SANDIA REPORT

SAND2008-7687
Unlimited Release
November 2008

FCLIb:
The Feature Characterization Library

Wendy S. K. Doyle
Ann C. Gentile

W. Philip Kegelmeyer
Craig D. Ulmer

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operatethioitnited States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of wooksgred by an agency of the
United States Government. Neither the United St@evernment, nor any agency thereof,
nor any of their employees, nor any of their cortyes, subcontractors, or their employees,
make any warranty, express or implied, or assurydeggal liability or responsibility for the
accuracy, completeness, or usefulness of any irdtom apparatus, product, or process
disclosed, or represent that its use would noirigé privately owned rights. Reference herein
to any specific commercial product, process, orviser by trade name, trademark,
manufacturer, or otherwise, does not necessarilysttate or imply its endorsement,
recommendation, or favoring by the United StatesgBament, any agency thereof, or any of
their contractors or subcontractors. The views apihions expressed herein do not
necessarily state or reflect those of the UniteteStGovernment, any agency thereof, or any
of their contractors.

Printed in the United States of America. This répas been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springdfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7#1tline

SAND2008-7687
Unlimited Release
November 2008

FCLib: The Feature Characterization Library

W.S.K. Doyle
Google Incorporated
WAT-337F c/o Google
651 N. 34" Street
Seattle, WA 98103

A.C. Gentile and C.D. Ulmer
Visualization and Scientific Computing
Sandia National Laboratories
P.O. Box 969 MS 9152
Livermore, CA 94551-0969

W.P. Kegelmeyer
Informatics and Decision Science
Sandia National Laboratories
P.O. Box 969 MS 9159
Livermore CA 94551-0969

Abstract

The Feature Characterization Library (FCLib) isoftware library that simplifies the

process of interrogating, analyzing, and understancomplex data sets generated by
finite element applications.

This document provides an overview of the libraydescription of both the design
philosophy and implementation of the library, andraples of how the library can be
utilized to extract understanding from raw datasets

Acknowledgments

The FCLib authors would like to thank Jay Dyke, Taelton, Tim Kostka, and Nathan Spencer
of SNL who provided many of the problems that FClalols were designed to address and
worked with us to develop meaningful analyses; IBerch of SNL, who developed Machine
Learning capabilities utilizing FCLib; and RoberarBield and Larry Hall of the University of
Florida.

This research was supported by ASC’s Pre and Pastefsing Environments (PPPE) Data
Discovery (DD) Program.

Contents

FCLib: The Feature Characterization LiDrary ... 3
1. 1o o [o i o] o IR 10
1.1 ODBtaINING FCLID ..o e s e e e e e e e eees 10
1.2 FeaturesS Of FCLIDuuuiii s 10
1.3 Data Representation and ACCESS........ oo eeerrrrrmmmnninaaaaaeaaaaeaseeeeeeeeimeeaneeeern 11
1.4 Characterizations and Characterization Buil@faEkscccooeeeieiieeiiiiiiiieeeiinnes 12
1.5 Feature TraCKing ... eeeeeee e a e e e e e e e e e e e eeeeeaeens 13
2. GENEIAI USE ...ttt s ettt et e a e 14
P R B - | = R Y/ o 1< ST 14
A2 1011 o] ST B = U= @ o] [T o £ 14
PG T B - = W 11 (=] = o = PRSP 14
A Tt R I = - L PR PPPPPPPI 15
2.3.2 SEOUEBNCE ...ttt ettt e e e ettt e e et e et e e et e et e e e e e ennnnn—a e aaeees 15
2.3.3 MBS N —————— 15
2.314 SUDSEL ...t e e e e e e e e e aaaraae 15
2.3.5 VaAlAbDIe..uueeeiiiiiiiiiiiie e 15
2.3.6 FlEIO ..t —————— 16
P2 U 11 1T T PTTPTOPPP 16
2.5 GeometriC REIALIONS.cooiiiiiiieie it eeemmme e e e 16
2.6 Topological REIAtiONScovvviiiceeeeeiieie e e e e e e e 17
2.7 Varable MAth ... e e 17
2.8 SHAliSHCS ROULINESeiiiiiiiiiiiee ettt e e et r e e e e e e e e eas 17
2.9 SEIES ROULINES.....ciiiiiiiiiite et ettt ettt e e e e e e e e e e e e e e eaeeeeeeeeeeeseennnnnns 18
2.10 TRIESNOIA ...t 18
200 SNAP . ——————— e e e e et ettt ettt ettt bbb n—————taan e e e e aaaeaaas 18
2.12 Element DEATN.........coooi it ettt 18
2.13 Feature TraCKing ... eeeeee et a e e 19
3. O | o T B TS o T T NN (o] (R 20
3.1 Entity and Data TerminolOgy........cooe it oot ee e e e e eeeeeeees 20
3.2 Data Management using Opaque Handles.............cccvvvciiiiiiiii e, 20
3.3 Datasets: Managing File /O ... 20
3.3.1 Lazy Loading and Releasing of Big Dataccevvvvvriviriiiiiinieeeeeeennn, 21
3.3.2 Information about Supported File Formats...........ccoovviiiiiiiiiiiiiineeeeee, 21
3.3.3 File FOrmat CaVeaLScuuuiiiiiii ettt 22
I |V = o PR 24
Nt R [1 (=T ¢ F= L 1Y/ 0= U 24
3.4.2 MESN SHIUCKUIE ... eenee e 25
3.4.3 Built Data for MESHEScoviiiiiiiiieiiei e 25
3.4.4 Building MESh Data........ccoiiiiiiei et 26
3.45 Releasing the Mesh.............uuiiiiiiiiiii e 26
4. LiDrary TeSHNGcoeiiiiieeiiiieiie et e e e e e e e e e e ee e e e e e e aeeeeeeeneees 27
Nt R U 1 =] £ PPUPPPPPPPPP 27
4.2 REQIESSION TESES iiiiiiiiiiiiiiiii e e e e e e e e e e e et e e eae bbb e e e e e e e e e e e aaas 27

4.3 Software Quality ANalySiS TESHINGceeeeeriiiiiiiiiiaee e 27

4.4 Nightly Testing and DOCUMENTALIONccceeeeeeeiiiiieeeeeee e e e e e e 28
5. Example Tools and Capabilities...........oueeeieeiiiiiiiiiii e 29
S0t R €= o] {1101 PRSP 29
T =T | TP TUPPPPPRT 31
5.3 SCIEWBIEAKS ..ottt sttt ettt e e e e e e e e e e e seer e e e e e e e e aeeas 33
5.4 FEAtUre TraCKINGooeeiiiiiuiuiitiimreeeeettteiaa s e s s e e e e e e e e e e e e eeeeeeseneanneeesaesennnnnnn s 35
5.5 Skeleton Extraction and Manipulation......cccccccoeeoiie i 37
5.6 Region Subsetter/ReassSemMbIEr ... eiiiiiiiiiii e 39
Summary and FULUIE WOTKooooiii et 40
511 o]0 11 To o 1R UU PP PPPUPPRPTRPN 41
Figures
Figure 1: Code coverage estimates for FCLIb's mesul............cccevvviiiiiiiiiiiii e 28
Figure 2: An item before deformation. Note that gineen plate is flush with the read container.
... 29

Figure 3: The item in the previous figure afteratefation. The damage results a gap between
the red container and its green outer plate whietewnitially in contact. The internals of the red

container are visible through the resulting gap...........ovvvvveiiiiiiiii e 30
Figure 4: The Gaplines tool determines gaps thatigetween meshes as a result of
deformation. Gaplines are shown that result froendituation in the previous figure............. Q.3
Figure 5: Partial output of the Gaplines tool foe situation shown in the figures. Characteristic
information for each gap is provided, includingesand location information. 31

Figure 6: Tears resulting from the situation ddssaliregarding the gaps tool. The Tears tool
discovers and characterizes tears, including détérgibounding boxes for the tears (shown in
1110101 OSSP PPPPPPPPTPPRT 32
Figure 7: Partial output of the Tears tool for $iite@ation shown in the previous figure.
Characteristic information for each tear is prodid@cluding size and location information.... 33
Figure 8: Timestep 5: The screws are partially dggdaThe Breakage Ratio (BR) is calculated
by projecting the damaged areas onto the screw(bapermost in picture)..............ceeeeeooe. 34
Figure 9: Final State: All screws are broken. Tdfenhost screw is severed. The middle and right
screws are broken by surface erosion. While erodoms not result in a complete segmentation
of the screws, nonetheless, the erosion resudidass of contact of the remaining screw material
with any of its Neighboring MESNES. e 34
Figure 10: Partial output of the ScrewBreaks toolthe situation shown in the figures.
Characteristic information for each screw is predgdincluding breakage ratio (BR) and break

11 1S PP UPPPR 35
Figure 11: In the can crush example, featurescmaéd and colored in the right-most picture. 36
Figure 12: Maximum stress per feature over timetercan crush example. A feature graph
displays the progression of different featurehimdataset as time progresses. Feature colors
correspond to those illustrated in the crushedpiatiire.ccovvvvvveeeiiiveeiiiis i 36

Figure 13: The skeleton utilities transform a miggb a spanning tree structure. 38
Figure 14: Spanning tree structures can be rediacsiehplify the representation into a form that

IS €ASIEN 1O MANAGE. ..eeeieeiirttutiiiia e eeeeeeaa s s s e e e e e e e e e e eeaeeeeeetaastbbn s s s eeeaaassaaaeaeeaeaeeeeeeeeesssnsnnnnnn 38

Figure 15: In this subsetter example, a large slvagk dataset is reduced to a minimal form that

contains only elements that are significant tORBIVEBIS.uuveiiiiiiiririeeieeeeeeees e 39
Tables

Table 1: FCLib variable concepts and Exodus Suphpetters indicate current support. Colors
[T To [or= e o To S]] ST TU] o] o o A 24

ALEGRA
DOE
Exodus
FCLib
FEM
LS-DYNA
netCDF
ROI

SNL

Nomenclature

A family of shock and multiphysics codes éped at Sandia
Department of Energy

A standard file format for Sandia FEM dakase

Feature Characterization Library

Finite Element Modeling

Livermore Software’s FEM tool

Network Common Data Form: a library for n@ging datasets
Region of Interest

Sandia National Laboratories

1. INTRODUCTION

One very common strategy for doing data analysispatial-
temporal datasets is to focus on regions of thasgatwhere
interesting things are happening. If we define atue as a
coherent region that persists over time, this datalysis
strategy becomedeature-based data analysisThe entire
process of finding features, analyzing featuresl asing the
results is calledeature characterizatian

Although feature-based data analysis is common,feature

characterization process is not very well supporkédst users
manually identify and analyze features, a processciwis

tedious and prone to errors. Additionally, whendare created
they are usually one-off solutions that are diffi¢do reapply to
new problems.

The goal of Sandia's Feature Characterization grdf€CDMF) is to provide general resources
for the creation and use of feature characterimati@he codebase developed by the FCDMF
project is the Feature Characterization LibraryledaFCLib, which is a toolkit for creating
characterizations and characterization applicatidhe philosophy of FCLib is to automate as
many of the tedious parts of doing characterizatias possible, while remaining flexible enough
to create a wide range of characterizations.

1.1 Obtaining FCLib

FCLib was developed as an open-source project. TRELIb homepage is
https://fclib.ca.sandia.govrhe FCLIb code and related documentation carmobhad there. The
FCLib development team can be reached at fclib@slpndia.gov.

1.2 Features of FCLib
FCLib consists of a library of routines and a snmalimber of command-line tools. The library
routines can be roughly divided into the followicgtegories:

» Data Representation and Access. FCLib provides its own internal data structures f
representing finite element structures (e.g., me#ments) and associated data (e.g.,
variables, subsets). Rather than requiring the tsemanipulate the data structures
directly, FCLib provides higher-level functions whienable read/write capabilities to
data, such as the mesh’s coordinate values, onableis data values.

» Characterization Building Blocks: FCLib provides a number of higher-level data asce
or interpretation functions that can be used fatding characterizations. For example,
FCLib provides functions that locate elements mesh that share edges or faces with a
given set of elements. These functions can be asdolilding blocks in a higher-level
characterization that requires an ordered traverséle mesh.

* Feature Tracking: FCLib provides facilities for managing and traukifeatures in a
generalized manner. For example, the user canalafimew feature algorithm using
FCLib’s data manipulation and characterization dingy blocks, and then use FCLib’s
feature processing functions to track and plotféia¢ure as it evolves through time.

10

* Characterizations. Finally, FCLib supports a variety of charactetiaas. For example,
the library can determine minimum and maximum veloka variable in a feature.

The categories necessarily overlap as one anabyfsisacterization will be another analyst's
building block. The command-line tools include awvfexamples of generic and custom
characterization applications built with FCLib.

The biggest feature of the library is that it iglbio be feature awarethat is, to understand and
operate on features. Another important featuréheflibrary is its simplified interface. The API
was written to support multiple levels of useronfrthose who will use the built-in "check-box"
characterizations (so called because of our prpéotevelopment of a GUI that allows users to
"check" the characterizations that they want) tarenadvanced users who wish to build their
own characterizations.

FCLib is coded in C and operates on unstructureshrdata.

1.3 Data Representation and Access

One of the fundamental benefits of FCLib is thabiganizes simulation data and analysis
functions in a manner that allows tedious, low-leda@a manipulation tasks to be hidden from
the end user. In order to make use of this progragmnvironment, data is organized into the
categories below. Note that some categories cacohsidered as “owning” another category,
e.g., sequences are owned by the dataset, subsetw@ed by the meshes.

» Dataset: A dataset is a single file that exists on diskL#B currently supports multiple
file formats for reading and writing data. A datasentains one or more meshes, zero or
more sequences, and zero or more variables. Datdsetot contain subsets.

* Sequence: Datasets that house multiple timesteps emplogcuence to specify when
each timestep took place.

* Mesh: A mesh represents the physical structure of anmare objects in a dataset. A
mesh’s structure is defined by the coordinatescamhectivity of its vertices. A mesh is
comprised of one or more elements. These elememtaotl necessarily have to be
contiguous in space (e.g., a single mesh in onthefolt examples contains multiple
bolts that are located at different spatial loaatjo Element faces and edges are inferred
from the coordinates and their connectivity. Mesbestain zero or more variables and
zero or more subsets. Meshes do not own sequehuées;an instead reference the
dataset’s sequences.

» Variableand Sequence Variable: A variable can be defined on a dataset or on shras
a whole (in essence, global variables from thepmatsve of the meshes), or, for a single
mesh, can hold data values for each vertex, edge, br element. A single data value
may have one or more components. A sequence varaldn array of variables for a
given time sequence. All variables in a sequenc@ia must reference the same mesh.

* Subset and Sequence Subset: A subset provides a means of identifying indiatu
locations in a mesh or variable that are of inter®subset may contain anywhere from
zero to all of the members of the object it dessibA sequence subset is comprised of
one or more subsets that are associated with &segu

FCLib’s hierarchy of data objects may be at oddthhat of a file format from which data is
read. For example, Exodus defines its verticehaptobal level, rather than the mesh level, and

11

thus there are implications in such a translattbrs (particular issue is covered in more detail in
Section 3.3). While users do not strictly need akenuse of the hierarchy of data objects FCLib
provides, there are a number of built-in functitmsllow users to understand the hierarchy and
to locate descendants and parents in the hieraFdryexample, the fc_dump tool reads in an
input file, creates the corresponding FCLib datacttires, and then writes out the information as
FCLib represents it in its hierarchy. In the writéahen, sequence information is written out at a
dataset level, and then on a mesh by mesh basigsroiggam examines the mesh’s coordinates
and connectivities, and all of the mesh’s variabgEjuence variables, subsets, and sequence
subsets and generates an information summarysimis&ar manner it is possible to examine an
item and then use parent references to ascendetagdiny.

1.4 Characterizations and Characterization Building Blocks

FCLib provides a number of built-in, generic chéesications and characterization building
blocks that enable users to implement analysistiome rapidly. The following is a list of
example characterizations that are available iniBCLhese characterizations are organized by
the type of data that they process.

- Mesh topology based (mesh entities are verticagedaces, or elements):
Get mesh entity children (e.g., get vertices thakenup an element).
- Get mesh entity parents (e.g., get elements thdaizoa vertex).
Get mesh entity neighbors.
- Skin (e.g., get the entities that make up the datgar of a set of mesh entities).
Segment (separate a set of mesh entities intoaepaonnected components).
« Mesh coordinates based:
Edge lengths, surface area, and region volumes.
- Bounding boxes.
Centroid, variable-weighted centroid.
- Get mesh entities within a box or sphere.
Kernel smooth variable.
- Variable based:
Variable math (e.g., add two variables to get edjhi
- Threshold (e.g. get set of entities that pass lioldscriteria).
Statistics (min, max, mean, standard deviation)
- Time based:
Feature tracking
- Entity variable history

12

1.5 Feature Tracking

One of the more powerful capabilities of FCLib st it provides a general framework for
feature tracking. Feature tracking refers to thacess of identifying a region of interest (ROI) in
a dataset and then monitoring its evolution as tpnegresses in the dataset. This section
provides a brief discussion of how FCLib’s feattnacking works. A detailed example of how
this capability was used in a can crush analysblpm is provided in Section 5.4.

The first task in feature tracking is identifyingeoore more ROIs that have meaning to the end
user. In FCLib this task is performed through tke of characterization functions that are either
built-in or supplied by the user. These functionsmtify whether data points are significant or
not in a particular analysis. For example, a usghtremploy a characterization function that (1)
locates all points in the mesh where a stress \@taeeds a specific tolerance and then (2) uses
FCLib’s segmentation functions to group nearby fminto distinct ROIs. A collection of related
ROl is called a feature. Multiple features (e.gattires for different time steps) are then stamed i
a FeatureGroup container.

The second task in feature tracking involves aniatyza set of features in order to derive
relationship information about the features. FQuibvides functions for comparing and tracking
differences between ROI based on their overlap. Mest common operation is to use the
tracking capability to monitor how a collection fgfatures evolve over multiple timesteps. By
changing the manner in which overlap is calculabedween ROI, users can adjust the
granularity at which parent-child relationships ex¢racted.

Feature graphs that depict the evolution of ROI lwarwritten out and plotted graphically with
graphviz.

13

2. GENERAL USE

While FCLib provides a large number of functionsr fdata analysis, it is relatively
straightforward to make use of the library and digwyepoint tools for application-specific
analysis. The library is written in C and requitkat a small number of libraries be linked in at
compile time with a user’s application. The FCLifteare distribution provides a number of
tutorial examples that walk the user through thecess of building analysis applications. API
information for the library is documented througbxggen-generated HTML pages that are
constructed when the library is built. Finally,aasopen source project, the user is free to inspect
both the point tools and the actual library call®ider to fully explore the library.

The library itself is arranged as a set of moduldss section provides an overview of each of
these modules in order to illuminate the structuré capabilities of FCLib.

2.1 Data Types

The data types modulan FCLib defines a number of enumerated types hiefd make the API
flexible and more readable. In addition to perforghgeneral library management control (e.g.,
verbosity, return codes, etc.), these enumerataestallow a single function to be utilized with a
variety of data types. Specific examples of thesareerations include the following:

* Element Type: A variety of fundamental element types are sufgabin FCLib, including
points, lines, triangles, quadrilaterals, tetrabBedpyramids, prism, hexahedra, and
arbitrary shapes.

» Data Type: Data values in nearly all functions can be coneposf many different
numerical representations, such as floating paimteger.

* Math Type: Data values can be scalar, vector, or tensor.

* Association Type: This type is used to define how data values aso@ated with a
mesh. For example, a variable may associate datasvaith each vertex, edge, face, or
element in a mesh, or for as a single data valua foesh or dataset.

Many of the function calls in FCLib require flagsing the above data types in order to be
precise about the operation that is to be perforiéle at first glance this appears to make the
interface complex, it reduces the total numbeoftcfions required by the API and fosters better
reuse within the library.

2.2 Simple Data Objects

The simple data objects modupgovides a basic set of data management functi@isare used
throughout the library and are generic enough taregal use. The majority of these functions
are containers for storing and accessing data hjetternally, FCLib houses container items in
sorted order. This organization makes it possiblet¢ate items rapidly. Values are sorted as they
are inserted into their containers.

2.3 Data Interface

The routines in thedata interface modulesection are the primary interface between the
computational routines in the Feature Characteozdibrary and the actual data. As outlined in
Section 1.3, the five major data object types aataskts, sequences, meshes, variables, and
subsets.

14

2.3.1 Dataset

A dataset serves as a container for all data nglati a simulation. Dataset objects can be created
from files using FilelO operations (Section 2.3d8)explicitly by the user without having to
write the results out to a file. Moving data betwekatasets is also possible.

2.3.2 Sequence

A sequence is a set of values, typically time, aveich a variable or subset can be defined, one
such entity at each step in the sequence. FCLibheae multiple sequences, although Exodus
supports only one. The sequence is associatedtatentire dataset. The values of a sequence
are called its “coordinates” while the number oies of a sequence is its number of “steps”.

In addition to functions for creating, destroyirapd accessing sequence data and meta data,
some functions exist for manipulating sequences. latter functions include capabilities to shift
and scale a sequence and to convert a sequensedoences) with irregular spacing into a
regularly spaced sequence(s). These capabilitesnéended to be used in conjunction with
functions in the Series module which provides sagedased analyses.

2.3.3 Mesh

A mesh provides basic geometry information abostracture in a dataset. Meshes are defined
by two sets of values: (1) a list of coordinatesdt vertices in the mesh and (2) a connectivity
map which specifies the vertices that make up ed&ment in the mesh. While all of a mesh’s
elements must be the same order, it is not negegsaelements to form a contiguous region in
space. The face and edge information is then ot the coordinates and connectivities. The
mesh interface provides a number of commands ferying the mesh structure, including
higher-level operations that extract face and edfgegmation about the mesh.

2.3.4 Subset

A subset is a set of ids over a mesh. It is asttiwith some subentity of a mesh, such as
vertices, elements, faces, or edges. In additiorfutections for creating, destroying, and

accessing the subset data and meta data, funaiasisfor determining the intersections and
complements of a subset(s).

2.3.5 Variable

A variable is data, such as temperature, over aness associated with some subentity of a
mesh such as vertices or elements. Internallygaesee variable is an array of variable handles
associated with a sequence, with one variabletppraf the sequence. In this way functions that
work on a single variable can also work on a sirggép of a sequence variable. Often a user's
computations on a sequence variable thus conslebping over a single variable function call,
one for each timestep. Global variables also existh are a single value owned by the dataset.

In mapping onto the Exodus constructs, variablesEatodus attributes and sequence variables
are Exodus results. Variables with vertex assamiatiare Exodus nodal results (for sequence
variables) and attributes (for non-sequence vaghlvhich means that they are defined for all
nodes (filled in with data value equal to O for amydes in any element block that does not
define that variable). Note that Exodus does nppett multiple data types and everything gets
converted to doubles, including chars. Exodus stdyes single component variables and relies
on naming conventions (endings Xx,y,z for vectorsyy,xy for tensors) for the consumer. While
the general Exodus file reader reads variable oats single components (e.g., velocity x),
FCLib provides higher-level functions for handlimgulti-component data (e.g., velocity x,
velocity_y, and velocity z are merged together imatosingle velocity variable with three

15

components). More information on FCLIib’s handlingExodus variable data can be found in
Section 3.3.

Variable data is lazily loaded, in the sense thataaable’s data is not loaded until the user
specifically requests access to the data. WhileiB@Qknerally provides a clean copy of data to a
user that can be read or written without side éffeihere are additional functions that provide
pointer access to the data without the overheatbpying it. These functions require the user
treat the data as read only and should therefordilzeed with caution.

Functions exist to:
* create, copy, and delete variables,
» get their meta data (e.g., association, numbeowiponents, data type, number of data
points, and name),
e get their big data (values) or pointers to such,
e perform conversions (e.g., convert sequence vasabl non-sequence variables, single-
component to multi-component, and one associati@nother).

2.3.6 FilelO

The File 10 functionality consists of an interfadefined in a generic wrapper, with specific
implementations defined in separate files. The ifipdmplementations should generally not be
used directly. At this time FCLib defines specifiaplementations for two different file types:
Exodus and LS-Dyna.

Generic capabilities required in the FilelO modyleith implementation in the specific
implementation file) include the abilities to readd write the dataset from and to the appropriate
file format, including the mesh coordinates andraativities, sequence data, variable data, and
subsets. Any file type-specific issues are handiethe specific implementations as well (e.g.,
Exodus Attributes). These implementations must esnpdlata structures for holding any
information that is specific to the file type. Fexample for subsets in Exodus, the Exodus file
reader/writer must maintain Exodus Setld and Exoksociation values in order to correctly
convert an Exodus set to and from the analogousi~@presentation.

Some particular design issues related to FilelOpfanticular formats are discussed further in
Section 3.3.

2.4 Utilities

Various convenience functions are provided in thiéities module A set of floating point
operations are included in the module to perforrmgarisons between different values when
precision is an issue. Additionally, the utilitiesodule provides miscellaneous convenience
utilities, such as functions for decomposing filhs into individual components (e.g., directory
name, base name, and extension).

2.5 Geometric Relations

The geometric relations modul@rovides functions that compute relationships keetw the
coordinates of mesh vertices. Functions exist frvthg specific geometric quantities such as
diameters, centroids, areas, volumes, and norniasiisets and meshes. Additional functions
provide more general geometric relationships, sashthe Euclidean distance between two
vertices, the angle between two vectors, and pribximeasures between subsets and between

16

meshes. Location information can be obtained viandong box functions and functions to
determine if one item contains another (e.g., ifeblement contains a point or a bounding box
contains an element). Additional miscellaneous fions manipulate bounding boxes, calculate
mesh deformations, smooth variable values, andrdate if and where a ray intersects with a
triangle. Versions of most functions exist to cédte quantities based on either the original or
the displaced coordinates. Many of these functigtiize FCLib’s internal data structures to
produce results faster than what could be achibyezth end-user application.

2.6 Topological Relations

Thetopology relations modulprovides functions for computing relationshipswestn elements
and vertices of the mesh itself, with no considerabf the actual physical coordinates of the
vertices. The topology functions thus include opers such as computing which elements
share a vertex, which vertices are part of an elenwvehich vertices are part of an element that
shares a face with a given element, etc.

This module also includes function to obtain mersbgr relations (such as getting a mesh
entity's parents or children), entity neighbors,d ahigher-level connectivity information
(segmenting and array of entities based on théghber relationships).

2.7 Variable Math

The variable math moduleprovides three sets of functions for performingthmeanatical
operations on and between variables. In generaktlenctions create variables which contain
the desired result. There are versions of thesetitms for both normal variables and sequence
variables. All sensible operations between vaesblsequence variables, and constants are
supported. The functions all follow a particulanmag convention that utilizes the placement of
“operator” and “var” to indicate the order of thariables involved and the mathematical
operator performed. The three sets of functionsaar®llows.

e Built In: The first group of functions can be used to execaimple, built-in
computations such as addition or multiplication the individual components of the
inputs. They preserve or promote type as necesgi#lnythe major expectation that the
resultant values are always either integers or késub

» User Supplied: The second group of functions allows the useprtvide a pointer to a
function that performs a computation on individuaembers of the inputs. These
functions automatically perform data conversiong.(echange a variable to a sequence
variable) in order to make operations work.

* Non-Sandard: Additional functions perform operations that dat match the previous
two function groups. These functions perform operat when there are fundamental
differences between the inputs, such as the numb@&omponents in the inputs, or
outputs, such as creating magnitude variables.

The flexibility of the variable math module allowssers to extend the library with new
computational algorithms without having to undanstall of the inner workings of the library.

2.8 Statistics Routines
The statistics routines modulmcludes functions that involve simple statist{osin, max, std)
over variables, sequence variables, subsets, aj@sees.

17

2.9 Series Routines

The series routinesnodule consists of functions intended for sequdresed analyses. These
include capabilities that (1) compare two sequerar@bles by generating a characteristic value
representing the comparison, (2) generate charstoteralues of a single sequence variable, and
(3) map a sequence variable into another sequearable. Mapping functions include window
averaging routines in both non-time-series and #erges versions. The former considers
number of sequence steps involved in the windowthedatter considers the sequence values to
be time values and is then concerned with the temge of the sequence steps involved in the
window. Additional functions exist to calculate tetives, integrals, and interpolations of
sequence variables. There are also functions forpeoing sequence variables by determining
distances and areas between their curves. Fiedhe iis a least squares fit.

2.10 Threshold

The thresholdmodules consists of functions that, given a vaeiand criteria, return a subset
consisting of the entities that satisfy that créefe.g., returns a subset of all elements whose
temperature is greater than 100).

2.11 Shape

The shape modulés intended to give information about shapes (sbagf meshes etc.). These
may have a topological flavor to them, but sinagythre not hierarchical (e.g., children-parent),
they are being located here rather than topologéations. This is meant to work in conjunction
with the Element Death module (e.g., given somerimétion about the shape of a mesh is there
some information about a dead element region thaitldvbe of interest, such as the region
cutting through the shape?).

An FC_Shape is a structure that contains the nuwibgdes of a shape, arrays of subsets of the
faces making up each side, arrays of subsets okldgment making up each side, and the
adjacency matrix describing the relationship ofslues.

The fundamental functions create shapes from meshesbsets. In these functions, the user
specifies an angle and the faces of the mesh @estlbat are traversed such that if the normals
of two adjacent faces differ by an angle greatantthat of the specified angle, the two faces are
considered to be on different sides. This methaglolzan only realistically be applied to simple
shapes. There are additional functions to reshapexeting shape by using a new angle or to
reshape it into a shape with fewer sides. Thiddiinction is used to merge small, perhaps
curved faces into a major side.

Special functions exist for simple well-defined andll-used shapes like a screw and a thin
shape. A thin shape is a shape that is in somengime narrow and in a roughly perpendicular
direction has a pair of large opposing sides thatlae major sides that a user is interested in.

Once the shape is determined, additional functinribis module are used to get areas of sides
and side normals, and characteristics based oadjaeency matrix, such as distance matrix,

and shape ends (sides that are adjacent to onlptbee side) and opposing sides. This type of

characterization is useful in determining if a dedeiment region cuts through a shape verses
eroding away a part of side.

2.12 Element Death
In many simulations, changing mesh topology is apipnated by allowing elements to "die".
The mesh topology stays the same, but any elentgitare labeled "dead" no longer participate

18

in the simulation. Dead elements can be used teehrga, tears and other changes in the mesh.

The input of most of the routines in this modul@isubset representing a dead element region,
and is assumed to have the association type of FCELEMENT. It is also assumed that the
coordinates of vertices within a dead element regiannot be trusted (the vertices on the
boundary of the dead element region may be otkey are still on live elements).

A dead element region does not have to be a stogl@ogical segment, but most of the results
are more easily interpreted if this is true.

Functions in theelement death modubee used to determine the effect of a dead elensgidn

on a mesh or FC_Shape. In particular, functionstegidetermine the “exposed skin”, defined as
the subset of the entities that would become exp@isecome part of the mesh skin) if given
elements were removed from the mesh and the “ddcsl§ia”, defined as the subset which is the
intersection of a dead element region and the sSkKimere are also segmenting functions to
determine the segmenting of a mesh or subset esu#t of a dead element region (e.g., does a
dead element region break the mesh, erode the dfide@ mesh, etc.). Further there are
characterizations of the size of the dead-elenegion.

2.13 Feature Tracking

Thefeature tracking modulprovides a general framework for studying how mmeena evolve
over time in a dataset. Features can be identditetimesteps and then associated with one
another through time, so that the user can stuglgvWolution of a feature.

A Region of Interest (ROI) is internally represehtes a C structure with a subset that exists at a
single timestep comprised of the entities that makeéhe ROI. As of this writing, a Feature is a
C structure with an array of these subsets, onedach timestep. In future work, the array may
be replaced by use of the SeqSubset (whose creptistilates the creation of the Feature
Tracking data structures). Feature informatiorhentaccessed via the FeatureGroup which is a
container for the results of the Feature Trackim@ avhole.

This module contains the functionality by which R@re matched up into a single Feature
spanning time. It provides the machinery by whide &®OIl is determined to “overlap” another
sufficiently to be deemed to be a single featutendtions that determine the ROI and define the
overlap are to be provided by the user. Howevdefault function for overlap is provided that is
based on geographical overlap.

19

3. FCLIB DESIGN NOTES

In this section we discuss some design issues bit-Chis is not meant to be a comprehensive
design document, but rather a presentation of kaytp that will help improve understanding of
the library’s characteristics. In particular we g@et design issues developers must be aware of
when modifying the internals of the library and whexchanging data with different file formats.

3.1 Entity and Data Terminology

The library manages multiple datasets and eaclsetatan have multiple meshes. A sequence is
the coordinates of a parameter space orthogortaétspace of the mesh. The most common type
of sequence would be the time values of a timeeseA subset is a set of mesh subentities (e.g.
vertices or elements). A variable is a functiorghsas temperature, over a mesh. It is associated
with some subentity of a mesh such as verticedemnents. A sequence variable is actually an
array of variable handles associated with a segyemith one variable per step of the sequence.
Similarly, a sequence subset is an array of sulmedles associated with a sequence, with one
subset per step of the sequence.

It is very important to note that the library maleedistinction between meta data and "big data",
and that access to these is treated very diffgrdBity data are the really large arrays of data tha
we want to avoid duplicating or moving around. @uitly, the coordinate arrays for the meshes
and the sequences, and the data from the variaskespnsidered big data and everything else is
meta data.

When users ask for metadata theyamiiesof the data that can be manipulated freely. Uaegs
responsible for freeing these copies. On the dihed, when users ask for big data, they receive
apointerto the data (the names of these routines typiaaity with ‘Ptr’). Users must treat this
data as read only, and should never attempt totfreebig data directly (memory is instead
released by calling FCLib-specific functions). fparformance reasons, big data is lazily loaded
when possible (this is discussed in more detaention 3.3.1), or, when appropriate, built only
when necessary (this is discussed for the meskatidd 3.4.2)

3.2 Data Management using Opaque Handles

For robustness FCLib manages data through an “@pd@ndles” usage model. In opaque
handles a library maintains and manipulates appdicalata on behalf of the user. This data is
referenced through a handle identifier that isedéht than the pointer to the actual data. This
technique provides an object-oriented feel to tteg@mming interface and discourages casual
direct access to complex data structures that areaged by the library. As such, FCLib’s
functions require users to reference objects tHragmall number of strongly-typed handles.

Internally, FCLib utilizes a hierarchy to keep datganized and employs validation functions to
catch instances where the user has supplied batsitpthe library. Application data is stored in

a “slot”. In order to handle multiplicity, similambject slots are stored in “tables” which are

effectively arrays of slots. The handle that is@igal to a user for referencing an object provides
all the index information necessary for the librémyeither locate a slot's data or determine that
the reference is invalid.

3.3 Datasets: Managing File 1/0

At a fundamental level, FCLIib is typically usedréad in a data file, perform a characterization,
and then write out results or an output data @ezen that a general design goal of FCLIib is to
make it a tool for performing analysis in differesmpplication domains, it was necessary to

20

engineer the file 1/0 interface in a way that npl#i diverse file formats could be supported.
Additionally, the large size of the datasets inealvin modern simulations motivated us to
consider techniques where file operations wereoperéd only when necessary.

In order to accommodate these requirements, FChib sonstructed with a generic FilelO API
that supports multiple format-specific interfac&his API provides a consistent interface to the
user and allows format-specific translation operaito take place behind the scenes without
specific guidance by the user. This interface ist lypon the concept of lazy loading and the
separation of metadata from big data.

3.3.1 Lazy Loading and Releasing of Big Data

Data files often have large amounts of data thanhas pertinent to the user's intended
characterization. For this reason, one is encodrageimplement "lazy loading” wherever
possible. That is, upon determining the existerfca wariable in a data file, one can build the
variable's data structure, but not read in theaalata values until that data is requested. For
example, in the Exodus specific FilelO module, Exsi®, sequence variable metadata and
uniquely identifying Exodus variable identificatiane read in during the initial load, but the data
field remains NULL. Upon request of a sequencealde, the data field is checked and, if
NULL, only then is the actual data read in.

Lazy loading also allows one to selectively relelaigedata that exists in the data file in order to
free up memory, since the data can always be retb&@m the file when necessary. This is
similar to the concept of releasing built datahailtgh there the data is initially built and then
rebuilt rather than loaded in and re-loaded in friv@ file. In order to allow releasing and re-
loading of the data without loss of intermediatardes, changes to the data values from the
file's data values are not allowed. The "committéldy exists to keep track of such data
structures. When a data item is loaded from adiid its metadata read in, the committed flag
should be set to indicate bibth the variable data exists on the disk (that isoimitted to the
disk) and is able to be lazily loaded; it shoulddst to zero otherwise, and it is by default.
Methods that allow changes to a data structurdigesge.g, adding subset members) must then
explicitly check to see if the data structure isnoaitted before performing the change. Functions
that release structures release only the comnsttedtures.

Note that only lazily loadable data can have themodted flag set, since it is otherwise not
reloadable. For example, in the Exodus module, dalaes for node sets, element sets, mesh
variables and global sequence variables are clyrezdd in during the load and are not lazily
loadable. Thus their committed flag is not set tray will not be released upon a release call. A
side effect of this is that these structures vahresthen allowed to change from their values in
the file. You may prefer to think of the "committeithg as a "reloadable” flag. If you want to
change the values of a committed structure, yountake a new structure and copy the values of
the original structure over to the new structurel then alter the new item's values.

3.3.2 Information about Supported File Formats

In this section we highlight some issues in filenfats that we use. This is not meant to be a
comprehensive discussion of the file formats, latiter a calling out of some design issues and
related limitations in the handling of represemtasi of data to/from various file formats.

21

* Exodus: Exodus is a well-known file format used at SarfélieM codes that stores data
into a “meshes and variables” data model. Exoduthés preferred data format for
working with FCLib because it is well documented @ currently supported by multiple
applications. FCLib currently assumes that an Esodataset will be contained in a
single Exodus file. While codes such as Sierra ggaemultiple Exodus files for a
simulation (i.e., one file per processor node)uitsscan be concatenated using a tool
such as SierraConcat. Exodus is built on top of €% a generic database file format.
However, NetCDF interfacing is handled entirelytbg Exodus library.

* LSDYNA Input Decks: LS-DYNA is a commercial mechanics simulation code
produced by LSTC. The LS-DYNA simulation tool readput from a keyword file that
contains all the mesh information required to rusimaulation. FCLib currently supports
the ability to read and write these keyword files.

* LSDYNA Results: An LS-DYNA simulation writes its output results binary d3plot
files. FCLib currently provides basic support faading these files. However, it is
important to note that the d3plot files are a pietary format that is poorly documented.
While we have made every attempt to be compatibith his format, we have
discovered inconsistencies between the format Spodons and output generated by
LSTC'’s simulation tools. FCLib produces warningsewtknown issues in the file format
are discovered.

» Sierralnput Decks: FCLib’s FilelO module also provides basic supdortSierra input
deck. This module was used in the spotweld anatggisand may not be current with
more recent releases of Sierra.

3.3.3 File Format Caveats

Differences between FCLIib’s internal data structuaad those of the external file formats have
led to some limitations and/or inconsistencies epresenting externally supplied data. The
following list summarizes some of the issues taabare of when using FCLib in conjunction
with different file formats, or in expanding FCLib handle new file formats.

Global vs Local Numbering

Exodus and LS-DYNA have a global node array andnetd blocks refer to these global
vertices. However, FCLib was designed to be abledk at single meshes, and, to support this,
it stores and renumbers the nodes local to eaclh.nNeles used in multiple meshes are thus
duplicated and they will not be numbered the samsesich other or as the original numbering).
Therefore the Exodus (or LS-DYNA) numbering and B@ib numbering will be different and
thus one cannot reliably compare numbers writtenbgquFCLib with numbers in the original
files. This also means that one can't compare agammbers from other tools, say Ensight,
which are using the original dataset.

One option for handling this is to load up the datan FCLib, write it out with FCLib, and then
use the rewritten dataset. After that, rewriting tfataset should not change the numbering if the
meshes don't change. To accomplish this, one canheasfcconvert tool which was written to
convert data from one file format to another, viaLib's internal data structures. In this case,
one can choose both the original and the final &smo be the same. A related tool is the
fcdump tool, which prints out FCLib’s internal regentations of the input dataset.

22

Block and set name support

Dyna2names.pl converts the LS-DYNA keywords filk file) to a .names file which FCLib
parses rather than reading them from any LS-DYN@&sfdirectly. It supports element block
names, sideset names, and nodeset names onlysTehisistorical artifact as FCLib created the
.names file as a convention first for Exodus fikefore Exodus stored the names of element
blocks. Since then, Exodus has provided name stippdrso the reading and writing of .names
files has been removed from the ExodusIO module.

Sequence support
Exodus and LS-DYNA only support 1 sequence: timéLib thus discards all but the first
sequence when writing Exodus files.

Data types
Exodus does not support multiple data types. Tbhesefall data values are stored as double-
precision floating point values (including charasje

Multicomponent variables

Exodus only stores single component variables ahelsron naming conventions (endings Xx,y,z
for vectors, xx,yy,xy for tensors) for the consumire Exodus reader reads in all variables as
single component variables. Our other readers mackactors into multicomponent variables.
All the FCLib routines are intended to handle nwaithponent variables. FCLib provides
functions to automatically discover and merge augrof similarly-named, single-component
variables into a multicomponent variable.

Exodus general data support issues

There are some concepts that Exodus does not suppereviously did not support, but will be
supporting in upcoming versions. This affects whetternal concepts can be created in an
FCLib dataset, and which FCLib concepts may be equently dropped when the dataset is
written out in a file format.

» Edge and face support
Exodus will be supporting explicit definitions acides and edges and their relationships
to each other and to elements. FCLib currently dumssupport this, but supports the
older convention of sidesets. A sideset is a séacds on a 3D mesh or edges on a 2D
mesh, which are stored as a global element/lodal I} pair.

» Blocksand Subsets
Similarly, Exodus will be supporting nearly all ggof blocks and subsets, and attributes
and results upon them. FCLib currently supporty efément blocks. FCLIib reads in and
write out only node and element sets and sidegatéaCes and edges).

* Seguence variables and non-sequence variables
FCLib reads in and write out node and elementhaiteis as non-sequence variables and
node and element results as sequence variables.thit for vertex associations, these
are exodus nodal results (for sequence variablaed) atributes (for non-sequence
variables), which means that they are defined ianaes (filled in with O for any nodes
in any element block that does not define thatalde).

23

FCLIB ATTRIBUTE TYPE NON_SEQ VAR
FC_AT WHOLE_DATASET

FC AT WHOLE MESH N (except DT_INT)

FC AT VERTEX Y Y
FC_ AT EDGE Y N
FC AT FACE N N
FC_AT_ELEMENT N Y

Table 1: FCLib variable concepts and Exodus Support
Letters indicate current support. Colors indicate p ossible
support.

Table 1 shows the mapping between FCLib variablecepts and those of Exodus. If Exodus
concept is currently read in or written out itnslicated by "Y"; if not, by "N". Those FCLib vars
that can eventually be supported as Exodus vassl{s¢ are colored in green. Those that can be
supported by using an Exodus concept other thaiablas are shown in yellow. Those that
cannot be supported at all are shown in red. Their@ng block (white) is described in more
detail below.

Exodus only has variable support for sequence bl@sa All of the FCLib sequence variables
can be directly mapped into Exodus results, with éxception of FC_AT_WHOLE_MESH.
These are shown in green and red, respectively.ilFCEC_AT _WHOLE_DATASET is an
Exodus global result.

Exodus does not have support for the correspondiomgsequence variables, however some of
these can be handled by other means. FCLib’'s nguesee nodal and element variables
correspond to Exodus’s nodal and element attribiNes-sequence variables with association
FC_AT_WHOLE_DATASET cannot be supported, becauserethis no global attribute in
Exodus, and thus the relevant table cell is coloeed

Non-sequence variables with association FC_AT_MIES8khot be supported with the exception
of those of datatype FC_DT _INT. Support for thise#s currently implemented by the Exodus
"property".

3.4 Mesh
In this section we describe some design issudseoiesh.

3.4.1 Internal Types

FC_ElementTypes describe the elements in a mesien@n FC_ElementType, the number of
vertices, the number of edges, the number of fatls, topological dimension, and its
corresponding FaceType are established (and thereals to get these).

FC_AssociationTypes are used to describe the agsmtiof items with a mesh or dataset. For
example, a data field may be associated with thenehts of a mesh (i.e., able to vary from
element to element), or with an entire mesh, ohwailt meshes in a dataset. Variables and subsets
have Association Types. Non-global variables antissts cannot have Association Type
FC_AT _WHOLE_DATASET. Global variables can only have association
FC_AT_WHOLE_DATASET. This latter means that Globaliables can only be single values;
one cannot have, for instance, a global variabé th a data field, varying from element to

24

element in a mesh, with the same across all medbeésed only once as a global variable.

3.4.2 Mesh Structure

Generally you could specify a mesh by the coorémalf its vertices, the connectivities of the
vertices, and the element-to-vertex mappings. Ofthiegs, such as faces and edges, are then
implied. Thus the FCLib Mesh structure object cetssof:

Metadata comprised of:
items such as the topological dimension of the méshnumber of elements, etc.
ids for owned entities such as subsets, variabtes,
Big Data which is provided by the file defining theesh:
the coordinate array
element to vertex connectivity information
Big Data which is built when needed:
things such as the edge, face, and neighbor info

This distinction in the types of Big Data is impant for at least the following reasons, which
will be discussed in more detail below:

You must be careful when writing functions that atita to the mesh (such as those
involved in writing new readers) to be sure thatase additional data needs to be built,
that it will be built properly. The FCLib Mesh AR$ set up to ensure that the right
building will occur and if you bypass this to addngs into the mesh structure directly
you may bypass this building.

Access to and write out of the built data may behdifferently than that of other data in
order to not waste space on things that may nateeeled. Some interfaces to that data
are optimized so that things are not rebuilt, amties things that are built are not written
out should you want to write to a file, because tb@n just be built again.

3.4.3 Built Data for Meshes
The built data for a mesh consists of three types:

downward connectivities - these refer to parent-to-child type relationshguch as: given

a face, what are all its vertices, or given an eletnwhat are the IDs of its edges? These
are stored as fixed length (size determined bytdpelogy) integer arrays. In downward
connectivities the order of the child items (fagigen parent) is important.

upward connectivities - these refer to child-to-parent type relationshguch as: given a
face, what are its parent element IDs? Since tmebeu of these can vary per child, for
each type of relationship there is an array thataios the number of parents for each
particular child and an additional doubly indexedag that contains the actual ID. In
upward connectivities, the ordering of the par&ens (for a given child) is arbitrary.
neighbors - these are peer relationships, such as the eteliderof the neighbors of a
given element. The definition of these varies dejpen on the level of connectivity
desired - for instance, the number of neighborilegnents connected by a face vs. the
number of neighboring elements connected by a xeft® in the upward connectivities,
these vary for each item, and therefore both aayat the number of neighbors for each
case and a doubly indexed array containing theahitts is kept.

Once upon a time, a number of different relatiopsHor items were kept together in structures,
however this was dropped in favor of the arraysnprily because it allows the writing of a

25

smaller set of operations that only need to workaomys and thus can be passed any of a
number of the different array options.

3.4.4 Building Mesh Data
There are five helper functions that cause thifding when needed:
- _fc_buildEdgeConns
_fc_buildFaceConns
- _fc_buildParents
_fc_buildMeshVertexNeighborsViaEdge
- _fc_buildMeshElementNeighborsViaEntity

Higher level functions that need this informatioill wall these helper functions that will build
this data as needed. Details of these functiondeyend the scope of this document, but more
detail can be found within documentation in the EQielease. These will additionally make any
other information that it is convenient to credtaldtaneously.

3.4.5 Releasing the Mesh

ReleaseMesh will release as much of the big anld data as it can. The big data released will
be that data that was lazily loaded. The built dattudes parent and neighbor data and the edge
and face information. Therefore, if you want to fxealy part of the data (if, for instance you are
running low on space), you actually have to reledisthe data and then rebuild only the part you
want. In the future, we would like to support ralieg data on a finer granularity.

26

4. LIBRARY TESTING

A key challenge in developing and maintaining &wsafe library is verifying that updates to the
library do not (1) affect the correctness of thévgare (negatively) or (2) cause applications that
depend on the library to break. Given that FCLiB haen deployed at a number of computing
installations around Sandia, we decided that it vimportant to implement a testing
infrastructure that allowed us to produce high-fyaleleases. This testing infrastructure is
comprised of three components: unit tests, regradsists, and software quality analysis tests.

4.1 Unit Tests

The unit testing facility builds a special test gnam that performs numerous operations with

FCLib’s functions. Each module is tested with géanumber of inputs. First, each function call

is tested with bad inputs to verify that the fuanticatches the input error and returns the proper
error code. Second, a number of good inputs argepa® each function to verify that the proper

output results are produced. The expected restdtem@capsulated in the testing software. As
such, the unit test program provides a great déassurance that the software is operating
properly, and helps verify that changes to thealpido not break its existing functionality.

4.2 Regression Tests

The regression testing facility is responsible fanning FCLib’s point tools with multiple
datasets and comparing the output results to krgoaa results. These regression tests validate
that the tools still produce the same results wtteanges are made to the library. The regression
tests were especially useful when installing FChilb multiple platforms because they are
agnostic about the inner workings of the platfouttimately all that matters is whether the
output results were produced properly. This tespirayed to be especially useful when porting
FCLib to different platforms because it helped tifgnfloating-point precision issues in
particular systems.

4.3 Software Quality Analysis Testing

During the development process for FCLib, we wiizmultiple design analysis tools to help
improve the software quality of the library. Firate employed valgrind to help identify memory
leaks and programming errors in both the librargl #re point tools. The valgrind tool replaces
C’'s memory management routines with profiling roas that track every block of memory that
is allocated during runtime. When the program exdkgrind reports a summary of all the blocks
that were not properly freed by the program. Ashswe utilized valgrind on our nightly unit
tests to identify leaks. To our knowledge, theeeram memory leaks in the current release.

27

Hle Edit View History Bookmarks Tools Help

LTP GCOV exiension - code coverage repori

Exscuted lines: 17404

1399 /1876 lines

760 % 1922/2529 lines

T0.0 o 354/ 725 lines

732 % 979 /1337 lines

7
28 £ 272 lines

util.e O] 981 % 152 /155 lines

| E——— 827 % 1187 /1435 lines

Generated by: LTP GCOV extension version 1.4

Figure 1: Code coverage estimates for FCLib's modul es.

Second, we utilized the GNU profiling and coveragas (i.e., gcov) to give an estimate of how
thoroughly our tests were testing the library. émgral, most of the modules in the library are
covered at greater than 70% (i.e., 70% of the sooodle is tested). We examined the coverage
results and determined that many of the untestetiops of the library are either non-critical
operations (e.g., printing warnings) or in redurtdamor checks (e.g., a function calls another
function and both do checking on input data).

4.4

Nightly Testing and Documentation

While developing FCLib we utilized a stand-alonerk@bation to automate the testing process.
This workstation used a cron job script to do thiéofving operations:

Download the latest version of the FCLib from théwersion repository

Compile all of the software to a local directory

Generate the doxygen web documentation and pogiathes to a web server

Run the unit and regression tests

Run valgrind on the unit test to local memory leaks

Log the results to a web page and email a copyeimipers of the development team

28

5. EXAMPLE TOOLS AND CAPABILITIES

In this section we describe some of the tools witth FCLib that demonstrate some of the more
interesting capabilities and characterizationsziidy FCLib. Note that the FCLib distribution
also includes a number of simpler tools that aredmxussed here. These tools are quite useful
in day-to-day analysis (e.g., normalizing valuespurding regions that contain
maximum/minimum values of interest, quantizingistats, etc.).

5.1 Gaplines

The gaplines toolset discovers and characterizps tieat occur between meshes as a result of
deformation of the meshes involved. The tool fistermines which meshes are initially abutting
(by examining the initial proximity of the verticas the meshes) and then creates lines (initially
of zero length) between their surfaces. As the mesteform, the line lengths are updated. If
they lengthen, a gap is signified. This tool makestensive use of the Statistics,
GeometricRelations, and Shape modules.

Figure 2: An item before deformation. Note that the green plate is flush with
the read container.

29

Figure 3: The item in the previous figure after def = ormation. The damage
results a gap between the red container and its gre en outer plate which
were initially in contact. The internals of the red container are visible
through the resulting gap.

length

6.920e+00
5.191e+00
3.461e4+00
1.732e+00
2.261e-03
Figure 4: The Gaplines tool determines gaps that oc cur between meshes as

a result of deformation. Gaplines are shown that re sult from the situation in
the previous figure.

30

Dataset: 'd3plot’ .
Meshes: 'Shell' and 'Cover Plate' — Input details
Displ: 'displacement’
Min Dist: 0.1
Number of gap lines found = 12482 /RGSUlt Summary
Number of sets of sides involved = 2 .
%/Stats reported for each side and overall
Stats for set 1 (‘Shell_shapeO_side18-Cover Plate_s hape0_side2"):
numGapline = 10628
Step | | Gap Length .
ID Value | num| min max mea n stdev
0 0.000000 10628 0.000000 0.028636 0.003368 0.005055 g Gap Iength stats
12 0.003000 10628 0.002291 6.851685 1.527860 1.449041
Step | | Normal Component of Gap Lengt h . K
ID Value | num| min max mea n_ stdev .
Resolved with
12 0.003000 10628 0.002291 6.851686 1.527860> 1.449041 respect to face
SIEp___ || Tangent Componemnt ot Gap Leng . / normals
ID Value | num| min max mea n stdev
12 0.003000 10628 0.000764 2.306140 0.911504 0.52459

Figure 5: Partial output of the Gaplines tool fort he situation shown in the
figures. Characteristic information for each gap is provided, including size
and location information.

5.2 Tears

The Tears tool is used for characterizing tearschvare defined as volumes of dead elements. In
order to accommodate uncertainties in dead elenregiens and tears that cross meshes, this
tool will optionally combine tears within a givemgximity to one another.

Characterizations of tears include determinationhef number of dead elements in a tear, the
volume of the tear, and a characteristic tear lendefined as the largest distance between any
two vertices that define the surface of the degibre

In addition, for simple shapes, characterizatiorth&f types, subtypes, and classes of tear are
given, defined as:

Tear types:
* BREAK- breaks the shape into more than one pieces
* TUNNEL - intersects the shape in more than oneeplac
* PIT — intersects the shape in a single place.
Subtypes:

* SINGLESIDE- intersects only a single side, but rnaymultiple time

* NONADJSIDE - intersects at least two non-adjacetdss

» ADJSIDES - intersects only adjacent sides (but beain multiple places);
Class:

» MAJOR - intersects at least one major side futiiglthe thin shape assumption

* MINOR - intersects no major sides

31

These capabilities utilize the Statistics, ThredhdboundingBox, DeadElement, and Shape
capabilities of FCLib.

Tear 14

Figure 6: Tears resulting from the situation descri bed regarding the gaps
tool. The Tears tool discovers and characterizes te ars, including
determining bounding boxes for the tears (shown in figure).

32

Tear characterizations for dataset 'd3plot'
Tears criteria: 'elem_death' <=0

Time step index: 12 -— InpUt detalls

5 mesn(es)

Mesh 0: 'Shell' has 18 dead element region(s)

Mesh 1: 'Plate’ has 26 dead element region(s) = Per mesh summary

Mesh 2: '‘Cover Plate' has 0 dead element region(s)

Mesh 3: 'Horseshoe Plate' has 0 dead element region (s)
Mesh 4: 'Screws' has 6 dead element region(s) .
Combining of dead elem regions not requested Tear detalls

Found 50 tears /
Sorting tears by region diameter (largest first) .. .
Tear O: "4
numDeadElementRegions = 1
meshiDs =0
meshNames = 'Shell'
numCell = 280
region volume = 35.8475
region diameter =19.8277

displ exposed diameter =
region bb =[-64.1624, 19.000, -8.56745 | - [-54. 5411, 30.8475, 5.49459]

displ exposed bb = [-66.4801, 1.4563e-07, -13.6168] - [-55.0189, 2.31026, 5.96411]
intersections with Shape (0:0) (TUNNEL,NONADJSIDES, MAJOR): (17) (5) (5) (5) (5)

Figure 7: Partial output of the Tears tool for the situation shown in the
previous figure. Characteristic information for eac h tear is provided,
including size and location information.

5.3 ScrewBreaks

The ScrewBreaks tool was written for a specificlapgion where the meshes included screws
which held other meshes together. It is of intetestetermine when a screw broke or how close
a screw was to breaking. This calculation involussng the segmenting capabilities in the
Threshold and Dead Element modules to determing dlead element region increases the
segments in the screw. Additionally the shape edl&tinctions are used to determine if the dead
element region results in a side erosion of a sevbigh would also constitute breakage, through
loss of contact of the remaining screw materiahvitis neighboring meshes, though it does not
result in a greater segmentation of the mesh. lyjnal closeness to breaking estimate is
calculated by comparing the resultant surface at#ained by projecting the dead element
regions onto the base of the screw to the absslutiace area of the base of the screw. While
this is not particularly rigorous, it does roughéflect how close the dead element region is to
cutting through the screw. The screw base is detexnby functions available in the Shape
module. Bounding box capabilities are used in thetgut in order to provide information to
allow the user to distinguish the screw.

33

An example figure and selected output are belove @ata set used is the “gen_screws.ex2”
dataset in the data directory of the FCLib rele&séhis case the dataset consists of screws only,
one in the first mesh, and two in the second. Thevs in the first mesh breaks, in the second the
screws erode. The breakage characterizations amtifidd in the output, along with the
Breakage Ratio (BR) at each step and the boundmgsfor each screw. The first figure in this
subsection shows the state of screws at Step % i@ second figure shows the final state.

Figure 8: Timestep 5: The screws are partially dama ged. The Breakage
Ratio (BR) is calculated by projecting the damaged areas onto the screw
base (uppermost in picture)

Figure 9: Final State: All screws are broken. The | eftmost screw is severed.
The middle and right screws are broken by surface e rosion. While erosion
does not result in a complete segmentation of the s crews, nonetheless, the
erosion results in a loss of contact of the remaini ng screw material with
any of its neighboring meshes.

34

Screw characterizations for dataset '../data/gerewss.ex2'
Mesh O: 'screw-tear' has 1 screws
Screw bounding boxes at Step O:

Screw 0: [-10, -9, -9.98308] - [10, 3, 9.98308

Mesh screw-tear Screw 0 Step 0 BR&GO (0.00/112.58)
Mesh screw-tear Screw 0 Stepl BRRX9 (21.49/112.58)
Mesh screw-tear Screw Q0 Step7 BR8&7 (98.19/112.58)
Mesh screw-tear Screw 0 Step 8 Birsken

Mesh screw-tear Broken/Total screws: 1/1

Mesh 1: 'screws-erode’ has 2 screws
Screw bounding boxes at Step O:
Screw 0: [20, -9, -9.98308] - [40, 3, 9.98308
Screw 1: [50, -9, -9.98308] - [70, 3, 9.98308
Mesh screws-erode Screw 0 Step O BR0S (0.00/ 112.58)

Mesh screws-erode Screw 0 Step5 BR6¥ (75.71/ 112.58)
Mesh screws-erode Screw1l Step5 BR54 (60.53/112.58)
Mesh screws-erode Screw 0 Step 6 BR76 (85.74/ 112.58)
Mesh screws-erode Screw 1l Step6 BR54 (60.53/112.58)
Mesh screws-erode Screw 0 Step 7 BR86 (96.88/ 112.58)

Mesh screws-erode Screw 1 Step 7 bBiakten, side eroded
Mesh screws-erode Screw 0 Step 8 Bioken, side eroded
Mesh screws-erode Screw 1 Step 8 ‘itlsbken ***

Mesh screws-erode Broken/Total screws: 2/2

All 2 Mesh(es) Broken/Total screws: 3/3

Figure 10: Partial output of the ScrewBreaks tool f or the situation shown in
the figures. Characteristic information for each sc rew is provided,
including breakage ratio (BR) and break type.

5.4 Feature Tracking

FClib was used to track and analyze the featureggmonding to the crumpled regions of a can
being crushed. The Feature Graph shows how therésainteracted over time. A selected
statistic (maximum stress) per feature over timplasted. The big yellow feature at the top of
the can is formed first and obtained the higheskimam stress. Other features are color-
coordinated similarly. From this plot it can be sdlkat the maximum stress for a given feature
begins to level off commensurate with the formatda new feature.

35

Figure 11: In the can crush example, features are | ocated and colored in the
right-most picture.

Maximum Stress of Features Feature#0
2 Feature#1
1.9 Lf,, ,‘, Feature#2
18 el Feature#3
' Feature#4
1.7 4 / Feature#5
1.6 = Feature#6
15 / J Feature#7
1.4 é ‘ Feature#8
~ A —e—Feature#9
1.3 '-__;T-_-: T | ——Feature#10
124 /‘WN_WTV_______ =TT e Feature#11
1.1 % P--ad T Feature#12
1 z | B o .,L..‘.,...qm;-ll Eea:urezij
eature
0 0.001 ~0.002 0.003 Feature#15
Time
o
Feature Graph e
o
Sy, ® - Z
)
&
Figure 12: Maximum stress per feature over time for the can crush

example. A feature graph displays the progression o f different features in
the dataset as time progresses. Feature colors corr espond to those
illustrated in the crushed can picture.

36

5.5 Skeleton Extraction and Manipulation

Many scientific FEM datasets employ meshes that iaaedibly detailed. Given the
sophistication of these meshes, it can be chaltgnigir an analyst to be able to quickly analyze
and understand the results of a simulation dubedigh level of detail contained in the model.
Additionally, meshing can make it challenging tarmgare one simulation run to another when
the same object is meshed differently. Therefoiie lieneficial to be able to transform meshes
into simpler representations that are better sddedomparisons.

The skeleton extraction utilities in FCLib providebasic set of tools for transforming mesh
structures into tree representations that can geownsight into the geometric changes to
structures in a simulation. The tools start by dindy a spanning tree representation of a mesh.
The full spanning tree by itself can be useful émmparing two identical meshes oriented
differently in one or more datasets. For examptalisg, translation, and rotation information
can be obtained by comparing the coordinates ofdbenode in the tree and its children.

While a spanning tree representation simplifiesegimit is often desirable to reduce the tree to a
more minimal form. The whittle tool in the skelet@xtraction utilities provides multiple
algorithms for reducing tree structures. Theserélyos provide tradeoffs between tree quality,
granularity of reduction, and the amount of timguieed to process data. The current algorithms
include the following.

* Minimum Descendents: The minimum descendents algorithm removes thee rioam
the graph that has the smallest number of descedatnile this algorithm is relatively
fast and produces a tree with an exact numberaésiat favors long branches and nodes
close to the root of the tree.

* Minimum Segment Change: The minimum segment change examines all segnuénts
all branches in the tree and removes the nodembald cause the least error in the tree’s
distance representation (segments that connedtetamdde are rerouted to connect the
node’s parent and children). This approach is tooasuming but simplifies detailed
regions well.

* Minimum Angle Change: This algorithm examines all segments of all breascin the
tree and removes the node that bridges segmentsatbathe most aligned (i.e., the
average angle the node is a part of is closesB®)1The intention of this algorithm is to
remove nodes that have the least impact on theesbfape tree.

* Octal: The octal algorithm attempts to remove nodes way that preserves spatial
representations. Starting at the root node in taply the algorithm selects up to N nodes
to keep in each of the eight Cartesian directionsmfthe node (e.g., in the +X,+Y,+Z
direction, +X,+Y,-Z direction, ... -X,-Y,-Z direction While this approach may preserve
branches that disappear in the other algorithmdp@s not provide the user with any
granularity in the number of nodes in the finalgra

37

VAVAVAVAVAVAVA
VAV,

VAVAVAVAVAVAVAVIN
VAVAVAVAVAY S,
IVAVAVAVAYS

i
B

Vs

A AVAVAVAVAVAWAYA

v
VAN
PAVAVAVAVAVAVAVY

PAVAVAVA

N
TAVAVAVAVAVAN

FAVAVAVAV
JAVAVAVAVAVAVAVA

VAV _
VAN LA
PAVAVAVAVAVAVAVAVE !

N
FAVAYAY R &
AVAVAVAVAYAVA
| INVAYAVAAVAVAVAVAVE NNVAVAVAVAVAYAVAVAVA
| EAVAYANA' WAVAVAVAVAVAVAVAVIN' PAVAVAVAN|
| AVAVAYAY FAVAVAVA?A!’;VA!#"-; VAVAVAY
| TAVAVAVE e ! FAVAVAVAN
| pYAVAVAY VAVAVAYS AVAVAY
-
W
XA

A

;

PAVAVAVAVAVAVAY
AV,
</

!

v
v':rv
<
T
>
B
S
&
-
%

N

NAWAVAY:
1%%;“

R
<

YAV
BYAYAAYAVANAYAY: \NAAVAVd

Figure 13: The skeleton utilities transform a mesh into a spanning tree
structure.

Figure 14: Spanning tree structures can be reduced to simplify the
representation into a form that is easier to manage

38

5.6 Region Subsetter/Reassembler

Crucial scientific information from simulations lisst in getting high-fidelity data to the post-

processing analysis. Currently, analysis is dona ipost processing fashion, using data files
written out at frequencies determined by checkpagntconsiderations. However, such

frequencies are inadequate to enable high fidaliglysis. In response, we have begun initial
investigations into possibilities for providing higr fidelity analysis through in situ processing
of the data (locating the analysis within the aggdion). We anticipate that the resultant impact
on application runtime can be mitigated by decréasee and frequency of I/O by outputting

only the regions of interest in the simulation. Tiheent of this work then is to explore the

impact, in both analysis accuracy and applicatiomtime, of bringing the analysis to the data,
through in situ concurrent processing.

Our initial scoping of the problem involved creagtithe capability to dump out on a per timestep
basis only the regions of interest, and the necgssformation to reconstitute the regions of
interest in the context of the entire problem.iéhiinvestigations show that the output of regions
of interest from an actual ALEGRA simulation regala substantial reduction in file size.

Capabilities here required the development of tlegiBhSubsetter tool, which as an example
application, writes out only regions satisfying eegeribed threshold. The writeout involves
dumping the segmented regions, and the variabéeatathose regions, out to a file as individual
meshes (which we call “subset meshes” since theynaw meshes, born of a subset on the
original mesh). In addition, the subset meshes evdwdlve an additional new variable which
consists of the vertex and/or element id mappingsvéen the original mesh and the newly
formed subset mesh. This mapping, as well as akmellvn naming convention for the subset
meshes and the relevant timestep would be use@d@ssembly of the subset meshes later. This
is done via a companion code, Reassembler, whielengian original mesh geometry,
reconstitutes the subset meshes onto the origgmahgtry for viewing in tools such as Ensight.

Figure 15: In this subsetter example, a large shock wave dataset is reduced
to a minimal form that contains only elements that are significant to an
analysis.

39

6. SUMMARY AND FUTURE WORK

FCLib is a powerful library that enables analystsapidly prototype data analysis operations. In
addition to serving as a neutral interface into tipld file formats, FCLib is organized in a
logical manner that allows users to interrogateadat a structured manner. The example
applications demonstrate that FCLib can be usedet@lop command line tools that perform
significant data analysis and characterization aipans.

Currently, the access mode for FCLib capabilitiesvia command line interface. We have
explored both a GUI interface and an XML interfaméh specific emphasis on processing some
of the well-defined and more commonly-desired cti@rézations, such as thresholding and
simple mathematical processing.

Based on our experience with implementing FCLib,s&e multiple areas where data analysis
tools will need to be improved in the near futufd@e largest obstacle is balancing analysis
performance with data set size. The transitiondtagcale-class science will result in datasets
that are an order of magnitude larger or more thday’s. Observing that processor performance
is greatly outpacing disk performance, it is cléeat tomorrow’s data analysis applications will
need to focus on efficient means of managing datan out-of-core manner. While FCLib
employs lazy loading to minimize disk access, fatwanalysis tools will require more
sophisticated data management facilities that eifregform on-demand paging or employ
parallel architectures for overcoming disk accegsriliead. These systems will likely require
improvements to the programming environment in otdemake them accessible for practical
usage.

40

N

DISTRIBUTION

MS-9159
MS-9152
MS-9152
MS-0899

Philip Kegelmeyer
Ann Gentile

Craig Ulmer
Technical Library

41

08962 (electronic copy)
08963 (electronic copy)
08963 (electronic copy)
08944 (electronic)

@ Sandia National Laboratories

42

