
 

XML Data Adapter Proof-of-
Concept 
Technical Development Considerations 

Glen Oliff 
Stephanie Liu-Barnes 
Alexis Karnauskas 

August 31, 2007 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



XML Data Adapter Proof-of-Concept – Technical Development Considerations August 31, 2007– Page 1 of 1 

 
 

Introduction 
This document provides a list of items to consider when editing or augmenting the HydroXC 
proof-of-concept XML data adapter. The content within this document is written for Java 
developers and assumes an overall understanding of Java code and architecture. 

Handling XML Schema Updates 
Most of the essential files in the HydroXC XML data adapter proof-of-concept are XML files. As 
such, each XML file type has its own associated schema file. Through the advancements in JAXB 
(Java API for XML Binding) 2.0 (available in Java 1.6, which is also known as Java 6), the XML 
marshalling and unmarshalling to Java objects is made possible by classes generated off of 
schema files. 
 
Moving forward, anytime a schema file is updated (location mapping, parameter mapping, or 
even the HydroXC schema itself), you should rerun the associated shell scripts to update the 
generated XML binding classes. These shell scripts (written for Windows, easily ported to UNIX) 
exist in the high level directory upon installation. The naming format is rebind_<type>.cmd, where 
<type> corresponds to the schema file for which updates were made against. These scripts aid in 
wrapping up the proper call to Java’s xjc utility, which generates the java classes off of the 
schema to the appropriate output location, and with the proper package structure. 

Parameter Annotations for the Writing Component 
In the SHEFHydroXCExtractor.java file, there is a reference to the 
ParameterAnnotationProcessor class. Apex has updated the code coming from HydroXC XML 
with custom annotation processing for mappings between bean methods. Apex did not update the 
“from” shef to HydroXC handling to utilize this type of functionality. Augmenting the “from” 
functionality to handle this will enable much quicker extensibility for addition of parameters in the 
future. We have pointed this out to highlight a “best practice” moving forward for future data 
adapter development. 

Extraction API for Future Development 
In the future, when multiple HydroXC data adapters have been developed, it will be necessary to 
create an extraction/insertion API that each data adapter could call on to push to/pull from the 
HydroXC XML binding classes. This would expedite development and limit the amount of 
redundant error handling for cases where “node doesn’t exist”, or “data not found” errors occur. 
Currently, you will see that this is missing from the proof-of-concept data adapter. There are quite 
a few instances of DataElement.get<thing>.getOtherThing() throughout. With this extraction API 
created, these would be replaced by a call to otherThing = extractor.getOtherThing(dataElement, 
thing). Apex wanted to explicitly call this out as a first step upon creation of the next data adapter 
type. 
 


