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Computational Science

Use of computer simulation as a tool for
greater understanding of the real world

Complements experimentation and theory

As our simulations become ever more
complicated:

Leveraging parallelism becomes more important
Thus large parallel machines

Managing code complexity bigger issue as well
Thus use of libraries (e.g. MPI, BLAS)

Because data often plays a role, same issues
apply there
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Parallel I/O Tools

Collections of system software and libraries
have grown up to address I/O issues

Parallel file systems

MPI-IO

High level libraries

Relationships between these are not always

clear

Choosing between tools can be difficult
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Goals of this Tutorial

Familiarity with available I/O tools

Organization of tools into I/O stacks

Understanding of what happens behind the
scenes

Guidelines for performance

Basic MPI programming knowledge is
assumed
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Outline

Introduction and I/O stacks
Application I/O vs. parallel I/O

Bridging the gap with I/O stacks

I/O stacks for computational science

I/O interfaces and formats, with examples
POSIX file system interface

MPI-IO interface

Parallel netCDF (PnetCDF)

Hierarchical Data Format (HDF5)

I/O best practices
Choosing an I/O interface

Guidelines for I/O performance

Tuning I/O stacks with hints

Enlisting the experts

Conclusions and supplemental material
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Printed References

John May, Parallel I/O for High Performance Computing,
Morgan Kaufmann, October 9, 2000.

Good coverage of basic concepts, some MPI-IO, HDF5, and
serial netCDF

William Gropp, Ewing Lusk, and Rajeev Thakur, Using
MPI-2: Advanced Features of the Message Passing
Interface, MIT Press, November 26, 1999.

In-depth coverage of MPI-IO API, including a very detailed
description of the MPI-IO consistency semantics
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On-Line References (1)

netCDF
http://www.unidata.ucar.edu/packages/netcdf/

PnetCDF

http://www.mcs.anl.gov/parallel-netcdf/

ROMIO MPI-IO

http://www.mcs.anl.gov/romio/

HDF5 and HDF5 Tutorial
http://hdf.ncsa.uiuc.edu/HDF5/

http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html
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On-Line References (2)

PVFS and PVFS2

http://www.parl.clemson.edu/pvfs/

http://www.pvfs.org/pvfs2/

Lustre

http://www.lustre.org/

GPFS

http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

FLASH and FLASH I/O Benchmark
http://flash.uchicago.edu/

http://flash.uchicago.edu/~jbgallag/io_bench/
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Introduction and I/O Stacks
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Application View of Data

Applications have data models appropriate to domain

Multidimensional typed arrays, images composed of

scan lines, variable length records

Headers, attributes on data

Parallel file system API is an awful match

Bytes

Blocks or contiguous regions of files

Independent access

Need more software!
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Supporting Application I/O

(1) Provide mapping of app. domain
data abstractions

API that uses language meaningful

to app. programmers

(2) Coordinate access by many processes

Collective I/O, consistency semantics

(3) Organize I/O devices into a single space

Convenient utilities and file model

And also

Insulate applications from I/O system changes

Maintain performance!!!

p0 pNp1
...
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What about Parallel I/O?

Storage or
System Network

Clients running
applications

I/O devices
or servers

...

...Storage Hardware

Application

Focus of parallel I/O is on using parallelism to increase

bandwidth

Use multiple data sources/sinks in concert

Both multiple storage devices and multiple/wide paths to them

But applications don’t want to deal with block devices and

network protocols,

So we add software layers.
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Parallel File Systems (PFSs)

...

...

Application

PFS Client Code

Storage Hardware

PFS Server Code

Organize I/O devices into a single logical space

Striping files across devices for performance

Export a well-defined API, usually POSIX

Access data in contiguous regions of bytes

Very general

This is only 1/3 of what we said we needed!
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I/O Stacks

Idea: Add some additional software
components to address remaining issues

Coordination of access

Mapping from application model to I/O model

These components will be increasingly

specialized as we add layers

Bridge this gap between existing I/O systems
and application needs
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I/O for Computational Science

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application

Parallel File System

Storage Hardware

Application

Break up support into multiple layers:

High level I/O library maps app. abstractions to a

structured, portable file format (e.g. HDF5, Parallel

netCDF)

Middleware layer deals with organizing access by many

processes (e.g. MPI-IO, UPC-IO)

Parallel file system maintains logical space, provides

efficient access to data (e.g. PVFS, GPFS, Lustre)
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High Level Libraries

Provide an appropriate
abstraction for domain

Multidimensional datasets

Typed variables

Attributes

Self-describing, structured file format

Map to middleware interface
Encourage collective I/O

Provide optimizations that middleware cannot

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application
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I/O Middleware

Facilitate concurrent access
by groups of processes

Collective I/O

Atomicity rules

Expose a generic interface
Good building block for high-level libraries

Match the underlying prog. model (e.g. MPI)

Efficiently map middleware operations into
PFS ones

Leverage any rich PFS access constructs

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application
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Parallel File System

Manage storage hardware
Present single view

Focus on concurrent,
independent access

Knowledge of collective I/O usually very limited

Publish an interface that middleware can use
effectively

Rich I/O language
Relaxed but sufficient semantics

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application
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Next: I/O APIs and Formats

Introduce the four interfaces:

POSIX I/O interface

MPI-IO interface

Parallel netCDF (PnetCDF) interface

HDF5 interface

Example for each

Serial POSIX “cp” code

MPI-IO vizualization code

FLASH/PnetCDF

FLASH/HDF5

Look in-depth at what happens in the I/O system

Introduce components from the bottom up
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POSIX I/O Interface
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POSIX I/O

Standard I/O interface across many platforms

Mechanism almost all serial applications use
to perform I/O

No way of describing collective access

Warning: semantics differ between file
systems!

NFS is the worst of these, supporting API but not
semantics

Determining FS type is nontrivial

CCGrid 2005 – p. 21



Simple POSIX Examples

POSIX I/O version of “Hello World”

First program writes a file with text in it

Second program reads back the file and prints the
contents

Show basic API use, error checking
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Simple POSIX I/O: Writing

#include <fcntl.h>

#include <unistd.h>

int main(int argc, char **argv)

{

int fd, ret;

char buf[13] = "Hello World\n";

fd = open("myfile", O_WRONLY | O_CREAT, 0755);

if (fd < 0) return 1;

ret = write(fd, buf, 13);

if (ret < 13) return 1;

close(fd);

return 0;

}
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Simple POSIX I/O: Reading

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

int main(int argc, char **argv)

{

int fd, ret;

char buf[13];

fd = open("myfile", O_RDONLY);

if (fd < 0) return 1;

ret = read(fd, buf, 13);

if (ret < 13) return 1;

printf("%s", buf);

close(fd);

return 0;
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Compiling and Running

;gcc -Wall posix-hello-write.c -o posix-hello-write

;gcc -Wall posix-hello-read.c -o posix-hello-read

;./posix-hello-write

;./posix-hello-read

Hello World

;ls myfile

-rwxr-xr-x 1 rross rross 13 Mar 28 20:18 myfile

;cat myfile

Hello World
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Example: cp

Copy data from one file to another

Easy to code, very little setup

Easy to detect exit condition
read returns negative value
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cp Code (1)

#include <fcntl.h>

#include <unistd.h>

int main(int argc, char **argv)

{

int infd, outfd, readsz, writesz;

char buf[65536];

if (argc < 3) return 1;

infd = open(argv[1], O_RDONLY);

if (infd < 0) return 1;

outfd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0777);

if (outfd < 0) return 1;

/* continues on next slide */
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cp Code (2)

/* priming read */

readsz = read(infd, buf, 65536);

while (readsz > 0) {

writesz = write(outfd, buf, readsz);

if (writesz != readsz) return 1;

readsz = read(infd, buf, 65536);

}

close(infd);

close(outfd);

return 0;

}
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Under the PFS Covers

Parallel file system software has to get data
from user buffers into disk blocks (and vice
versa)

Two basic ways that PFSs manage this
Block-oriented access

Region-oriented access

The mechanism used by the PFS does have
a significant impact on the performance for
some workloads

Region-oriented is more flexible
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PFS Write: Block Accesses

p0p0 p0

(1) Read (2) Modify (3) Write

Block-oriented file systems (e.g. ones using SANs)
must perform operations in terms of whole blocks

Can require read-modify-write

Imagine lots of processes needing to modify the same

block...
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PFS Write: Region Accesses

p0 p0p0

2) Local Read 3−4) Modify, Write1) Transfer

Some file systems can access at byte granularity

Move less data over the network

Manage modification of blocks locally

In some cases they can handle noncontiguous
accesses as well (e.g. PVFS, PVFS2)
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POSIX Wrap-Up

POSIX interface is a useful, ubiquitous interface for
building basic I/O tools

No constructs useful for parallel I/O

Should not be used in parallel applications if
performance is desired
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MPI-IO Interface
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MPI-IO

I/O interface specification for use in MPI apps

Data Model:

Stream of bytes in a file

Portable data format (external32)
Not self-describing

Features:

Collective I/O

Noncontiguous I/O with MPI datatypes and file views

Nonblocking I/O

C and Fortran bindings (and more)

Available on most platforms
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Collective I/O

n0 n1 n2 n3 n4 n5 n6n0 n1 n2 n3 n4 n5 n6

Independent I/O Collective I/O

Many applications have phases of computation and I/O

During I/O phases, all processes read/write data
We can say they are collectively accessing storage

Collective I/O is coordinated access to storage by a group of
processes

Collective I/O functions must be called by all processes participating in I/O

Allows I/O layers to know more about access as a whole

Independent I/O is not organized in this way
No apparent order or structure to accesses
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Noncontiguous I/O

p0 p0 p0p0

Contiguous Noncontiguous Noncontiguous Noncontiguous
in Memory in File in Both

Contiguous I/O moves data from a single block in
memory into a single region of storage

Noncontiguous I/O has three forms:

Noncontiguous in memory, noncontiguous in file, or

noncontiguous in both

Structured data leads naturally to noncontiguous I/O
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Nonblocking, Asynchronous I/O

Blocking, or Synchronous, I/O operations return when buffer
may be reused

Data in system buffers or on disk

Some applications like to overlap I/O and computation

Hiding writes, prefetching, pipelining

A nonblocking interface allows for submitting I/O operations

and testing for completion later

If the system also supports asynchronous I/O, progress on
operations can occur in the background

Depends on implementation

Otherwise progress is made at start, test, wait calls
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Simple MPI-IO Examples

MPI-IO version of “Hello World”

First program writes a file with text in it

Second program reads back the file and prints the
contents

Show basic API use, error checking
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Simple MPI-IO: Writing (1)

#include <mpi.h>

#include <mpio.h> /* may be necessary on some systems */

int main(int argc, char **argv)

{

int ret, count;

char buf[13] = "Hello World\n";

MPI_File fh;

MPI_Status status; /* size of data written */

MPI_Init(&argc, &argv);

ret = MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_WRONLY | MPI_MODE_CREATE,

MPI_INFO_NULL, &fh);

if (ret != MPI_SUCCESS) return 1;

/* continues on next slide */
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Simple MPI-IO: Writing (2)

ret = MPI_File_write(fh, buf, 13, MPI_CHAR, &status);

if (ret != MPI_SUCCESS) return 1;

MPI_Get_count(&status, MPI_CHAR, &count);

if (count != 13) return 1;

MPI_File_close(&fh);

MPI_Finalize();

return 0;

}
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Simple MPI-IO: Reading (1)

#include <mpi.h>

#include <mpio.h>

#include <stdio.h>

int main(int argc, char **argv)

{

int ret, count;

char buf[13];

MPI_File fh;

MPI_Status status;

MPI_Init(&argc, &argv);

ret = MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDONLY,

MPI_INFO_NULL, &fh);

if (ret != MPI_SUCCESS) return 1;

/* continues on next slide */
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Simple MPI-IO: Reading (2)

ret = MPI_File_read(fh, buf, 13, MPI_CHAR, &status);

if (ret != MPI_SUCCESS) return 1;

MPI_Get_count(&status, MPI_CHAR, &count);

if (count != 13) return 1;

printf("%s", buf);

MPI_File_close(&fh);

MPI_Finalize();

return 0;

}

CCGrid 2005 – p. 42



Compiling and Running

;mpicc mpiio-hello-write.c -o mpiio-hello-write

;mpicc mpiio-hello-read.c -o mpiio-hello-read

;mpirun -np 1 mpiio-hello-write

;mpirun -np 1 mpiio-hello-read

Hello World

;ls myfile

-rwxr-xr-x 1 rross rross 13 Mar 28 19:18 myfile

;cat myfile

Hello World
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Example: Visualization Staging

Tile 4 Tile 5 Tile 6

Tile 3Tile 2Tile 1

Often large frames must be preprocessed before
display on a tiled display

First step in process is extracting “tiles” that will go to
each projector

Perform scaling, etc.

Parallel I/O can be used to speed up reading of tiles
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Opening the File, Defining Types

MPI_File filehandle;

MPI_Datatype rgb;

success = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

success = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDONLY,

MPI_INFO_NULL, &filehandle);

success = MPI_Type_contiguous(3, MPI_BYTE, &rgb);

success = MPI_Type_commit(&rgb);

/* in C order, last array value changes most quickly (X) */

frame_size[1] = 3*1024; frame_size[0] = 2*768;

tile_size[1] = 1024; tile_size[0] = 768;

tile_start[1] = 1024 * (myrank % 3);

tile_start[0] = (myrank < 3) ? 0 : 768;

success = MPI_Type_create_subarray(2, frame_size, tile_size, tile_start,

MPI_ORDER_C, rgb, &filetype);

success = MPI_Type_commit(&filetype);
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MPI Subarray Datatype

tile_size[1]tile_start[1]

fr
am

e_
si

ze
[0

]

frame_size[1]
tile_start[0]

tile_size[0]

MPI_Type_create_subarray can describe arbitrary
contiguous regions of an array

In this case we use it to pull out a tile

Tiles can overlap if we need them to

Generally the MPI implementation uses vectors and
indexed types under the covers
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Reading Data

MPI_Status status;

/* set file view, skipping header */

success = MPI_File_set_view(filehandle, file_header_size, rgb,

filetype, "native", MPI_INFO_NULL);

/* collectively read data */

success = MPI_File_read_all(filehandle, buffer,

tile_size[0] * tile_size[1],

rgb, &status);

success = MPI_File_close(&filehandle);
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Noncontiguous File I/O

MPI_File_set_view is the MPI-IO mechanism for
describing noncontiguous regions in a file

In this case we used it to skip a header and read a

subarray

Using file views, rather than reading individual pieces,
gives the implementation more information to work with
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Under the Covers of MPI-IO

MPI-IO implementation given a lot of
information in this case:

Collection of processes reading data

Structured description of the regions

Implementation has some options for how to
obtain this data

Noncontiguous data access optimizations

Collective I/O optimizations
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Data Sieving

Region desired by application

Holes

Region accessed with data sieving

Data sieving is used to combine lots of small accesses
into a single larger one

Remote file systems (parallel or not) tend to have high

latencies

Reducing # of operations important

Generally very effective, but not as good as having a
PFS that supports noncontiguous access
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Data Sieving Writes

p0 p0 p0p0

(1) Read (2) Modify (3) Write(0) Initial State

Using data sieving for writes is more complicated

Must read the entire region first

Then make our changes

Then write the block back

Requires locking in the file system

Can result in false sharing (interleaved access)

PFS supporting noncontiguous writes is preferred
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Two-Phase Collective I/O

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1Initial State Phase 2

Problems with independent, noncontiguous access

Lots of small accesses

Independent data sieving reads lots of extra data

Idea: Reorganize access to match layout on disks

Single processes use data sieving to get data for many

Often reduces total I/O through sharing of common blocks

Second “phase” moves data to final destinations
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Two-Phase Writes

Similarly to data sieving we need to perform a
read/modify/write for two-phase writes

Overhead is substantially lower than independent
access to the same regions because there is little or no
false sharing

Note that two-phase is usually applied to file regions,
not to actual blocks
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Aggregation

p0 p1 p2 p0 p1 p2 p0 p1 p2

ReadInitial State Redistribute

Aggregation refers to the more general application of
this concept of moving data through intermediate
nodes

Different #s of nodes performing I/O

Could also be applied to independent I/O

Can also be used for remote I/O, where aggregator
processes are on an entirely different system
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MPI-IO Implementations

There are a collection of different MPI-IO
implementations

Each one has its own set of special features

Three better-known ones are:
ROMIO from Argonne National Laboratory
MPI-IO/GPFS from IBM
MPI/SX and MPI/PC-32 from NEC

Quick overview of these
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ROMIO MPI-IO Implementation

ANL implementation

Leverages MPI-1 communication

Layered implementation supports
many storage types

Local file systems (e.g. XFS)

Parallel file systems (e.g. PVFS2)

NFS, Remote I/O (RFS)

UFS implementation works for most other file systems

e.g. GPFS and Lustre

Included with many MPI implementations

Includes data sieving and two-phase optimizations

PVFS

ADIO Interface

Common Functionality

MPI−IO Interface

XFS NFSUFS
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IBM MPI-IO Implementation

For GPFS on the AIX platform

Includes two special optimizations
Data shipping – mechanism for coordinating access
to a file to alleviate lock contention (type of
aggregation)

Controlled prefetching – using MPI file views and
access patterns to predict regions to be accessed
in future

Not available for GPFS on Linux
Use ROMIO instead
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NEC MPI-IO Implementation

For NEC SX platform (MPI/SX) and
Myrinet-coupled PC clusters (MPI/PC-32)

Includes listless I/O optimization
Fast handling of noncontiguous I/O
accesses in MPI layer – great for situations
where the file system is lock based and/or
has only contiguous I/O primitives
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MPI-IO Wrap-Up

MPI-IO provides a rich interface allowing us to describe

Noncontiguous accesses in memory, file, or both

Collective I/O

This allows implementations to perform many
transformations in order to get better I/O performance

Also forms solid basis for high-level I/O libraries

But they must take advantage of these features!

The interface honestly isn’t very intuitive
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Higher Level I/O Interfaces

Provide structure to files

Well-defined, portable formats

Self-describing

Organization of data

Interfaces for discovering contents

Present APIs more appropriate for comp. sci.

Typed data

Noncontiguous regions in memory and file

Multidimensional arrays

Both implemented on top of MPI-IO
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PnetCDF Interface and File Format
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Parallel netCDF (PnetCDF)

Based on original “Network Common Data Format”

(netCDF) work from Unidata

Data Model:

Collection of variables in single file

Typed, multidimensional array variables

Attributes on file and variables

Features:

C and Fortran interfaces

Portable data format (same as netCDF)

Noncontiguous I/O in memory using MPI datatypes

Noncontiguous I/O in file using sub-arrays

Collective I/O
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netCDF/PnetCDF Files

PnetCDF files consist of three regions

Header

Non-record variables (all

dimensions specified)

Record variables (ones with

an unlimited dimension)

Record variables are interleaved, so using more than
one in a file is likely to result in poor performance due
to noncontiguous accesses

Data is written in a big-endian format

v
a

ri
a

b
le

−
s
iz

e
 a

rr
a

y
s

fi
x
e

d
−

s
iz

e
 a

rr
a

y
s

1st non−record variable
2nd non−record variable

nth non−record variable

netCDF Header

1st record for 2nd record variable
1st record for 1st record variable

1st record for rth record variable

Interleaved records grow in UNLIMITED
dimension for 1st, 2nd, ... , rth variables
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Storing Data in PnetCDF

Create a dataset (file)

Puts dataset in define mode

Allows us to describe the contents
Define dimensions for variables
Define variables using dimensions
Store attributes if desired (for variable or dataset)

Switch from define mode to data mode to write
variables

Store variable data

Close the dataset
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Simple PnetCDF Examples

Simplest possible PnetCDF version of “Hello World”

First program creates a dataset with a single attribute

Second program reads back the attribute and prints it

Shows very basic API use and error checking
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Simple PnetCDF: Writing (1)

#include <mpi.h>

#include <pnetcdf.h>

int main(int argc, char **argv)

{

int ncfile, ret, count;

char buf[13] = "Hello World\n";

MPI_Init(&argc, &argv);

ret = ncmpi_create(MPI_COMM_WORLD, "myfile.nc", NC_CLOBBER,

MPI_INFO_NULL, &ncfile);

if (ret != NC_NOERR) return 1;

/* continues on next slide */
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Simple PnetCDF: Writing (2)

ret = ncmpi_put_att_text(ncfile, NC_GLOBAL, "string", 13, buf);

if (ret != NC_NOERR) return 1;

ncmpi_enddef(ncfile);

ncmpi_close(ncfile);

MPI_Finalize();

return 0;

}
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Retrieving Data in PnetCDF

Open a dataset in read-only mode (NC_NOWRITE)

Obtain identifiers for dimensions

Obtain identifiers for variables

Read variable data

Close the dataset
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Simple PnetCDF: Reading (1)

#include <mpi.h>

#include <pnetcdf.h>

int main(int argc, char **argv)

{

int ncfile, ret, count;

char buf[13];

MPI_Init(&argc, &argv);

ret = ncmpi_open(MPI_COMM_WORLD, "myfile.nc", NC_NOWRITE,

MPI_INFO_NULL, &ncfile);

if (ret != NC_NOERR) return 1;

/* continues on next slide */
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Simple PnetCDF: Reading (2)

ret = ncmpi_inq_attlen(ncfile, NC_GLOBAL, "string", &count);

if (ret != NC_NOERR || count != 13) return 1;

ret = ncmpi_get_att_text(ncfile, NC_GLOBAL, "string", buf);

if (ret != NC_NOERR) return 1;

printf("%s", buf);

ncmpi_close(ncfile);

MPI_Finalize();

return 0;

}
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Compiling and Running

;mpicc pnetcdf-hello-write.c -I /usr/local/pnetcdf/include/

-L /usr/local/pnetcdf/lib -lpnetcdf -o pnetcdf-hello-write

;mpicc pnetcdf-hello-read.c -I /usr/local/pnetcdf/include/

-L /usr/local/pnetcdf/lib -lpnetcdf -o pnetcdf-hello-read

;mpirun -np 1 pnetcdf-hello-write

;mpirun -np 1 pnetcdf-hello-read

Hello World

;ls -l myfile.nc

-rw-r--r-- 1 rross rross 68 Mar 26 10:00 myfile.nc

;strings myfile.nc

string

Hello World
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Example: FLASH Astrophysics

FLASH is an astrophysics code for studying
events such as supernovae

Adaptive-mesh hydrodynamics

Scales to 1000s of processors

MPI for communication

Frequently checkpoints:
Large blocks of typed variables from all processes

Portable format

Canonical ordering (different than in memory)

Skipping ghost cells
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Y−Axis

X−Axis

Z−Axis

Data saved during checkpoint

Ghost Cell (skipped during checkpoint)

FLASH Block Structure

Vars 0,1,2, ... 23

Slice of FLASH Block
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Example: FLASH with PnetCDF

Impose an ordering on the AMR blocks

One file for a checkpoint

Store each variable in its own array (minus
ghost cells)

Attributes describing run time, total blocks,
etc.
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Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb, dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename, NC_CLOBBER,

hints, &file_id);

/* define dimensions */

status = ncmpi_def_dim(ncid, "dim_tot_blks", tot_blks,

&dim_tot_blks);

status = ncmpi_def_dim(ncid, "dim_nxb", nzones_block[0], &dim_nxb);

status = ncmpi_def_dim(ncid, "dim_nyb", nzones_block[1], &dim_nyb);

status = ncmpi_def_dim(ncid, "dim_nzb", nzones_block[2], &dim_nzb);
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Variables and Attributes

int dims = 4, dimids[4];

int varids[NVARS];

/* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks;

dimids[1] = dim_nzb; dimids[2] = dim_nyb; dimids[3] = dim_nxb;

for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i], NC_DOUBLE, dims,

dimids, &varids[i]);

}

/* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL, "file_creation_time",

string_size, file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL, "total_blocks", NC_INT,

1, tot_blks);

status = ncmpi_enddef(file_id); /* enter data mode */
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Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */

size_t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */

start_4d[1] = start_4d[2] = start_4d[3] = 0;

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;

for (i=0; i < NVARS; i++) {

/* ... copy data into unknowns buffer ... */

/* collectively write out all values of a single variable */

ncmpi_put_vara_double_all(ncid, varids[i], start_4d, count_4d,

unknowns);

}

status = ncmpi_close(file_id);
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Inside PnetCDF Define Mode

In define mode (collective)

Use MPI_File_open to create file at create time

Set hints as appropriate

Locally cache header information in memory
All changes are made to local copies at each process

At ncmpi_enddef

Process 0 writes header with MPI_File_write_at

MPI_Bcast result to others

Everyone has header data in memory, understands

placement of all variables
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Inside PnetCDF Data Mode

Inside ncmpi_put_vara_double_all

Each process performs data conversion into internal

buffer

Uses MPI_File_set_view to define file region
Contiguous in FLASH case

MPI_File_write_all collectively writes data

At ncmpi_close

MPI_File_close ensures data is written to storage
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MPI-IO and PFS

As in previous examples:
MPI-IO performs optimizations

Two-phase probably applied

Data sieving if necessary

Converts to PFS operations

PFS client code communicates with servers, stores
data
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PnetCDF Wrap-Up

PnetCDF gives us

Simple, self-describing container for data

Collective I/O

Data structures closely mapping to the variables

described

If PnetCDF meets application needs, it is likely to give
good performance

Type conversion to portable format does add overhead
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HDF5 Interface and File Format
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HDF5

Hierarchical Data Format, from NCSA

Data Model:

Hierarchical data organization in single file

Typed, multidimensional array storage

Attributes on dataset, data

Features:

C, C++, and Fortran interfaces

Portable data format

Optional compression

Data reordering (chunking)

Noncontiguous I/O (memory and file) with hyperslabs
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HDF5 Files

Group "/"

Group "viz"

HDF5 File "chkpt007.h5"

datatype = H5T_NATIVE_DOUBLE

Dataset "temp"

dataspace = (10, 20)

attributes = ...

20

10 (data)

HDF5 files consist of groups, datasets, and attributes

A group is like a directory, holding other groups and datasets
A dataset holds an array of typed data

A datatype describes the type
A dataspace gives the dimensions of the array

Attributes are small datasets associated with the file, a group,
or another dataset

Have a datatype and dataspace just as a dataset does
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HDF5 Data Chunking

Apps often read subsets of arrays (subarrays)

Performance of subarray access depends in part on
how data is laid out in the file

e.g. column vs. row major

Apps also sometimes store sparse data sets

Chunking describes a reordering of array data

Subarray placement in file determined lazily

Can reduce worst-case performance for subarray access

Can lead to efficient storage of sparse data

Coordination cost in this dynamic ordering
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Simple HDF5 Examples

HDF5 version of “Hello World”

First program creates a character array, writes text into
it

Second program reads back the array and prints the
contents

Shows basic API use
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Storing Data in HDF5

Create the HDF5 file

Create a new group if desired

Define a dataspace (variable dimensions)

Define the datatype (variable type)

Create the dataset (dataspace plus datatype)

Store attributes if desired

Store dataset data

Close everything (file, group, dataspace,
dataset, attributes)
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Simple HDF5: Writing

#include <hdf5.h>

int main(int argc, char **argv)

{

hid_t file, string_datatype, string_dataspace, string_dataset;

hsize_t dim = 13;

herr_t status;

char buf[13] = "Hello World\n";

file = H5Fcreate("myfile.h5", H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

string_dataspace = H5Screate_simple(1, &dim, NULL);

string_datatype = H5Tcopy(H5T_NATIVE_CHAR);

string_dataset = H5Dcreate(file, "string", string_datatype,

string_dataspace, H5P_DEFAULT);

status = H5Dwrite(string_dataset, H5T_NATIVE_CHAR, H5S_ALL, H5S_ALL,

H5P_DEFAULT, buf);
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Retrieving Data in HDF5

Open the HDF5 file

Open the group (if one was used)

Open the dataset

Get the dataspace

Get the dimensions of the dataspace

Read dataset data

Close everything (file, group, dataset,
dataspace)
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Simple HDF5: Reading

#include <hdf5.h>

#include <stdio.h>

int main(int argc, char **argv)

{

hid_t file, string_dataset;

herr_t status;

char buf[13];

file = H5Fopen("myfile.h5", H5F_ACC_RDONLY, H5P_DEFAULT);

string_dataset = H5Dopen(file, "string");

status = H5Dread(string_dataset, H5T_NATIVE_CHAR, H5S_ALL, H5S_ALL,

H5P_DEFAULT, buf);

printf("%s", buf);

H5Dclose(string_dataset);

H5Fclose(file);
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Compiling and Running

;mpicc hdf5-hello-write.c -I /usr/local/hdf5/include

-L /usr/local/hdf5/lib/ -lhdf5 -o hdf5-hello-write

;mpicc hdf5-hello-read.c -I /usr/local/hdf5/include

-L /usr/local/hdf5/lib/ -lhdf5 -o hdf5-hello-read

;mpirun -np 1 hdf5-hello-write

;mpirun -np 1 hdf5-hello-read

Hello World

;ls -l myfile.h5

-rw-r--r-- 1 rross rross 2061 Mar 27 23:06 myfile.h5

;strings myfile.h5

HEAP

string

TREE

P]f@

SNOD

Hello World
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Example: FLASH with HDF5

Same approach as with PnetCDF

Impose an ordering on the AMR blocks

One file for a checkpoint

Store each variable in its own array (minus
ghost cells)

Portable format (stored natively)

Attributes describing run time, total blocks,
etc.
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Setting up the File

int string_size = 40;

hid_t dataspace, dataset, file_id, string_type;

herr_t status;

file_id = H5Fcreate(filename, H5F_ACC_TRUNC,

H5P_DEFAULT, acc_template);

/* store string creation time attribute */

string_type = H5Tcopy(H5T_C_S1);

H5Tset_size(string_type, string_size);

dataspace = H5Screate_simple(4, &dimens_1d, NULL);

dataset = H5Dcreate(file_id, "file creation time",

string_type, dataspace, H5P_DEFAULT);

if (myrank == 0) status = H5Dwrite(dataset, string_type, H5S_ALL,

H5S_ALL, H5P_DEFAULT, create_time);

H5Tclose(string_type); H5Sclose(dataspace); H5Dclose(dataset);
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Writing Variables (1)

hsize_t dimens_4d[4], start_4d[4], count_4d[4], stride_4d[4];

/* setup dataspace dimensions description */

dimens[0] = dim_tot_blks;

dimens[1] = nzb;

dimens[2] = nyb;

dimens[3] = nxb;

/* setup hyperslab description for dataset in file */

start_4d[0] = global_offset;

start_4d[1] = start_4d[2] = start_4d[3] = 0;

stride_4d[0] = stride_4d[1] = stride_4d[2] = stride_4d[3] = 1;

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;

/* continues on next slide */
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Writing Variables (2)

for (i=0; i < NVARS; i++) {

hid_t dataspace, dataset_plist, dataset;

dataspace = H5Screate_simple(rank, dimens, NULL);

dataset_plist = H5Pcreate(H5P_DATASET_CREATE);

dataset = H5Dcreate(file_id, record_label_new, H5T_NATIVE_DOUBLE,

dataspace, dataset_plist);

status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start_4d,

stride_4d, count_4d, NULL);

memspace = H5Screate_simple(1, nxb*nyb*nzb*dim_tot_blks, NULL);

/* for() continued on next slide */
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Writing Variables (3)

/* for() continued from last slide */

dxfer_template = H5Pcreate(H5P_DATASET_XFER);

/* specify collective I/O */

ierr = H5Pset_dxpl_mpio(dxfer_template, H5FD_MPIO_COLLECTIVE);

ierr = H5Pset_preserve(dxfer_template, 0u);

/* ... copy data into unknowns buffer ... */

status = H5Dwrite(dataset, H5T_NATIVE_DOUBLE, memspace,

dataspace, dxfer_template, unknowns);

H5Sclose(dxfer_template); H5Sclose(memspace);

H5Sclose(dataspace); H5Dclose(dataset);

}

H5Fclose(file_id);
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Inside HDF5

Not so much happens before writes

MPI_File_open used to open file

Because there is no “define” mode, file layout is determined at
write time

In H5Dwrite:
Processes communicate to determine file layout

Process 0 performs metadata updates

Call MPI_File_set_view

Call MPI_File_write_all to collectively write
Only if this was turned on (more later)

Memory hyperslab could have been used to define noncontiguous
region in memory

Data is kept in native format and converted at read time (defers
overhead)
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MPI-IO and PFS

Mapping between HDF5 and MPI-IO
operations is less clear than with PnetCDF

Metadata updates at every write are a bit of a
bottleneck

MPI-IO from process 0 introduces some skew
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FLASH/HDF5 Final Notes

FLASH doesn’t use a lot of the HDF5
functionality

HDF5 is somewhat overkill for this application
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I/O Best Practices
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How do I choose an API?

Your programming model will limit choices.

Domain might too (e.g. Climate, existing netCDF data)

Find something that matches your data model.

Avoid APIs with lots of features you won’t use.

Potential for overhead costing performance is high.

Maybe the right API isn’t available?

Get I/O people interested, consider designing a new

library
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Summary of API Capabilities

POSIX MPI-IO PnetCDF HDF5

Noncontig. Memory yes yes yes yes

Noncontig. File yes yes yes

Coll. I/O yes yes yes

Portable Format yes yes yes

Self-Describing yes yes

Attributes yes yes

Chunking yes

Hierarchical File yes
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Tuning Application I/O (1)

Have realistic goals:

What is peak I/O rate?

What other testing has been done?

Describe as much as possible to the I/O system:

Open with appropriate mode.

Use collective calls when available.

Describe data movement with fewest possible

operations.

Match file organization to process partitioning if
possible

Order dimensions so relatively large blocks are

contiguous with respect to data decomposition
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Tuning Application I/O (2)

Know what you can control:
What I/O components are in use?

What hints are accepted?

Consider system architecture as a whole:
Is storage network faster than comm. network?

Do some nodes have better storage access than
others?

These guide our selection of hints
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Controlling I/O Stack Behavior

Most systems accept hints through one mechanism or
another

Parameters to file “open” calls

Proprietary POSIX ioctl calls

MPI_Info

HDF5 transfer templates

Allow the programmer to:

Explain more about the I/O pattern

Specify particular optimizations

Impose resource limitations

Generally pass information that is used only during a

particular set of accesses (between open and close, for

example)
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MPI-IO Hints

MPI-IO hints may be passed via:

MPI_File_open

MPI_File_set_info

MPI_File_set_view

Hints are optional – implementations are guaranteed to
ignore ones they do not understand

Different implementations, even different underlying file

systems, support different hints

MPI_File_get_info used to get list of hints

Next few slides cover only some hints
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MPI-IO Hints: Data Sieving

ind_rd_buffer_size – Controls the size (in bytes) of the

intermediate buffer used by ROMIO when performing data

sieving reads

ind_wr_buffer_size – Controls the size (in bytes) of the

intermediate buffer used by ROMIO when performing data

sieving writes

romio_ds_read – Determines when ROMIO will choose to

perform data sieving for reads (enable, disable, auto)

romio_ds_write – Determines when ROMIO will choose

to perform data sieving for writes
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MPI-IO Hints: Collective I/O

cb_buffer_size – Controls the size (in bytes) of the

intermediate buffer used in two-phase collective I/O

cb_nodes – Controls the maximum number of aggregators

to be used

romio_cb_read – Controls when collective buffering is

applied to collective read operations

romio_cb_write – Controls when collective buffering is

applied to collective write operations

cb_config_list – Provides explicit control over

aggregators (see ROMIO User’s Guide)
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MPI-IO Hints: FS-Specific

striping_factor – Controls the number of I/O devices to

stripe across

striping_unit – Controls the striping unit (in bytes)

start_iodevice – Determines what I/O device data will

first be written to

direct_read – Controls direct I/O for reads

direct_write – Controls direct I/O for writes
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Using MPI_Info

Example: setting data sieving buffer to be a whole
“frame”

char info_value[16];

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

snprintf(info_value, 15, "%d", 3*1024 * 2*768 * 3);

MPI_Info_set(info, "ind_rd_buffer_size", info_value);

MPI_File_open(comm, filename, MPI_MODE_RDONLY, info, &fh);

MPI_Info_free(&info);
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Hints and PnetCDF

Uses MPI_Info, so almost identical

char info_value[16];

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

snprintf(info_value, 15, "%d", 3*1024 * 2*768 * 3);

MPI_Info_set(info, "ind_rd_buffer_size", info_value);

ncmpi_open(comm, filename, NC_NOWRITE, info, &ncfile);

MPI_Info_free(&info);
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Hints and HDF5

HDF5 uses a combination of property lists and
MPI_Info structures for passing hints

Property list holds HDF5-specific hints

H5Pset_set_fapl_mpio used to pass MPI_Info in as

well

HDF5 is very configurable; lots of options

We’ve been talking about details like this long enough
:)
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Helping I/O Experts Help You

Scenarios

Explaining logically what you are doing

Separate the conceptual structures from their

representation on storage

Common vs. infrequent patterns

Possible consistency management simplifications

Application I/O kernels

Simple codes exhibiting similar I/O behavior

Easier for I/O group to work with

Useful for acceptance testing!

Needs to be pretty close to the real thing...
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Wrapping Up

We’ve covered a lot of ground in a short time

Very low-level, serial interfaces

High-level, hierarchical file formats

There is no magic in high performance I/O

Under the covers it looks a lot like shared memory or
message passing

Knowing how things work will lead you to better performance

Things will continue to get more complicated, but hopefully
easier too!

Remote access to data

More layers to I/O stack

Domain-specific application interfaces
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Additional Notes
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Building ROMIO in MPICH1

It’s important to tell ROMIO what file systems to
support

tar xzf mpich-1.2.5.2.tar.gz

cd mpich-1.2.5.2

RSHCOMMAND=ssh

export RSHCOMMAND

./configure --with-romio="--file_system=ufs+testfs" \

--without-mpe --prefix=/usr/local/mpich-1.2.5.2

make

make install
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Building PnetCDF

PnetCDF will discover the mpicc if you tell it where MPI
is installed.

See READMEs for various systems if there are
problems.

tar xjf parallel-netcdf-0.9.3.tar.bz2

cd parallel-netcdf-0.9.3/

./configure --with-mpi=/usr/local/mpich-1.2.5.2/ \

--prefix=/usr/local/parallel-netcdf-0.9.3

make

make install
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Building HDF5

HDF5 wants you to define CC to be your MPI compiler

tar xzf hdf5-1.6.2.tar.gz

cd hdf5-1.6.2/

PATH=‘echo $PATH‘:/usr/local/mpich-1.2.5.2/bin/

CC=mpicc

export CC

./configure --with-parallel \

--prefix=/usr/local/hdf5-1.6.2

make

make install
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