.

Where: ″%1$s″ is the class name.

Explanation: The class should have a default

constructor.

User Response: Add a default constructor in the

class.

CCN6677 The __callback keyword is not

associated with a function pointer.

Explanation: The __callback keyword is restricted to

qualify function pointers.

User Response: Change the declaration or remove

the __callback keyword.

CCN6678 Critical constructs with the same name

cannot be nested.

Explanation: Critical directives with the same name

are not allowed to be nested inside each other.

User Response: Change the name of a critical

directive.

CCN6680 The smallest statement that contains a

″%1$s″ directive must be a block.

Where: ″%1$s″ is the directive name.

Explanation: The smallest parent statement of the

directive must be a block.

User Response: Remove the directive or change the

parent statement to a block.

CCN6682 The variable ″%1$s″ must not have a

pointer type.

Where: ″%1$s″ is the variable name.

Explanation: The variable can not have a pointer

type.

User Response: Check the declaration.

CCN6683 The variable ″%1$s″ is already listed in

a reduction clause.

Where: ″%1$s″ is the variable name.

Explanation: The variable should not be listed in a

reduction clause twice.

User Response: Don’t list the variable in a reduction

clause more than once.

CCN6684 Variable ″%1$s″ must be shared in the

enclosing context.

Where: ″%1$s″ is the variable name.

Explanation: Variable listed in the reduction clause

must be shared in the enclosing context.

User Response: Check the scope of the variable in

the reduction clause.

CCN6685 Variable ″%1$s″ must not be listed in

both a shared and a reduction clause.

Where: ″%1$s″ is the variable name.

Explanation: A variable must not be listed in a

″shared″ clause.

User Response: Check the scope of the variable in

the reduction clause.

166 z/OS V1R7.0 XL C/C++ Messages

CCN6686 Variable ″%1$s″ must not be

const-qualified.

Where: ″%1$s″ is the variable name.

Explanation: The variable should not be

const-qualified.

User Response: Remove the const qualifier of the

variable.

CCN6687 The type of variable ″%1$s″ is not valid

for the reduction operator.

Where: ″%1$s″ is the variable name.

Explanation: The variable must not be: a reference, a

pointer, or const-qualified.

User Response: Change the declaration of the

variable.

CCN6693 Local labels can only be preceded by

other local label declarations in a

lexical block.

Explanation: The local label declaration is not the first

statement in the lexical block or it is not strictly

preceded in the lexical block by local label declarations.

User Response: Move the local label declaration

before any other statements in the lexical block.

CCN6694 The class of variable ″%1$s″ has an

ambiguous default constructor.

Where: ″%1$s″ is the variable name.

Explanation: The default constructor of the class is

ambiguous.

User Response: Check the default constructor of the

class.

CCN6695 The class of variable ″%1$s″ has an

ambiguous copy constructor.

Where: ″%1$s″ is the variable name.

Explanation: The assignment operator of the class is

ambiguous.

User Response: Check the copy constructor of the

class.

CCN6696 The class of variable ″%1$s″ has an

ambiguous copy assignment operator.

Where: ″%1$s″ is the variable name.

Explanation: The assignment operator of the class is

ambiguous.

User Response: Check the assignment operator of

the class.

CCN6698 The current option settings do not

allow the use of ″%1$s″.

Where: ″%1$s″ is the unsupported feature.

Explanation: The ″%1$s″ is not supported by the

option.

User Response: Use the option to support ″%1$s″.

CCN6699 Pragma ″%1$s″ may not be supported

in next releases. Pragma ″%2$s″

provides the same functionality, and

should be used.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the name of another pragma.

Explanation: An old sub-option was used with the

pragma. The sub-option may not be supported in next

releases.

User Response: Use a new sub-option which

provides the same functionality.

CCN6800 The divisor for the modulus or division

operator must not be zero.

Explanation: A division-by-zero condition has been

detected.

User Response: Change the expression.

CCN6801 The result of expression evaluation

resulted in an overflow.

Explanation: An overflow condition has been

detected.

User Response: Change the expression.

CCN6802 The result of expression evaluation

resulted in an underflow.

Explanation: An underflow condition has been

detected.

User Response: Change the expression.

CCN7500 The option ″%1$s″ is not supported.

Where: ″%1$s″ is an option.

Explanation: The command line contained an option

that is not supported. Note that some option parameters

must not have spaces between the option and the

parameter.

User Response: Remove the option. Check the

syntax of the options.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 167

 | |

 |

 |
 |
 |
 |

 |
 |

CCN7501 Suboption ″%1$s″ for option ″%2$s″ is

not supported on the target platform.

Where: ″%1$s″ is the suboption. ″%2$s″ is the option.

Explanation: The option has been specified with a

suboption that is not supported on the target platform.

User Response: Change the suboption, or remove the

option.

CCN7502 Missing value for option ″%1$s″.

Where: ″%1$s″ is an option name

Explanation: The option was missing a required

parameter. See the ″User’s Guide″ for details on the

option.

User Response: Add a value for the option.

CCN7503 Unrecognized value ″%1$s″ specified

with option ″%2$s″.

Where: ″%1$s″ is the value specified with the option,.

″%2$s″ is the option name.

Explanation: An inappropriate value was used with

the option.

User Response: Remove the unrecognized value.

CCN7504 ″%1$s″ is not a valid suboption for

″%2$s″. The option is ignored.

Where: ″%1$s″ is the suboption, ″%2$s″ is the option.

Explanation: The command line contained an option

with an invalid suboption.

User Response: Remove the suboption.

CCN7505 The value given for the ″priority″

option is in the range reserved for the

system.

Explanation: Priority values less than -2147482624

are reserved for system purposes.

User Response: Change the priority value so that it is

greater than -2147482624.

CCN7506 ″%1$s″ is no longer supported. The

option is ignored.

Where: ″%1$s″ is the outdated option.

Explanation: The command line contained an option

that is no longer supported by this release.

User Response: Remove the option.

CCN7507 Options ″%1$s″ and ″%2$s″ are not

compatible.

Where: ″%1$s″ and ″%2$s″ are both option names.

Explanation: The specified options cannot be used

together.

User Response: Change option values.

CCN7508 Suboption ″%1$s″ for option ″%2$s″ is

no longer supported. The suboption is

ignored.

Where: ″%1$s″ is the suboption. ″%2$s″ is the option.

Explanation: The command line contained a

suboption that is no longer supported by this release.

User Response: Remove the suboption.

CCN7509 The suboption specified for the ″%1$s″

option is not allowed when the ″%2$s″

option is specified.

Where: ″%1$s″ and ″%2$s″ are option names.

Explanation: The suboption specified in the first

option conflicts with the second option. The first option

is ignored.

User Response: Correct the conflicting option or

suboption.

CCN7510 Insufficient memory.

Explanation: The available memory has been

exhausted.

User Response: Provide more memory.

CCN7511 Either the default or user-defined

maximum number of error messages

has been exceeded.

Explanation: There have been too many errors to

continue.

User Response: Fix the previous errors.

CCN7512 Compiler cannot create temporary

files. The file system may be full or not

writable.

Explanation: The intermediate code files could not be

created. Please verify that the target file system exists,

is writable, and is not full.

User Response: Ensure that the designated location

for temporary objects exists, is writable, and is not full.

168 z/OS V1R7.0 XL C/C++ Messages

||
|

|

|
|

|
|

||

|

|
|
|

|

||
|

|
|

|
|

|

||
|

|

|
|

|

||
|

|

|
|

|

 | |
 |

 |

 |
 |

 |

 | |
 |
 |

 |

 |
 |

 |

 | |
 |
 |

 |

 |
 |
 |

 |
 |

CCN7513 An error was detected while writing to

an temporary file. The file system may

be full.

Explanation: An error occurred writing to an

intermediate code file. Please verify that the target file

system exists, is writable, and is not full.

User Response: Ensure that the designated location

for temporary objects exists, is writable, and is not full.

CCN7517 The template registry file ″%1$s″ could

not be opened.

Where: ″%1$s″ is the template registry file name

designated by the templateregistry compiler option.

Explanation: A template registry file is created when

the templateregistry compiler option is enabled.

User Response: Ensure that file system permissions

allow files to be written, and that sufficient file system

resources exist to permit the creation of this file.

CCN7518 Error reading template registry file

″%1$s″.

Where: ″%1$s″ is the template registry file name

designated by the templateregistry compiler option

Explanation: The template registry file is corrupt.

User Response: Delete the template registry file and

recompile all of the source files using this registry.

CCN7519 Error writing to template registry file

″%1$s″.

Where: ″%1$s″ is the template registry file name

designated by the templateregistry compiler option.

Explanation: A template registry file is created when

the templateregistry compiler option is enabled.

User Response: Ensure that file system permissions

allow files to be written, and that sufficient file system

resources exist to permit the creation of this file.

CCN7520 ″″%1$s″″

Where: ″%1$s″ is the message.

Explanation: This is a generic message.

User Response: The primary message describes a

unique situation. All information should be found there.

CCN7521 The template definition ″%1$s″ is no

longer provided in module ″%2$s″.

Dependent modules should be

recompiled to generate the necessary

definition.

Where: ″%1$s″ is the template definition and ″%2$s″

is the module.

Explanation: A template definition is no longer

available in the current module.

User Response: Recompile dependent modules to

regenerate the template definition.

CCN7599 The compiler could not open the

output file ″%1$s″.

Where: %1$s is a file name.

Explanation: The file ″%1$s″ could not be opened.

User Response: Ensure the output file name is

correct. Also, ensure that the location of the output file

has sufficient storage available. If using a network file

system, ensure that the network is working properly and

you have permission to write to the file system.

CCN7601 Goto statements should not be used.

Explanation: Goto statements often lead to difficult to

maintain code.

User Response: Remove the goto statements.

CCN7602 Ellipsis notation should not be used.

Explanation: Using ellipsis prevents type checking of

arguments.

User Response: Use an explicit argument list.

CCN7607 ″%1$s″ should probably define a

constructor.

Where: ″%1$s″ is a class name.

Explanation: ″%1$s″ does not have a constructor

defined.

User Response: Define a constructor for ″%1$s″.

CCN7608 ″%1$s″ should probably define a

destructor.

Where: ″%1$s″ is a class name.

Explanation: ″%1$s″ does not have a destructor

defined.

User Response: Define a destructor for ″%1$s″.

CCN7609 ″%1$s″ should probably define a copy

constructor.

Where: ″%1$s″ is a class name.

Explanation: ″%1$s″ does not have a user defined

copy constructor.

User Response: Define a copy constructor for

″%1$s″.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 169

||

|

|

|
|

 | |
 |

 |

 |

 |
 |
 |
 |
 |

CCN7611 Argument ″%1$s″ is not used in

function ″%2$s″.

Where: ″%1$s″ is an argument and ″%2$s″ is the

name of the function.

Explanation: The argument ″%1$s″ is specified but

not needed.

User Response: Consider removing the argument

from the paramater list of the function.

CCN7612 ″%1$s″ is set but not used in function

″%2$s″.

Where: ″%1$s″ is the variable that is set but not used

and ″%2$s″ is the function where the variable resides.

Explanation: A variable has been explicitly initialized

or assigned but is not referenced.

User Response: Remove the variable if there are no

side-effects.

CCN7613 The destructor in the base class of

″%1$s″ should be made virtual.

Where: ″%1$s″ is the base class to change.

Explanation: A virtual destructor in the base class

ensures that the proper destructor is called.

User Response: Declare the destructor with the virtual

keyword.

CCN7614 A user-defined copy

constructor/assignment operator

should be created in ″%1$s″ to handle

a pointer data member.

Where: ″%1$s″ is the class that has a pointer to data

member.

Explanation: The compiler generated copy constructor

and assignment operator does a bitwise member copy.

User Response: Create a copy constructor and an

assignment operator.

CCN7616 ″%1$s″ does not assign values to all

data members in the class.

Where: ″%1$s″ is the offending class.

Explanation: Checks that all data members in a class

are assigned to when user defined assignment

operators are present.

User Response: Assign value to data member.

CCN7617 ″%1$s″ was not initialized.

Where: ″%1$s″ is a data member.

Explanation: The data member was not initialized.

User Response: Initialize the member.

CCN7618 ″%1$s″ should be initialized using the

member initialization list.

Where: ″%1$s″ is the data member to initialize.

Explanation: Initializing a data member is faster than

assignment in the constructor.

User Response: Initialize the data member in the

constructor list.

CCN7619 ″%1$s″ should be initialized in the

same order as it is declared in ″%2$s″.

It should be initialized after ″%3$s″.

Where: ″%2$s″ is the class name. ″%1$s″ and

″%3$s″ are its data members. ″%3$s″ is a data

member that is after ″%1$s″ in the class definition.

Explanation: Data members are initialized in the order

they are declared, the initialization list should reflect

this.

User Response: Re-order the initialization list to be

the same as the declaration order.

CCN7620 ″%1$s″ is a non-const namespace

variable and may cause problems in

multi-threaded code.

Where: ″%1$s″ is a variable in namescope scope.

Explanation: Variables in namespace scope that are

not protected by a mutex may behave unexpectedly in

multi-threaded code.

User Response: Don’t use variables in namespace

scope for multi-threaded code.

CCN7621 ″%1$s″ is a global variable and may

cause problems in multi-threaded

code.

Where: ″%1$s″ is a global variable.

Explanation: Global variables that are not protected

by a mutex may behave unexpectedly in multi-threaded

code.

User Response: Don’t use global variables for

multi-threaded code.

170 z/OS V1R7.0 XL C/C++ Messages

 | |
 |
 |

 |
 |
 |

 |
 |
 |

 |
 |

CCN7622 ″%1$s″ is a static local variable and

may cause problems in multi-threaded

code.

Where: ″%1$s″ is a static local variable.

Explanation: Static local variables that are not

protected by a mutex may behave unexpectedly in

multi-threaded code.

User Response: Don’t use static local variables for

multi-threaded code.

CCN7623 ″%1$s″ is a static member variable and

may cause problems in multi-threaded

code.

Where: ″%1$s″ is a static member variable.

Explanation: Static member variables that are not

protected by a mutex may behave unexpectedly in

multi-threaded code.

User Response: Don’t use static member variables for

multi-threaded code.

CCN7624 64-bit portability : possible truncation

of pointer through conversion of

pointer type into int type.

Explanation: Conversion from an 8 byte pointer type

into a 4 byte int type could be incorrect.

User Response: Change the int type to long.

CCN7625 64-bit portability : possible truncation

of array through conversion of array

type into int type.

Explanation: Conversion from an 8 byte array type

into a 4 byte int type could be incorrect.

User Response: Change the int type to long.

CCN7626 64-bit portability : possible truncation

of function through conversion of

function type into int type.

Explanation: Conversion from an 8 byte function type

into a 4 byte int type could be incorrect.

User Response: Change the int type to long.

CCN7627 64-bit portability : possible incorrect

pointer through conversion of integral

type into pointer.

Explanation: Casting an integral type smaller than 8

bytes to a 64-bit pointer will set the upper bytes to all

zeros, or all ones; likely an invalid pointer.

User Response: Explicitly cast to larger integral type

before casting to pointer.

CCN7628 64-bit portability : possible loss of

digits through conversion of long type

into int type.

Explanation: Conversion from an 8 byte long type into

a 4 byte int type could be incorrect.

User Response: Change the int type to long.

CCN7629 64-bit portability : possible difference

in results. In 32-bit mode values

greater than INT_MAX would be

truncated, but not in 64-bit mode.

Explanation: In 32-bit mode values greater than

INT_MAX would be truncated and could be incorrect.

User Response: Make sure that values <= INT_MAX.

CCN7630 64-bit portability : possible difference

in results. In 32-bit mode values <

INT_MIN or > INT_MAX would be

truncated, but not in 64-bit mode.

Explanation: In 32-bit mode values < INT_MIN or >

INT_MAX could be incorrect.

User Response: Make sure that values <= INT_MAX

and values >= INT_MIN.

CCN7631 64-bit portability : possible difference

in results. Values < 0 would give

different results in 64-bit mode, values

> UINT_MAX would be truncated in

32-bit mode but not in 64-bit mode.

Explanation: Possible difference in results if value <

0.

User Response: Make sure that values >= 0.

CCN7632 64-bit portability : possible difference

in results. Values > INT_MAX would be

truncated in 32-bit mode but not in

64-bit mode.

Explanation: Values > INT_MAX could be incorrect in

32-bit mode.

User Response: Make sure that values <= INT_MAX.

CCN7633 64-bit portability : possible difference

in results. Values > UINT_MAX would

be truncated in 32-bit mode but not in

64-bit mode.

Explanation: Values > UINT_MAX could be incorrect

in 32-bit mode.

User Response: Make sure that values <=

UINT_MAX.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 171

CCN7634 64-bit portability : possible difference

in results if value is negative.

Explanation: Values < 0 would give different results in

64-bit mode.

User Response: Make sure that values >= 0.

CCN7635 ″%1$s″ is not used in function ″%2$s″.

Where: ″%1$s″ is a variable name. ″%2$s″ is a

function.

Explanation: The variable ″%1$s″ is not used in

function ″%2$s″.

User Response: Either use the variable or remove it

appropriately.

CCN7636 Global variable ″%1$s″ is not used.

Where: ″%1$s″ is a global variable.

Explanation: A global variable was declared but not

used.

User Response: Remove the variable.

CCN7637 Null statement.

Explanation: This C++ statement has no effect.

User Response: Remove the statement.

CCN7638 The condition evaluates to a constant

value.

Explanation: An expression in a condition will not

change during execution.

User Response: Remove the condition.

CCN7639 Precision will be lost in assignment to

bit field ″%1$s″.

Where: ″%1$s″ is the name of the bit field.

Explanation: The size of the value assigned to the bit

field is too large.

User Response: Increase the size of the bit field or

reduce the value assigned.

CCN7640 The statement is unreachable.

Explanation: Statements that are unreachable are

never executed.

User Response: Remove unreachable statements.

CCN7641 Auto compiler temporary of type

″%1$s″ has been generated.

Where: ″%1$s″ is the type of the temporary variable.

Explanation: A temporary variable was generated by

the compiler to hold an intermediate result.

User Response: Modify expression to remove the

need for the compiler generated temporary.

CCN7642 The constant expression is larger than

the size of the bit field type.

Explanation: This may result in unexpected behavior.

User Response: Choose a different bit field type or

reduce the size of the bit field.

CCN7643 The function %s declared with attribute

″noreturn″ or pragma leaves may

return.

Where: %s is the function name.

Explanation: The noreturn function should have

reachable call to noreturn function.

User Response: Make sure the noreturn function has

reachable call to noreturn function.

CCN7644 Pointer type ″%1$s″ and type ″%2$s″

are not compatible in the current

aliasing mode.

Where: ″%1$s″ is a type. ″%2$s″ is a type.

Explanation: This may break ANSI aliasing rules.

User Response: Make sure that there is no need to

do this cast in the code. Or use different aliasing mode

to ensure optimization correctness.

CCN7645 Array ″%1$s″, was not initalized in its

declaration.

Where: ″%1$s″ is an array.

Explanation: The array is not intialized when it is

declared.

User Response: Make sure that the array is intialized

when it is declared.

CCN7646 Label ″%1$s″ defined but not used.

Where: ″%1$s″ is a label.

Explanation: The label is defined but it is never

referenced.

User Response: Make sure that the label is

referenced. Or the label could be incorrect.

172 z/OS V1R7.0 XL C/C++ Messages

||
|

|

|
|

|
|

 | |
 |

 |

 |
 |

CCN7647 The ″vector″ keyword must be the first

type specifier used.

Explanation: The ″vector″ keyword must be the first

type specifier used.

User Response: Element specifier must come after

vector specifier.

CCN7648 Deprecated type specifier ″long″ in

AltiVec type, use ″int″ instead.

Explanation: Deprecated type specifier ″long″ in

AltiVec type, use ″int″ instead.

User Response: Long to be deprecated in future

release of Altivec PIM.

CCN7649 The condition always evaluates to true.

Explanation: An expression in a condition will not

change during execution.

User Response: Remove the condition.

CCN7650 The condition always evaluates to

false.

Explanation: An expression in a condition will not

change during execution.

User Response: Remove the condition.

CCN8100 ″%1$s″ specified in ″%2$s″ is not a

valid numeric value. The option is

ignored.

Where: ″%1$s″ is the invalid numeric value. ″%2$s″ is

the option being ignored.

Explanation: The specified option was ignored

because the argument was not a valid numeric value.

User Response: Verify the syntax of the option.

CCN8101 The numeric value ″%1$s″ specified in

″%2$s″ is out of bounds. The option is

ignored.

Where: ″%1$s″ is the out-of-bounds value specified.

″%2$s″ is the option being ignored.

Explanation: The specified option was ignored

because the argument was not a numeric value within

the range specified by this option.

User Response: Verify the allowable values for this

option.

CCN8102 The alignment value ″%1$s″ specified

in ″%2$s″ is not a power of two. The

option is ignored.

Where: ″%1$s″ is the invalid alignment value. ″%2$s″

is the option being ignored.

Explanation: The specified option was ignored

because the alignment specified was not a power of

two.

User Response: Verify the allowable values for this

option.

CCN8103 ″%1$s″ specified in ″%2$s″ is not

recognized. The option is ignored.

Where: ″%1$s″ is the unrecognized argument. ″%2$s″

is the option being ignored.

Explanation: The specified option was ignored

because the specified argument was not recognized.

User Response: Verify the syntax of the option.

CCN8104 The message number %1$s specified

in ″%2$s″ is not a valid message ID.

The option is ignored.

Where: ″%1$s″ is the invalid message ID. ″%2$s″ is

the option being ignored.

Explanation: The specified option was ignored

because the message ID is not valid.

User Response: Verify the syntax of the option and

the message ID.

CCN8105 A non-empty string is required but

″%1$s″ appears in ″%2$s″. The option

is ignored.

Where: ″%1$s″ is the invalid argument. ″%2$s″ is the

option being ignored.

Explanation: The specified option was ignored

because it was expecting a string with characters in it.

User Response: Verify the syntax of the option.

CCN8106 An option argument is required but is

not found in ″%2$s″. The option is

ignored.%1$s

Where: ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored

because it expected an argument which was not

provided.

User Response: Verify the syntax of the option.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 173

||

|
|

|

||
|

|
|

|

CCN8107 ″%1$s″ specified in ″%2$s″ contains

embedded spaces. The option is

ignored.

Where: ″%1$s″ is the argument containing embedded

spaces. ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored due to

embedded spaces in the argument.

User Response: Verify the syntax of the option and

the value passed as an argument.

CCN8108 The option argument ″%1$s″ specified

in ″%2$s″ is not valid. The option is

ignored.

Where: ″%1$s″ is the invalid argument. ″%2$s″ is the

option being ignored.

Explanation: The specified option was ignored

because the argument specified was not valid.

User Response: Verify the syntax of the option.

CCN8109 The section attributes ″%1$s″ specified

in ″%2$s″ are not valid. The option is

ignored.

Where: ″%1$s″ is the invalid section attributes

argument. ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored

because the section attributes argument was not valid.

User Response: Verify the syntax of the option.

CCN8110 An unnecessary argument ″%1$s″ is

found in ″%2$s″. The option is ignored.

Where: ″%1$s″ is the unnecessary argument. ″%2$s″

is the option being ignored.

Explanation: The specified option was ignored

because an unnecessary argument was specified.

User Response: Verify the syntax of the option.

CCN8111 ″%1$s″ specified in ″%2$s″ requires an

additional option argument. The option

is ignored.

Where: ″%1$s″ is the argument that requires more

information. ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored

because the argument requires more information.

User Response: Verify the syntax of the option.

CCN8120 The AlignAddr value ″%1$s″ is less

than the AlignFile value ″%2$s″.

Where: ″%1$s″ is the AlignAddr value. ″%2$s″ is the

AlignFile value.

Explanation: The AlignAddr value must be greater

than the AlignFile value.

User Response: Change the values.

CCN8121 ″%1$s″ in ″%2$s″ is not a valid object

model name. The option is ignored.

Where: ″%1$s″ is the invalid object model name

specified. ″%2$s″ is the option being ignored.

Explanation: The option specified was ignored

because the specified object model name was not valid.

User Response: Verify the option syntax.

CCN8122 ″%1$s″ is in conflict with ″%2$s″. The

option is ignored.

Where: ″%1$s″ and ″%2$s″ are the conflicting

options.

Explanation: The options specified are not valid if

they are specified together.

User Response: Verify the options and remove or

modify one of them.

CCN8123 The string ″%1$s″ in ″%2$s″ is not a

valid identifier. The option is ignored.

Where: ″%1$s″ is the invalid identifier specified.

″%2$s″ is the option being ignored.

Explanation: The specified option was ignored

because it expected a valid identifier.

User Response: Verify the syntax of the option and

the string specified.

CCN8124 The string ″%1$s″ in ″%2$s″ is not a

valid keyword. The option is ignored.

Where: ″%1$s″ is the invalid string specified. ″%2$s″

is the option being ignored.

Explanation: The specified option was ignored

because it expected a string containing a valid keyword.

User Response: Verify the syntax of the option and

the string specified.

CCN8125 The option argument ″%1$s″ specified

in ″%2$s″ is longer than %3$s

characters. The option is ignored.

Where: ″%1$s″ is the invalid argument. ″%2$s″ is the

option being ignored. ″%3$s″ is the maximum length.

Explanation: The specified option was ignored

174 z/OS V1R7.0 XL C/C++ Messages

 | |
 |
 |

 |
 |

 |

because the argument was too long.

User Response: Verify the syntax and constraints of

the option.

CCN8130 The value ″%1$s″ in option ″%2$s″ is

reserved for system use. The value is

not accepted.

Where: ″%1$s″ is the value. ″%2$s″ is the option.

Explanation: The specified value is not accepted

because it is reserved by the system.

User Response: Change the specified value.

CCN8131 The global option directive ″%1$s″

must not be placed inside braces. The

option is ignored.

Where: ″%1$s″ is the option directive being ignored.

Explanation: The specified option directive is a global

directive that applies to the target rather than to

individual files.

User Response: Move the option to the global scope.

CCN8132 The global option directive ″%1$s″ is

not allowed because it modifies a

previous directive. The option is

ignored.

Where: ″%1$s″ is the global option directive being

ignored.

Explanation: The specified option directive is ignored

because it conflicts with a previous directive.

User Response: Verify the meaning of the option

directives specified to see that they do not conflict.

CCN8133 No include path is specified for the

option ″%1$s″. The option is ignored.

Where: ″%1$s″ is the option being ignored.

Explanation: The specified option was ignored

because it expected an include path as a an argument.

User Response: Verify the syntax of the option.

CCN8134 Error in setting option ″%1$s″ for

extension source ″%2$s″.

Configuration value ″%3$s″ has the

wrong format.

Where: ″%1$s″ is the option. ″%2$s″ is the extension

source. ″%3$s″ is the configuration value.

Explanation: This is a warning message about

compiler extension source options.

User Response: If you are using that extension, use

the correct option for that extension.

CCN8135 Default value of option ″%1$s″ in the

.ice file has the wrong format ″%2$s″.

Where: ″%1$s″ is the option which has an invalid

default value in the .ice file.

Explanation: The .ice file contains an invalid default

value for the specified option.

User Response: Verify the syntax used to specify

defaults in the .ice file.

CCN8136 Options ″%1$s″ and ″%2$s″ are in

conflict.

Where: ″%1$s″ and ″$2$s″ are the conflicting options.

Explanation: The specified options cannot be

specified together because they conflict.

User Response: Verify the option settings and remove

or modify one of the conflicting options.

CCN8137 OBJECT_MODE setting ″%1$s″ is not

recognized and is not a valid setting

for the compiler.

Where: ″%1$s″ is the invalid setting.

Explanation: The specified OBJECT_MODE setting is

not valid.

User Response: Verify the valid settings for

OBJECT_MODE.

CCN8138 OBJECT_MODE = 32_64 is not a valid

setting for the compiler.

Explanation: The 32_64 OBJECT_MODE setting is

not supported.

User Response: Verify the valid settings for

OBJECT_MODE.

CCN8139 The global option ″%1$s″ should be

applied to all sources and targets.

Where: ″%1$s″ is the global option.

Explanation: A global option is an option that applies

to all sources and targets rather than just one specified

source file.

User Response: Move the global option so that it

applies to all targets and sources.

CCN8140 ″%1$s″ is not compatible with 64-bit

object mode. The default value ″%2$s″

is being set.

Where: ″%1$s″ is the option that is not valid for 64-bit

object mode. ″%2$s″ is the default value being set.

Explanation: The specified option is not valid for

64-bit object mode, so the specified default is being set.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 175

|

|
|

User Response: Verify the options that are valid for

64-bit object mode or switch to 32-bit object mode.

CCN8141 ″%1$s″ is not compatible with 32-bit

object mode. The default value ″%2$s″

is being set.

Where: ″%1$s″ is the option which is not valid for

32-bit object mode. ″%2$s″ is the default value being

set.

Explanation: The specified option is not valid for

32-bit object mode so the specified default is being set.

User Response: Verify the options that are valid for

32-bit object mode or switch to 64-bit object mode.

CCN8142 ″%1$s″ is not compatible with ″%2$s″.

″%3$s″ is being set.

Where: ″%1$s″ and ″%2$s″ are the incompatible

option values. ″%3$s″ is the setting chosen by the

compiler.

Explanation: The specified option values cannot be

specified together because they are not compatible. A

valid option is being set instead.

User Response: Verify the option values, and either

remove or modify them so that they are compatible.

CCN8143 ″%1$s″ option is specified, but no

floating point traps are being detected.

Where: ″%1$s″ is the option.

Explanation: Floating point traps are enabled but no

traps have been specified.

User Response: Remove the option.

CCN8144 The option ″%1$s″ requires ″%2$s″.

The option is ignored.

Where: ″%1$s″ is the ignored option, ″%2$s″ is the

required option.

Explanation: The specified option is ignored because

it needs the required option.

User Response: Remove the option or specify the

required option.

CCN8145 ″main″ cannot be exported. The

directive is ignored.

Explanation: ″main″ is ignored because it cannot be

exported.

User Response: Remove ″main″.

CCN8146 Expected text ″%1$s″ was not

encountered on option ″%2$s″. The

option is ignored.

Where: ″%1$s″ is the unexpected text, ″%2$s″ is the

ignored option.

Explanation: option argument should have ″%1$s″.

User Response: Verify the syntax of the option.

CCN8147 The compiler is operating in 32 bit

mode. The option ″%1$s″ is ignored.

Where: ″%1$s″ is the ignored option.

Explanation: The compiler should operate in 64 bit

mode.

User Response: To use the specified option, turn on

64 bit mode.

CCN8148 The current codeset ″%1$s″ is not

utf-8. The option ″%2$s″ is ignored.

Where: ″%1$s″ is the current codeset. ″%2$s″ is the

ignored option.

Explanation: The current locale should be utf-8.

User Response: Change the current locale in utf-8 to

use this option.

CCN8149 The option ″%1$s″ requires AIX

Version 5.2 or higher. The option

″%1$s″ is ignored.

Where: ″%1$s″ is the ignored option.

Explanation: The option is supported on AIX 5.x and

above.

User Response: Use this option only on AIX 5.2 or

above.

CCN8150 The option ″%1$s″ requires one of the

following ″%2$s″. The option is

ignored.

Where: ″%1$s″ is the ignored option, ″%2$s″ is the

list of required options.

Explanation: The specified option is ignored because

it needs one of the other required options.

User Response: Remove the option or specify one of

the required options.

CCN8151 The option ″%1$s″ sets ″%2$s″.

Where: ″%1$s″ is the explicitly set option, ″%2$s″ is

the implicitly set option.

Explanation: The second option is set when the first

option is specified.

176 z/OS V1R7.0 XL C/C++ Messages

User Response: If the implicitly set option is not

desirable and the explicitly set option isn’t required,

remove the explicitly set option.

CCN8152 Weak symbol is not supported on

AIX4.3 and lower. Weak symbol is

supported on AIX5.1 with a PTF or on

AIX5.2 and higher.

Where: N/A

Explanation: Specified option is not supported on

target release.

User Response: Remove conflicting option.

CCN8153 The correct way of representing the

imaginary part of a complex number is

by using ″%1$s″

Where: ″%1$s″ is the right format for representing the

imaginary part of a complex number.

Explanation: The standard doesn’t support the suffix i

or j to represent the imaginary part of a complex

number, please use ″%1$s″.

User Response: Remove the suffix i or j.

CCN8154 C++ complex types may be supported

differently by this compiler than by

other compilers. If you are compiling

this program with more than one

compiler, using complex types may

result in program incompatibility.

Explanation: The complex data type is a non-standard

C++ extension.

User Response: Do not use the predefined complex

data type if portability is a key requirement. Use the

library complex type instead.

CCN8155 The use of long in a vector type is not

allowed in 64 bit mode.

Explanation: Long is not allowed in vector type in 64

bit mode.

User Response: Use int instead of long for vector

type.

CCN8200 Class ″%1$s″ has base classes with

different object models.

Where: ″%1$s″ is the name of the derived class.

Explanation: The object model deals primarily with the

layout of class hierarchies. All classes in the same

inheritance hierarchy must have the same object model.

User Response: Modify either the base class or the

derived class so that both have the same object model.

CCN8201 Class ″%1$s″ is specified with a

different object model than its base

classes. The object model specified in

its base classes will be used.

Where: ″%1$s″ is the name of the derived class.

Explanation: The object model deals primarily with the

layout of class hierarchies. All classes in the same

inheritance hierarchy must have the same object model.

User Response: Modify either the base class or the

derived class so that both have the same object model.

CCN8202 Class ″%1$s″ has different object

model between its formal template

class and its base classes.

Where: ″%1$s″ is the name of the instance class.

Explanation: The object model deals primarily with the

layout of class hierarchies. All classes in the same

inheritance hierarchy must have the same object model.

Any formal templates (primary templates or partial

specializations) must also have the same object model.

User Response: Modify either the base class or the

formal template class so that both have the same object

model.

CCN8204 The direct base ″%1$s″ inaccessible in

″%2$s″ due to ambiguity.

Where: ″%1$s″ is the name of the base class, ″%2$s″

is the name of the derived class

Explanation: A base class is inaccessible because it

is ambiguous.

User Response: Remove the ambiguous base class

from the class hierarchy.

CCN8205 The covariant return type is not

supported on the specific platform, the

function ″%1$s″ has two covariant

return types, ″%2$s″ and ″%3$s″.

Where: ″%1$s″ is the function name, ″%2$s″ and

″%3$s″ are the two covariant return type names.

Explanation: Covariant return type is not implemented

on this platform.

User Response: Remove the covariant return type for

the function.

CCN8400 ″%1$s″ is undefined. The delete

operator will not call a destructor.

Where: ″%1$s″ is the class.

Explanation: The class is declared but not defined so

a constructor will not be called when the object is

deleted at this point.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 177

||
|

|
|

|
|

User Response: Define the class.

CCN8401 The address of the destructor ″%1$s″

cannot be taken.

Where: ″%1$s″ is the destructor.

Explanation: An attempt has been made to take the

address of a destructor.

User Response: Change the code to not take the

address of the destructor.

CCN8402 The explicit reference to the destructor

″%1$s″ can only be used in an explicit

destructor call.

Where: ″%1$s″ is the destructor.

Explanation: Destructors do not have names and can

only be referred to in declarations and in

pseudo-destructor calls.

User Response: Remove the reference to the

destructor.

CCN8403 An expression with type

pointer-to-member function must be

bound to an object or a pointer to an

object when it is used with the

function call operator ().

Explanation: A pointer-to-member function must have

an object to refer to when calling the function.

User Response: Change the code so that the function

is being called on an object or a pointer to an object.

CCN8404 All the arguments must be specified

for ″%1$s″ because its default

arguments have not been checked yet.

Where: ″%1$s″ is the function.

Explanation: The function is recursive and is using

the default arguments. Because they have not been

processed yet, they must be specified.

User Response: Specify the parameters to the

function call.

CCN8405 An empty initializer list cannot be used

to initialize an unbounded array.

Explanation: The array is unbounded and its size is

not known so an empty initializer list cannot be used.

User Response: Specify the size of the array or use a

non-empty initializer list.

CCN8406 Build with the ″%1$s″ compiler option

to extend the scope of the

for-init-statement declaration.

Where: ″%1$s″ is the compiler option that can extend

the scope of the variables declared in the for statement.

Explanation: Informational message about the option

for extending scope of the variable in the for statement.

User Response: See the primary message.

CCN8407 The local macro ″%1$s″ is not visible

in the current source.

Where: ″%1$s″ is the macro.

Explanation: Informational message about a local

macro.

User Response: See the primary message.

CCN8408 The condition declaration cannot have

type ″%1$s″.

Where: ″%1$s″ is the type.

Explanation: The type of the variable declared in the

condition is not valid.

User Response: Change the type of the declaration in

the condition to bool.

CCN8409 The condition declaration cannot be

initialized with a brace list initializer.

Explanation: A declaration in a condition cannot be

initialized with a brace list.

User Response: Change the initializer so that it is not

in brace list format.

CCN8410 The left side of the ″%1$s″ operator

must be an lvalue.

Where: ″%1$s″ is the operator.

Explanation: The operand on the left side is not an

object that can be assigned a value.

User Response: Change the left operand to an object

that can be assigned a value.

CCN8411 A dynamic cast is present, but the

correct RTTI option is not specified.

Explanation: The compilation unit must be compiled

with RTTI enabled.

User Response: Use the correct RTTI compiler

option, or remove the dynamic cast.

178 z/OS V1R7.0 XL C/C++ Messages

CCN8412 A typeid is present, but the correct

RTTI option is not specified.

Explanation: The compilation unit must be compiled

with RTTI enabled.

User Response: Use the correct RTTI compiler

option, or remove the type ID.

CCN8413 The ″__alignof__″ operator cannot be

applied to a bit field.

Explanation: An attempt to use the __alignof__

operator on a bit field has been made.

User Response: Remove the use of the __alignof__

operator.

CCN8414 The identifier ″__VA_ARGS__″ is

allowed only in the replacement list of

a function-like macro that has an

ellipsis, ″...″, in the parameter list.

Explanation: An attempt was made to use

__VA_ARGS__ without an ellipsis in the macro’s

parameter list.

User Response: Remove the use of __VA_ARGS__

or add an ellipsis.

CCN8415 This expression cannot be used as a

typeof expression.

Explanation: The expression is inappropriate for use

with the typeof extension.

User Response: Change the expression.

CCN8418 The non-″%1$s″ member function

″%2$s″ is called for ″%3$s″.

Where: ″%1$s″ is the cv-qualifier. ″%2$s″ is the

function. ″%3$s″ is the object.

Explanation: Only the same cv-qualified member

functions can be called with a more qualified or the

same cv-qualified type of object.

User Response: Change the member function to be

of the same cv-qualification or change the object to be

non-cv-qualified.

CCN8419 A pointer to non-″%1$s″ member

function type ″%2$s″ is called for

″%3$s″.

Where: ″%1$s″ is the cv-qualifier. ″%2$s″ is the

function. ″%3$s″ is the type.

Explanation: Only the same cv-qualified const

member functions can be called with a more qualified or

the same cv-qualified type of pointer-to-member.

User Response: Change the member function to be

of the same cv-qualification or change the

pointer-to-member to be non-cv-qualified.

CCN8429 The format of the designated initializer

is incorrect.

Explanation: A designated initializer should contain a

designator, followed by an expression to initialize it.

User Response: Change the designated initializer

syntax.

CCN8430 Casting to an array type is not

permitted.

Explanation: A cast expression may not specify an

array type.

User Response: Remove the array type cast or

correct the type.

CCN8431 A template may not be instantiated

with a variably modified type.

Explanation: Template instantiation with a variably

modified type is not permitted.

User Response: Remove the template instantiation or

correct the type.

CCN8600 ″%1$s″ operator cannot be overloaded.

Where: ″%1$s″ is the operator.

Explanation: The attempted operator overload is not

valid.

User Response: Change the declaration to overload a

different operator.

CCN8601 Forward declaration of the

enumeration ″%1$s″ is not allowed.

Where: ″%1$s″ is the enumeration.

Explanation: Enumerations cannot have forward

declarations.

User Response: Define the enumeration before

attempting to use an elaboration of the enumeration.

CCN8602 The first non-matching token was

encountered on line %1$s, column

%2$s. A project cannot contain more

than one definition of a class unless

each definition consists of the same

sequence of tokens.

Where: ″%1$s″ is the line number. ″%2$s″ is the

column number.

Explanation: Informational message indicating the first

token that differs in the two class definitions.

User Response: See the primary message.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 179

||
|

|
|

|
|

 | |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

CCN8603 The parameter must not be specified

with this scheduling type.

Explanation: This schedule clause kind does not allow

a chunk_size parameter.

User Response: Remove the chunk_size expression

from the schedule clause.

CCN8606 ″restrict″ can only qualify a pointer or

reference type. The ″restrict″ keyword

is ignored.

Explanation: The ″restrict″ qualifier is only allowed to

adorn a pointer or a reference type.

User Response: Apply the ″restrict″ keyword to a

pointer or reference type.

CCN8607 The ″__callback″ keyword can only

adorn a pointer to a function. The

keyword is ignored.

Explanation: The ″__callback″ keyword is only

allowed to adorn a pointer to a function.

User Response: Remove the __callback or apply the

″__callback″ to a pointer to a function.

CCN8608 The ″__ptr32″ qualifier cannot be

applied to a pointer that is in the return

type of a function or in a parameter to

a function.

Explanation: The ″__ptr32″ qualifier is not allowed on

a pointer that is part of a function type. That is, a

pointer that is part of a function return type or part of a

function parameter type.

User Response: Remove the __ptr32 qualifier.

CCN8609 The linkage keyword ″%1$s″ is

deprecated and has no meaning. The

keyword is ignored.

Where: ″%1$s″ is the deprecated linkage keyword.

Explanation: The linkage keyword has no meaning

and is ignored.

User Response: Remove the linkage keyword.

CCN8610 The pascal string is too long. It will be

truncated to 255 bytes in length.

Explanation: The pascal string can be a maximum of

255 bytes in length.

User Response: Shorten the pascal string.

CCN8611 The name ″%1$s″ can only be used to

declare a constructor.

Where: ″%1$s″ is the constructor.

Explanation: The constructor for a class cannot be

used as a type specifier.

User Response: Declare the constructor or specify a

valid type.

CCN8612 The hexadecimal floating point

constant ″%1$s″ cannot be

represented exactly in its evaluated

format.

Where: ″%1$s″ is the hexadecimal floating constant.

Explanation: Due to limits on the number of significant

digits, the hexadecimal floating point constant is

rounded.

User Response: Change the hexadecimal floating

point constant so that it fits in the evaluation format.

CCN8614 The static keyword or type qualifiers

are ignored unless they are in the

outermost array index of a function

parameter.

Explanation: The array index contains the static

keyword or type qualifiers. When the static keyword or

type qualifiers are used to specify the dimension of an

array, they can only be used for the declaration of

function parameters and only in the outermost array

dimension.

User Response: Remove the static keyword or type

qualifiers.

CCN8615 The attribute ″section″ cannot be

applied to this variable. The attribute is

ignored.

Explanation: The section attribute is generally not

supported for automatic variables, parameters, regular

member variables or uninitialized file scope variables

declared extern.

User Response: Remove the section attribute

specifier.

CCN8616 A different section was specified for

″%1$s″; the new specification is used.

Where: ″%1$s″ is an identifier.

Explanation: The new section specification overrides

the previous one.

User Response: Remove the previous specification of

attribute ″section″.

180 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |

 |
 |

 |
 |

 | |
 |
 |
 |

 |

 |
 |
 |

 |
 |

 | |
 |
 |
 |

 |
 |
 |
 |
 |
 |

 |
 |

 | |
 |
 |

 |
 |
 |
 |

 |
 |

 | |
 |

 |

 |
 |

 |
 |

CCN8617 The attribute ″section″ has been

specified more than once; the last

specification is used.

Explanation: The identified attribute was specified

more than once; the last specification is used.

User Response: Remove the duplicate attribute

specifier.

CCN8618 The class template name ″%1$s″ did

not match an injected class name and

must be followed by a template

parameter list.

Where: ″%1$s″ is the name of the template class.

Explanation: The template must have its template

parameter list specified.

User Response: Add the < and the appropriate

template parameter list followed by >.

CCN8619 The anonymous enumeration

declaration does not declare a name.

Explanation: An anonymous enumeration has been

specified without an enumerator list.

User Response: Either name the indicated

enumeration or specify its enumerators.

CCN8621 The type attribute ″%1$s″ is ignored

because it is not supported for this

type.

Where: ″%1$s″ is the invalid attribute.

Explanation: The identified attribute is attached to the

type of the declarator, but it is not supported for this

type.

User Response: Remove the attribute specifier or, if

you wish to specify it on a variable, attach it to the

variable by placing it after the variable declarator.

CCN8622 The expression must be an integral

non-volatile expression.

Explanation: Only an integral expression can be used

in this context, but a non-integral expression is

specified.

User Response: Change the expression to be an

integral expression.

CCN8623 A character string literal cannot be

concatenated with a wide string literal.

Explanation: You can only concatenate character

string literals or wide string literals, but not both

together.

User Response: Change the string concatenation.

CCN8701 The ″pragma datamodel″ stack is

empty. The pragma is ignored.

Explanation: An attempt has been made to restore

the previous pragma setting, but this is the first instance

of the pragma.

User Response: Remove the pragma.

CCN8702 Invalid syntax for pragma datamodel.

Explanation: The compiler has detected an invalid

pragma datamodel syntax.

User Response: Correct the syntax.

CCN8703 pragma datamodel(LLP64 | P128) seen

without matching pragma

datamodel(pop).

Explanation: At the end of compilation there was an

extra pragma datamodel on the stack.

User Response: Ensure that all pragma datamodel

directives have a matching pragma datamodel(pop).

CCN8704 The base class has a different data

model than this derived class.

Explanation: Base and derived classes must have

identical data models.

User Response: Change the data model of one of the

classes.

CCN8705 Cannot initialize a static __ptr64 with a

__ptr128 value.

Explanation: A __ptr64 variable is being initialized

with a constant value when the storage model indicates

such values are __ptr128s.

User Response: Use a different initialization value or

a different storage model.

CCN8706 The declaration ″%2$s″ specified in

″pragma %1$s″ cannot be found.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is

the variable or type name.

Explanation: Name lookup failed for the variable or

type specified in the pragma.

User Response: Change the pragma to refer to a

declared variable or type or declare the indicated

variable or type.

CCN8707 The pragma map has been applied to

function ″%1$s″, which has internal

linkage. The pragma is ignored.

Where: ″%1$s″ is the function name.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 181

||
|
|

|
|

|
|

||
|
|
|

|

|
|

|
|

||
|

|
|

|
|

||
|
|

|

|
|
|

|
|
|

||
|

|
|
|

|
|

||
|

|
|
|

|

 | |
 |
 |

 |

Explanation: An internal linkage function cannot be

mapped.

User Response: Change the function’s linkage or

remove the pragma.

CCN8708 The divisor for the modulus or division

operator cannot be zero.

Explanation: The result of the calculation is

undefined.

User Response: Change the value of the divisor or

change the operator.

CCN8709 The pragma ″%1$s″ directive must

occur before the first C++ statement in

program; The directive is ignored.

Where: ″%1$s″ is the pragma name.

Explanation: The pragma must precede any C++

statement in the program.

User Response: Move the pragma directive before

any C++ statement.

CCN8710 The pragma ″%1$s″ is ignored because

the ″%2$s″ option is not specified.

Where: ″%1$s″ is the pragma name, ″%2$s″ is the

missing option.

Explanation: The pragma must only be used when

the option is specified.

User Response: Remove the pragma or specify the

option.

CCN8711 Detected ″%1$s″ : ″%2$s″

Where: ″%1$s″ is the message number, ″%2$s″ is the

message text.

Explanation: The pragma runopts has invalid

arguments.

User Response: Correct the arguments.

CCN8712 The pragma enum is not allowed in the

middle of a declaration of an

enumeration. This pragma is in effect

after the enumeration declaration.

Explanation: The pragma enum cannot appear inside

a declaration of an enumeration.

User Response: Place the pragma before or after the

enum declaration.

CCN8713 The pragma ″%1$s″ is ignored because

the locale compiler option is not

specified.

Where: ″%1$s″ is the pragma name.

Explanation: The locale compiler option is required for

pragma ″%1$s″

User Response: Remove all the pragma &1 directives

or specify the locale compiler option.

CCN8714 The pragma enumsize is no longer

supported, pragma enum should be

used instead. The directive is ignored.

Explanation: This is an OS/400 (iSeries) message.

User Response: Use pragma enum instead.

CCN8715 The pragma runopts is not

implemented with 64-bit mode.

Explanation: The pragma runopts is not supported

with 64-bit mode in the current release.

User Response: Remove the pragma runopts if

compiled in 64-bit mode.

CCN8716 The ″pragma wsizeof″ stack is empty.

The pragma is ignored.

Explanation: The pragma is ignored because the

wsizeof stack is empty.

User Response: Remove the pragma or ensure that

the stack is not empty.

CCN8717 The ″pragma %1$s″ is not allowed in

namespace scope. The pragma is

ignored.

Where: ″%1$s″ is the pragma name.

Explanation: The pragma is ignored because it is

specified in namespace scope.

User Response: Use this pragma in a global scope.

CCN8718 The UNROLL and NOUNROLL pragmas

must be applied to a for-loop

construct. The pragma is ignored.

Explanation: The pragma is ignored because it is not

applied to a for loop.

User Response: Remove the offending pragma.

CCN8719 Only one UNROLL directive may be

specified on a single loop. The pragma

is ignored.

Explanation: The pragma is ignored because it

182 z/OS V1R7.0 XL C/C++ Messages

|
|

|
|

||
|
|

|

|
|

|
|

||
|

|
|

|
|

|
|

||

|
|

|
|

|

||
|
|
|

|
|

|
|

 | |
 |
 |

 |

 |
 |

 |
 |

 | |
 |
 |

 |

 |
 |

 |

 | |
 |
 |

 |
 |

 |

 | |
 |
 |

 |

conflicts with another pragma specified on the same

loop.

User Response: Remove the conflicting pragma.

CCN8720 The UNROLL pragma unrolling factor

must be a positive scalar integer

initialization expression. The pragma is

ignored.

Explanation: The pragma is ignored because its

unrolling factor is not a positive scalar integer.

User Response: Change the pragma factor to a

positive scalar integer.

CCN8721 The ″pragma pass_by_value″ stack is

empty. The pragma is ignored.

Explanation: The pragma is ignored because the

pass_by_value stack is empty.

User Response: Remove the pragma or ensure that

the stack is not empty.

CCN8722 The declaration ″%2$s″ specified in

pragma ″%1$s″ must be a variable. The

pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is a

declaration.

Explanation: The pragma is ignored because the

declaration in the variable list is not a variable.

User Response: Remove the declaration from the

pragma declaration list.

CCN8723 The variable ″%2$s″ specified in

pragma ″%1$s″ must be not be a

member variable. The pragma is

ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is a

variable name.

Explanation: The pragma is ignored because the

variable in the variable list is a member of a class.

User Response: Remove the variable from the

pragma declaration list.

CCN8724 The ccsid codepage number ″%1$s″

specified in #pragma convert is not

valid. The pragma is ignored.

Where: ″%1$s″ is a ccsid codepage number.

Explanation: A valid ccsid suboption for #pragma

convert is needed.

User Response: Specify a different ccsid number or

remove the pragma.

CCN8725 Missing ″%1$s″ ″%2$s″ directive(s).

The matching ″%3$s″ is/are no longer

in effect.

Where: ″%1$s″ is either convert or convlit. ″%2$s″ is

either pop or resume. ″%3$s″ is either convert or

convlit.

Explanation: The ″%3$s″ is ignored because it needs

a matching ″%1$s″.

User Response: Add the missing ″%1$s″ pragma or

remove the ″%3$s″ pragma.

CCN8726 An empty pragma directive was found.

The pragma directive is ignored.

Explanation: The pragma directive is ignored because

there is no pragma specified in the directive.

User Response: Remove the pragma directive or

complete the pragma.

CCN8727 The ″pragma nameManglingRule″ stack

is empty. The pragma is ignored.

Explanation: The pragma is ignored because the

pragma nameManglingRule stack is empty.

User Response: Remove the pragma or ensure that

the pragma nameManglingRule stack is not empty.

CCN8728 The declaration ″%2$s″ specified in

″pragma %1$s″ has already been

defined. The pragma is ignored.

Where: ″%1$s″ is the name of the pragma and

″%2$s″ is the name of the identifier.

Explanation: The identifier found in the pragma

cannot be redefined.

User Response: Remove the definition of the identifier

in question or remove the pragma.

CCN8729 Only one unrollandfuse or

nounrollandfuse pragma may be

specified on the same loop. The

pragma is ignored.

Explanation: The pragma is ignored because it

conflicts with another pragma specified on the same

loop.

User Response: Remove the conflicting pragma.

CCN8730 The unrollandfuse pragma unrolling

factor must be a positive scalar integer

initialization expression. The pragma is

ignored.

Explanation: The pragma is ignored because its

unrolling factor is not a positive scalar integer.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 183

|
|

|

||
|
|

|
|

|
|

|
|

||
|
|
|

|
|

|
|

|
|

||
|
|

|

|
|

|
|

 | |
 |
 |

 |
 |
 |

 |
 |

 |
 |

 | |
 |
 |

 |
 |

 |
 |

 |
 |

User Response: Change the pragma factor to a

positive scalar integer.

CCN8731 The unrollandfuse and nounrollandfuse

pragmas may only be applied to a

for-loop construct. The pragma is

ignored.

Explanation: The pragma is ignored because it is not

specified before the loop.

User Response: Remove the offending pragma.

CCN8732 Only one stream_unroll pragma may

be specified on the same loop. The

pragma is ignored.

Explanation: The pragma is ignored because it

conflicts with another pragma specified on the same

loop.

User Response: Remove the conflicting pragma.

CCN8733 The stream_unroll pragma unrolling

factor must be a positive scalar integer

initialization expression. The pragma is

ignored.

Explanation: The pragma is ignored because its

unrolling factor is not a positive scalar integer.

User Response: Change the pragma factor to a

positive scalar integer.

CCN8734 The stream_unroll pragma may only be

applied to a for-loop construct. The

pragma is ignored.

Explanation: The pragma is ignored because it is not

specified before the loop.

User Response: Remove the offending pragma.

CCN8735 The use of pragma once is deprecated.

It may not be supported in future

releases of the compiler or on other

platforms.

Explanation: Ths pragma is provided for support of

legacy code on some platforms. The continued use of

this pragma is discouraged.

User Response: Replace the use of this pragma with

a C/C++ style header guard.

CCN8736 The loopid pragma can only be

specified once per loop. The pragma is

ignored.

Explanation: The pragma is ignored because this loop

already has one loopid specified.

User Response: Remove the offending pragma.

CCN8737 The loopid pragma may only be

specified before a for loop or

block_loop directive. The pragma is

ignored.

Explanation: The pragma is ignored because the

statement that follows it is not applicable to the loopid

directive.

User Response: Remove the offending pragma.

CCN8738 A loopid pragma must be unique

within its enclosing scope. The pragma

is ignored.

Explanation: The pragma is ignored because it is

within the enclosing scope of another pragma loopid

which has the same loopid name.

User Response: Remove the offending pragma.

CCN8739 A block_loop pragma should precede a

for loop or another block_loop

directive. The pragma is ignored.

Explanation: The pragma is ignored because the

statement that follows it is not applicable to the

block_loop directive.

User Response: Remove the offending pragma or

move it to the correct place.

CCN8740 The block_loop directive is invalid

because loopid, ″%1$s″, is not found

within the loop nest. The pragma is

ignored.

Where: %1$s is the loopid name.

Explanation: The pragma is ignored because the

loopid specified is not a valid loopid.

User Response: Remove the offending pragma.

CCN8741 A block_loop directive may only be

specified on a perfect loop nest. The

pragma is ignored.

Explanation: The pragma is ignored because it is not

applied to a perfect loop nest.

User Response: Remove the offending pragma or fix

the loop nest.

CCN8742 The loopid identifier name specified in

this directive is not valid. The pragma

is ignored.

Explanation: The pragma is ignored because the

loopid identifier name is not in the proper format.

User Response: Remove the offending pragma or fix

the loop identifier name.

184 z/OS V1R7.0 XL C/C++ Messages

||
|
|
|

|
|

|

||
|
|

|
|

|

||
|
|
|

|
|
|

|
|

 | |
 |
 |
 |

 |
 |
 |

 |

 | |
 |
 |

 |
 |
 |

 |
 |

 | |
 |
 |
 |

 |

 |
 |

 |

 | |
 |
 |

 |
 |

 |
 |

 | |
 |
 |

 |
 |

 |
 |

CCN8743 The nosimd pragma can only be

specified before a for, while, or do

loop. The pragma is ignored.

Explanation: The pragma is ignored because it is not

specified before a loop.

User Response: Remove the offending pragma.

CCN8744 The novector pragma can only be

specified before a for, while, or do

loop. The pragma is ignored.

Explanation: The pragma is ignored because it is not

specified before a loop.

User Response: Remove the offending pragma.

CCN8745 The blocking factor specified for the

block_loop directive must be a positive

integral value. The pragma is ignored.

Explanation: The pragma is ignored because the

blocking factor is not in the proper format.

User Response: Remove the offending pragma or fix

the blocking factor.

CCN8746 The UNROLL pragmas may not be

applied to %1$s. The pragma is

ignored.

Where: %1$s is the statement to which the unroll

pragma applies.

Explanation: The pragma is ignored because it is not

applied to a for loop.

User Response: Remove the offending pragma.

CCN8747 The Loopid directive has been referred

to by more than one block_loop

directive.

Explanation: A loop may only be blocked by one

block_loop directive.

User Response: Remove the offending block_loop

directive, or block a different loop.

CCN8802 The ″%1$s″ qualifier in argument

″%2$s″ is ignored in the linkage

signature for function ″%3$s″.

Where: ″%1$s″ is a cv-qualifier. ″%2$s″ is a function

argument. ″%3$s″ is the function.

Explanation: Cv-qualifiers in function arguments are

not parts of function parameter types and are not

included in the function linkage signature.

User Response: Remove the cv-qualifier in question

from the function argument in the specified function

declaration.

CCN8803 Build with the ″%1$s″ compiler option

to include cv-qualifiers of function

arguments in function linkage

signatures.

Where: ″%1$s″ is the compiler option that includes

cv-qualifiers of function arguments in the function

linkage signature.

Explanation: Informational message about the option

for including cv-qualifiers of function arguments in

function linkage signatures.

User Response: See the primary message.

CCN8804 The linkage specifier %1$s is invalid in

″%2$s″ mode.

Where: %1$s is a linkage specifier (i.e.

OS_DOWNSTACK) ″%2$s″ is the current XPLINK

mode.

Explanation: This linkage specifier has no meaning

unless the object is built with the opposite XPLINK

mode.

User Response: Turn on or off the XPLINK option.

CCN8805 ″%1$s″ has an invalid return type for

the OS linkage specifier.

Where: ″%1$s″ is the function.

Explanation: Only functions with a return type of int or

void may be used with the OS linkage specifier.

User Response: Check the return type or remove the

OS linkage specifier.

CCN8807 The return type ″%1$s″ must not be

used for a function that is declared to

be extern ″FORTRAN″.

Where: ″%1$s″ is the invalid function return type.

Explanation: A function that has extern ″FORTRAN″

language linkage can only return void, integral or double

on certain platforms.

User Response: Change the return type of the

function to be void, integral or double.

CCN8808 The return type ″%1$s″ must not be

used for a function that is declared to

be extern ″COBOL″.

Where: ″%1$s″ is the invalid function return type.

Explanation: A function that has extern ″COBOL″

language linkage can only return void on certain

platforms.

User Response: Change the return type of the

function to be void.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 185

||
|
|

|
|

|

||
|
|

|
|

|

||
|
|

|
|

|
|

||
|
|

|
|

|
|

|

||
|
|

|
|

|
|

||
|
|

|
|

|
|
|

|
|
|

 | |
 |

 |

 |
 |

 |
 |

CCN8809 The function ″%1$s″ must not be

declared __cdecl because the

overridden function ″%2$s″ is not

declared __cdecl.

Where: ″%1$s″ is the invalid function, ″%2$s″ is the

overridden function.

Explanation: A virtual function can only be declared

__cdecl when the function in the base class is also

__cdecl.

User Response: Remove the __cdecl qualifier from

the derived class’s overriding function or add the

__cdecl qualifier to the base class’s overridden function.

CCN8810 The function ″%1$s″ must be declared

__cdecl because the overridden

function ″%2$s″ is declared __cdecl.

Where: ″%1$s″ is the invalid function, ″%2$s″ is the

overridden function.

Explanation: A virtual function must be declared

__cdecl when the function in the base class is declared

__cdecl.

User Response: Add a __cdecl qualifier to the derived

class’s overriding function or remove the __cdecl

qualifier from the base class’s overridden function.

CCN8811 The linkage of the virtual function

″%1$s″ does not match the linkage of

the overridden function ″%2$s″.

Where: ″%1$s″ is the invalid function, ″%2$s″ is the

overridden function.

Explanation: Virtual functions must have compatible

linkage since there are several different ways of calling

the function and they must all have the same linkage.

User Response: Ensure that the linkages match.

CCN8812 The argument of a ’num_threads’

clause must be a positive integer

expression.

Explanation: The number of threads in a team must

be positive.

User Response: Change the argument in the

’num_threads’ clause to a positive integer expression.

CCN8813 The argument of a ’num_threads’

clause must be an integer expression.

Explanation: The type of the ’num_threads’ argument

must be integer.

User Response: Change the argument in the

’num_threads’ clause to an expression of integer type.

CCN8814 The threadprivate variable ’%1$s’ must

be a file scope or namespace scope

variable or static block scope variable.

Where: ″%1$s″ is the threadprivate variable.

Explanation: The variable specified in the

’threadprivate’ directive must be the outermost scope

variable or local static variable.

User Response: Declare the variable static or move

its declaration to the outermost scope.

CCN8815 The iteration variable must not be

volatile.

Explanation: The iteration variable must not change in

the loop body, therefore it must not be volatile.

User Response: Remove the ’volatile’ qualifier for the

loop variable, or use another loop variable.

CCN8819 Format string contains unknown

conversion type character ’%1$s’ in

conversion %2$s.

Where: ″%1$s″ is incorrect format character and

%2$d is conversion specification information.

Explanation: Incorrect character has been specified in

format string syntax.

User Response: Remove the character in question.

CCN8820 The number of arguments is less than

required by the format string.

Explanation: Not enough arguments have been

specified for the format string.

User Response: Add the argument required for the

format string specification.

CCN8821 The number of arguments is greater

than required by the format string.

Explanation: More arguments have been specified

than required by the format string.

User Response: Remove the extra arguments that

are not required by the format string.

CCN8822 Format string is null.

Explanation: The specified format string is a null

pointer.

User Response: Specify a format string which is not

null.

186 z/OS V1R7.0 XL C/C++ Messages

CCN8823 The format string is empty.

Explanation: The specified format string is an empty

string.

User Response: Specify a format string which

contains at least one character.

CCN8824 The format string contains ’\\0’.

Explanation: The specified format string contains an

embedded ’\\0’ character.

User Response: Remove the embedded ’\\0’

character from format string.

CCN8825 The format string contains an

illegitimate trailing ’%%’.

Explanation: The specified format string contains a

dangling ’%%’ character.

User Response: Either specify a conversion

specification with the ’%%’ character or specify two

’%%’ characters for a percent character.

CCN8826 The format string is not a string literal

and format arguments are not given.

Explanation: The specified format string is not a string

literal and it may contain conversion specifications for

which arguments are not specified.

User Response: Make sure that enough arguments

are specified for the format string.

CCN8827 The format string is not a string literal

and argument types are unchecked.

Explanation: The specified format string is not string

literal and its argument types cannot be checked.

User Response: Make sure that correct argument

types are specified for the format string.

CCN8828 A wide character string is not

permitted as a format string.

Explanation: The specified format string contains wide

characters.

User Response: Remove the wide characters from

the format string.

CCN8829 The format string contains an operand

number out of range.

Explanation: %n$ operand number is out of range.

User Response: Specify an operand number which

matches the number of the argument for the format

string.

CCN8830 The format is missing a $ operand

number.

Explanation: %n$ operand number must be specified

for all conversion specifications in the format string.

User Response: Specify an operand number for

conversion specifications which are missing operand

numbers.

CCN8831 Unused format argument (arg %1$s)

precedes the used argument (arg

%2$s) in the $-style format.

Where: %1$s and %2$s are argument numbers.

Explanation: %n$ operand numbers in format string

skip over unused arguments.

User Response: Specify operand numbers in the

format string which do not skip over unused arguments.

CCN8832 Not all given arguments are used by

$-style format.

Explanation: Extra unreferenced arguments appear in

%n$ operand number format.

User Response: Specify operand numbers which

utilize all specified arguments.

CCN8833 The format is taking no arguments and

given an operand number.

Explanation: The operand number is specified for a

conversion taking no arguments.

User Response: Remove the operand number in

question.

CCN8834 %%n$ operand number formats are

unsupported by ISO C++ 98.

Explanation: Operand number formats are an

extension to ISO C++ 98.

User Response: Do not use operand number formats

in ISO C++ 98 mode.

CCN8835 Invalid use of ’%1$s’ flag with ’%2$s’

%3$s format.

Where: %1$s is a flag name, %2$s is a conversion

name and %3$s is a function-style name.

Explanation: The specified flag name and format

conversion combination is unsupported.

User Response: Remove the flag in question from the

specified conversion.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 187

CCN8836 ’%1$s’ flag is disregarded when

combined with the ’%2$s’ flag in a

%3$s format.

Where: %1$s and %2$s are flag names and %3$s is

a function-style name.

Explanation: The specified flag names conflict with

each other.

User Response: Remove one of the conflicting flags.

CCN8837 ’%1$s’ flag is disregarded when

combined with precision and ’%2$s’

printf format.

Where: %1$s is the flag name and %2$s is the printf

conversion.

Explanation: The specified flag is in conflict with the

given precision and conversion.

User Response: Remove conflicting flag.

CCN8838 ’%1$s’ flag is found repeating in %2$s

format.

Where: %1$s is the flag name and %2$s is a

function-style name.

Explanation: The flag has been specified multiple

times.

User Response: Remove the duplicate specifications

of the same flag.

CCN8839 The platform %1$s the use of a

non-portable extension character

’%2$s’ in the format.

Where: %1$s is ’supports’ or ’does not support’ and

%2$s is an extension character in the format string.

Explanation: A non-portable extension character has

been specified in a format string.

User Response: This extension character is not

supported across platforms.

CCN8840 ’%1$s’ flag is unsupported by ISO C++

98 in %2$s format.

Where: %1$s is a flag name and %2$s is a

function-style name.

Explanation: The specified flag is an extension to ISO

C++ 98.

User Response: Do not use the specified flag in ISO

C++ 98 mode.

CCN8841 Invalid use of field width in ’%1$s’

%2$s format.

Where: %1$s is a conversion and 2s is a

function-style name.

Explanation: The specified field width and format

conversion combination is unsupported.

User Response: Remove the field width for the

specified conversion.

CCN8842 Invalid use of precision in ’%1$s’ printf

format.

Where: %1$s is a conversion.

Explanation: The specified precision and format

conversion combination is unsupported.

User Response: Remove the precision for the

specified conversion.

CCN8843 Argument ’%1$s’ is not an integer

type: required for field %2$s.

Where: %1$s is an argument number, %2$s is a field

number.

Explanation: Argument must be int type.

User Response: Specify an argument which is int

type.

CCN8844 The use of the $ operand with ’*’ %1$s

in a printf format may result in

undefined behaviour.

Where: %1$s is width or precision.

Explanation: The operand number conflicts with the

variable field width or precision.

User Response: Do not specify an operand number

with varible field width or precision.

CCN8845 Invalid %1$s format for %2$s argument

type in argument %3$s.

Where: %1$s is conversion, %2$s is argument type

and %3$s is argument number.

Explanation: An invalid argument type has been

specified for the given conversion.

User Response: Specify an argument type that

matches the given conversion type.

CCN8846 ’%1$s’ type character is incompatible

with ’%2$s’ length modifer.

Where: %1$s is a conversion and %2$s is a type

modifier.

Explanation: An invalid type modifier has been

specified for the given conversion.

188 z/OS V1R7.0 XL C/C++ Messages

 | |
 |

 |
 |

 |
 |

User Response: Change the type modifier for the

given conversion.

CCN8847 Argument %1$s is expected to be a

pointer type.

Where: %1$s is an argument number.

Explanation: The given conversion requires a pointer

type.

User Response: A pointer argument type must be

specified for the given conversion.

CCN8848 Argument %1$s is %2$s through a null

pointer.

Where: %1$s is an argument number and %2$s is

either ″reading″ or ″writing″.

Explanation: The given conversion was given a const

null pointer argument.

User Response: Specify an argument which is not a

null pointer.

CCN8849 Argument %1$s is writing into a

constant object.

Where: %1$s is an argument number.

Explanation: The argument for a given conversion

points to a constant object.

User Response: Specify an argument which does not

point to a constant object.

CCN8850 ’%1$s’ %2$s format is unsupported by

ISO C++ 98.

Where: %1$s is a conversion and %2$s is a

function-style name.

Explanation: The given conversion is an extension to

ISO C++ 98.

User Response: Do not use this conversion in ISO

C++ 98 mode.

CCN8851 ’%1$s’ %2$s length modifier

unsupported by ISO C++ 98.

Where: %1$s is a length modifier and %2$s is a

function-style name.

Explanation: The given type modifier is an extension

to ISO C++ 98.

User Response: Do not use this type modifier in ISO

C++ 98 mode.

CCN8852 Invalid %1$s format for %2$s argument

type in argument %3$s.

Where: %1$s is a conversion, %2$s is an argument

type and %3$s is an argument number.

Explanation: An invalid argument type has been

specified for the given conversion.

User Response: Specify an argument type that

matches the given conversion type.

CCN8853 Argument %1$s is expected to have

type pointer to void.

Where: %1$s is the argument number.

Explanation: The argument type for the given

conversion is not pointer to void.

User Response: Change argument type for given

conversion to pointer to void.

CCN8854 Assignment suppression flag does not

take an operand number.

Explanation: An operand number was specified for

the conversion along with a flag which suppresses

argument assignment to that conversion.

User Response: Remove the operand number.

CCN8855 Invalid use of ’*’ flag with a length

modifier in scanf format.

Explanation: A ’*’ flag was specified for a conversion

which has a length modifier.

User Response: Remove the conflicting ’*’ flag for the

given conversion.

CCN8856 Zero width cannot be specified for an

input conversion.

Explanation: Zero width was specified in a format

string.

User Response: Specify a positive format width.

CCN8857 Format string contains out of range

integer literal in conversion

specification %1$s.

Where: ″%1$d″ is the number of the conversion

specification in format string.

Explanation: The integer literal is not valid.

User Response: Change the integer literal.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 189

|
|

CCN8858 Argument %1$s is expected to be of

type pointer to pointer type.

Where: %1$s is the argument number.

Explanation: The given conversion expects pointer to

pointer type.

User Response: Specify an argument of type pointer

to pointer for the given conversion.

CCN8859 Argument %1$s is writing through a

null pointer.

Where: %1$s is the argument number.

Explanation: The argument for the given conversion is

a const null pointer.

User Response: Specify an argument for the given

conversion which is not a const null pointer.

CCN8860 ’%%[’ format is missing closing ’]’.

Explanation: For ’%%[’ the closing ’]’ was not

specified.

User Response: Specify the closing ’]’.

CCN8861 Invalid use of ’%1$s’ flag with ’%2$s’

flag in %3$s format.

Where: %1$s and %2$s are flag names and %3$s is

a function-style name.

Explanation: Conflicting flags have been specified for

the given format conversion.

User Response: Remove one of the conflicting flags.

CCN8862 Field width unsupported in strict ISO

C++ 98 mode.

Explanation: The field width for the given format is an

extension to ISO C++ 98.

User Response: Do not use field width in ISO C++ 98

mode.

CCN8863 Only the last two digits of the year are

given by the ’%1$s’ conversion.

Where: %1$s is conversion name.

Explanation: The given conversion yields a 2-digit

year.

User Response: Find an alternative conversion which

yields a 4-year digit.

CCN8864 Only the last two digits of year are

given by ’%1$s’ conversion in some

locales.

Where: %1$s is the conversion name.

Explanation: The given conversion yields a 2-digit

year in some locales.

User Response: Find an alternative conversion which

yields a 4-digit year.

CCN8865 Invalid use of ’%1$s’ modifier with

’%2$s’ strftime format.

Where: %1$s is a modifier name and %2$s is a

conversion.

Explanation: An invalid combination of a modifier and

a conversion was specified.

User Response: Remove the conflicting modifier.

CCN8866 ’%1$s’ modifier is found repeating in

strftime format.

Where: %1$s is a modifier name.

Explanation: The given modifier has been specified

multiple times.

User Response: Specify modifier only one time for the

given conversion.

CCN8867 Invalid use of ’E’ modifier with ’O’

modifier in strftime format.

Explanation: The E and O modifiers conflict with each

other for the given format conversion.

User Response: Remove one of the conflicting

modifiers.

CCN8868 The ’%1$s’ modifier is unsupported by

ISO C++ 98 in the strftime format.

Where: %1$s is modifier name.

Explanation: Modifiers are an extension to ISO C++

98.

User Response: Do not use modifiers in ISO C++ 98

mode.

CCN8869 The %1$s precision in strfmon format

is empty.

Where: %1$s is Left or Right.

Explanation: An empty precision has been specified

for strfmon format.

User Response: Specify a number for the precision.

190 z/OS V1R7.0 XL C/C++ Messages

CCN8870 Invalid multibyte character was found

in the format string.

Explanation: The multibyte character in the format

string is invalid.

User Response: Change the multibyte character.

CCN8871 Format string argument must be a

string type.

Explanation: The format string argument number

specified in __attribute__((format)) or

__attribute__((format_arg)) must be a string type.

User Response: Change the numeric value in the

attribute.

CCN8872 ’...’ is required for arguments to be

formatted.

Explanation: The arguments to be formatted in

__attribute__((format)) must be an ellipsis.

User Response: Change the numeric value in the

attribute.

CCN8873 User function must return a string

type.

Explanation: The return type specified in the

declaration with __attribute__((format_arg)) must be a

string type.

User Response: Change the return type.

CCN8874 The ’%1$s’ modifier with ’%2$s’ format

is unsupported by ISO C++ 98 in

strftime format.

Where: %1$s is modifier name and %2$s is format

name.

Explanation: The given modifier and format

specification is an extension to ISO C++ 98.

User Response: Do not use the given modifier and

format in ISO C++ 98 mode.

CCN8875 The ’%1$s’ attribute can only be

applied to the definition of a non-static

filescope variable.

Where: %1$s is the attribute name.

Explanation: The attribute has no effect on filescope

static or auto function scoped variables.

User Response: Remove the attribute.

CCN8876 Attribute ″aligned″ cannot be used to

decrease the alignment of ″%1$s″ and

is ignored.

Where: ″%1$s″ is the variable name

Explanation: Do not use the attribute specifier

″aligned″ to reduce the alignment of a variable or an

aggregate.

User Response: Remove the use of the attribute

specifier ″aligned″, or increase the value.

CCN8877 The built-in function ″%1$s″ is not

valid for this target system.

Where: ″%1$s″ is the built-in name

Explanation: The built-in function makes use of

features not available on this target system.

User Response: Remove the builtin or move the

source to a valid target system.

CCN8878 The built-in function ″%1$s″ is not

valid for this architecture.

Where: ″%1$s″ is the built-in name

Explanation: The built-in function makes use of

features not available with this architecture.

User Response: Remove the built-in or move the

source to a valid architecture.

CCN8879 The built-in function ″%1$s″ requires

option ″%2$s″.

Where: ″%1$s″ is the built-in name, ″%2$s″ is the

required option.

Explanation: The built-in function depends on the

option being set.

User Response: Set the required option or remove

the built-in.

CCN8880 The built-in function ″%1$s″ takes

″%2$s″ arguments.

Where: ″%1$s″ is the built-in name, ″%2$s″ is the

number of arguments.

Explanation: The wrong number of arguments have

been supplied to the built-in function.

User Response: Correct the arguments to the built-in

function call.

CCN8881 The built-in function ″%1$s″’s

argument ″%2$s″ must be a ″%3$s″.

Where: ″%1$s″ is the built-in name, ″%2$s″ is the

parameter number, and ″%3$s″ is the required type.

Explanation: A wrong argument type has been

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 191

 | |
 |
 |

 |

 |
 |
 |

 |
 |

 | |
 |

 |

 |
 |

 |
 |

 | |
 |

 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |

supplied to the built-in function.

User Response: Correct the type of the argument on

the built-in function call.

CCN8882 The built-in function ″%1$s″’s

argument ″%2$s″ must be in the range

″%3$s″.

Where: ″%1$s″ is the built-in name, ″%2$s″ is the

parameter number, and ″%3$s″ is the valid range.

Explanation: An argument to the built-in function is

out of the allowed range.

User Response: Correct the value of the built-in

argument to be in the allowable range.

CCN8883 Inline function ″%1$s″ given attribute

noinline.

Where: ″%1$s″ is the function name.

Explanation: The function is given noinline attribute

because noinline has higher precedence.

User Response: Remove one of the conflicting

attributes.

CCN8884 A temporary object reachable during

exception unwinding may not have

been constructed.

Explanation: The logical operation may skip the

temporary object construction, which may be destructed

later if an exception is thrown from the same

expression.

User Response: Use -qeh=v6 option.

CCN8885 The alignment of ″%1$s″ exceeds the

maximum supported value of ″%2$s″.

The alignment has been limited to

″%2$s″.

Where: ″%1$s″ is the specified alignment. ″%2$s″ is

the maximum supported value for alignment.

Explanation: An alignment value exceeded the

maximum supported value. The alignment may be

ignored.

User Response: Use an alignment less than or equal

to the maximum.

CCN8889 The pragma is in an invalid source

location within another statement.

Explanation: This pragma causes a pragma statement

to be generated but is located within another statement.

User Response: Move the pragma before the parent

statement or to within a set of braces ″{″ ″}″ following

the parent statement to clarify its location.

CCN8899 A string literal is required for the

format string.

Explanation: The specified format string is not a string

literal.

User Response: Make sure that correct argument

types are specified for the format string.

CCN8900 Section ″%1$s″ is already specified as

a ″%2$s″ section.

Where: ″%1$s″ is the section name and ″%2$s″ is

″text″ or ″data″.

Explanation: The user section has already been

specified as being another type of section. Data

sections and text sections must have distinct names.

User Response: Remove one of the declarations for

the section.

CCN8901 A missing break statement allows

fall-through to this case.

Explanation: A potential fall-through to this case exists

as a result of a missing break statement.

User Response: Make sure that the fall-through is

intentional or add a break statement.

CCN8902 The function ″%1$s″ is declared using

a type with no linkage.

Where: ″%1$s″ is the parameter name.

Explanation: A function may not be declared in terms

of something that has no scope linkage.

User Response: Correct the offending function

parameter or return type so that it has linkage or

remove it from the function declaration.

CCN8904 Non-static initialization of a flexible

array member is not permitted.

Explanation: A flexible array member may not be

initialized in this scope.

User Response: Remove the initializers for the

flexible array member.

CCN8905 The asm statement is not portable.

Explanation: The meaning of an asm statement is

implementation-defined.

User Response: Remove the asm statement.

192 z/OS V1R7.0 XL C/C++ Messages

|

|
|

||
|
|

|
|

|
|

|
|

||
|

|

|
|

|
|

||
|
|

|
|
|
|

|

||
|

|
|

|
|
|

 | |
 |

 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |
 |

 |
 |

 | |
 |

 |
 |

 |
 |

 | |
 |

 |

 |
 |

 |
 |
 |

 | |
 |

 |
 |

 |
 |

 | |

 |
 |

 |

CCN8906 The __align specifier cannot be used

to reduce the alignment of an

aggregate or a variable.

Explanation: One cannot use __align to restrict the

alignment of a variable or an aggregate more than its

natural alignment.

User Response: Remove the __align specifier or

change the specified value.

CCN8907 The subscript %1$s is out of range.

The valid range is 0 to %2$s.

Where: ″%1″ is the index into the array ″%2″ is the

max index

Explanation: The user attempted to index an array

with a value that is not within the bounds of the array.

User Response: Change the index so it falls within

the bounds of the array or increase the size of the

array. This message is usually generated when the user

tries to index the array with the size of the array and

forgets to subtract one.

CCN8908 The subscript %1$s is less than zero.

The subscript of an array should be

greater than or equal to zero.

Where: ″%1″ is the index into the array

Explanation: The user attempted to index an array

with a value that is not within the bounds of the array.

User Response: Change the index so it falls within

the bounds of the array.

CCN8909 The subscript %1$s is out of range.

The only valid subscript is 0.

Where: ″%1″ is the index into the array

Explanation: The user attempted to index an array

with a value that is not within the bounds of the array.

User Response: Change the index so it falls within

the bounds of the array or increase the size of the

array. This message is usually generated when the user

tries to index the array with the size of the array and

forgets to subtract one.

CCN8910 The template ″%1$s″ uses a file

organization for tempinc, but tempinc

is not being used.

Where: ″%1″ is the name of the template

Explanation: The compiler determined that the

implementation of the template is contained in a

separate file. The compiler can handle this automatic

instantiation if tempinc is enabled. An alternative is to

use template registry. Please consult the documentation

on tempinc and template registry for the best solution.

User Response: Enable the tempinc option or

organize the source files to use template registry.

CCN8911 Variable ″%1$s″ must be private in the

enclosing context.

Where: ″%1$s″ is the variable name.

Explanation: Variable listed in the copyprivate clause

must be private in the enclosing context.

User Response: Check the scope of the variable in

the copyprivate clause.

CCN8912 There are too many #pragma

comments. Only the first 1024 are

included.

Explanation: There is a limit of 1024 generated INFO

statements from #pragma comments. Note that

comments longer than 256 characters are split into

multiple INFO statements.

User Response: Reduce the number and/or length of

#pragma comments.

 Note: The following error messages may be produced by the compiler if the message file is itself invalid.

 SEVERE ERROR EDC0090: Unable to open message file &1.

 SEVERE ERROR EDC0091: Invalid offset table in message file &1.

 SEVERE ERROR EDC0092: Message component &1s not found.

 SEVERE ERROR EDC0093: Message file &1 corrupted.

 SEVERE ERROR EDC0094: Integrity check failure on msg &1

 SEVERE ERROR EDC0095: Bad substitution number in message &1

 SEVERE ERROR EDC0096: Virtual storage exceeded

 ERROR: Failed to open message file. Reason &1.

 ERROR: Unable to read message file. Reason &1.

 ERROR: Invalid offset table in message file &1.

 ERROR: Message component &1s not found.

 ERROR: Message file &1 corrupted.

 ERROR: Integrity check failure on msg &1 — retrieved &2.

 ERROR: Message retrieval disabled. Cannot retrieve &1.

 INTERNAL ERROR: Bad substitution number in message &1.

Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages 193

||
|
|

|
|
|

|
|

||
|

|
|

|
|

|
|
|
|
|

||
|
|

|

|
|

|
|

||
|

|

|
|

 |
 |
 |
 |
 |

 | |
 |
 |

 |

 |
 |
 |
 |
 |
 |

 |
 |

 | |
 |

 |

 |
 |

 |
 |

 | |
 |
 |

 |
 |
 |
 |

 |
 |

Note: The previous messages are only generated in English.

194 z/OS V1R7.0 XL C/C++ Messages

Chapter 3. Utility Messages

This chapter contains information about the DSECT and CXXFILT utility messages,

and should not be used as programming interface information. For the localedef,

iconv, and genxlt utility messages, refer to the z/OS Language Environment

Debugging Guide. For the c89 and xlc utility messages, refer to the z/OS UNIX

System Services Messages and Codes.

Other Return Codes and Messages

See the z/OS Language Environment Debugging Guide for messages and return

codes for the following:

v Prelinker and Object Library Utility

v Run-time messages and return codes

v localedef utility

v genxlt utility

v iconv utility

v System Programmer C (SPC)

DSECT Utility Messages

The following section describes return codes and messages that are issued by the

DSECT utility.

Return Codes

The DSECT utility issue the following return codes:

 Table 4. Return Codes from the DSECT Utility

Return Code Meaning

0 Successful completion.

4 Successful completion, warnings issued.

8 DSECT Utility failed, error messages issued.

12 DSECT Utility failed, severe error messages issued.

16 DSECT Utility failed, insufficient storage to continue processing.

Messages

The messages that the DSECT utility issues have the following format:

EDCnnnns text <s> where:

nnnn error message number

s error severity

00 informational message

10 warning message

30 error message

40 severe error message

&s substitution variable

© Copyright IBM Corp. 1996, 2005 195

The DSECT utility issues the following messages:

EDC5500 10 Option %s is not valid and is ignored.

Explanation: The option specified in the message is

not valid DSECT Utility option or a valid option has

been specified with an invalid value. The specified

option is ignored.

User Response: Rerun the DSECT Utility with the

correct option.

EDC5501 30 No DSECT or CSECT names were

found in the SYSADATA file.

Explanation: The SECT option was not specified or

SECT(ALL) was specified. The SYSADATA was

searched for all DSECTs and CSECTs but no DSECTs

or CSECTs were found.

User Response: Rerun the DSECT Utility with a

SYSADATA file that contains the required DSECT or

CSECT definition.

EDC5502 30 Sub option %s for option %s is too

long.

Explanation: The sub option specified for the option

was too long and is ignored.

EDC5503 30 Section name %s was not found in

SYSADATA File.

Explanation: The section name specified with the

SECT option was not found in the External Symbol

records in the SYSADATA file. The C structure is not

produced.

User Response: Rerun the DSECT Utility with a

SYSADATA file that contains the required DSECT or

CSECT definition.

EDC5504 30 Section name %s is not a DSECT or

CSECT.

Explanation: The section name specified with the

SECT option is not a DSECT or CSECT. Only a DSECT

or CSECT names may be specified. The C structure is

not produced.

EDC5505 00 No fields were found for section %s,

structure is not produced.

Explanation: No field records were found in the

SYSADATA file that matched the ESDID of the specified

section name. The C structure is not produced.

EDC5506 30 Record length for file ″%s″ is too small

for the SEQUENCE option, option

ignored.

Explanation: The record length for the output file

specified is too small to enable the SEQUENCE option

to generate the sequence number in columns 73 to 80.

The available record length must be greater than or

equal to 80 characters. The SEQUENCE option is

ignored.

EDC5507 40 Insufficient storage to continue

processing.

Explanation: No further storage was available to

continue processing.

User Response: Rerun the DSECT Utility with a

larger region (MVS).

EDC5508 30 Open failed for file ″%s″: %s

Explanation: This message is issued if the open fails

for any file required by the DSECT Utility. The file name

passed to fopen() and the error message returned by

strerror(errno) is included in the message.

User Response: The message text indicates the

cause of the error. If the file name was specified

incorrectly on the OUTPUT option, rerun the DSECT

Utility with the correct file name.

EDC5509 40 %s failed for file ″%s″: %s

Explanation: This message is issued if any error

occurs reading, writing or positioning on any file by the

DSECT Utility. The name of the function that failed

(Read, Write, fgetpos, fsetpos), file name and text from

strerror(errno) is included in the message.

User Response: This message may be issued if an

error occurs reading or writing to a file. This may be

caused by an error within the file, such as an I/O error

or insufficient disk space. Correct the error and rerun

the DSECT Utility.

EDC5510 40 Internal Logic error in function %s

Explanation: The DSECT Utility has detected that an

error has occurred while generating the C structure.

Processing is terminated and the C structure is not

produced.

User Response: This may be caused by an error in

the DSECT Utility or by incorrect input in the

SYSADATA file. Contact your system administrator.

EDC5511 10 No matching right parenthesis for %s

option.

Explanation: The option specified had a sub option

beginning with a left parenthesis but no right

parenthesis was present.

User Response: Rerun the DSECT Utility with the

parenthesis for the option correctly paired.

196 z/OS V1R7.0 XL C/C++ Messages

EDC5512 10 No matching quote for %s option.

Explanation: The OUTPUT option has a sub option

beginning with a single quote but no matching quote

was found.

User Response: Rerun the DSECT Utility with the

quotes for the option correctly paired.

EDC5513 10 Record length too small for file ″%s″.

Explanation: The record length for the Output file

specified is less than 10 characters in length. The

minimum available record length must be at least 10

characters.

User Response: Rerun the DSECT Utility with an

output file with a available record length of at least 10

characters.

EDC5514 30 Too many suboptions were specified

for option %s.

Explanation: More than the maximum number of

suboptions were specified for the particular option. The

extra suboptions are ignored.

User Response: Check the syntax of the DSECT

utility option in the C/C++ User’s Guide, and remove the

extra suboption(s).

EDC5515 00 HDRSKIP option value greater than

length for section %s, structure is not

produced.

Explanation: The value specified for the HDRSKIP

option was greater than the length of the section. A

structure was not produced for the specified section.

User Response: Rerun the DSECT Utility with a

smaller value for the HDRSKIP option.

EDC5516 10 SECT and OPTFILE options are

mutually exclusive, OPTFILE option is

ignored

Explanation: Both the SECT and OPTFILE options

were specified, but the options are mutually exclusive.

User Response: Rerun the DSECT Utility with either

the SECT or OPTFILE option.

EDC5517 10 Line %i from ″%s″ does not begin with

SECT option

Explanation: The line from the file specified on the

OPTFILE option did not begin with the SECT option.

The line was ignored.

User Response: Rerun the DSECT Utility without

OPTFILE option, or correct the line in the input file.

EDC5518 10 setlocale() failed for locale name ″%s″.

Explanation: The setlocale() function failed with the

locale name specified on the LOCALE option. The

LOCALE option was ignored.

User Response: Rerun the DSECT Utility without

LOCALE option, or correct the locale name specified

with the LOCALE option.

EDC5519 10 Long names were detected and

truncated. Check output.

Explanation: The dsect utility detected at least one

name whose length exceeds the maximum allowed, and

has truncated the name, and appended ″...″ to the end

of the name to signify the condition. If the input name is

within limits, and the UNIQUE option is specified, the

mapping of national characters in the input name could

have extended the name length beyond the maximum

allowed.

User Response: Check the dsect utility output. Long

names are truncated and this is indicated by ″...″ at the

end of the name. Modify the UNIQUE option field if

applicable, or modify the input name so that it does not

exceed the maximum length when expanded.

EDC5520 40 Architecture Level %i of SYSADATA is

not supported. The latest supported

level is %d

Explanation: The SYSADATA file has probably been

produced by a recent HLASM release which is not yet

supported by the DSECT utility.

User Response: Contact your IBM representative.

EDC5521 40 Architecture Level %i of SYSADATA is

not supported. The earliest supported

level is %d

Explanation: The SYSADATA file has probably been

produced by an obsolete HLASM release.

User Response: Use a supported HLASM release to

produce the SYSADATA file.

EDC5522 10 Edition %d, SYSADATA level %d of

record type X″%04x″ - %s - is not

supported. Edition %d is assumed.

Explanation: The likely reason is that HLASM

maintenance has introduced an updated layout of this

record type. This should not cause a problem unless the

offsets of fixed fields processed by the DSECT utility

have changed. The message can be ignored unless the

produced output is incorrect.

User Response: If the DSECT utility is producing

incorrect output, then please contact your IBM

representative.

Chapter 3. Utility Messages 197

||
|

|
|
|

|
|
| | |
 |
 |

 |
 |
 |

 |

 | |
 |
 |

 |
 |

 |
 |

 | |
 |
 |

 |
 |
 |
 |
 |
 |

 |
 |
 |

CXXFILT Utility Messages

Return Codes

The CXXFILT utility returns the following return codes:

 Table 5. Return Codes from the CXXFILT Utility

Return Code Meaning

0 Processing successful: CXXFILT processing completed successfully.

4 A warning was issued and a result was generated.

8 CXXFILT Utility failed, possibly due to a read error.

16 CXXFILT Utility failed.

Messages

The CXXFILT utility issues the following messages:

CCN9500 Cannot open the following file: @1 --

ignored.

Explanation: The specified file cannot be opened for

reading or does not exist.

User Response: Ensure that the file exists and is

readable.

CCN9501 Cannot continue reading input.

Explanation: A read error occurred while reading the

input stream.

User Response: Ensure that the input stream is still

available and try again.

CCN9502 No options specified after (.

Explanation: A (indicating start of options was

encountered but no options followed.

User Response: Ensure that the input stream is still

available and try again.

CCN9503 An invalid option (@1) was specified --

ignored.

Explanation: An invalid option was specified.

User Response: Refer to the z/OS or OS/390 C/C++

User’s Guide under cxxfilt for valid options.

CCN9504 Option (@1) was specified with too few

suboptions. @2 suboption(s) required

-- ignored.

Explanation: Not all the required suboptions were

supplied.

User Response: Refer to the z/OS or OS/390 C/C++

User’s Guide under cxxfilt for the number of required

suboptions.

CCN9505 Option (@1) was specified with too

many suboptions. @2 suboption(s)

required -- ignored.

Explanation: More suboptions were supplied than

what is allowed by this option.

User Response: Refer to the z/OS or OS/390 C/C++

User’s Guide under cxxfilt for the number of required

suboptions.

CCN9506 Option (@1) requires a positive

suboption -- ignored.

Explanation: This error occurred because the

specified suboptions for this option are invalid. Only

positive suboptions are allowed.

User Response: Refer to the z/OS or OS/390 C/C++

User’s Guide under cxxfilt for the allowed suboptions.

CCN9507 Internal Error. Contact your Service

Representative.

Explanation: The cxxfilt utility has malfunctioned.

User Response: Please report this problem.

CCN9508 No negative form for option @1 --

ignored.

Explanation: The specified option does not have a

negative form.

User Response: Refer to the z/OS or OS/390 C/C++

User’s Guide under cxxfilt for valid options.

CCN9509 An incomplete option (@1) has been

specified. -- ignored

Explanation: The specified option is incomplete.

User Response: Refer to the z/OS or OS/390 C/C++

User’s Guide under cxxfilt for valid options.

198 z/OS V1R7.0 XL C/C++ Messages

Chapter 4. z/OS XL C/C++ Legacy Class Libraries Messages

This chapter contains information about the C/C++ legacy class libraries messages

that are included with the current release and should not be used as programming

interface information.

The following information shows the format of these messages:

Message Format: CLBnnnn text <&n> where:

nnnn error message number

text message which appears on the screen

CLB9900 An attempt to allocate memory has

failed.

Explanation: The attempt to obtain memory in order

to satisfy the current library request has failed. It cannot

be performed on a collection because the collection is

not empty.

User Response: Run the program in a larger region

or use the HEAP(,,FREE) run-time option instead of the

HEAP(,,KEEP) option.

System Action: The requested function will fail.

CLB9901 IOStreams do not support Record

Mode I/O.

Explanation: The application is attempting to initialize

an IOStreams object to perform Record Mode I/O.

IOStream objects do not support Record Mode input

and output.

User Response: Remove the ″type=record″

specification from the constructor or open() function call.

System Action: The attempt to initialize the object

failed. The program continues to execute.

CLB9902 Too many characters.

Explanation: The application called the form() function

with a format specifier string that caused form() to write

past the end of the format buffer. form() is an obsolete

interface provided in stream.h for compatibility with old

code.

User Response: Split the call to the form() function

into two or more calls.

System Action: Execution is stopped.

CLB9903 There was a singularity; the application

could not take the log of (0.0, 0.0).

Explanation: The application is attempting to take the

log of (0.0, 0.0).

User Response: Correct the value passed to the log()

function and resubmit.

System Action: Execution is stopped.

CLB9904 The attempt to release the mutex

handle failed.

Explanation: There was an internal error:

pthread_mutex_destroy() failed.

User Response: Note the return code and error

number to identify the cause of the problem and inform

IBM C++ Service and Support.

System Action: Execution is stopped.

CLB9905 The attempt to lock the mutex handle

failed.

Explanation: There was an internal error:

pthread_mutex_lock() failed.

User Response: Note the return code and error

number to identify the cause of the problem and inform

IBM C++ Service and Support.

System Action: Execution is stopped.

CLB9906 The attempt to unlock the mutex

handle failed.

Explanation: Internal error: pthread_mutex_unlock()

failed.

User Response: Note the return code and error

number to identify the cause of the problem and inform

IBM C++ Service and Support.

System Action: Execution is stopped.

© Copyright IBM Corp. 1996, 2005 199

200 z/OS V1R7.0 XL C/C++ Messages

Appendix. Accessibility

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2005 201

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

202 z/OS V1R7.0 XL C/C++ Messages

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2005 203

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

B3/KB7/8200/MKM

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming interface information

This publication documents information that is NOT intended to be used as

Programming Interfaces of z/OS or z/OS.e XL C/C++.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries or both:

 AIX BookManager BookMaster

C/370 CICS DB2

eServer GDDM Hiperspace

IBM IMS IMS/ESA

Language Environment MVS Open Class

OS/390 OS/400 QMF

S/390 VSE/ESA z/OS

204 z/OS V1R7.0 XL C/C++ Messages

zSeries z/VM

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States and/or other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Standards

The following standards are supported in combination with the z/OS Language

Environment:

v The C language is consistent with Programming languages - C (ISO/IEC

9899:1999). For more information on ISO, visit their web site at: www.iso.org

v The C++ language is consistent with Programming languages - C++ (ISO/IEC

14882:2003(E)) and Programming languages - C++ (ISO/IEC 14882:1998).

The following standards are supported in combination with the z/OS Language

Environment and z/OS UNIX System Services:

v IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable

Operating System Interface (POSIX)—Part 1: System Application Program

Interface (API) [C language], copyright 1990 by the Institute of Electrical and

Electronic Engineers, Inc. For more information on IEEE, visit their web site at:

www.ieee.org

v A subset of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information

Technology—Portable Operating System Interface (POSIX), Part 1: System

Application Program Interface (API) [C Language], copyright 1992 by the Institute

of Electrical and Electronic Engineers, Inc.

v IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable

Operating System Interface (POSIX)—Part 2: Shells and Utilities, copyright 1990

by the Institute of Electrical and Electronic Engineers, Inc.

v A subset of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information

Technology—Portable Operating System Interface (POSIX)—Part 1: System

Application Program Interface (API)—Amendment 2: Threads Extension [C

language], copyright 1990 by the Institute of Electrical and Electronic Engineers,

Inc.

v A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), copyright 1985 by the Institute of Electrical and Electronic

Engineers, Inc.

v X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2,

copyright 1994 by The Open Group

v X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The

Open Group

Notices 205

|
|

|
|

http://www.iso.ch/
http://www.ieee.org/

v X/Open Specification Programming Languages, Issue 3, Common Usage C,

copyright 1988, 1989, and 1992 by The Open Group

v United States Government’s Federal Information Processing Standard (FIPS)

publication for the programming language C, FIPS-160, issued by National

Institute of Standards and Technology, 1991

206 z/OS V1R7.0 XL C/C++ Messages

Bibliography

This bibliography lists the publications for IBM products that are related to the z/OS

XL C/C++ product. It includes publications covering the application programming

task. The bibliography is not a comprehensive list of the publications for these

products, however, it should be adequate for most z/OS XL C/C++ users. Refer to

z/OS Information Roadmap, SA22-7500, for a complete list of publications

belonging to the z/OS product.

Related publications not listed in this section can be found on the IBM Online

Library Omnibus Edition MVS Collection, SK2T-0710, the z/OS Collection,

SK3T-4269, or on a tape available with z/OS.

z/OS

v z/OS Introduction and Release Guide, GA22-7502

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Summary of Message and Interface Changes, SA22-7505

v z/OS Information Roadmap, SA22-7500

v z/OS Licensed Program Specifications, GA22-7503

v z/OS Migration, GA22-7499

v z/OS Program Directory, GI10-0670

z/OS XL C/C++

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS C Curses, SA22-7820

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the Application

Programmer, GC09-4913

v IBM Open Class Library Transition Guide, SC09-4948

v Standard C++ Library Reference, SC09-4949

z/OS Run-Time Library Extensions

v C/C++ Legacy Class Libraries Reference, SC09-7652

v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Debug Tool

v Debug Tool documentation, which is available at:

www.ibm.com/software/awdtools/debugtool/library/

© Copyright IBM Corp. 1996, 2005 207

http://www.ibm.com/software/awdtools/debugtool/library/

z/OS Language Environment

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

v z/OS Language Environment Run-Time Application Migration Guide, GA22-7565

v z/OS Language Environment Writing Interlanguage Communication Applications,

SA22-7563

v z/OS Language Environment Run-Time Messages, SA22-7566

Assembler

v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

COBOL

v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

v COBOL for OS/390 & VM Programming Guide, SC26-9049

v COBOL for OS/390 & VM Language Reference, SC26-9046

v COBOL for OS/390 & VM Diagnosis Guide, GC26-9047

v COBOL for OS/390 & VM Licensed Program Specifications, GC26-9044

v COBOL for OS/390 & VM Customization under OS/390, GC26-9045

v COBOL Millenium Language Extensions Guide, GC26-9266

PL/I

v VisualAge PL/I Language Reference, SC26-9476

v PL/I for MVS & VM Language Reference, SC26-3114

v PL/I for MVS & VM Programming Guide, SC26-3113

v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118

VS FORTRAN

v Language and Library Reference, SC26-4221

v Programming Guide, SC26-4222

CICS Transaction Server for z/OS

v CICS Application Programming Guide, SC34-6231

v CICS Application Programming Reference, SC34-6232

v CICS Distributed Transaction Programming Guide, SC34-6236

v CICS Front End Programming Interface User’s Guide, SC34-6234

v CICS Messages and Codes, GC34-6241

v CICS Resource Definition Guide, SC34-6228

v CICS System Definition Guide, SC34-6226

v CICS System Programming Reference, SC34-6233

v CICS User’s Handbook, SC34-6240

208 z/OS V1R7.0 XL C/C++ Messages

|

v CICS Family: Client/Server Programming, SC33-1435

v CICS Transaction Server for z/OS Migration from CICS/ESA Version 4.1,

GC34-6219

v CICS Transaction Server for z/OS Release Guide, GC34-6218

v CICS Transaction Server for z/OS Installation Guide, GC34-6224

DB2

v DB2 Administration Guide, SC18-7413

v DB2 Application Programming and SQL Guide, SC18-7415

v DB2 ODBC Guide and Reference, SC18-7423

v DB2 Command Reference, SC18-7416

v DB2 Data Sharing: Planning and Administration, SC18-7417

v DB2 Installation Guide, GC18-7418

v DB2 Messages and Codes, GC18-7422

v DB2 Reference for Remote DRDA Requesters and Servers, SC18-7424

v DB2 SQL Reference, SC18-7426

v DB2 Utility Guide and Reference, SC18-7427

IMS/ESA®

v IMS Version 8: Application Programming: Design Guide, SC27-1287

v IMS Version 8: Application Programming: Transaction Manager, SC27-1289

v IMS Version 8: Application Programming: Database Manager, SC27-1286

v IMS Version 8: Application Programming: EXEC DLI Commands for CICS and

IMS Version 8:, SC27-1288

MVS

v z/OS MVS Program Management: User’s Guide and Reference, SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

QMF

v Introducing QMF, GC26-9576

v Using QMF, SC26-9578

v Developing QMF Applications, SC26-9579

v Reference, SC26-9577

v Installing and Managing QMF on MVS, SC26-9575

v Messages and Codes, SC26-9580

DFSMS

v z/OS DFSMS Introduction, SC26-7397

v z/OS DFSMS Managing Catalogs, SC26-7409

v z/OS DFSMS Using Data Sets, SC26-7410

v z/OS DFSMS Macro Instructions for Data Sets, SC26-7408

v z/OS DFSMS Access Method Services for Catalogs, SC26-7394

Bibliography 209

210 z/OS V1R7.0 XL C/C++ Messages

INDEX

Special characters
#pragma

See runtime options

A
accessibility 201

B
BookManager documents x

C
compiler

error messages 19

return codes 19

compiling
See compiler

CXXFILT utility
error messages 198

return codes 198

D
Debug Tool 14

debugging
Debug Tool 14

disability 201

DSECT utility
error messages 195

return codes 195

Dynamic Link Libraries (DLLs)
See DLLs

E
EDCnnnn messages 19

error messages
compiler 19

utility 195

z/OS XL C/C++ Legacy Class Libraries 199

examples
machine-readable x

naming of x

softcopy x

I
Interprocedural Analysis

See IPA

K
keyboard 201

L
LookAt message retrieval tool xi

M
message retrieval tool, LookAt xi

messages
compiler 19

utility 195

z/OS XL C/C++ Legacy Class Libraries 199

N
Notices 203

P
PCH (precompiled header)

See precompiled headers

PDF documents x

R
return codes

compiler 19

CXXFILT utility 198

DSECT utility 195

S
shortcut keys 201

U
USL 5

utilities
CXXFILT 198

DSECT 195

Z
z/OS XL C/C++ Legacy Class Libraries Messages 199

© Copyright IBM Corp. 1996, 2005 211

212 z/OS V1R7.0 XL C/C++ Messages

����

Program Number: 5694-A01 and 5655-G52

Printed in the United States of America

GC09-4819-03

	Contents
	About this document
	z/OS XL C/C++ and related publications
	Softcopy documents
	Softcopy examples
	z/OS XL C/C++ on the World Wide Web
	Where to find more information
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS
	Information updates on the web

	Summary of Changes
	Chapter 1. About IBM z/OS XL C/C++
	Changes for z/OS V1R7
	The XL C/C++ compilers
	The C language
	The C++ language
	Common features of the z/OS XL C and XL C++ compilers
	z/OS XL C compiler specific features
	z/OS XL C++ compiler specific features

	Class libraries
	Utilities
	dbx
	z/OS Language Environment
	z/OS Language Environment downward compatibility

	About prelinking, linking, and binding
	Notes on the prelinking process
	File format considerations
	The program management binder

	z/OS UNIX System Services
	z/OS XL C/C++ applications with z/OS UNIX System Services C functions
	Input and output
	I/O interfaces
	File types
	Additional I/O features

	The System Programming C facility
	Interaction with other IBM products
	Additional features of z/OS XL C/C++

	Chapter 2. z/OS XL C/C++ Compiler Return Codes and Messages
	Return Codes
	Compiler Messages

	Chapter 3. Utility Messages
	Other Return Codes and Messages
	DSECT Utility Messages
	Return Codes
	Messages

	CXXFILT Utility Messages
	Return Codes
	Messages

	Chapter 4. z/OS XL C/C++ Legacy Class Libraries Messages
	Appendix. Accessibility
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks
	Standards

	Bibliography
	z/OS
	z/OS XL C/C++
	z/OS Run-Time Library Extensions
	Debug Tool
	z/OS Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS Transaction Server for z/OS
	DB2
	IMS/ESA®
	MVS
	QMF
	DFSMS

	INDEX

