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Abstract

We describe our experience designing, implement-
ing, and evaluating two generations of our high per-
formance communication library, Fast Messages (FM)
for Myrinet. In FM 1.x, we designed a simple inter-
face and provided guarantees of reliable and in-order
delivery, and flow control. While this was a signif-
icant improvement over previous systems, it was not
enough. Layering MPI atop FM 1.x showed that only
about 20% of the FM 1.x bandwidth could be deliv-
ered to higher level communication APIs. Our second
generation communication layer, FM 2.0, addresses
the identified problems, providing gather-scatter, inter-
layer scheduling, receiver flow control, as well as some
convenient API features which simplify programming.
FM 2.x can deliver 70-90% to higher level APIs such
as MPI. This is especially impressive as the absolute
bandwidths delivered have increased nearly fourfold to
70 MB/s. We describe general issues encountered in
matching two communication layers, and our solutions
as embodied in FM 2.x.
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1. Introduction

Dramatic advances in low-cost computing technol-
ogy have combined to make clusters of PCs an attrac-
tive alternative to massively parallel processor (MPPs)
architectures. Leveraging on mass-market volumes of
production, the humble PC has benefited from huge
and ever increasing investments in the development of
its key components (CPU, memory, disks, I/O buses,
peripherals), while at the same time MPP manufac-
turers are coming to terms with a contraction of the
market for multi-million dollar machines.

However a supercomputer is more than a collection
of high performance computing nodes; it is in the way
its component parts are integrated that lies the real
challenge of a parallel machine design. In comparing
a cluster architecture with the custom design of a con-
temporary MPP, it is in the interconnection technology
that the latter has the largest edge over the former. For
example, the Cray T3D achieves communication laten-
cies of about 2 µs and peak bandwidth of about 300
MB/s, the IBM SP2 of about 35 µs and 100 MB/s
respectively, whereas the typical values for a classical
Ethernet-interconnected cluster are 1 ms and 1.2 MB/s
respectively.

The new high speed Local Area Networks (LANs)
available today (ATM [4], FDDI [10], Fibrechannel [1],
Myrinet [2]) offer comparable hardware latency and
bandwidth to the proprietary interconnect found on
MPPs. The introduction of these enabling technologies
shifts the focus of the MPP versus cluster comparisons
from performance more general considerations of sys-
tem scalability, reliability, affordability, and software
availability.

New hardware technologies are only part of the
communication picture, and delivering performance to
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Figure 1. (a) 100 Mbit and (b) 1 Gbit Ethernet
theoretical bandwidth assuming a fixed 125µs
protocol processing overhead

applications requires communication software capable
of delivering the network performance. Fast network
hardware alone is not sufficient to speed up commu-
nication [18]. Existing communication protocols have
been developed to address requirements of robustness
in the presence of unreliable transport and large net-
work latencies, and with operating system controlled
access to network interfaces. As a consequence, they
are characterized by a large processing overhead, which
prevents them from fully exploiting the performance of
the new networks (Figure 1).

Over the past few years, many research projects have
studied the design of high performance communica-
tion software (Fast Messages (FM) [19], Active Mes-
sages (AM) [29], U-Net [28], VMMC-2 [9], PM [27],
BIP [24]). In the Fast Messages project, we built two
generations of systems optimized to deliver communi-
cation performance to the application. The first gen-
eration, FM 1.0, was based on our studies of essen-
tial communication guarantees (reliable, in-order com-
munication with flow control) and tuned for realis-
tic message-size distributions (mostly short messages).
FM 1.0 achieved dramatically more usable communi-
cation performance, reducing the half-power message
size for the Myrinet network by nearly two orders of
magnitude, from over four thousand bytes to 54 bytes.
We present the results of our initial experience with
the implementation of user-level libraries on top of FM
1.x, which expose the critical issues and the important
services required in matching two adjacent layers of the
communication hierarchy.

For the second generation Fast Messages system, we

used the insights gained from FM 1.x to optimize the
FM API and maximize the portion of FM performance
delivered to the applications. By building high-level
libraries such as MPI on top of FM and analyzing the
resulting performance of the entire software stack, we
found a number of inefficiencies were created at the
interface between libraries. The performance losses
caused by the interface are remarkable, limiting net-
work performance to a small fraction (<10%) of the
hardware.

Fast Messages 2.x eliminates these interface prob-
lems, enabling over 90% of FM’s performance to be de-
livered to higher level API’s such as MPI. We describe
the new elements of the FM 2.x API: gather/scatter,
interlayer scheduling, receiver data pacing and their
impact on usable performance. The interface efficiency
obtained the FM 2.x interface is over 70%, even for
sixteen byte messages and increases rapidly to 90%, a
dramatic improvement. The implementation of MPI-
FM atop the FM 2.x API achieves 70 MB/s peak band-
width versus the 77 MB/s available on FM. The perfor-
mance increase is even more impressive considering the
nearly fourfold increase of absolute performance of FM
2.x with respect to FM 1.x as a result of the migration
from a Sparc to an x86 architecture.

The remainder of the paper is organized as follows.
In Section 2 we review the results that motivate the
design of FM. In Section 3 we present the FM 1.x API
and discuss its strengths and weaknesses. In Section 4
we present the FM 2.x API and describe its features.
Related work is surveyed and contrasted to our work in
Section 5. Finally, we make a few concluding remarks
in Section 6.

2. Motivation for Fast Messages Design

The design of Fast Messages is motivated by the
wealth of knowledge about message size distributions,
the characteristics of traditional network protocols,
and studies of high performance networks in parallel
computers. The core of these results are summarized
below.

2.1. Network Traffic Characteristics

Since the first use of computer networks, scientists
have studied the size, frequency, and distributions of
both for network traffic. Such studies consistently show
that the majority of traffic (by packet count) consists
of short messages. This property is remarkably sta-
ble across networks, time, and applications [11, 16].
In a study of traffic on a Ethernet connecting diskless
workstations to file servers [11], Gusella found that the
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majority of packets were less than 576 bytes; of these
60% were 50 bytes or less. In another study [16], Kay
et al. measured the TCP and UDP traffic on a FDDI
LAN of Unix workstations in a university computer sci-
ence department. They found that TCP message sizes
are small: over 99% of packets are less than 200 bytes.
UDP traffic was slightly larger, with 86% of messages
of less than 200 bytes. NFS-generated UDP packets
accounted for 90% of the traffic measured. Continuous
studies at the SUNY-Buffalo campus also chronicle the
predominance of short messages. For a wide variety of
networks, across a wide range of time, average packet
sizes of 300 to 400 bytes were recorded.

The prevalence of short messages implies that if
good network performance is to be accessible, it must
be delivered to short messages. Many gigabit network
projects were successful in achieving Gbit/s speeds, but
required megabyte-sized messages to deliver such band-
width. In short, overhead must be minimized, as at
high network speeds, there is little spooling time avail-
able to mask network overhead.

2.2. Legacy Protocols

Widely used Internet protocols such as TCP [23]
and UDP [22] provide widespread interoperability and
two levels of functionality – reliable byte streams and
unreliable datagrams. However, these protocols incur
significant overheads [7], essentially preventing the de-
livery of network performance to short messages. For
example, the fastest implementations of UDP achieve
per packet overheads of ≈ 125µseconds. This implies
that for typical packet size distributions (< 256 bytes),
bandwidths of no greater than 2 megabytes/second
could be sustained. Of course, the overhead for reli-
able protocols such as TCP are even greater.

2.3. High Performance Communication Layers

To identify crucial performance factors for high per-
formance networks, we undertook empirical studies of
communication layers inside parallel computers. These
studies identified the key guarantees a communication
layer must provide to avoid incurring large software
overhead at higher levels of the system. Our study of
CM-5 Active Messages (CMAM) [12] measured the dy-
namic instruction count of CMAM assembly code and
identified the overhead contributions of the range of
guarantees provided by the communication layer (in-
order delivery, buffer management, fault tolerance).
Because the network of the CM-5 provided none of
these features, the software overhead can be consid-
ered the “cost” of each feature on the CM-5. In a

0

100

200

300

400

500

Fault-toler.

In-order Del.

Buffer Mgmt

Base Cost

Src Dest Total TotalDestSrc

Finite sequence Indefinite sequence

Figure 2. Breakdown of overhead for Active
Messages on the CM-5

highly optimized messaging layer like the CMAM up to
50%-70% of the software messaging costs are a direct
consequence of the gap between user requirements such
as in-order and reliable delivery, end-to-end flow con-
trol, and actual network features like arbitrary delivery
order, finite buffering, unreliable communication. For
example, in one case (16-word messages, 4-word packet
size, multi-packet delivery) 216 out of a total 397 cycles
are spent for buffer management (148 cycles), in-order
delivery (21 cycles) and fault tolerance (47 cycles) (see
Figure 2).

These results imply that careful design of an inter-
face, particularly the guarantees provided, is crucial
for the low overhead essential to achieving high perfor-
mance. In gigabit networks, where delivering network
performance to short messages is essential to delivering
usable performance, careful interface design to provide
first the right guarantees and second the right func-
tional interfaces is critical. These lessons were crucial
in the design of two generations of Fast Messages sys-
tems.

3. Fast Messages 1.x

In the design of Fast Messages 1.0 for Myrinet, we
applied the lessons of the networking community – de-
signing a system with low overhead to deliver perfor-
mance to short messages, and a simple interface with
the right guarantees to deliver performance to the ap-
plication. By providing a few key services – buffer man-
agement, reliable and in-order delivery – the FM pro-
gramming interface allowed for a leaner, more efficient
implementation of the higher level communication lay-
ers.

The first workstation cluster implementation of Fast
Messages (FM) [20] was built atop the Myrinet net-
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work, largely due to its high performance and availabil-
ity of development tools. On this network FM achieves
a short message latency of only 14 µs and a peak band-
width of 17.6 MB/s, with an Active Messages style in-
terface. As a result of the design focus on short message
performance, the value of N 1

2
is 54 bytes, with a band-

width of 17.5 MB/s available for messages as small as
128 bytes (see Figure 3).

3.1. Design of Illinois Fast Messages 1.x

The FM 1.1 API consists of three functions
FM send(.), FM send 4(.), and FM extract(.) as
shown in Table 1. FM send(.) and FM send4(.) inject
messages in the network. FM differs from a pure mes-
sage passing paradigm by not having explicit receives.
Instead, each message includes the name of a handler,
which is a user-defined function that is invoked upon
message arrival, and that will process as required the
carried data.

The FM extract() primitive is used to service com-
munication on the receive side, checking for incoming
messages and executing the corresponding handlers.
The user needs to call this primitive frequently to en-
sure the prompt processing of incoming communica-
tion in the host. However it needs not to be called for
the network to make progress. FM provides buffering
so that senders can make progress while their corre-
sponding receivers are computing and not servicing the
network.

The FM interface is similar to the Active Messages
model [29] from which it borrows the notion of mes-
sage handlers. However there are a number of key dif-
ferences: the FM API offers stronger guarantees (in
particular in-order delivery), uniform handling of mes-
sages with respect to size, and it does not follow a
rigid request-reply scheme. Also, in contrast to Ac-
tive Messages, where the send calls implicitly poll the
network, FM’s send calls do not normally process in-
coming messages, enabling a program to control when
received data is processed.

In choosing which service guarantees to include dur-
ing the design phase of FM, we gave careful consider-
ation to the performance of the communications stack
as a whole, not of FM as an isolated messaging layer. If
a messaging layer’s guarantees are too weak (i.e. they
do not provide the functionality that applications ex-
pect), other messaging layers built on top will need to
supply the missing functionality, incurring additional
overhead in the process. On the other hand, if a mes-
saging layer’s guarantees are too strong (i.e. they pro-
vide more functionality than is generally needed), the
messaging layer’s common-case performance may be

needlessly degraded. Analysis of the literature and our
ongoing studies to support fine-grained parallel com-
puting [5, 12, 13, 14] have led to the conclusion that a
low-level messaging layer should provide the following
key guarantees:

• Reliable delivery,

• In-order delivery, and

• Control over scheduling of communication work
(decoupling).

As mentioned in the previous section, studies of
communication software costs [12] show that imple-
menting guarantees like reliable and in-order delivery
atop a messaging library can increase communication
overhead by over 200%. To reduce these costs care-
ful consideration was given to exploiting hardware fea-
tures. We found that by taking advantage of Myrinet
features such as very low bit error rate, absence of
buffering in the network fabric, deterministic routing,
link-level flow control by means of back-pressure, we
only needed to add flow control and buffer manage-
ment to provide reliable and in-order delivery. FM
provides these, and its performance demonstrate that
these guarantees need not to be costly.

Figure 3(a) shows that the addition of buffer man-
agement and flow control does not substantially de-
grade performance. The different curves represent the
performance measured with the simplest code needed
to operate the link DMAs, then with a few more lines
to move data across the I/O bus, and finally with the
flow management code added. The transport of data
across the I/O bus is on the critical path and adds
to the overhead, while flow control if properly designed
can be overlapped with other operations. Similarly, the
further addition of buffer management does not add
substantial overhead, and leads to the final version of
the FM code (figure 3(b)). A more detailed analysis of
the FM 1.x design choices is reported in [20].

3.2. Evaluation of FM 1.x

The real measure of the effectiveness of a communi-
cation library is the level of performance that can be
actually delivered to an application. Given the low-
level nature of the FM interface, typical applications
are language runtime supports or user level libraries.
We selected MPI and BSD sockets as test applications,
and experimented extensively with the former.

Figure 4 shows that the initial version of MPI-FM
had poor performance, failing to deliver more than 35%
of the underlying FM bandwidth. It was clear that the
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Function Operation
FM send 4(dest,handler,i0,i1,i2,i3) Send a four word message
FM send(dest,handler,buff,size) Send a long message
FM extract() Process received messages

Table 1. The primitives of the FM 1.1 API
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Figure 3. FM 1.x overhead: (a) overhead break-down; (b) overall performance

FM 1.x interface lacked several key features required for
efficient layer composition. So the analysis of the MPI-
FM inefficiencies turned into a study on how to design
an API that makes it easy to deliver performance (see
[17] for details).

The overhead originates from a number of memory-
to-memory copies of the data taking place at the in-
terface between MPI-FM and FM. The service guar-
antees we built in FM allowed a streamlined and thin
implementation of the body of MPI-FM, for example
making unnecessary the source buffering, timeout, and
retry that would be otherwise required to provide re-
liable communication. But inefficiencies arose at the
interface between layers, surprisingly for different rea-
sons for each direction of transfer.

First, FM adopted its basic API from Active Mes-
sage (AM) [29], and thus accepted (and presented) data
as a single contiguous buffer. While sending, this ap-
proach charges the upper layers with the task of assem-
bling/disassembling of messages. In many cases, this
incurred an additional step (and copy) in performing
common protocol processing operations such as packet
header attachment, message encapsulation, checksum-
ming.

Similarly to the send side, on the receive side the
message is handed over to the handler as a single con-
tiguous buffer. This required that the entire message
had to be received into a staging buffer before the han-
dler could start processing it and possibly copying it to
the final destination. Such a scheme forced FM to per-
form an additional copy even when the availability of
the destination buffer (from a pre-posted MPI receive)
made it unnecessary.

Second, FM 1.x allowed the receiving process to de-
cide when to service the network, however, it was un-
able to control the quantity of data presented at that
time (all the pending packets were processed). In high
speed networks, data can easily be transmitted faster
than a receiver can accept it. The presentation of the
data before the application was prepared to accept in-
duced additional layers of buffering and data copies.

In conclusion, the implementation of MPI-FM
showed that the FM API was lacking flexibility in two
crucial areas:

• presentation of data across layer boundaries

• control over interlayer scheduling
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Figure 4. MPI-FM initial performance compared to FM: (a) absolute; (b) as a percentage of FM

Addressing these shortcomings required some funda-
mental changes to the API, and motivated the design
of a new version of FM.

4. Fast Messages 2.x

4.1. Design of Illinois Fast Messages 2.x

The FM 2.x API retains the service guarantees of
FM 1.x, and adds support for gather-scatter, layer in-
terleaving, and receiver flow control. The primary ve-
hicle for these features is the addition of the stream ab-
straction, in which messages are viewed as byte streams
and primitives are provided for the piecewise manipu-
lation of data, both on the send and the receive side.

Table 2 shows the the new FM 2.x interface.
The old FM send(.) primitive is replaced by
FM send piece(.), which can be called as many times
as desired to send chunks of a same message of arbi-
trary size. Message boundaries are still honored (using
the FM begin message(.) and FM end message(.)
calls), but in the new API a message is a byte stream
instead of a single contiguous region of memory.

Mirroring this abstraction on the receive side is
the FM receive() primitive, that can be called an
arbitrary number of times from within a handler.
Again, the notion of message is retained but it is no
longer associated to the concept of a contiguous re-
gion of memory. The addition of an argument to the
FM extract(.) primitive allows the user to specify an
upper limit on the amount of data extracted (rounded
to the next packet boundary) enabling receiver flow

control.
Thus, the key problems identified in studies of FM

1.x are remedied as follows:

Gather/Scatter By performing a sequence of
FM send piece(.) calls, the user can compose a mes-
sage on the fly using any number of pieces, each of ar-
bitrary size. Similarly, a receiver can employ a handler
with a sequence of FM receive() calls, allowing the ef-
ficient decomposition of a message into any number of
pieces. Each call composes/extracts as many bytes as
desired, and the number and sizes of the pieces need
not match on the two sides. Examples include header
attachment/removal in MPI-FM, and in protocol en-
capsulation in general (e.g. IP and TCP headers in
TCP/IP hierarchy).

Layer Interleaving A second important benefit of
the stream abstraction is the controlled interleaving
of FM’s and the application’s threads of execution on
the receive side. While everything runs within one
user process, conceptually there is one thread of ex-
ecution for the FM primitives, and one for each of the
application-specific handlers. The typical message pro-
cessing scenario within the handler is illustrated below:

int myHandler(FM_stream *str, unsigned sender)
{

struct header myHeader;
int msglen;

/* get the header */
FM_receive(&myHeader, str,

6



Function Operation
FM begin message(dest, size, handler) Start of a message to be sent
FM send piece(stream, buf, bytes) Send a chunk of message
FM end message(stream) End of a message to be sent
FM receive(stream, buf, bytes) Get a chunk of message
FM extract(bytes) Process received messages

Table 2. The primitives of the FM 2.x API

sizeof(struct header));

msglen = myHeader.length;

if (myHeader.littlemsg)
/* short message */
FM_receive(littlebuf++, str, msglen);

else
/* long message */
FM_receive(findBuf(msglen), str, msglen);

return FM_CONTINUE;
}

The first FM receive() call is used to extract just
the message header (FM receive() is executed within
the FM thread). Then the handler reads the header
fields, identifies the message, and selects the buffer
into which to copy the message payload (the handler
is executed within its own thread). Finally, another
FM receive() call with the selected buffer passed as
second argument extracts the payload directly into the
buffer (FM thread).

The interleaving makes possible the elimination of
staging buffers for incoming messages. For example, in
MPI-FM, using FM 1.x, we could not deliver an incom-
ing message directly into its destination buffer specified
by the user through a pre-posted MPI receive call. The
problem originated from the fact that incoming mes-
sages are handled by FM, while the buffer management
occurs within MPI-FM, and the required exchange of
information between the two layers (identity of mes-
sage in one direction, pointer to the appropriate buffer
in the other) was missing.

Receiver Flow Control The FM 2.x interface also
provides receiver flow control, allowing the receiver to
control the rate at which data is processed from the
network. This feature is only possible because of the
underlying flow control and reliable delivery provided
by FM. The receiver flow control can eliminate network

overruns of application buffer pools, avoiding memory
copies, and for some protocols, message discarding. In
many applications, the ability to intentionally delay
the extraction of the message until a buffer becomes
available can simplify the buffer management. For ex-
ample, receiver flow control enables zero-copy transfers
in a significantly larger number of cases for both our
Socket-FM and MPI-FM implementations.

Transparent Handler Multithreading One of the
differences between FM 1.x and FM 2.x is that handler
execution is no longer delayed until the entire message
has arrived, rather it is started has soon as the first
packet is received. Since packets belonging to different
messages can be received interleaved, the execution of
several handlers can be pending at a given time. As it
extracts each packet from the network, FM 2.x sched-
ules the execution of the associated pending handler.
By having the interleaved packet reception transpar-
ently drive the handler execution, a number of benefits
are achieved.

First, the handler multithreading combined with the
stream abstraction allows arbitrary-sized data chunks
to be composed/received, without any concern for
packet boundaries. Second, handler multithreading
plus packetization not only simplifies resource manage-
ment, it can also increase performance by increasing ef-
fective pipelining. On a long message the handler can
be processing one part of the message while the sender
is still sending the rest. And the interleaving means
that one long message from one sender does not block
other senders.

The FM 2.x interface cleanly hides the physical
packetization and handler multithreading by offering a
clean sequential view of message reception. Except for
the possibility of being descheduled on a FM receive()
call, a handler can be written as if the entire message
had already being received. Second, the FM 2.x inter-
face provides a logical thread for each message, avoid-
ing explicit management of state sharing/isolation for
complex messages.

Despite the additional implementation complexity,
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Figure 5. FM 2.1 performance on a 200 MHz
PPro

the multi-threading adds only a small amount of over-
head in exchange for a number of crucial services like
the streaming abstraction and related benefits, sender
decoupling, totally transparent packetization, in addi-
tion to the simple and clean sequential view of commu-
nication.

4.2. Evaluation of FM 2.x

Figure 5 shows the performance achieved by FM 2.1
on a 200 MHz PPro. The peak performance values
are 11 µs minimum latency, 77 MB/s peak bandwidth,
with N 1

2
< 256 bytes. These values represent high ab-

solute performance, comparing to MPP interconnect
performance and internal memory bandwidth. Similar
to FM 1.x, a design attentive to short message perfor-
mance shows in the N 1

2
values and in the rapid growth

of the bandwidth curve.
The graphs of Figure 6 show the improved effi-

ciency of MPI-FM on top of FM 2.x, proving that
the FM 2.x API can deliver a high percentage of its
measured performance. MPI-FM achieves up to 90%
of the FM bandwidth, with a minimum latency of 17
µs and a peak bandwidth of 70 MB/s. The key en-
hancements of FM 2.x (gather-scatter, layer interleav-
ing, and receiver flow control) enable the MPI on FM
2.x to eliminate many buffer copies, and avoid buffer
pool overruns, delivering the underlying FM (and hard-
ware network) performance to the application. To fur-
ther demonstrate FM 2.x’s capabilities, we have im-
plemented other APIs, including Shmem Put/Get and
Global Arrays (both global address space interfaces).
An implementation of Winsock 2 is in progress.

5. Related Work

Fast Messages is not the only approach to deliver-
ing high-performance communication by efficient pro-
tocol layering. Most related efforts involve either
optimized implementations of heavyweight protocols,
high-performance network hardware, or other high-
performance low-level messaging layers. We now dis-
cuss projects in each of these categories.

High Performance Communication Layers Ac-
tive Messages (AM) [29] has been one of the first re-
alizations of high performance messaging layers. The
AM project started as a communication library for the
CM-5, and today some of its new implementations re-
tain some of the features of the original version, like
the specialized primitives for short transfers. A prob-
lem with specialized primitives is that they often fall
short of the practical message size of overlying applica-
tions. For example, in the implementation of MPI-FM
we found that the minimum length of the header added
by the MPI code is 24 bytes (6 words), while short
message transfers in Active Messages style libraries are
optimized for 4 or 5 words.

A work from the same group on the efficient realiza-
tion of a high level API on top of a low level messaging
layer is Fast Sockets [25], an implementation of the
Berkeley Sockets on top of Active Messages. One of
the issues explored by Rodrigues at al. in their work is
the elimination of unnecessary copies at the layer inter-
face. The copy avoidance technique of receive posting in
Fast Sockets is similar to what FM 2.x achieves with
the layer interleaving, in which the user handler col-
laborates with FM to direct the incoming data directly
into the destination buffer. The main difference is that
the FM model supports packetization and thus works
with messages of arbitrary size.

Another high performance messaging layer is U-
Net [28]. Developed originally on a ATM network, it
provides buffer management, demultiplexing in hard-
ware but no flow control, and thus data can be lost due
to overflow. Contrary to FM, U-Net and other mes-
saging layers try to avoid the passage of data through
kernel memory by performing a DMA transfer directly
into the user buffer. The disadvantage of such feature
is that the user must declare in advance the regions of
memory to be used for communication, so to allow the
library to permanently pin them down.

In our experience such a scheme seems to lack the
flexibility needed in building user-level libraries. In
the case of MPI-FM, the buffers are provided by the
MPI application and their location is not in general
known in advance. A new version of U-Net called U-
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Figure 6. MPI-FM 2.0 performance compared to FM 2.0: (a) absolute; (b) as a percentage of FM

Net/MM [30] is under development which addresses
this limitation by including a TLB on the network in-
terface and coordinating its operation with the oper-
ating system’s virtual memory subsystem. This mech-
anism would allow network buffer pages to be pinned
and unpinned dynamically and thus messages can be
transferred to and from any part of the application’s
address space.

Princeton’s VMMC-2 [9] interface is different from
FM’s in that it expects receivers to prepost buffers.
This is a consequence of VMMC-2’s lack of flow control.
Messages arriving before a buffer is posted are stored in
a staging area and copied out when the buffer is posted.
If the staging area overflows, the message is dropped,
and the sender retransmits it. FM, in contrast, uses
flow control to ensure that no message is sent unless it
can be reliably delivered, which avoids wasting network
bandwidth.

In some respects similar to FM is the Real World
Computing Partnership’s PM [27]. Like FM, PM runs
on clusters of Myrinet-connected workstations and per-
forms flow control and buffer management. The main
difference with FM is in the optimistic flow control
mechanism, and variable-sized packets.

BIP [24] is another messaging layer developed for the
Myrinet at the Ecole Normale Superieure de Lion. It
has a more traditional message passing interface, with
both blocking and non blocking send/receive primi-
tives, and offers reliable and in-order delivery commu-
nication. It has been specifically designed to support
standard message passing libraries like MPI and PVM,
for which its interface represents a good match.

Optimized heavyweight protocols One approach
to fast communication that a number of researchers
have taken is to start with traditional, heavyweight,
kernel-mode protocol stacks and tune the implementa-
tions to deliver more performance. Frequently, these
projects focus on the TCP and UDP stacks, but other
protocols have been optimized, as well. One of the
largest performance penalties that occurs when send-
ing large messages is memory copying, which occurs at
each level in the protocol stack.1 Hence, the most com-
mon optimization technique is to reduce the amount of
data copying by sharing buffers across layers.

This is the approach taken by fbufs [8], which avoids
data-touching overheads by remapping pages of data
from one domain to another instead of copying. The
Solaris operating system does something similar, but
uses copy-on-write semantics to prevent wayward ap-
plications from corrupting data that are still “live” in
the protocol stack [6]. Container shipping [21] and
other protocol-stack optimizations [3] expand upon the
basic fbufs technique. XTP [26] takes a different ap-
proach: It improves performance by providing high-
level features such as multicast and priority control in
a new, alternative heavyweight protocol.

The problem with all of these schemes, and one of
the reasons that Fast Messages does not attempt a
similar solution to the protocol layering performance
problem, is that they perform poorly on small mes-
sages. And, for realistic message sizes—generally less
than 256 bytes—memory copying is much less of a bot-

1In TCP, the other big penalty is computing the TCP check-
sum, but this cost can be eliminated in some modern network
interfaces by performing the checksum in hardware.
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tleneck than the various constant-time overheads [15].
Even the overhead to switch between user mode and
kernel mode is too high for forthcoming networks. For
perspective, note that on a gigabit network, about 1KB
of data can arrive in the time it takes just to switch
modes.

6. Summary

We have described our experience with the imple-
mentation of user-level libraries on top of the FM li-
brary. Our work exposes the need for a design of the
programming interface that specifically targets the ef-
ficient matching of adjacent layers, and identifies the
crucial services required for such matching.

Services like gather/scatter, interlayer scheduling,
receiver data pacing are key to the elimination of un-
necessary copying otherwise required to perform rou-
tine protocol processing operations like header addi-
tion/removal or payload delivery.

We have then described how we redesigned the API
of our second generation communication layer, FM 2.0,
to add these services in a flexible and performance-
conscious way. The validity of our new design is shown
by the peak bandwidth of an high level library like
MPI-FM that went from an initial 20% to a final 90%
of the bandwidth made available by the FM layer.
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