

Ultraprecision CD Metrology for Sub-100 nm Patterns by AFM

2005 International Conference on Characterization and Metrology for ULSI Technology February 15-18 March, 2005 The University of Texas at Dallas, Richardson, Texas, USA

Satoshi Gonda, Kazuto Kinoshita, Hironori Noguchi, Tomizo Kurosawa MIRAI - Advanced Semiconductor Research Center (ASRC) National Institute of Advanced Industrial Science and Technology (AIST), Japan

Hajime Koyanagi, Ken Murayama, Tsuneo Terasawa MIRAI - Association of Super-Advanced Electronics Technologies (ASET), Japan

Outline

- 1. Introduction
- 2. Metrological AFM design Novel 3D scanner, compact laser interferometers
- 3. Interferometer performance Resolution / linearity
- 4. Apparent linewidth repeatability Optimization / preliminary demonstration
- 5. Stage positioning Optimization / minimization of drift
- 6. Summary and future work

AIST Advanced Semiconductor Research Center

Lithography requirements

Metrological improvement in AFM

Category	Items to be solved
AFM tip	Radius of curvature, Tip artifact, Tip wear / broken
Scanning technology	Straightness, Orthogonality, Mechanical vibration, Scheme of servo control
Linearity	Resolution / precision of displacement sensor
Profile analysis	Deconvolution of profile data, Definition of CD
Environment control	Floor vibration, Acoustic noise, Temperature fluctuation

MIRAI AFM Set up

Goal:

Development of precision AFM for nanometerscale dimensional measurement :

Tool precision: 0.3 nm in 2007

Alst Advanced Semiconductor Research Center

Configuration of AFM unit

IRAI

MIRAL Uncertainty consideration in angular motion

AIRAI Optical design of interferometer

- differential scheme
- double pass
- Michelson type
- homodyne
- wavelength is calibrated ($\Delta \sim 10^{-9}$)

Signal processing diagram

Result of correction

Reduction of mechanical vibration

Resolution

Measurement of apparent linewidth

- Scanning is servo-controlled
- Three-dimensional coordinates

Cross-sectional profiles

AlST Advanced Semiconductor Research Center

AIRAI Repeatability of apparent linewidth

Backlash and drift at a stop

Optimum condition : backlash / drift

- High-resolution interferometer system was constructed and installed in a metrological AFM.
- Linearity has been improved better than 0.15 nm(p-p) by DSP based, cyclic error correction system.
- Resolution better than 0.05 nm for the system of the laser interferometer and 3D fine-motion scanner was demonstrated.
- Repeatability of apparent linewidth reached 0.5-1.0 nm(3σ).

*This work was supported by NEDO.

Achieving of the measurement accuracy of 0.3-0.5 nm(3σ) for dynamic repeatability.

Investigating the influence of probe deformation on the measurement uncertainty.

