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Computational Science

» Use of computer simulation as a tool for
greater understanding of the real world

» Complements experimentation and theory

s AS our simulations become ever more
complicated:

» Leveraging parallelism becomes more important
. Thus large parallel machines

» Managing code complexity bigger issue as well
. Thus use of libraries (e.g. MPI, BLAS)

» Because data often plays a role, same issues
apply there
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Parallel I/O Tools

» Collections of system software and libraries
have grown up to address I/O issues

» Parallel file systems
s MPI-IO

» High level libraries

» Relationships between these are not always
clear

» Choosing between tools can be difficult
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Goals of this Tutorial

» Familiarity with available 1/O tools
» Organization of tools into I/O stacks

» Understanding of what happens behind the
scenes

» Guidelines for performance

» Basic MPI programming knowledge Is
assumed
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Printed References

» John May, Parallel I/O for High Performance Computing,
Morgan Kaufmann, October 9, 2000.

» Good coverage of basic concepts, some MPI-IO, HDF5, and
serial netCDF

o William Gropp, Ewing Lusk, and Rajeev Thakur, Using
MPI-2: Advanced Features of the Message Passing
Interface, MIT Press, November 26, 1999.

» In-depth coverage of MPI-10 API, including a very detailed
description of the MPI-IO consistency semantics
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On-Line References (1)

» netCDF
http://ww. uni dat a. ucar . edu/ packages/ net cdf/
» PnetCDF
http://ww. nts. anl . gov/ parall el - net cdf/
» ROMIO MPI-IO

http://ww. nts. anl . gov/rom o/
» HDF5 and HDF5 Tutorial

http:// hdf. ncsa. ui uc. edu/ HDF5/
http://hdf.ncsa. ui uc. edu/ HDOF5/ doc/ Tut or /i ndex. ht m
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http://www.unidata.ucar.edu/packages/netcdf/
http://www.mcs.anl.gov/parallel-netcdf/
http://www.mcs.anl.gov/romio/
http://hdf.ncsa.uiuc.edu/HDF5/
http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

On-Line References (2)

» PVES and PVFS2
http://ww. parl . cl enson. edu/ pvfs/
http://ww. pvfs. org/ pvfs2/

o Lustre

http://ww. | ustre. org/
s GPFS

http://ww. al nraden. i bm com st or agesystens/fil e _systens/ GPFS/

» FLASH and FLASH I/O Benchmark
http://flash. uchi cago. edu/
http://flash. uchi cago. edu/ ~j bgal | ag/ i o_bench/
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http://www.parl.clemson.edu/pvfs/
http://www.pvfs.org/pvfs2/
http://www.lustre.org/
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/
http://flash.uchicago.edu/
http://flash.uchicago.edu/~jbgallag/io_bench/

Introduction and I/O Stacks



Application View of Data

» Applications have data models appropriate to domain

» Multidimensional typed arrays, images composed of
scan lines, variable length records

» Headers, attributes on data

» Parallel file system APl is an awful match
» Bytes
» Blocks or contiguous regions of files

s Independent access

o Need more software!
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Supporting Application I/O

(1) Provide mapping of app. domain
data abstractions

» API that uses language meaningful
to app. programmers

(2) Coordinate access by many processes

» Collective I/O, consistency semantics

(3) Organize I/O devices into a single space El

» Convenient utilities and file model

And also
» Insulate applications from 1/O system changes

» Maintain performance!!!

CCGrid 2005 — p. 11



What about Parallel 1/0O?

Clients running

Application applications

Storage or
System Network

I/O devices
or servers

Storage Hardware

o Focus of parallel I/0 is on using parallelism to increase
bandwidth

o Use multiple data sources/sinks in concert
» Both multiple storage devices and multiple/wide paths to them

» But applications don’t want to deal with block devices and
network protocols,

# SO0 we add software layers.
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Parallel File Systems (PFSs)

Application
PFS Client Code

PFS Server Code

Storage Hardware

» Organize I/O devices into a single logical space

» Striping files across devices for performance

» Export a well-defined API, usually POSIX
» Access data in contiguous regions of bytes

» Very general

» This is only 1/3 of what we said we needed!
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/O Stacks

» ldea: Add some additional software
components to address remaining issues

» Coordination of access

» Mapping from application model to I/O model

» These components will be increasingly
specialized as we add layers

» Bridge this gap between existing 1/O systems
and application needs
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/O for Computational Science

Application
Application High-Level I/O Library

Parallel File System MPI-10 Implementation
Storage Hardware Parallel File System
Storage Hardware

» Break up support into multiple layers:

» High level I/O library maps app. abstractions to a
structured, portable file format (e.g. HDF5, Parallel
netCDF)

» Middleware layer deals with organizing access by many
processes (e.g. MPI-10, UPC-I0)

» Parallel file system maintains logical space, provides
efficient access to data (e.g. PVFS, GPFS, Lustre)
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High Level Libraries

» Provide an appropriate pplication
! ! High—Level I/O Library
abstraction for domain MPIIO Implomentation

Parallel File System

» Multidimensional datasets

Storage Hardware

s Typed variables

» Attributes
» Self-describing, structured file format
» Map to middleware interface

» Encourage collective 1/O

» Provide optimizations that middleware cannot
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/O Middleware

s Faclilitate concurrent access Application
High—Level I/O Library
by groups of Processes MPI-IO Implementation
» Collective I/O Parallel File System

Storage Hardware

s Atomicity rules

» EXpose a generic interface
» Good building block for high-level libraries

» Match the underlying prog. model (e.g. MPI)

» Efficiently map middleware operations into
PFS ones

» Leverage any rich PFS access constructs
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Parallel File System

» Manage storage hardware apRliealio)
High-Level I/O Library
» Present Single view MPI-IO Implementation

Parallel File System

s FoOcus on concurrent, Storage Hardware
iIndependent access

s Knowledge of collective I/O usually very limited

s Publish an interface that middleware can use
effectively

s Rich I/O language
» Relaxed but sufficient semantics
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Next: I/O APIs and Formats

» Introduce the four interfaces:
» POSIX I/O interface
» MPI-IO interface
» Parallel netCDF (PnetCDF) interface
» HDF5 interface

» Example for each
» Serial POSIX “cp” code
» MPI-IO vizualization code
» FLASH/PnetCDF
» FLASH/HDF5

» Look in-depth at what happens in the I/O system

# Introduce components from the bottom up
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POSIX I/O Interface



POSIX /O

» Standard I/O interface across many platforms

» Mechanism almost all serial applications use
to perform 1/O

» No way of describing collective access

» Warning: semantics differ between file
systems!

» NFS is the worst of these, supporting API but not
semantics

» Determining FS type is nontrivial
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Simple POSIX Examples

» POSIX /O version of “Hello World”
» First program writes a file with text in it

» Second program reads back the file and prints the
contents

» Show basic API use, error checking
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Simple POSIX I/O: Writing

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

int main(int argc, char **argv)

{
int fd, ret;
char buf[13] = "Hello Wrld\n";
fd = open("nyfile", OWONLY | O CREAT, 0755);
if (fd < 0) return 1;
ret = wite(fd, buf, 13);
if (ret < 13) return 1;
cl ose(fd);
return O;
}
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Simple POSIX I/O: Reading

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>
#i ncl ude <stdi o. h>

i nt main(int argc, char **argv)

{
Int fd, ret;
char buf[13];

fd = open("nyfile", O RDONLY);
If (fd < 0) return 1,

ret = read(fd, buf, 13);
if (ret < 13) return 1;

printf("9%", buf);

cl ose(fd);
return O;
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Compiling and Running

;gcc -Wall posix-hello-wite.c -0 posix-hello-wite
;gcc -Wall posix-hello-read.c -0 posix-hello-read

;. / posix-hello-wite
, ./ posi x-hel | o-read

Hello Worl d

s nyfile
- I WXT - XTI - X 1 rross rross 13 Mar 28 20: 18 nyfile

;cat nyfile
Hello Wrl d
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Example: cp

» Copy data from one file to another
» Easy to code, very little setup
» Easy to detect exit condition

» I'ead returns negative value
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cp Code (1)

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

int main(int argc, char **argv)

{

int infd, outfd, readsz, witesz;
char buf[ 65536];

I f (argc < 3) return 1;

i nfd = open(argv[1l], O RDONLY);
if (infd < 0) return 1;

outfd = open(argv[2], O WRONLY | O CREAT | O TRUNC, 0777);
if (outfd < 0) return 1;

[* continues on next slide */
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cp Code (2)

[* primng read */

readsz = read(infd, buf, 65536);

while (readsz > 0) {
witesz = wite(outfd, buf, readsz);
i f (witesz != readsz) return 1;

readsz = read(infd, buf, 65536);
cl ose(infd);
cl ose(outfd);

return O;
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Under the PFS Covers

» Parallel file system software has to get data
from user buffers into disk blocks (and vice
versa)

» Two basic ways that PFSs manage this

» Block-oriented access
» Region-oriented access
s The mechanism used by the PFS does have

a significant impact on the performance for
some workloads

» Region-oriented is more flexible



PFS Write: Block Accesses

pO pO pO
mlm . mlm
. . m cm m cm

(1) Read (2) Modify (3) Write

» Block-oriented file systems (e.g. ones using SANS)
must perform operations in terms of whole blocks

» Can require read-modify-write

s Imagine lots of processes needing to modify the same
block...
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PFS Write: Region Accesses

v
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\D
=

O
-
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-

-

1) Transfer

2) Local Read

3-4) Modify, Write

» Some file systems can access at byte granularity

o Move less data over the network

» Manage modification of blocks locally

» In some cases they can handle noncontiguous
accesses as well (e.g. PVFS, PVFS2)
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POSIX Wrap-Up

» POSIX interface is a useful, ubiguitous interface for
building basic I/O tools

» No constructs useful for parallel 1/O

» Should not be used in parallel applications if
performance is desired
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MPI-10 Interface



MPI-10

» |/O interface specification for use in MPI apps
» Data Model:

» Stream of bytes in a file

» Portable data format (external32)
. Not self-describing

o Features:
» Collective I/O

» Noncontiguous I/O with MPI datatypes and file views
» Nonblocking I/O

s C and Fortran bindings (and more)

» Available on most platforms
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Collective I/O

I I 1 A D

Independent 1/0O Collective 1/10

o Many applications have phases of computation and 1/0O

# During I/O phases, all processes read/write data
» We can say they are collectively accessing storage

# Collective 1/O is coordinated access to storage by a group of
processes

» Collective I/0O functions must be called by all processes participating in I/O
» Allows I/O layers to know more about access as a whole

# Independent I/O is not organized in this way
» No apparent order or structure to accesses
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Noncontiguous 1/O

Contiguous Noncontiguous Noncontiguous Noncontl uous
In Memory in File in Bo

» Contiguous I/O moves data from a single block in
memory into a single region of storage

» Noncontiguous I/O has three forms:
» Noncontiguous in memory, noncontiguous in file, or

noncontiguous in both

» Structured data leads naturally to noncontiguous 1/O
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Nonblocking, Asynchronous I/O

» Blocking, or Synchronous, I/O operations return when buffer
may be reused

» Data in system buffers or on disk
» Some applications like to overlap I/O and computation
» Hiding writes, prefetching, pipelining
» A nonblocking interface allows for submitting I/O operations
and testing for completion later

» If the system also supports asynchronous 1I/O, progress on
operations can occur in the background

» Depends on implementation

» Otherwise progress is made at start, test, wait calls
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Simple MPI-IO Examples

» MPI-IO version of “Hello World”
» First program writes a file with text in it

» Second program reads back the file and prints the
contents

» Show basic API use, error checking
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Simple MPI-10: Writing (1)

#i ncl ude <npi . h>
#i nclude <npio.h> /* may be necessary on sone systens */

int main(int argc, char **argv)

{

int ret, count;

char buf[13] = "Hello World\n";

MPI _File fh;

MPI Status status; /* size of data witten */

MPI Init(&argc, &argv);

ret = MPI _File open(MPI _COW WORLD, "nyfile",
VPI _MODE WRONLY | MPI _MODE CREATE,
MPlI | NFO NULL, &fh);

if (ret '= MPI _SUCCESS) return 1;

[* continues on next slide */
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Simple MPI-10: Writing (2)

ret = MPI_File wite(fh, buf, 13, MPI _CHAR, &status);
I f (ret !'= MPI_SUCCESS) return 1;

MPI CGet count (&status, MPI _CHAR, &count);
if (count !'= 13) return 1;

MPI _File close(&h);

MPI _Finalize();
return O;

CCGrid 2005 — p. 40



Simple MPI-10: Reading (1)

#i ncl ude <npi . h>
#i ncl ude <npi o. h>
#i ncl ude <stdio. h>

Int main(int argc, char **argv)
{

Int ret, count;

char buf[13];

MPI File fh;

MPI _Status status;

MPI _Init(&argc, &argv);

ret = MPlI_File open(MPI _COW WORLD, "nyfile",
VPl _MODE RDONLY,
MPI I NFO NULL, &fh);

I f (ret !'= MPI_SUCCESS) return 1;

[* continues on next slide */
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Simple MPI-10: Reading (2)

ret = MPI _File read(fh, buf, 13, MPI CHAR, &status);
if (ret '= MPI _SUCCESS) return 1;

MPI Get count (&status, Ml _CHAR, &count);
i f (count !'= 13) return 1;

printf("9%", buf);
MPI _File close(&fh);

MPI _Finalize();
return O;
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Compiling and Running

,nmpicc npiio-hello-wite.c -o npiio-hello-wite
;nmpicc npiio-hello-read.c -o npiio-hello-read

;nmpirun -np 1 npiio-hello-wite
,npirun -np 1 npiio-hello-read
Hello Worl d

s nyfile
- I WXT - XTI - X 1 rross rross 13 Mar 28 19:18 nyfile

;cat nyfile
Hello Wrl d
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Example: Visualization Staging

.........................................................

Tie1 | | Tile2 . Tiles

............................

.......................................................

Tile 4 L Tiles Tile 6

» Often large frames must be preprocessed before
display on a tiled display

» First step in process is extracting “tiles” that will go to
each projector

» Perform scaling, etc.

» Parallel I/0O can be used to speed up reading of tiles
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Opening the File, Defining Types

MPI _File filehandle;
MPI _Dat at ype rgb;

success = MPI _Comm rank( MPl _COMM WORLD, &nyrank);
success = MPI _File open(MPI _COM WORLD, filename, MPI _MODE RDONLY,
MPI _I NFO_NULL, &filehandle);

success = MPI _Type_ contiguous(3, Ml _BYTE, &rgb);
success = MPI _Type conmit (& gb);

/* in Corder, last array val ue changes nost quickly (X) */
frame_size[1l] = 3*1024; franme_size[0] = 2*768;

tile size[l] = 1024; tile_size[0] = 768;

tile start[1] = 1024 * (nmyrank % 3);

tile start[0] = (nyrank < 3) ? 0 . 768;

success = MPI _Type create subarray(2, frane size, tile size, tile_start,
MPI _ORDER C, rghb, &filetype);
success = MPI _Type commt (&fil etype);
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MPI| Subarray Datatype

tile_start[1] tile_size[1]

[0]

frame_size
I

frame_size[l]
s MPI _Type create subarray can describe arbitrary
contiguous regions of an array
» Inthis case we use it to pull out a tile
» Tiles can overlap if we need them to

» Generally the MPI implementation uses vectors and
Indexed types under the covers
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Reading Data

MPlI St atus st at us;

[* set file view, skipping header */
success = MPI _File set viewm(filehandl e, file header _size, rgb,
filetype, "native", Ml | NFO NULL);

/* collectively read data */

success = MPI _File read all (filehandl e, buffer,
tile size[0] * tile_size[l],
rgb, &status);

success = MPI _File_close(&filehandle);
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Noncontiguous File I/O

s MPI _File set viewisthe MPI-IO mechanism for
describing noncontiguous regions in a file

s In this case we used it to skip a header and read a
subarray

» Using file views, rather than reading individual pieces,
gives the implementation more information to work with
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Under the Covers of MPI-1O

» MPI-10 implementation given a lot of
iInformation in this case:

» Collection of processes reading data
» Structured description of the regions

» Implementation has some options for how to
obtain this data

» Noncontiguous data access optimizations
» Collective I/O optimizations
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Data Sieving

Holes
/L N T
H B B B

Region desired by application Region accessed with data sieving

» Data sieving is used to combine lots of small accesses
Into a single larger one

» Remote file systems (parallel or not) tend to have high
latencies

» Reducing # of operations important

» Generally very effective, but not as good as having a
PFS that supports nhoncontiguous access
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Data Sieving Writes

p0 p0O p0 p0
(T (T (T (T
vt v

(0) Initial State (1) Read  (2) Modify  (3) Write

» Using data sieving for writes is more complicated
» Must read the entire region first
» Then make our changes
» Then write the block back

# Requires locking in the file system
» Can result in false sharing (interleaved access)
» PFS supporting noncontiguous writes is preferred
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Two-Phase Collective I/O

oo onon

Initial State Phase 1 Phase 2

» Problems with independent, noncontiguous access
» Lots of small accesses
» Independent data sieving reads lots of extra data

» |dea: Reorganize access to match layout on disks
» Single processes use data sieving to get data for many
» Often reduces total I/O through sharing of common blocks

# Second “phase” moves data to final destinations
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Two-Phase Writes

» Similarly to data sieving we need to perform a
read/modify/write for two-phase writes

» Overhead is substantially lower than independent
access to the same regions because there is little or no
false sharing

» Note that two-phase is usually applied to file regions,
not to actual blocks
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Aggregation

AV

pOIpllpZI po | pl p2| pOIp1Ip2I

r | N
o0 00 00

Initial State Read Redistribute

» Aggregation refers to the more general application of
this concept of moving data through intermediate
nodes

s Different #s of nodes performing I/O

» Could also be applied to independent I/O

» Can also be used for remote I/O, where aggregator
processes are on an entirely different system
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MPI-10 Implementations

s There are a collection of different MPI-1O
Implementations

» Each one has its own set of special features
» Three better-known ones are:
. ROMIO from Argonne National Laboratory

..M
..M

» Quic

PI-I0/GPES from IBM
PI/SX and MPI/PC-32 from NEC

K overview of these




ROMIO MPI-10 Implementation

» ANL implementation MPI-IO Interface

Common Functionality

» Leverages MPI-1 communication ADIO Interface

» Layered implementation supports KRR
many storage types

s Local file systems (e.g. XFS)
» Parallel file systems (e.g. PVFS2)
s NFS, Remote I/O (RFS)

» UFS implementation works for most other file systems
s €.9g. GPFS and Lustre

» Included with many MPI implementations

» Includes data sieving and two-phase optimizations
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IBM MPI-1O Implementation

» For GPFS on the AIX platform
» Includes two special optimizations

» Data shipping — mechanism for coordinating access
to a file to alleviate lock contention (type of
aggregation)

» Controlled prefetching — using MPI file views and
access patterns to predict regions to be accessed
In future

» Not available for GPFS on Linux

» Use ROMIO instead
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NEC MPI-IO Implementation

» For NEC SX platform (MPI/SX) and
Myrinet-coupled PC clusters (MPI/PC-32)

» Includes listless I/O optimization

. Fast handling of noncontiguous 1/O
accesses in MPI layer — great for situations
where the file system is lock based and/or
has only contiguous I/O primitives



MPI1-10 Wrap-Up

» MPI-10 provides a rich interface allowing us to describe
» Noncontiguous accesses in memory, file, or both
s Collective I/O

» This allows implementations to perform many
transformations in order to get better I/O performance

» Also forms solid basis for high-level I/O libraries

» But they must take advantage of these features!

» The Iinterface honestly isn’t very intuitive
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Higher Level I/O Interfaces

o Provide structure to files

s Well-defined, portable formats
» Self-describing

» Organization of data
s Interfaces for discovering contents
» Present APIs more appropriate for comp. sci.
s Typed data
s Noncontiguous regions in memory and file

s Multidimensional arrays

» Both implemented on top of MPI-1O
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PnetCDF Interface and File Format



Parallel netCDF (PnetCDF)

» Based on original “Network Common Data Format”
(netCDF) work from Unidata

» Data Model:
» Collection of variables in single file
» Typed, multidimensional array variables
» Attributes on file and variables

» Features:
» C and Fortran interfaces
» Portable data format (same as netCDF)
» Noncontiguous I/O in memory using MPI datatypes
» Noncontiguous I/O in file using sub-arrays
» Collective I/O
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netCDF/PnetCDF Files

| netCDF Header |

1st non-record variable
2nd non-record variable

» PnetCDF files consist of three regions

I~ U
~ L

((
) )

» Header

nth non—record variable

1st record for 1st record variable
1st record for 2nd record variable

» Non-record variables (all
dimensions specified)

o ~
> ~—r

1st record for rth record variable

((
)]

» Record variables (ones with
an unlimited dimension)

NS I~

MO oo R e

variable-size arrays fixed-size arrays

Interleaved records grow in UNLIMITED
dimension for 1st, 2nd, ..., rth variables

» Record variables are interleaved, so using more than
one in a file is likely to result in poor performance due
to noncontiguous accesses

» Data is written in a big-endian format
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Storing Data in PnetCDF

» Create a dataset (file)

» Puts dataset in define mode

» Allows us to describe the contents
. Define dimensions for variables
. Define variables using dimensions
. Store attributes if desired (for variable or dataset)

o Switch from define mode to data mode to write
variables

» Store variable data

o Close the dataset
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Simple PnetCDF Examples

» Simplest possible PnetCDF version of “Hello World”
» First program creates a dataset with a single attribute
» Second program reads back the attribute and prints it

» Shows very basic APl use and error checking
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Simple PnetCDF: Writing (1)

#i ncl ude <npi . h>
#i ncl ude <pnetcdf. h>

int main(int argc, char **argv)

{

int ncfile, ret, count;
char buf[13] = "Hello World\n";

MPI Init(&argc, &argv);
ret = ncnpi _create(MPl _COW WORLD, "nyfile.nc", NC CLOBBER,
MPI | NFO NULL, &ncfile);

I f (ret '= NC NOERR) return 1;

[* continues on next slide */
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Simple PnetCDF: Writing (2)

ret = ncnpi_put _att text(ncfile, NC GLOBAL, "string", 13, buf);
if (ret '= NC NOERR) return 1;

ncnpi _enddef (ncfil e);
ncnpi _cl ose(ncfile);

MPI _Finalize();
return O;
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Retrieving Data iIn PnetCDF

» Open a dataset in read-only mode (NC_NOARI TE)
» Obtain identifiers for dimensions

» Obtain identifiers for variables

» Read variable data

o Close the dataset
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Simple PnetCDF: Reading (1)

#i ncl ude <npi . h>
#i ncl ude <pnetcdf. h>

int main(int argc, char **argv)

{

int ncfile, ret, count;
char buf[13];

MPI Init(&argc, &argv);
ret = ncnpi _open(MPI _COW WORLD, "nyfile.nc", NC NOANRI TE
MPI | NFO NULL, é&ncfile);

I f (ret '= NC NOERR) return 1;

[* continues on next slide */
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Simple PnetCDF: Reading (2)

ret = ncnpi _ingq attlen(ncfile, NC GLOBAL, "string", &count);
if (ret '= NC NOERR || count !'= 13) return 1;

ret = ncnpi _get _att text(ncfile, NC GLOBAL, "string", buf);
I f (ret '= NC NOERR) return 1;

printf("9%", buf);
ncnpi _cl ose(ncfile);

MPI _Finalize();
return O;
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Compiling and Running

;mpi cc pnetcdf-hello-wite.c -1 /usr/local/pnetcdf/include/
-L /usr/local/pnetcdf/lib -1pnetcdf -o pnetcdf-hello-wite
; mpi cc pnetcdf-hello-read.c -1 /usr/local/pnetcdf/include/

-L /usr/local/pnetcdf/lib -lpnetcdf -o pnetcdf-hello-read

;nmpirun -np 1 pnetcdf-hello-wite
;nmpirun -np 1 pnetcdf-hello-read

Hell o Worl d
;1s -1 nyfile.nc
“FTWTI--r-- 1 rross rross 68 Mar 26 10:00 nyfile.nc

;strings nyfile.nc
string
Hello Worl d
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Example: FLASH Astrophysics

» FLASH is an astrophysics code for studying
events such as supernovae

.. Z-Axis

» Adaptive-mesh hydrodynamics

» Scales to 1000s of processors i

» MPI for communication

» Frequently checkpoints:

» Large blocks of typed variables from all processes

Y-Axis

» Portable format
s Canonical ordering (different than in memory)

s Skipping ghost cells
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Example: FLASH with PnetCDF

» Impose an ordering on the AMR blocks
» One file for a checkpoint

» Store each variable in its own array (minus
ghost cells)

» Attributes describing run time, total blocks,
etc.



Defining Dimensions

Int status, ncid, dimtot blks, dimnxb, dimnyb, dimnzb;
MPI I nfo hints;

/* create dataset (file) */
status = ncnpi _create(MPI _COW WORLD, filenane, NC CLOBBER,
hints, &ile_id);

/* define dinensions */
status = ncnpi _def _dinm(ncid, "dimtot bl ks", tot blKks,

&di m tot bl ks);
status = ncnpi _def dinm(ncid, "dimnxb", nzones bl ock[O0], &di mnxb);
status = ncnpi _def _dinm(ncid, "dimnyb", nzones bl ock[1], &di mnyb);
status = ncnpi _def dinm(ncid, "dimnzb", nzones bl ock[2], &dimnzb);
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Variables and Attributes

int dims = 4, dimds[4];
I nt vari ds[ NVARS] ;

/* define variables (X changes nost quickly) */
dimds[0] = dimtot_ bl ks;
dimds[1l] = dimnzb; dimds[2] = dimnyb; dimds[3] = di mnxb;

for (i=0; i < NVARS, i+4+) {
status = ncnpi _def var(ncid, unk label[i], NC DOUBLE, dinmns,
di mds, &arids[i]);

/* store attributes of checkpoint */

status = ncnpi _put_att _text(ncid, NC G.OBAL, "file creation_tine",
string size, file creation_tine);

status = ncnpi _put_att _int(ncid, NC GLOBAL, "total blocks", NC_INT,
1, tot bl ks);

status = ncnpi _enddef(file_ id); /* enter data node */
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Writing Variables

doubl e *unknowns; /* unknowns|[ bl k] [ nzb] [ nyb] [ nxb] */
Size t start_4d[4], count _4d[4];

start _4d[0] = global offset; /* different for each process */
start_4d[ 1] = start_4d[2] = start_4d[3] = O;

count _4d[ 0] = | ocal bl ocks;
count _4d[ 1] = nzb; count _4d[2] = nyb; count_4d[ 3] = nxb;

for (1i=0; I < NVARS; i++) {
/[* ... copy data into unknowns buffer ... */

/* collectively wite out all values of a single variable */

ncnpi _put _vara double all(ncid, varids[i], start_4d, count_ 4d,

unknowns) ;

status = ncnpi _close(file_id);
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Inside PnetCDF Define Mode

» In define mode (collective)
s Use MPI _Fi | e _open to create file at create time

s Set hints as appropriate

» Locally cache header information in memory
. All changes are made to local copies at each process

o Atncnmpi _enddef
» Process 0 writes header with MPI _File wite at
s Pl Bcast result to others

s Everyone has header data in memory, understands
placement of all variables
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Inside PnetCDF Data Mode

» Inside ncnpi _put vara doubl e _all

» Each process performs data conversion into internal
buffer

s Uses MPI _Fil e set vi ewto define file region
. Contiguous in FLASH case

s MPI _File wite_ all collectively writes data

» Atncnpi _cl ose

s MPI _Fil e _cl ose ensures data is written to storage
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MPI-10 and PFS

s As In previous examples:

» MPI-10 performs optimizations
. Two-phase probably applied
. Data sieving if necessary

» Converts to PFS operations

» PFS client code communicates with servers, stores
data
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PnetCDF Wrap-Up

» PnetCDF gives us

s Simple, self-describing container for data
s Collective I/O

» Data structures closely mapping to the variables
described

» If PnetCDF meets application needs, it is likely to give
good performance

s Type conversion to portable format does add overhead
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HDF5 Interface and File Format



HDF5

o Hierarchical Data Format, from NCSA
o Data Model:

s Hierarchical data organization in single file
s Typed, multidimensional array storage

» Attributes on dataset, data

» Features:
s C, C++, and Fortran interfaces
» Portable data format
» Optional compression
» Data reordering (chunking)

s Noncontiguous I/O (memory and file) with hyperslabs
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HDF5 Files

HDF5 File "chkptO07.h5"
3 Group "/"

Dataset "temp" Group "viz"

datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)
20

0

10[ (data)

B attributes = ...

» HDFS5 files consist of groups, datasets, and attributes

» A group is like a directory, holding other groups and datasets

» A dataset holds an array of typed data
. A datatype describes the type
. A dataspace gives the dimensions of the array

» Attributes are small datasets associated with the file, a group,
or another dataset
. Have a datatype and dataspace just as a dataset does

. Can only be accessed as a unit CCGrid 2005 - p. 83



HDFS Data Chunking

» Apps often read subsets of arrays (subarrays)

» Performance of subarray access depends in part on
how data is laid out in the file

s €.g. column vs. row major

» Apps also sometimes store sparse data sets

» Chunking describes a reordering of array data
s Subarray placement in file determined lazily
» Can reduce worst-case performance for subarray access

» Can lead to efficient storage of sparse data

» Coordination cost in this dynamic ordering
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Simple HDF5 Examples

» HDF5 version of “Hello World”

» First program creates a character array, writes text into
it

» Second program reads back the array and prints the

contents

o Shows basic API use
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Storing Data iIn HDF5

» Create the HDF5 file

» Create a new group Iif desired

» Define a dataspace (variable dimensions)

» Define the datatype (variable type)

» Create the dataset (dataspace plus datatype)
» Store attributes if desired

» Store dataset data

» Close everything (file, group, dataspace,
dataset, attributes)



Simple HDF5: Writing

#i ncl ude <hdf5. h>

Int main(int argc, char **argv)
{
hidt file, string datatype, string dataspace, string dataset;
hsize t dim= 13;
herr t status;
char buf[13] = "Hello Wrld\n";

file = H5Fcreate("nyfile. h5", HSF ACC TRUNC, H5P DEFAULT, H5P DEFAULT)

string_dataspace = HoScreate sinple(1l, &Jim NULL);

string_dat atype H5Tcopy( HST_NATI VE_CHAR) ;

stri ng_dat aset = Ho5Dcreate(file, "string", string_datatype,
string _dataspace, H5P DEFAULT);

status = H5Dwrite(string dataset, H5T NATIVE CHAR, H5S ALL, H5S ALL,
H5P DEFAULT, buf);

H5Scl ose(stri ng _dat aspace) ;
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Retrieving Data in HDF5

» Open the HDF5 file
» Open the group (if one was used)

» Open the dataset
» Get the dataspace
» Get the dimensions of the dataspace

» Read dataset data

» Close everything (file, group, dataset,
dataspace)



Simple HDF5: Reading

#i ncl ude <hdf5. h>
#i ncl ude <stdi o. h>

int main(int argc, char **argv)
{
hidt file, string dataset;
herr t status;
char buf[13];

file = HoFopen("nyfile. h5", HS5F ACC RDONLY, H5P DEFAULT);
string dataset = H5Dopen(file, "string"),;

status = H5Dread(string _dataset, H5T NATIVE CHAR, H5S ALL, H5S ALL,
H5P _DEFAULT, buf);

printf("9%", buf);

H5Dcl ose(stri ng _dat aset) ;
H5Fcl ose(fil e);

CCGrid 2005 — p. 89



Compiling and Running

;mpi cc hdf5-hello-wite.c -1 /usr/local/hdf5/include
-L /usr/local/hdf5/1ib/ -1hdf5 -0 hdf5-hello-wite
;mpi cc hdf5-hello-read.c -1 /usr/local/hdf5/include
-L fusr/local/hdf5/1ib/ -1hdf5 -0 hdf5-hell o-read

;nmpirun -np 1 hdf5-hello-wite
;npirun -np 1 hdf 5-hello-read
Hello Worl d

;s -1 nyfile.h5
-TWTF--1-- 1 rross rross 2061 Mar 27 23:06 nyfile.h5

;strings nyfile.h5
HEAP

string

TREE

Pl f@

SNCD

Hello Worl d
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Example: FLASH with HDF5

» Same approach as with PnetCDF
» Impose an ordering on the AMR blocks
» One file for a checkpoint

» Store each variable in its own array (minus
ghost cells)

» Portable format (stored natively)

» Attributes describing run time, total blocks,
etc.



Setting up the File

Int string_size = 40;
hid t dataspace, dataset, file_ id, string_ type;
herr t status;

file 1d = HsFcreate(fil enane, HS5F ACC TRUNC,
H5P DEFAULT, acc_tenpl ate);

/* store string creation tine attribute */
string type = H5Tcopy(H5T _C S1);
H5Tset size(string_type, string_size);

dat aspace = H5Screate_sinple(4, &dinens_1d, NULL);
dat aset = Ho5Dcreate(file id, "file creation tine",
string type, dataspace, H5P DEFAULT);

I f (nmyrank == 0) status = H5Dwite(dataset, string type, H5S ALL,
H5S ALL, H5P DEFAULT, create tine);

H5Tcl ose(string type); H5Scl ose(dat aspace); H5Dcl ose(dat aset);
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Writing Variables (1)

hsize t dinens _4d[4], start _4d[4], count _4d[4], stride_4d[4];

/* setup dataspace di nensions description */
di nens[ 0] = dimtot bl ks;

di mens[ 1] = nzb;

di nens[ 2] = nyb;

di nmens[ 3] = nxb;

/* setup hyperslab description for dataset in file */
start _4d[ 0] = gl obal offset;
start_4d[ 1] = start_4d[2] = start_4d[3] = O;

stride 4d[0] = stride_4d[1] = stride_4d[2] = stride_4d[3] = 1;

count _4d[ 0] = | ocal bl ocks;
count _4d[ 1] = nzb; count _4d[2] = nyb; count_4d[ 3] = nxb;

[* continues on next slide */
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Writing Variables (2)

for (i=0; i < NVARS; i++) {

hid t dataspace, dataset plist, dataset;

dat aspace = H5Screate_sinpl e(rank, dinmens,
dat aset _plist = H5Pcreat e( HSP_DATASET_ CREATE) ;

NULL) :

dataset = HoDcreate(file_ id, record | abel new, HS5T NATIVE DOUBLE,

dat aspace, dataset plist);

status = H5Ssel ect hyper sl ab( dat aspace,
stride_4d,

nenspace = H5Screate_sinple(l, nxb*nyb*nzb*di mtot bl ks,

[* for() continued on next slide */

H5S SELECT SET,
count _4d, NULL);

start _4d,

NULL) :
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Writing Variables (3)

[* for() continued fromlast slide */

dxfer tenplate = H5Pcreat e( H5P_DATASET_ XFER) ;

/* specify collective I/O */

lerr = HoPset dxpl _npi o(dxfer tenplate, H5FD MPI O COLLECTI VE);
lerr = HoPset preserve(dxfer tenplate, Ou);

/[* ... copy data into unknowns buffer ... */

status = H5Dwrite(dataset, HS5T NATI VE DOUBLE, nenspace,
dat aspace, dxfer _tenplate, unknowns);

H5Scl ose(dxfer_tenplate); H5Scl ose(nenspace);

H5Scl ose( dat aspace); H5Dcl ose(dat aset);

H5Fcl ose(file_id);
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Inside HDF5

# Not so much happens before writes
o MPI _Fil e _open used to open file

o Because there is no “define” mode, file layout is determined at
write time
o InHSDwrite:
» Processes communicate to determine file layout
» Process 0 performs metadata updates
s CallMPl _File set view
s CallMPl _File wite _all to collectively write

. Only if this was turned on (more later)
#» Memory hyperslab could have been used to define noncontiguous
region in memory

# Data is kept in native format and converted at read time (defers
overhead)
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MPI-10 and PFS

» Mapping between HDF5 and MPI-10
operations is less clear than with PnetCDF

» Metadata updates at every write are a bit of a
bottleneck

» MPI-10 from process 0 introduces some skew



FLASH/HDF5 Final Notes

s FLASH doesn’t use a lot of the HDF5

w b~ 0 o N
o O O O O

=
o

Aggregate bandwidth (MBytes/sec)

o

N
o

functionality

» HDF5 is somewhat overkill for this application

Flash I/O Benchmark (Checkpoint, 8x8x8)

| PnetCDF —+—

64 128 256

Number of processors

16 32

120
100

80

40

20

Aggregate bandwidth (MBytes/sec)

60 |

Flash I/O Benchmark (Checkpoint, 16x16x16)

PnetCDF —+—

32 64 128
Number of processors

(Numbers from ASCI White Frost, compliments of Brad Gallagher)

256
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/O Best Practices



How do | choose an API?

» Your programming model will limit choices.
» Domain might too (e.g. Climate, existing netCDF data)
» Find something that matches your data model.

» Avoid APIs with lots of features you won't use.

» Potential for overhead costing performance is high.

» Maybe the right APl isn’t available?

s Get I/O people interested, consider designing a new
library
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Summary of API Capabilities

POSIX | MPI-IO | PnetCDF | HDFS

Noncontig. Memory | yes yes yes yes
Noncontig. File yes yes yes
Coll. 1/O yes yes yes

Portable Format yes yes yes
Self-Describing yes yes
Attributes yes yes
Chunking yes

Hierarchical File

yes
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Tuning Application 1/0O (1)

» Hauve realistic goals:
s Whatis peak I/O rate?

» What other testing has been done?

» Describe as much as possible to the 1/0O system:
s Open with appropriate mode.
s Use collective calls when available.
» Describe data movement with fewest possible
operations.
» Match file organization to process partitioning if
possible

» Order dimensions so relatively large blocks are
contiguous with respect to data decomposition
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Tuning Application 1/0O (2)

» Know what you can control:
» What I/O components are in use?

» What hints are accepted?

» Consider system architecture as a whole:
» |s storage network faster than comm. network?

» Do some nodes have better storage access than
others?

» These guide our selection of hints
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Controlling I/0O Stack Behavior

o Most systems accept hints through one mechanism or
another

» Parameters to file “open” calls
» Proprietary POSIX i oct | calls
s MPI _Info

» HDF5 transfer templates

» Allow the programmer to:
» EXxplain more about the 1/O pattern
» Specify particular optimizations
» Impose resource limitations

» Generally pass information that is used only during a
particular set of accesses (between open and close, for
example)
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MPI-10 Hints

» MPI-IO hints may be passed via:
s MPI _File open
s MPI File set info
s MPI _File set view

» Hints are optional — implementations are guaranteed to
ignore ones they do not understand

» Different implementations, even different underlying file
systems, support different hints

s MPI _File get infousedtogetlist of hints

» Next few slides cover only some hints
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MPI-10 Hints: Data Sieving

o ind rd buffer size — Controls the size (in bytes) of the
Intermediate buffer used by ROMIO when performing data
sieving reads

o ind w buffer size — Controls the size (in bytes) of the
Intermediate buffer used by ROMIO when performing data
sieving writes

o rom o_ds_read — Determines when ROMIO will choose to
perform data sieving for reads (enable, disable, auto)

o romo_ds wite — Determines when ROMIO will choose
to perform data sieving for writes
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MPI-10 Hints: Collective I/0O

» cb _buffer _size - Controls the size (in bytes) of the
Intermediate buffer used in two-phase collective 1/O

# cb_nodes — Controls the maximum number of aggregators
to be used

o rom o_cb_read — Controls when collective buffering is
applied to collective read operations

o romo_cb wite - Controls when collective buffering is
applied to collective write operations

# cb _config_ |ist —Provides explicit control over
aggregators (see ROMIO User’s Guide)
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MPI-10 Hints: FS-Specific

o striping_factor —Controls the number of I1/O devices to
stripe across

o striping_unit — Controls the striping unit (in bytes)

o start _iodevi ce — Determines what I/O device data will
first be written to

o direct _read - Controls direct I/O for reads

o direct _wite — Controls direct I/O for writes

CCGrid 2005 — p. 108



Using MPI_Info

» Example: setting data sieving buffer to be a whole
“frame”

char info_val ue[16];
MPI _I nfo info;
MPI _File fh;

MPI I nfo_create(& nfo);
snprintf(info_value, 15, "%", 3*1024 * 2*768 * 3);
MPI Info set(info, "ind rd buffer _size", info_value);

MPI _File_open(comm filenanme, MPI_MODE RDONLY, info, &fh);

MPI Info free(& nfo);
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Hints and PnetCDF

» Uses MPI Info, so almost identical
char info_val ue[ 16];
MPI _I nfo info;
MPI _File fh;
MPI I nfo_create(& nfo);
snprintf(info_value, 15, "% ", 3*1024 * 2*768 * 3);
MPI Info set(info, "ind rd buffer _size", info_value);

ncnpi _open(comm filename, NC NOMNRI TE, info, &ncfile);

MPI Info free(& nfo);
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Hints and HDF5

» HDF5 uses a combination of property lists and
MPI_Info structures for passing hints

s Property list holds HDF5-specific hints

s H5Pset set fapl npi o usedto pass MPI_Info in as
well

» HDF5 is very configurable; lots of options

» We’'ve been talking about details like this long enough

)
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Helping 1/O Experts Help You

» Scenarios
s EXxplaining logically what you are doing

» Separate the conceptual structures from their
representation on storage

» Common vs. infrequent patterns

» Possible consistency management simplifications

» Application I/O kernels
» Simple codes exhibiting similar I/O behavior
» Easier for 1/O group to work with

» Useful for acceptance testing!

» Needs to be pretty close to the real thing...
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Wrapping Up

» We’'ve covered a lot of ground in a short time
» Very low-level, serial interfaces
» High-level, hierarchical file formats

# There is no magic in high performance 1/O

» Under the covers it looks a lot like shared memory or
message passing

» Knowing how things work will lead you to better performance
» Things will continue to get more complicated, but hopefully
easier too!
» Remote access to data
» More layers to I/O stack
» Domain-specific application interfaces
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Additional Notes



Building ROMIO in MPICH1

» It's important to tell ROMIO what file systems to
support

tar xzf npich-1.2.5. 2.tar.gz

cd npich-1.2.5.2

RSHCOMMAND=s s h

export RSHCOVIVAND

./configure --wth-romo="--file systenrFufs+testfs" \

--W t hout -npe --prefix=/usr/local/nmpich-1.2.5.2
make

make 1 nstall

CCGrid 2005 — p. 115



Building PnetCDF

» PnetCDF will discover the mpicc if you tell it where MPI
IS installed.

» See READMEs for various systems if there are
problems.

tar xjf parallel-netcdf-0.9.3.tar.bz2

cd parallel-netcdf-0.9. 3/

./configure --wth-npi=/usr/local/npich-1.2.5.2/ \
--prefix=/usr/local/parallel-netcdf-0.9.3

make

make i nstal |l
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Building HDF5

» HDF5 wants you to define CC to be your MPI compiler

tar xzf hdf5-1.6.2.tar.gz

cd hdf5-1.6. 2/

PATH=" echo $PATH :/usr/local /nmpich-1.2.5.2/bin/

CC=npi cc

export CC

./configure --wth-parallel \
--prefix=/usr/local/hdf5-1.6.2

make

make 1 nstall
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