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FOREWORD 

The FAST (Fatigue, Aerodynamics, Structures, 
and Turbulence) Code is a comprehensive aeroelastic 
simulator capable of predicting both the extreme and 
fatigue loads of two- and three-bladed horizontal-axis 
wind turbines (HAWTs).  This document covers the 
features of FAST and outlines its operating procedures. 

The FAST Code is the result of the marriage of 
three distinct codes; the FAST2 Code for two-bladed 
HAWTs; the FAST3 Code for three-bladed HAWTs; 
and the AeroDyn (1) aerodynamics subroutines for 
HAWTs.  While combining these three codes, changes 
were made in the computational loops and in the 
kinematic calculations of the FAST codes.  An 
intermediate version of FAST, called FAST_AD, used 
different executable files for two- and three-bladed 
turbines.  The version of FAST documented in this 
report, which was developed in 2002, uses a single 
executable for both types of turbines.  These changes 
resulted in a code that runs very quickly, so the code is 
indeed, fast. 

In 2003, additional features were added to the 
FAST Code, including the ability to develop periodic 
linearized state matrices for controls design and the 
ability to use FAST as a preprocessor for generating 
ADAMS® datasets of wind turbine models (“ADAMS” 
is used to imply “ADAMS®” throughout this 
document).  Aeroacoustic noise prediction algorithms 
have also been introduced. 

Additional features were added to the FAST Code 
again in 2004.  New model features added include a 
lateral offset and skew angle of the rotor shaft, rotor-
furling, tail-furling, tail inertia and aerodynamics, yaw 
control, and high-speed shaft (HSS) brake control.  An 
interface has been developed between FAST and a 
master controller implemented as a dynamic-link-
library (DLL) in the style of Garrad Hassan's Bladed 
wind turbine software package (2).  An interface has 
also been developed between FAST and Simulink® 
with MATLAB® (“Simulink” and “MATLAB” are 
used to imply “Simulink®” and “MATLAB®” 
throughout this document), enabling users to 
implement advanced turbine controls in Simulink’s 
convenient block diagram form. 

In 2005, FAST and ADAMS with AeroDyn were 
evaluated by Germanischer Lloyd WindEnergie and 
found suitable for "the calculation of onshore wind 

turbine loads for design and certification" (3).  
Additional features were also added to the Codes.  
These include new nacelle inertial measurement unit 
and tower strain gage outputs, upgrades to the simple 
variable-speed control model, and new support 
platform motion and loading functionality.  Despite the 
addition of six new platform motion degrees of 
freedom, the Code was also better-optimized so that it 
runs 15% faster than previous versions (or faster, 
depending on the options being modeled). 

This manual is an updated subset of one originally 
written at Oregon State University (OSU) (4).  The 
original manual included a detailed discussion of the 
theory behind FAST_AD (an earlier incarnation of 
FAST) and a validation of the code.  For these two 
topics, please refer to the original.  Also available is 
Buhl and others (5), which is a structural verification 
of FAST_AD against ADAMS.  Both FAST and 
ADAMS use the AeroDyn subroutine set, so the 
structural-verification study did not provide any 
verification of the aerodynamics of FAST_AD.  A 
more recent verification of FAST against ADAMS is 
provided in Jonkman and Buhl (6). 

The Modes of Operation chapter describes the 
different types of analysis available in FAST and a 
brief description on how to run the code is provided in 
the Running FAST chapter.  If you want to recompile 
FAST, you can find the information you’ll need in the 
Compiling FAST chapter.  The Model Description 
chapter discusses the degrees of freedom for both two- 
and three-bladed HAWTs.  The Controls chapter 
documents methods for actively controlling many 
aspects of the turbine operation during simulation.  
Active controls can also be implemented in Simulink 
as described in the Simulink Interface chapter.  The 
Linearization chapter documents how to extract 
linearized wind turbine models out of FAST.  The 
functionality of using FAST as a preprocessor for 
creating ADAMS datasets is documented in the 
ADAMS Preprocessor chapter.  The Input Files chapter 
describes the various program input files.  Finally, the 
Output Files chapter lists the possible output 
parameters.  It also describes the optional summary and 
element output files. 
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UPGRADING TO FAST V6.0 FROM V5.1 
This section describes how to update input files 

created previously for FAST v5.1 so that they are 
compatible with FAST v6.0.  New users can skip to the 
section entitled Using This Manual. 

FAST v6.0 contains an improvement to the simple 
variable-speed control model, a few upgrades and 
modifications to the output capabilities, and new 
support platform motion and loading functionality. 

The simple variable-speed control model has been 
upgraded to include a linear transition Region 2½, in 
addition to the previously-available Regions 2 and 3.  
See the updated Variable-Speed Torque Control 
section of the Controls chapter and the Turbine Control 
section of Table 8 for more information. 

You can now specify up to 5 strain gage locations 
along the tower for examining local tower motions and 
loads output, similar to what is available for blade 1.  
You can also specify the location in the nacelle of an 
inertial measurement unit (IMU)—this location is used 
for new nacelle motion outputs.  See the Output section 
of Table 8 and the Output Files chapter for more 
information. 

The new support platform motion and loading 
functionality represents a major expansion in the 
number of degrees of freedom and loading options 
available in FAST.  Detailed information on these new 
features and associated inputs are presented throughout 
this manual where appropriate.  In particular, see the 
Support Platform section and Figure 20 of the Model 
Description chapter, the Platform Input File section of 
the Input Files chapter, the Platform Model section of 
Table 8, and Table 12. 

Despite the addition of six new platform motion 
DOFs (translational surge, sway, and heave and 
rotational roll, pitch and yaw), the Code was also 
better-optimized so that it runs 15% faster than 
previous versions (or faster, depending on the options 
being modeled). 

With the addition of support platform motion 
functionality, it made sense to add more information to 
the FAST summary (.fsm) file.  See the Output Files 
chapter, especially Figure 32, for more information 

It also made made sense to rename some of the 
output parameters.  The output channels WindVxt, 
WindVyt, and WindVzt in FAST v5.1 were renamed to 
WindVxi, WindVyi, and WindVzi in v6.0, respectively, 
since the wind speeds relative to the inertia frame (i) 
are now more important than the wind speeds relative 
to the tower-base frame (t), which can now move 
relative to the inertia frame.  WindVxi, WindVyi, and 
WindVzi in FAST v6.0 will give the same results as 
WindVxt, WindVyt, and WindVzt gave in v5.1, since 

the tower-base was stationary in v5.1.  See Table 16 of 
the Output Files chapter for more information. 

The names of the output channels pertaining to the 
blade tip accelerations were also changed since they 
are now output in the local blade coordinate system 
instead of the undeflected coordinate system—see 
Table 17, Table 18, and Table 19 of the Output Files 
chapter for more information.  The names of the output 
channels pertaining to the tower-top / yaw bearing 
angular (rotational) velocities and accelerations were 
also changed since they are now output in the tower-
top / base-plate coordinate system instead of the tower 
base coordinate system—see Table 28 of the Output 
Files chapter for more information.  These changes 
were made so that the associated outputs are in 
coordinate systems that are easier to measure in the 
“real world”. 

Updating to FAST v6.0 from v5.1 requires a few 
modifications to FAST’s primary input file, even if you 
want to keep your turbine model configuration 
unchanged.  Additionally, to take advantage of FAST’s 
new support platform motion functionality, a new file 
of inputs must be assembled.  In addition to the 
changes listed below, please be aware that all of the 
inputs that had a lower limit restriction of –180 degrees 
in v5.1 where changed to greater than –180 degreees 
in FAST v6.0.  This change was made since the –180 
degrees (inclusive) restriction caused problems in 
ADAMS where the ATAN2() FUNCTION is used to 
initialize variables. 

The changes to the primary input file are as 
follows (in the order they appear in the file): 

• Replace inputs RatGenSp and Reg2TCon 
with inputs VS_RtGnSp, VS_RtTq, 
VS_Rgn2K, and VS_SlPc in the turbine 
control section.  Inputs VS_RtGnSp and 
VS_Rgn2K are simply renamed versions of 
inputs RatGenSp and Reg2TCon.  
VS_RtTq and VS_SlPc are new inputs used 
to specify the rated generator torque in Region 
3 and the rated generator slip percentage in 
Region 2½, respectively.  These new inputs 
are needed to specify the characteristics of the 
improved simple variable-speed generator 
controller, which now includes Region 2½ in 
addition to Regions 2 and 3. 

• Add a new platform model section including a 
header plus inputs PtfmModel and PtfmFile 
between the Thevenin-equivalent induction 
generator and tower sections.  PtfmModel is a 
switch used to indicate the type of support 
platform as follows: {0: none, 1: onshore, 2: 
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fixed bottom offshore, 3: floating offshore}.  
If PtfmModel is not 0, FAST will read in an 
additional file of inputs for defining the model 
properties of the support platform.  PtfmFile 
is the name of this file.  In FAST v6.0, all 
nonzero PtfmModel options will work the 
same way by reading in PtfmFile.  In future 
versions, the format of PtfmFile will depend 
on which PtfmModel option is selected. 

• Add inputs NcIMUxn, NcIMUyn, and 
NcIMUzn between inputs SttsTime and 
ShftGagL in the output section.  These three 
new inputs define the distance from the tower-
top to the nacelle inertial measurement unit in 
the downwind, lateral, and vertical directions, 
respectively. 

• Add inputs NTwGages and TwrGagNd 
between inputs ShftGagL and NBlGages in 
the output section.  Inputs NTwGages and 
TwrGagNd define the tower strain gage 
locations like inputs NBlGages and 
BldGagNd do for blade 1. 

If you want to leave your model unchanged when 
converting to FAST v6.0, use the following 
equivalency relationships when defining the new inputs 
from the old, now obsolete, inputs: 

VS_RtGnSp = RatGenSp 

VS_RtTq = Reg2TCon • ( RatGenSp^2 ) 

VS_Rgn2K = Reg2Tcon 

VS_SlPc = 9999.9E-9   
 (a very small don’t care > 0.0) 

PtfmModel = 0 

PtfmFile = <may be left blank> 

NcIMUxn = 0.0 (a don’t care) 

NcIMUyn = 0.0 (a don’t care) 

NcIMUzn = 0.0 (a don’t care) 

NTwGages = 0 

TwrGagNd = <may be left blank> 

Finally, if you use the FAST-to-ADAMS 
preprocessor to create ADAMS wind turbine datasets, 
upgrading from FAST v5.1 to v6.0 also requires you to 
upgrade from v12.17 to v12.18 of the ADAMS to 
AeroDyn (A2AD) source files and to recompile the 
ADAMS user-created dynamic-link-library (DLL).  
This is because ADAMS datasets generated using 
FAST v6.0 must be simulated with an ADAMS user-
created DLL compiled using the source files from 
A2AD v12.18.  All of the new features for FAST v6.0 
listed above are also available in the FAST-to-ADAMS 
preprocessor. 

UPGRADING TO FAST V5.1 FROM V5.0 
This section describes how to update input files 

created previously for FAST v5.0 so that they are 
compatible with FAST v5.1.  New users can skip to the 
section entitled Using This Manual. 

FAST v5.1 contains many upgrades relating to 
turbine control.  Yaw control features have been added 
to the simulation and linearization analysis modes and 
the ADAMS preprocessor.  “Hooks” for user-defined 
high-speed shaft brake models have also been added to 
FAST and the FAST-generated ADAMS datasets.  
Within user-defined routines, you now have the option 
of switching DOFs on-or-off at runtime and you now 
have the ability of accessing the current value of any 
available output parameter without changing the 
number of arguments passed to the routines.  The user-
defined pitch control routine written by Craig Hansen, 
which is linked with the executable version of FAST, 
has also been upgraded.  An interface has been 
developed between FAST and Simulink, so that you 
can implement advanced turbine controls in Simulink’s 

convenient block diagram form.  An interface has also 
been developed between FAST and a master controller 
dynamic-link-library (DLL) implemented in the style 
of Garrad Hassan’s Bladed wind turbine software 
package (this interface is not linked with the distributed 
executable, but is available as a source file containing a 
set of subroutines, which can be compiled with FAST 
in place of the built-in example control routines; the 
same set of routines can be used to interface FAST-
generated ADAMS datasets with Bladed DLL 
controllers).  Finally, the ramp-up of aerodynamic 
loads, which occurred over the first two seconds of 
simulation in previous versions, has been eliminated; 
thus, trim solutions and/or start-up transients may be 
different than in previous versions. 

Detailed information on these new features and 
their associated input parameters are presented 
throughout this manual where appropriate.  In 
particular, a description of yaw control is provided in 
the new Nacelle Yaw Control section of the Controls 
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chapter, user-defined high-speed shaft brake control is 
described in the HSS Brake Control section of the 
Controls chapter, master controller DLLs are described 
in the Master Controllers and the Bladed-Style DLL 
Interface section of the Controls chapter, upgrades to 
Craig’s pitch controller should be apparent by 
examining the example Pitch.ipt input file located in 
FAST’s CertTest folder, and a description of FAST’s 
new interface to Simulink is given in the new Simulink 
Interface chapter. 

Updating to FAST v5.1 from v5.0 requires a few 
modifications to FAST’s primary and linearization 
control-input files, even if you want to keep your 
turbine model configuration unchanged.  The changes 
to the primary input file are as follows (in the order 
they appear in the file): 

• Add inputs YCMode and TYCOn before 
PCMode.  Inputs YCMode and TYCOn 
define yaw control options like inputs 
PCMode and TPCOn do for pitch control. 

• Change pitch control mode input PCMode so 
that 0 means none, 1 means user-defined from 
routine PitchCntrl(), and 2 means user-
defined from Simulink. 

• Change variable speed control mode input 
VSContrl so that 0 means none, 1 means 
simple variable speed control model, 2 means 
user-defined from routine UserVSCont(), and 
3 means user-defined from Simulink. 

• Add input HSSBrMode between TimGenOf 
and THSSBrDp.  Input HSSBrMode 
provides a switch between the simple and 
user-defined from routine UserHSSBr() high-
speed shaft brake models. 

• Add inputs TYawManS, TYawManE, and 
NacYawF between TBDepISp(3) and 
TPitManS(1).  Inputs TYawManS, 
TYawManE, and NacYawF define override 
yaw control options like inputs TPitManS, 
TPitManE, and BlPitchF do for pitch control. 

The changes to the linearization control-input file 
are as follows (in the order they appear in the file): 

• Change trim case input TrimCase so that 1 
means find nacelle yaw, 2 means find 
generator torque (region 2 linearization), and 
3 means find collective blade pitch (region 3 
linearization). 

• Add input NInputs before CntrlInpt.  
NInputs defines the number of control inputs 
in the output linearized state matrices. 

• Change input CntrlInpt so that it is a list of 
control inputs from 1 to NInputs where 1 is 
nacelle yaw angle, 2 is nacelle yaw rate, 3 is 
generator torque, 4 is collective blade pitch, 5 
is individual pitch of blade 1, 6 is individual 
pitch of blade 2, and 7 is individual pitch of 
blade 3. 

If you want to leave your turbine model 
configuration unchanged when converting to FAST 
v5.1, use the following equivalency relationships when 
defining the new inputs from the old, now obsolete, 
inputs: 

YCMode = 0 

TYCon = 9999.9 (a don’t care) 

PCMode = 0 if PCMode was 0 in v5.0 
               = 1 if PCMode was 1 or 2 in v5.0 

VSContrl = same value as VSContrl in v5.0 

HSSBrMode = 1 

TYawManS = 9999.9 (a don’t care > TMax) 

TYawManE = 9999.9 (a don’t care ≥ 
TYawManS) 

NacYawF = 0.0 (a don’t care) 

TrimCase = 2 if TrimCase was 1 in v5.0 
                 = 3 if TrimCase was 2 in v5.0 

NInputs = 0 if CntrlInpt was 0 in v5.0 
              = 1 if CntrlInpt was 1 or 2 in v5.0 
              = NumBl if CntrlInpt was 3 in v5.0 
              = 2 if CntrlInpt was 4 in v5.0 
              = 1 + NumBl if CntrlInpt was 5 in v5.0 

CntrlInpt = <may be left blank> if CntrlInpt
 was 0 in v5.0 

               = 3 if CntrlInpt was 1 in v5.0 
               = 4 if CntrlInpt was 2 in v5.0 
               = 5,6 if CntrlInpt was 3 and 

 NumBl = 2 in v5.0 
               = 5,6,7 if CntrlInpt was 3 and

 NumBl = 3 in v5.0 
               = 3,4 if CntrlInpt was 4 in v5.0 
               = 3,5,6 if CntrlInpt was 5 and

 NumBl = 2 in v5.0 
               = 3,5,6,7 if CntrlInpt was 5 and

 NumBl = 3 in v5.0 

If you compile FAST yourself, please note that 
new source files FAST_Prog.f90, UserVSCont_KP.f90, 
and BladedDLLInterface.f90 have been added to, and 
source file PitchCntrl.f90 has been removed from, the 
Source folder in the FAST archive.  Please see the new 
Compiling FAST chapter for more information. 

Finally, if you use the FAST-to-ADAMS 
preprocessor to create ADAMS wind turbine datasets, 
upgrading from FAST v5.0 to v5.1 also requires you to 
upgrade from v12.16 to v12.17 of the ADAMS to 
AeroDyn (A2AD) source files and to recompile the 
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ADAMS user-created dynamic-link-library (DLL).  
This is because ADAMS datasets generated using 
FAST v5.1 must be simulated with an ADAMS user-
created DLL compiled using the source files from 

A2AD v12.17.  All of the new features for FAST v5.1 
listed above are also available in the FAST-to-ADAMS 
preprocessor. 

UPGRADING TO FAST V5.0 FROM V4.4 
FAST v5.0 contains a major expansion in the 

range of turbine configurations available relative to 
those available in FAST v4.4.  This section describes 
how to update input files created previously for FAST 
v4.4 so that they are compatible with FAST v5.0.  New 
users can skip to the section entitled Using This 
Manual. 

New to FAST v5.0 is the availability of a lateral 
offset and skew angle of the rotor shaft, rotor-furling, 
tail-furling, and tail inertia and aerodynamics.  These 
new features support the analysis of most small wind 
turbine configurations.  A few new mass and inertia 
terms are also available for conventional turbine 
configurations including a yaw bearing point mass, a 
lateral offset for the nacelle mass, and a hub inertia for 
3-bladed rotors (the hub inertia was previously 
available only for 2-bladed rotor configurations). 

While upgrading FAST, we tried to minimize the 
number of changes to the input files as a courtesy to 
our users; nevertheless, some changes were 
unavoidable.  Updating to FAST v5.0 from v4.4 
requires a few modifications to FAST’s primary and 
ADAMS-specific input files, even if you want to keep 
your turbine model configuration unchanged.  
Additionally, to take advantage of FAST’s new model 
configuration properties for small wind turbines, a new 
file of inputs must be assembled.  Detailed information 
on the new features and associated inputs are presented 
throughout this manual where appropriate.  In 
particular, a description of the input file for specifying 
additional model properties for a furling turbine is 
provided in Table 13. 

The changes to the primary input file are as 
follows (in the order they appear in the file): 

• Remove input TiltDOF. 
• Remove input NacTilt. 
• Replace inputs ParaDNM and PerpDNM 

with inputs NacCMxn, NacCMyn, and 
NacCMzn.  These three new inputs define the 
distance from the tower-top to the nacelle 
mass center in the downwind, lateral, and 
vertical directions, respectively.  This is in 
contrast to how ParaDNM and PerpDNM 
previously located the nacelle mass center 
relative to the rotor shaft. 

• Add input ShftTilt between inputs TwrRBHt 
and Delta3.  ShftTilt defines the rotor shaft 

tilt angle, replacing what used to be input 
NacTilt. 

• Add input YawBrMass before NacMass.  
YawBrMass defines the point mass of the 
yaw bearing. 

• Remove input NacTIner. 
• Replace the entire nacelle-tilt section, which 

includes the header plus inputs TiltSpr, 
TiltDamp, TiltSStP, TiltHStP, TiltSSSp, and 
TiltHSSp, with a furling section, which  
includes a header plus inputs Furling and 
FurlFile.  Furling is a flag used to tell FAST 
whether or not to read in an additional file of 
inputs for defining the model configuration of 
a furling turbine.  FurlFile is the name of this 
file. 

The changes to the ADAMS-specific input file are 
as follows (in the order they appear in the file): 

• Add input LSSLength between inputs 
HSSLength and GenRad.  LSSLength 
defines the length of the low-speed shaft 
cylinder used for LSS graphical output in 
ADAMS.  This is in contrast to how the LSS 
previously extended from the hub to the yaw 
axis. 

• Remove inputs TetPnLngth and 
TeetPinRad.  These inputs were deemed 
unnecessary graphical output in ADAMS. 

• Add input BoomRad after input 
ThkOvrChrd at the end of the file.  
BoomRad defines the radius of the tail boom 
cylinder used for tail boom graphical output in 
ADAMS. 

If you want to leave your turbine model 
configuration unchanged when converting to FAST 
v5.0, use the following equivalency relationships when 
defining the new inputs from the old, now obsolete, 
inputs: 

NacCMxn = ParaDNM • COS( NacTilt ) - 
PerpDNM • SIN( NacTilt ) 

NacCMyn = 0.0 

NacCMzn = ParaDNM • SIN( NacTilt ) + 
PerpDNM • COS( NacTilt ) + Twr2Shft 

ShftTilt = NacTilt 
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YawBrMass = 0.0 

Furling = False 

FurlFile = <may be left blank> 

LSSLength = ABS( OverHang ) 

BoomRad = 0.0 

Note that the above equations are only applicable 
if your existing FAST v4.4 model had the nacelle-tilt 
degree of freedom disabled (TiltDOF = False).  If your 
existing FAST v4.4 model had the nacelle-tilt degree of 
freedom enabled (TiltDOF = True)*, you will now need 
to assemble the FurlFile in order to define the model 
properties of your tilting turbine.  This is because the 
nacelle-tilt degree of freedom has been replaced with 
the more general rotor-furl degree of freedom. 

Finally, if you use the FAST-to-ADAMS 
preprocessor to create ADAMS wind turbine datasets, 
upgrading from FAST v4.4 to v5.0 also requires you to 
upgrade from v12.15 to v12.16 of the ADAMS to 
AeroDyn (A2AD) source files and to recompile the 
ADAMS user-created dynamic-link-library (DLL).  
This is because ADAMS datasets generated using 
FAST v5.0 must be simulated with an ADAMS user-
created DLL compiled using the source files from 
A2AD v12.16.  All of the new features for FAST v5.0 
listed above are also available in the FAST-to-ADAMS 
preprocessor. 

                                                           

* The only example, known by the authors, of a wind 
turbine with a tilting-nacelle degree of freedom is the Wind 
Eagle 300 turbine from Cannon Wind Eagle Corporation. 
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USING THIS MANUAL 
We use several typographic conventions in this 

manual to make it easy to distinguish various entities.  
Most titles and headings are formatted with the Arial 
bold typeface.  This manual uses the Times New 
Roman typeface for body text.  To make it easy to spot 
Variable Names within the body text, we formatted 
them with the Arial typeface.  We did the same for 
routine names but appended a pair of parentheses to the 
end of the name (for example, Routine()).  We 
formatted file names with Times New Italic so that we 
wouldn’t have to deal with the awkward situation of 
having to include punctuation within the quote marks, 
which might cause confusion.  Examples are formatted 
with the Letter Gothic typeface. 
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MODES OF OPERATION 

FAST has two different forms of operation or 
analysis modes (see Figure 1).  Switch AnalMode in 
the primary input file is used to control this mode. 

The first analysis mode is time-marching of the 
nonlinear equations of motion—that is, simulation.  
During simulation, wind turbine aerodynamic and 
structural response to wind-inflow conditions is 
determined in time.  Active controls for determining 
many aspects of the turbine operation may be 
implemented during simulation analyses as described 
in the Controls chapter.  Outputs of simulations include 
time-series data on the aerodynamic loads as well as 
loads and deflections of the structural members of the 
wind turbine as described in the Output Files chapter.  
These outputs can be used, for example, to predict both 
the extreme and fatigue loads of HAWTs.  The 
aerocoustic signature of an operating turbine is another 
output that can be obtained from simulation. 

Simulation analyses can be run using the 
distributed Windows executable program file or as a 
dynamic-link-library (DLL) interfaced with Simulink.  
When running the executable version of FAST, active 
controls must be implemented through user-defined 
routines that have been linked with FAST during 
creation of the executable or as a master controller 
implemented as a DLL in the style of Garrad Hassan's 
Bladed wind turbine software package.  When running 
FAST as a DLL interfaced with Simulink, active 
controls can be implemented in the Simulink 
environment in addition to the implementations 
available with the FAST executable.  Most of the 
contents of this manual relate to simulation using the 
FAST executable; there is no chapter in this manual 
devoted specifically to this mode of operation.  The 
Simulink Interface chapter documents how to run 

simulations using FAST as a DLL interfaced with 
Simulink. 

The second form of analysis provided in FAST is 
linearization.  FAST has the capability of extracting 
linearized representations of the complete nonlinear 
aeroelastic wind turbine modeled in FAST.  This 
analysis capability is useful for developing state 
matrices of a wind turbine “plant” to aid in controls 
design and analysis.  It is also useful for determining 
the full system modes of an operating or stationary 
HAWT through the use of a simple eigenanalysis.  The 
Linearization chapter documents how to extract 
linearized wind turbine models out of FAST.  The 
linearization capability is only available in the 
Windows executable version (not the DLL interface 
with Simulink).   

Another feature available in FAST is the ADAMS 
preprocessor.  The ADAMS preprocessor feature is 
separate from the two analysis modes available in 
FAST.  It is not considered an analysis mode of FAST, 
because it does not make use of the aeroelastic wind 
turbine model available in FAST.  Instead, the 
ADAMS preprocessor uses the input parameters 
available in the FAST input files to construct an 
ADAMS dataset of a complete aeroelastic wind 
turbine.  ADAMS then becomes the code in which 
different wind turbine analyses (simulation or 
linearization) are performed.  The ADAMS 
preprocessor feature of FAST is documented, not 
surprisingly, in the ADAMS Preprocessor chapter of 
this manual and is controlled by switch ADAMSPrep 
in FAST’s primary input file.  The ADAMS 
preprocessor capability is only available in the 
Windows executable version (not the DLL interface 
with Simulink). 

 

Figure 1.  Modes of Operation.
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RUNNING FAST

This section documents how to run the FAST 
Windows executable program file that we distribute in 
the FAST archive available at our Web page 
http://wind.nrel.gov/designcodes/simulators/fast/.  For 
a description on how to run FAST with Simulink, see 
the Simulink Interface chapter. 

Before you run FAST, you will want to install it in 
such a way that you can run it from any folder.  For 
instructions on installing codes such as FAST, please 
read Buhl (7). 

To run the executable, open a command prompt 
window in the directory in which you want to work.  
The command-line syntax is: 

fast [/h] [<input file>] 
 

where: 
 
/h prints a help message. 
<input file> is the name of the primary input file.  

The default name is primary.fst). 
 
When FAST runs, it first prints out a line 

informing you of the version and compile date of the 
code.  If it cannot find the input file, it aborts with an 
error message.  If it finds a valid input file, FAST 

echoes the title line from the input file.  If aerodynamic 
calculations are requested in your input file, the 
AeroDyn routines then print out some startup 
messages.  If running a time-marching analysis, next, 
you will see one line that is repeatedly overwritten 
telling you what the status of the simulation is.  It will 
update this line periodically. 

At the end of the simulation, FAST prints out 
some run-time statistics as seen in Figure 2.  The Total 
Real Time is the amount of time passed from the time 
you started the program to the time it completes.  The 
Total CPU Time is a measure of the computer time 
used for the entire FAST run, which includes the time 
it takes to read in the input files and set up the model.  
The difference between these two times is the amount 
of time your computer was busy with other things 
while running FAST.  The Simulation Time is the 
amount of time simulated.  The Simulation CPU Time 
is the amount of computer time use during that time-
marching part of the simulation.  The Simulation Time 
Ratio is the ratio of the amount of time simulated to the 
simulation CPU time.  The bigger this number is, the 
faster your computer is.  If the value is greater than 1, 
then FAST can simulate an event in less time than it 
would take in real life.  If the value is less than 1, then 
it might be time to upgrade your computer ☺. 

 

Figure 2.  Example display output. 

 Running FAST (v4.00, 09-Jul-2002). 
 
 FAST certification test #1 for AWT-27CR2 with many 

DOFs. 
 
Heading of the aerodyn.ipt file : 
AWT-27CR aerodynamic parameters for FAST certification

test #01. 
 
Detected hub-height wind file: 
 "Wind/Shr12_30.wnd" 
 
 Aerodynamics loads calculated using AeroDyn(12.46, 23-

May-2002) 
 
 Total Real Time:       7.141 seconds 
 Total CPU Time:        7.1406 seconds 
 Simulation Time:       20 seconds 
 Simulation CPU Time:   7.1094 seconds 
 Simulation Time Ratio: 2.8132 
 
 FAST completed normally. 





 

FAST User's Guide 5 Last updated on August 12, 2005 for version 6.0 

COMPILING FAST 

You should not need to compile FAST unless you 
want to create and link a user-defined routine, make 
changes to the source code, or port FAST to an 
operating system other than Microsoft Windows.  The 
FAST Windows executable program file that we 
distribute in the archive can be used for all other 
purposes. 

You must include both FAST’s and AeroDyn’s 
source files in a workspace in order to compile FAST.  
AeroDyn’s source code, which is available in the 
AeroDyn archive, is available for download from our 
Web page 
http://wind.nrel.gov/designcodes/simulators/aerodyn/.  
All of the FAST source code resides in the Source 
folder of the FAST archive.  The FAST Windows 
executable program file that we distribute in the FAST 
archive is compiled using the Compaq Visual Fortran 
(CVF) Standard Edition compiler version 6.6.B.  Table 
1 lists the FAST source files used to compile this 
program file. 

When compiling using CVF, we have the 
Debugging Level set to "Minimal", the Warning Level 
set to "Normal Warnings", and the Optimization Level 
set to "Full Optimizations".  We also use Project 
Options /assume:byterecl, /compile_only, /nologo, 
/stand, /traceback, and /warn:nofileopt.  We 
recommend that you use the same compiler and project 
options when compiling FAST using the CVF 
compiler. 

All of the CVF compiler-dependent code in FAST 
resides in the files called SysCVF.f90 and 
ModCVF.f90.  (AeroDyn also contains some CVF 
compiler-dependent code)  If you want to port FAST to 
another platform or compiler, you should have to 
change only these two files.  Also included in the 
Source folder are files SysLL.f90, ModLL.f90, 
SysLU.f90, and ModLU.f90.  Files SysLL.f90 and 
ModLL.f90 should be used when compiling FAST in 
Lahey Linux (LL).  Files SysLU.f90 and ModLU.f90 
should be used when compiling FAST in Lahey Unix 
(LU).  In the FAST archive, we also distribute a file 
named make_LL.  This is a makefile that was 
developed by Hugh Currin who used it to compile an 
older version of FAST (v4.03) in LL.  Please be aware 
that the NWTC does not have an LL or LU compiler, 
and as such, we have not been able to update the LL 
and LU source files and LL makefile to accommodate 
upgrades to the program.  Nevertheless, these sample 
files should be a useful starting point if you need to 
port FAST to another operating system. 

Table 1.  FAST Source Files. 

Source File Description 
FAST_Prog.f90 Contains PROGRAM 

FAST(), which guides the 
program’s execution 

FAST_Mods.f90 Contains MODULEs that 
store variables used by 
FAST’s routines 

FAST_IO.f90 Contains routines related to 
program input and output 

FAST.f90 Contains routines that make-
up the “guts” of FAST, 
including the equations of 
motion and their solution 

AeroCalc.f90 Contains the interface routines 
between FAST and AeroDyn 

FAST2ADAMS.f90 Contains routines that make 
up the FAST-to-ADAMS 
preprocessor 

FAST_Lin.f90 Contains routines used during 
a linearization analysis 

SetVersion.f90 Contains a routine that sets the 
program version number 

GenUse.f90 Contains general-purpose 
routines 

NoiseMods.f90 Contains a MODULE that 
stores variables used by the 
aeroacoustic routines 

NoiseSubs.f90 Contains routines related to 
aeroacoustics 

ModCVF.f90 Contains a MODULE that 
stores compiler-dependent 
variables 

SysCVF.f90 Contains compiler-dependent 
routines 

UserSubs.f90 Contains dummy placeholders 
of all available user-specified 
routines 

PitchCntrl_ACH.f90 Contains an example pitch 
control routine written by A. 
Craig Hansen 

UserVSCont_KP.f90 Contains an example variable-
speed torque control routine 
written by Kirk Pierce 

 
FAST includes “hooks” for ten user-specified 

routines as summarized in Table 2.  Dummy 
placeholder versions of these routines are all contained 
within source file UserSubs.f90. 
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Table 2.  User-Specified Routines. 

Routine Description 
PitchCntrl() User-specified blade pitch control 

(either independent or rotor-
collective) model 

UserGen() User-specified generator torque 
and power model 

UserHSSBr() User-specified high-speed shaft 
brake model 

UserPtfmLd() User-specified platform loading 
model 

UserRFrl() User-specified rotor-furl spring / 
damper model 

UserTeet() User-specified rotor-teeter spring / 
damper model 

UserTFin() User-specified tail fin 
aerodynamics model 

UserTFrl() User-specified tail-furl spring / 
damper model 

UserVSCont() User-specified variable-speed 
torque and power control model 

UserYawCont() User-specified nacelle-yaw 
control model 

 
In order to interface FAST with your own user-

specified routines, you can develop your own logic 
within these dummy placeholders and recompile 
FAST, or comment out the appropriate dummy 
placeholders, create your own routines in their own 
source files, and recompile FAST while linking in 
these additional source files.  For example, as implied 

in Table 1, the executable version of FAST that is 
distributed with the archive is linked with the example 
PitchCntrl() routine contained in source file 
PitchCntrl_ACH.f90 and the example UserGen() and 
UserVSCont() routines contained in source file 
UserVSCont_KP.f90.  Thus, the dummy placeholders 
for routines PitchCntrl(), UserGen(), and 
UserVSCont() are commented out within source file 
UserSubs.f90.  The example pitch controller was 
written by A. Craig Hansen (ACH) and the example 
generator and variable speed controllers were written 
by Kirk Pierce (KP).  Please see the aforementioned 
source files for additional information on these 
example user-specified routines. 

Also contained in the Source folder is a file named 
BladedDLLInterface.f90.  This source file contains 
example PitchCntrl(), UserHSSBr(), UserVSCont(), 
and UserYawCont() routines that may be used to 
interface FAST with a master controller implemented 
as a dynamic-link-library (DLL) in the style of Garrad 
Hassan's Bladed wind turbine software package (2).  In 
order to compile FAST with these routines, you must 
comment-out the dummy placeholder versions of 
routines PitchCntrl(), UserHSSBr(), UserVSCont(), 
and UserYawCont() contained in source file 
UserSubs.f90 and recompile FAST with the addition of 
source file BladedDLLInterface.f90.  The executable 
version of FAST that is distributed with the FAST 
archive is not linked with the routines contained within 
source file BladedDLLInterface.f90.  Please see the 
Master Controllers and the Bladed-Style DLL Interface 
section of the Controls chapter for more information. 
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MODEL DESCRIPTION 

General Description 
The FAST code can model the dynamic response 

of both two- and three-bladed, conventional, 
horizontal-axis wind turbines.  The wind turbine 
configuration may optionally include rotor-furling, tail-
furling, and tail aerodynamics—features useful in the 
analysis of most small wind turbines.  The code was 
evaluated by Germanischer Lloyd WindEnergie and 
found suitable for "the calculation of onshore wind 
turbine loads for design and certification" (3). 

The FAST model employs a combined modal and 
multibody dynamics formulation.  The model for two-
bladed turbines relates nine rigid bodies (earth, support 
platform, base plate, nacelle, armature, gears, hub, tail, 
and structure furling with the rotor) and four flexible 
bodies (tower, two blades, and drive shaft) through 22 
degrees of freedom (DOFs).  Accounted for in the 
degrees of freedom are platform translation and 
rotation (6 DOF), tower flexibility (4 DOF), nacelle 
yaw (1 DOF), variable generator and rotor speeds (2 
DOF), blade teetering (1 DOF), blade flexibility (6 
DOF), rotor-furl (1 DOF), and tail-furl (1 DOF).  
Flexibility in the blades and tower are characterized 
using a linear modal representation that assumes small 
deflections.  The three rotational DOFs of the support 
platform (roll, pitch, and yaw) also employ a small 
angle approximation.  The remaining DOFs may 
exhibit large displacements without loss of accuracy.  
The DOFs are further described below. 

The first six DOFs (the most recent additions) 
originate from the translational (surge, sway, and 
heave) and rotational (roll, pitch, and yaw) motions of 
the support platform relative to the inertia frame. 

Two DOFs originate from the first bending mode 
of the tower in the longitudinal and transverse 
directions.  Two more DOFs model the second bending 
mode in the same directions.  The tower is rigidly 
attached to the support platform through a cantilever 
connection. 

Another DOF accounts for the nacelle yaw motion, 
which can be free or fixed with a torsional yaw spring.  
The rotor can be either upwind or downwind with the 
rotor providing yaw loads. 

The next DOF accounts for variations in generator 
speed.  Another DOF accounts for drivetrain flexibility 
associated with torsional motion between the generator 
and the hub/rotor. 

Another DOF accounts for teeter motion of the 
blades about a pin located on the hub.  Dampers, 
springs, or a combination of both can restrict teeter 
motion. 

The next two DOFs arise from the first flapwise 
bending mode of each blade.  Two more DOFs 
originate from the second flapwise bending modes.  
Blade edgewise motion accounts for the next two 
DOFs.  The blades are rigidly attached to the hub 
through a cantilever connection.  Motion of the blades 
is along the local principal axes.  See the discussion of 
blade mode shapes in the Flexible Tower and Blades 
section on page 10 for details. 

The last two DOFs are associated with furling of 
the rotor and tail about the yawing-portion of the 
structure atop the tower.  The rotor-furl DOF can also 
be used to model torsional flexibility in the gearbox 
mounting if you align the rotor-furl axis with the rotor 
shaft axis.  The amount of furling motion can be 
restricted with springs, dampers, or a combination of 
both. 

The FAST code can also model a three-bladed 
HAWT with 24 DOFs.  The first six DOFs originate 
from the translational (surge, sway, and heave) and 
rotational (roll, pitch, and yaw) motions of the support 
platform relative to the inertia frame.  The next four 
DOFs account for tower motion; two are longitudinal 
modes, and two are lateral modes.  Yawing motion of 
the nacelle provides another DOF.  The next DOF is 
for the generator azimuth angle, and another DOF is 
the compliance in the drivetrain between the generator 
and hub/rotor.  These DOFs account for variable rotor 
speed and drive-shaft flexibility.  The next three DOFs 
are the blade flapwise tip motion for the first mode.  
Three more DOFs give the tip displacement for each 
blade for the second flapwise mode.  The next three 
DOFs are for the blade edgewise tip displacement for 
the first edgewise mode.  The last two DOFs are for 
rotor- and tail-furl. 

For both the two- and three-bladed wind turbine 
configurations, you can enable any combination of the 
available DOFs and features during your analysis.  The 
DOFs and features most applicable to you are dictated 
by the configuration of the wind turbine you are 
analyzing. 

Coordinate Systems 
Figure 3 through Figure 9 show the coordinate 

systems used for input and output parameters.  
Coordinate systems t, n, h, and b conform to the 
International Electrotechnical Commission (IEC) 
standard for wind turbines (8).  Additional coordinate 
systems i, p, a, s, and c are necessary for interpreting 
some of the output parameters.  Some of the coordinate 
systems used internally by FAST differ from these.  
FAST takes care of these conversions for you. 
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Inertial Frame Coordinate System 

Origin The point about which the translational 
motions of the support platform (surge, 
sway, and heave) are defined. 

xi axis Pointing in the nominal (0°) downwind 
direction. 

yi axis Pointing to the left when looking in the 
nominal downwind direction. 

zi axis Pointing vertically upward opposite to 
gravity. 

Tower-Base Coordinate System 
This coordinate system is fixed in the support 

platform so that it translates and rotates with the 
platform. 

Origin Intersection of the center of the tower and 
the tower base connection to the support 
platform. 

xt axis When the support platform has no pitch 
or yaw displacement, it is aligned with 
the xi axis (pointing horizontally in the 
nominal downwind direction). 

yt axis When the support platform has no roll or 
yaw displacement, it is aligned with the yi 
axis (pointing to the left when looking in 
the nominal downwind direction). 

zt axis Pointing up from the center of the tower. 
When you request output of motions or loads for 

various locations along the tower with the TwrGagNd 
array, a local coordinate system similar to the standard 
tower system is used, but the local coordinate systems 
orient themselves with the deflected tower. 

Figure 3.  Tower-base coordinate system. 

Tower-Top/Base-Plate Coordinate System 
This coordinate system is fixed to the top of the 

tower.  It translates and rotates as the platform moves 

and the tower bends, but it does not yaw with the 
nacelle. 

Origin A point on the yaw axis at a height of 
TowerHt above ground level [onshore or 
mean sea level [offshore] (see Figure 
14(a), Figure 16, or Figure 20). 

xp axis When the tower is not deflected, it is 
aligned with the xt axis. 

yp axis When the tower is not deflected, it is 
aligned with the yt axis. 

zp axis When the tower is not deflected, it is 
aligned with the zt axis.  It is also the yaw 
axis. 

 

Figure 4.  Tower-top/base-plate 

coordinate system. 

Nacelle/Yaw Coordinate System 
This coordinate system translates and rotates with 

the top of the tower, plus it yaws with the nacelle. 

Origin The origin is the same as that for the 
tower-top/base-plate coordinate system. 

xn axis Pointing horizontally toward the 
nominally downwind end of the nacelle. 

yn axis Pointing to the left when looking toward 
the nominally downwind end of the 
nacelle. 

zn axis Coaxial with the tower/yaw axis and 
pointing up. 

Figure 5.  Nacelle/yaw coordinate system. 
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Shaft Coordinate System 
The shaft coordinate system does not rotate with 

the rotor, but it does translate and rotate with the tower 
and it yaws with the nacelle and furls with the rotor.  
The nacelle inertial measurement unit uses this 
coordinate system for all of its motion outputs.  Shaft 
bending moments at the hub and at the position 
denoted by ShftGagL use this coordinate system or the 
rotating hub coordinate system shown below. 

Origin Intersection of the yn-/zn-plane and the 
rotor axis. 

xs axis Pointing along the (possibly tilted) shaft 
in the nominally downwind direction. 

ys axis Pointing to the left when looking from the 
tower toward the nominally downwind 
end of the nacelle. 

zs axis Orthogonal with the xs and ys axes such 
that they form a right-handed coordinate 
system. 

Figure 6.  Shaft coordinate system. 

Azimuth Coordinate System 
The azimuth, or a, coordinate system is located at 

the origin of the shaft coordinate system, but it rotates 
with the rotor.  When Blade 1 points up, the azimuth 
and shaft coordinate systems are parallel.  For three-
bladed rotors, blade 3 is ahead of blade 2, which is 
ahead of blade 1, so that the order of blades passing 
through a given azimuth is 3-2-1-repeat. 

Hub Coordinate System 
The hub coordinate system rotates with the rotor.  

It also teeters in two-bladed models. 

Origin Intersection of the rotor axis and the plane 
of rotation (non-coned rotors) or the apex 
of the cone of rotation (coned rotors). 

xh axis Pointing along the hub centerline in the 
nominal downwind direction. 

yh axis Orthogonal with the xh and zh axes such 
that they form a right-handed coordinate 
system. 

zh axis Perpendicular to the hub centerline with 
the same azimuth as Blade 1. 

Figure 7.  Hub coordinate system. 

Coned Coordinate Systems 
There is a coned coordinate system for each blade 

that rotates with the rotor.  The coordinate system does 
not pitch with the blades and it also teeters in two-
bladed models.  For three-bladed rotors, blade 3 is 
ahead of blade 2, which is ahead of blade 1, so that the 
order of blades passing through a given azimuth is 3-2-
1-repeat. 

Origin The origin is the same as that for the 
hub coordinate system. 

Xc,i axis Orthogonal with the yc,i and zc,i axes 
such that they form a right-handed 
coordinate system.  (i = 1, 2, or 3 for 
blades 1, 2, or 3, respectively) 

Yc,i axis Pointing towards the trailing edge of 
blade i if the pitch and twist were zero 
and parallel with the chord line.  (i = 1, 
2, or 3 for blades 1, 2, or 3, 
respectively) 

Zc,i axis Pointing along the pitch axis towards 
the tip of blade i.  (i = 1, 2, or 3 for 
blades 1, 2, or 3, respectively) 

Figure 8.  Coned coordinate system. 

Blade Coordinate Systems 
These coordinate systems are the same as the 

coned coordinate systems, except that they pitch with 
the blades and their origins are at the blade root.  For 
three-bladed rotors, blade 3 is ahead of blade 2, which 
is ahead of blade 1, so that the order of blades passing 
through a given azimuth is 3-2-1-repeat. 

zs ys 

xs 

xh

yhzh 

Xc,i 

Yc,i 
Zc,i 
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Origin Intersection of the blade’s pitch axis 
and the blade root. 

xb,i axis Orthogonal with the yb and zb axes such 
that they form a right-handed coordinate 
system.  (i = 1, 2, or 3 for blades 1, 2, 
or 3, respectively) 

yb,i axis Pointing towards the trailing edge of 
blade i and parallel with the chord line 
at the zero-twist blade station.  (i = 1, 2, 
or 3 for blades 1, 2, or 3, respectively) 

zb,i axis Pointing along the pitch axis towards 
the tip of blade i.  (i = 1, 2, or 3 for 
blades 1, 2, or 3, respectively) 

When you request output of motions or loads for 
various span locations along the blade with the 
BldGagNd array, a local coordinate system similar to 
the standard blade system, but the x-axis and y-axis are 
aligned with the local principal axes and the local 
coordinate systems orient themselves with the 
deflected blade. 

Wind
zb,i

yb,i

xb,i

 

Figure 9.  Blade coordinate system. 

Turbine Layout 
Figure 14 and Figure 15 show the layout of a 

conventional, downwind, two-bladed turbine and 
Figure 16 shows the layout of a conventional, upwind, 
three-bladed turbine.  Figure 17 through Figure 19 
show the layout of an upwind turbine with both rotor- 
and tail-furling.  Figure 20 shows the layout of the 
support platform regardless of the above ground 
[onshore] or above water [offshore] configuration.  
These figures also include some of the important input 
dimensions.  For definitions of these parameters, please 
see the Turbine Configuration section of Table 8 on 
page 61 for nonfurling turbines, the same section of 
Table 13 on page 82 for furling turbines, and the same 
section of Table 12on page 81 for the support platform. 

Flexible Tower and Blades 
FAST models flexible elements, such as the tower 

and blades, using a linear modal representation.  The 
reliability of this representation depends on the 
generation of accurate mode shapes, which are input 
into FAST.  You can use a program called Modes (9) 
to generate these shapes and copy its output to your 
FAST input file.  Modes uses essentially the same 
structural data as FAST.  Although the tower and blade 
input files include flags to calculate the mode shapes 
internally, we have not implemented this feature in the 
code. 

For the tower, you will need to know the tower-top 
mass to run Modes.  If you do not know the tower-top 
mass, you can obtain it by first running FAST with a 
rigid tower and with dummy mode shapes, and then 
reading the summary output file, which includes the 
tower-top mass (see Figure 32 on page 122).  FAST 
allows you to specify four different mode shapes for 
the tower.  The two fore-aft modes are defined 
separately from the two side-to-side modes.  The mode 
shapes take the form of a sixth-order polynomial with 
the zeroth and first terms always being zero.  This is 
because the mode shapes are cantilevered at the base so 
they must have zero deflection and slope there.  At the 
top of the tower, where the normalized height is 1, the 
deflection must have a normalized value of 1.  This 
means the sum of the polynomial coefficients must add 
to 1.  See Figure 10 for a graphic example of tower 
mode shapes. 
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Figure 10.  Tower mode shapes. 

The blade mode shapes are defined in a way 
similar to that of the tower.  For the blades, FAST can 
use two flapwise modes and one edgewise mode.  The 
modes are defined with respect to the local structural 
twist, that is, the shapes twist with the blade, are three-
dimensional, and do not lie within a single plane.  In 
the case of a twisted blade, the tip will deflect in both 
the in-plane and out-of-plane directions due to a pure 
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flapwise deflection.  The edgewise mode works in a 
similar fashion.  When generating blade modes for a 
variable-speed turbine, you should choose a typical 
rotor speed for the cases you will simulate when 
generating the mode shapes.  Usually, the rotor speed 
has little effect on the mode shapes, but it will have a 
significant effect on the frequency of vibration.  Still, 
you may want to generate multiple mode shapes for 
different rotor speeds to see whether there is a 
significant impact on the results. 

HubRad

RNodes5

DRNodes5

Hub Centerline

Pitch
Axis

Node 5

 
Figure 11.  Blade layout. 

Drivetrain 
The drivetrain is modeled as an equivalent shaft 

separating the generator from the hub.  The shaft can 
have a linear torsional spring and a linear torsional 
damper.  Use the drivetrain DOF flag, DrTrDOF, to 
enable this feature.  The equation governing the 
restoring torque of the spring/damper is: 

Tres = DTTorSpr•( RotorPos – GboxPos ) + 
DTTorDmp•( RotorSpeed – GboxSpeed ) 

The constants DTTorSpr and DTTorDmp are the 
equivalent torsional stiffness and damping constants 
for the combined low-speed shaft (LSS), gearbox, and 
high-speed shaft (HSS).  All values used in this 
equation are cast on the LSS side of the gearbox. 

You can simulate losses of the torque being 
transmitted through the gearbox by setting the gearbox 
efficiency, GBoxEff, to some value less than 100%.  
When generating power, FAST will multiply the LSS 
torque by the efficiency and divide by the gearbox ratio 
to determine HSS torque.  When motoring, FAST will 
multiply the HSS torque by the efficiency and gearbox 
ratio to compute the torque on the LSS. 

Generator 
The generator flag, GenDOF, also governs the 

behavior of the drivetrain, with several options 
available.  Disabling it will force the generator side of 
the shaft to turn at a constant speed. 

You can control when to start the generator with 
the GenTiStr flag in conjunction with either 
SpdGenOn or TimGenOn.  If GenTiStr is True, the 
generator torque will be zero until TimGenOn.  

Otherwise, the generator torque will be zero until the 
generator speed reaches SpdGenOn. 

You can control when to stop the generator with 
the GenTiStp flag in conjunction with TimGenOf.  If 
GenTiStp is True, the generator torque will be set to 
zero after TimGenOf.  Otherwise, the generator will 
stay on until its power reaches zero.  Once the 
generator is turned off by either method, it will stay off 
until the end of the simulation.  If you are not going to 
simulate a shutdown or a loss of grid, set GenTiStp to 
True and TimGenOf to a value greater than TMax.  
Please see the Simulation Special Events section in the 
Controls chapter for more information about this 
subject. 

Enabling GenDOF will also invoke one of several 
generator models.  The choice of the model is 
determined by the setting of the GenModel switch or 
the VSContrl switch.  Unless the VSContrl switch is 0, 
GenModel will be ignored.  Please see the Variable-
Speed Torque Control section in the Controls chapter 
for more information on the variable-speed control 
options. 

If you set VSContrl to 0 and GenModel to 1, 
FAST will use the simple induction generator model.  
This model uses just four parameters: rated generator 
slip percentage (SIG_SlPc), the synchronous (zero-
torque) generator speed (SIG_SySp), the rated torque 
(SIG_RtTq), and the pullout ratio (SIG_PORt).  This 
results in the torque/speed curve seen in Figure 12.  In 
the chart, the rated rotor speed, ΩR, is derived from the 
synchronous speed and the slip percent: 

ΩR = SIG_SySp• ( 1 + 0.01•SIG_SlPc ) 
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Figure 12.  Simple-induction-generator 
torque/speed curve. 

The simple model is really too simple to use for a 
turbine startup.  Instead, set VSContrl to 0 and 
GenModel to 2 to invoke the more-accurate generator 
model that uses the Thevenin Equivalent Circuit 
equations for a three-phase induction generator.  This 
model uses eight input parameters.  These values are 
input in engineering units instead of using the per-unit 
values (normalized by base values) often found in 
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generator specification sheets.  FAST’s Thevenin-
equivalent equations assume a Y-connected, three-
phase-generator configuration.  If you have a delta-
connected configuration, you must divide your 
impedances by three and your voltage by 3 to convert 
the values to a Y-connected configuration.  Table 8 
includes a detailed description of the input parameters 
and an example torque/speed curve can be seen in 
Figure 13. 
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Figure 13.  Thevenin-equivalent-induction-

generator torque/speed curve. 

Users can create their own generator model by 
modifying the supplied dummy subroutine UserGen() 
available (but commented out) in the UserSubs.f90 
source file.  To use your own generator model, it will 
be necessary to compile the modified file and link it 
with the rest of the code.  FAST will call UserGen() if 
you set VSContrl to 0 and GenModel to 3.  The 
UserGen() routine linked with the distributed 
executable version of FAST, which is supplied in 
source file UserVSCont_KP.f90, currently calls 
subroutine UserVSCont(), so that setting GenModel 
to 3 causes FAST to behave as if VSContrl is set to 2.  
The routine that calls UserGen() passes the HSS speed 
and expects the electrical generator torque and 
electrical power to be returned.  But within routine 
UserGen(), you have the ability to access the current 
value of any output parameter available from FAST 
without changing the number of arguments passed to 
the routine.  Also, you have the option of switching the 
generator DOF on-or-off at runtime within UserGen() 
by overriding input GenDOF.  Please see the supplied 
dummy routines in UserSubs.f90 and the Controls 
chapter for further details. 

You can simulate generator losses by setting the 
generator efficiency, GenEff, to some value less than 
100%.  When generating power, FAST will multiply 
the mechanical generator power by the efficiency to 
determine electrical generator power.  When motoring, 
FAST will multiply the electrical generator power by 
the efficiency to compute the mechanical generator 
power.  FAST does not use the generator efficiency for 
the Thevenin model since the Thevenin model 
incorporates a more complex expression for the 
electrical power based on the input circuit resistances. 

The flowchart provided in Figure 23 of the 
Controls chapter explains how the program uses the 
generator model input parameters during runtime, as 
described above.  In this flowchart, GenTq is the 
instantaneous electrical generator torque, GenPwr is 
the instantaneous electrical generator power, and 
GenSpeed is the instantaneous HSS (generator) 
speed.  The additional logic presented in the flowchart 
explains how the program uses the variable-speed 
torque and HSS brake control input parameters during 
runtime. 

Nacelle Yaw 
FAST can model nacelle yaw as a perfect hinge 

with no resistance forces by setting YawDOF to True 
and the yaw spring constant, YawSpr, and the yaw 
damping constant, YawDamp, to zero.  You can also 
model a free-yaw machine with yaw damping by 
setting YawDamp to a nonzero value. 

You can model the flexibility and damping in the 
yaw drive of a yaw-driven turbine whose commanded 
yaw position is held constant, by setting YawDOF to 
True, YCMode to 0, and YawSpr and YawDamp to a 
nonzero value.  FAST will use input parameter 
YawNeut as the neutral yaw position (i.e., constant 
yaw command) and NacYaw as the initial yaw angle.  
In this case, the torque transmitted through the yaw 
bearing, YawMom, is: 

YawMom = YawSpr • ( YawPos – YawNeut ) 
+ YawDamp•YawRate 

where YawPos is the instantaneous yaw position. 
For a fixed-yaw simulation, set YawDOF to False, 

YCMode to 0, TYawManS greater than TMax, and 
NacYaw to the fixed nacelle yaw angle. 

You can also actively control the nacelle-yaw 
motion during a simulation.  Please see the Nacelle 
Yaw Control section in the Controls chapter for 
information on active yaw control options. 

Rotor-Furl 
The rotor-furl DOF allows you to model the 

unusual configuration of a bearing that permits the 
rotor and drivetrain to rotate about the yawing-portion 
of the structure atop the tower.  The rotor-furl DOF can 
alternatively be used to model torsional flexibility in 
the gearbox mounting if you align the rotor-furl axis 
with the rotor shaft axis.  In order to include rotor-
furling in your model, you must designate the turbine 
as a furling machine by setting input Furling from the 
primary input file to True.  Then you must assemble 
the furling input file, FurlFile, and use the rotor-furl 
flag, RFrlDOF, to enable this feature. 

The angular rotor-furl motion takes place about the 
rotor-furl axis defined by inputs RFrlPntxn, 
RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt 
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available in FurlFile.  Inputs RFrlPntxn, RFrlPntyn, 
and RFrlPntzn locate an arbitrary point on the rotor-
furl axis relative to the tower-top.  Inputs RFrlSkew 
and RFrlTilt then define the angular orientation of the 
rotor-furl axis passing through this point.  See Figure 
17 for a schematic. 

The rotor-furl bearing can be an ideal bearing with 
no friction by setting RFrlMod to 0; by setting 
RFrlMod to 1, it also has a standard model that 
includes a linear spring, linear damper and Coulomb 
damper, as well as up- and down-stop springs, and up- 
and down-stop dampers.  FAST models the stop 
springs with a linear function of rotor-furl deflection.  
The rotor-furl stops start at a specified angle and work 
as a linear spring based on the deflection past the stop 
angles.  The rotor-furl dampers are linear functions of 
the furl rate and start at the specified up-stop and 
down-stop angles.  These dampers are bidirectional, 
resisting motion equally in both directions once past 
the stop angle. 

A user-defined rotor-furl spring and damper model 
is also available.  To use it, set RFrlMod to 2 and 
create a subroutine entitled UserRFrl() with the 
parameters RFrlDef, RFrlRate, DirRoot, ZTime, and 
RFrlMom: 

RFrlDef: Current rotor-furl angular deflection 
in radians (input) 

RFrlRate: Current rotor-furl angular rate in 
rad/sec (input) 

ZTime: Current simulation time in sec (input) 
DirRoot: Simulation root name including the 

full path to the current working 
director (input) 

RFrlMom: Rotor-furl moment in N·m (output) 

The source file UserSubs.f90 contains a dummy 
UserRFrl() routine; replace it with your own and 
rebuild FAST.  Within routine UserRFrl() you have 
the option of switching the rotor-furl DOF on-or-off at 
runtime by overriding input RFrlDOF.  You can also 
access the current value of any output parameter 
available from FAST without changing the number of 
arguments passed to the routine.  Please see the dummy 
UserRFrl() routine for a description of how to take 
advantage of these incredibly flexible features.  
Parameter DirRoot may be used to write a record of 
what is done in UserRFrl() to be stored with the 
simulation results. 

The geometries of the hub and rotor-furl structure 
mass center, which are both components of the furling-
rotor assembly, are defined relative to the tower-top as 
shown in Figure 18.  This definition was chosen in 
order to avoid having to define a coordinate system in 
the furling-rotor assembly since such a coordinate 
system would most likely have an obscure orientation, 
making it difficult for users to input configuration 
information relative to it.  This definition also avoids 

the complications involved in having to define 
geometries differently, depending on whether or not a 
rotor-furl assembly exists separately from the nacelle, 
which depends on whether rotor-furl is present or 
absent in the turbine.  The developers of FAST also 
believe that defining geometry relative to the tower-top 
is the most standard convention.  For instance, analysts 
usually think of the rotor shaft offset as the lateral 
distance between the rotor shaft axis and the yaw axis 
(input Yaw2Shft in FAST), not as a distance relative 
to some coordinate system in the structure furling with 
the rotor. 

Since the component geometry of the furling-rotor 
assembly is defined relative to the tower-top, this 
geometry naturally changes with the rotor-furl angle.  
In order to avoid having to define different geometries 
for different rotor-furl positions (for example, 
variations in the initial rotor-furl angle), FAST expects 
the component geometry of the furling-rotor assembly 
to be defined/input at a rotor-furl angle of zero.  As 
such, the initial rotor-furl angle does not affect the 
specification of any other rotor-furl geometry.  Stated 
another way, the input geometries for the rotor-furl 
assembly components define the rotor configuration 
when the rotor-furl angle is zero regardless of initial 
rotor-furl position.  Users should be clear of this 
convention when assembling their furling input file. 

Defining the geometry of the rotor-furl structure 
relative to the tower-top instead of in some coordinate 
system inherent in the furling-rotor assembly also has 
some undesirable consequences.  The following 
example will highlight a drawback to the input 
convention used in FAST and, at the same time, 
illustrate how the convention works.  Consider the case 
of a small wind turbine company who has settled on 
the rotor-furl assembly configuration, including the 
location of the rotor-furl bearing attachment point on 
this assembly, but has yet to determine the best 
location of the rotor-furl axis with respect to the 
yawing portion of the structure atop the tower.  If the 
design analyst wants to test the rotor-furl response at 
several different rotor-furl axis locations, this will 
require him/her to alter not just one input parameter 
(i.e., the rotor furl axis point) but several input 
parameters collectively.  For instance, if he/she wants 
to alter the lateral (yn) location of the rotor-furl axis, 
this will require him/her to shift inputs RFrlPntyn, 
RfrlCMyn, and Yaw2Shft by the same amount since 
shifting the rotor-furl axis relative to the tower-top also 
shifts the rotor-furl assembly. 

Tail-Furl 
The tail-furl DOF allows you to model the unusual 

configuration of a bearing that permits the tail to rotate 
about the yawing-portion of the structure atop the 
tower.  In order to include tail-furling in your model, 
you must designate the turbine as a furling machine by 
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setting input Furling from the primary input file to 
True.  Then you must assemble the furling input file, 
FurlFile, and use the tail-furl flag, TFrlDOF, to enable 
this feature. 

The angular tail-furl motion takes place about the 
tail-furl axis defined by inputs TFrlPntxn, TFrlPntyn, 
TFrlPntzn, TFrlSkew, and TFrlTilt available in 
FurlFile.  Inputs TFrlPntxn, TFrlPntyn, and 
TFrlPntzn locate an arbitrary point on the tail-furl axis 
relative to the tower-top.  Inputs TFrlSkew and 
TFrlTilt then define the angular orientation of the tail-
furl axis passing through this point.  See Figure 17 for 
a schematic. 

The tail-furl bearing can be an ideal bearing with 
no friction by setting TFrlMod to 0; by setting 
TFrlMod to 1, it also has a standard model that 
includes a linear spring, linear damper and Coulomb 
damper, as well as up- and down-stop springs, and up- 
and down-stop dampers.  FAST models the stop 
springs with a linear function of tail-furl deflection.  
The tail-furl stops start at a specified angle and work as 
a linear spring based on the deflection past the stop 
angles.  The tail-furl dampers are linear functions of 
the furl rate and start at the specified up-stop and 
down-stop angles.  These dampers are bidirectional, 
resisting motion equally in both directions once past 
the stop angle. 

A user-defined tail-furl spring and damper model 
is also available.  To use it, set TFrlMod to 2 and 
create a subroutine entitled UserTFrl() with the 
parameters TFrlDef, TFrlRate, ZTime, DirRoot, and 
TFrlMom: 

TFrlDef: Current tail-furl angular deflection in 
radians (input) 

TFrlRate: Current tail-furl angular rate in 
rad/sec (input) 

ZTime: Current simulation time in sec (input) 
DirRoot: Simulation root name including the 

full path to the current working 
director (input) 

TFrlMom: Tail-furl moment in N·m (output) 

The source file UserSubs.f90 contains a dummy 
UserTFrl() routine; replace it with your own and 
rebuild FAST.  Within routine UserTFrl() you have the 
option of switching the tail-furl DOF on-or-off at 
runtime by overriding input TFrlDOF.  You can also 
access the current value of any output parameter 
available from FAST without changing the number of 
arguments passed to the routine.  Please see the dummy 
UserTFrl() routine for a description of how to take 
advantage of these incredibly flexible features.  
Parameter DirRoot may be used to write a record of 
what is done in UserTFrl() to be stored with the 
simulation results. 

The geometries of the tail boom mass center, tail 
fin mass center, and tail fin aerodynamic surface, 

which are all components of the furling-tail assembly, 
are defined relative to the tower-top as shown in Figure 
19.  This definition was chosen in order to avoid 
having to define a coordinate system in the furling-tail 
assembly since such a coordinate system would most 
likely have an obscure orientation, making it difficult 
for users to input configuration information relative to 
it.  This definition also avoids the complications 
involved in having to define geometries differently, 
depending on whether or not a tail-furl assembly exists 
separately from the nacelle, which depends on whether 
tail-furl is present or absent in the turbine. 

Since the component geometry of the furling-tail 
assembly is defined relative to the tower-top, this 
geometry naturally changes with the tail-furl angle.  In 
order to avoid having to define different geometries for 
different tail-furl positions (for example, variations in 
the initial tail-furl angle), FAST expects the component 
geometry of the furling-tail assembly to be 
defined/input at a tail-furl angle of zero.  As such, the 
initial tail-furl angle does not affect the specification of 
any other tail-furl geometry.  Stated another way, the 
input geometries for the tail-furl assembly components 
define the tail configuration when the tail-furl angle is 
zero regardless of initial tail-furl position.  Users 
should be clear of this convention when assembling 
their furling input file.  Further clarification on this 
furling geometry convention is provided in the Rotor-
Furl section above. 

Rotor-Teeter 
For two-bladed turbines, FAST can model a 

teetering rotor.  To enable the teeter DOF, set 
TeetDOF to True. 

The teeter bearing can be an ideal bearing with no 
friction by setting TeetMod to 0; by setting TeetMod 
to 1, it also has a standard model that includes a spring, 
stop, and damper.  FAST models the spring with a 
linear function of teeter deflection.  The teeter stop 
starts at a specified angle and works as a linear spring 
based on the deflection past the stop angle.  The teeter 
damper is a linear function of teeter rate that starts at a 
specified angle. 

A user-defined teeter-spring and damper model is 
also available.  To use it, set TeetMod to 2 and create 
a subroutine entitled UserTeet() with the parameters 
TeetDef, TeetRate, ZTime, DirRoot, and TeetMom: 

TeetDef: Current teeter deflection in radians 
(input) 

TeetRate: Current teeter rate in rad/sec (input) 
ZTime: Current simulation time in sec (input) 
DirRoot: Simulation root name including the 

full path to the current working 
director (input) 

TeetMom: Teeter moment in N·m (output) 
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The source file UserSubs.f90 contains a dummy 
UserTeet() routine; replace it with your own and 
rebuild FAST.  Within routine UserTeet() you have 
the option of switching the rotor-teeter DOF on-or-off 
at runtime by overriding input TeetDOF.  You can 
also access the current value of any output parameter 
available from FAST without changing the number of 
arguments passed to the routine.  Please see the dummy 
UserTeet() routine for a description of how to take 
advantage of these incredibly flexible features.  
Parameter DirRoot may be used to write a record of 
what is done in UserTeet() to be stored with the 
simulation results. 

FAST also allows you to specify a δ3 angle for the 
teeter hinge.  By teetering about an angle that is not 
perpendicular to the blades, you can introduce 
flap/pitch coupling to your rotor.  This is thought to 
add aerodynamic restoring forces to the blade.  Positive 
δ3 will cause the leading edge of the downwind-most 
blade to feather into the wind.  This is illustrated in 
Figure 15.  See Malcolm’s paper (10) for an analysis of 
δ3. 

Support Platform 
You can model the support platform in an onshore 

foundation, fixed bottom offshore foundation, or 
floating offshore configuration by setting the value of 
input switch PtfmModel from the primary input file to 
1, 2, or 3, respectively.  Setting PtfmModel to 0 
disables the platform models—in this case, FAST will 
rigidly attach the tower to the inertia frame (ground) 
through a cantilever connection. 

The support platform model properties are 
designated using the input parameters available in the 
platform input file, PtfmFile.  In FAST v6.0, all 
nonzero PtfmModel options work the same way by 
reading in PtfmFile.  In future versions, the format of 
this file will depend on which PtfmModel option is 
selected. 

A layout of the configuration properties available 
for the support platform is given in Figure 20.  The 
platform reference point, located by input parameter 
PtfmRef, is the origin in the platform about which the 
translational (surge, sway, and heave) and rotational 
(roll, pitch, and yaw) motions of the support platform 
are defined.  It is also the point at which external 
loading is applied to the platform. 

In FAST v6.0, only user-defined platform loading 
is available.  For a value of 0 for PtfmLdMod 
(available in PtfmFile), there will be no platform 
loading and the support reactions normally produced 
will be set to zero (causing the wind turbine to fall due 
to gravity if PtfmHvDOF is True). 

If you set PtfmLdMod to 1, FAST will call a user 
defined routine named UserPtfmLd() to compute the 
platform loading.  The platform loads returned by 
UserPtfmLd() should contain contributions from any 

external load acting on the platform other than loads 
transmitted from the wind turbine.  For example, these 
loads should contain contributions from foundation 
stiffness and damping [not floating] or mooring line 
restoring and damping [floating], as well as hydrostatic 
and hydrodynamic contributions [offshore].  The 
platform loads will be applied on the platform at the 
instantaneous platform reference position (located by 
input PtfmRef). 

To use this feature, set PtfmLdMod to 1 and create 
a subroutine entitled UserPtfmLd() with the 
parameters X(6), XD(6), ZTime, DirRoot, 
PtfmAM(6,6), and PtfmFt(6): 

X(6): A vector of size 6 containing the 3 
components of the current platform 
translational displacement in meters 
and the 3 components of the current 
platform rotational displacement in 
radians (input) 

XD(6): A vector of size 6 containing the 3 
components of the current platform 
translational velocity in m/sec and 
the 3 components of the current 
platform rotational (angular) velocity 
in rad/sec (input) 

ZTime: Current simulation time in sec (input) 
DirRoot: Simulation root name including the 

full path to the current working 
director (input) 

PtfmAM(6,6): A symmetric matrix of size 6 X 6 
containing the current added mass 
matrix of the platform with units of 
kg, kg·m and kg·m2 (output) 

PtfmFt(6): A vector of size 6 containing 3 
translational and 3 rotational 
components of the current portion of 
the platform load, with units of N and 
N·m, associated with everything but 
the added mass effects (output) 

As implied by the outputs above, the routine 
assumes that the platform loads are transmitted through 
a medium like soil [foundation] and/or water 
[offshore], so that added mass effects are important.  
Consequently, the routine assumes that the total 
platform load can be written as: 

 PtfmF(i) = SUM( -PtfmAM(i,j)•XDD(j), j = 1,2,…,6)
   + PtfmFt(i)     (for i = 1,2,…,6) 

where, 

PtfmF(i): The ith component of the total load 
applied on the platform; positive in 
the direction of positive motion of 
the ith DOF of the platform 

PtfmAM(i,j): The (i,j) component of the platform 
added mass matrix 
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XDD(j): The jth component of the platform 
acceleration vector 

PtfmFt(i): The ith component of the portion of 
the platform load associated with 
everything but the added mass 
effects; positive in the direction of 
positive motion of the ith DOF of the 
platform 

The order of indices in all arrays passed to and 
from routine UserPtfmLd() is asfollows: 

1 =  Platform surge / xi-component of platform 
translation 

2 = Platform sway / yi-component of platform 
translation 

3 = Platform heave / zi-component of platform 
translation 

4 = Platform roll  / xi-component of platform 
rotation 

5 = Platform pitch / yi-component of platform 
rotation 

6 = Platform yaw / zi-component of platform 
rotation 

The source file UserSubs.f90 contains a dummy 
UserPtfmLd() routine; replace it with your own and 
rebuild FAST.  Within routine UserPtfmLd() you have 
the option of switching the platform DOFs on-or-off at 
runtime by overriding inputs PtfmSgDOF, 
PtfmSwDOF, PtfmHvDOF, PtfmRDOF, 
PtfmPDOF, and PtfmYDOF.  You can also access the 
current value of any output parameter available from 
FAST without changing the number of arguments 
passed to the routine.  Please see the dummy 
UserPtfmLd() routine for a description of how to take 
advantage of these incredibly flexible features.  
Parameter DirRoot may be used to write a record of 
what is done in UserPtfmLd() to be stored with the 
simulation results. 

When using UserPtfmLd(), please note that the 
hydrostatic restoring contribution to the hydrodynamic 
force returned by the routine should not contain the 
effects of body weight, as is often done in classical 
marine hydrodynamics.  The effects of body weight are 
included within FAST and ADAMS. 

Rotor Aerodynamics 
The AeroDyn aerodynamic subroutine library 

supplies the aerodynamics algorithms for the rotor.  
Although we include descriptions of the parameters in 
the AeroDyn input file in Table 11, please refer to the 
AeroDyn User’s Guide (1) for most of the details on 
this package.  Input flag CompAero can be used to 
disable aerodynamics calculations while debugging a 
model. 

Tail Fin Aerodynamics 
Your model can optionally include tail fin 

aerodynamic loads.  In order to include them, you must 
designate the turbine as a furling machine by setting 
input Furling from the primary input file to True and 
then assemble the furling input file, FurlFile.  A furling 
model may also exclude tail fin aerodynamic loads by 
setting TFinMod in FurlFile to 0. 

You can choose to invoke a simple tail fin 
aerodynamics model built into FAST by setting 
TFinMod to 1.  By accessing information from 
AeroDyn, this model computes the relative velocity of 
the wind-inflow and its angle of attack relative to the 
tail fin chordline and uses an AeroDyn airfoil table 
chosen by the user (TFinNFoil) to determine the lift 
and drag forces acting at the tail fin center-of-pressure.  
Set SubAxInd to False if you want the wind velocity at 
the tail fin to be unobstructed by the rotor wake.  Set 
SubAxInd to True if you want FAST to decrease (i.e., 
subtract) the wind velocity at the tail fin center-of-
pressure by the average rotor induced velocity in the 
rotor shaft direction. 

You also have the option of implementing far 
more sophisticated tail fin aerodynamics models by 
supplying your own routines that can easily be linked 
with the rest of FAST.  To do this, set TFinMod to 2 
and create a subroutine entitled UserTFin().  The 
source file UserSubs.f90 contains a dummy 
UserTFin() routine; replace it with your own and 
rebuild FAST.  The routine that calls UserTFin() 
passes the tail-furl angle and rate and tail-fin center-of-
pressure location and velocity and expects the angle of 
attack, lift and drag coefficients, local dynamic 
pressure, as well as the normal and tangential forces to 
be returned.  But within routine UserTFin(), you have 
the ability to access the current value of any output 
parameter available from FAST without changing the 
number of arguments passed to the routine.  Please see 
the supplied dummy routine in UserSubs.f90 for further 
details. 
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Figure 14.  Layout of a conventional, downwind, two-bladed turbine (a) and a close-up of its hub 
(b). 
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Figure 15.  Layout of a two-bladed rotor illustrating δ3. 
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Figure 16.  Layout of a conventional, upwind, three-bladed turbine. 
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Figure 17.  Layout of a three-bladed, upwind, furling turbine: furl axes. 
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Figure 18.  Layout of a three-bladed, upwind, furling turbine: rotor-furl structure 
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Figure 19.  Layout of a three-bladed, upwind, furling turbine: tail-furl structure. 
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Figure 20.  Support platform / foundation layout. 
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CONTROLS 

General Description 
During time-marching analyses, FAST makes it 

possible to control your turbine and model specific 
conditions in many ways.  Five basic methods of 
control are available: pitching the blades, controlling 
the generator torque, applying the HSS brake, 
deploying the tip brakes, and yawing the nacelle.  The 
simpler methods of controlling the turbine require 
nothing more than setting some of the appropriate input 
parameters in the Turbine Control section of the 
primary input file.  Methods of control that are more 
complicated require you to either write your own 
routines, compile them, and link them with the rest of 
the program or implement your own routines in a 
Simulink model with which FAST can be interfaced to.  
For information on linking FAST with your own user-
defined controllers, please see the Compiling FAST 
chapter. For information on interfacing FAST with 
Simulink, please see the Simulink Interface chapter. 

To aid in wind turbine controls design and 
analysis, linearization routines are also included in 
FAST.  Please reference the Linearization chapter for 
documentation on linearization functionality. 

Blade Pitch Control 
One of the most common forms of turbine control 

is full-span blade pitch control.  To disable active pitch 
control, set the PCMode switch to 0. 

Setting PCMode to 1 will cause FAST to call a 
user-written routine called PitchCntrl() at every time 
step. 

A. Craig Hansen wrote a real pitch-control routine, 
and we supply that in the file PitchCntrl_ACH.f90.  
This routine is linked with the executable version of 
FAST distributed in the archive.  Craig’s routine 
controls either power (Region 2) or rotor speed 
(Region 3) with collective pitch control.  The value of 
CntrlRgn, a parameter specified in an input file named 
Pitch.ipt, which Craig’s routine calls, determines the 
type of control used.  An example Pitch.ipt file is 
located in FAST’s CertTest folder.  The data in this file 
are for the WindPACT 15A1001 model.  Unless you 
are modeling that turbine, you will need to replace his 
Pitch.ipt file with your own.  Please contact Craig 
Hansen for additional information on this pitch 
controller. 

Additionally, A dummy version of routine 
PitchCntrl() is available (but commented out) in source 
file UserSubs.f90.  You can write your own routine 
here and link it with FAST, though this option requires 
the use of a compiler.  This user-defined pitch control 
routine can act independently for each blade or be 

rotor-collective.  Within routine PitchCntrl() you have 
the ability to access the current value of any output 
parameter available from FAST without changing the 
number of arguments passed to the routine.  Please see 
the dummy PitchCntrl() routine for a description of 
how to take advantage of this incredibly flexible 
feature. 

There is no pitch actuator model built into FAST 
(though there is in ADAMS datasets generated by 
FAST); thus, you must implement your own actuator 
model into routine PitchCntrl() if you want to include 
actuator dynamics effects. 

When using the PitchCntrl() routine, you can 
delay the time it becomes effective by setting the 
TPCOn parameter to a value greater than zero and 
BlPitchi to the initial blade pitch angles.  In this case, 
routine PitchCntrl() will not be called until time 
TPCOn is reached. 

Setting PCMode to 2 causes FAST to accept pitch 
demands externally from Simulink.  In this case, 
TPCOn must be set to zero since the authority to start 
and stop the controller is reserved for the Simulink 
model.  You must be using FAST as a DLL interfaced 
with Simulink in order to use this feature.  Please see 
the Simulink Interface chapter for further details. 

Although the input file includes a parameter for 
partial-span pitch (PSpnElN), we have not yet 
implemented this feature in the code. 

With or without pitch control enabled, after time 
TPitManSi, the ith blade will pitch to BlPitchFi using a 
linear ramp from its current value at TPitManSi until 
TPitManEi.  If pitch control is enabled when PCMode 
is not 0, the pitch commands determined from inputs 
TPitManSi, TPitManEi, and BlPitchFi override 
whatever commands come from the pitch controller.  
You can use TPitManSi and TPitManEi to simulate a 
pitch for startup, shutdown, or runaway fault pitch 
event.  By setting one blade different from the other(s), 
you can simulate a fault condition in which one blade 
unexpectedly pitches or fails to pitch. 

For a constant-pitch simulation, set PCMode to 0, 
TPitManSi greater than TMax, and BlPitchi to the 
fixed blade pitch angles. 

The flowchart provided in Figure 21 explains how 
the program uses the blade pitch control input 
parameters during runtime, as described above.  In this 
flowchart, BlPitchi is the instantaneous blade pitch 
angle and BlPitchComi is the instantaneous blade pitch 
angle command of blade i (i = 1, 2, or 3 for blades 1, 2, 
or 3, respectively is implied). 
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Figure 21.  Flowchart of Blade Pitch Control Runtime Options. 
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Description chapter. 

We supply a simple variable-speed control system 
that uses input parameters VS_RtGnSp, VS_RtTq, 
VS_Rgn2K, and VS_SlPc and results in the 
torque/speed curve seen in Figure 22.  You can enable 
this control system by setting VSContrl to 1. 
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Figure 22.  Torque/speed curve for simple 

variable-speed control. 

As shown, this simple variable-speed control 
model distinguishes between Region 2 (maximum-
power control), Region 3 (constant-torque control), and 
Region 2½ (linear transition).  Region 2½ is a linear 
transition between Regions 2 and 3, with a torque slope 
corresponding to the slope of an equivalent induction 
machine.  Region 2½ is commonly needed since a wind 
turbine does not typically reach rated torque at its rated 
speed using Region 2’s control law [i.e., the optimal 
gain VS_Rgn2K is typically lower than that which 
would make VS_RtTq = VS_Rgn2K • ( 
VS_RtGnSp^2 ), since the rated speed, VS_RtGnSp, 
is generally limited from optimal in order to limit tip 
speed for noise reasons].  If you want to effectively 
eliminate Region 2½ from this model, set VS_RtTq = 
VS_Rgn2K • ( VS_RtGnSp^2 ) and VS_SlPc = 
9999.9E-9 (a very small don’t care > 0.0). 

A setting of 2 for VSContrl will tell FAST to call 
a user-written routine named UserVSCont() at every 
time step after the generator is turned on.  Kirk Pierce 
wrote an example routine when he worked at NREL 
and this routine, which is contained in source file 
UserVSCont_KP.f90, is linked with the executable 
version of FAST that is distributed in the archive.  His 
routine uses a table lookup scheme with a built-in time 
delay, which reads data from a file named Spd_Trq.dat, 
an example of which is located in FAST’s CertTest 
folder.  The data in this file are for the Small Wind 
Research Turbine (SWRT).  Unless you are modeling 
that turbine, you will need to replace his Spd_Trq.dat 
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file with your own.  Please note that Kirk Pierce’s 
routine only works when GBRatio is set to 1.0. 

Additionally, A dummy version of routine 
UserVSCont() is available (but commented out) in 
source file UserSubs.f90.  You can write your own 
routine here and link it with FAST, though this option 
requires the use of a compiler.  The routine that calls 
UserVSCont() passes the HSS speed and expects the 
electrical generator torque and electrical power to be 
returned.  But within routine UserVSCont(), you have 
the ability to access the current value of any output 
parameter available from FAST without changing the 
number of arguments passed to the routine.  Also, you 
have the option of switching the generator DOF on-or-
off at runtime within UserVSCont() by overriding 
input GenDOF.  Please see the supplied dummy 
routine in UserSubs.f90 for further details. 

Setting VSContrl to 3 causes FAST to accept 
electrical generator torque and electrical power 
demands externally from Simulink.  In this case, the 
authority to start and stop the generator is reserved for 
the Simulink model.  Thus, GenTiStr and GenTiStp 
must be set to True, TimGenOn must be set to zero, 
and TimGenOf must be set greater than TMax.  You 
must be using FAST as a DLL interfaced with 
Simulink in order to use this feature.  Please see the 
Simulink Interface chapter for further details. 

The flowchart provided in Figure 23 explains how 
the program uses the variable-speed torque control 
input parameters during runtime, as described above.  
In this flowchart, GenTq is the instantaneous electrical 
generator torque, GenPwr is the instantaneous 
electrical generator power, and GenSpeed is the 
instantaneous HSS (generator) speed.  The additional 
logic presented in the flowchart explains how the 
program uses the generator model and HSS brake 
control input parameters during runtime. 

HSS Brake Control 
By default, the HSS brake is disabled at the 

beginning of a run.  At time THSSBrDp, the brake 
will start to deploy.  If you do not want the brake to 
deploy during a given run, set THSSBrDp to a value 
greater than TMax. 

If you set HSSBrMode to 1, FAST will use a 
simple HSS brake model in which the brake torque will 
ramp linearly from zero at time THSSBrDp to full 
brake torque of HSSBrTqF over HSSBrDT seconds.  
The HSS brake is based on the Coulomb model of 

sliding friction.  Once full brake torque is reached, the 
magnitude of the torque is constant as long as the shaft 
speed is nonzero.  When the speed is zero, the torque 
takes on any value to prevent motion of the shaft (the 
HSS can only move again if the external torque 
exceeds the full braking torque). 

A user-defined HSS brake model is also available.  
Set HSSBRMode to 2 to tell FAST to call the user-
written routine named UserHSSBr() at every time step 
after time THSSBrDp.  A dummy version of routine 
UserHSSBr() is available in source file UserSubs.f90.  
You can write your own routine here and link it with 
FAST, though this option requires the use of a 
compiler.  The routine that calls UserHSSBr() passes 
the HSS speed and time and expects the fraction of 
full braking torque to be returned (0.0 = off – no brake 
torque, 1.0 = full brake torque).  As in the simple HSS 
brake model, the magnitude of the full breaking torque 
is specified in input HSSBrTqF.  The fraction of full 
braking torque may continually vary, permitting you to 
continually switch the HSS brake on and off during the 
simulation.  Input HSSBrDT is ignored when 
HSSBRMode is set to 2. 

Within routine UserHSSBr(), you have the ability 
to access the current value of any output parameter 
available from FAST without changing the number of 
arguments passed to the routine.  Also, you have the 
option of switching the generator DOF on-or-off at 
runtime within UserHSSBr() by overriding input 
GenDOF.  Please see the supplied dummy routine in 
UserSubs.f90 for further details. 

The flowchart provided in Figure 23 explains how 
the program uses the HSS brake control input 
parameters during runtime, as described above.  In this 
flowchart, HSSBrFrac is the instantaneous fraction of 
full braking torque [limited to values between 0.0 and 
1.0 (inclusive)] and GenSpeed is the instantaneous 
HSS (generator) speed.  The additional logic presented 
in the flowchart explains how the program uses the 
variable-speed and generator model control input 
parameters during runtime. 
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Figure 23.  Flowchart of Variable-Speed, Generator, and HSS Brake Control Runtime Options. 

Nacelle Yaw Control 
You can actively control the nacelle-yaw motion 

during a simulation.  To disable active yaw control, set 
YCMode to 0. 

Setting YCMode to 1 will cause FAST to call a 
user-written routine called UserYawCont() at every 
time step.  A dummy version of routine 
UserYawCont() is available in source file 
UserSubs.f90.  You can write your own routine here 
and link it with FAST, though this option requires the 
use of a compiler.  Though there are a few others, the 
most important arguments of routine UserYawCont() 
are as follows: 

YawPos: Current nacelle-yaw angular position 
in radians (input) 

YawRate: Current nacelle-yaw angular rate in 
rad/sec (input) 

WindDir: Current horizontal hub-height wind 
direction (positive about the zt-axis) 
in radians (input) 

YawError: Current nacelle-yaw error estimate 
(positive about the zt-axis) in radians 
(input) 

ZTime: Current simulation time in sec (input) 
YawPosCom: Commanded nacelle-yaw angular 

position (demand yaw angle) in 
radians (output) 

YawRateCom:Commanded nacelle-yaw angular 
rate (demand yaw rate) in rad/sec 
(output) 

As indicated, the yaw controller must always 
specify a command (demand) yaw angle, 
YawPosCom, and command (demand) yaw rate, 
YawRateCom.  Normally, you should correlate these 
commands so that the commanded yaw angle is the 
integral of the commanded yaw rate, or likewise, the 
commanded yaw rate is the derivative of the 
commanded yaw angle.  FAST will not compute these 
correlations for you and does not check to ensure that 
they are correlated.  In some situations, it is desirable 
to set one of the commands (either yaw angle or yaw 
rate) to zero depending on the desired transfer function 
of FAST's built-in actuator model (see below for a 

User-Written Subroutine:
GenTq & GenPwr defined

by UserVSCont()

Simple Variable-Speed Control:
GenTq & GenPwr = F(GenSpeed , VS_RtGnSp ,

VS_RtTq , VS_Rgn2K, VS_SlPc, GenEff)

Simple Induction Generator:
GenTq & GenPwr = F(GenSpeed, SIG_SlPc,
SIG_SySp, SIG_RtTq, SIG_PORt, GenEff)

FAST/Simulink  Interface:
GenTq & GenPwr defined
externally from Simulink

Thevenin-Equivalent Induction Generator:
GenTq & GenPwr = F(GenSpeed,

TEC_Freq , TEC_NPol , TEC_SRes,
TEC_Rres , TEC_VLL , TEC_SLR,

TEC_RLR, TEC_MR)

GenTiStp
Enabled?

GenTiStr
Enabled?

GenSpeed
>=

SpdGenOn
?

Time >=
TimGenOf

?

GenPwr
<= 0

?

GenDOF
Enabled?

TrueFalse TrueFalse

0

1

2

3

1

2

3

TrueTrue TrueTrueFalseFalse FalseFalse

GenTq = 0
GenPwr = 0

TrueFalse

Time Integration:
Time = Time + DT

GenSpeed = F(GenSpeed , GenAccel)

Time >=
TimGenOn

?

Has the
generator
ever been

online?

False True
Start:

Time = 0
GenSpeed =

GBRatio*RotSpeed  (IC)

Is the
generator
offline?

False True User-Written Subroutine:
GenTq & GenPwr defined

by UserGen()

Generator is offline

Generator is online
VSContrl
setting?

GenModel
setting?

Time <
TMax

?

TrueFinish False

Equations of Motion:
GenAccel = 0

Equations of Motion:
GenAccel =

F(GenTq+HSSBrTq , etc.)

Simple HSS Brake Control:
HSSBrFrac  = F(THSSBrDp ,

HSSBrDT , Time)

HSSBrMode
setting?

User-Written Subroutine:
HSSBrFrac  defined by

UserHSSBr()

1

2Apply HSS Brake:
HSSBrTq = SIGN(HSSBrFrac *HSSBrTqF , GenSpeed)

HSSBrFrac  = 0
Time >=

THSSBrDp
?

TrueFalse



 

FAST User's Guide 29 Last updated on August 12, 2005 for version 6.0 

discussion of FAST's built-in actuator model).  In 
general, the commanded yaw angle and rate should 
never be defined independent of each other with both 
commands nonzero. 

Setting YCMode to 2 causes FAST to accept 
demand yaw angles and rates externally from 
Simulink.  You must be using FAST as a DLL 
interfaced with Simulink in order to use this feature.  
Please see the Simulink Interface chapter for further 
details. 

The yaw controller's effect on the FAST model 
depends on whether or not the yaw DOF is enabled.  If 
the yaw DOF is disabled (YawDOF = False), then the 
commanded yaw angle and rate from routine 
UserYawCont() or Simulink will be the actual yaw 
angle and yaw rate used internally by FAST (in 
general, you should ensure these are correlated).  In 
this case, any desired actuator effects should be built 
within the yaw control routine.  Also in this case, 
FAST will not compute the correlated yaw 
acceleration, but assume that it is zero.  If the 
commanded yaw rate is zero while the commanded 
yaw angle is changing in time, then the yaw controller's 
effect on yaw angle is the identical to routine 
PitchCntrl()'s effect on pitch angle (i.e., routine 
PitchCntrl() commands changes in pitch angle with no 
associated changes in pitch rate or pitch acceleration).  
For yaw control, this situation should be avoided 
however, since yaw-induced gyroscopic pitching loads 
on the turbine brought about by the yaw rate may be 
significant. 

If the nacelle yaw DOF is enabled (YawDOF = 
True), then the commanded yaw angle and rate from 
routine UserYawCont() or Simulink become the 
neutral yaw angle, YawNeut, and neutral yaw rate, 
YawRateNeut, in FAST's built-in second-order 
actuator model defined by inputs YawSpr and 
YawDamp.  In the time domain, the equation for the 
yaw DOF is then: 

YawIner•YawAccel + YawDamp•YawRate + 
YawSpr•YawPos = 
YawDamp•YawRateNeut + 
YawSpr•YawNeut + YawTq 

where YawIner is the instantaneous inertia of the 
nacelle, rotor, and tail about the yaw axis and YawTq 
is the torque about the yaw axis applied by external 
forces above the yaw bearing, such as wind loading.  
Thus, the torque transmitted through the yaw bearing, 
YawMom, is: 

YawMom = YawSpr• ( YawPos – YawNeut ) + 
YawDamp• ( YawRate – YawRateNeut ) 

If the commanded yaw angle and rate are 
correlated (so that the commanded yaw angle is the 
integral of the commanded yaw rate, or likewise, the 
commanded yaw rate is the derivative of the 

commanded yaw angle), then FAST's built-in second-
order actuator model will have the following 
characteristic transfer function, T(s): 

T(s) =     YawDamp•s + YawSpr  
            YawIner•s2 + YawDamp•s + YawSpr 
       =        2•ζ•ω  n•s + ω  n

2  
             s2 + 2•ζ•ωn•s + ωn

2 

where ωn = SQRT( YawSpr/YawIner ) is the yaw 
actuator natural frequency in rad/sec and ζ = 
YawDamp / ( 2•SQRT( YawSpr•YawIner ) ) is the 
yaw actuator damping ratio in fraction of critical. 

If only the yaw angle is commanded, and 
YawRateCom is zeroed, then the charecteristic 
transfer function of FAST's built-in second-order 
actuator model simplifies to: 

T(s) =     YawSpr   
            YawIner•s2 + YawDamp•s + YawSpr 
       =        ω  n

2   
             s2 + 2•ζ•ωn•s + ωn

2 

If only the yaw rate is commanded, and 
YawPosCom is zeroed, then the charecteristic transfer 
function of FAST's built-in second-order actuator 
model simplifies to: 

T(s) =   YawDamp   
            YawIner•s2 + YawDamp•s + YawSpr 
       =     2•ζ•ω  n  
             s2 + 2•ζ•ωn•s + ωn

2 

Within routine UserYawCont() you have the 
option of switching the nacelle-yaw DOF on-or-off at 
runtime by overriding input YawDOF.  You can also 
access the current value of any output parameter 
available from FAST without changing the number of 
arguments passed to the routine.  Please see the dummy 
UserYawCont() routine for a description of how to 
take advantage of these incredibly flexible features. 

When using the UserYawCont() routine, you can 
delay the time it becomes effective by setting the 
TYCOn parameter to a value greater than zero and 
NacYaw and YawNeut to the initial nacelle yaw angle 
and neutral yaw position, respectively (the neutral yaw 
rate, YawRateNeut, is always assumed zero until 
active yaw control is enabled).  In this case, routine 
UserYawCont() will not be called until time TYCOn 
is reached.  TYCOn must be set to zero when 
controlling yaw from Simulink, when YCMode is set 
to 2, since the authority to start and stop the yaw 
controller is reserved for Simulink. 

With or without yaw control or the yaw DOF 
enabled, after time TYawManS, the nacelle will yaw 
to NacYawF using a linear ramp from its current value 
at TYawManS until TYawManE.  If yaw control is 
enabled when YCMode is not 0, the yaw commands 
determined from inputs TYawManS, TYawManE, 
and NacYawF override whatever commands come 
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from the yaw controller.  Also, the yaw commands 
determined from inputs TYawManS, TYawManE, 
and NacYawF pass through FAST’s built-in second-
order actuator model if the yaw DOF is enabled when 
YawDOF is set to True.  You can use TYawManS and 
TYawManE to simulate a yaw for startup, shutdown, 
or runaway yaw event. 

For a fixed-yaw simulation, set YawDOF to False, 
YCMode to 0, TYawManS greater than TMax, and 
NacYaw to the fixed nacelle yaw angle. 

You can also enable passive nacelle-yaw control 
during a simulation.  Please see the Nacelle Yaw 
section in the Model Description chapter for 
information on passive yaw control options. 

The flowchart provided in Figure 24 explains how 
the program uses the nacelle yaw control input 
parameters during runtime, as described above. 

 
 

Figure 24.  Flowchart of Nacelle Yaw Control Runtime Options. 

Master Controllers and the Bladed-
Style DLL Interface 

In the Source folder of the FAST archive, we 
distribute a source file named BladedDLLInterface.f90.  
This source file contains example PitchCntrl(), 
UserHSSBr(), UserVSCont(), and UserYawCont() 
routines that may be used to interface FAST with a 
master controller implemented as a dynamic-link-
library (DLL) in the style of Garrad Hassan's Bladed 

wind turbine software package.  All four routines call 
routine BladedDLLInterface(), which contains a call 
to the Bladed-style DLL that evaluates as DISCON().  
See Figure 25 for a schematic.  Routine 
BladedDLLInterface() USEs a MODULE named 
BladedDLLParameters(), which stores values of 
PARAMETER constants used in the interface.  
Routines BladedDLLInterface() and 
BladedDLLParameters() are also contained in source 
file BladedDLLInterface.f90. 

 
 

Finish

User-Written Subroutine:
YawPosCom  & YawRateCom

defined by UserYawCont()

FAST/Simulink Interface:
YawPosCom  & YawRateCom

defined externally from Simulink

0

1

2

YCMode
setting?

Time <
TYCOn

?

False True

YawDOF
Enabled?

TrueFalse

Time Integration:
Time = Time + DT

YawPos = F(YawPos , YawRate )
YawRate = F(YawRate , YawAccel )

Time <
TMax

?

TrueFalse

Equations of Motion:
YawAccel = 0

Equations of Motion:
YawAccel = F(YawMom, etc.)

Yaw Actuator:
YawNeut = YawPosCom

YawRateNeut = YawRateCom
YawMom = YawSpr*(YawPos-YawNeut )
+ YawDamp*(YawRate -YawRateNeut )

Time <
TYawManS

?

False True

Override Yaw Maneuver:
YawPosCom  & YawRateCom  =

F(TYawManS, TYawManE, NacYawF,
Time, YawPos@Time=TYawManS)

No Yaw Actuator:
YawPos = YawPosCom

YawRate = YawRateCom

YawDOF
Enabled?

TrueFalse

Initialization:
YawPosCom = YawPos

YawRateCom = YawRate

Initialization:
YawPosCom = YawNeut

YawRateCom = 0

Start:
Time = 0

YawPos = NacYaw (IC)
YawRate = 0



 

FAST User's Guide 31 Last updated on August 12, 2005 for version 6.0 

Figure 25.  Interface to a Bladed-Style Master Controller DLL. 

Source file BladedDLLInterface.f90 is useful if 
you have a DLL controller created for a Bladed model 
and you want to use the same controller for your FAST 
model.  This source file is also a useful template if you 
prefer to control pitch, HSS brake torque, electrical 
generator torque, and/or nacelle yaw with a single 
master controller, regardless of whether or not you use 
the Bladed code and regardless of whether or not you 
want to work with DLLs.  As it is developed, the same 
source file can be used to interface both FAST and 
ADAMS to Bladed-style master controller DLLs. 

In order to use these routines, you must first set the 
values of the PARAMETERs contained in MODULE 
BladedDLLParameters() as required by your model.  
These PARAMETERs are model-specific inputs 
available in the Bladed code, which are not available 
inputs in FAST, and are passed to the Bladed DLL in 
this interface.  You must then comment-out the dummy 
placeholder versions of routines PitchCntrl(), 
UserHSSBr(), UserVSCont(), and UserYawCont() 
contained in source file UserSubs.f90 and recompile 
FAST with the addition of source file 
BladedDLLInterface.f90—see the Compiling FAST 
chapter for more information.  The executable version 
of FAST that is distributed with the archive is not 
linked with the routines contained within source file 
BladedDLLInterface.f90.  After you have compiled 
FAST with the routines in BladedDLLInterface.f90, 
you must modify several input parameters from the 
primary input file in order to use the Bladed-style 
controller.  These parameters and the necessary settings 
are listed in Table 3 (these conditions are not tested by 
these example routines). 

This interface is valid for DLLs of the style 
specified in Appendices A and B of the Bladed User 
Manual of Bladed version 3.6 (2).  The documentation 
provided there is not repeated here.  If you are running 
FAST using a master controller DLL developed in 
Bladed, please be aware of the differences indicated in 
Table 4 between this interface and Bladed's interface. 

Table 3.  Parameter Settings to be Used 
With Bladed-Style Master Controller DLLs. 

Parameter Setting Reason 
YCMode 1 Tells FAST to use routine 

UserYawCont() for active 
yaw control 

TYCOn 0.0 Tells FAST to start active 
yaw control at the 
beginning of the simulation 

PCMode 1 Tells FAST to use routine 
PitchCntrl() for active pitch 
control 

TPCOn 0.0 Tells FAST to start active 
pitch control at the 
beginning of the simulation 

VSContrl 2 Tells FAST to use routine 
UserVSCont() for active 
variable-speed torque 
control 

GenTiStr True Tells FAST to start torque 
control based on time 
TimGenOn 

GenTiStp True Tells FAST to stop torque 
control based on time 
TimGenOf 
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TimGenOn 0.0 Tells FAST to start torque 
control at the beginning of 
the simulation 

TimGenOf >TMax Tells FAST not to stop 
controlling torque 
throughout the simulation 

HSSBrMode 2 Tells FAST to use routine 
UserHSSBr() for control 
of the HSS brake 

THSSBrDp 0.0 Tells FAST to start HSS 
brake torque control at the 
beginning of the simulation 

 
Table 4.  Differences Between FAST’s and 

Bladed’s Interface to Master Controller DLLs. 

Record Difference 
1 The status flag is not set to -1 for the final 

call at the end of the simulation 
10 The pitch actuator type is always set to 0 

by FAST, indicating pitch position 
actuator; as such, the returned value of 
Record 46, demanded pitch rate 
(Collective pitch), is always ignored 

29 The yaw control type is always set to 0 by 
FAST indicating yaw rate control; as such, 
the returned value of Record 41, demanded 
yaw actuator torque, is always ignored 

35 The generator contactor status, is 
initialized to 1 by FAST indicating main 
(high speed) or variable speed generator; 
the generator can be turned off in the DLL 
by setting Record 35 to 0 or by setting 
Record 47 to 0.0; if the DLL redefines 
Record 35 to something other than 0 or 1 
(such as 2 = low speed generator), the 
program will abort 

41 The demanded yaw actuator torque is 
always ignored in accordance with the 
specification of Record 29 

46 The demanded pitch rate (Collective pitch) 
is always ignored in accordance with the 
specification of Record 10 

55 The pitch override returned by the DLL 
must be set to 0 indicating no override 
(i.e., pitch demands come for the DLL); 
the program will abort otherwise 

56 The torque override returned by the DLL 
must be set to indicating no override (i.e., 
torque demands come for the DLL); the 
program will abort otherwise 

62 The maximum number of values which 
can be returned for logging is always set to 
0 by FAST indicating none 

63 The record number for start of logging 
output is always set to 0 (a don't care) by 
FAST in accordance with the specification 

of Record 62 
64 The maximum number of characters which 

can be returned in "OUTNAME" is always 
set to 0 in accordance with the 
specification of Record 62 

65 The number of variables returned for 
logging returned by the DLL must be set to 
0 by the DLL indicating none in 
accordance with the specification of 
Record 62; the program will abort 
otherwise 

72 The generator start-up resistance is always 
ignored 

79 The request for loads is ignored; instead, 
the blade, hub, and yaw bearing loads are 
always passed to the DLL as if Record 79 
was set to 4 

80 The variable-slip current demand toggle 
switch is always ignored; instead, the 
generator torque demand from Record 47 
is always used 

81 The variable-slip current demand is always 
ignored in accordance with the handling of 
Record 80 

 
We distribute a dummy placeholder version of the 

source file DISCON.f90 in the FAST archive.  You 
may use DISCON.f90 as a template for creating your 
own master controller DLL if you do not already have 
one created.  Please refer to appendices A and B of the 
Bladed User Manual for further information. 

Tip Brakes 
The tip brakes can be controlled in two ways.  You 

can set a time at which each brake is deployed 
(TTpBrDpi), or you can set a rotor speed at which each 
brake is deployed (TBDepISpi).  The tip brakes for 
different blades are controlled separately.  If your 
turbine does not have tip brakes, set the tip-brake drag 
terms, TBDrConN and TBDrConD, to zero.  You 
should also set the deployment times and speeds to 
values greater than those that are likely to occur during 
the run so that FAST won’t waste time on unused 
calculations. 

If you do use tip brakes, you will need to provide 
realistic values for the drag terms and the amount of 
time it takes to deploy them once they’ve started to 
deploy (TpBrDT).  The brakes take this long to deploy 
for time- and speed-initiated deployments.  Once the 
brakes deploy, they remain so until the end of the run.  
The interpolated drag term during the deployment 
follows an “S” curve from TBDrConN to TBDrConD. 

FAST does not orient the tip-brake forces with 
blade pitch.  The tangential velocity of the blade tip, 
not taking into account wind motion, is used to 
calculate the dynamic pressure.  Because of these 
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approximations, you should adjust TBDrConD so that 
the rotor decelerates as expected. 

Simulating Special Events 
There are many special events that can be modeled 

with FAST.  Although we will illustrate many of them 
in this section, we cannot document all of them.  We 
hope that these examples will be sufficient so that you 
can figure out how to model other cases. 

Turbine Startup 
There are several ways to start a turbine.  One 

common way is to pitch the blades from feather to the 
run position and let the wind accelerate the rotor until a 
certain speed is reached.  To model this case, set 
PCMode to 0, GenTiStr to False, and SpdGenOn to 
an appropriate value.  For each blade, set TPitManS to 
the time you want to start the maneuver, TPitManE to 
the end time for the maneuver, BlPitch to the feather 
position, and BlPitchF to the run position. 

You can also start a stall-regulated turbine by 
motoring.  To perform a motor start, set PCMode to 0, 
GenTiStr to True, and TimGenOn to an appropriate 
value.  You should also use either variable-speed 
control or the Thevenin-equivalent-induction-generator 
model.  Do not use the simple-induction-generator 
model, because it does not have a realistic startup 
torque. 

Normal Pitch-to-Feather Shutdown 
To simulate this case, you’ll need to set the pitch 

maneuver start and stop times (TPitManS and 
TPitManE) and the initial and final pitch settings 
(BlPitch and BlPitchF).  Set TiGenOn to zero and, if 
you want to use the generator as a brake, set GenTiStp 
to False.  This will disengage the generator when the 
turbine slows enough to drop the power to zero. 

Shutdown Where One Blade Fails to Feather 
This case is the same as the previous example, but 

either set the times (TPitManS and TPitManE) for one 
blade to values greater than TMax or set the final pitch 
value, BlPitchF, to the initial pitch value (BlPitch) or 
some other value that is different from the other 
blade(s). 

One Blade Feathers Accidentally 
This case is the same as the previous example, but 

either set the times (TPitManS and TPitManE) for the 
non-feathering blade(s) to values greater than TMax, or 
set the final pitch value(s), BlPitchF, to the initial pitch 
value(s) (BlPitch). 

HSS Brake Shutdown after Loss of Grid 
To model an emergency shutdown where the HSS 

brake stops the rotor, set GenTiStp to True and 
TimGenOf to the time you want the grid to fail.  When 
using the simple built-in HSS brake model 

(HSSBrMode = 1), set THSSBrDp to a short time 
after TimGenOf and HSSBrDt to the amount of time 
it takes to fully apply the brake (the brake torque will 
ramp from zero to full in a linear fashion).  When using 
a user-defined HSS brake model (HSSBrMode = 2), 
you may specify a nonlinear ramp.  Input HSSBrTqF 
specifies the maximum full brake torque in both cases. 

HSS Brake Shutdown with Generator Brake 
FAST can model a shutdown in which the 

generator acts as a dynamic brake until the rotor slows 
enough that the HSS brake can stop the rotor, but for 
now you must write the logic yourself by supplying a 
UserGen() routine and linking it with the rest of the 
code.  We hope to find an easier way by adding a few 
input parameters. 

Normal Tip Brake Shutdown 
To model a normal shutdown, in which the tip 

brakes decelerate the rotor, set TTpBrDp to 
appropriate values for each blade.  As with the pitch-
to-feather shutdown, set GenTiStp to False so that the 
generator will disengage when power drops to zero. 

Tip Brake Shutdown after Loss of Grid 
This case is similar to the previous case, but you’ll 

use the TBDepISp array to make FAST use rotor 
speed to deploy the tip brakes.  You can also model the 
special case in which one brake deploys at a higher 
speed than the other(s) or not at all by setting its 
deployment initiation speed to a higher speed. 

Accidental Deployment of a Tip Brake 
You can easily model the accidental deployment 

of a tip brake.  For one blade, set TTpBrDp to a value 
less than TMax.  For the other blade(s), set TTpBrDp 
to value(s) greater than TMax.  For all blades, set 
TBDepISp to large numbers so that the brakes will 
never deploy because of rotor speed.  You will also 
need to set TBDrConN, TBDrConD, and TpBrDT to 
appropriate values. 

Idling Turbine 
You can simulate an idling turbine by enabling the 

generator DOF (GenDOF) and setting GenTiStr to 
True and TimGenOn to a value greater than TMax to 
ensure that the generator never goes online.  You will 
also want to initialize the rotor speed (RotSpeed) to a 
small or zero value, set the generator inertia (GenIner) 
to a non-zero value, and set the gearbox efficiency 
(GboxEff) to a value less than 100%.  The torque 
passing through the non-perfect gearbox to the 
generator-rotor inertia will tend to resist acceleration of 
the turbine rotor.  You can also add some speed-
independent drag to the drivetrain by applying a light 
brake load.  To do so, tell the brake to always be on by 
setting THSSBrDp and HSSBrDt to 0, and then set 
the brake torque (HSSBrTqF) to a small value. 
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Parked Turbine 
One of the standard IEC test cases is to model the 

turbine in high winds when the turbine is parked.  If 
your turbine uses full-span pitch, set the values of 
BlPitch and BlPitchF to the feathered setting.  Also set 
TpitManS and TpitManE to 0 so the blades are 
feathered during the entire simulation. 

If you park your turbine by applying a HSS brake, 
you can model this condition by disabling the generator 
DOF (GenDOF) with RotSpeed set to zero and 
enabling the drivetrain DOF (DrTrDOF) to allow the 

drivetrain to ring.  Another possibility is to enable 
GenDOF, but set GenTiStr and TimGenOn so the 
generator never starts.  Set THSSBrDp and HSSBrDT 
to zero so the HSS brake is always on.  You will need 
to set the HSSBrTqF to a realistic value.   

For potential failure modes, you can model the 
case in which the brake torque is insufficient to hold 
the turbine.  The generator DOF must be enabled for 
this case.  You can examine another potential failure by 
setting one of the blades so that it pitches to a non-
feathered value at some time during the run. 
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SIMULINK INTERFACE 

General Description 
Simulink is a popular simulation tool for controls 

design that is distributed by The Mathworks, Inc. in 
conjunction with MATLAB.  Simulink has the ability 
to incorporate custom Fortran routines in a block 
called an S-Function.  The FAST subroutines have 
been linked with a MATLAB standard gateway 
subroutine in order to use the FAST equations of 
motion in an S-Function that can be incorporated in a 
Simulink model.  This introduces tremendous 
flexibility in wind turbine controls implementation 
during simulation.  Generator torque control, nacelle 
yaw control, and pitch control modules can be designed 
in the Simulink environment and simulated while 
making use of the complete nonlinear aeroelastic wind 
turbine equations of motion available in FAST. 

The wind turbine block, as shown in Figure 26, 
contains the S-Function block with the FAST equations 
of motion.  It also contains blocks that integrate the 
DOF accelerations to get velocities and displacements.  
Thus the equations of motion are formulated in the 
FAST S-function but solved using one of the Simulink 
solvers. 

 

 

Figure 26.  FAST Wind Turbine Block. 

The interface between FAST and Simulink is very 
similar to the interface developed for the Symbolic 
Dynamics (SymDyn) code, which is a controls-oriented 
HAWT analysis tool developed by researchers at 
NREL (11).  The structural model of FAST, however, 
is of higher fidelity than that of SymDyn. 

Getting Started 
In order to build a Simulink model that uses the 

FAST wind turbine dynamics in an S-Function, you 
must purchase the commercial MATLAB software 
with the additional Simulink package.  MATLAB is 
available from The Mathworks, Inc. 
(http://www.mathworks.com/).  A working knowledge 
of Simulink model development is also essential. 

The FAST archive contains several files that are 
pertinent to FAST’s interface with Simulink as 
described below: 

FAST_SFunc.dll The FAST S-Function 
compiled as a dynamic-link-
library (DLL).  This DLL 
contains the structural 
dynamic routines from FAST, 
the aerodynamic routines from 
AeroDyn, and interfaces to 
Simulink. 

Simsetup.m This MATLAB script file 
prompts the user for the FAST 
primary input file name and 
calls Read_FAST_Input.m, 
which initializes model 
variables.  It must be called 
from the MATLAB workspace 
before you run a Simulink 
model with the FAST S-
Function. 

Read_FAST_Input.m This MATLAB script file is 
called by Simsetup.m and 
reads the FAST input files to 
initialize parameters in a 
Simulink model.  Users should 
not change this file. 

OpenLoop.mdl An example Simulink model 
containing the FAST S-
Function block, blocks that 
integrate the DOFs, and 
constant open loop control 
input blocks. 

Test01_SIG.mdl An example Simulink model 
containing the FAST S-
Function block, blocks that 
integrate the DOFs, and the 
simple induction generator 
model for FAST certification 
test #01 implemented within 
Simulink. 

To run a FAST model in Simulink, first transfer 
files Simsetup.m and OpenLoop.mdl from the 
SimulinkSamples folder to the directory containing the 
primary input file of a FAST model that you want to 
use.  If you want to use one of the certification test files 
from the CertTest folder, you may have to make a few 
minor changes to some of the input parameters in order 
to use the FAST S-Function in Simulink (refer to the 
next section for the reason). 

Now open a MATLAB command window.  In 
MATLAB, add the folder where files FAST_SFunc.dll 
and Read_FAST_Input.m are stored to the MATLAB 



 

FAST User's Guide 36 Last updated on August 12, 2005 for version 6.0 

path by choosing “Set Path…” from the File menu, 
clicking “Add Folder…”, selecting the folder, and 
pressing Save and Close.  Next, change the current 
working directory in MATLAB to the directory in 
which the FAST model files (including files 
Simsetup.m and OpenLoop.mdl) are stored.  Type 
“Simsetup” into the MATLAB command prompt.  The 
script file will prompt you for the name of the primary 
input file of FAST; type in the root name with 
extension.  Next, open the example Simulink model, 
OpenLoop.mdl, by choosing Open… from the File 
menu.  The Simulink model should appear as in Figure 
27 below (the green block in Figure 27 contains the 
FAST wind turbine block shown in Figure 26).  
Finally, click on the Play (►) button in the Simulink 
window to run the simulation. 

 

 
Figure 27.  Simulink Model OpenLoop.mdl. 

The FAST S-Function will generate the same 
ASCII output files as would be generated during a 
normal FAST simulation.  These output files use the 
root name of the primary input file and append _SFunc 
to the name.  For example, if the primary input file 
were named fast.fst, the main output file from the 
FAST S-Function will be named fast_SFunc.out 
whereas the the FAST executable would generate 
fast.out.  The output for the certification test files 
should agree quite well with the corresponding output 
from FAST.  There will be slight differences due to the 
different solvers and precisions employed by each 
program. 

If for any reason an error occurs during a 
simulation, the FAST S-Function will display the error 
message in a Simulation Diagnostics pop-up box and 
abort.  Warning messages routinely written to the 
command-line window by the FAST executable are not 
echoed to a pop-up box nor are they echoed to the 
MATLAB workspace by the FAST S-Function.  We 
hope to add this capability in the future. 

Specific Input File Options for the 
FAST S-Function 

As implied above, FAST input files must be 
created in order to use the FAST S-Function.  Some 

input parameters directly control the execution of the 
Simulink model; others cause the FAST S-Function to 
abort; most behave exactly as they do in the executable 
version of FAST. 

FAST input variables TMax and DT may be used 
to control the Simulink simulation by entering them in 
the Stop time and Fixed step size boxes, which are 
contained in the “Simulation parameters…” window 
available from the Simulation menu of the Simulink 
model.  These are only available if a fixed step solver 
is selected.  The fixed step solver, ode4, most closely 
emulates the solver used by FAST.  These settings 
have already been specified in OpenLoop.mdl but may 
be changed by you depending on your preference. 

Under the Turbine Control section of FAST’s 
primary input file, you have the option of determining 
whether blade pitch, nacelle yaw, and/or variable-speed 
torque is controlled by the Simulink model or by using 
one of FAST’s intrinsic controllers.  To control blade 
pitch commands from Simulink, set PCMode to 2.  In 
this case, TPCOn must be set to zero since the 
authority to start and stop the controller is reserved for 
the Simulink model.  If PCMode is either 0 or 1, the 
model will behave exactly as a standalone FAST model 
and the pitch commands from Simulink will be 
ignored.  Similarly, to control nacelle yaw angle and 
rate commands from Simulink, set YCMode to 2.  In 
this case, TYCOn must be set to zero since the 
authority to start and stop the controller is reserved for 
the Simulink model.  To model a variable-speed torque 
controller in Simulink, VSContrl must be set to 3.  In 
this case, the authority to start and stop the generator is 
reserved for the Simulink model.  Thus, GenTiStr and 
GenTiStp must be set to True, TimGenOn must be set 
to zero, and TimGenOf must be set greater than 
TMax. 

The override pitch and yaw maneuvers specified in 
FAST’s primary input file will supercede any pitch and 
yaw commands that originate in Simulink regardless of 
the setting of PCMode and YCMode.  You may use 
these to force faults in you pitch and yaw controllers. 

Some features of FAST are not available within 
Simulink.  Thus, when running FAST within Simulink, 
the FAST S-Function will abort if any of these features 
are selected.  The ADAMS preprocessor and the 
linearization capability are not available in the FAST 
S-Function; thus, ADAMSPrep and AnalMode must 
be set to 1.  The high-speed shaft brake option is not 
available in the FAST S-Function so THSSBrDp must 
be set greater than TMax.  Finally, Simulink can only 
use the initial conditions for revolute DOFs, including 
Azimuth, RotSpeed, TeetDefl, NacYaw, RotFurl, 
and TailFurl.  Specifying nonzero values for IPDefl, 
OoPDefl, TTDspFA, and TTDspSS will cause the 
FAST S-Function to abort. 
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Customizing the Simulink Model 
This section provides a few more details on the 

FAST interface to Simulink.  This should provide you 
with enough guidance so that you can modify the 
example Simulink models to include your own torque, 
yaw, and/or pitch controllers. 

The wind turbine block requires three inputs and 
has one output as shown in Figure 26 and Figure 27.  
Electrical generator torque and electric power demands 
must be supplied in the first input, nacelle yaw position 
and rate demands must be supplied in the second input, 
and blade pitch demand angles for all blades must be 
supplied in the third input.  Data must be provided for 
all inputs in order for the Simulink model to run.  For 
instance, if you want to use the FAST simple induction 
generator model (by setting VSContrl to 0 and 
GenModel to 1) rather than developing a torque 
controller in your Simulink model, you may use 
Constant blocks to supply dummy electrical generator 
torque and electrical power demands to the FAST wind 
turbine block—these will not be used by the wind 
turbine block, but they must be present.  This is 
demonstrated in OpenLoop.mdl.  Similarly, values 
must be supplied for the yaw position and rate, and the 
blade pitch angles.  The blade pitch angles are stored in 
a vector sized according to the number of blades. 

In addition to the data available in the primary 
output file generated by the S-Function, the wind 
turbine block will also output a variable array named 
OutData that contains the output data selected in the 
FAST input file through input OutList.  OutData 
contains output data at every model time step (whereas 
the primary output file uses the value of DecFact) and 
is available in the Simulink environment at runtime for 
feeding back control measurements.  Thus, the control 
measurement channels your Simulink controller needs 
must be specified in OutList.  OutData will also be 
available in the MATLAB workspace for 
postprocessing. 

The output data names listed in OutList are also 
available in MATLAB and Simulink workspaces in a 
variable cell array named, appropriately, OutList.  This 
variable is created by the Read_FAST_Input.m script 

file.  You can access specific channels from the 
OutData array by using the OutList cell array.  For 
example, to obtain the rotor speed (assuming rotor 
speed was specified in OutList) at the 3rd time step 
(3rd row) in the MATLAB workspace, type 
“OutData(3,strmatch(‘RotSpeed’,OutList))” in the 
MATLAB command prompt.  Using this technique, 
you don’t need to remember the specific order you 
listed the output channel names in OutList. 

You can modify the Simsetup.m script file to 
initialize variables for any additions you make to the 
Simulink model for torque, yaw, and pitch control.  If 
you modify Simsetup.m, remember to use “clear all” or 
“clear functions” to clear the MATLAB memory 
before repeating a simulation.  As provided, “clear all” 
is the first command in Simsetup.m.  The character 
array named input_fast, which is defined in 
Simsetup.m, must contain the name of the primary 
input file.  Also, the script that reads the FAST input 
file for model initialization, Read_FAST_Input.m, must 
be called before running a simulation and after 
input_fast has been defined.  Other than these 
requirements, you are free to perform any controller 
design or initialization steps in Simsetup.m or your own 
script before performing a simulation in Simulink. 

As an example of a Simulink model more 
advanced than OpenLoop.mdl, we distribute a Simulink 
model named Test01_SIG.mdl in the FAST archive.  In 
this example, the simple induction generator (available 
when VSContrl is set to 0 and GenModel is set to 1) 
is implemented in Simulink rather than FAST for 
certification test #01 (by setting VSContrl to 2).  To 
run this example, follow the directions in the comments 
at the end of Simsetup.m.  The output should be very 
similar to that of certification test #01 run with the 
FAST executable.  There will be slight differences due 
to the different solvers and precisions employed by 
each program. 
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LINEARIZATION 

General Description 
FAST has the capability of extracting linearized 

representations of the complete nonlinear aeroelastic 
wind turbine modeled in the code.  This analysis 
capability is useful for developing state matrices of a 
wind turbine “plant” to aid in controls design and 
analysis.  It is also useful for determining the full 
system modes of an operating or stationary HAWT 
through the use of a simple eigenanalysis.  A FAST 
linearization analysis is invoked by setting input 
parameter AnalMode in the primary input file to 2. 

The linearization routines follow a procedure 
similar to that used by the Symbolic Dynamics 
(SymDyn) code, which is a controls-oriented HAWT 
analysis tool developed by researchers at NREL (11).  
The structural model of FAST, however, is of higher 
fidelity than that of SymDyn. 

The linearization process consists of two steps:  (1) 
computing a periodic steady state operating point 
condition for the DOFs and (2) numerically linearizing 
the FAST model about this operating point to form 
periodic state matrices.  The output state matrices can 
then be azimuth-averaged for nonperiodic, or time-
invariant controls development. 

Periodic Steady State Solution 
The first step in the linearization process is 

determining an operating point to linearize the model 
about.  An operating point is a set of values of the 
system DOF displacements, DOF velocities, DOF 
accelerations, control inputs, and wind inputs that 
characterize a steady condition of the wind turbine.  
For a wind turbine operating in steady winds, this 
operating point is periodic—that is, the operating point 
values depend on the rotor azimuth orientation.  This 
periodicity is driven by aerodynamic loads, which 
depend on the rotor azimuth position in the presence of 
prescribed shaft tilt, wind shear, yaw error, or tower 
shadow.  Gravitational loads also drive the periodic 
behavior when there is a prescribed shaft tilt or 
appreciable deflection of the tower due to thrust 
loading.  It is important to determine an accurate 
operating point because the linearized model is only 
accurate for values of the DOFs and inputs that are 
close to the operating point values. 

To compute a steady state solution, the program 
inputs must necessarily produce a time invariant model 
(other than azimuth dependence).  To insure this time 
invariant condition, FAST performs a number of 
checks on some of the input parameters before running 
a linearization analysis.  FAST will abort without 
computing the linearized state matrices if any of the 

following conditions are not met.  First, active yaw and 
pitch control must be disabled by setting YCMode and 
PCMode to 0.  FAST can’t be linearized during a 
startup or shutdown event, thus GenTiStr and 
GenTiStp must both be set True, TimGenOn must be 
set to 0.0, and TimGenOf must be set greater than 
TMax during a linearization analysis.  Inputs 
THSSBrDp, TiDynBrk, TTpBrDpi, TYawManS, and 
TPitManSi must also be set greater than TMax, and 
TBDepISpi must be set much greater than RotSpeed.  
In AeroDyn, dynamic stall and dynamic inflow must be 
disabled if CompAero is True; thus StallMod should 
be set to “STEADY” and InfModel to 
“EQUIIL”ibrium.  Also, you must use a hub-height 
wind data file (input WindFile) that does not vary with 
time.  At least one DOF must be enabled during a 
linearization analysis because it is useless to have a 
“plant” model with zero states.  Finally, CompNoise 
must be disabled during a linearization analysis. 

Inputs CalcStdy, TrimCase, DispTol, and 
VelTol, which are available in the linearization control-
input-file of FAST (identified by parameter LinFile in 
FAST’s primary input file), are the parameters used to 
manage the steady state solution computation in FAST. 

Input parameter CalcStdy is a flag used to 
indicate whether a periodic steady state solution is 
computed before linearizing the model.  To disable the 
steady state solution computation, set CalcStdy to 
False.  In this case, the operating point is prescribed by 
the values of the initial conditions specified in FAST’s 
primary input file.  That is, when CalcStdy is False, 
the operating point is set to the condition in which all 
displacements, velocities, and accelerations are zero, 
except those specified with nonzero initial conditions 
(for instance, the azimuth DOF will increment at a 
constant rate if and when the rotor is spinning). 

Setting CalcStdy to True causes FAST to 
compute a steady state solution before linearizing the 
model.  During a steady state solution computation, 
FAST integrates the nonlinear equations of motion in 
time until the solution “converges”.  “Convergence” is 
determined as follows.  At each iteration, or one period 
of revolution of the rotor, a 2-norm of the differences 
between conditions at the beginning and end of the 
iteration is computed.  A 2-norm is computed for both 
the angular displacement vector differences and 
angular velocity vector differences.  Input parameters 
DispTol and VelTol are used as convergence 
tolerances for the displacement 2-norm and velocity 2-
norm, respectively.  The smaller the values of DispTol 
and VelTol, the tighter the tolerances.  Once both of 
the computed 2-norms become smaller than or equal to 
the input convergence tolerances, the solution is 
considered to have “converged”.  If the solution has not 
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converged by the time TMax is reached, the iteration 
stops and FAST aborts without computing the 
linearized state matrices.  See Figure 28 for a 
schematic. 

The calculation of an operating point depends on 
whether the rotor is spinning or stationary, whether the 
turbine is variable or constant speed, and whether the 
operating point is in Region 2 (below rated wind speed) 
or Region 3 (above rated wind speed).  Again, see 
Figure 28 for a schematic. 

To linearize a stationary HAWT, it is best to use 
the static equilibrium point as the steady state operating 
point.  In this case, the steady state operating point is 
not periodic because the rotor is not spinning.  To 
obtain the static equilibrium condition, set CalcStdy to 
True, GenDOF to False, and RotSpeed to zero.  
FAST will then integrate in time until the convergence 
tolerance conditions are met.  This operation can be 
performed with or without aerodynamic thrust effects 
as indicated by input flag CompAero. 

For variable speed wind turbines, one often wants 
to determine the periodic operating point in 
conjunction with a trim analysis.  A trim analysis is the 
process of trimming a control input in order to reach a 
desired azimuth-averaged rotor speed while holding all 
other inputs constant.  The FAST linearization 
functionality allows for three forms of trim as specified 
by input switch TrimCase.  For all three cases, the 
desired azimuth-averaged rotor speed is prescribed by 
input parameter RotSpeed from the primary input file 
(which is also used as the initial rotor speed).  Input 
parameter TrimCase is ignored when either CalcStdy 
or GenDOF is False. 

For variable speed turbines in Region 2, set 
CalcStdy to True, GenDOF to True, RotSpeed to the 
desired azimuth-averaged rotor speed (nonzero), and 
TrimCase to 2.  Setting TrimCase to 2 causes FAST 
to trim electrical generator torque, while maintaining 
constant rotor collective blade pitch (indicated by 
inputs BlPitchi from the primary input file), to reach 
the desired azimuth-averaged rotor speed condition. 

For variable speed turbines in Region 3, set 
CalcStdy to True, GenDOF to True, RotSpeed to the 
desired azimuth-averaged rotor speed (nonzero), and 
TrimCase to 3.  Setting TrimCase to 3 causes FAST 
to trim rotor collective blade pitch to reach the desired 
azimuth-averaged rotor speed condition.  In this case, 
the initial “guess” blade pitch angles are given by 
BlPitchi, and the electrical generator torque is 
determined by the torque-speed relationship indicated 
by inputs VSContrl or GenModel.  For typical Region 
3 trim, collective pitch can be trimmed while 
maintaining a constant generator torque by setting 
TrimCase to 3, VSContrl to 1, VS_RtTq to the 
desired constant generator torque, and VS_RtGnSp, 

VS_Rgn2K, and VS_SlPc to 9999.9E-9 (very small 
don’t cares > 0.0). 

The third trim option is for the nacelle yaw control 
input.  To trim nacelle yaw, set CalcStdy to True, 
GenDOF to True, RotSpeed to the desired azimuth-
averaged rotor speed (nonzero), and TrimCase to 1.  
Nacelle yaw can be trimmed with or without the yaw 
DOF enabled.  With yaw DOF enabled (YawDOF = 
True), setting TrimCase to 1 causes FAST to trim the 
neutral yaw angle, YawNeut, which passes through 
FAST’s built-in, second-order actuator model, while 
maintaining constant rotor collective blade pitch 
(indicated by inputs BlPitchi from the primary input 
file), to reach the desired azimuth-averaged rotor speed 
condition.  In this case, the yaw actuator, which is 
described in the Nacelle Yaw Control section of the 
Controls chapter, will be inherent in the output 
linearized model.  With yaw DOF disabled (YawDOF 
= False), setting TrimCase to 1 causes FAST to trim 
the actual nacelle yaw angle, while maintaining 
constant rotor collective blade pitch (indicated by 
inputs BlPitchi from the primary input file), to reach 
the desired azimuth-averaged rotor speed condition.  In 
this case, the yaw actuator will be absent from the 
output linearized model. 

For constant speed machines, set GenDOF to 
False.  FAST will then ignore input TrimCase, and the 
trim analysis will be bypassed during the computation 
of the periodic steady state operating condition. 

With or without trim, if a steady state solution has 
trouble converging, try increasing the simulation 
runtime, TMax; increasing system-damping values; or 
increasing the convergence tolerances, DispTol and 
VelTol.  Some steady state solutions may take 300 
seconds or more of simulation time to converge, 
depending on the nature of the wind turbine model, 
system-damping values, and convergence tolerances 
used.  When trimming, also make sure that the 
condition you are trying to trim to is “reasonable”.  For 
example, during Region 3 trim (TrimCase = 3), it may 
be impossible to find a rotor collective blade pitch 
angle at a given rotor speed and wind speed if the 
constant generator torque is too large.  The steady state 
solution computation may become unstable if the initial 
guess of nacelle yaw is too large when trimming yaw 
(TrimCase = 1).  During Region 2 trim (TrimCase = 
2), the solution computation may also become unstable 
if your desired rotor speed is below the rotor speed that 
results in the maximum power coefficient at a given 
wind speed and rotor collective blade pitch angle.  In 
this case, the only way to obtain a successful trim 
solution is to increase your desired rotor speed 
condition. 
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Figure 28.  Periodic Steady State Computation. 

Model Linearization 
Once a periodic steady state solution has been 

found, FAST numerically linearizes the complete 
nonlinear aeroelastic model about the operating point.  
Since the operating point is periodic with the rotor 
azimuth position, the linearized representation of the 
model is also periodic.  Inputs NAzimStep, MdlOrder, 
NInputs, CntrlInpt, NDisturbs, and Disturbnc, which 
are available in the linearization control-input-file of 
FAST (identified by parameter LinFile in FAST’s 
primary input file), are the parameters used to manage 
the model linearization output. 

FAST will output the periodic linearized model at 
a number of equally spaced rotor azimuth steps as 
indicated by input parameter NAzimStep.  The first 
rotor azimuth location is always the initial azimuth 
position indicated by inputs Azimuth and AzimB1Up.  
The subsequent azimuth steps increment in the 
direction of rotation.  Once a periodic steady state 
solution has been found, FAST interpolates the 
solution to these azimuth locations.  If RotSpeed is 
zero, FAST will override NAzimStep and only 
linearize the model about the initial azimuth position 
(as if NAzimStep was set to 1).  If you are interested 
in time-invariant control, you’ll obtain a more accurate 
model if you output the linearized model at a number 
of different azimuth steps (by setting NAzimStep 
larger than 1) and then average the resulting matrices 
rather than using one azimuth location by setting 
NAzimStep equal to 1.  A tool that will do this matrix 

averaging for you is described in the Post Processing 
section below. 

The FAST linearization routines can be used to 
develop both a first- and a second-order linearized 
representation of the nonlinear aeroelastic model.  The 
order of the model is determined by input switch 
MdlOrder.  To understand the difference between 
these representations, we must examine how the 
linearized state matrices relate to the nonlinear model. 

The complete nonlinear aeroelastic equations of 
motion as modeled in FAST can be written as follows: 

( ) ( )dM q,u,t q f q,q,u,u ,t 0+ =  

where M is the mass matrix, f is the nonlinear “forcing 
function” vector, q is the vector of DOF displacements, 
(and q  and q  are the DOF velocities and 
accelerations), u is the vector of control inputs, ud is the 
vector of wind input “disturbances”, and t is time.  
Note that in the steady state solution, only the DOF 
displacement, velocity, and acceleration vectors are 
periodic with the rotor azimuth position.  The vector of 
control inputs and the vector of wind disturbances are 
not periodic.  In the above notation, capital letters 
represent matrices and lower case underlined letters 
represent vectors. 

FAST numerically linearizes the aeroelastic 
equations of motion by perturbing (represented by a ∆) 
each of the system variables about their respective 
operating point (op) values: 
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op
q q q∆= + ,  

op
q q q∆= + ,  

op
q q q∆= + , 

opu u u∆= + ,  and  d dop du u u∆= + . 

Substituting these expressions into the equations of 
motion and expanding as a Taylor series approximation 
results in the second-order (MdlOrder equal 2) 
linearized representation of the equations: 

ddM q C q K q F u F u∆ ∆ ∆ ∆ ∆+ + = +
, 

where 

op
M M=

 
is the mass matrix, 

op

f
C

q
∂

=
∂

 
is the damping/gyroscopic matrix, 

op

fMK q
q q

 ∂∂
= + 

∂ ∂  
 

is the stiffness matrix, 

op

fMF q
u u

∂ ∂
= − + ∂ ∂ 

 

is the control input matrix, and 

d
d op

f
F

u
∂

= −
∂

 

is the wind input disturbance matrix.  The “
op

” 
notation is used to signify that the partial derivatives 
are computed at the operating point.  Internally within 
FAST, these partial derivatives are computed using the 
central difference perturbation numerical technique. 

Along with the linearized equations of motion, 
FAST also develops a linearized system associated 
with output measurements y.  The collection of output 
measurements is specified in list OutList at the end of 
the primary input file.  The second-order linearized 
representation of the output system is as follows: 

ddy VelC q DspC q D u D u∆ ∆ ∆ ∆= + + +  

where VelC is the velocity output matrix, DspC is the 
displacement output matrix, D is the control input 

transmission matrix, and Dd is the wind input 
disturbance transmission matrix. 

The DOF displacement, velocity, and acceleration 
perturbation vectors ( q∆ , q∆ , and q∆ ) are replaced 
with the first-order state vector x and state derivative 
vector x : 

q
x

q

∆

∆
  =  
  

  and  
q

x
q

∆

∆
  =  
  

 

in order to determine the first-order (MdlOrder equal 
1) representation of the system: 

ddx Ax B u B u∆ ∆= + +  

ddy C x D u D u∆ ∆= + +  

In this form, the state matrix A, control input 
matrix B, wind input disturbance matrix Bd, and output 
state matrix C are related to their second-order 
counterparts as follows: 

1 1

0 I
A

M K M C− −

 
=  − − 

,  1

0
B

M F−

 
=  

 
, 

d 1
d

0
B

M F−

 
=  

 
,  and  [ ]C DspC VelC=  

where I is the identity matrix and 0 is a matrix of zeros.  
The control input transmission matrix D and wind 
input disturbance transmission matrix Dd are identical 
between the first- and second-order representations of 
the linearized system. 

The sizes of the preceding matrices and vectors 
depend on the number of DOFs enabled and the 
number of control inputs and wind input disturbances 
selected.  This is very convenient in controls-related 
work where it is useful to begin with a simple 
linearized “plant” model and then progressively add 
complexity in steps. 

The number and type of DOFs incorporated in q, 
q , and q  are determined by the number of DOFs 
enabled.  At least one DOF must be enabled during a 
linearization analysis because a “plant” model with 
zero states is useless. 

The number and type of control inputs 
incorporated in u are specified through input 
parameters NInputs and CntrlInpt.  NInputs is the 
number of control inputs.  Valid values are integers 
from 0 to 4 + NumBl (inclusive).  CntrlInpt is a list of 
numbers corresponding to different types of control 
inputs.  Possible values are 1 to 7 (inclusive) (7 is only 
available if NumBl = 3).  The numbers correspond to 
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the seven control inputs described in Table 5.  You 
must enter at least NInputs values in this list.  You can 
separate the values with combinations of tabs, spaces, 
and commas, but you may use only one comma 
between numbers.  If NInputs is 0, input parameter 
CntrlInpt will be skipped. 

 
Table 5.  Control Input Settings. 

CntrlInpt 
Setting 

Description 

1 Nacelle yaw angle command 
2 Nacelle yaw rate command 
3 Electrical generator torque 
4 Rotor collective blade pitch 
5 Individual pitch of blade 1 
6 Individual pitch of blade 2 
7 Individual pitch of blade 3 (unavailable 

if NumBl = 2) 
 
If the yaw DOF is enabled (YawDOF = True), 

then the commanded yaw angle and rate from 
CntrlInpt setting 1 and 2 are the neutral yaw angle, 
YawNeut, and neutral yaw rate, YawRateNeut, in 
FAST's built-in second-order actuator model.  In this 
case, the yaw actuator, which is described in the 
Nacelle Yaw Control section of the Controls chapter, 
will be inherent in the output linearized model.  If the 
yaw DOF is disabled (YawDOF = False), then the 
commanded yaw angle and rate from CntrlInpt setting 
1 and 2 are the actual yaw angle and yaw rate.  In this 
case, the yaw actuator will be absent from the output 
linearized model. 

The number and type of wind input disturbances 
incorporated in ud are specified through input 
parameters NDisturbs and Disturbnc.  NDisturbs is 
the number of wind input disturbances.  Valid values 
are integers from 0 to 7 (inclusive).  Disturbnc is a list 
of numbers corresponding to different types of wind 
input disturbances.  Possible values are 1 to 7 
(inclusive).  The numbers correspond to the seven 
inputs available in the hub-height wind data files of 
AeroDyn as described in Table 6.  You must enter at 
least NDisturbs values in this list.  You can separate 
the values with combinations of tabs, spaces, and 
commas, but you may use only one comma between 
numbers.  If NDisturbs is 0, input parameter 
Disturbnc will be skipped. 

Table 6.  Wind Input Disturbance Settings. 

Disturbnc 
Setting 

Description 

1 Horizontal hub-height wind speed, V 
2 Horizontal wind direction, DELTA 
3 Vertical wind speed, VZ 
4 Horizontal wind shear, HSHR 
5 Vertical power law wind shear, VSHR 
6 Linear vertical wind shear, VLinSHR 
7 Horizontal hub-height wind gust, VG 

 
As an example of the size of the output linearized 

state matrices, consider a three-bladed turbine (NumBl 
equal 3) modeled with only the FlpDOF1 and 
GenDOF DOFs set to True (enabled).  Assume also 
that NInputs is set to 2 with CntrlInpt set to 3,4 and 
NDisturbs is set to 1 with Disturbnc set to 1.  This 
model has 4 DOFs (variable speed generator and one 
flap mode for each of the three blades), 2 control inputs 
(electrical generator torque and rotor collective blade 
pitch), and 1 wind input disturbance (horizontal hub-
height wind speed).  Thus, q has size 4x1, x has size 
8x1, M has size 4x4, A has size 8x8, B has size 8x2, Bd 
has size 8x1, etc.  If 12 parameters were listed in 
OutList in this example, then C would have size 12x8, 
D would have size 12x2, etc.  Each of these matrices 
would be output at each of the NAzimStep number of 
equally spaced azimuth steps.  Note also that if 
NInputs were set to 0 instead of 2 in this example, then 
the B and D matrices would be absent from the 
linearized system. 

The name of the primary output file during a 
linearization analysis uses the path and root name of 
the primary input file and appends .lin for an extension.  
For example, if the input file were named fast.fst, the 
main output file will be named fast.lin.  This output file 
contains the periodic state matrices of the linearized 
system, the periodic operating point states and state 
derivatives, the periodic operating point output 
measurements, the constant operating point values of 
the control inputs and wind inputs, and other 
information that is useful for post processing and for 
making use of the linearized model.  An example 
linearized model file is shown in Figure 31. 

Post Processing 
The numerous output vectors and matrices may be 

overwhelming, and one may wonder how to analyze 
and make use of them.  To aid in this effort, we have 
developed a post processing script file in MATLAB 
entitled Eigenanalysis.m.  This script file is included in 
the FAST archive in the CertTest folder.  This script 
file can be used as a basis for more advanced 
utilization of the FAST linearization output.  It is 
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written in MATLAB because MATLAB is the tool 
most commonly used in controls-related design work. 

To run the Eigenanalysis.m script file, open a 
MATLAB command window, change the current 
working directory to the directory in which the script 
file is stored, and type “Eigenanalysis” into the 
MATLAB command prompt.  The script file will 
prompt you for the name of the FAST linearization 
output file to process.  Type only the root name of this 
file—omit the .lin extension.  The name may optionally 
include an absolute or relative path if Eigenanalysis.m 
is not stored in the same directory as the FAST 
linearization output file.  Naturally, a FAST 
linearization analysis must be run before the 
Eigenanalysis.m script file is run, and a linearization 
output file must be available for processing. 

Running Eigenanalysis.m will cause MATLAB to 
read in the periodic state matrices from the FAST 
linearization output file.  If the linearized model is 
second-order, the script will then compute the first-
order state matrices from the second-order matrices 
using the equations documented above.  If the 
linearized model is first-order, the script will not 
compute the second-order matrices from the first-order 
state matrices because the process cannot be reversed 
(there is no unique solution available without 

knowledge of the mass matrix).  The form of the state 
matrix A without damping (as if C were zero) is 
computed next.  Azimuth-averaged matrices are then 
computed for all available periodic matrices.  Finally, 
the script will perform an eigenanalysis on the periodic 
and azimuth-averaged state matrix A, with and without 
damping.  The resulting eigenvalues and eigenvectors 
are the full system natural frequencies and mode 
shapes.  The natural frequencies are available in both 
rad/sec and Hz. 

After the script file has completed execution, type 
“who” into the MATLAB command prompt.  This will 
cause MATLAB to list the available variables.  The 
variable names are descriptive enough that they can be 
discerned without further documentation.  For 
example, the azimuth-averaged full system natural 
frequencies of the nondamped system, in Hz, are 
available in variable FrequenciesAvgHzNoDamp.  
Their associated mode shapes are available in variable 
ModeShapesAvgNoDamp. 

Please refer to MATLAB documentation for 
additional help on running MATLAB and learning 
commands that are useful for controls-related design 
work, which make use of linearized models output 
from FAST. 
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ADAMS PREPROCESSOR 

General Description 
FAST has the capability of extracting “equivalent” 

ADAMS (Automatic Dynamic Analysis of Mechanical 
Systems) wind turbine datasets from the turbine 
properties specified in the FAST input file(s).  That is, 
FAST has the functionality of acting like an ADAMS 
preprocessor capable of creating ADAMS datasets of 
wind turbine models through FAST’s simple property-
input-style interface.  Thus, FAST can be used as an 
alternative to the ADAMS/WT toolkit (12) or other 
preprocessors used to create ADAMS datasets of wind 
turbine models.  The FAST to ADAMS preprocessor 
feature is enabled through the switch ADAMSPrep in 
the primary input file.  This chapter, which describes 
the FAST to ADAMS preprocessor, assumes the reader 
is familiar with the basics of ADAMS. 

The main advantages for using FAST to create 
ADAMS datasets are to ensure consistency between 
FAST and ADAMS models and to facilitate quick and 
easy creation of ADAMS datasets.  The FAST-to-
ADAMS preprocessor supports the mentality that all 
pertinent configuration information be stored in a 
single location (i.e., the FAST input files).  The FAST 
to ADAMS preprocessor provides a natural 
progression from the medium-complexity FAST wind 
turbine models to the highly complex models possible 
using ADAMS.  Once a working FAST model has 
been developed, little additional effort is required to 
create the more advanced ADAMS model.  This is a 
useful way to impress your boss—you can accomplish 
a lot of work with very little effort. ☺ 

The ADAMS datasets extracted from FAST 
contain all the functionality and usability associated 
with the FAST model, while bypassing some of 
FAST’s limitations.  All the turbine control paradigms 
available in FAST, as discussed in the Controls 
chapter, are incorporated into the ADAMS model.  
These include the functionality of yawing the nacelle, 
pitching the blades, controlling the generator and HSS 
brake torque, and deploying the tip brakes.  The 
ADAMS datasets incorporate the same generator, 
drivetrain compliance, nacelle yaw, rotor-furl, tail-furl, 
rotor teeter, and support platform models and DOFs 
used by FAST.  Also, all of the output parameters 
specified at the end of FAST’s primary input file are 
passed into the ADAMS datasets.  This eliminates the 
need to develop a REQSUB() user-written subroutine 
for request output every time an ADAMS dataset is 
generated.  Once an ADAMS analysis is run, the 
format of the ADAMS output file containing time-
series data is identical to that of the FAST format so 

that post-processing techniques are compatible for the 
codes. 

Additionally, the ADAMS interface is developed 
in such a way that all user-defined routines developed 
for FAST, including UserGen(), UserVSCont(), 
UserHSSBr(), UserPtfmLd(), UserTeet(), 
UserRFrl(), UserTFrl(), UserTFin(), 
UserYawCont(), and PitchCntrl(), can be linked with 
ADAMS just as easily as they can be with FAST.  The 
routines do not need to be modified in any way for 
compatibility with ADAMS.  The AeroDyn input files 
are also fully compatible between the FAST models 
and the associated, extracted ADAMS datasets. 

One of FAST’s limitations that is bypassed by 
ADAMS is the assumed-mode approximation of the 
blades and tower.  The blades and tower of the 
extracted ADAMS model are developed from FAST’s 
distributed mass and stiffness inputs using ADAMS’ 
conventional approach of modeling flexible members 
through a series of lumped masses connected by 
stiffness and damping FIELDs.  Nevertheless, FAST’s 
valuable DOF-switching functionality is still available 
in the ADAMS model, so these flexibilities can be 
eliminated through a simple flag, just as they can be in 
FAST (in ADAMS the flexibilities are eliminated 
collectively, not one mode at a time). 

Moreover, several characteristics not implemented 
in the FAST model are incorporated into the extracted 
ADAMS model.  These include torsional and 
extensional DOFs for the blades and tower, flap/twist 
coupling in the blades, precurved and preswept blades, 
mass and elastic offsets for the blades, mass offsets for 
the tower, actuator dynamics for the blade pitch 
controls, graphical output capabilities, and others 
documented below. 

Compiling and Linking ADAMS 
Using the extracted ADAMS datasets requires the 

purchase and installation of the commercial ADAMS 
multibody-dynamics and analysis package.  ADAMS is 
available from MSC.Software Corporation of Santa 
Ana, California.  You will also need a compiler.  For 
the PC, you should use the Compaq Visual Fortran 
compiler, but its predecessor, Digital Fortran, will also 
work. 

Additionally, one must download the ADAMS to 
AeroDyn (A2AD) source files (13) and compile and 
link the ADAMS user-created dynamic-link-library 
(DLL).  This is where the compiler is required. 

The A2AD archive is available for download from 
our Web page 
http://wind.nrel.gov/designcodes/simulators/adams2ad/
.  The source files included in the archive, which are 
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pertinent to creating the DLL needed to run the 
ADAMS datasets extracted from FAST, are as follows: 

GFOSUB.f90 Contains an interface for the 
user-defined support platform 
loading model and routines 
that interface ADAMS to 
AeroDyn so that AeroDyn can 
provide ADAMS with 
aerodynamic forces on each 
blade element. 

SENSUB.f90 Contains a routine to detect 
the occurrence of a successful 
forward time step.  This is 
needed for the AeroDyn 
interface. 

REQSUB_FAST.f90 Contains routines for 
calculating the desired 
ADAMS output as specified in 
FAST’s primary input file. 

SFOSUB_FAST.f90 Contains a routine for 
implementing the generator 
and variable-speed control 
models and an interface for the 
user-defined rotor teeter, 
rotor-furl, and tail-furl spring 
and damper models. 

VARSUB_FAST.f90 Contains a routine for 
computing the demand blade 
pitch angles and demand 
nacelle yaw angle and rate. 

VFOSUB_FAST.f90 Contains routines for 
computing the tip-brake drag 
and tail fin aerodynamic 
forces. 

Source files GFOSUB.f90 and SENSUB.f90 are the 
generic routines provided in the A2AD archive for 
interfacing any ADAMS model to AeroDyn.  A good 
description of these files is provided in (13).  
GFOSUB.f90 had to be modified slightly in order to 
incorporate an interface to the user-defined support 
platform loading model contained in routine 
UserPtfmLd().  Source files REQSUB_FAST.f90, 
SFOSUB_FAST.f90, VARSUB_FAST.f90, and 
VFOSUB_FAST.f90 were written explicitly for running 
ADAMS datasets extracted from FAST. 

Also included in the A2AD archive is a file named 
CompileLinkA2AD.bat.  This is a DOS command script 
useful for compiling and linking the ADAMS DLL, 
named appropriately, ADAMS.dll.  You will need to 
modify this script before you can run it on your PC.  
Open the script with your favorite editor.  You will 
need to change the variables DF_LOC, A2AD_LOC, 
AD_LOC, and FAST_LOC.  Set them so they point to 
the locations of Digital Fortran and the A2AD, 
AeroDyn, and FAST source files respectively.  The 
location of the FAST source files is needed so that the 

same user-defined routines developed for FAST, 
including UserGen(), UserVSCont(), UserHSSBr(), 
UserPtfmLd(), UserTeet(), UserRFrl(), UserTFrl(), 
UserTFin(), UserYawCont(), and PitchCntrl(), can 
be used with the ADAMS model as well. 

Once these path variables are set, save the updated 
script and run it from a command prompt by simply 
typing its name.  You can also run the script by double-
clicking on it from Windows Explorer.  Note that a file 
named newline.txt, which is also contained in the 
A2AD archive, must be located in the same directory 
as the CompileLinkA2AD.bat script in order for the 
script to work.  The script will create ADAMS.dll.  This 
one DLL can be used to run any ADAMS datasets 
extracted from FAST.  In other words, you will only 
need to create ADAMS.dll once (unless you change any 
of the user-defined routines or source files). 

Guidelines for Creating ADAMS 
Datasets 

Here is the recommended procedure for creating 
ADAMS datasets using the FAST to ADAMS 
preprocessor: 

Step 1.  Create a working FAST model.  Do this 
by specifying the desired settings in the FAST input 
files, running a simulation, and then verifying that the 
response predictions are reasonable. 

One drawback to creating both FAST and 
ADAMS models from the same input file(s) is that if 
an error is made when inputting properties for a FAST 
model, the extracted ADAMS model will contain the 
same error.  All redundancy checks available when 
FAST and ADAMS models are created independently 
are eliminated.  To minimize resulting repercussions, 
make sure that the FAST model is in working order 
and is outputting reasonable response predictions 
before creating the ADAMS datasets. 

Step 2.  Update the FAST input files to include the 
additional input specifications required for creating 
ADAMS datasets. 

The creation of ADAMS datasets using the FAST 
to ADAMS preprocessor requires the specification of 
additional parameters in the input file ADAMSFile.  
This file contains ADAMS-specific inputs related to 
the blade pitch actuators, graphical output capabilities, 
and other ADAMS-specific functionalities. 

Furthermore, additional distributed blade and 
tower stiffness and inertial properties must be specified 
in the blade and tower input files.  These are input by 
including additional columns of distributed data.  For 
the blades, the additional columns are for distributed 
torsional and extensional stiffnesses, the distributed 
flap/twist coupling coefficient, distributed inertias, 
distributed offsets for identifying the reference axis for 
precurved and preswept blades, and distributed mass 
and elastic offsets.  For the tower, the additional 
columns are for distributed torsional and extensional 
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stiffnesses, distributed inertias, and distributed mass 
offsets.  See the sample input files and the Input Files 
chapter for more details on these additional inputs. 

Several input parameters are handled differently 
between FAST and the ADAMS preprocessor.  Users 
of the FAST to ADAMS preprocessor should be aware 
of these differences. 

The time step size input parameter, DT, is used by 
the ADAMS preprocessor to specify the maximum step 
size the integrator is allowed to take in the variable-
step-size numerical-integration scheme that is used by 
ADAMS.  Users of the ADAMS preprocessor should 
be aware that this is in slight contradiction to how DT 
is used to specify the constant time step size for the 
numerical integration scheme that is used by FAST. 

Since the blade and tower models incorporated 
into the ADAMS datasets do not operate on the modal 
principle, input parameters associated with modal 
properties are naturally handled differently in the 
ADAMS preprocessor. 

Blade flap and edge damping ratios incorporated 
in ADAMS FIELD statements are set equal to the same 
ratios used for the first flap and edge modes in FAST.  
These ratios are determined by inputs BldFlDmp(1) 
and BldEdDmp(1) in the blade input file(s).  The value 
of input BldFlDmp(2) does not affect the creation of 
ADAMS datasets. 

Likewise, tower fore-aft and side-to-side damping 
ratios incorporated in ADAMS FIELD statements are 
set equal to the same ratios used for the first fore-aft 
and side-to-side modes in FAST.  These ratios are 
determined by inputs TwrFADmp(1) and 
TwrSSDmp(1) in the tower input files.  The values of 
inputs TwrFADmp(2) and TwrSSDmp(2) do not 
affect the creation of ADAMS datasets. 

Moreover, the modal stiffness tuner input 
parameters contained in the blade and tower data files 
are completely ignored by the ADAMS preprocessor. 

Blade flexibility is controlled by enabling the first 
blade modes through input flags FlapDOF1 and 
EdgeDOF.  Enabling blade flexibility enables all 
blade flap, edge, torsional, and extensional DOFs; 
conversely, disabling the flexibility removes all of 
these DOFs.  When using the ADAMS extractor, the 
setting of FlapDOF1 must be identical to that of 
EdgeDOF to emphasize that the flap DOFs can’t be 
enabled without also enabling edge DOFs or vice-
versa.  The setting of input flag FlapDOF2 does not 
affect the creation of the ADAMS datasets. 

Tower flexibility is controlled by enabling the first 
tower modes through input flags TwFADOF1 and 
TwSSDOF1.  Enabling tower flexibility enables all 
tower fore-aft, side-to-side, torsional, and extensional 
DOFs, and conversely, disabling the flexibility 
removes all of these DOFs.  When using the ADAMS 
extractor, the setting of TwFADOF1 must be identical 
to that of TwSSDOF1 to emphasize that the fore-aft 

DOFs can’t be enabled without also enabling side-to-
side DOFs or vice-versa.  The setting of input flags 
TwFADOF2 and TwSSDOF2 do not effect the 
creation of the ADAMS datasets. 

Support platform rotational DOFs are controlled 
by enabling input flags PtfmRDOF, PtfmPDOF, and 
PtfmYDOF.  Due to the method ADAMS uses to 
implement the rotational DOFs, FAST cannot build an 
ADAMS dataset if one of the platform rotational DOFs 
is set differently than the other two.  Thus, you must set 
PtfmRDOF, PtfmPDOF, and PtfmYDOF to the same 
value (i.e., all .True or all False).  There is no 
restriction on which combination of support platform 
translational DOFs are enabled. 

Additionally, some features available in FAST 
can’t be modeled in ADAMS.  Thus, when creating 
ADAMS datasets using the FAST to ADAMS 
preprocessor, FAST will abort and not create the 
ADAMS dataset if any of these features are selected. 

Mechanical gearbox efficiency losses are very 
difficult to model in ADAMS.  Thus, GboxEff must be 
set to 100% when creating ADAMS datasets.  
Similarly, the physics of a gearbox whose LSS and 
HSS rotate in opposite directions are difficult to model 
in ADAMS.  Thus, GBRevers must be set to False 
when creating ADAMS datasets. 

The initial displacements of the blades and tower, 
specified using inputs OoPDefl, IPDefl, TTDspFA, 
and TTDspSS, must all be zero when creating 
ADAMS datasets.  This is due to the difficulty 
involved in assembling an ADAMS dataset that 
contains deflected flexible members at the model 
definition phase.  The initial teeter angle, TeetDefl, 
must also be set to zero when creating ADAMS 
datasets.  This restriction exists since the generic 
GFOSUB.f90 routines provided in the A2AD archive 
will not read initial blade element data properly if 
TeetDefl is nonzero.  All of the other initial conditions 
specified in FAST’s primary input file, including the 
initial rotor speed (RotSpeed), are incorporated in the 
ADAMS datasets. 

Due to a restriction in ADAMS, the title line of 
FAST’s primary input file, the third line in the file, 
must not contain any of the characters “,”, “;”, “&”, or 
“!” when creating ADAMS datasets.  This is because 
the title is stored as a STRING statement in the 
ADAMS datasets (used for providing header 
information in the primary output file) and because 
ADAMS STRING statements prohibit the use of these 
characters. 

Sensible limits are placed on the number of blade 
and tower elements so that a reasonable numbering 
scheme could be implemented for ADAMS blade and 
tower PART, MARKER, and FIELD statements.  This 
restriction is that neither TwrNodes nor BldNodes 
can be greater than 99. 
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Finally, users of the FAST-to-ADAMS 
preprocessor should also be aware that the linearization 
control features and Simulink interface available in 
FAST are not available in the extracted ADAMS 
models. 

Step 3.  Run FAST with ADAMSPrep set at 2 or 
3.  When ADAMSPrep is set to 2, FAST creates the 
ADAMS datasets and stops.  When ADAMSPrep is set 
to 3, FAST creates the ADAMS datasets and then 
proceeds to run the FAST simulation as well. 

When running, FAST generates two ADAMS files 
as follows: 
<RootName>_ADAMS.adm 
 The ADAMS dataset containing 

statements that characterize the 
model configuration, analysis 
settings, and output. 

<RootName>_ADAMS.acf 
 The ADAMS command file 

containing statements that enable 
DOFs and drive the time-
marching simulation. 

where RootName is the name of the primary input file.  
For example, if the input file were named fast.fst, the 
extracted ADAMS files will be named 
fast_ADAMS.adm and fast_ADAMS.acf. 

An additional file named 
<RootName>_ADAMS_LIN.acf is generated when flag 
MakeLINacf is enabled in the ADAMSFile.  This third 
file contains statements that drive an 
ADAMS/LINEAR eigenanalysis of the model.  The 
eigenanalysis is performed with no gravity, rotor speed, 
damping, or aerodynamics, no matter how the 
associated inputs are otherwise specified in FAST’s 
input files. 

If you want to change the ADAMS model 
properties or analysis settings, simply change the 
desired input properties in the FAST input file(s) and 
run FAST again to create the updated ADAMS 
datasets.  This causes FAST to overwrite your old 
datasets if they are located in the same directory in 
which FAST is called.  You never need to manually 
change the ADAMS datasets unless you want to 
change the ADAMS model to include features not 
supported by the FAST-to-ADAMS preprocessor. 

Before running the ADAMS simulation, it may be 
beneficial to examine the model in ADAMS View to 
make sure the configuration is as expected.  To do this, 
open ADAMS View, choose Import… from the File 
menu, and then browse and select the ADAMS dataset 
(.adm) of interest. 

Running ADAMS 
Before running ADAMS, it is imperative that you 

first understand FAST.  This is because the extracted 
ADAMS datasets are considerably more complex than 

their associated FAST models.  Please refer to Step 1 
of the previous section for additional information 
regarding this issue. 

Using ADAMS.dll, an extracted ADAMS dataset, 
and an extracted ADAMS control/command file, you 
can run the ADAMS simulation using the Run Custom 
Solver prompts available in ADAMS Solver.  
Experienced users of ADAMS can also develop script 
files so that ADAMS.dll can be run from any directory 
without manually going through the ADAMS Solver 
prompts. 

In order to get the ADAMS simulation to run 
smoothly and converge accurately, you will most likely 
need to play around with the time step size and 
integrator error.  The FAST-to-ADAMS preprocessor 
automatically enters a default integrator error of 0.001 
for all of the ADAMS INTEGRATOR/GSTIFF 
statements.  This should be suitable for most 
simulations, but may require adjustment for some. 

Please refer to (13) for additional hints on running 
ADAMS simulations. 

ADAMS generates several output files.  The 
primary output file of interest has a .plt (for plot) 
extension.  This file contains the columns of time-
series data with one column for each parameter that is 
requested in the primary input file.  The format of this 
output file is identical to that of FAST’s .out file so that 
post-processing techniques are compatible for the 
codes.  The other files created are generic ADAMS 
output files generated by ADAMS Solver.  It may or 
may not be useful to review these. 

When examining time-series data output from 
ADAMS, please be aware of the following limitations.  
If the tower is rigid, the tower base loads will all be 
output with zeros—unfortunately, we haven’t found a 
reason or workaround for this anomoly.  Also, when 
outputting local span blade loads, be aware that the 
loads at the outboard strain gages will be under-
predicted by ADAMS.  This is because ADAMS lumps 
all of its mass at the center of each segment (rigid body 
inertia effects are also included), and thus, the mass of 
the segment in which the local span loads are output 
does not contribute to the local load.  This difference 
shows most in the outboard part of the blade and 
becomes insignificant toward the root.  Finally, be 
aware that the gyroscopic pitching moments induced 
when the nacelle yaws while the drivetrain is spinning 
will be over-predicted by ADAMS.  This results from 
the fact that the HSS is lumped to the LSS in the 
ADAMS model.  A detailed explanation of why this 
lumping affects the gyroscopic pitch moments is 
provided in (6). 

If SaveGrphcs is enabled in ADAMSFile, 
ADAMS will also generate a graphics output file with 
a .gra extension.  The graphics output file may be used 
to view an animation of the ADAMS simulation.  To 
view the simulation, open ADAMS View, choose 
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Import… from the File menu, and then browse and 
select the ADAMS graphics file of interest.  Once 
loaded, the animation can be played by choosing 
Animation Controls… from the Review menu.  When 
running many ADAMS simulations, it is beneficial to 
disable SaveGrphcs—ADAMS will not then generate 
the graphics output file and will run faster as a result. 

When ADAMS is run using the control/command 
file for the ADAMS/LINEAR analysis, a results output 
file with a .res extension is generated.  To animate the 
system mode shapes, open ADAMS View, choose 
Import… from the File menu, and then browse and 
select the ADAMS results file of interest.  Once 
loaded, the system modes can be animated by choosing 
Linear Modes Controls… from the Review menu.  If 
you only require a listing of the system natural 
frequencies, these results are written and can be 
retrieved from either the .out (output) or .msg 
(message) files automatically generated by ADAMS 
Solver. 

Description of the Extracted ADAMS 
Datasets 

This section documents qualitatively how the 
extracted ADAMS datasets are organized and how the 
various components of the wind turbine model are 
implemented in ADAMS.  If you are interested in 
manually modifying the ADAMS datasets in order to 
incorporate features not available by the FAST-to-
ADAMS preprocessor, it is important to review this 
section first.  If you have no interest in learning how 
the various components of the wind turbine model are 
implemented in ADAMS, you may skip this section 
entirely. 

To learn the exact details on how the ADAMS 
datasets are generated, see the file FAST2ADAMS.f90 
in the FAST source code.  This Fortran file contains 
three subroutines, one for generating each of the 
ADAMS files output by FAST. 

In general, the ADAMS datasets generated by 
FAST employ the same PART and MARKER 
numbering conventions as recommended in (13).  For 
reference, a complete listing of all of the ADAMS 
statements (PARTs, MARKERs, FIELDs, JOINTs, 
etc.) contained in the extracted ADAMS datasets is 
provided on our Web page http://wind.nrel.gov/ 
designcodes/adams2ad/FAST2ADAMSStatements 
.xls.  However, not all extracted ADAMS datasets 
contain every statement documented in this 
spreadsheet—only statements that are needed are 
included.  For example, if the generator speed is held 
fixed by disabling the generator DOF, then the 
SFORCE statement used to model an unneeded 
generator torque will not be included in the ADAMS 
dataset. 

When examining the ADAMS datasets, it is 
important to note that the system units for all 

statements in the ADAMS datasets are in kilonewtons, 
kilograms, meters, and seconds for the force, mass, 
length, and time units respectively.  These are specified 
through the use of a UNITS statement.  The 
acceleration of gravity, specified using an ACCGRAV 
statement, acts in the negative z-direction of the 
GROUND reference frame and MARKER. 

The ADAMS dataset containing statements that 
characterize the model configuration, analysis settings, 
and output (the .adm file) is organized into five main 
sections.  The first is a header section containing 
comments that identify the model name and describe 
how and when the dataset was created.  The second 
section contains definitions of all model PART, 
MARKER, and GRAPHICS statements.  The third 
section contains the constraint JOINT and MOTION 
statements, and the fourth section contains force 
definitions, including FIELD, FRICTION, SFORCE, 
VFORCE, GFORCE, and SPRINGDAMPER 
statements.  The last section contains definitions of 
analysis settings and output. 

In each section that contains model definition 
statements, the model is assembled from the ground up, 
from the support platform through the blade tip.  So, 
for example, if you want to examine the tower FIELD 
statements, look at the statements near the beginning of 
the force definition section. 

The ADAMS command (.acf) files contain 
commands used to drive the simulation.  These include 
an INTEGRATOR statement and either 
SIMULATE/DYNAMICS or LINEAR/EIGENSOL 
commands, depending on the type of analysis 
performed.  The .acf files also contain DEACTIVATE 
commands used to remove superfluous constraints and 
enable DOFs based on the specifications in the feature 
flags section of FAST’s primary input file.  Additional 
details on this last point are provided at the end of this 
section. 

Each tower and blade element is characterized by 
its own PART statement.  The center of mass 
MARKERs of these PARTs are located at the same 
vertical (for tower) and radial (for blade) locations as 
the analysis nodes used in FAST.  For blades, the 
transverse locations of the center of mass MARKERs 
are positioned with the reference axis and center-of-
gravity offsets specified in the blade input file.  For 
towers, the transverse locations of the center of mass 
MARKERs are identified using the distributed center-
of-gravity offsets specified in the tower input file.  
Interconnecting each PART is a stiffness and damping 
FIELD statement.  The FIELDs attach to the PARTs at 
elastic axis MARKERs, which are located in the same 
transverse planes as the center of mass MARKERs of 
each PART.  For the blades, the transverse locations of 
the elastic axis MARKERs are identified using the 
distributed reference axis and elastic-axis offsets 
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specified in the blade file, and for the tower, are 
assumed coincident with the tower axis. 

Users should note that a flexible member (a blade 
or tower) with “N” analysis nodes, will be assembled 
using “N+1” FIELD statements.  “N-1” of the FIELD 
statements are used to interconnect the “N” analysis 
nodes to each another.  The “Nth” FIELD statement is 
used to cantilever node 1 to the flexible member’s rigid 
base.  The “(N+1)th” FIELD statement is used to 
connect node “N” to the tip of the flexible member, 
which for the tower is the tower-top and for a blade is 
the tip brake.  For blades with no tip brakes (indicated 
by setting the associated TipMass to zero), the DOFs 
associated with the outermost FIELD statement are 
never enabled. 

The support platform, tower top, bed plate, 
nacelle, generator, HSS, LSS, teeter pin, hub, pitch 
plates, tip brakes, tail, and structure furling with the 
rotor are all modeled using rigid PART statements.  
Each of these PARTs contains several MARKERs for 
identifying various locations and directions. 

In the graphics output, each tower and blade 
element is identified with its own unique GRAPHICS 
statement.  Additional GRAPHICS statements are used 
to illustrate the rigid tower base, nacelle, gearbox, 
HSS, LSS, generator, hub, tail boom, and tail fin. 

The yaw bearing is modeled with a revolute 
JOINT.  Nacelle yaw demand angles and rates, arising 
from both advanced yaw control algorithms and 
override yaw maneuver specifications, are computed in 
VARSUB() and stored in VARIABLE statements.  If 
necessary, based on settings in FAST’s primary input 
file, routine VARSUB() calls FAST’s user-defined 
yaw control routine, UserYawCont().  The difference 
between the yaw demand angle and actual yaw angle 
(yaw error) and the yaw demand rate and actual yaw 
rate (yaw rate error) is passed through a yaw actuator 
model that is implemented with an explicit function-
based SFORCE statement.  This is the same yaw 
actuator inherent in equivalent FAST models.  If the 
yaw DOF is disabled, the yaw JOINT is “locked” using 
a steady MOTION statement, but the yaw DOF cannot 
be disabled if yaw control is enabled (the ADAMS 
preprocessor will abort if you try). 

The rotor-furl bearing is modeled with a revolute 
JOINT.  When RFrlMod is set to 1, the standard, linear 
compliance is modeled with a rotational 
SPRINGDAMPER statement and the nonlinear up- and 
down- spring and damper stops are modeled with 
explicit function-based SFORCE statements.  When 
RFrlMod is set to 2, the user-defined rotor-furl spring 
and damper model provided in routine UserRFrl() is 
interfaced to ADAMS from routine SFOSUB(), which 
in turn, is called from an SFORCE statement.  If the 
rotor-furl DOF is disabled, the rotor-furl JOINT is 
“locked” using a steady MOTION statement. 

Likewise, the tail-furl bearing is modeled with a 
revolute JOINT.  When TFrlMod is set to 1, the 
standard, linear compliance is modeled with a 
rotational SPRINGDAMPER statement and the 
nonlinear up- and down- spring and damper stops are 
modeled with explicit function-based SFORCE 
statements.  When TFrlMod is set to 2, the user-
defined tail-furl spring and damper model provided in 
routine UserTFrl() is interfaced to ADAMS from 
routine SFOSUB(), which in turn, is called from an 
SFORCE statement.  If the tail-furl DOF is disabled, 
the tail-furl JOINT is “locked” using a steady 
MOTION statement. 

Low-speed shaft compliance is modeled with a 
revolute JOINT and a rotational SPRINGDAMPER 
statement.  When drivetrain rotational flexibility is 
disabled, the JOINT is “locked” with a zero-valued 
MOTION statement. 

Drivetrain torque models, including both the 
generator models and variable-speed control models, 
are implemented with an SFORCE (1-component 
scalar force) statement that calls routine SFOSUB().  
This routine implements each type of drivetrain torque 
model available in FAST.  The parameters passed to 
SFOSUB() depend on the type of drivetrain torque 
model selected in FAST’s primary input file.  If 
necessary, SFOSUB() will call the user-defined 
UserGen() or UserVSCont() routines. 

The high-speed shaft brake is implemented with a 
preload-only FRICTION statement.  Since the 
magnitude of the preload torque cannot be time-
varying, the full friction torque is applied throughout 
the entire simulation.  To negate the unwanted 
resistance before THSSBrDp, an SFORCE statement 
that calls SFOSUB() is used to apply a cancellation 
torque between the shaft and the nacelle.  The 
SFOSUB() also applies the linear ramping component 
of the braking torque (over time increment HSSBrDT) 
when HSSBrMode is set to 1.  Alternatively, 
SFOSUB() calls FAST’s user-defined HSS brake 
routine UserHSSBr() to determine the fraction of 
torque to cancel out when HSSBrMode is set to 2. 

The teeter bearing is modeled with a revolute 
JOINT.  When TeetMod is set to 1, the standard, 
nonlinear teeter spring and damper models are 
implemented with explicit function-based SFORCE 
statements.  When TeetMod is set to 2, the user-
defined teeter spring and damper model provided in 
routine UserTeet() is interfaced to ADAMS from 
routine SFOSUB(), which in turn, is called from an 
SFORCE statement.  If the teeter DOF is disabled, the 
teeter JOINT is “locked” using a steady MOTION 
statement. 

The blade pitch bearing is modeled with a revolute 
JOINT.  Blade pitch demand angles, arising from both 
advanced pitch control algorithms and override pitch 
maneuver specifications, are computed in VARSUB() 
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and stored in VARIABLE statements.  If necessary, 
based on settings in FAST’s primary input file, routine 
VARSUB() calls FAST’s user-defined pitch control 
routine, PitchCntrl().  The difference between the pitch 
demand angle and actual pitch angle (pitch error) is 
passed through a pitch actuator model that is 
implemented with an explicit function-based SFORCE 
statement.  If pitch is not actively controlled during the 
simulation, the pitch JOINT is “locked” using a steady 
MOTION statement. 

As described in the A2AD User’s Guide (13), 
ADAMS is interfaced to AeroDyn through routines 
provided in the A2AD source file GFOSUB.f90.  
Routine GFOSUB(), which is contained in 
GFOSUB.f90, is called from GFORCE (6-component 
general force) statements placed in the ADAMS 
dataset.  There is one GFORCE statement for each 
blade analysis node (or element) in every blade. 

A GFORCE statement, together with the 
GFOSUB(), is also used to interface ADAMS with the 
user-defined support platform loading model, routine 
UserPtfmLd(). 

Tip-brake drag forces are modeled using VFORCE 
(3-component vector force) statements that call routine 
VFOSUB().  The VFOSUB() routine employs the 
same simple logic FAST uses for computing tip brake 
drag forces. 

Tail fin aerodynamic loads are also modeled using 
a VFORCE (3-component vector force) statement that 
calls routine VFOSUB().  When TFinMod is set to 1, 
the VFOSUB() routine employs the same simple logic 
FAST uses for computing the tail fin aerodynamic 
loads.  When TFinMod is set to 2, the user-defined tail 
fin aerodynamic model provided in routine UserTFin() 
is interfaced to ADAMS from routine VFOSUB(). 

All output parameter names, units, and identifiers 
are stored in the ADAMS dataset using ARRAY and 
STRING statements.  These are read in by routines in 

the A2AD source file REQSUB_FAST.f90 to determine 
which channels to output.  Additional parameters 
needed for computing output data are passed to 
REQSUB(), a routine contained in file 
REQSUB_FAST.f90.  Routine REQSUB() is, in turn, 
called using a REQUEST statement in the ADAMS 
dataset. 

No matter which DOFs are enabled when 
generating the ADAMS datasets with the FAST-to-
ADAMS preprocessor, the ADAMS dataset is always 
assembled so that it possesses no DOFs upon initiation.  
That is, all DOFs are essentially “locked” during the 
model-loading phase.  This is achieved by placing 
fixed JOINTs between each PART of the flexible 
blades and tower, placing an ORIENTATION JOINT 
between the GROUND and support platform PART, 
and by specifying steady MOTION statements at all 
revolute JOINTs for the yaw, rotor-furl, tail-furl, teeter, 
shaft, and blade pitch bearings. 

Once the simulation begins using the ADAMS 
command (.acf) file, the first time step is processed 
with all the DOFs “locked”.  After the first time step, 
the selected DOFs are enabled by removing the 
superfluous MOTION, JPRIM, and fixed JOINT 
statements through the use of DEACTIVATE 
commands.  Processing the first time step with zero 
DOFs ensures that the initial condition solution, which 
always precedes the first SIMULATE/DYNAMICS 
event, does not “kick” the system when the rotor is 
initially spinning at some nonzero-valued rate.  Instead, 
the simulation always begins with no initial 
deflections.  This technique essentially bypasses the 
startup problems pertaining to most ADAMS datasets 
as discussed in (13).  The transient behavior associated 
with the startup of an ADAMS analysis, should be 
nearly identical to that associated with the startup of a 
corresponding FAST analysis. 
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INPUT FILES

Sample Input Files 
The sections that follow describe the format of the 

various program input files.  In the FAST archive, we 
provide a sample set of 17 models, including all 

pertinent input files.  Table 7 provides a general 
description of these sample models.  The sample input 
files associated with these models are available in the 
CertTest folder and should be used as templates for 
creating your own models. 

 

Table 7.  Sample Models Provided with the FAST Archive. 

Test 
Name Turbine Name

No. 
Blades 

(-)

Rotor 
Diameter 

(m)

Rated 
Power 
(kW) Test Description

Test01 AWT-27CR2 2 27 175 Flexible, fixed yaw error, steady wind
Test02 AWT-27CR2 2 27 175 Flexible, start-up, HSS brake shut-down, steady wind
Test03 AWT-27CR2 2 27 175 Flexible, free yaw, steady wind
Test04 AWT-27CR2 2 27 175 Flexible, free yaw, turbulence
Test05 AWT-27CR2 2 27 175 Flexible, generator start-up, tip-brake shutdown, steady wind
Test06 AOC-15/50 3 15 50 Flexible, generator start-up, tip-brake shutdown, steady wind
Test07 AOC-15/50 3 15 50 Flexible, free yaw, turbulence
Test08 AOC-15/50 3 15 50 Flexible, fixed yaw error, steady wind
Test09 UAE VI downwind 2 10 20 Flexible, yaw ramp, steady wind
Test10 UAE VI upwind 2 10 20 Rigid, power curve, ramp wind
Test11 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, pitch failure, turbulence
Test12 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, ECD event
Test13 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, turbulence
Test14 WP 1.5 MW 3 70 1500 Flexible, stationary linearization, vacuum
Test15 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, tail-furl, EOG01 event
Test16 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, tail-furl, EDC01 event
Test17 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, tail-furl, turbulence  

Primary Input File 
FAST uses a primary input file to describe the 

wind turbine operating parameters and basic geometry.  
However, the blade, tower, furling, and aerodynamic 
parameters and wind-time histories are read from 
separate files.  Additionally, input parameters related to 
FAST linearization and parameters only necessary for 
creation of ADAMS datasets are read in from separate 
files (see Figure 29).  Descriptions of the individual 
inputs in the various files are provided below.  Output 
files are discussed in the Output Files chapter. 

The primary input file has a default name of 
primary.fst, which FAST will try to open if you do not 
specify a file name on the command line.  If you want 
to use different names for different cases, you can 
specify a file with a different name on the command 
line.  Files with spaces in their paths or names must be 
delimited by quotes.  File names are limited to 99 
characters and may include absolute or relative paths. 

The parameter input files have a simple text format 
that can be read and modified by any text editor.  Most 
lines in the input file are divided into three sections: 
value(s), variable name(s), and description.  For lines 
that require more than one value, separate them with 
spaces, tabs, or commas.  Anything past the last value 

on the line is treated as a comment.  Values for string 
variables must be delimited with a pair of apostrophes 
or double quotes.  Logical flags must be unquoted 
strings that start with t or T for True and f or F for 
False.  The Variable-Name section contains the 
variable name used internally by the program and in 
references for other parameters.  The Description 
section of the line contains a brief description of the 
parameter as a reminder to the user of its purpose.  This 
section also contains the physical units of the 
numerical value, where appropriate.  A sample line 
from the input file for input parameter TMax, divided 
into its sections is shown below: 

  20.0  TMax   - Total run time (s) 

Note that there are no blank lines in the input files.  
The program reads each line in sequential order.  You 
should never add or delete any lines except in the 
various sections that allow it.  The tower, blade and 
AeroDyn input files have sections where you enter one 
line per input station analysis node.  The primary 
FAST input file has a list of output parameters at the 
end of the file that can be as long as you like. 

Note also that lines containing section or file titles 
may be altered to suit the user.  FAST ignores these 
lines when it reads the input, but these lines should not 



 

FAST User's Guide 54 Last updated on August 12, 2005 for version 6.0 

be deleted for the same reasons mentioned in the 
previous paragraph. 

Some parameters do not apply to two-bladed 
turbines, and others do not apply to three-bladed 
turbines.  FAST treats these as comments.  Any text 
may be used on the unused lines, or they may even be 
blank, but they must exist.  The sample input files 
identify such parameters. 

Several other files are read for additional 
parameters.  One of the parameters in the primary file 
is the name of the tower file (TwrFile).  There are three 
other parameters designating the names of the three 
blade input files (BldFilei).  If you want to use identical 
properties for all blades, you may specify the same 

name three times.  One more parameter in the primary 
input file identifies the name of the file containing 
additional model properties for a furling turbine 
(FurlFile), another specifies the aerodynamic noise 
input file (NoiseFile), and another identifies the name 
of the AeroDyn input file (ADFile).  Additionally, the 
name of the input file relating to a FAST linearization 
analysis (LinFile) and the name of the file containing 
ADAMS-specific data input (ADAMSFile) are further 
parameters in the primary input file. 

Table 8 lists the input parameters for the primary 
input file. 
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Figure 29.  Input and Output Files. 

Tower Input File 
In the tower file, there is a table for the tower 

characteristics, which requires several columns of data 
in the Distributed Tower Properties section of the input 
file.  Only the first four columns are used to 
characterize the FAST model.  The last six columns are 
used only for creating ADAMS datasets using the 
FAST-to-ADAMS preprocessor feature of FAST.  You 
need to enter only one line if the tower is uniform.  
You must specify a zero for the location of this single 
station.  If you model a non-uniform tower, you must 
specify at least two stations; the first must be at the 0 
location and the last must have a location of 1 (for 
100% of the flexible height of the tower).  FAST will 

linearly interpolate these data to the centers of the 
equally spaced segments, which are the analysis nodes.  
There are TwrNodes segments or analysis nodes.  To 
get the most accurate results from these properties, 
include data points for the analysis nodes in the input 
table. 

Table 9 lists the input parameters for the tower 
input file.  FAST reads this file even if you requested 
no tower DOFs. 

Blade Input Files 
In the blade input files, there are tables of blade 

characteristics.  There are several columns of data in 
the Distributed Blade Properties section, each of which 
must be separated from the other by a space, tab, or 
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comma.  Only the first six columns are used to 
characterize the FAST model.  The last 11 columns are 
used only for creating ADAMS datasets using the 
FAST-to-ADAMS preprocessor feature of FAST.  You 
need to enter only one line if the blade is uniform.  You 
must specify a zero for the location of this single 
station.  If you model non-uniform blades, you must 
specify at least two stations; the first must be at the 
zero location and the last must have a location of 1 (for 
100% span).  FAST will linearly interpolate these data 
to the analysis nodes specified in the AeroDyn input 
file.  There are BldNodes segments or analysis nodes.  
To get the most accurate results from these properties, 
include data points for the analysis nodes in the input 
table. 

Table 10 lists the input parameters for the blade 
input files.  FAST reads this file even if you requested 
no blade DOFs. 

AeroDyn Input Files 
Table 11 lists the input parameters for the primary 

AeroDyn input file.  AeroDyn also uses other input 
files.  The current version of AeroDyn accommodates 
two types of wind files.  One type specifies hub-height 
wind data that also includes wind shears and gusts.  
You can use IECWind (14) or WindMaker (15) to 
generate these files for standard IEC wind conditions.  
You can also fabricate these simple text files from 
scratch or even use field-test data.  The other type of 
wind file contains full-field wind data in a binary form.  
TurbSim (16), SNwind (17), or SNLWIND-3D (18) 
can generate these files.  They contain two-dimensional 
grids of three-component winds that march past the 
turbine at a mean wind speed.  AeroDyn also reads one 
or more files containing airfoil data. 

Please see the AeroDyn user’s guide (1) for 
additional details on these files.  FAST reads these files 
even if you disabled aerodynamic calculations. 

Platform Input File 
Table 12 lists the input parameters for the platform 

input data file.  This file contains inputs related to the 
support platform configuration, motions, and loading. 

FAST only reads the platform input file if 
PtfmModel from the primary input file is nonzero.  In 
FAST v6.0, all nonzero PtfmModel options will work 
the same way by reading in the PtfmFile described in 
Table 12.  In future versions, the format of this file will 
depend on which PtfmModel option is selected. 

Furling Input File 
Table 13 lists the input parameters for the furling 

input file.  The inputs pertain to the lateral offset and 
skew angle of the rotor shaft, rotor-furling, tail-furling, 
and tail inertia and aerodynamics.  If the turbine you 
want to model contains any of these characteristics, 
you must assemble the furling input file even if your 
turbine does not “furl” in the common sense of the 
word.  For example, if the turbine you want to model 
contains a tail, you must assemble the furling input file 
regardless of whether or not your tail, or rotor, actively 
furls about the yawing-portion of the structure atop the 
tower. 

It is clear that the inputs available in the furling 
input file define the core configuration of the turbine, 
just like those available in the primary input file.  The 
reason we separated the parameters between the two 
input files is that the parameters available in the furling 
input are unique to small wind turbines.  The challenge 
in defining the unique configurations of small wind 
turbines relative to the configurations of conventional 
machines is clearly demonstrated by the contents of the 
furling input file.  Who said small wind turbines are 
easier to design than large wind turbines? 

The furling input file is organized into sections 
similar to those available in the primary input file.  
This supports the notion that the furling file is simply a 
continuation and expansion of the core configuration-
definition designations available in the primary file. 

FAST only reads the furling input file if the model 
is designated as a furling machine (when Furling is set 
to True). 

ADAMS-Specific Input File 
Table 14 lists the input parameters for the 

ADAMS-specific-input data file.  This file contains 
inputs related to the blade pitch actuators, graphical 
output capabilities, and other ADAMS-specific 
functionalities. 

FAST does not read this file if ADAMS datasets 
are not generated (when ADAMSPrep is set to 1). 

Linearization Control-Input File 
Table 15 lists the input parameters relating to a 

FAST linearization analysis.  FAST only reads in this 
file when performing a linearization analysis (when 
AnalMode is set to 2). 
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Table 8.  Primary-Input-File Parameters. 

Simulation Control 

Echo Setting this flag to True will cause FAST to echo input values as it reads them.  It writes the data 
to the file echo.out.  This is a useful tool to debug problems with your input files.  For normal 
operation, set this parameter to False.  (flag) 

ADAMSPrep This switch determines whether or not the ADAMS preprocessor is enabled.  Setting 
ADAMSPrep to 1 disables the ADAMS preprocessor and causes FAST to run its simulation as 
normal.  A setting of 2 turns on the ADAMS preprocessor and turns off FAST; when FAST is run, 
the ADAMS datasets are created and FAST stops without performing a simulation.  A setting of 3 
enables both FAST and the ADAMS preprocessor; when FAST is run, the ADAMS datasets are 
created and FAST proceeds to run its simulation.  Using values other than 1, 2, or 3 will cause 
FAST to abort.  ADAMSPrep must be 1 when FAST is interfaced with Simulink.  (switch) 

AnalMode This switch determines whether to perform a time-marching analysis (simulation) or a 
linearization analysis (i.e., AnalMode stands for the analysis mode).  A setting of 1 indicates a 
time-marching analysis.  To perform a linearization analysis, set AnalMode to 2.  Using values 
other than 1 or 2 will cause FAST to abort.  AnalMode must be 1 when FAST is interfaced with 
Simulink.  This input is not used in the FAST-to-ADAMS preprocessor.  (switch) 

NumBl This is the number of blades on the rotor.  Valid values are 2 and 3.  (-) 
TMax The overall simulation runtime.  For time-marching simulations, the simulation stops when TMax 

is reached.  When computing a steady state solution during a linearization analysis, the iteration 
stops and FAST aborts if the solution has not converged by the time TMax is reached.  (sec) 

DT This is the time step for the constant-step-size numerical-integration scheme that is used by FAST.  
For ADAMS datasets extracted from FAST, DT is used to specify the maximum step size the 
integrator is allowed to take in the variable-step-size numerical-integration scheme that is used by 
ADAMS.  You should be careful to choose an appropriate value for DT because if DT is too small 
or too large, the numerical solution will become unstable.  Whenever you make changes to the 
configuration of your model, you should experiment with different values for DT and choose 
the largest value that does not affect your results.  (sec) 

Turbine Control 

YCMode This is the yaw-control-mode switch for user-defined nacelle yaw control.  Setting it to 0 disables 
user-defined yaw control.  Setting it to 1 causes FAST to call a user-written routine called 
UserYawCont() at every time step past TYCOn.  We supply a dummy routine in the software 
folder to help you write your own.  Setting YCMode to 2 causes FAST to accept yaw position and 
rate demands externally from Simulink.  The simple yaw maneuvers described below override the 
control setting determined by the user-supplied yaw controllers.  Please see the Controls chapter 
for further details.  YCMode must be 0 during a linearization analysis and must not be 2 unless 
FAST is interfaced with Simulink.  Using values other than 0, 1, or 2 will cause FAST to abort.  
(switch) 

TYCOn The time to enable active nacelle yaw control.  This parameter is used only if YCMode is set to a 
non-zero value.  TYCOn must not be negative and must equal zero when YCMode is 2.  Please 
see the Controls chapter for further details.  (sec) 

PCMode This is the pitch-control-mode switch for user-defined pitch control.  Setting it to 0 disables user-
defined pitch control.  Setting it to 1 causes FAST to call a user-written routine called PitchCntrl() 
at every time step past TPCOn.  A real pitch-control routine created by Craig Hansen is linked 
with FAST, but we supply a dummy routine in the software folder to help you write your own.  
Setting PCMode to 2 causes FAST to accept pitch demands externally from Simulink.  The 
simple pitch maneuvers described below override the control setting determined by the user-
supplied pitch controllers.  Please see the Controls chapter for further details.  PCMode must be 0 
during a linearization analysis and must not be 2 unless FAST is interfaced with Simulink.  Using 
values other than 0, 1, or 2 will cause FAST to abort.  (switch) 
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Table 8.  Primary-Input-File Parameters (continued). 

Turbine Control (continued) 

TPCOn The time to enable active pitch control.  This parameter is used only if PCMode is set to a non-
zero value.  TPCOn must not be negative and must equal zero when PCMode is 2.  Please see the 
Controls chapter for further details.  (sec) 

VSContrl This switch determines whether the generator torque is actively controlled for variable speed 
machines.  The generator DOF flag, GenDOF, must be enabled to use this feature.  Setting 
VSContrl to 0 will cause FAST to use one of the generator models defined by GenModel below 
to determine the generator torque.  A setting of 1 for VSContrl will invoke a simple variable-
speed model that uses the next four input parameters to determine the generator torque.  Setting 
VSContrl to 2 will enable a user-written routine, UserVSCont(), to determine the generator 
torque.  A sample routine is included in the file UserVSCont_KP.f90 and a dummy placeholder is 
available (and commented out) in UserSubs.f90.  Setting VSContrl to 3 causes FAST to accept 
generator torque and electrical power demands externally from Simulink.  VSContrl must not be 3 
unless FAST is interfaced with Simulink.  Using values other than 0, 1, 2, or 3 will cause FAST to 
abort.  Please see the Controls chapter for further details.  (switch) 

VS_RtGnSp The simple variable-speed control changes from the Region 2½ (linear torque versus speed 
transition) to Region 3 (constant-torque control) at this generator speed (HSS speed).  See Figure 
22 for details.  This value must not be less than zero, but it is ignored if VSContrl is not equal to 
1.  (rpm) 

VS_RtTq This is the constant (or rated) torque applied to the HSS by the generator in Region 3 for the 
simple variable-speed controller.  See Figure 22 for details.  This value must not be less than zero, 
but it is ignored if VSContrl is not equal to 1.  (N·m) 

VS_Rgn2K When in Region 2 for the simple variable-speed controller, the generator speed is squared and 
multiplied by VS_Rgn2K to compute the generator torque to apply to the HSS.  See Figure 22 for 
details.  This value must not be less than zero, but it is ignored if VSContrl is not equal to 1.  
(N·m/rpm2) 

VS_SlPc This is the rated generator slip percentage in the linear torque versus speed transition Region 2½ 
for the simple variable-speed controller.  Similar to the simple induction generator input parameter 
SIG_SlPc, input VS_SlPc should be computed as the difference between the rated and the 
equivalent synchronous generator speed, divided by the equivalent synchronous speed, and then 
converted to percent.  See Figure 22 for details.  This value must greater than zero, but it is 
ignored if VSContrl is not equal to 1.  (%) 

GenModel This switch determines which generator model is used when GenDOF is enabled and VSContrl is 
set to 0.  Setting it to 1 enables the simple-induction-generator model, whose parameters are 
defined in the Simple-Induction-Generator section below.  Setting it to 2 enables the Thevenin-
equivalent induction-generator model, whose parameters are defined in the Thevenin-Equivalent-
Induction-Generator section below.  Setting it to 3 will cause FAST to call the user-written 
subroutine, UserGen().  A UserGen() routine (found in UserVSCont_KP.f90), which calls 
routine UserVSCont() as if VSContrl was set to 2, is normally linked with the program and a 
dummy placeholder of UserGen() is also available (and commented out) in source file 
UserSubs.f90.  In order to define your own generator model, you will need to write your own 
routine to replace it to use this option.  Using values other than 1, 2, or 3 will cause FAST to abort.  
(switch) 

GenTiStr This flag determines whether the generator is brought online at a specific time (TimGenOn) or a 
specific generator speed (SpGenOn).  To use this feature, you must enable the generator DOF 
(GenDOF).  GenTiStr must be True and TimGenOn must be 0.0 during a linearization analysis 
(AnalMod = 2) or when VSContrl is set to 3.  (flag) 

GenTiStp This flag determines whether the generator is taken offline at a specific time (TimGenOf) or when 
power falls to zero.  To use this feature, you must enable the generator DOF (GenDOF).  
GenTiStp must be True and TimGenOf must greater than TMax during a linearization analysis 
(AnalMod = 2) or when VSContrl is set to 3.  (flag) 

SpGenOn If GenTiStr is False, the generator will switch on and stay on once the HSS speed reaches 
SpGenOn.  This is used to do a speed startup of the generator.  It applies to all generator models, 
including user-defined and variable-speed control.  (rpm) 
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Table 8.  Primary-Input-File Parameters (continued). 

Turbine Control (continued) 

TimGenOn If GenTiStr is True, the generator will switch on at time TimGenOn.  This is used to do a timed 
startup of the generator.  It applies to all generator models, including user-defined and variable-
speed control.  GenTiStr must be True and TimGenOn must be 0.0 during a linearization 
analysis (AnalMod = 2) or when VSContrl is set to 3.  (sec) 

TimGenOf This parameter determines the time to turn off the generator when GenTiStp is True.  This can be 
used for a shutdown maneuver or to simulate a loss of grid.  This value is used whether you do a 
timed or speed-based startup.  Normally, you won’t simulate a startup and a loss of grid (or shut-
down) in the same run.  In those cases, you will probably want to set this value to be greater than 
TMax.  When you do want to use TimGenOf, you will probably want to enable GenTiStr and set 
TimGenOn to 0.  TimGenOf must be greater than or equal to TimGenOn if GenTiStr is 
enabled.  This parameter is not used if GenTiStp is False.  In that case, the generator is taken 
offline when the power drops to zero.  GenTiStp must be True and TimGenOf must greater than 
TMax during a linearization analysis (AnalMod = 2) or when VSContrl is set to 3.  (sec) 

HSSBrMode This switch determines which HSS brake model is used when GenDOF is enabled.  Setting it to 1 
enables the simple built-in HSS brake torque with a linear ramp-up from zero to HSSBrTqF over 
time HSSBrDT.  Setting it to 2 causes FAST to call a user-written routine called UserHSSBr() at 
every time step past THSSBrDp.  We supply a dummy routine in the software folder to help you 
write your own.  Please see the Controls chapter for further details.  Using values other than 1 or 2 
will cause FAST to abort.  (switch) 

THSSBrDp At this time, the HSS brake will be deployed.  In the simple model (HSSBrMode = 1), the 
braking torque will start its linear ramp to full torque, which happens after HSSBrDT seconds.  In 
the user-defined model (HSSBrMode = 2), routine UserHSSBr() determines the fraction of full 
braking torque after deployment.  You will probably want to turn the generator off a short time 
before this with TimGenOf before starting the HSS brake maneuver.  THSSBrDp must greater 
than TMax during a linearization analysis (AnalMod = 2) or when FAST is interfaced with 
Simulink.  (sec) 

TiDynBrk The dynamic generator brake engages at this time.  This input is CURRENTLY IGNORED since 
logic for the dynamic generator brake is not currently coded in FAST.  TiDynBrk must greater 
than TMax during a linearization analysis.  (sec) 

TTpBrDpi The ith tip brake will start to deploy at this time.  The drag constant for this brake will start to ramp 
up from TBDrConN to TBDrConD.  You can specify different times for different brakes to 
simulate such conditions as one brake accidentally deploying or a situation in which one brake 
fails to deploy when commanded to do so.  TTpBrDpi must greater than TMax during a 
linearization analysis.  Only the first two values are used for two-bladed turbines.  (sec) 

TBDepISpi The ith tip brake will start to deploy when the rotor speed reaches TBDepISpi.  Up to this point, 
the drag constant for the tip brake is TBDrConN.  Once the tip brake starts to deploy, it will take 
TpBrDT seconds to reach full deployment, where it will remain deployed and using TBDrConD 
for the drag constant.  During the TpBrDT second deployment, the drag constant for the tip brake 
will have an s-shaped ramp from TBDrConN to TBDrConD.  TBDeplSpi must much greater than 
RotSpeed during a linearization analysis.  Only the first two values are used for two-bladed 
turbines.  (rpm) 

TYawManS With or without yaw control or the yaw DOF enabled, after time TYawManS, the nacelle will 
yaw to NacYawF using a linear ramp from its current value at TYawManS until TYawManE.  If 
yaw control is enabled when YCMode is not 0, the yaw commands determined from inputs 
TYawManS, TYawManE, and NacYawF override whatever commands come from the yaw 
controller.  Also, the yaw commands determined from inputs TYawManS, TYawManE, and 
NacYawF pass through FAST’s built-in second-order actuator model if the yaw DOF is enabled 
when YawDOF is set to True.  You can use TYawManS and TYawManE to simulate a yaw for 
startup, shutdown, or runaway yaw event.  For a fixed-yaw simulation, set YawDOF to False, 
YCMode to 0, TYawManS greater than TMax, and NacYaw to the fixed nacelle yaw angle.  
TYawManS must greater than TMax during a linearization analysis.  (sec) 

TYawManE The nacelle yaw command will hold at a constant a setting of NacYawF from this time until the 
end of the run.  TYawManE must be set larger or equal to TYawManS.  (sec) 
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Table 8.  Primary-Input-File Parameters (continued). 

Turbine Control (concluded) 

NacYawF The nacelle yaw command will hold at a constant setting of NacYawF from TYawManE until the 
end of the run.  (degrees) 

TPitManSi With or without pitch control enabled, after time TPitManSi, the ith blade will pitch to BlPitchFi 
using a linear ramp from its current value at TPitManSi until TPitManEi.  If pitch control is 
enabled when PCMode is not 0, the pitch commands determined from inputs TPitManSi, 
TPitManEi, and BlPitchFi override whatever commands come from the pitch controller.  You can 
use TPitManSi and TPitManEi to simulate a pitch for startup, shutdown, or runaway pitch event.  
By setting one blade different from the other(s), you can simulate a fault condition in which one 
blade unexpectedly pitches or fails to pitch.  For a constant-pitch simulation, set PCMode to 0, 
TPitManSi greater than TMax, and BlPitchi to the fixed blade pitch angles.  TPitManSi must 
greater than TMax during a linearization analysis.  Only the first two values are used for two-
bladed turbines.  (sec) 

TPitManEi The ith blade will hold at a constant a setting of BlPitchFi from this time until the end of the run.  
TPitManEi must be set larger or equal to TPitManSi.  Only the first two values are used for two-
bladed turbines.  (sec) 

BlPitchi When PCMode is 0 during a time-marching analysis or if TrimCase is 1 or 2 while computing a 
steady state solution during a linearization analysis, the ith blade will hold at a constant setting of 
BlPitchi until TPitManSi.  If PCMode is not 0 or if TrimCase is 3 while computing a steady 
state solution during a linearization analysis, BlPitchi is the initial pitch.  The pitch angle is 
relative to the chord line at the point of zero aerodynamic twist and is positive towards feather 
(leading edge upwind).  These values must be greater than –180 and less than or equal to 180 
degrees.  Only the first two values are used for two-bladed turbines.  (deg) 

BlPitchFi The ith blade will hold at a constant setting of BlPitchFi from TPitManEi until the end of the run.  
This is relative to the chord line at the point of zero aerodynamic twist and is positive towards 
feather (leading edge upwind).  Only the first two values are used for two-bladed turbines.  (deg) 

Environmental Conditions 

Gravity The gravitational acceleration constant.  (m/sec2) 

Feature Flags* 

FlapDOF1 The first flapwise blade-bending mode will be enabled when this flag is True.  When enabled, you 
should ensure that the corresponding mode shape specified in the blade input files is accurate.  For 
ADAMS datasets extracted from FAST, this flag is used to enable or disable blade flexibility and 
its value must be identical to that of EdgeDOF.  (flag) 

FlapDOF2 The second flapwise blade-bending mode will be enabled when this flag is True.  It is possible to 
enable the second mode without enabling the first mode, but it should be done only for research 
purposes.  When enabled, you should ensure that the corresponding mode shape specified in the 
blade input files is accurate.  The value of this input does not effect the creation of ADAMS 
datasets.  (flag) 

EdgeDOF The first edgewise blade-bending mode will be enabled when this flag is True.  When enabled, 
you should ensure that the corresponding mode shape specified in the blade input files is accurate.  
For ADAMS datasets extracted from FAST, this flag is used to enable or disable blade flexibility 
and its value must be identical to that of FlapDOF1.  (flag) 

TeetDOF This flag enables rotor teetering when set to True.  If this option is disabled, teeter can be set to 
any fixed angle.  This flag is ignored for three-bladed turbines.  (flag) 

                                                           

* You must enable at least one DOF during a linearization analysis (AnalMode set to 2).  During a time-marching analysis 
(AnalMode set to 1), there is no restriction. 
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Table 8.  Primary-Input-File Parameters (continued). 

Feature Flags (concluded) 

DrTrDOF If set to True, this flag will enable torsional flexibility of the drivetrain.  This models the drivetrain 
between the generator and rotor as a lumped torsion spring and damper.  (flag) 

GenDOF The generator DOF will be enabled when this flag is True.  This allows use of the various 
variable-speed control schemes and generator models during a time-marching analysis or a trim 
solution during a linearization analysis.  If False, the HSS will rotate at a fixed rate 
(RotSpeed*GBRatio).  (flag) 

YawDOF When set to True, this flag enables the nacelle yaw DOF.  The initial nacelle yaw angle is 
specified with NacYaw.  If YawDOF is disabled, the yaw angle will be fixed at NacYaw.  (flag) 

TwFADOF1 The first tower fore-aft bending mode will be enabled when this variable is set to True.  When en-
abled, you should ensure that the corresponding mode shape specified in the tower input file is ac-
curate.  For ADAMS datasets extracted from FAST, this flag is used to enable or disable tower 
flexibility and its value must be identical to that of TwSSDOF1.  (flag) 

TwFADOF2 The second tower fore-aft bending mode will be enabled when this variable is set to True.  Except 
for research purposes, this flag should be set to True only if TwFADOF1is True.  When enabled, 
you should ensure that the corresponding mode shape specified in the tower input file is accurate.  
The value of this input does not effect the creation of ADAMS datasets.  (flag) 

TwSSDOF1 The first tower side-to-side bending mode will be enabled when this variable is set to True.  When 
enabled, you should ensure that the corresponding mode shape specified in the tower input file is 
accurate.  For ADAMS datasets extracted from FAST, this flag is used to enable or disable tower 
flexibility and its value must be identical to that of TwFADOF1.  (flag) 

TwSSDOF2 The second tower side-to-side bending mode will be enabled when this variable is set to True.  Ex-
cept for research purposes, this flag should be set to True only if TwSSDOF1 is True.  When en-
abled, you should ensure that the corresponding mode shape specified in the tower input file is ac-
curate.  The value of this input does not effect the creation of ADAMS datasets.  (flag) 

CompAero This flag determines whether aerodynamic loads will be computed using the AeroDyn 
aerodynamic modules.  If False, the simulation will occur in a vacuum (no airloads).  AeroDyn 
input properties are specified in the ADFile (see input below).  The ADFile must exist even if 
CompAero is False, since RNodes determines the location of the structural analysis points.  
(flag) 

CompNoise A series of semi-empirical aeroacoustic noise prediction algorithms has been incorporated into 
FAST by Pat Moriarty of NREL/NWTC.  The algorithms predict six different forms of 
aerodynamically produced noise including turbulent inflow, turbulent boundary layer trailing 
edge, separating flow, laminar boundary layer vortex shedding, trailing edge bluntness vortex 
shedding, and tip vortex formation.  These noise sources are then superimposed to calculate and 
output the total aerocoustic signature of an operating wind turbine.  CURRENTLY, THE NOISE 
PREDICTION INTERFACE IS NOT DOCUMENTED IN THIS GUIDE (except as it effects the 
primary-input-file).  Details on the contents and validation of the aeroacoustic noise prediction 
models are provided in [19].  Questions related to the noise prediction models and interface should 
be directed to Pat Moriarty, preferably at night or on weekends ☺. 

 The CompNoise flag determines whether aerodynamic noise will be computed.  Aerodynamic 
noise input properties are specified in the NoiseFile (see input below).  CompAero must be 
enabled if CompNoise is enabled.  CompNoise must be False during a linearization analysis.  
The value of this input does not effect the creation of ADAMS datasets since the aeroacoustic 
algorithms are not linked to ADAMS.  (flag) 
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Table 8.  Primary-Input-File Parameters (continued). 

Initial Conditions 

OoPDefl This is the initial, out-of-plane, blade-tip displacement.  The same value is used for all blades.  
Note that by specifying values for initial conditions close to the steady-state conditions, the 
numerical solution technique will reach trimmed conditions faster.  It is positive downwind.  It is 
possible to specify combinations of tip displacements that are not meaningful for the blade 
structural pretwist distribution and the DOFs that are enabled.  If so, FAST will issue a warning 
message and choose meaningful values for you.  The value of OoPDefl must be zero (no initial 
deflection) when creating ADAMS datasets or when FAST is interfaced with Simulink.  (m) 

IPDefl This is the initial, in-plane, blade-tip displacement.  The same value is used for all blades.  Note 
that by specifying values for initial conditions close to the steady-state conditions, the numerical 
solution technique will reach “trimmed conditions” faster.  It is positive clockwise when looking 
upwind.  It is possible to specify combinations of tip displacements that are not meaningful for the 
blade structural pretwist distribution and the DOFs that are enabled.  If so, FAST will issue a 
warning message and choose meaningful values for you.  The value of IPDefl must be zero (no 
initial deflection) when creating ADAMS datasets or when FAST is interfaced with Simulink.  (m) 

TeetDefl This is the initial or fixed teeter angle.  It is positive when Blade 1 is deflected downwind of the 
rotor.  This value must be greater than –180 and less than or equal to 180 degrees and must be zero 
when creating ADAMS datasets.  This parameter is ignored for three-bladed turbines.  (deg) 

Azimuth This is the initial azimuth angle for Blade 1.  Please note that for three-bladed rotors, blade 3 is 
ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given 
azimuth is 3-2-1-repeat.  Azimuth works in conjunction with AzimB1Up, which is input in the 
Turbine Configuration section that follows.  This value must be greater or equal to 0 and less than 
360 degrees.  (deg) 

RotSpeed This is the initial angular speed of the rotor.  During a linearization analysis, this is also the 
desired azimuth-average rotor speed for a trim solution.  This value must not be negative.  The 
turbine rotates clockwise when looking downwind.  (rpm) 

NacYaw This is the initial or fixed nacelle yaw angle.  It is positive counterclockwise when looking down 
on the turbine.  This value must be greater than –180 and less than or equal to 180 degrees.  (deg) 

TTDspFA This is the initial fore-aft tower-top displacement.  It is positive downwind.  The value of 
TTDspFA must be zero (no initial deflection) when creating ADAMS datasets or when FAST is 
interfaced with Simulink.  (m) 

TTDspSS This is the initial side-to-side tower-top displacement.  It is positive to the right when looking 
upwind.  The value of TTDspSS must be zero (no initial deflection) when creating ADAMS 
datasets or when FAST is interfaced with Simulink.  (m) 

Turbine Configuration 

TipRad The blade-tip radius is the distance from the apex of the cone of rotation to the blade tip along the 
pitch axis instead of the perpendicular distance from the axis of rotation.  See Figure 14(a) and 
Figure 16.  This value must be greater than zero.  (m) 

HubRad The hub radius is the distance from the apex of the cone of rotation to the blade root along the 
pitch axis instead of the perpendicular distance from the axis of rotation.  The blade root loads are 
defined at this radial span location.  See Figure 14(b) and Figure 16.  This value must be greater 
than or equal to zero and less than TipRad.  (m) 

PSpnElN This is the blade element number corresponding to the innermost blade element that is part of the 
pitchable portion of the blade for partial-span pitch control.  The pitch of all the blade elements 
from PSpnElN to BldNodes are controlled by the BlPitch(:) array, whereas all the blade 
elements from 1 to (PSpnElN - 1) are not pitchable.  Note that PSpnElN is CURRENTLY 
IGNORED by FAST; that is, the logic for partial-span pitch control has not yet been codified in 
FAST.  This value must be an integer between 1 and BldNodes (inclusive).  (-) 

UndSling The undersling is the distance from the teeter pin to the apex of the cone of rotation.  It is positive 
upwind.  This parameter is ignored for three-bladed turbines.  See Figure 14(b).  (m) 

HubCM This is the distance from the rotor apex to the hub mass center.  It is positive downwind.  See 
Figure 14(b) and Figure 16.  (m) 
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Table 8.  Primary-Input-File Parameters (continued). 

Turbine Configuration (concluded) 

OverHang This is the distance along the rotor shaft from the yn-/zn-plane to the teeter pin for two-bladed 
turbines or from the yn-/ zn-plane to the rotor apex for three-bladed turbines.  It is positive 
downwind, so use a negative number for upwind turbines.  For turbines with rotor-furl, this 
distance defines the configuration at a furl angle of zero.  See Figure 14(a), Figure 16, and Figure 
18.  (m) 

NacCMxn This is the downwind distance to the nacelle mass center (reference input NacMass) from the top 
of the tower, measured parallel to the xn-axis.  It is positive downwind.  See Figure 14(a) and 
Figure 16.  (m) 

NacCMyn This is the lateral distance to the nacelle mass center (reference input NacMass) from the top of 
the tower, measured parallel to the yn-axis.  It is positive to the left when looking downwind or 
positive into the page of Figure 14(a) and Figure 16.  (m) 

NacCMzn This is the vertical distance to the nacelle mass center (reference input NacMass) from the top of 
the tower, measured parallel to the zn-axis.  It is positive upward when looking downwind.  See 
Figure 14(a) and Figure 16.  (m) 

TowerHt The tower height is the distance from ground level [onshore] or mean sea level [offshore] to the 
top of the tower and yaw bearing.  This value must be greater than zero.  See Figure 14(a), Figure 
16, and Figure 20.  (m) 

Twr2Shft This is the vertical distance from the top of the tower and yaw bearing to the intersection of the 
rotor shaft axis and the yn-/zn-plane.  The distance is measured parallel to the zn-axis.  See Figure 
14(a), Figure 16, and Figure 18.  The combination of TipRad, TowerHt, Twr2Shft, OverHang, 
and ShftTilt must ensure that the blade tip does not hit the ground.  This value also cannot be 
negative.  For turbines with rotor-furl, this distance defines the configuration at a furl angle of 
zero.  (m) 

TwrRBHt The tower rigid base height is the distance from tower base to the beginning of the flexible portion 
of the tower.  The tower base loads are defined at this elevation.  This value must be greater or 
equal to zero and less than TowerHt + TwrDraft.  (m) 

ShftTilt This is the tilt angle of the rotor shaft from the nominally horizontal plane.  Positive tilt means that 
the downwind end of the shaft is the highest.  This value must be between –90 and 90 degrees.  
Upwind turbines have negative tilt for improved tower clearance.  For turbines with rotor-furl, this 
angle defines the configuration at a furl angle of zero.  See Figure 14(a), Figure 16, and Figure 18.  
(deg) 

Delta3 This teeter pin orientation angle allows coupling between the flapping due to teeter and blade 
pitch.  A positive value means that the blade that teeters downwind has a positive change in pitch 
(leading edge upwind).  See Figure 15 and the discussion on page 13 for details.  This value must 
be between –90 and 90 degrees (exclusive) and is ignored for three-bladed turbines.  (deg) 

PreConei The coning angle for the ith blade is positive downwind for upwind and downwind rotors.  See 
Figure 14(a) and Figure 16.  These values must be greater than –180 and less than or equal to 180 
degrees.  Only the first two values are used for two-bladed turbines.  (deg) 

AzimB1Up All input and output azimuth values are measured with respect to this number.  If this value is 0 
and the rotor azimuth is 180 degrees, then Blade 1 is pointing down.  Please keep in mind that the 
rotor rotates clockwise when looking downwind, so an azimuth value of 90 degrees means Blade 1 
is pointing to the right (looking downwind) when AzimB1Up is 0.  If AzimB1Up is 270 degrees 
and Azimuth is 0 degrees, then Blade 1 is to the right when looking downwind.  Also note that for 
three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of 
blades passing through a given azimuth is 3-2-1-repeat.  (deg) 
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Table 8.  Primary-Input-File Parameters (continued). 

Mass and Inertia 

YawBrMass This is the mass of the yaw bearing.  Its center is located at the top of the tower, at the origin of the 
tower-top/base-plate and nacelle/yaw coordinate systems.  This value must not be negative.  (kg) 

NacMass This is the mass of the nacelle.  The center of the nacelle mass is located at the point specified by 
inputs NacCMxn, NacCMyn, and NacCMzn relative to the tower-top.  It includes everything 
atop the tower excluding the rotor (blades, hub, and tip brakes), yaw bearing, and systems that furl 
(tail boom, tail fin, and structure furling with the rotor).  This value must not be negative.  (kg) 

HubMass This is the mass of the hub.  Its center is located a distance of HubCM from the rotor apex.  This 
value must not be negative.  (kg) 

TipMassi This is the tip-brake mass for the ith blade.  This value must not be negative.  Only the first two 
values are used for two-bladed turbines.  (kg) 

NacYIner This is the nacelle moment of inertia about the yaw axis.  It includes all mass contained in 
NacMass.  This value must be greater than NacMass•( NacCMxn2 + NacCMyn2 ).  (kg·m2) 

GenIner This is the moment of inertia of the high-speed portion of the drivetrain including the gearbox, 
HSS, and generator.  If torsional flexibility of the drivetrain is enabled, the compliance is between 
the inertia of the rotor and this inertia.  This value will be multiplied by the square of the gear ratio 
to map it to the low-speed reference frame.  This value must not be negative.  (kg·m2) 

HubIner The hub moment of inertia is measured about the teeter axis for two-bladed turbines or about the 
rotor shaft axis for three-bladed turbines.  For two-bladed turbines, it includes those parts that 
teeter, except for the blades and tip brakes, and must be greater than HubMass•( UndSling – 
HubCM )2.  For three-bladed turbines, it excludes the blades and tip brakes and must not be 
negative.  (kg·m2) 

Drivetrain 

GBoxEff The gearbox efficiency is the ratio of the output shaft power to the input shaft power.  Enter it as a 
percentage from 0 to 100.  The value of GboxEff must be 100 (no mechanical losses) when 
creating ADAMS datasets.  (%) 

GenEff The generator efficiency is the ratio of its output power to its input power.  It is used by the 
simple-induction-generator model (GenModel = 1) to obtain the electrical power from the 
mechanical power, which is a product of the generator torque and HSS speed.  It is also used by 
the simple variable-speed, generator torque controller (VSContrl = 1) in the same manor.  Enter it 
as a percentage from 0 to 100.  GenEff is ignored by the Thevenin-equivalent induction-generator 
model (GenModel = 2), which incorporates a more complex expression for the electrical power 
based on the input circuit resistances.  The value of GenEff is passed to UserGen() and 
UserVSCont() for the user-defined generator model (GenModel = 3) and user-defined variable-
speed, generator torque controller (VSContrl = 2) respectively, but the user-defined models allow 
for the flexibility of implementing any relationship between input and output power.  (%) 

GBRatio This is the ratio of the HSS speed to the LSS speed.  This value must be greater than zero and 
should be 1.0 for a direct-drive turbine.  (-) 

GBRevers Set this value to True if the direction of rotation of the LSS is opposite that of the HSS.  
GBRevers must be set to False when creating ADAMS datasets.  (flag) 

HSSBrTqF This maximum mechanical brake torque value is applied to the HSS end of the drivetrain 
compliance.  This value must not be negative.  It is used by both the simple (HSSBrMode = 1) 
and user-defined (HSSBrMode = 2) HSS brake models.  (N·m) 

HSSBrDT For the simple HSS brake model (HSSBrMode = 1), this is the amount of time it takes the HSS 
brake to reach full torque once it is applied.  The ramp from off to full torque is linear.  This value 
must not be negative and is unused when HSSBrMode is set to 2.  (sec) 

DynBrkFi This is name of a file containing a curve of mechanical generator torques versus HSS speeds 
defining the dynamic generator brake characteristics.  The name may optionally include an 
absolute or relative path.  This file name must contain fewer than 100 characters and must be 
enclosed in apostrophes or double quotes.  This input is CURRENTLY IGNORED since logic for 
the dynamic generator brake is not currently coded in FAST.  (-)  
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Table 8.  Primary-Input-File Parameters (continued). 

Drivetrain (concluded) 

DTTorSpr The equivalent drive-train torsional spring constant includes compliance in the LSS, the gearbox, 
and the HSS.  This value must not be negative.  (N·m/rad) 

DTTorDmp The equivalent drive-train torsional damping constant includes compliance in the LSS, the 
gearbox, and the HSS.  This value must not be negative.  (N·m/sec) 

Simple Induction Generator 

SIG_SlPc The rated generator slip percentage is the difference between the rated and the synchronous 
generator speed divided by the synchronous generator speed, and then converted to percent.  See 
Figure 12 for details.  This value must be greater than zero, but it is ignored if GenModel is not 
equal to 1 or VSContrl is not equal to 0.  (%) 

SIG_SySp This is the synchronous or zero-torque generator speed.  See Figure 12 for details.  This value 
must be greater than zero, but it is ignored if GenModel is not equal to 1 or VSContrl is not equal 
to 0.  (rpm) 

SIG_RtTq This is the torque supplied by the generator when running at rated speed.  See Figure 12 for de-
tails.  This value must be greater than zero, but it is ignored if GenModel is not equal to 1 or 
VSContrl is not equal to 0.  (N·m) 

SIG_PORt The pullout ratio is the ratio of the pullout torque and the rated torque.  The negative of this value 
is also used for the startup torque.  See Figure 12 for details.  This value must be greater than or 
equal to one, but it is ignored if GenModel is not equal to 1 or VSContrl is not equal to 0.  (-) 

Thevenin-Equivalent, 3-Phase, Induction Generator 

TEC_Freq This is the line frequency of the electrical grid.  This value must be greater than zero and should be 
50 (Europe) or 60 (U.S.), but it is ignored if GenModel is not equal to 2 or VSContrl is not equal 
to 0.  (Hz) 

TEC_NPol This is the number of poles in the generator.  This value must be an even integer greater than zero, 
but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0.  (-) 

TEC_SRes This is the resistance of the generator stator in the complete circuit.  This value must be greater 
than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0.  (ohms) 

TEC_RRes This is the resistance of the generator rotor in the complete circuit.  This value must be greater 
than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0.  (ohms) 

TEC_VLL This is the line-to-line voltage of the generator.  This value must be greater than zero and is often 
690 in Europe or 480 or 575 in the U.S., but it is ignored if GenModel is not equal to 2 or 
VSContrl is not equal to 0.  (volts) 

TEC_SLR This is the leakage reactance of the generator stator in the complete circuit.  This value must be 
greater than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0.  It 
is usually a small number and is close in value to the stator resistance.  (ohms) 

TEC_RLR This is the leakage reactance of the generator rotor in the complete circuit.  This value must be 
greater than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0.  It 
is usually a small number and is close in value to the rotor resistance.  (ohms) 

TEC_MR This is the magnetizing reactance of the complete generator circuit.  This value must be greater 
than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0.  It is 
usually about 10-50 times greater than the leakage reactances.  (ohms) 
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Table 8.  Primary-Input-File Parameters (continued). 

Platform Model 

PtfmModel This is a switch used to indicate the type of support platform and to tell FAST whether or not to 
read in an additional file of inputs for defining the model properties of the support platform (see 
next input PtfmFile).  The additional inputs in PtfmFile pertain to the to the support platform 
configuration, motions, and loading.  Setting PtfmModel to 1 specifies an onshore foundation.  
Setting it to 2 specifies a fixed bottom offshore foundation.  Setting it to 3 specifies a floating 
offshore configuration.  Setting PtfmModel to 0 disables the platform models—in this case, FAST 
will rigidly attach the tower to the inertia frame (ground) through a cantilever connection.  Using 
values other than 0, 1, 2, or 3 will cause FAST to abort. 

PtfmFile This is the name of the file that contains additional model properties for the support platform.  The 
name may optionally include an absolute or relative path.  This file name must contain fewer than 
100 characters and must be enclosed in apostrophes or double quotes.  FAST will only read this 
file if PtfmModel is nonzero.  See Table 12 for a listing of input parameters contained in this file.  
In FAST v6.0, all nonzero PtfmModel options will work the same way by reading in PtfmFile.  In 
future versions, the format of this file will depend on which PtfmModel option is selected.  
(quoted string) 

Tower 

TwrNodes The tower is divided into TwrNodes equal-length segments.  The nodes at the centers of these 
segments are used for the integration of elastic forces.  The more segments you use, the more 
accurate the integral will be, but the greater the computational time will be.  A good compromise 
for this parameter is 20.  This value must be an integer greater than 0.  When creating ADAMS 
datasets, this value must be no more than 99.  (-) 

TwrFile This is the name of the file that contains the tower properties.  The name may optionally include 
an absolute or relative path.  This file name must contain fewer than 100 characters and must be 
enclosed in apostrophes or double quotes.  FAST will read this file even when there are no tower 
DOFs.  See Table 9 for a listing of input parameters contained in this file.  (quoted string) 

Nacelle Yaw 

YawSpr This is the torsional spring stiffness in FAST’s built-in, second-order, nacelle yaw actuator model.  
The linear nacelle-yaw spring moment is proportional to the nacelle-yaw error through this 
constant.  If a yaw actuator natural frequency is known in place of an actuator spring stiffness, 
compute the spring stiffness as follows:  YawSpr = YawIner•ωn

2, where ωn is the natural 
frequency in rad/sec and YawIner is the nominal inertia of the nacelle, rotor, and tail about the 
yaw axis in kg·m2.  This value must not be negative.  (N·m/rad) 

YawDamp This is the torsional damping constant in FAST’s built-in, second-order, nacelle yaw actuator 
model.  The linear nacelle-yaw damping moment is proportional to the nacelle-yaw rate error 
through this constant.  If a yaw actuator natural frequency and damping ratio are known in place of 
an actuator damping constant, compute the damping constant as follows:  YawDamp = 
2•ζ•YawIner•ωn, where ωn is the natural frequency in rad/sec, ζ is the damping ratio in fraction of 
critical, and YawIner is the nominal inertia of the nacelle, rotor, and tail about the yaw axis in 
kg·m2.  This value must not be negative.  (N·m/(rad/sec)) 

YawNeut When YCMode is 0, this is the neutral nacelle yaw position (constant yaw command) as described 
on page 12.  When YCMode is not zero, this is the initial, constant yaw command before active 
yaw control is enabled at time TYCOn.  This value must be greater than –180 and less than or 
equal to 180 degrees.  (deg) 
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Table 8.  Primary-Input-File Parameters (continued). 

Furling 

Furling This flag is used to tell FAST whether or not to read in an additional file of inputs for defining the 
model configuration of a furling turbine (see next input FurlFile).  The additional inputs in 
FurlFile pertain to the lateral offset and skew angle of the rotor shaft, rotor-furling, tail-furling, 
and tail inertia and aerodynamics.  If the turbine you want to model contains any of these 
characteristics, you must assemble the furling input file even if your turbine does not “furl” in the 
common sense of the word.  For example, if the turbine you want to model contains a tail, you 
must assemble the furling input file regardless of whether or not your tail, or rotor, actively furls 
about the yawing-portion of the structure atop the tower.  (flag) 

FurlFile This is the name of the file that contains additional model properties for a furling turbine.  The 
name may optionally include an absolute or relative path.  This file name must contain fewer than 
100 characters and must be enclosed in apostrophes or double quotes.  FAST will only read this 
file if the model is designated as a furling machine (when Furling is set to True).  See Table 13 for 
a listing of input parameters contained in this file.  (quoted string) 

Rotor Teeter 

TeetMod The teeter springs and dampers can be modeled three ways.  For a value of 0 for TeetMod, there 
will be no teeter spring nor damper and the moment normally produced will be set to zero.  A 
TeetMod of 1 will invoke simple spring and damper models using the inputs provided below as 
appropriate coefficients.  If you set TeetMod to 2, FAST will call the routine UserTeet() to 
compute the teeter spring and damper moments.  You should replace the dummy routine supplied 
with the code with your own, which will need to be linked with the rest of FAST.  Using values 
other than 0, 1, or 2 will cause FAST to abort.  This parameter is ignored for three-bladed turbines.  
(switch) 

TeetDmpP The teeter damper is effective when the teeter deflection exceeds this value.  This value must be 
between 0 and 180 degrees (inclusive).  This parameter is ignored for three-bladed turbines and 
when TeetMod is not set to 1.  (deg) 

TeetDmp The linear teeter damping moment is proportional to the teeter rate through this constant and is 
effective when the teeter deflection exceeds TeetDmpP.  This value must not be negative.  This 
parameter is ignored for three-bladed turbines and when TeetMod is not set to 1.  (N·m/(rad/sec)) 

TeetCDmp The Coulomb-friction damping moment resists teeter motion, but it is a constant that is not 
proportional to the teeter rate.  However, if the teeter rate is zero, the damping is zero.  This value 
must not be negative.  This parameter is ignored for three-bladed turbines and when TeetMod is 
not set to 1.  (N·m) 

TeetSStP The teeter soft-stop spring is effective when the teeter deflection exceeds this value.  This value 
must be between 0 and 180 degrees (inclusive).  This parameter is ignored for three-bladed 
turbines and when TeetMod is not set to 1.  (deg) 

TeetHStP The teeter hard-stop spring is effective when the teeter deflection exceeds this value.  This value 
must be between TeetSStP and 180 degrees (inclusive).  This parameter is ignored for three-
bladed turbines and when TeetMod is not set to 1.  (deg) 

TeetSSSp The linear teeter soft-stop spring restoring moment is proportional to the teeter soft-stop deflection 
by this constant and is effective when the teeter deflection exceeds TeetSStP.  This value must 
not be negative.  This parameter is ignored for three-bladed turbines and when TeetMod is not set 
to 1.  (N·m/rad) 

TeetHSSp The linear teeter hard-stop spring restoring moment is proportional to the teeter hard-stop 
deflection by this constant and is effective when the teeter deflection exceeds TeetHStP.  This 
value must not be negative.  This parameter is ignored for three-bladed turbines and when 
TeetMod is not set to 1.  (N·m/rad) 
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Table 8.  Primary-Input-File Parameters (continued). 

Tip Brakes 

TBDrConN When tip brakes are not deployed (normal operation), this value is multiplied by the dynamic 
pressure to produce the drag of the brakes at the tip of every blade.  This value is Cd times the flat 
plate drag area.  This value must not be negative.  (m2) 

TBDrConD When tip brakes are deployed (braking operation), the tip drag follows an S curve from 
TBDrConN to this fully deployed value.  The resulting value is multiplied by the dynamic 
pressure to produce the drag of the brakes at the tip of every blade.  This value is Cd times the flat 
plate drag area.  This value must not be negative.  (m2) 

TpBrDT When tip brakes are deployed it takes TpBrDT seconds to fully deploy them.  This value must not 
be negative.  (m2) 

Blades 

BldFilei This is the name of the file that contains the properties for the ith blade.  The names may optionally 
include an absolute or relative path.  These file names must contain fewer than 100 characters and 
must be enclosed in apostrophes or double quotes.  Only the first two names are used for two-
bladed turbines.  FAST will read this file even when there are no blade DOFs.  See Table 10 for a 
listing of input parameters contained in this file.  Please note that for three-bladed rotors, blade 3 is 
ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given 
azimuth is 3-2-1-repeat.  (quoted string) 

AeroDyn 

ADFile This is the name of the file that contains the AeroDyn aerodynamics parameters.  The name may 
optionally include an absolute or relative path.  This file name must contain fewer than 100 
characters and must be enclosed in apostrophes or double quotes.  FAST will read this file even 
when aerodynamic calculations are disabled.  See Table 11 for a listing of input parameters 
contained in this file.  (quoted string) 

Noise 

NoiseFile This is the name of the file that contains input parameters needed for aeroacoustic noise 
predictions.  The name may optionally include an absolute or relative path.  This file name must 
contain fewer than 100 characters and must be enclosed in apostrophes or double quotes.  FAST 
will not read in this file if aerodynamic noise is not computed (when CompNoise is False) and 
during linearization analyses (when AnalMode is set to 2).  Also, the inputs in this file do not 
effect the creation of ADAMS datasets.  (quoted string) 

ADAMS 

ADAMSFile This is the name of the file that contains input parameters needed only for creation of ADAMS 
datasets.  The name may optionally include an absolute or relative path.  This file name must 
contain fewer than 100 characters and must be enclosed in apostrophes or double quotes.  FAST 
will not read in this file if ADAMS datasets are not generated (when ADAMSPrep is set to 1).  
See Table 14 for a listing of input parameters contained in this file.  (quoted string) 



 

FAST User's Guide 68 Last updated on August 12, 2005 for version 6.0 

Table 8.  Primary-Input-File Parameters (continued). 

Linearization Control 

LinFile This is the name of the file that contains FAST linearization input parameters.  The name may 
optionally include an absolute or relative path.  This file name must contain fewer than 100 
characters and must be enclosed in apostrophes or double quotes.  FAST will not read in this file 
for time-marching analyses, when a linearization analysis is not performed (when AnalMode is 
set to 1) and the inputs in this file do not effect the creation of ADAMS datasets.  See Table 15 for 
a listing of input parameters contained in this file.  (quoted string)  

Output 

SumPrint Set this value to True if you want FAST to generate the summary file (see Figure 32).  (flag) 
TabDelim Set this value to True if you want FAST to delimit the tabular output data with tabs instead of 

using fixed-width columns.  Tab-delimited files are easier to import into spreadsheets, and fixed-
column files are better for viewing with a text editor or for printing.  (flag) 

OutFmt FAST will use this string as the numerical format specifier for output of floating-point values.  
The length of this string must not exceed 20 characters and must be enclosed in apostrophes or 
double quotes.  You may not specify an empty string.  To ensure that fixed-width column data 
align properly with the column titles, you should ensure that the width of the field is 10 characters.  
Using an E, EN, or ES specifier will guarantee that you will never overflow the field because the 
number is too big, but such numbers are harder to read.  Using an F specifier will give you 
numbers that are easier to read, but you may overflow the field.  Please refer to any Fortran 
manual for details for format specifiers.  (quoted string) 

TStart This tells the program how much simulation time should pass before outputting data to the tabular 
output file.  A delay of at least five seconds is advised to allow the transient effects associated with 
starting from rest to damp out.  This value must not be negative or greater than TMax.  This 
parameter is ignored during a linearization analysis.  (sec) 

DecFact This parameter sets the decimation factor for output.  FAST will output data only once each 
DecFact integration time steps.  For instance, a value of 5 will cause FAST to generate output 
only every fifth time step.  This value must be an integer greater than zero.  (-) 

SttsTime This parameter represents the amount of simulation time between the status messages that are 
displayed to the screen during the simulation.  The messages show how much simulation time has 
elapsed and estimate when the job will complete.  This value must be greater than zero.  The value 
of this input does not effect the creation of ADAMS datasets.  (sec) 

NcIMUxn This is the downwind distance to the virtual nacelle inertial measurement unit (IMU) from the top 
of the tower, measured parallel to the xn-axis.  It is positive downwind.  See Figure 14(a) and 
Figure 16.  (m) 

NcIMUyn This is the lateral distance to the virtual nacelle inertial measurement unit (IMU) from the top of 
the tower, measured parallel to the yn-axis.  It is positive to the left when looking downwind or 
positive into the page of Figure 14(a) and Figure 16.  (m) 

NcIMUzn This is the vertical distance to the virtual nacelle inertial measurement unit (IMU) from the top of 
the tower, measured parallel to the zn-axis.  It is positive upward when looking downwind.  See 
Figure 14(a) and Figure 16.  (m) 

ShftGagL The distance from the teeter pin (two blades) or rotor apex (three blades) to the shaft-moment 
output station along the positive xs axis allows you to put a virtual strain gage anywhere you like 
along the shaft.  It is positive for upwind rotors.  (m) 
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Table 8.  Primary-Input-File Parameters (concluded). 

Output (concluded) 

NTwGages The number of strain-gage locations along the tower indicates the number of input values on the 
next line.  Valid values are integers from 0 to 5 (inclusive).  (-) 

TwrGagNd The virtual strain-gage locations along the tower are assigned to the tower analysis nodes specified 
on this line.  Possible values are 1 to TwrNodes (inclusive), where 1 corresponds to the node 
closest to the tower base (but not at the base) and a value of TwrNodes corresponds to the node 
closest to the tower top.  The exact elevations of each analysis node in the undeflected tower, 
relative to the base of the tower, are determined as follows: 

  Elev. of node J = TwrRBHt + ( J – ½ ) • [ ( TowerHt + TwrDraft – TwrRBHt ) / TwrNodes ] 
                   (for J = 1,2,…,TwrNodes) 

 You must enter at least NTwGages values on this line.  If NTwGages is 0, this line will be 
skipped, but you must have a line taking up space in the input file.  You can separate the values 
with combinations of tabs, spaces, and commas, but you may use only one comma between 
numbers.  (-) 

NBlGages The number of strain-gage locations along the blade indicates the number of input values on the 
next line.  Valid values are integers from 0 to 5 (inclusive).  (-) 

BldGagNd The virtual strain-gage locations along the blade are assigned to the blade analysis nodes specified 
on this line.  Possible values are 1 to BldNodes (inclusive), where 1 corresponds to the node 
closest to the blade root (but not at the root) and a value of BldNodes corresponds to the node 
closest to the blade tip.  The radial span locations of the analysis nodes are determined by 
AeroDyn input RNodes.  You must enter at least NBlGages values on this line.  If NBlGages is 
0, this line will be skipped, but you must have a line taking up space in the input file.  You can 
separate the values with combinations of tabs, spaces, and commas, but you may use only one 
comma between numbers.  (-) 

OutList For a time-marching analysis, this list of parameters determines what you want printed in the 
output file.  For a linearization analysis, this provides the list of output measurements.  The line 
containing the array name OutList is a comment line, which must then be followed by one or 
more lines containing quoted strings that in turn contain one or more parameter names.  Separate 
the parameter names by any combination of commas, semicolons, spaces, and/or tabs.  If you 
prefix a parameter name with a minus sign, “-”, underscore, “_”, or the characters “m” or “M”, 
FAST will multiply the value for that channel by –1 before writing the data.  The parameters are 
written in the order they are listed in the input file.  You may include any parameter as many times 
as you like.  FAST allows you to use multiple lines so that you can break your list into meaningful 
groups and so the lines can be shorter.  However, you cannot have the strings within the quotes 
longer than 1000 characters, so you are effectively limited to 100 channels per line in the input 
file.  The limit on the total number of output channels in all lines is 200.  During time-marching 
analyses, the simulation time will always be the first column in the output file and is not explicitly 
entered in this list.  You may enter comments after the closing quote on any of the lines.  For 
instance, you may want to group all of your blade loads together on one line and then comment the 
line to document the fact that they are blade loads.  Entering a line with the string “END” at the 
beginning of the line or at the beginning of a quoted string found at the beginning of the line will 
cause FAST to quit scanning for more lines of channel names.  See Table 16 through Table 44 for 
the list of possible parameters.  (-) 
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Table 9.  Tower-Input-File Parameters. 

The following input parameters are contained in the file indicated by input TwrFile from the primary input file.  
FAST will read this file even when there are no tower DOFs. 

Tower 

NTwInpSt The table of tower sectional data that follows below has NtwInpSt rows of data.  The values in 
this table will be interpolated to the TwrNodes analysis nodes.  For uniform towers, you may set 
this value to 1 and include just one row in the table with the fractional height set to 0.  This value 
must be an integer greater than 0.  There is no upper limit on the number of input stations.  (-) 

CalcTMode When set to True, this flag tells FAST to calculate the tower mode shapes internally instead of 
using the input mode shapes.  This feature is NOT CURRENTLY ENABLED, so set the value to 
False.  (flag) 

TwrFADmpi This is the tower’s fore-aft structural damping in percent of critical for the ith bending mode.  
Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive).  The damping ratio for 
the second mode should usually be greater than the damping ratio for the first mode.  The value 
for the first mode is used to determine the tower fore-aft damping ratio for the FIELD statements 
of extracted ADAMS datasets.  The value for the second mode does not effect the creation of 
ADAMS datasets.  (%) 

TwrSSDmpi This is the tower’s side-to-side structural damping in percent of critical for the ith bending mode.  
Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive).  The damping ratio for 
the second mode should usually be greater than the damping ratio for the first mode.  The value 
for the first mode is used to determine the tower side-to-side damping ratio for the FIELD 
statements of extracted ADAMS datasets.  The value for the second mode does not effect the 
creation of ADAMS datasets.  (%) 

Tower Adjustment Factors 

FAStTunri These tower stiffness tuners allow you to adjust the stiffness only during the calculation of the ith 
tower fore-aft bending mode.  Set them to 1.0 to leave the stiffness unchanged.  The values of 
these inputs do not effect the creation of ADAMS datasets.  (-) 

SSStTunri These tower stiffness tuners allow you to adjust the stiffness only during the calculation of the ith 
tower side-to-side bending mode.  Set them to 1.0 to leave the stiffness unchanged.  The values of 
these inputs do not effect the creation of ADAMS datasets.  (-) 

AdjTwMa This factor adjusts the tower mass as it is input.  This effects all calculations using the tower mass.  
Set it to 1.0 to leave the mass unchanged.  (-) 

AdjFASt This factor adjusts the tower fore-aft stiffness as it is input.  This effects all calculations using the 
tower fore-aft stiffness.  Set it to 1.0 to leave the fore-aft stiffness unchanged.  (-) 

AdjSSSt This factor adjusts the tower side-to-side stiffness, as it is input.  This effects all calculations using 
the tower side-to-side stiffness.  Set it to 1.0 to leave the side-to-side stiffness unchanged.  (-) 

Distributed Tower Properties  

HtFract This is the fractional height along tower for the other parameters in this table.  Values must vary 
from 0 to 1.  If you are modeling a uniform tower, set NTwInpSt to 1 and set HtFract to 0 for the 
single row of distributed tower properties.  (-) 

TMassDen This is the tower section mass per unit length.  It should be computed as the integral of the mass 
density over the cross-sectional area of the section.  That is, TMassDen = ( ),ρ∫∫ x y dxdy , 

where ( ),ρ x y  is the mass density in kg/m3 and x and y are the fore-aft and side-to-side 
distances in meters from the tower section mass center to the differential area element, 
respectively.  These values must be greater than zero.  (kg/m) 
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Table 9.  Tower-Input-File Parameters (continued). 

Distributed Tower Properties (continued) 

TwFAStif This is the tower section fore-aft stiffness.  It should be computed as the integral of the modulus of 
elasticity times the square of the fore-aft distance from the tower centerline to the differential area 

element over the cross-sectional area of the section.  That is, TwFAStif = ( ) 2,∫∫ E x y x dxdy , 

where ( ),E x y  is the modulus of elasticity in N/m2 and x and y are the fore-aft and side-to-side 
distances in meters from the tower centerline to the differential area element, respectively.  These 
values must be greater than zero.  (N·m2) 

TwSSStif This is the tower section side-to-side stiffness.  It should be computed as the integral of the 
modulus of elasticity times the square of the side-to-side distance from the tower centerline to the 
differential area element over the cross-sectional area of the section.  That is, TwSSStif = 

( ) 2,∫∫ E x y y dxdy , where ( ),E x y  is the modulus of elasticity in N/m2 and x and y are the 

fore-aft and side-to-side distances in meters from the tower centerline to the differential area 
element, respectively.  These values must be greater than zero.  (N·m2) 

TwGJStif This is the tower section torsion stiffness used for creation of ADAMS datasets.  The FAST model 
does not use it.  It should be computed as the integral of the modulus of rigidity times the square 
of the radial distance from the tower centerline to the differential area element over the cross-
sectional area of the section.  That is, TwGJStif = ( )( )2 2, +∫∫G x y x y dxdy , where 

( ),G x y  is the modulus of rigidity in N/m2 and x and y are the fore-aft and side-to-side distances 
in meters from the tower centerline to the differential area element, respectively.  When creating 
ADAMS datasets, these values must be greater than zero.  If the ADAMS preprocessor is 
disabled, this input can be left blank.  (N m2) 

TwEAStif This is the tower section extensional stiffness used for creation of ADAMS datasets.  The FAST 
model does not use it.  It should be computed as the integral of the modulus of elasticity over the 

cross-sectional area of the section.  That is, TwEAStif = ( ),∫∫ E x y dxdy , where ( ),E x y  is 

the modulus of elasticity in N/m2 and x and y are the fore-aft and side-to-side distances in meters 
from the tower centerline to the differential area element, respectively.  When creating ADAMS 
datasets, these values must be greater than zero.  If the ADAMS preprocessor is disabled, this 
input can be left blank.  (N) 

TwFAIner This is the tower section fore-aft mass inertia per unit length used for creation of ADAMS 
datasets.  The FAST model does not use it.  It should be computed as the integral of the mass 
density times the square of the fore-aft distance from the tower section mass center to the 
differential area element over the cross-sectional area of the section.  That is, TFAIner = 

( ) 2,ρ∫∫ x y x dxdy , where ( ),ρ x y  is the mass density in kg/m3 and x and y are the fore-aft 

and side-to-side distances in meters from the tower section mass center to the differential area 
element, respectively.  When creating ADAMS datasets, these values must not be less than zero.  
If the ADAMS preprocessor is disabled, this input can be left blank.  (kg m) 

TwSSIner This is the tower section side-to-side mass inertia per unit length used for creation of the ADAMS 
dataset.  The FAST model does not use it.  It should be computed as the integral of the mass 
density times the square of the side-to-side distance from the tower section mass center to the 
differential area element over the cross-sectional area of the section.  That is, TSSIner = 

( ) 2,ρ∫∫ x y y dxdy , where ( ),ρ x y  is the mass density in kg/m3 and x and y are the fore-aft 

and side-to-side distances in meters from the tower section mass center to the differential area 
element, respectively.  When creating ADAMS datasets, these values must not be less than zero.  
If the ADAMS preprocessor is disabled, this input can be left blank.  (kg m) 
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Table 9.  Tower-Input-File Parameters (concluded). 

Distributed Tower Properties (concluded) 

TwFAcgOf This is the tower section mass offset measured from the tower centerline in the fore-aft direction, 
positive downwind.  It is used for creation of the ADAMS dataset.  The FAST model does not use 
it.  If the ADAMS preprocessor is disabled, this input can be left blank.  (m) 

TwSScgOf This is the tower section mass offset measured from the tower centerline in the side-to-side 
direction, positive toward the left when looking downwind.  It is used for creation of the ADAMS 
dataset.  The FAST model does not use it.  If the ADAMS preprocessor is disabled, this input can 
be left blank.  (m) 

Tower Fore-Aft Mode Shapes 

TwFAM1Shi These are the coefficients of the polynomial equation used to model the first fore-aft mode shape 
of the tower.  The five coefficients (second through sixth) of the polynomial equation define the 
mode shape, where the variable in the polynomial varies from 0 to 1.  The zeroth and first terms 
are not included in the list because they must always be 0 for cantilevered beams.  The polynomial 
should describe a curve that has a value of 1 at the free end.  That is, the five numbers must add up 
to 1.  (-) 

TwFAM2Shi These are the coefficients of the polynomial equation used to model the second fore-aft mode 
shape of the tower.  The five coefficients (second through sixth) of the polynomial equation define 
the mode shape, where the variable in the polynomial varies from 0 to 1.  The zeroth and first 
terms are not included in the list because they must always be 0 for cantilevered beams.  The 
polynomial should describe a curve that has a value of 1 at the free end.  That is, the five numbers 
must add up to 1.  (-) 

Tower Side-to-Side Mode Shapes 

TwSSM1Shi These are the coefficients of the polynomial equation used to model the first side-to-side mode 
shape of the tower.  The five coefficients (second through sixth) of the polynomial equation define 
the mode shape, where the variable in the polynomial varies from 0 to 1.  The zeroth and first 
terms are not included in the list because they must always be 0 for cantilevered beams.  The 
polynomial should describe a curve that has a value of 1 at the free end.  That is, the five numbers 
must add up to 1.  (-) 

TwSSM2Shi These are the coefficients of the polynomial equation used to model the second side-to-side mode 
shape of the tower.  The five coefficients (second through sixth) of the polynomial equation define 
the mode shape, where the variable in the polynomial varies from 0 to 1.  The zeroth and first 
terms are not included in the list because they must always be 0 for cantilevered beams.  The 
polynomial should describe a curve that has a value of 1 at the free end.  That is, the five numbers 
must add up to 1.  (-) 
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Table 10.  Blade-Input-File Parameters. 

The following input parameters are contained in the file indicated by input BldFile from the primary input file.  
FAST will read this file even when there are no blade DOFs. 

Blade Parameters 

NBlInpSt The table of blade sectional data that follows below has NBlInpSt rows of data for each blade.  
The values in this table will be interpolated to the BldNodes analysis nodes.  For uniform 
(untwisted and untapered) blades, set this value to 1 and enter only one row in the distributed-
properties table.  For that row, set BlFract equal to zero.  This value must be an integer greater 
than zero.  There is no upper limit on the number of input stations.  (-) 

CalcBMode When set to True, this flag tells FAST to calculate the blade mode shapes internally instead of 
using the input mode shapes.  This feature is NOT CURRENTLY ENABLED, so set the value to 
False.  (flag) 

BldFlDmpi The structural damping for the ith flapwise blade-bending mode is entered in percent of critical 
damping.  Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive).  The second 
mode should usually have a higher damping ratio than the first.  The value for the first mode is 
used to determine the blade-flap damping ratio for the FIELD statements of extracted ADAMS 
datasets.  The value for the second mode does not effect the creation of ADAMS datasets.  (%) 

BldEdDmp The structural damping for the edgewise blade bending mode is entered in percent of critical 
damping.  Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive).  The value is 
used to determine the blade-edge damping ratio for the FIELD statements of extracted ADAMS 
datasets.  (%) 

Blade Adjustment Factors 

FlStTunri These flapwise stiffness tuners allow you to adjust the flapwise stiffness only during the 
calculation of the ith flap-bending mode.  Set them to 1 to leave the stiffnesses unchanged.  The 
values of these inputs do not effect the creation of ADAMS datasets.  (-) 

AdjBlMs This factor allows you to adjust equally all the blade mass densities in the Distributed Blade 
Properties section.  The adjustment is made as the data are read in, so this adjustment will affect 
all calculations that depend on the blade mass properties.  This value must be greater than 0.  (-) 

AdjFlSt This factor allows you to adjust equally all the flap stiffnesses in the Distributed Blade Properties 
section.  The adjustment is made as the data are read in, so this adjustment will affect all 
calculations that depend on the blade stiffness.  This value must be greater than 0.  (-) 

AdjEdSt This factor allows you to adjust equally all the edge stiffnesses in the Distributed Blade Properties 
section.  The adjustment is made as the data are read in, so this adjustment will affect all 
calculations that depend on the blade stiffness.  This value must be greater than 0.  (-) 

Distributed Blade Properties 

BlFract This is the fractional distance of the blade along the blade pitch axis.  Values must vary from 0 to 
1.  The first row, which corresponds to the root of the blade, must have a value of 0.  The last row, 
which corresponds to the tip of the blade, must have a value of 1.  FAST will interpolate this data 
table to produce values at the locations specified in the AeroDyn input file.  If you don’t want 
FAST to use linear interpolation for this, you should specify data at the same analysis nodes 
specified in the AeroDyn input file in addition to the root and tip points.  (-) 
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Table 10.  Blade-Input-File Parameters (continued). 

Distributed Blade Properties (continued) 

AeroCent This input is used to locate the aerodynamic center of the corresponding airfoil section.  
AeroCent represents the fractional distance along the chordline from the leading to the trailing 
edge, where it is assumed that pitch axis passes through the airfoil section at 25% chord so that 
the leading edge is 25% ahead of the pitch axis along the chordline and the trailing edge is 75% aft 
of the pitch axis along the chordline.  AeroCent is limited to values between 0.0 and 1.0; a value 
of 0.0 corresponds to the leading edge, a value of 0.25 corresponds to the blade pitch axis, and a 
value of 1.0 corresponds to the trailing edge in FAST models.  If the pitch axis in the turbine blade 
you are trying to model does not actually pass through the airfoil section at 25% chord (at a 
cylindrical root, for example, where it passes at 50% chord), then the AeroCent input may cause 
confusion and may not correspond to notation you are used to.  The following equation will 
convert from your notation to FAST's notation: 

  AeroCent = 0.25 - [   (fraction of chord from leading edge to actual pitch axis)  
        - (fraction of chord from leading edge to actual aerodynamic center) ] 

 For example, in a cylindrical root, where both the actual pitch axis and aerodynamic center lie at 
50% chord, you must set AeroCent as follows: 

AeroCent = 0.25 - [ (0.5) - (0.5) ] = 0.25  (corresponding to the fact that the aerodynamic center 
       lies on the pitch axis) 

 Also as an example, if your pitch axis lies at 30% chord and the aerodynamic center lies at 25% 
chord, you must set AeroCent as follows: 

AeroCent = 0.25 - [ (0.3) - (0.25) ] = 0.20  (corresponding to the fact that the aerodynamic 
         center lies 5% ahead of the pitch axis) 

 ADAMS models generated using the FAST-to-ADAMS preprocessor assume that the reference 
axis, indicated by inputs PrecrvRef and PreswpRef, passes through each airfoil section at 25% 
chord; thus, a value of 0.25 for AeroCent corresponds to the blade reference axis in ADAMS 
models.  In this case, the equation above can be adopted if the reference axis in the turbine blade 
you are trying to model does not pass through 25% chord by substituting “pitch” with “reference”.  
(-) 

StrcTwst This is the structural twist angle.  It indicates the orientation of the principal axis.  A positive 
structural twist is one that points the leading edge more upwind.  These values must be greater 
than –180 and less than or equal to 180 degrees.  (deg) 

BMassDen This is the blade section mass per unit length.  It should be computed as the integral of the mass 

density over the cross-sectional area of the section.  That is, BMassDen = ( ),ρ∫∫ x y dxdy , 

where ( ),ρ x y  is the mass density in kg/m3 and x and y are the flapwise and edgewise distances 
in meters from the blade section mass center to the differential area element, respectively.  These 
values must be greater than zero.  (kg/m) 

FlpStff This is the blade section flapwise stiffness, not the out-of-plane stiffness.  It should be computed 
as the integral of the modulus of elasticity times the square of the flapwise distance from the blade 
section elastic center to the differential area element over the cross-sectional area of the section.  

That is, FlpStff = ( ) 2,∫∫ E x y x dxdy , where ( ),E x y  is the modulus of elasticity in N/m2 and 

x and y are the flapwise and edgewise distances in meters from the blade section elastic center to 
the differential area element, respectively.  These values must be greater than zero.  (N·m2) 
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Table 10.  Blade-Input-File Parameters (continued). 

Distributed Blade Properties (continued) 

EdgStff This is the blade section edgewise stiffness, not the in-plane stiffness.  It should be computed as 
the integral of the modulus of elasticity times the square of the edgewise distance from the blade 
section elastic center to the differential area element over the cross-sectional area of the section.  
That is, EdgStff = ( ) 2,∫∫ E x y x dxdy , where ( ),E x y  is the modulus of elasticity in N/m2 

and x and y are the flapwise and edgewise distances in meters from the blade section elastic center 
to the differential area element, respectively.  These values must be greater than zero.  (N·m2) 

GJStff This is the blade section torsion stiffness used for creation of the ADAMS dataset.  The FAST 
model does not use it.  It should be computed as the integral of the modulus of rigidity times the 
square of the radial distance from the blade section elastic center to the differential area element 

over the cross-sectional area of the section.  That is, GJStff = ( )( )2 2, +∫∫G x y x y dxdy , 

where ( ),G x y  is the modulus of rigidity in N/m2 and x and y are the flapwise and edgewise 
distances in meters from the blade section elastic center to the differential area element, 
respectively.  When creating ADAMS datasets, these values must be greater than zero.  If the 
ADAMS preprocessor is disabled, this input can be left blank.  (N m2) 

EAStff This is the blade section extensional stiffness used for creation of the ADAMS dataset.  The FAST 
model does not use it.  It should be computed as the integral of the modulus of elasticity over the 

cross-sectional area of the section.  That is, EAStff = ( ),E x y dxdy∫∫ , where ( ),E x y  is the 

modulus of elasticity in N/m2 and x and y are the flapwise and edgewise distances in meters from 
the blade section elastic center to the differential area element, respectively.  When creating 
ADAMS datasets, these values must be greater than zero.  If the ADAMS preprocessor is 
disabled, this input can be left blank.  (N) 

Alpha This is the blade section flap/twist coupling coefficient.  Valued values are between –1 and 1 
(exclusive).  Positive values correspond to the blade twisting towards feather as the blade bends 
downwind due to thrust loading.  Likewise, the blade will twist toward stall as it flaps downwind 
due to thrust loading if Alpha is negative.  Set Alpha to zero to eliminate the coupling between 
flap bending and torsion.  The FAST model does not use it.  If the ADAMS preprocessor is 
disabled, this input can be left blank.  (-) 

FlpIner This is the blade section flapwise mass inertia per unit length used for creation of the ADAMS 
dataset.  The FAST model does not use it.  It should be computed as the integral of the mass 
density times the square of the flapwise distance from the blade section mass center to the 
differential area element over the cross-sectional area of the section.  That is, FlpIner = 

( ) 2,ρ∫∫ x y x dxdy , where ( ),ρ x y  is the mass density in kg/m3 and x and y are the flapwise 

and edgewise distances in meters from the blade section mass center to the differential area 
element, respectively.  When creating ADAMS datasets, these values must not be less than zero.  
If the ADAMS preprocessor is disabled, this input can be left blank.  (kg m) 

EdgIner This is the blade section edgewise mass inertia per unit length used for creation of the ADAMS 
dataset.  The FAST model does not use it.  It should be computed as the integral of the mass 
density times the square of the edgewise distance from the blade section mass center to the 
differential area element over the cross-sectional area of the section.  That is, EdgIner = 

( ) 2,x y y dxdyρ∫∫ , where ( ),ρ x y  is the mass density in kg/m3 and x and y are the flapwise 

and edgewise distances in meters from the blade section mass center to the differential area 
element, respectively.  When creating ADAMS datasets, these values must not be less than zero.  
If the ADAMS preprocessor is disabled, this input can be left blank.  (kg m) 
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Table 10.  Blade-Input-File Parameters (concluded). 

Distributed Blade Properties (concluded) 

PrecrvRef This is the sectional offset that defines the reference axis for precurved blades.  This value is 
directed from the blade pitch axis along the xb,i-axis, positive nominally downwind.  For upwind 
turbines, this value should be negative in order to increase tower clearance.  PrecrvRef must be 
set to zero for blades without precurve.  If PrecrvRef and PreswpRef (next input) are both zero, 
the reference axis and pitch axis are coincident.  The FAST model does not use it.  If the ADAMS 
preprocessor is disabled, this input can be left blank.  (m) 

PreswpRef This is the sectional offset that defines the reference axis for preswept blades.  This value is 
directed from the blade pitch axis along the yb,i-axis, negative in the direction of rotation.  
PreswpRef must be set to zero for blades without presweep.  If PrecrvRef (previous input) and 
PreswpRef are both zero, the reference axis and pitch axis are coincident.  The FAST model does 
not use it.  If the ADAMS preprocessor is disabled, this input can be left blank.  (m) 

FlpcgOf This is the blade section mass offset measured from the reference axis in the flapwise direction, 
positive toward the suction surface.  It is used for creation of the ADAMS dataset.  The FAST 
model does not use it.  If the ADAMS preprocessor is disabled, this input can be left blank.  (m) 

EdgcgOf This is the blade section mass offset measured from the reference axis in the edgewise direction, 
positive toward the trailing edge.  It is used for creation of the ADAMS dataset.  The FAST model 
does not use it.  If the ADAMS preprocessor is disabled, this input can be left blank.  (m) 

FlpEAOf This is the blade section elastic offset measured from the reference axis in the flapwise direction, 
positive toward the suction surface.  It is used for creation of the ADAMS dataset.  The FAST 
model does not use it.  If the ADAMS preprocessor is disabled, this input can be left blank.  (m) 

EdgEAOf This is the blade section elastic offset measured from the reference axis in the edgewise direction, 
positive toward the trailing edge.  It is used for creation of the ADAMS dataset.  The FAST model 
does not use it.  If the ADAMS preprocessor is disabled, this input can be left blank.  (m) 

Blade Mode Shapes 

BldFl1Shi These are the coefficients of the polynomial equation used to model the first flapwise mode shape 
of the blade.  The five coefficients (second through sixth) of the polynomial equation define the 
mode shape, where the variable in the polynomial varies from 0 to 1.  The zeroth and first terms 
are not included in the list because they must always be 0 for cantilevered beams.  The polynomial 
should describe a curve that has a value of 1 at the free end.  That is, the five numbers must add up 
to 1.  (-) 

BldFl2Shi These are the coefficients of the polynomial equation used to model the second flapwise mode 
shape of the blade.  The five coefficients (second through sixth) of the polynomial equation define 
the mode shape, where the variable in the polynomial varies from 0 to 1.  The zeroth and first 
terms are not included in the list because they must always be 0 for cantilevered beams.  The 
polynomial should describe a curve that has a value of 1 at the free end.  That is, the five numbers 
must add up to 1.  (-) 

BldEdgShi These are the coefficients of the polynomial equation used to model the edgewise mode shape of 
the blade.  The five coefficients (second through sixth) of the polynomial equation define the 
mode shape, where the variable in the polynomial varies from 0 to 1.  The zeroth and first terms 
are not included in the list because they must always be 0 for cantilevered beams.  The polynomial 
should describe a curve that has a value of 1 at the free end.  That is, the five numbers must add up 
to 1.  (-) 
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Table 11.  AeroDyn-Input-File Parameters. 

The following input parameters are contained in the file indicated by input ADFile from the primary input file.  
AeroDyn will read this file even when CompAero from the primary input file is disabled.  For more details about 
the parameters documented here, please see the latest AeroDyn User’s Guide [1]. 

Aerodynamics 

ADTitle  This is an input-file descriptor that is displayed on the screen during execution.  AeroDyn will 
read the first 96 characters of the text.  There is no need to put it in quotes.  You may enter 
anything you like—even an empty string, but you must consume exactly one line in the input file.  
(nonquoted string) 

SysUnits This string controls the setting of the SIUnits flag, which tells AeroDyn whether to assume input 
and output parameters are given in metric or English units.  This string must be “SI” for FAST.  
Some other codes that use AeroDyn allow input and output parameters in English units, but FAST 
does not.  (nonquoted string) 

StallMod This string controls the setting of the DynStall flag, which tells AeroDyn whether or not to use the 
Leishman-Beddoes dynamic stall in AeroDyn.  The only permissible values are “BEDDOES” and 
“STEADY”.  This string is normally set to “BEDDOES” to use dynamic stall for production 
simulations.  During a linearization analysis, dynamic stall must be disabled by specifying 
StallMod to “STEADY”.  (nonquoted string) 

UseCm This string controls the setting of the PitchMom flag, which tells AeroDyn whether to compute 
pitching moments in AeroDyn.  The only permissible values are “USE_CM” and “NO_CM”.  
Although pitching moments will have an effect on the loads and motion of the turbine in FAST, 
there is no twist degree of freedom.  (nonquoted string) 

InfModel This string controls the setting of the DynInflo flag, which tells AeroDyn whether to use the 
generalized-dynamic-wake model or the equilibrium-inflow model.  The two possible string 
values are “DYNIN” and “EQUIL”.  For production runs, this string should be set to “DYNIN”.  
During a linearization analysis, the “EQUIL”ibrium-inflow model must be engaged.  (nonquoted 
string) 

IndModel When using the equilibrium-inflow model, this quoted string controls the setting of the AxialInd 
and TangInd flags.  The three possible values are “NONE”, “WAKE”, and “SWIRL”.  A setting 
of “NONE” disables both flags, a setting of “WAKE” enables just the AxialInd flag, and a setting 
of “SWIRL” enables both flags.  If you are doing production runs using equilibrium inflow, you 
should set this value to “SWIRL”.  (nonquoted string) 

AToler When using the equilibrium inflow model, an iterative solution is used to calculate the induction 
factors.  AeroDyn uses the value of AToler as the convergence criterion.  A good default value to 
use is 0.005.  This value may be reduced to increase accuracy or increased to speed the calcula-
tions.  This value must be greater than zero.  (-) 

TLModel When using the equilibrium inflow model, you can select from two tip-loss models or disable tip-
loss calculations.  {“NONE”: no tip-loss calculations, “PRAND”: standard Prandtl tip-loss model, 
“GTECH”: Georgia Tech’s modified Prandtl model}  (nonquoted string) 

HLModel When using the equilibrium inflow model, you can include or disable hub-loss calculations.  
{“NONE”: no hub-loss calculations, “PRAND”: standard Prandtl hub-loss model}  (nonquoted 
string) 

WindFile This quoted string holds the name or root name of the wind input file.  AeroDyn will check the file 
system to determine whether the file contains hub-height wind data or full-field (FF) wind data.  
For FF winds, omit the file extension.  The file name may optionally include an absolute or rela-
tive path.  This file name must contain fewer than 100 characters and must be enclosed in apostro-
phes or double quotes.  During a linearization analysis, you must use a hub-height wind data file 
that does not vary with time.  (quoted string) 

HH This is the height above the ground [onshore] or height above the mean sea level [offshore] that 
AeroDyn will use as a hub height for the winds.  You should set this to TowerHt + Twr2Shft + 
OverHang•SIN( ShftTilt ).  This value must not be negative.  (m) 
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Table 11.  AeroDyn-Input-File Parameters (continued). 

Aerodynamics (concluded) 

TwrShad The tower-shadow maximum velocity deficit is the fractional amount the horizontal wind speed is 
reduced at the middle of the shadow a distance T_Shad_RefPt downstream from the center of the 
tower.  This varies from 0 to 1.  A value of 0 means there is no shadow.  A value of 1 means the 
wind is completely stopped.  A typical number might be something like 0.3.  This value must not 
be negative.  (-) 

ShadHWid The tower-shadow half-width tells AeroDyn how wide the tower shadow is at a distance 
T_Shad_RefPt downstream from the center of the tower.  This number should normally be 
slightly larger than the half-width of the tower, as the tower shadow usually widens as it goes 
downstream.  This value must not be negative.  (m) 

T_Shad_RefPt This distance downstream of the tower specifies the point where the input values of the velocity 
deficit and shadow width are defined.  An appropriate value would be the horizontal distance from 
the tower centerline to the hub, which would be OverHang•COS( ShftTilt ).  This value must not 
be negative.  (m) 

Rho This is the ambient air density at the altitude of the hub.  The standard density at sea level is 1.225.  
By setting this value to 0 you will effectively eliminate all aerodynamic forces on the turbine, but 
you will save a lot of calculations by instead disabling the CompAero flag.  This value must not 
be negative.  (kg/m3) 

KinVisc This is the ambient relative viscosity at the altitude of the hub.  This value is not currently used in 
AeroDyn or FAST, but it will eventually be used to compute the Reynolds number.  The standard 
relative viscosity at sea level is 1.46e-5.  This value must not be negative.  (kg/m·sec) 

DTAero This is the time step size that tells AeroDyn how often to compute aerodynamic forces.  This value 
must be greater than zero.  It does not need to be specified as an integral multiplier of FAST’s time 
step, DT, but if it is not, FAST will still only call AeroDyn at the least greatest integer multiple of 
DT that is larger or equal to DTAero.  (sec) 

NumFoil This parameter determines how many airfoil tables will be available for assignment to the various 
blade stations and tail fin airfoil.  Any non-zero number of airfoil files can be specified.  Any or all 
of them may be used by more than one blade station or never used at all.  (-) 

FoilNmi The next NumFoil lines are a list of airfoil-table file names entered in quoted strings.  The file 
names are limited to 80 characters and may contain absolute or relative paths.  Leading and 
trailing spaces are trimmed, but imbedded spaces are kept.  Leading spaces count against the 80-
character limit.  Only one filename is entered on each line.  (quoted strings) 

BldNodes The blades will have BldNodes analysis nodes in FAST, which are used for the integration of 
aerodynamic and elastic forces.  The more segments you use, the more accurate the integral will 
be, but the greater the computational time will be.  A good compromise for this parameter is 20.  
This integer number must be greater than 1.  When creating ADAMS datasets, this value must be 
no more than 99.  (-) 
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Table 11.  AeroDyn-Input-File Parameters (concluded). 

Distributed Blade Information 

RNodes These values are the distances of the analysis nodes from the rotor apex along the pitch axis, 
which is not consistent with the YawDyn convention for 3-bladed turbines (but is consistent 
for 2-bladed turbines).  The analysis nodes are located at the centers of the blade segments.  You 
do not have complete freedom to put the RNodes anywhere you like.  For instance, they cannot 
be at the blade root or tip.  It is also not always possible to alternate between nodes that are close 
together and far apart.  An easy way to ensure consistency is to divide the blade segments and then 
compute the centers of the segments to use for the RNodes.  The nodes do not need to be equally 
spaced.  These values must fall between the HubRad and TipRad (exclusive).  (m) 

AeroTwst This is the aerodynamic twist angle.  It indicates the orientation of the chord of the local airfoil.  A 
positive aerodynamic twist is one that points the leading edge more upwind.  These values must be 
greater than –180 and less than or equal to 180 degrees.  (deg) 

DRNodes These values represent the portion of the blade span that is assigned to an analysis node.  This 
length times the local chord defines the area used in the aerodynamics calculations.  The sum of all 
the DRNodes should add up to the blade length.  FAST checks the values of the RNodes and 
DRNodes to make sure they are consistent and meaningful.  These values must be greater than 
zero.  (m) 

Chord These values are the local chords of the analysis nodes.  This local chord times DRNodes defines 
the area used in the aerodynamics calculations.  These values must be greater than zero.  (m) 

NFoil These integers tell AeroDyn which of the input airfoil files (FoilNm) are assigned to the various 
analysis nodes.  For instance, a value of 2 means that node 2 will use FoilNm2 for the local airfoil. 
Airfoils may be assigned to more than one blade station.  These values must be between 1 and 
NumFoil.  (-) 

PrnElm If the whole word “PRINT” is found anywhere on a line, the element data for that element will be 
printed to the element output file (element.plt).  You can also enter the nonquoted string 
“NOPRINT”, or leave this field blank to skip printing element data for this element.  (nonquoted, 
case-insensitive string) 
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Table 12.  Platform-Input-File Parameters. 

The following input parameters are contained in the file indicated by input PtfmFile from the primary input file.  
FAST will only read this file if PtfmModel from the primary input file is nonzero.  In FAST v6.0, all nonzero 
PtfmModel options will work the same way by reading in the PtfmFile described here.  In future versions, the 
format of this file will depend on which PtfmModel option is selected. 

Feature Flags 

PtfmSgDOF The support platform surge DOF will be enabled when this is True.  The surge DOF allows the 
platform to translate horizontally relative to the inertia frame as shown in Figure 20.  The platform 
reference point (located by input PtfmRef) translates with the platform during this motion.  The 
initial surge displacement is specified with PtfmSurge.  If PtfmSgDOF is disabled, the surge 
displacement will be fixed at PtfmSurge.  (flag) 

PtfmSwDOF The support platform sway DOF will be enabled when this is True.  The sway DOF allows the 
platform to translate horizontally relative to the inertia frame as shown in Figure 20.  The platform 
reference point (located by input PtfmRef) translates with the platform during this motion.  The 
initial sway displacement is specified with PtfmSway.  If PtfmSwDOF is disabled, the sway 
displacement will be fixed at PtfmSway.  (flag) 

PtfmHvDOF The support platform heave DOF will be enabled when this is True.  The heave DOF allows the 
platform to translate vertically relative to the inertia frame as shown in Figure 20.  The platform 
reference point (located by input PtfmRef) translates with the platform during this motion.  The 
initial heave displacement is specified with PtfmHeave.  If PtfmHvDOF is disabled, the heave 
displacement will be fixed at PtfmHeave.  (flag) 

PtfmRDOF The support platform roll DOF will be enabled when this is True.  The roll DOF allows the 
platform to tilt (rotate) about its reference point (located by input PtfmRef) relative to the inertia 
frame as shown in Figure 20.  The initial roll displacement is specified with PtfmRoll.  If 
PtfmRDOF is disabled, the roll displacement will be fixed at PtfmRoll.  (flag) 

PtfmPDOF The support platform pitch DOF will be enabled when this is True.  The pitch DOF allows the 
platform to tilt (rotate) about its reference point (located by input PtfmRef) relative to the inertia 
frame as shown in Figure 20.  The initial pitch displacement is specified with PtfmPitch.  If 
PtfmPDOF is disabled, the pitch displacement will be fixed at PtfmPitch.  (flag) 

PtfmYDOF The support platform yaw DOF will be enabled when this is True.  The yaw DOF allows the 
platform to yaw (rotate) about its reference point (located by input PtfmRef) relative to the inertia 
frame as shown in Figure 20.  The initial yaw displacement is specified with PtfmYaw.  If 
PtfmYDOF is disabled, the yaw displacement will be fixed at PtfmYaw.  (flag) 

Initial Conditions 

PtfmSurge This is the fixed or initial support platform surge displacement.  The surge displacement indicates 
a horizontal translation of the platform relative to the inertia frame as shown in Figure 20.  (m) 

PtfmSway This is the fixed or initial support platform sway displacement.  The sway displacement indicates a 
horizontal translation of the platform relative to the inertia frame as shown in Figure 20.  (m) 

PtfmHeave This is the fixed or initial support platform heave displacement.  The heave displacement indicates 
a vertical translation of the platform relative to the inertia frame as shown in Figure 20.  (m) 

PtfmRoll This is the fixed or initial support platform roll displacement.  The roll displacement indicates a tilt 
rotation of the platform about its reference point (located by input PtfmRef) relative to the inertia 
frame as shown in Figure 20.  This value must be between –15 and 15 degrees (inclusive).  (deg) 

PtfmPitch This is the fixed or initial support platform pitch displacement.  The pitch displacement indicates a 
tilt rotation of the platform about its reference point (located by input PtfmRef) relative to the 
inertia frame as shown in Figure 20.  This value must be between –15 and 15 degrees (inclusive).  
(deg) 

PtfmYaw This is the fixed or initial support platform yaw displacement.  The yaw displacement indicates a 
yaw rotation of the platform about its reference point (located by input PtfmRef) relative to the 
inertia frame as shown in Figure 20.  This value must be between –15 and 15 degrees (inclusive).  
(deg) 
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Table 12.  Platform-Input-File Parameters (concluded). 

Turbine Configuration 

TwrDraft The tower draft is the downward distance from ground level [onshore] or mean sea level 
[offshore] to the tower base platform connection.  This value must be greater than –TowerHt.  See 
Figure 20.  (m) 

PtfmCM This is the downward distance from ground level [onshore] or mean sea level [offshore] to the 
support platform mass center.  This value must not be less than TwrDraft.  See Figure 20.  (m) 

PtfmRef This is the downward distance from ground level [onshore] or mean sea level [offshore] to the 
support platform reference point.  The platform reference point is the origin in the platform about 
which the translational (surge, sway, and heave) and rotational (roll, pitch, and yaw) motions of 
the support platform are defined.  It is also the point at which external loading is applied to the 
platform—see input parameter PtfmLdMod.  This value must not be less than TwrDraft.  See 
Figure 20.  (m) 

Mass and Inertia 

PtfmMass This is the mass of the support platform.  Its center is located a downward distance of PtfmCM 
from ground level [onshore] or mean sea level [offshore].  If TwrRBHt is nonzero, the mass of the 
rigid portion of the tower should be included with the support platform mass in PtfmMass.  This 
value must not be negative.  (kg) 

PtfmRIner This is the support platform moment of inertia in roll about the platform mass center.  It includes 
all mass contained in PtfmMass.  This value must not be negative.  (kg·m2) 

PtfmPIner This is the support platform moment of inertia in pitch about the platform mass center.  It includes 
all mass contained in PtfmMass.  This value must not be negative.  (kg·m2) 

PtfmYIner This is the support platform moment of inertia in yaw about the platform mass center.  It includes 
all mass contained in PtfmMass.  This value must not be negative.  (kg·m2) 

Platform Loading 

PtfmLdMod In FAST v6.0, only user-defined platform loading is available.  For a value of 0 for PtfmLdMod, 
there will be no platform loading and the support reactions normally produced will be set to zero 
(causing the wind turbine to fall due to gravity if PtfmHvDOF is True).  If you set PtfmLdMod to 
1, FAST will call the routine UserPtfmLd() to compute the platform loading.  You should replace 
the dummy routine supplied with the code with your own, which will need to be linked with the 
rest of FAST.  The platform loads returned by UserPtfmLd() should contain contributions from 
any external load acting on the platform other than loads transmitted from the wind turbine.  For 
example, these loads should contain contributions from foundation stiffness and damping [not 
floating] or mooring line restoring and damping [floating], as well as hydrostatic and 
hydrodynamic contributions [offshore].  The platform loads will be applied on the platform at the 
instantaneous platform reference position (located by input PtfmRef).  The routine assumes that 
the platform loads are transmitted through a medium like soil [foundation] and/or water [offshore], 
so that added mass effects are important.  See the dummy UserPtfmLd() routine for more 
information.  Using values other than 0 or 1 for PtfmLdMod will cause FAST to abort.  (switch) 
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Table 13.  Furling-Input-File Parameters. 

The following input parameters are contained in the file indicated by input FurlFile from the primary input file.  
FAST will only read this file if the model is designated as a furling machine (when Furling from the primary input 
file is set to True). 

Feature Flags 

RFrlDOF The rotor-furl DOF will be enabled when this is True.  The initial rotor-furl angle is specified with 
RotFurl.  If RFrlDOF is disabled, the rotor-furl angle will be fixed at RotFurl.  (flag) 

TFrlDOF The tail-furl DOF will be enabled when this is True.  The initial tail-furl angle is specified with 
TailFurl.  If TFrlDOF is disabled, the tail-furl angle will be fixed at TailFurl.  (flag) 

Initial Conditions 

RotFurl This is the fixed or initial rotor-furl angle.  It is positive about the rotor-furl axis as shown in 
Figure 17.  The rotor-furl axis is defined through inputs RFrlPntxn, RFrlPntyn, RFrlPntzn, 
RFrlSkew, and RFrlTilt below.  This value must be greater than –180 and less than or equal to 
180 degrees.  (deg) 

TailFurl This is the fixed or initial tail-furl angle.  It is positive about the tail-furl axis as shown in Figure 
17.  The tail-furl axis is defined through inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew, 
and TFrlTilt below.  This value must be greater than –180 and less than or equal to 180 degrees.  
(deg) 

Turbine Configuration 

Yaw2Shft This is the lateral offset distance from the yaw axis to the intersection of the rotor shaft axis with 
the yn-/zn-plane.  The distance is measured parallel to the yn-axis.  It is positive to the left when 
looking downwind as shown in Figure 18.  For turbines with rotor-furl, this distance defines the 
configuration at a furl angle of zero.  (m) 

ShftSkew This is the skew angle of the rotor shaft in the nominally horizontal plane.  Positive skew acts like 
positive nacelle yaw as shown in Figure 18; however, ShftSkew should only be used to skew the 
shaft a few degrees away from the zero-yaw position and must not be used as a replacement for 
the yaw angle.  This value must be between –15 and 15 degrees (inclusive).  For turbines with 
rotor-furl, this angle defines the configuration at a furl angle of zero.  (deg) 

RFrlCMxn This is the downwind distance to the center of mass of the structure that furls with the rotor (not 
including the rotor—reference input RFrlMass) from the top of the tower, measured parallel to 
the xn-axis.  It is positive downwind.  See Figure 18.  For turbines with rotor-furl, this distance 
defines the configuration at a furl angle of zero.  (m) 

RFrlCMyn This is the lateral distance to the center of mass of the structure that furls with the rotor (not 
including the rotor—reference input RFrlMass) from the top of the tower, measured parallel to 
the yn-axis.  It is positive to the left when looking downwind.  See Figure 18.  For turbines with 
rotor-furl, this distance defines the configuration at a furl angle of zero.  (m) 

RFrlCMzn This is the vertical distance to the center of mass of the structure that furls with the rotor (not 
including the rotor—reference input RFrlMass) from the top of the tower, measured parallel to 
the zn-axis.  It is positive upward when looking downwind.  See Figure 18.  For turbines with 
rotor-furl, this distance defines the configuration at a furl angle of zero.  (m) 

BoomCMxn This is the downwind distance to the tail boom mass center (reference input BoomMass) from the 
top of the tower, measured parallel to the xn-axis.  It is positive downwind.  See Figure 19.  For 
turbines with tail-furl, this distance defines the configuration at a furl angle of zero.  (m) 

BoomCMyn This is the lateral distance to the tail boom mass center (reference input BoomMass) from the top 
of the tower, measured parallel to the yn-axis.  It is positive to the left when looking downwind.  
See Figure 19.  For turbines with tail-furl, this distance defines the configuration at a furl angle of 
zero.  (m) 

BoomCMzn This is the vertical distance to the tail boom mass center (reference input BoomMass) from the 
top of the tower, measured parallel to the zn-axis.  It is positive upward when looking downwind.  
See Figure 19.  For turbines with tail-furl, this distance defines the configuration at a furl angle of 
zero.  (m) 
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Table 13.  Furling-Input-File Parameters (continued). 

Turbine Configuration (continued) 

TFinCMxn This is the downwind distance to the tail fin mass center (reference input TFinMass) from the top 
of the tower, measured parallel to the xn-axis.  It is positive downwind.  See Figure 19.  For 
turbines with tail-furl, this distance defines the configuration at a furl angle of zero.  (m) 

TFinCMyn This is the lateral distance to the tail fin mass center (reference input TFinMass) from the top of 
the tower, measured parallel to the yn-axis.  It is positive to the left when looking downwind.  See 
Figure 19.  For turbines with tail-furl, this distance defines the configuration at a furl angle of 
zero.  (m) 

TFinCMzn This is the vertical distance to the tail fin mass center (reference input TFinMass) from the top of 
the tower, measured parallel to the zn-axis.  It is positive upward when looking downwind.  See 
Figure 19.  For turbines with tail-furl, this distance defines the configuration at a furl angle of 
zero.  (m) 

TFinCPxn This is the downwind distance to the tail fin center-of-pressure from the top of the tower, 
measured parallel to the xn-axis.  It is positive downwind.  See Figure 19.  For turbines with tail-
furl, this distance defines the configuration at a furl angle of zero.  (m) 

TFinCPyn This is the lateral distance to the tail fin center-of-pressure from the top of the tower, measured 
parallel to the yn-axis.  It is positive to the left when looking downwind.  See Figure 19.  For 
turbines with tail-furl, this distance defines the configuration at a furl angle of zero.  (m) 

TFinCPzn This is the vertical distance to the tail fin center-of-pressure from the top of the tower, measured 
parallel to the zn-axis.  It is positive upward when looking downwind.  See Figure 19.  For 
turbines with tail-furl, this distance defines the configuration at a furl angle of zero.  (m) 

TFinSkew This is the skew angle of the tail fin chordline in the nominally horizontal plane.  Positive skew 
orients the nominal horizontal projection of the tail fin chordline about the zn-axis.  The 
aforementioned chordline is the chordline passing through the tail fin center-of-pressure.  See 
Figure 19.  This value must be greater than –180 and less than or equal to 180 degrees.  For 
turbines with tail-furl, this angle defines the configuration at a furl angle of zero.  (deg) 

TFinTilt This is the tilt angle of the tail fin chordline from the nominally horizontal plane.  The 
aforementioned chordline is the chordline passing through the tail fin center-of-pressure.  This 
value must be between –90 and 90 degrees (inclusive).  Positive tilt means that the trailing edge of 
the tail fin is higher than the leading edge.  See Figure 19.  For turbines with tail-furl, this angle 
defines the configuration at a furl angle of zero.  (deg) 

TFinBank This is the bank angle of the tail fin plane about the tail fin chordline.  The aforementioned 
chordline is the chordline passing through the tail fin center-of-pressure.  This value must be 
greater than –180 and less than or equal to 180 degrees.  See Figure 19.  For turbines with tail-furl, 
this angle defines the configuration at a furl angle of zero.  (deg) 

RFrlPntxn This is the downwind distance to an arbitrary point on the rotor-furl axis from the top of the tower, 
measured parallel to the xn-axis.  It is positive downwind.  The arbitrary point referred to in this 
input must be the same point identified by inputs RFrlPntyn and RFrlPntzn.  Inputs RFrlPntxn, 
RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the orientation of the rotor-furl axis and 
associated DOF, RFrlDOF.  See Figure 17.  (m) 

RFrlPntyn This is the lateral distance to an arbitrary point on the rotor-furl axis from the top of the tower, 
measured parallel to the yn-axis.  It is positive to the left when looking downwind.  The arbitrary 
point referred to in this input must be the same point identified by inputs RFrlPntxn and 
RFrlPntzn.  Inputs RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the 
orientation of the rotor-furl axis and associated DOF, RFrlDOF.  See Figure 17.  (m) 

RFrlPntzn This is the vertical distance to an arbitrary point on the rotor-furl axis from the top of the tower, 
measured parallel to the zn-axis.  It is positive upward when looking downwind.  The arbitrary 
point referred to in this input must be the same point identified by inputs RFrlPntxn and 
RFrlPntyn.  Inputs RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the 
orientation of the rotor-furl axis and associated DOF, RFrlDOF.  See Figure 17.  (m) 
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Table 13.  Furling-Input-File Parameters (continued). 

Turbine Configuration (concluded) 

RFrlSkew This is the skew angle of the rotor-furl axis in the nominally horizontal plane.  Positive skew 
orients the nominal horizontal projection of the rotor-furl axis about the zn-axis.  Inputs 
RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the orientation of the rotor-
furl axis and associated DOF, RFrlDOF.  See Figure 17.  This value must be greater than –180 
and less than or equal to 180 degrees.  (deg) 

RFrlTilt This is the tilt angle of the rotor-furl axis from the nominally horizontal plane.  This value must be 
between –90 and 90 degrees (inclusive).  Inputs RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew, 
and RFrlTilt define the orientation of the rotor-furl axis and associated DOF, RFrlDOF.  See 
Figure 17.  (deg) 

TFrlPntxn This is the downwind distance to an arbitrary point on the tail-furl axis from the top of the tower, 
measured parallel to the xn-axis.  It is positive downwind.  The arbitrary point referred to in this 
input must be the same point identified by inputs TFrlPntyn and TFrlPntzn.  Inputs TFrlPntxn, 
TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the orientation of the tail-furl axis and 
associated DOF, TFrlDOF.  See Figure 17.  (m) 

TFrlPntyn This is the lateral distance to an arbitrary point on the tail-furl axis from the top of the tower, 
measured parallel to the yn-axis.  It is positive to the left when looking downwind.  The arbitrary 
point referred to in this input must be the same point identified by inputs TFrlPntxn and 
TFrlPntzn.  Inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the 
orientation of the tail-furl axis and associated DOF, TFrlDOF.  See Figure 17.  (m) 

TFrlPntzn This is the vertical distance to an arbitrary point on the tail-furl axis from the top of the tower, 
measured parallel to the zn-axis.  It is positive upward when looking downwind.  The arbitrary 
point referred to in this input must be the same point identified by inputs TFrlPntxn and 
TFrlPntyn.  Inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the 
orientation of the tail-furl axis and associated DOF, RFrlDOF.  See Figure 17.  (m) 

TFrlSkew This is the skew angle of the tail-furl axis in the nominally horizontal plane.  Positive skew orients 
the nominal horizontal projection of the tail-furl axis about the zn-axis.  Inputs TFrlPntxn, 
TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the orientation of the tail-furl axis and 
associated DOF, TFrlDOF.  See Figure 17.  This value must be greater than –180 and less than or 
equal to 180 degrees.  (deg) 

TFrlTilt This is the tilt angle of the tail-furl axis from the nominally horizontal plane.  This value must be 
between –90 and 90 degrees (inclusive).  Inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew, 
and TFrlTilt define the orientation of the tail-furl axis and associated DOF, TFrlDOF.  See Figure 
17.  (deg) 

Mass and Inertia 

RFrlMass This is the mass of the structure that furls with the rotor (not including the rotor).  The center of 
this mass is located at the point specified by inputs RFrlCMxn, RFrlCMyn, and RFrlCMzn 
relative to the tower-top at a rotor-furl angle of zero.  It includes everything that furls with the 
rotor excluding the rotor (blades, hub, and tip brakes).  This value must not be negative.  (kg) 

BoomMass This is the mass of the tail boom.  The center of the tail boom mass is located at the point specified 
by inputs BoomCMxn, BoomCMyn, and BoomCMzn relative to the tower-top at a tail-furl angle 
of zero.  It includes everything that furls with the tail except the tail fin (see next input).  This 
value must not be negative.  (kg) 

TFinMass This is the mass of the tail fin.  The center of the tail fin mass is located at the point specified by 
inputs TFinCMxn, TFinCMyn, and TFinCMzn relative to the tower-top at a tail-furl angle of 
zero.  TFinMass and BoomMass combined should include everything that furls with the tail.  
This value must not be negative.  (kg) 

RFrlIner This is the moment of inertia of the structure that furls with the rotor (not including the rotor) 
about the rotor-furl axis.  It includes all mass contained in RFrlMass.  This value must be greater 
than RFrlMass•( perpendicular distance between rotor-furl axis and C.M. of the structure 
that furls with the rotor [not including the rotor] )2.  (kg·m2) 
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Table 13.  Furling-Input-File Parameters (continued). 

Mass and Inertia (concluded) 

TFrlIner This is the tail boom moment of inertia about the tail-furl axis.  It includes all mass contained in 
BoomMass.  This value must be greater than BoomMass•( perpendicular distance between 
tail-furl axis and tail boom C.M. )2.  (kg·m2) 

Rotor-Furl 

RFrlMod The rotor-furl springs and dampers can be modeled three ways.  For a value of 0 for RFrlMod, 
there will be no rotor-furl spring nor damper and the moment normally produced will be set to 
zero.  A RFrlMod of 1 will invoke simple spring and damper models using the inputs provided 
below as appropriate coefficients.  If you set RFrlMod to 2, FAST will call the routine UserRFrl() 
to compute the rotor-furl spring and damper moments.  You should replace the dummy routine 
supplied with the code with your own, which will need to be linked with the rest of FAST.  Using 
values other than 0, 1, or 2 will cause FAST to abort.  (switch) 

RFrlSpr The linear rotor-furl spring restoring moment is proportional to the rotor-furl deflection through 
this constant.  This value must not be negative and is only used when RFrlMod is set to 1.  
(N·m/rad) 

RFrlDmp The linear rotor-furl damping moment is proportional to the rotor-furl rate through this constant.  
This value must not be negative and is only used when RFrlMod is set to 1.  (N·m/(rad/sec)) 

RFrlCDmp This Coulomb-friction damping moment resists rotor-furl motion, but it is a constant that is not 
proportional to the rotor-furl rate.  However, if the rotor-furl rate is zero, the damping is zero.  
This value must not be negative and is only used when RFrlMod is set to 1.  (N·m) 

RFrlUSSP The rotor-furl up-stop spring is effective when the rotor-furl deflection exceeds this value.  This 
value must be greater than –180 and less than or equal to 180 degrees and is only used when 
RFrlMod is set to 1.  (deg) 

RFrlDSSP The rotor-furl down-stop spring is effective when the rotor-furl deflection exceeds this value.  This 
value must be greater than –180 and less than or equal to RFrlUSSP degrees and is only used 
when RFrlMod is set to 1.  (deg) 

RFrlUSSpr The linear rotor-furl up-stop spring restoring moment is proportional to the rotor-furl up-stop 
deflection by this constant and is effective when the rotor-furl deflection exceeds RFrlUSSP.  
This value must not be negative and is only used when RFrlMod is set to 1.  (N·m/rad) 

RFrlDSSpr The linear rotor-furl down-stop spring restoring moment is proportional to the rotor-furl down-
stop deflection by this constant and is effective when the rotor-furl deflection exceeds RFrlDSSP.  
This value must not be negative and is only used when RFrlMod is set to 1.  (N·m/rad) 

RFrlUSDP The rotor-furl up-stop damper is effective when the rotor-furl deflection exceeds this value.  This 
value must be greater than –180 and less than or equal to 180 degrees and is only used when 
RFrlMod is set to 1.  (deg) 

RFrlDSDP The rotor-furl down-stop damper is effective when the rotor-furl deflection exceeds this value.  
This value must be greater than –180 and less than or equal to RFrlUSDP degrees and is only 
used when RFrlMod is set to 1.  (deg) 

RFrlUSDmp The linear rotor-furl up-stop damping moment is proportional to the rotor-furl rate by this constant 
and is effective when the rotor-furl deflection exceeds RFrlUSDP.  This value must not be 
negative and is only used when RFrlMod is set to 1.  (N·m/(rad/sec)) 

RFrlDSDmp The linear rotor-furl down-stop damping restoring moment is proportional to the rotor-furl rate by 
this constant and is effective when the rotor-furl deflection exceeds RFrlDSDP.  This value must 
not be negative and is only used when RFrlMod is set to 1.  (N·m/(rad/sec)) 
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Table 13.  Furling-Input-File Parameters (continued). 

Tail-Furl 

TFrlMod The tail-furl springs and dampers can be modeled three ways.  For a value of 0 for TFrlMod, there 
will be no tail-furl spring nor damper and the moment normally produced will be set to zero.  A 
TFrlMod of 1 will invoke simple spring and damper models using the inputs provided below as 
appropriate coefficients.  If you set TFrlMod to 2, FAST will call the routine UserTFrl() to 
compute the tail-furl spring and damper moments.  You should replace the dummy routine 
supplied with the code with your own, which will need to be linked with the rest of FAST.  Using 
values other than 0, 1, or 2 will cause FAST to abort.  (switch) 

TFrlSpr The linear tail-furl spring restoring moment is proportional to the tail-furl deflection through this 
constant.  This value must not be negative and is only used when TFrlMod is set to 1.  (N·m/rad) 

TFrlDmp The linear tail-furl damping moment is proportional to the tail-furl rate through this constant.  This 
value must not be negative and is only used when TFrlMod is set to 1.  (N·m/(rad/sec)) 

TFrlCDmp This Coulomb-friction damping moment resists tail-furl motion, but it is a constant that is not 
proportional to the tail-furl rate.  However, if the tail-furl rate is zero, the damping is zero.  This 
value must not be negative and is only used when TFrlMod is set to 1.  (N·m) 

TFrlUSSP The tail-furl up-stop spring is effective when the tail-furl deflection exceeds this value.  This value 
must be greater than –180 and less than or equal to 180 degrees and is only used when TFrlMod is 
set to 1.  (deg) 

TFrlDSSP The tail-furl down-stop spring is effective when the tail-furl deflection exceeds this value.  This 
value must be greater than –180 and less than or equal to TFrlUSSP degrees and is only used 
when TFrlMod is set to 1.  (deg) 

TFrlUSSpr The linear tail-furl up-stop spring restoring moment is proportional to the tail-furl up-stop 
deflection by this constant and is effective when the tail-furl deflection exceeds TFrlUSSP.  This 
value must not be negative and is only used when TFrlMod is set to 1.  (N·m/rad) 

TFrlDSSpr The linear tail-furl down-stop spring restoring moment is proportional to the tail-furl down-stop 
deflection by this constant and is effective when the tail-furl deflection exceeds TFrlDSSP.  This 
value must not be negative and is only used when TFrlMod is set to 1.  (N·m/rad) 

TFrlUSDP The tail-furl up-stop damper is effective when the tail-furl deflection exceeds this value.  This 
value must be greater than –180 and less than or equal to 180 degrees and is only used when 
TFrlMod is set to 1.  (deg) 

TFrlDSDP The tail-furl down-stop damper is effective when the tail-furl deflection exceeds this value.  This 
value must be greater than –180 and less than or equal to TFrlUSDP degrees and is only used 
when TFrlMod is set to 1.  (deg) 

TFrlUSDmp The linear tail-furl up-stop damping moment is proportional to the tail-furl rate by this constant 
and is effective when the tail-furl deflection exceeds TFrlUSDP.  This value must not be negative 
and is only used when TFrlMod is set to 1.  (N·m/(rad/sec)) 

TFrlDSDmp The linear tail-furl down-stop damping restoring moment is proportional to the tail-furl rate by this 
constant and is effective when the tail-furl deflection exceeds TFrlDSDP.  This value must not be 
negative and is only used when TFrlMod is set to 1.  (N·m/(rad/sec)) 
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Table 13.  Furling-Input-File Parameters (concluded). 

Tail Fin Aerodynamics 

TFinMod The tail fin aerodynamics can be modeled three ways.  For a value of 0 for TFinMod, there will be 
no tail fin aerodynamics and the aerodynamic loads normally produced will be set to zero.  A 
TFinMod of 1 will invoke a simplified tail fin aerodynamics model using the inputs provided 
below as appropriate parameters.  If you set TFinMod to 2, FAST will call the routine UserTFin() 
to compute the tail fin aerodynamic loads.  You should replace the dummy routine supplied with 
the code with your own, which will need to be linked with the rest of FAST.  Using values other 
than 0, 1, or 2 will cause FAST to abort.  (switch) 

TFinNFoil This integer tells AeroDyn which of the input airfoil files (FoilNm) is assigned to the tail fin.  For 
instance, a value of 2 means that the tail fin will use FoilNm2 for the local tail fin airfoil.  The tail 
fin airfoil may be assigned to the same airfoil as one or more blade stations.  This value must be 
between 1 and NumFoil and is only used when TFinMod is set to 1.  (-) 

TFinArea This is the plan form area of the tail fin plate used to relate the local dynamic pressure and airfoil 
coefficients to aerodynamic loads.  This value must not be negative and is only used when 
TFinMod is set to 1.  (m2) 

SubAxInd Set this value to False if you want the wind velocity at the tail fin to be unobstructed by the rotor 
wake.  Set this value to True if you want FAST to decrease (i.e., subtract) the wind velocity at the 
tail fin center-of-pressure in the rotor shaft direction by the average rotor axial induction.  This 
input is only used when TFinMod is set to 1.  (flag) 
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Table 14.  ADAMS-Specific-Input-File Parameters. 

The following input parameters are contained in the file indicated by input ADAMSFile from the primary input file.  
FAST will only read this file if the FAST-to-ADAMS preprocessor is enabled (when ADAMSPrep from the 
primary input file is set to 2 or 3). 

Feature Flags 

SaveGrphcs If set to True, this flag tells ADAMS to generate a graphics output file for viewing an animation of 
the ADAMS simulation.  Set this to False if you don’t want graphics output generated; this saves a 
lot of hard disk space if the simulation is long.  (flag) 

MakeLINacf If set to True, this flag tells FAST to generate an ADAMS control/command file used to drive an 
ADAMS/LINEAR eigenanalysis of the model.  The eigenanalysis is performed with no gravity, 
rotor speed, damping, or aerodynamics, no matter how the associated inputs are otherwise 
specified in FAST’s other input file(s).  Set to False if you don’t want this additional 
control/command file generated.  SaveGrphcs must be True if this input is True.  (flag) 

Damping Parameters 

CRatioTGJ This is the ratio of the tower’s torsional damping to stiffness in ADAMS.  A typical value is 0.01 
and it must not be negative.  (-) 

CRatioTEA This is the ratio of the tower’s extensional damping to stiffness in ADAMS.  A typical value is 
0.01 and it must not be negative.  (-) 

CRatioBGJ This is the ratio of a blade’s torsional damping to stiffness in ADAMS.  A typical value is 0.01 
and it must not be negative.  The same ratio is used for all blades.  (-) 

CRatioBEA This is the ratio of a blade’s extensional damping to stiffness in ADAMS.  A typical value is 0.01 
and it must not be negative.  The same ratio is used for all blades.  (-) 

Blade Pitch Actuator Parameters 

BPActrSpr This is the torsional spring stiffness of the blade pitch actuators in ADAMS.  The linear blade 
pitch spring moment is proportional to the pitch error through this constant.  If a pitch actuator 
natural frequency is known in place of an actuator spring stiffness, compute the spring stiffness as 
follows:  BPActrSpr = PitchIner•ωn

2, where ωn is the natural frequency in rad/sec and PitchIner 
is the nominal inertia of the blade about the pitch axis in kg·m2.  The same stiffness is used for all 
blade pitch actuators and it must not negative.  (N·m/rad) 

BPActrDmp This is the torsional damping constant of the blade pitch actuators in ADAMS.  The linear blade 
pitch damping moment is proportional to the blade pitch rate through this constant.  If a pitch 
actuator natural frequency and damping ratio are known in place of an actuator damping constant, 
compute the damping constant as follows:  BPActrDmp = 2•ζ•PitchIner•ωn, where ωn is the 
natural frequency in rad/sec, ζ is the damping ratio in fraction of critical, and PitchIner is the 
nominal inertia of the blade about the pitch axis in kg·m2.  The same damping is used for all blade 
pitch actuators and it must not be negative.  (N·m/(rad/sec)) 

GRAPHICS Parameters 

NSides This is the number of line segments ADAMS includes when drawing GRAPHICS cylinder and 
frustum statements in graphical output.  This value must not be negative.  (-) 

TwrBaseRad This is the radius of the tower base (at elevation TwrRBHt above base of the tower).  It is used to 
define GRAPHICS cylinders for depicting the linearly tapered tower in ADAMS’ graphical 
output.  This value must not be negative.  (m) 

TwrTopRad This is the radius of the tower-top (at elevation TowerHt).  It is used to define GRAPHICS 
cylinders for depicting the linearly tapered tower in ADAMS’ graphical output.  This value must 
not be negative.  (m) 
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Table 14.  ADAMS-Specific-Input-File Parameters (concluded). 

GRAPHICS Parameters (concluded) 

NacLength This is the length of the nacelle.  It is used to define the nacelle GRAPHICS frustum statement for 
ADAMS’ graphical output.  The nacelle GRAPHICS is centered about the point of intersection 
between the rotor shaft axis and the yn-/zn-plane.  This value must not be negative or larger than 
twice the magnitude of OverHang.  (m) 

NacRadBot This is the radius of the bottom of the nacelle (opposite side of rotor).  It is used to define the 
nacelle GRAPHICS frustum statement for ADAMS’ graphical output.  This value must not be 
negative.  (m) 

NacRadTop This is the radius of the top of the nacelle (same side as rotor).  It is used to define the nacelle 
GRAPHICS frustum statement for ADAMS’ graphical output.  This value must not be negative.  
(m) 

GBoxLength This is the length, width, and height of a cube depicting the gearbox in ADAMS’ graphical output.  
It is used to define the gearbox GRAPHICS box statement.  The gearbox GRAPHICS is centered 
about the point of intersection between the low- and high-speed shafts.  This value must not be 
negative.  (m) 

GenLength This is the length of the generator.  It is used to define the length of a GRAPHICS cylinder 
depicting the generator.  The generator GRAPHICS extends from the end of the HSS.  This value 
must not be negative.  (m) 

HSSLength This is the length of the HSS.  It is used to define the length of a GRAPHICS cylinder depicting 
the HSS.  The HSS GRAPHICS extends from the end of the LSS.  The generator GRAPHICS 
originates at the end of the HSS opposite the rotor.  This value must not be negative.  (m) 

LSSLength This is the length of the LSS.  It is used to define the length of a GRAPHICS cylinder depicting 
the LSS.  The LSS GRAPHICS extends toward the tower from the teeter pin for two-bladed 
turbines or from the rotor apex for three-bladed turbines.  The HSS GRAPHICS originates at the 
end of the LSS opposite the rotor.  This value must not be negative.  (m) 

GenRad This is the radius of the generator.  It is used to define the radius of a GRAPHICS cylinder 
depicting the generator for ADAMS’ graphical output.  This value must not be negative.  (m) 

HSSRad This is the radius of the HSS.  It is used to define the radius of a GRAPHICS cylinder depicting 
the HSS for ADAMS’ graphical output.  This value must not be negative.  (m) 

LSSRad This is the radius of the LSS.  It is used to define the radius of a GRAPHICS cylinder depicting 
the LSS for ADAMS’ graphical output.  This value must not be negative.  (m) 

HubCylRad This is the radius of the cylinder depicting the hub in ADAMS’ graphical output.  It is used in the 
hub GRAPHICS cylinder statements, which extend from the apex of the cone of rotation to the 
blade roots along the pitch axes.  This value must not be negative.  (m) 

ThkOvrChrd This is the ratio of blade thickness to blade chord for depicting the blade elements in ADAMS’ 
graphical output.  It is used in the blade element GRAPHICS box statements.  The same value is 
used for each blade element of each blade and must not be negative.  (m) 

BoomRad This is the radius of the tail boom.  It is used to define the radius of a GRAPHICS cylinder 
depicting the tail boom for ADAMS’ graphical output.  The tail boom GRAPHICS extends from 
the specified point on the tail-furl axis (characterized by inputs TFrlPntxn, TFrlPntyn, and 
TFrlPntzn) to a point just below the tail fin center-of-pressure.  This value must not be negative.  
(m) 
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Table 15.  Linearization Control-Input-File Parameters. 

The following input parameters are contained in the file indicated by input LinFile from the primary input file.  
FAST will only read this file when a linearization is performed (when AnalMode from the primary input file is set 
to 2). 

Periodic Steady State Solution 

CalcStdy This flag determines whether a periodic steady state solution is computed before linearizing the 
model.  If False, the next three inputs are ignored and the linearization occurs about the initial 
conditions specified in FAST’s primary input file.  That is, when CalcStdy is False, the operating 
point is set to the condition in which all displacements, velocities, and accelerations are zero, 
except those specified with nonzero initial conditions (for instance, the azimuth DOF will 
increment at a constant rate if and when the rotor is spinning).  If CalcStdy is True and 
RotSpeed is nonzero, FAST integrates in time until a periodic steady state solution is reached.  
The method of solution is determined by the next input, TrimCase.  FAST is then linearized 
about this periodic operating point.  If CalcStdy is True and RotSpeed is zero, FAST will 
disable GenDOF (if previously enabled) and integrate in time until a static equilibrium position is 
found.  FAST is then linearized about this position.  The accuracy of the steady state solution is 
determined through input convergence tolerances DispTol and VelTol (see below).  This input is 
not used in the FAST-to-ADAMS preprocessor.  (flag) 

TrimCase This switch determines, for a variable speed machine, which control input to trim in order to reach 
the desired azimuth-averaged rotor speed indicated through input RotSpeed (which is also the 
initial rotor speed).  Setting it to 1 causes FAST to trim nacelle yaw command (demand) angle, 
while maintaining constant rotor collective blade pitch (indicated by inputs BlPitchi), to reach the 
desired azimuth-averaged rotor speed.  With yaw DOF enabled (YawDOF = True), the nacelle 
yaw command is the neutral yaw angle, YawNeut, which is passed through FAST’s built-in, 
second-order actuator model.  With yaw DOF disabled (YawDOF = False), the nacelle yaw 
command is the actual nacelle yaw angle.  Setting TrimCase to 2 causes FAST to trim electrical 
generator torque, while maintaining constant rotor collective blade pitch (indicated by inputs 
BlPitchi), to reach the desired azimuth-averaged rotor speed (i.e., Region 2 trim).  Setting 
TrimCase to 3 causes FAST to trim rotor collective blade pitch to reach the desired azimuth-
averaged rotor speed (i.e., Region 3 trim).  In this case, the initial “guess” blade pitch angles are 
given by BlPitchi and the electrical generator torque is determined by the torque-speed 
relationship indicated by inputs VSContrl or GenModel.  For typical Region 3 trim, collective 
pitch can be trimmed while maintaining a constant generator torque by setting TrimCase to 3, 
VSContrl to 1, VS_RtTq to the desired constant generator torque, and VS_RtGnSp, 
VS_Rgn2K, and VS_SlPc to 9999.9E-9 (very small don’t cares > 0.0).  Input parameter 
TrimCase is ignored when either CalcStdy or GenDOF is False.  For a constant speed machine, 
GenDOF should be set to False when linearizing FAST, in which case, input TrimCase is 
ignored.  Using values other than 1, 2, or 3 will cause FAST to abort.  This input is not used in the 
FAST-to-ADAMS preprocessor.  (switch) 

DispTol This is the convergence tolerance for the 2-norm of angular displacements in the calculation of 
periodic steady state solution.  The steady state solution is found when this tolerance and VelTol 
are both met.  The smaller the number, the tighter the tolerance is.  This input is ignored if 
CalcStdy is False.  This input is not used in the FAST-to-ADAMS preprocessor.  (rad) 

VelTol This is the convergence tolerance for the 2-norm of angular velocities in the calculation of the 
periodic steady state solution.  The steady state solution is found when this tolerance and DispTol 
are both met.  The smaller the number, the tighter the tolerance is.  This input is ignored if 
CalcStdy is False.  This input is not used in the FAST-to-ADAMS preprocessor.  (rad/s) 
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Table 15.  Linearization Control-Input-File Parameters (concluded). 

Model Linearization 

NAzimStep This is the number of equally spaced rotor azimuth steps in the output periodic linearized model.  
The first rotor azimuth location is always the initial azimuth position indicated by inputs Azimuth 
and AzimB1Up.  The subsequent azimuth steps increment in the direction of rotation.  If 
RotSpeed is zero, FAST will override NAzimStep and only linearize the model about the initial 
azimuth position (as if NAzimStep was set to 1).  This input is not used in the FAST-to-ADAMS 
preprocessor.  (-) 

MdlOrder This is the order of the output linearized model.  A setting of 1 causes FAST to output the first-
order representation of the linearized model.  A setting of 2 causes FAST to output the second-
order representation of the linearized model.  Using values other than 1 or 2 will cause FAST to 
abort.  This input is not used in the FAST-to-ADAMS preprocessor.  (-) 

Inputs and Disturbances 

NInputs The number of control inputs indicates the number of input values on the next line.  Valid values 
are integers from 0 to 4 + NumBl (inclusive).  This input is not used in the FAST-to-ADAMS 
preprocessor.  (-) 

CntrlInpt This is a list of numbers corresponding to different types of control inputs.  Possible values are 1 
to 7 (inclusive) (7 is only available if NumBl = 3).  The numbers correspond to seven control 
inputs as follows:  (1) nacelle yaw angle command, (2) nacelle yaw rate command, (3) electrical 
generator torque, (4) rotor collective blade pitch, (5) individual pitch of blade 1, (6) individual 
pitch of blade 2, and (7) individual pitch of blade 3 (unavailable if NumBl = 2).  If the yaw DOF is 
enabled (YawDOF = True), then the commanded yaw angle and rate from CntrlInpt setting 1 and 
2 are the neutral yaw angle, YawNeut, and neutral yaw rate, YawRateNeut, in FAST's built-in 
second-order actuator model.  In this case, the yaw actuator, which is described in the Nacelle 
Yaw Control section of the Controls chapter, will be inherent in the output linearized model.  If 
the yaw DOF is disabled (YawDOF = False), then the commanded yaw angle and rate from 
CntrlInpt setting 1 and 2 are the actual yaw angle and yaw rate.  In this case, the yaw actuator will 
be absent from the output linearized model.  You must enter at least Ninputs values on the line of 
input CntrlInpt.  If NInputs is 0, this line will be skipped, but you must have a line taking up 
space in the input file.  You can separate the values with combinations of tabs, spaces, and 
commas, but you may use only one comma between numbers.  This input is not used in the FAST-
to-ADAMS preprocessor.  (-) 

NDisturbs The number of wind input disturbances indicates the number of input values on the next line.  
Valid values are integers from 0 to 7 (inclusive).  This input is not used in the FAST-to-ADAMS 
preprocessor.  (-) 

Disturbnc This is a list of numbers corresponding to different types of wind input disturbances.  Possible 
values are 1 to 7 (inclusive).  The numbers correspond to the seven inputs available in the hub-
height wind data files of AeroDyn as follows:  (1) horizontal hub-height wind speed, V, (2) 
horizontal wind direction, DELTA, (3) vertical wind speed, VZ, (4) horizontal wind shear, HSHR, 
(5) vertical power law wind shear, VSHR, (6) linear vertical wind shear, VLinSHR, and (7) 
horizontal hub-height wind gust, VG.  You must enter at least NDisturbs values on this line.  If 
NDisturbs is 0, this line will be skipped, but you must have a line taking up space in the input file.  
You can separate the values with combinations of tabs, spaces, and commas, but you may use only 
one comma between numbers.  This input is not used in the FAST-to-ADAMS preprocessor.  (-) 
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OUTPUT FILES 

The program generates one or more output files 
based on settings in the input file. 

For time-marching analyses, the primary output 
file contains columns of time-series data with one 
column for each parameter that is requested in the 
primary input file.  The name of this file uses the path 
and root name of the primary input file and appends 
.out for an extension.  For example, if the input file 
were named fast.fst, the main output file will be named 
fast.out.  The available output parameters are shown in 
Table 16 through Table 44 and are also documented in 
the OutList.txt file of the FAST archive.  An example 
output file is shown in Figure 30. 

In some situations, some output channels are 
meaningless.  For instance, if aerodynamic calculations 
are disabled, parameters such as the wind speed are 
invalid.  You can still leave those parameters in your 
output list, but the data generated will be all zeros.  The 
name and units for the channel will also be replaced 
with “INVALID” and “CHANNEL” respectively.  
Output loads and motions follow the IEC system.  
Please refer to Figure 3 through Figure 9 to get a sense 
for which directions are positive. 

For linearization analyses, the primary output file 
provides the periodic state matrices of the linearized 
model.  The name of this file uses the path and root 
name of the primary input file and appends .lin for an 
extension.  For example, if the input file were named 
fast.fst, the main output file will be named fast.lin.  An 
example linearized model file is shown in Figure 31. 

If the SumPrint flag is set to True, FAST 
generates a second output file, with a .fsm for an 
extension.  In the above example, this file will be 

named fast.fsm.  This file contains some of the basic 
input file parameters and computed inertia properties of 
the blades and tower.  An example summary file is 
shown in Figure 32. 

If the SumPrint flag is set to True, AeroDyn also 
generates a summary file that contains blade-element 
geometry data, airfoil data files at the corresponding 
blade element, and the summary of combined 
FAST/AeroDyn input parameters.  In the above 
example, this file will be named fast.opt.  An example 
of this AeroDyn output can be found in Figure 33. 

If ADAMSPrep is set to 2 or 3, FAST generates 
ADAMS dataset files corresponding to the model 
configuration and analysis settings specified in the 
FAST input file(s).  See the ADAMS Preprocessor 
chapter for a description of these output files. 

A final file is generated only when the word 
“PRINT” is found on one or more of the lines defining 
the blade elements in the AeroDyn input file.  This file 
contains a time series of aerodynamic data and has a 
.elm extension, as in, fast.elm.  Please see the AeroDyn 
User’s Guide [1] for details on this file. 

When running FAST within Simulink, the output 
file names use the root name of the primary input file 
and append _SFunc to the name.  For example, if the 
primary input file were named fast.fst, the main output 
file from the FAST S-Function will be named 
fast_SFunc.out whereas the the FAST executable 
would generate fast.out.  Please see the Simulink 
Interface chapter for further details. 
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Table 16.  Output Parameters for Wind Motions. 

Name Other Name(s) Description Convention Units 

WindVxi uWind Nominally downwind component of the hub-height 
wind velocity  (unavailable if CompAero is False) 

Directed along the 
xi-axis (m/sec) 

WindVyi vWind Cross-wind component of the hub-height wind 
velocity  (unavailable if CompAero is False) 

Directed along the 
yi-axis (m/sec) 

WindVzi wWind Vertical component of the hub-height wind velocity  
(unavailable if CompAero is False) 

Directed along the 
zi-axis (m/sec) 

TotWindV  Total hub-height wind speed magnitude  
(unavailable if CompAero is False) N/A (m/sec) 

HorWindV  Horizontal hub-height wind speed magnitude  
(unavailable if CompAero is False) 

In the xi- and yi-
plane (m/sec) 

HorWndDir  

Horizontal hub-height wind direction.  Please note 
that FAST uses the opposite of the sign convention 
that AeroDyn uses.  Put a “-“, “_”, “m”, or “M” 
character in front of this variable name in the input 
file to change its sign if you want to use the 
AeroDyn convention.  (unavailable if CompAero is 
False) 

About the zi-axis (deg) 

VerWndDir  Vertical hub-height wind direction  (unavailable if 
CompAero is False) 

About an axis 
orthogonal to the zi-
axis and the 
HorWindV-vector 

(deg) 
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Table 17.  Output Parameters for Blade 1 Tip Motions. 

Name Other 
Name(s) Description Convention Units 

TipDxc1 OoPDefl1 Blade 1 out-of-plane tip deflection (relative to the 
pitch axis) 

Directed along the 
xc,1-axis (m) 

TipDyc1 IPDefl1 Blade 1 in-plane tip deflection (relative to the pitch 
axis) 

Directed along the 
yc,1-axis (m) 

TipDzc1 TipDzb1 Blade 1 axial tip deflection (relative to the pitch 
axis) 

Directed along the 
zc,1- and zb,1-axes (m) 

TipDxb1  Blade 1 flapwise tip deflection (relative to the pitch 
axis) 

Directed along the 
xb,1-axis (m) 

TipDyb1  Blade 1 edgewise tip deflection (relative to the pitch 
axis) 

Directed along the 
yb,1-axis (m) 

TipALxb1  Blade 1 local flapwise tip acceleration (absolute) Directed along the 
local xb,1-axis (m/sec^2)

TipALyb1  Blade 1 local edgewise tip acceleration (absolute) Directed along the 
local yb,1-axis (m/sec^2)

TipALzb1  Blade 1 local axial tip acceleration (absolute) Directed along the 
local zb,1-axis (m/sec^2)

TipRDxb1 RollDefl1 

Blade 1 roll (angular/rotational) tip deflection 
(relative to the undeflected position).  In ADAMS, 
it is output as an Euler angle computed as the 3rd 
rotation in the yaw-pitch-roll rotation sequence.  It 
is not output as an Euler angle in FAST, which 
assumes small blade deflections, so that the rotation 
sequence does not matter. 

About the xb,1-axis (deg) 

TipRDyb1 PtchDefl1 

Blade 1 pitch (angular/rotational) tip deflection 
(relative to the undeflected position).  In ADAMS, 
it is output as an Euler angle computed as the 2nd 
rotation in the yaw-pitch-roll rotation sequence.  It 
is not output as an Euler angle in FAST, which 
assumes small blade deflections, so that the rotation 
sequence does not matter. 

About the yb,1-axis (deg) 

TipRDzc1 TipRDzb1 
TwstDefl1 

Blade 1 torsional tip deflection (relative to the 
undeflected position).  This output will always be 
zero for FAST simulation results.  Use it for 
examining blade torsional deflections of ADAMS 
simulations run using ADAMS datasets created 
using the FAST-to-ADAMS preprocessor.  In 
ADAMS, it is output as an Euler angle computed as 
the 1st rotation in the yaw-pitch-roll rotation 
sequence.  Please note that this output uses the 
opposite of the sign convention used for blade pitch 
angles. 

About the zc,1- and 
zb,1-axes (deg) 

TipClrnc1 TwrClrnc1 
Tip2Twr1 

Blade 1 tip-to-tower clearance estimate.  This is 
computed as the perpendicular distance from the 
yaw axis to the tip of blade 1 when the blade tip is 
below the yaw bearing.  When the tip of blade 1 is 
above the yaw bearing, it is computed as the 
absolute distance from the yaw bearing to the blade 
tip.  Please note that you should reduce this value by 
the tower radius to obtain the actual tower 
clearance. 

N/A (m) 
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Table 18.  Output Parameters for Blade 2* Tip Motions. 

Name Other 
Name(s) Description Convention Units 

TipDxc2 OoPDefl2 Blade 2 out-of-plane tip deflection (relative to the 
pitch axis) 

Directed along the 
xc,2-axis (m) 

TipDyc2 IPDefl2 Blade 2 in-plane tip deflection (relative to the pitch 
axis) 

Directed along the 
yc,2-axis (m) 

TipDzc2 TipDzb2 Blade 2 axial tip deflection (relative to the pitch 
axis) 

Directed along the 
zc,2- and zb,2-axes (m) 

TipDxb2  Blade 2 flapwise tip deflection (relative to the pitch 
axis) 

Directed along the 
xb,2-axis (m) 

TipDyb2  Blade 2 edgewise tip deflection (relative to the pitch 
axis) 

Directed along the 
yb,2-axis (m) 

TipALxb2  Blade 2 local flapwise tip acceleration (absolute) Directed along the 
local xb,2-axis (m/sec^2)

TipALyb2  Blade 2 local edgewise tip acceleration (absolute) Directed along the 
local yb,2-axis (m/sec^2)

TipALzb2  Blade 2 local axial tip acceleration (absolute) Directed along the 
local zb,2-axis (m/sec^2)

TipRDxb2 RollDefl2 

Blade 2 roll (angular/rotational) tip deflection 
(relative to the undeflected position).  In ADAMS, 
it is output as an Euler angle computed as the 3rd 
rotation in the yaw-pitch-roll rotation sequence.  It 
is not output as an Euler angle in FAST, which 
assumes small blade deflections, so that the rotation 
sequence does not matter. 

About the xb,2-axis (deg) 

TipRDyb2 PtchDefl2 

Blade 2 pitch (angular/rotational) tip deflection 
(relative to the undeflected position).  In ADAMS, 
it is output as an Euler angle computed as the 2nd 
rotation in the yaw-pitch-roll rotation sequence.  It 
is not output as an Euler angle in FAST, which 
assumes small blade deflections, so that the rotation 
sequence does not matter. 

About the yb,2-axis (deg) 

TipRDzc2 TipRDzb2 
TwstDefl2 

Blade 2 torsional tip deflection (relative to the 
undeflected position).  This output will always be 
zero for FAST simulation results.  Use it for 
examining blade torsional deflections of ADAMS 
simulations run using ADAMS datasets created 
using the FAST-to-ADAMS preprocessor.  In 
ADAMS, it is output as an Euler angle computed as 
the 1st rotation in the yaw-pitch-roll rotation 
sequence.  Please note that this output uses the 
opposite of the sign convention used for blade pitch 
angles. 

About the zc,2- and 
zb,2-axes (deg) 

TipClrnc2 TwrClrnc2 
Tip2Twr2 

Blade 2 tip-to-tower clearance estimate.  This is 
computed as the perpendicular distance from the 
yaw axis to the tip of blade 2 when the blade tip is 
below the yaw bearing.  When the tip of blade 2 is 
above the yaw bearing, it is computed as the 
absolute distance from the yaw bearing to the blade 

N/A (m) 

                                                           

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a 
given azimuth is 3-2-1-repeat. 
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Name Other 
Name(s) Description Convention Units 

tip.  Please note that you should reduce this value by 
the tower radius to obtain the actual tower 
clearance. 
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Table 19.  Output Parameters for Blade 3* Tip Motions. 

Name Other 
Name(s) Description Convention Units 

TipDxc3 OoPDefl3 Blade 3 out-of-plane tip deflection (relative to the 
pitch axis)  (unavailable for two-bladed turbines) 

Directed along the 
xc,3-axis (m) 

TipDyc3 IPDefl3 Blade 3 in-plane tip deflection (relative to the pitch 
axis)  (unavailable for two-bladed turbines) 

Directed along the 
yc,3-axis (m) 

TipDzc3 TipDzb3 Blade 3 axial tip deflection (relative to the pitch 
axis)  (unavailable for two-bladed turbines) 

Directed along the 
zc,3- and zb,3-axes (m) 

TipDxb3  Blade 3 flapwise tip deflection (relative to the pitch 
axis)  (unavailable for two-bladed turbines) 

Directed along the 
xb,3-axis (m) 

TipDyb3  Blade 3 edgewise tip deflection (relative to the pitch 
axis)  (unavailable for two-bladed turbines) 

Directed along the 
yb,3-axis (m) 

TipALxb3  Blade 3 local flapwise tip acceleration (absolute)  
(unavailable for two-bladed turbines) 

Directed along the 
local xb,3-axis (m/sec^2)

TipALyb3  Blade 3 local edgewise tip acceleration (absolute)  
(unavailable for two-bladed turbines) 

Directed along the 
local yb,3-axis (m/sec^2)

TipALzb3  Blade 3 local axial tip acceleration (absolute)  
(unavailable for two-bladed turbines) 

Directed along the 
local zb,3-axis (m/sec^2)

TipRDxb3 RollDefl3 

Blade 3 roll (angular/rotational) tip deflection 
(relative to the undeflected position).  In ADAMS, 
it is output as an Euler angle computed as the 3rd 
rotation in the yaw-pitch-roll rotation sequence.  It 
is not output as an Euler angle in FAST, which 
assumes small blade deflections, so that the rotation 
sequence does not matter.  (unavailable for two-
bladed turbines) 

About the xb,3-axis (deg) 

TipRDyb3 PtchDefl3 

Blade 3 pitch (angular/rotational) tip deflection 
(relative to the undeflected position).  In ADAMS, 
it is output as an Euler angle computed as the 2nd 
rotation in the yaw-pitch-roll rotation sequence.  It 
is not output as an Euler angle in FAST, which 
assumes small blade deflections, so that the rotation 
sequence does not matter.  (unavailable for two-
bladed turbines) 

About the yb,3-axis (deg) 

TipRDzc3 TipRDzb3 
TwstDefl3 

Blade 3 torsional tip deflection (relative to the 
undeflected position).  This output will always be 
zero for FAST simulation results.  Use it for 
examining blade torsional deflections of ADAMS 
simulations run using ADAMS datasets created 
using the FAST-to-ADAMS preprocessor.  In 
ADAMS, it is output as an Euler angle computed as 
the 1st rotation in the yaw-pitch-roll rotation 
sequence.  Please note that this output uses the 
opposite of the sign convention used for blade pitch 
angles.  (unavailable for two-bladed turbines) 

About the zc,3- and 
zb,3-axes (deg) 

TipClrnc3 TwrClrnc3 
Tip2Twr3 

Blade 3 tip-to-tower clearance estimate.  This is 
computed as the perpendicular distance from the 
yaw axis to the tip of blade 3 when the blade tip is 

N/A (m) 

                                                           

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a 
given azimuth is 3-2-1-repeat. 
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Name Other 
Name(s) Description Convention Units 

below the yaw bearing.  When the tip of blade 3 is 
above the yaw bearing, it is computed as the 
absolute distance from the yaw bearing to the blade 
tip.  Please note that you should reduce this value 
by the tower radius to obtain the actual tower 
clearance.  (unavailable for two-bladed turbines) 
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Table 20.  Output Parameters for Blade 1 Local Span Motions*. 

Name Other 
Name(s) Description Convention Units 

Spn1ALxb1  Blade 1 local flapwise acceleration (absolute) of 
span station 1 (unavailable if NBlGages = 0) 

Directed along the 
local xb,1-axis (m/sec^2)

Spn1ALyb1  Blade 1 local edgewise acceleration (absolute) of 
span station 1 (unavailable if NBlGages = 0) 

Directed along the 
local yb,1-axis (m/sec^2)

Spn1ALzb1  Blade 1 local axial acceleration (absolute) of span 
station 1 (unavailable if NBlGages = 0) 

Directed along the 
local zb,1-axis (m/sec^2)

Spn2ALxb1  Blade 1 local flapwise acceleration (absolute) of 
span station 2 (unavailable if NBlGages < 2) 

Directed along the 
local xb,1-axis (m/sec^2)

Spn2ALyb1  Blade 1 local edgewise acceleration (absolute) of 
span station 2 (unavailable if NBlGages < 2) 

Directed along the 
local yb,1-axis (m/sec^2)

Spn2ALzb1  Blade 1 local axial acceleration (absolute) of span 
station 2 (unavailable if NBlGages < 2) 

Directed along the 
local zb,1-axis (m/sec^2)

Spn3ALxb1  Blade 1 local flapwise acceleration (absolute) of 
span station 3 (unavailable if NBlGages < 3) 

Directed along the 
local xb,1-axis (m/sec^2)

Spn3ALyb1  Blade 1 local edgewise acceleration (absolute) of 
span station 3 (unavailable if NBlGages < 3) 

Directed along the 
local yb,1-axis (m/sec^2)

Spn3ALzb1  Blade 1 local axial acceleration (absolute) of span 
station 3 (unavailable if NBlGages < 3) 

Directed along the 
local zb,1-axis (m/sec^2)

Spn4ALxb1  Blade 1 local flapwise acceleration (absolute) of 
span station 4 (unavailable if NBlGages < 4) 

Directed along the 
local xb,1-axis (m/sec^2)

Spn4ALyb1  Blade 1 local edgewise acceleration (absolute) of 
span station 4 (unavailable if NBlGages < 4) 

Directed along the 
local yb,1-axis (m/sec^2)

Spn4ALzb1  Blade 1 local axial acceleration (absolute) of span 
station 4 (unavailable if NBlGages < 4) 

Directed along the 
local zb,1-axis (m/sec^2)

Spn5ALxb1  Blade 1 local flapwise acceleration (absolute) of 
span station 5 (unavailable if NBlGages < 5) 

Directed along the 
local xb,1-axis (m/sec^2)

Spn5ALyb1  Blade 1 local edgewise acceleration (absolute) of 
span station 5 (unavailable if NBlGages < 5) 

Directed along the 
local yb,1-axis (m/sec^2)

Spn5ALzb1  Blade 1 local axial acceleration (absolute) of span 
station 5 (unavailable if NBlGages < 5) 

Directed along the 
local zb,1-axis (m/sec^2)

                                                           

* These motions are for the nodes you specify with the BldGagNd input array. 
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Table 21.  Output Parameters for Blade* Pitch Motions. 

Name Other 
Name(s) Description Convention Units 

PtchPMzc1 
PtchPMzb1 
BldPitch1 
BlPitch1 

Blade 1 pitch angle (position) 

Positive towards 
feather about the 
minus zc,1- and 
minus zb,1-axes 

(deg) 

PtchPMzc2 
PtchPMzb2 
BldPitch2 
BlPitch2 

Blade 2 pitch angle (position) 

Positive towards 
feather about the 
minus zc,2- and 
minus zb,2-axes 

(deg) 

PtchPMzc3 
PtchPMzb3 
BldPitch3 
BlPitch3 

Blade 3 pitch angle (position) (unavailable for two-
bladed turbines) 

Positive towards 
feather about the 
minus zc,3- and 
minus zb,3-axes 

(deg) 

Table 22.  Output Parameters for Teeter Motions. 

Name Other 
Name(s) Description Convention Units 

TeetPya RotTeetP 
TeetDefl 

Rotor teeter angle (position) (unavailable for three-
bladed turbines) About the ya-axis (deg) 

TeetVya RotTeetV Rotor teeter angular velocity (unavailable for 
three-bladed turbines) About the ya-axis (deg/sec) 

TeetAya RotTeetA Rotor teeter angular acceleration (unavailable for 
three-bladed turbines) About the ya-axis (deg/sec^2)

                                                           

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a 
given azimuth is 3-2-1-repeat. 
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Table 23.  Output Parameters for Shaft Motions. 

Name Other 
Name(s) Description Convention Units 

LSSTipPxa 
LSSTipPxs 
LSSTipP 
Azimuth 

Rotor azimuth angle (position) About the xa- and 
xs-axes (deg) 

LSSTipVxa 
LSSTipVxs 
LSSTipV 
RotSpeed 

Rotor azimuth angular speed About the xa- and 
xs-axes (rpm) 

LSSTipAxa 
LSSTipAxs 
LSSTipA 
RotAccel 

Rotor azimuth angular acceleration About the xa- and 
xs-axes (deg/sec^2)

LSSGagPxa LSSGagPxs 
LSSGagP 

LSS strain-gage azimuth angle (position) (on the 
gearbox side of the LSS) 

About the xa- and 
xs-axes (deg) 

LSSGagVxa LSSGagVxs 
LSSGagV 

LSS strain-gage angular speed (on the gearbox 
side of the LSS) 

About the xa- and 
xs-axes (rpm) 

LSSGagAxa LSSGagAxs 
LSSGagA 

LSS strain-gage angular acceleration (on the 
gearbox side of the LSS) 

About the xa- and 
xs-axes (deg/sec^2)

HSShftV GenSpeed Angular speed of the HSS and generator 

Same sign as 
LSSGagVxa / 
LSSGagVxs / 
LSSGagV 

(rpm) 

HSShftA GenAccel Angular acceleration of the HSS and generator 

Same sign as 
LSSGagAxa / 
LSSGagAxs / 
LSSGagA 

(deg/sec^2)

TipSpdRat TSR Rotor blade tip speed ratio  (unavailable if 
CompAero is False) N/A (-) 
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Table 24.  Output Parameters for Nacelle Inertial Measurement Unit Motions*. 

Name Other 
Name(s) Description Convention Units 

NcIMUTVxs  Nacelle inertial measurement unit translational 
velocity (absolute) 

Directed along the 
xs-axis (m/sec) 

NcIMUTVys  Nacelle inertial measurement unit translational 
velocity (absolute) 

Directed along the 
ys-axis (m/sec) 

NcIMUTVzs  Nacelle inertial measurement unit translational 
velocity (absolute) 

Directed along the 
zs-axis (m/sec) 

NcIMUTAxs  Nacelle inertial measurement unit translational 
acceleration (absolute) 

Directed along the 
xs-axis (m/sec^2) 

NcIMUTAys  Nacelle inertial measurement unit translational 
acceleration (absolute) 

Directed along the 
ys-axis (m/sec^2) 

NcIMUTAzs  Nacelle inertial measurement unit translational 
acceleration (absolute) 

Directed along the 
zs-axis (m/sec^2) 

NcIMURVxs  Nacelle inertial measurement unit angular 
(rotational) velocity (absolute) About the xs-axis (deg/sec) 

NcIMURVys  Nacelle inertial measurement unit angular 
(rotational) velocity (absolute) About the ys-axis (deg/sec) 

NcIMURVzs  Nacelle inertial measurement unit angular 
(rotational) velocity (absolute) About the zs-axis (deg/sec) 

NcIMURAxs  Nacelle inertial measurement unit angular 
(rotational) acceleration (absolute) About the xs-axis (deg/sec^2)

NcIMURAys  Nacelle inertial measurement unit angular 
(rotational) acceleration (absolute) About the ys-axis (deg/sec^2)

NcIMURAzs  Nacelle inertial measurement unit angular 
(rotational) acceleration (absolute) About the zs-axis (deg/sec^2)

                                                           

* The location of the nacelle inertial measurement unit is determined by inputs NcIMUxn, NcIMUyn, and NcIMUzn. 
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Table 25.  Output Parameters for Rotor-Furl Motions. 

Name Other 
Name(s) Description Convention Units 

RotFurlP RotFurl Rotor-furl angle (position) About the rotor-furl 
axis (see Figure 17) (deg) 

RotFurlV  Rotor-furl angular velocity About the rotor-furl 
axis (see Figure 17) (deg/sec) 

RotFurlA  Rotor-furl angular acceleration About the rotor-furl 
axis (see Figure 17) (deg/sec^2)

Table 26.  Output Parameters for Tail-Furl Motions. 

Name Other 
Name(s) Description Convention Units 

TailFurlP TailFurl Tail-furl angle (position) About the tail-furl 
axis (see Figure 17) (deg) 

TailFurlV  Tail -furl angular velocity About the tail-furl 
axis (see Figure 17) (deg/sec) 

TailFurlA  Tail -furl angular acceleration About the tail-furl 
axis (see Figure 17) (deg/sec^2)

Table 27.  Output Parameters for Nacelle Yaw Motions. 

Name Other 
Name(s) Description Convention Units 

YawPzn 

YawPzp 
NacYawP 
NacYaw 
YawPos 

Nacelle yaw angle (position) About the zn- and 
zp-axes (deg) 

YawVzn 
YawVzp 

NacYawV 
YawRate 

Nacelle yaw angular velocity About the zn- and 
zp-axes (deg/sec) 

YawAzn 
YawAzp 

NacYawA 
YawAccel 

Nacelle yaw angular acceleration About the zn- and 
zp-axes (deg/sec^2)

NacYawErr  

Nacelle yaw error estimate.  This is computed as 
follows:  NacYawErr = HorWndDir - YawPzn - 
YawBrRDzt - PtfmRDzi.  This estimate is not 
accurate instantaneously in the presence of 
significant tower deflection or platform angular 
(rotational) displacement since the angles used in 
the computation are not all defined about the same 
axis of rotation.  However, the estimate should be 
useful in a yaw controller if averaged over a time 
scale long enough to diminish the effects of tower 
and platform motions (i.e., much longer than the 
period of oscillation).  (unavailable if CompAero 
= False) 

About the zi-axis (deg) 
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Table 28.  Output Parameters for Tower-Top, Yaw-Bearing Motions. 

Name Other 
Name(s) Description Convention Units 

YawBrTDxp  Tower-top / yaw bearing fore-aft (translational) 
deflection (relative to the undeflected position) 

Directed along the 
xp-axis (m) 

YawBrTDyp  
Tower-top / yaw bearing side-to-side 
(translational) deflection (relative to the 
undeflected position) 

Directed along the 
yp-axis (m) 

YawBrTDzp  Tower-top / yaw bearing axial (translational) 
deflection (relative to the undeflected position) 

Directed along the 
zp-axis (m) 

YawBrTDxt TTDspFA Tower-top / yaw bearing fore-aft (translational) 
deflection (relative to the undeflected position) 

Directed along the 
xt-axis (m) 

YawBrTDyt TTDspSS 
Tower-top / yaw bearing side-to-side 
(translational) deflection (relative to the 
undeflected position) 

Directed along the 
yt-axis (m) 

YawBrTDzt TTDspAx Tower-top / yaw bearing axial (translational) 
deflection (relative to the undeflected position) 

Directed along the 
zt-axis (m) 

YawBrTAxp  Tower-top / yaw bearing fore-aft (translational) 
acceleration (absolute) 

Directed along the 
xp-axis (m/sec^2) 

YawBrTAyp  Tower-top / yaw bearing side-to-side 
(translational) acceleration (absolute) 

Directed along the 
yp-axis (m/sec^2) 

YawBrTAzp  Tower-top / yaw bearing axial (translational) 
acceleration (absolute) 

Directed along the 
zp-axis (m/sec^2) 

YawBrRDxt TTDspRoll 

Tower-top / yaw bearing angular (rotational) roll 
deflection (relative to the undeflected position).  
In ADAMS, it is output as an Euler angle 
computed as the 3rd rotation in the yaw-pitch-roll 
rotation sequence.  It is not output as an Euler 
angle in FAST, which assumes small tower 
deflections, so that the rotation sequence does not 
matter. 

About the xt-axis (deg) 

YawBrRDyt TTDspPtch 

Tower-top / yaw bearing angular (rotational) 
pitch deflection (relative to the undeflected 
position).  In ADAMS, it is output as an Euler 
angle computed as the 2nd rotation in the yaw-
pitch-roll rotation sequence.  It is not output as an 
Euler angle in FAST, which assumes small tower 
deflections, so that the rotation sequence does not 
matter. 

About the yt-axis (deg) 

YawBrRDzt TTDspTwst 

Tower-top / yaw bearing torsional deflection 
(relative to the undeflected position).  This output 
will always be zero for FAST simulation results.  
Use it for examining tower torsional deflections 
of ADAMS simulations run using ADAMS 
datasets created using the FAST-to-ADAMS 
preprocessor.  In ADAMS, it is output as an Euler 
angle computed as the 1st rotation in the yaw-
pitch-roll rotation sequence. 

About the zt-axis (deg) 

YawBrRVxp  Tower-top / yaw bearing angular (rotational) roll 
velocity (absolute) About the xp-axis (deg/sec) 

YawBrRVyp  Tower-top / yaw bearing angular (rotational) 
pitch velocity (absolute) About the yp-axis (deg/sec) 
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Name Other 
Name(s) Description Convention Units 

YawBrRVzp  

Tower-top / yaw bearing angular (rotational) 
torsion velocity.  This output will always be very 
close to zero for FAST simulation results.  Use it 
for examining tower torsional deflections of 
ADAMS simulations run using ADAMS datasets 
created using the FAST-to-ADAMS 
preprocessor.  (absolute) 

About the zp-axis (deg/sec) 

YawBrRAxp  Tower-top / yaw bearing angular (rotational) roll 
acceleration (absolute) About the xp-axis (deg/sec^2)

YawBrRAyp  Tower-top / yaw bearing angular (rotational) 
pitch acceleration (absolute) About the yp-axis (deg/sec^2)

YawBrRAzp  

Tower-top / yaw bearing angular (rotational) 
torsion acceleration.  This output will always be 
very close to zero for FAST simulation results.  
Use it for examining tower torsional deflections 
of ADAMS simulations run using ADAMS 
datasets created using the FAST-to-ADAMS 
preprocessor.  (absolute) 

About the zp-axis (deg/sec^2)
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Table 29.  Output Parameters for Local Tower Motions*. 

Name Other 
Name(s) Description Convention Units 

TwHt1ALxt  
Local tower fore-aft (translational) acceleration 
(absolute) of tower gage 1 (unavailable if 
NTwGages = 0) 

Directed along the 
local xt-axis (m/sec^2)

TwHt1ALyt  
Local tower side-to-side (translational) acceleration 
(absolute) of tower gage 1 (unavailable if 
NTwGages = 0) 

Directed along the 
local yt-axis (m/sec^2)

TwHt1ALzt  
Local tower axial (translational) acceleration 
(absolute) of tower gage 1 (unavailable if 
NTwGages = 0) 

Directed along the 
local zt-axis (m/sec^2)

TwHt2ALxt  
Local tower fore-aft (translational) acceleration 
(absolute) of tower gage 2 (unavailable if 
NTwGages < 2) 

Directed along the 
local xt-axis (m/sec^2)

TwHt2ALyt  
Local tower side-to-side (translational) acceleration 
(absolute) of tower gage 2 (unavailable if 
NTwGages < 2) 

Directed along the 
local yt-axis (m/sec^2)

TwHt2ALzt  
Local tower axial (translational) acceleration 
(absolute) of tower gage 2 (unavailable if 
NTwGages < 2) 

Directed along the 
local zt-axis (m/sec^2)

TwHt3ALxt  
Local tower fore-aft (translational) acceleration 
(absolute) of tower gage 3 (unavailable if 
NTwGages < 3) 

Directed along the 
local xt-axis (m/sec^2)

TwHt3ALyt  
Local tower side-to-side (translational) acceleration 
(absolute) of tower gage 3 (unavailable if 
NTwGages < 3) 

Directed along the 
local yt-axis (m/sec^2)

TwHt3ALzt  
Local tower axial (translational) acceleration 
(absolute) of tower gage 3 (unavailable if 
NTwGages < 3) 

Directed along the 
local zt-axis (m/sec^2)

TwHt4ALxt  
Local tower fore-aft (translational) acceleration 
(absolute) of tower gage 4 (unavailable if 
NTwGages < 4) 

Directed along the 
local xt-axis (m/sec^2)

TwHt4ALyt  
Local tower side-to-side (translational) acceleration 
(absolute) of tower gage 4 (unavailable if 
NTwGages < 4) 

Directed along the 
local yt-axis (m/sec^2)

TwHt4ALzt  
Local tower axial (translational) acceleration 
(absolute) of tower gage 4 (unavailable if 
NTwGages < 4) 

Directed along the 
local zt-axis (m/sec^2)

TwHt5ALxt  
Local tower fore-aft (translational) acceleration 
(absolute) of tower gage 5 (unavailable if 
NTwGages < 5) 

Directed along the 
local xt-axis (m/sec^2)

TwHt5ALyt  
Local tower side-to-side (translational) acceleration 
(absolute) of tower gage 5 (unavailable if 
NTwGages < 5) 

Directed along the 
local yt-axis (m/sec^2)

TwHt5ALzt  
Local tower axial (translational) acceleration 
(absolute) of tower gage 5 (unavailable if 
NTwGages < 5) 

Directed along the 
local zt-axis (m/sec^2)

                                                           

* These motions are for the nodes you specify with the TwrGagNd input array. 
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Table 30.  Output Parameters for Platform Motions. 

Name Other 
Name(s) Description Convention Units 

PtfmTDxt  Platform horizontal surge (translational) 
displacement 

Directed along the 
xt-axis (m) 

PtfmTDyt  Platform horizontal sway (translational) 
displacement 

Directed along the 
yt-axis (m) 

PtfmTDzt  Platform vertical heave (translational) 
displacement 

Directed along the 
zt-axis (m) 

PtfmTDxi PtfmSurge Platform horizontal surge (translational) 
displacement 

Directed along the 
xi-axis (m) 

PtfmTDyi PtfmSway Platform horizontal sway (translational) 
displacement 

Directed along the 
yi-axis (m) 

PtfmTDzi PtfmHeave Platform vertical heave (translational) 
displacement 

Directed along the 
zi-axis (m) 

PtfmTVxt  Platform horizontal surge (translational) velocity Directed along the 
xt-axis (m/sec) 

PtfmTVyt  Platform horizontal sway (translational) velocity Directed along the 
yt-axis (m/sec) 

PtfmTVzt  Platform vertical heave (translational) velocity Directed along the 
zt-axis (m/sec) 

PtfmTVxi  Platform horizontal surge (translational) velocity Directed along the 
xi-axis (m/sec) 

PtfmTVyi  Platform horizontal sway (translational) velocity Directed along the 
yi-axis (m/sec) 

PtfmTVzi  Platform vertical heave (translational) velocity Directed along the 
zi-axis (m/sec) 

PtfmTAxt  Platform horizontal surge (translational) 
acceleration 

Directed along the 
xt-axis (m/sec^2) 

PtfmTAyt  Platform horizontal sway (translational) 
acceleration 

Directed along the 
yt-axis (m/sec^2) 

PtfmTAzt  Platform vertical heave (translational) acceleration Directed along the 
zt-axis (m/sec^2) 

PtfmTAxi  Platform horizontal surge (translational) 
acceleration 

Directed along the 
xi-axis (m/sec^2) 

PtfmTAyi  Platform horizontal sway (translational) 
acceleration 

Directed along the 
yi-axis (m/sec^2) 

PtfmTAzi  Platform vertical heave (translational) acceleration Directed along the 
zi-axis (m/sec^2) 

PtfmRDxi PtfmRoll 

Platform roll tilt angular (rotational) displacement.  
In ADAMS, it is output as an Euler angle 
computed as the 3rd rotation in the yaw-pitch-roll 
rotation sequence.  It is not output as an Euler 
angle in FAST, which assumes small rotational 
platform displacements, so that the rotation 
sequence does not matter. 

About the xi-axis (deg) 

PtfmRDyi PtfmPitch 

Platform pitch tilt angular (rotational) 
displacement.  In ADAMS, it is output as an Euler 
angle computed as the 2nd rotation in the yaw-
pitch-roll rotation sequence.  It is not output as an 
Euler angle in FAST, which assumes small 
rotational platform displacements, so that the 
rotation sequence does not matter. 

About the yi-axis (deg) 



 

FAST User's Guide 109 Last updated on August 12, 2005 for version 6.0 

Name Other 
Name(s) Description Convention Units 

PtfmRDzi PtfmYaw 

Platform yaw angular (rotational) displacement.  
In ADAMS, it is output as an Euler angle 
computed as the 1st rotation in the yaw-pitch-roll 
rotation sequence.  It is not output as an Euler 
angle in FAST, which assumes small rotational 
platform displacements, so that the rotation 
sequence does not matter. 

About the zi-axis (deg) 

PtfmRVxt  Platform roll tilt angular (rotational) velocity About the xt-axis (deg/sec) 

PtfmRVyt  Platform pitch tilt angular (rotational) velocity About the yt-axis (deg/sec) 

PtfmRVzt  Platform yaw angular (rotational) velocity About the zt-axis (deg/sec) 

PtfmRVxi  Platform roll tilt angular (rotational) velocity About the xi-axis (deg/sec) 

PtfmRVyi  Platform pitch tilt angular (rotational) velocity About the yi-axis (deg/sec) 

PtfmRVzi  Platform yaw angular (rotational) velocity About the zi-axis (deg/sec) 

PtfmRAxt  Platform roll tilt angular (rotational) acceleration About the xt-axis (deg/sec^2)

PtfmRAyt  Platform pitch tilt angular (rotational) acceleration About the yt-axis (deg/sec^2)

PtfmRAzt  Platform yaw angular (rotational) acceleration About the zt-axis (deg/sec^2)

PtfmRAxi  Platform roll tilt angular (rotational) acceleration About the xi-axis (deg/sec^2)

PtfmRAyi  Platform pitch tilt angular (rotational) acceleration About the yi-axis (deg/sec^2)

PtfmRAzi  Platform yaw angular (rotational) acceleration About the zi-axis (deg/sec^2)
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Table 31.  Output Parameters for Blade 1 Root Loads. 

Name Other 
Name(s) Description Convention Units 

RootFxc1  Blade 1 out-of-plane shear force at the blade root Directed along the 
xc,1-axis (kN) 

RootFyc1  Blade 1 in-plane shear force at the blade root Directed along the 
yc,1-axis (kN) 

RootFzc1 RootFzb1 Blade 1 axial force at the blade root Directed along the 
zc,1- and zb,1-axes (kN) 

RootFxb1  Blade 1 flapwise shear force at the blade root Directed along the 
xb,1-axis (kN) 

RootFyb1  Blade 1 edgewise shear force at the blade root Directed along the 
yb,1-axis (kN) 

RootMxc1 RootMIP1 Blade 1 in-plane moment (i.e., the moment caused 
by in-plane forces) at the blade root About the xc,1-axis (kN·m) 

RootMyc1 RootMOoP1 Blade 1 out-of-plane moment (i.e., the moment 
caused by out-of-plane forces) at the blade root About the yc,1-axis (kN·m) 

RootMzc1 RootMzb1 Blade 1 pitching moment at the blade root About the zc,1- and 
zb,1-axes (kN·m) 

RootMxb1 RootMEdg1 Blade 1 edgewise moment (i.e., the moment caused 
by edgewise forces) at the blade root About the xb,1-axis (kN·m) 

RootMyb1 RootMFlp1 Blade 1 flapwise moment (i.e., the moment caused 
by flapwise forces) at the blade root About the yb,1-axis (kN·m) 
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Table 32.  Output Parameters for Blade 2* Root Loads. 

Name Other 
Name(s) Description Convention Units 

RootFxc2  Blade 2 out-of-plane shear force at the blade root Directed along the 
xc,2-axis (kN) 

RootFyc2  Blade 2 in-plane shear force at the blade root Directed along the 
yc,2-axis (kN) 

RootFzc2 RootFzb2 Blade 2 axial force at the blade root Directed along the 
zc,2- and zb,2-axes (kN) 

RootFxb2  Blade 2 flapwise shear force at the blade root Directed along the 
xb,2-axis (kN) 

RootFyb2  Blade 2 edgewise shear force at the blade root Directed along the 
yb,2-axis (kN) 

RootMxc2 RootMIP2 Blade 2 in-plane moment (i.e., the moment caused 
by in-plane forces) at the blade root About the xc,2-axis (kN·m) 

RootMyc2 RootMOoP2 Blade 2 out-of-plane moment (i.e., the moment 
caused by out-of-plane forces) at the blade root About the yc,2-axis (kN·m) 

RootMzc2 RootMzb2 Blade 2 pitching moment at the blade root About the zc,2- and 
zb,2-axes (kN·m) 

RootMxb2 RootMEdg2 Blade 2 edgewise moment (i.e., the moment caused 
by edgewise forces) at the blade root About the xb,2-axis (kN·m) 

RootMyb2 RootMFlp2 Blade 2 flapwise moment (i.e., the moment caused 
by flapwise forces) at the blade root About the yb,2-axis (kN·m) 

                                                           

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a 
given azimuth is 3-2-1-repeat. 
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Table 33.  Output Parameters for Blade 3* Root Loads. 

Name Other 
Name(s) Description Convention Units 

RootFxc3  Blade 3 out-of-plane shear force at the blade root 
(unavailable for two-bladed turbines) 

Directed along the 
xc,3-axis (kN) 

RootFyc3  Blade 3 in-plane shear force at the blade root 
(unavailable for two-bladed turbines) 

Directed along the 
yc,3-axis (kN) 

RootFzc3 RootFzb3 Blade 3 axial force at the blade root (unavailable for 
two-bladed turbines) 

Directed along the 
zc,3- and zb,3-axes (kN) 

RootFxb3  Blade 3 flapwise shear force at the blade root 
(unavailable for two-bladed turbines) 

Directed along the 
xb,3-axis (kN) 

RootFyb3  Blade 3 edgewise shear force at the blade root 
(unavailable for two-bladed turbines) 

Directed along the 
yb,3-axis (kN) 

RootMxc3 RootMIP3 
Blade 3 in-plane moment (i.e., the moment caused 
by in-plane forces) at the blade root (unavailable for 
two-bladed turbines) 

About the xc,3-axis (kN·m) 

RootMyc3 RootMOoP3
Blade 3 out-of-plane moment (i.e., the moment 
caused by out-of-plane forces) at the blade root 
(unavailable for two-bladed turbines) 

About the yc,3-axis (kN·m) 

RootMzc3 RootMzb3 Blade 3 pitching moment at the blade root 
(unavailable for two-bladed turbines) 

About the zc,3- and 
zb,3-axes (kN·m) 

RootMxb3 RootMEdg3 
Blade 3 edgewise moment (i.e., the moment caused 
by edgewise forces) at the blade root (unavailable 
for two-bladed turbines) 

About the xb,3-axis (kN·m) 

RootMyb3 RootMFlp3 
Blade 3 flapwise moment (i.e., the moment caused 
by flapwise forces) at the blade root (unavailable for 
two-bladed turbines) 

About the yb,3-axis (kN·m) 

                                                           

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a 
given azimuth is 3-2-1-repeat. 
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Table 34.  Output Parameters for Blade 1 Local Span Loads*. 

Name Other 
Name(s) Description Convention Units 

Spn1MLxb1  Blade 1 local edgewise moment at span station 1 
(unavailable if NBlGages = 0) 

About the local xb,1-
axis (kN·m) 

Spn1MLyb1  Blade 1 local flapwise moment at span station 1 
(unavailable if NBlGages = 0) 

About the local yb,1-
axis (kN·m) 

Spn1MLzb1  Blade 1 local pitching moment at span station 1 
(unavailable if NBlGages = 0) 

About the local zb,1-
axis (kN·m) 

Spn2MLxb1  Blade 1 local edgewise moment at span station 2 
(unavailable if NBlGages < 2) 

About the local xb,1-
axis (kN·m) 

Spn2MLyb1  Blade 1 local flapwise moment at span station 2 
(unavailable if NBlGages < 2) 

About the local yb,1-
axis (kN·m) 

Spn2MLzb1  Blade 1 local pitching moment at span station 2 
(unavailable if NBlGages < 2) 

About the local zb,1-
axis (kN·m) 

Spn3MLxb1  Blade 1 local edgewise moment at span station 3 
(unavailable if NBlGages < 3) 

About the local xb,1-
axis (kN·m) 

Spn3MLyb1  Blade 1 local flapwise moment at span station 3 
(unavailable if NBlGages < 3) 

About the local yb,1-
axis (kN·m) 

Spn3MLzb1  Blade 1 local pitching moment at span station 3 
(unavailable if NBlGages < 3) 

About the local zb,1-
axis (kN·m) 

Spn4MLxb1  Blade 1 local edgewise moment at span station 4 
(unavailable if NBlGages < 4) 

About the local xb,1-
axis (kN·m) 

Spn4MLyb1  Blade 1 local flapwise moment at span station 4 
(unavailable if NBlGages < 4) 

About the local yb,1-
axis (kN·m) 

Spn4MLzb1  Blade 1 local pitching moment at span station 4 
(unavailable if NBlGages < 4) 

About the local zb,1-
axis (kN·m) 

Spn5MLxb1  Blade 1 local edgewise moment at span station 5 
(unavailable if NBlGages < 5) 

About the local xb,1-
axis (kN·m) 

Spn5MLyb1  Blade 1 local flapwise moment at span station 5 
(unavailable if NBlGages < 5) 

About the local yb,1-
axis (kN·m) 

Spn5MLzb1  Blade 1 local pitching moment at span station 5 
(unavailable if NBlGages < 5) 

About the local zb,1-
axis (kN·m) 

                                                           

* These loads are for the nodes you specify with the BldGagNd input array. 
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Table 35.  Output Parameters for Hub and Rotor Loads. 

Name Other 
Name(s) Description Convention Units 

LSShftFxa 

LSShftFxs 
LSSGagFxa 
LSSGagFxs 
RotThrust 

LSS thrust force (this is constant along the shaft 
and is equivalent to the rotor thrust force) 

Directed along the 
xa- and xs-axes (kN) 

LSShftFya LSSGagFya Rotating LSS shear force (this is constant along the 
shaft) 

Directed along the 
ya-axis (kN) 

LSShftFza LSSGagFza Rotating LSS shear force (this is constant along the 
shaft) 

Directed along the 
za-axis (kN) 

LSShftFys LSSGagFys Nonrotating LSS shear force (this is constant along 
the shaft) 

Directed along the 
ys-axis (kN) 

LSShftFzs LSSGagFzs Nonrotating LSS shear force (this is constant along 
the shaft) 

Directed along the 
zs-axis (kN) 

LSShftMxa 

LSShftMxs 
LSSGagMxa 
LSSGagMxs 

RotTorq 
LSShftTq 

LSS torque (this is constant along the shaft and is 
equivalent to the rotor torque) 

About the xa- and 
xs-axes (kN·m) 

LSSTipMya  
Rotating LSS bending moment at the shaft tip 
(teeter pin for two-bladed turbines, apex of rotation 
for three-bladed turbines) 

About the ya-axis (kN·m) 

LSSTipMza  
Rotating LSS bending moment at the shaft tip 
(teeter pin for two-bladed turbines, apex of rotation 
for three-bladed turbines) 

About the za-axis (kN·m) 

LSSTipMys  
Nonrotating LSS bending moment at the shaft tip 
(teeter pin for two-bladed turbines, apex of rotation 
for three-bladed turbines) 

About the ys-axis (kN·m) 

LSSTipMzs  
Nonrotating LSS bending moment at the shaft tip 
(teeter pin for two-bladed turbines, apex of rotation 
for three-bladed turbines) 

About the zs-axis (kN·m) 

CThrstAzm  
Azimuth location of the center of thrust.  This is 
estimated using values of LSSTipMys, 
LSSTipMzs, and RotThrust. 

About the xa- and 
xs-axes (deg) 

CThrstRad CThrstArm 

Dimensionless radial (arm) location of the center of 
thrust.  This is estimated using values of 
LSSTipMys, LSSTipMzs, and RotThrust.  
(nondimensionalized using the undeflected tip 
radius normal to the shaft and limited to values 
between 0 and 1 (inclusive)) 

Always positive 
(directed radially 
outboard at azimuth 
angle CThrstAzm) 

(-) 

RotPwr LSShftPwr Rotor power (this is equivalent to the LSS power) N/A (kW) 

RotCq LSShftCq 
Rotor torque coefficient (this is equivalent to the 
LSS torque coefficient)  (unavailable if CompAero 

is False) 
N/A (-) 

RotCp LSShftCp 
Rotor power coefficient (this is equivalent to the 
LSS power coefficient)  (unavailable if CompAero 

is False) 
N/A (-) 

RotCt LSShftCt 
Rotor thrust coefficient (this is equivalent to the 
LSS thrust coefficient)  (unavailable if CompAero 

is False) 
N/A (-) 
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Table 36.  Output Parameters for Shaft Strain-Gage Loads. 

Name Other 
Name(s) Description Convention Units 

LSSGagMya  Rotating LSS bending moment at the shaft's strain 
gage (shaft strain gage located by input ShftGagL) About the ya-axis (kN·m) 

LSSGagMza  Rotating LSS bending moment at the shaft's strain 
gage (shaft strain gage located by input ShftGagL) About the za-axis (kN·m) 

LSSGagMys  
Nonrotating LSS bending moment at the shaft's 
strain gage (shaft strain gage located by input 
ShftGagL) 

About the ys-axis (kN·m) 

LSSGagMzs  
Nonrotating LSS bending moment at the shaft's 
strain gage (shaft strain gage located by input 
ShftGagL) 

About the zs-axis (kN·m) 

Table 37.  Output Parameters for Generator and HSS Loads. 

Name Other 
Name(s) Description Convention Units 

HSShftTq  HSS torque (this is constant along the shaft) 

Same sign as 
LSShftTq / 
RotTorq / 
LSShftMxa / 
LSShftMxs / 
LSSGagMxa / 
LSSGagMxs 

(kN·m) 

HSShftPwr  HSS power Same sign as 
HSShftTq (kW) 

HSShftCq  HSS torque coefficient  (unavailable if CompAero 
is False) N/A (-) 

HSShftCp  HSS power coefficient  (unavailable if CompAero 
is False) N/A (-) 

GenTq  Electrical generator torque 

Positive reflects 
power extracted and 
negative represents a 
motoring-up 
situation or power 
input 

(kN·m) 

GenPwr  Electrical generator power Same sign as 
GenTq (kW) 

GenCq  Electrical generator torque coefficient  (unavailable 
if CompAero is False) N/A (-) 

GenCp  Electrical generator power coefficient  (unavailable 
if CompAero is False) N/A (-) 

HSSBrTq  HSS brake torque (i.e., the moment applied to the 
HSS by the brake) 

Always positive 
(indicating 
dissipation of 
power) 

(kN·m) 
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Table 38.  Output Parameters for Rotor-Furl Bearing Loads. 

Name Other 
Name(s) Description Convention Units 

RFrlBrM  Rotor-furl bearing moment About the rotor-furl 
axis (see Figure 17) (kN·m) 

Table 39.  Output Parameters for Tail-Furl Bearing Loads. 

Name Other 
Name(s) Description Convention Units 

TFrlBrM  Tail-furl bearing moment About the tail-furl 
axis (see Figure 17) (kN·m) 

Table 40.  Output Parameters for Tail Fin Aerodynamic Loads. 

Name Other 
Name(s) Description Convention Units 

TFinAlpha  

Tail fin angle of attack.  This is the angle between 
the relative velocity of the wind-inflow at the tail fin 
center-of-pressure and the tail fin chordline.  
(unavailable if CompAero is False) 

About the tail fin z-
axis, which is the 
axis in the tail fin 
plane normal to the 
chordline (see Figure 
19) 

(deg) 

TFinCLift  Tail fin dimensionless lift coefficient  (unavailable if 
CompAero is False) N/A (-) 

TFinCDrag  Tail fin dimensionless drag coefficient  (unavailable 
if CompAero is False) N/A (-) 

TFinDnPrs  

Tail fin dynamic pressure, equal to ½•Rho•Vrel
2 

where Vrel is the relative velocity of the wind-inflow 
at the tail fin center-of-pressure  (unavailable if 
CompAero is False) 

N/A (Pa) 

TFinCPFx  Tangential aerodynamic force at the tail fin center-
of-pressure  (unavailable if CompAero is False) 

Directed along the 
tail fin x-axis, which 
is the axis along the 
chordline, positive 
towards the trailing 
edge (see Figure 19) 

(kN) 

TFinCPFy  Normal aerodynamic force at the tail fin center-of-
pressure  (unavailable if CompAero is False) 

Directed along the 
tail fin y-axis, which 
is orthogonal to the 
tail fin plane (see 
Figure 19) 

(kN) 
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Table 41.  Output Parameters for Tower-Top, Yaw-Bearing Loads. 

Name Other 
Name(s) Description Convention Units 

YawBrFxn  Rotating (with nacelle) tower-top / yaw bearing 
shear force 

Directed along the 
xn-axis (kN) 

YawBrFyn  Rotating (with nacelle) tower-top / yaw bearing 
shear force 

Directed along the 
yn-axis (kN) 

YawBrFzn YawBrFzp Tower-top / yaw bearing axial force Directed along the 
zn- and zp-axes (kN) 

YawBrFxp  Tower-top / yaw bearing fore-aft (nonrotating) shear 
force 

Directed along the 
xp-axis (kN) 

YawBrFyp  Tower-top / yaw bearing side-to-side (nonrotating) 
shear force 

Directed along the 
yp-axis (kN) 

YawBrMxn  Rotating (with nacelle) tower-top / yaw bearing roll 
moment About the xn-axis (kN·m) 

YawBrMyn  Rotating (with nacelle) tower-top / yaw bearing 
pitch moment About the yn-axis (kN·m) 

YawBrMzn YawBrMzp 
YawMom Tower-top / yaw bearing yaw moment About the zn- and 

zp-axes (kN·m) 

YawBrMxp  Nonrotating tower-top / yaw bearing roll moment About the xp-axis (kN·m) 

YawBrMyp  Nonrotating tower-top / yaw bearing pitch moment About the yp-axis (kN·m) 

Table 42.  Output Parameters for Tower Base Loads. 

Name Other 
Name(s) Description Convention Units 

TwrBsFxt  Tower base fore-aft shear force Directed along the 
xt-axis (kN) 

TwrBsFyt  Tower base side-to-side shear force Directed along the 
yt-axis (kN) 

TwrBsFzt  Tower base axial force Directed along the 
zt-axis (kN) 

TwrBsMxt  Tower base roll (or side-to-side) moment (i.e., the 
moment caused by side-to-side forces) About the xt-axis (kN·m) 

TwrBsMyt  Tower base pitching (or fore-aft) moment (i.e., the 
moment caused by fore-aft forces) About the yt-axis (kN·m) 

TwrBsMzt  Tower base yaw (or torsional) moment About the zt-axis (kN·m) 
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Table 43.  Output Parameters for Local Tower Loads*. 

Name Other 
Name(s) Description Convention Units 

TwHt1MLxt  Local tower roll (or side-to-side) moment of tower 
gage 1 (unavailable if NTwGages = 0) 

About the local xt-
axis (kN·m) 

TwHt1MLyt  Local tower pitching (or fore-aft) moment of tower 
gage 1 (unavailable if NTwGages = 0) 

About the local yt-
axis (kN·m) 

TwHt1MLzt  Local tower yaw (or torsional) moment of tower 
gage 1 (unavailable if NTwGages = 0) 

About the local zt-
axis (kN·m) 

TwHt2MLxt  Local tower roll (or side-to-side) moment of tower 
gage 2 (unavailable if NTwGages < 2) 

About the local xt-
axis (kN·m) 

TwHt2MLyt  Local tower pitching (or fore-aft) moment of tower 
gage 2 (unavailable if NTwGages < 2) 

About the local yt-
axis (kN·m) 

TwHt2MLzt  Local tower yaw (or torsional) moment of tower 
gage 2 (unavailable if NTwGages < 2) 

About the local zt-
axis (kN·m) 

TwHt3MLxt  Local tower roll (or side-to-side) moment of tower 
gage 3 (unavailable if NTwGages < 3) 

About the local xt-
axis (kN·m) 

TwHt3MLyt  Local tower pitching (or fore-aft) moment of tower 
gage 3 (unavailable if NTwGages < 3) 

About the local yt-
axis (kN·m) 

TwHt3MLzt  Local tower yaw (or torsional) moment of tower 
gage 3 (unavailable if NTwGages < 3) 

About the local zt-
axis (kN·m) 

TwHt4MLxt  Local tower roll (or side-to-side) moment of tower 
gage 4 (unavailable if NTwGages < 4) 

About the local xt-
axis (kN·m) 

TwHt4MLyt  Local tower pitching (or fore-aft) moment of tower 
gage 4 (unavailable if NTwGages < 4) 

About the local yt-
axis (kN·m) 

TwHt4MLzt  Local tower yaw (or torsional) moment of tower 
gage 4 (unavailable if NTwGages < 4) 

About the local zt-
axis (kN·m) 

TwHt5MLxt  Local tower roll (or side-to-side) moment of tower 
gage 5 (unavailable if NTwGages < 5) 

About the local xt-
axis (kN·m) 

TwHt5MLyt  Local tower pitching (or fore-aft) moment of tower 
gage 5 (unavailable if NTwGages < 5) 

About the local yt-
axis (kN·m) 

TwHt5MLzt  Local tower yaw (or torsional) moment of tower 
gage 5 (unavailable if NTwGages < 5) 

About the local zt-
axis (kN·m) 

                                                           

* These loads are for the nodes you specify with the TwrGagNd input array. 
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Table 44.  Output Parameters for Platform Loads. 

Name Other 
Name(s) Description Convention Units 

PtfmFxt  Platform horizontal surge shear force Directed along the 
xt-axis (kN) 

PtfmFyt  Platform horizontal sway shear force Directed along the 
yt-axis (kN) 

PtfmFzt  Platform vertical heave force Directed along the 
zt-axis (kN) 

PtfmFxi  Platform horizontal surge shear force Directed along the 
xi-axis (kN) 

PtfmFyi  Platform horizontal sway shear force Directed along the 
yi-axis (kN) 

PtfmFzi  Platform vertical heave force Directed along the 
zi-axis (kN) 

PtfmMxt  Platform roll tilt moment About the xt-axis (kN·m) 

PtfmMyt  Platform pitch tilt moment About the yt-axis (kN·m) 

PtfmMzt  Platform yaw moment About the zt-axis (kN·m) 

PtfmMxi  Platform roll tilt moment About the xi-axis (kN·m) 

PtfmMyi  Platform pitch tilt moment About the yi-axis (kN·m) 

PtfmMzi  Platform yaw moment About the zi-axis (kN·m) 
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Figure 30.  Sample output file. 

 
These predictions were generated by FAST (v4.00, 09-Jul-2002) on 09-Jul-2002 at 09:38:47. 
The aerodynamic calculations were made by AeroDyn (12.46, 23-May-2002). 
 
 FAST certification test #1 for AWT-27CR2 with many DOFs. 
 
    Time      uWind    Azimuth   TeetDefl   RootMyc1   RootMxc1    RotTorq   YawBrMzn    TTDspFA 
   (sec)    (m/sec)      (deg)      (deg)     (kN·m)     (kN·m)     (kN·m)     (kN·m)        (m) 
  10.000  1.039E+01  1.180E+01  1.031E+00  3.533E+01  2.039E+01  3.613E+01 -2.280E+00  4.922E-02 
  10.020  1.039E+01  1.831E+01  9.697E-01  3.642E+01  2.085E+01  3.558E+01 -1.996E+00  4.920E-02 
  10.040  1.039E+01  2.482E+01  8.946E-01  3.632E+01  2.235E+01  3.525E+01 -2.426E+00  4.920E-02 
  10.060  1.039E+01  3.134E+01  8.081E-01  3.538E+01  2.447E+01  3.514E+01 -3.286E+00  4.920E-02 
  10.080  1.039E+01  3.785E+01  7.116E-01  3.473E+01  2.672E+01  3.517E+01 -4.282E+00  4.918E-02 
  10.100  1.039E+01  4.436E+01  6.067E-01  3.503E+01  2.868E+01  3.526E+01 -5.124E+00  4.913E-02 
  10.120  1.039E+01  5.088E+01  4.943E-01  3.604E+01  3.011E+01  3.541E+01 -5.681E+00  4.906E-02 
  10.140  1.039E+01  5.739E+01  3.751E-01  3.707E+01  3.110E+01  3.565E+01 -5.993E+00  4.900E-02 
  10.160  1.039E+01  6.391E+01  2.498E-01  3.759E+01  3.191E+01  3.600E+01 -6.148E+00  4.897E-02 
  10.180  1.039E+01  7.042E+01  1.198E-01  3.769E+01  3.271E+01  3.642E+01 -6.184E+00  4.896E-02 
  10.200  1.039E+01  7.694E+01 -1.301E-02  3.777E+01  3.353E+01  3.684E+01 -6.121E+00  4.896E-02 
  10.220  1.039E+01  8.345E+01 -1.463E-01  3.813E+01  3.424E+01  3.720E+01 -5.908E+00  4.895E-02 
  10.240  1.039E+01  8.997E+01 -2.775E-01  3.868E+01  3.465E+01  3.745E+01 -5.546E+00  4.893E-02 
  10.260  1.039E+01  9.649E+01 -4.041E-01  3.916E+01  3.468E+01  3.764E+01 -5.027E+00  4.892E-02 
  10.280  1.039E+01  1.030E+02 -5.241E-01  3.939E+01  3.431E+01  3.777E+01 -4.365E+00  4.892E-02 
  10.300  1.039E+01  1.095E+02 -6.357E-01  3.942E+01  3.365E+01  3.787E+01 -3.590E+00  4.895E-02 
  10.320  1.039E+01  1.160E+02 -7.378E-01  3.945E+01  3.276E+01  3.791E+01 -2.757E+00  4.899E-02 
  10.340  1.039E+01  1.226E+02 -8.296E-01  3.959E+01  3.170E+01  3.791E+01 -1.938E+00  4.902E-02 
  10.360  1.039E+01  1.291E+02 -9.103E-01  3.985E+01  3.045E+01  3.788E+01 -1.210E+00  4.905E-02 
  10.380  1.039E+01  1.356E+02 -9.793E-01  4.009E+01  2.902E+01  3.783E+01 -6.359E-01  4.907E-02 
  10.400  1.039E+01  1.421E+02 -1.036E+00  4.028E+01  2.743E+01  3.777E+01 -1.897E-01  4.909E-02 
  10.420  1.039E+01  1.486E+02 -1.079E+00  4.039E+01  2.570E+01  3.772E+01  1.200E-01  4.912E-02 
  10.440  1.039E+01  1.551E+02 -1.107E+00  4.055E+01  2.384E+01  3.768E+01  2.992E-01  4.914E-02 

10.460 1.039E+01  1.617E+02 -1.121E+00  4.054E+01  2.179E+01  3.762E+01  2.539E-01  4.917E-02 
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Figure 31.  Sample linearization model file. 

 
This linearized model file was generated by FAST (v6.00c-jmj, 15-Apr-2005) on 15-Apr-2005 at 11:24:16. 
The aerodynamic calculations were made by AeroDyn (12.57, 29-Sept-2004). 
 
 FAST model of a 1.5 MW 3-bladed upwind baseline turbine. 
 
 
Some Useful Information: 
 
   Type of steady state solution found                Trimmed collective blade pitch (TrimCase = 3) 
   Period of steady state solution              (sec)    2.93212E+00 
   Iterations needed to find steady state solution      34 
   Displacement 2-norm of steady state solution (rad)    9.01316E-05 
   Velocity 2-norm of steady state solution   (rad/s)    4.84390E-05 
   Number of equally-speced azimuth steps, NAzimStep     4 
   Order of linearized model, MdlOrder                   1 
   Number of active (enabled) DOFs                       4 (   8 states) 
   Number of control inputs, NInputs                     2 
   Number of input wind disturbances, NDisturbs          1 
   Number of output measurements                         5 
 
 
Order of States in Linearized State Matrices: 
 
   Row/column  1 = Variable speed generator DOF (internal DOF index = DOF_GeAz) 
   Row/column  2 = 1st flapwise bending-mode DOF of blade 1 (internal DOF index = DOF_BF(1,1)) 
   Row/column  3 = 1st flapwise bending-mode DOF of blade 2 (internal DOF index = DOF_BF(2,1)) 
   Row/column  4 = 1st flapwise bending-mode DOF of blade 3 (internal DOF index = DOF_BF(3,1)) 
   Row/column  5 to  8 = First derivatives of row/column  1 to  4. 
 
 
Order of Control Inputs in Linearized State Matrices: 
 
   Column 1 = electrical generator torque       (N·m)    7.95744E+03 op 
   Column 2 = rotor collective blade pitch      (rad)    3.41938E-01 op 
 
 
Order of Input Wind Disturbances in Linearized State Matrices: 
 
   Column 1 = horizontal hub-height wind speed  (m/s)    1.80000E+01 op 
 
 
Order of Output Measurements in Linearized State Matrices: 
 
   Row   1 = GenTq     (kN·m)     
   Row   2 = GenPwr    (kW)       
   Row   3 = BldPitch1 (deg)      
   Row   4 = OoPDefl1  (m)        
   Row   5 = IPDefl1   (m)        
 
 
Linearized State Matrices: 
 
----------------------------- Azimuth =   0.00 deg ----------------------------- 
op State   | op         | A - State                                                                               | B - Input             | Bd - Dstrb
Derivativs | States     | Matrix                                                                                  | Matrix                | Matrix    
 2.143E+00 |  4.712E+00 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
 2.222E-01 |  4.928E-01 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00  0.000E+00  0.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
-3.294E-02 |  6.283E-01 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00  0.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
-1.825E-01 |  4.442E-01 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
 8.973E-05 |  2.143E+00 |  3.515E-05  1.380E-01  1.373E-01  1.374E-01  1.087E-01  8.897E-03  9.439E-03  6.190E-03 | -3.027E-05  1.867E+00 | -7.305E-03
 8.147E-03 |  2.222E-01 |  6.668E+00 -7.072E+01 -3.559E+00 -3.562E+00 -7.968E+01 -8.571E+00 -2.437E-01 -1.607E-01 |  7.851E-04 -8.277E+02 |  1.282E+01
-4.493E-01 | -3.294E-02 | -2.788E+00 -3.578E+00 -7.014E+01 -3.563E+00 -8.379E+01 -2.273E-01 -8.909E+00 -1.590E-01 |  7.847E-04 -8.522E+02 |  1.308E+01
 3.781E-01 | -1.825E-01 | -4.118E+00 -3.579E+00 -3.560E+00 -7.020E+01 -6.411E+01 -2.279E-01 -2.445E-01 -6.834E+00 |  7.847E-04 -7.148E+02 |  1.124E+01
 
op Output  | This colmn | C - Output                                                                              | D - Trnsmt            | Dd - DTsmt
Measurmnts | is blank   | Matrix                                                                                  | Matrix                | Matrix    
 7.957E+00 |            |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  1.000E-03  0.000E+00 |  0.000E+00
 1.425E+03 |            |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  6.650E+02  0.000E+00  0.000E+00  0.000E+00 |  1.791E-01  0.000E+00 |  0.000E+00
 1.959E+01 |            |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00  5.730E+01 |  0.000E+00
 4.459E-01 |            | -2.134E-06  9.048E-01  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00 -2.092E-01 |  0.000E+00
-2.091E-01 |            | -4.269E-07 -4.243E-01  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00 -4.459E-01 |  0.000E+00
 
 
[lines deleted] 
 
 
----------------------------- Azimuth = 270.00 deg ----------------------------- 
op State   | op         | A - State                                                                               | B - Input             | Bd - Dstrb
Derivativs | States     | Matrix                                                                                  | Matrix                | Matrix    
 2.143E+00 |  3.142E+00 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
-6.944E-02 |  4.126E-01 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00  0.000E+00  0.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
 2.108E-01 |  5.462E-01 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00  0.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
-1.409E-01 |  6.073E-01 |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  1.000E+00 |  0.000E+00  0.000E+00 |  0.000E+00
 2.973E-05 |  2.143E+00 |  8.486E-04  1.374E-01  1.379E-01  1.373E-01  1.021E-01  6.150E-03  9.160E-03  6.822E-03 | -3.027E-05  1.795E+00 | -4.572E-03
 5.245E-01 | -6.944E-02 | -3.978E-01 -7.029E+01 -3.577E+00 -3.560E+00 -6.344E+01 -6.790E+00 -2.369E-01 -1.769E-01 |  7.851E-04 -7.094E+02 |  1.113E+01
-1.025E-01 |  2.108E-01 |  5.913E+00 -3.563E+00 -7.069E+01 -3.559E+00 -8.454E+01 -1.609E-01 -8.656E+00 -1.756E-01 |  7.852E-04 -8.561E+02 |  1.272E+01
-4.959E-01 | -1.409E-01 | -6.108E+00 -3.565E+00 -3.577E+00 -7.011E+01 -7.481E+01 -1.555E-01 -2.372E-01 -7.050E+00 |  7.845E-04 -7.755E+02 |  1.121E+01
 
op Output  | This colmn | C - Output                                                                              | D - Trnsmt            | Dd - DTsmt
Measurmnts | is blank   | Matrix                                                                                  | Matrix                | Matrix    
 7.957E+00 |            |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  1.000E-03  0.000E+00 |  0.000E+00
 1.425E+03 |            |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  6.650E+02  0.000E+00  0.000E+00  0.000E+00 |  1.791E-01  0.000E+00 |  0.000E+00
 1.959E+01 |            |  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00  5.730E+01 |  0.000E+00
 3.734E-01 |            | -4.269E-07  9.048E-01  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00 -1.751E-01 |  0.000E+00
-1.751E-01 |            |  1.921E-06 -4.243E-01  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00 |  0.000E+00 -3.734E-01 |  0.000E+00
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Figure 32.  Sample summary file.

 
This summary information was generated by FAST (v6.00c-jmj, 15-Apr-2005) on 15-Apr-2005 
at 16:37:53. 
 
 
 FAST certification Test #01: AWT-27CR2 with many DOFs with fixed yaw error and steady 
wind. 
 
 
Turbine features: 
 
            Downwind, two-bladed rotor with teetering hub. 
            Rigid foundation. 
            The model has 13 of 22 DOFs active (enabled) at start-up. 
 Enabled    First flapwise blade mode DOF. 
 Enabled    Second flapwise blade mode DOF. 
 Enabled    Edgewise blade mode DOF. 
 Enabled    Rotor-teeter DOF. 
 Enabled    Drivetrain rotational-flexibility DOF. 
 Enabled    Generator DOF. 
 Disabled   Rotor-furl DOF. 
 Disabled   Tail-furl DOF. 
 Disabled   Yaw DOF. 
 Enabled    First tower fore-aft bending-mode DOF. 
 Enabled    Second tower fore-aft bending-mode DOF. 
 Enabled    First tower side-to-side bending-mode DOF. 
 Enabled    Second tower side-to-side bending-mode DOF. 
 Disabled   Platform horizontal surge translation DOF. 
 Disabled   Platform horizontal sway translation DOF. 
 Disabled   Platform vertical heave translation DOF. 
 Disabled   Platform roll tilt rotation DOF. 
 Disabled   Platform pitch tilt rotation DOF. 
 Disabled   Platform yaw rotation DOF. 
 Enabled    Computation of aerodynamic loads. 
 Disabled   Computation of aeroacoustics. 
 
 
Time steps: 
 
    Structural            (s)        0.00400000 
    Aerodynamic           (s)        0.00400000 
 
 
Some calculated parameters: 
 
    Hub-Height            (m)            42.672 
    Flexible Tower Length (m)            41.980 
    Flexible Blade Length (m)            12.573 
 
 
Rotor mass properties: 
 
    Rotor Mass            (kg)         2200.608 
    Rotor Inertia         (kg-m^2)    41755.996 
                                        Blade 1      Blade 2 
                                        -------      ------- 
    Mass                  (kg)          435.304      435.304 
    Second Mass Moment    (kg-m^2)    15434.709    15434.709 
    First Mass Moment     (kg-m)       2120.280     2120.280 
    Center of Mass        (m)             4.871        4.871 
 
 
Additional mass properties: 
 
    Tower-top Mass        (kg)         7216.038 
    Tower Mass            (kg)        36907.137 
    Turbine Mass          (kg)        44123.176 
    Mass Incl. Platform   (kg)        44123.176 
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Figure 32.  Sample summary file (concluded). 

Interpolated tower properties: 
 
Node  TwFract   HNodes  DHNodes  TMassDen    FAStiff    SSStiff 
 (-)      (-)      (m)      (m)    (kg/m)     (Nm^2)     (Nm^2) 
   1    0.024    1.000    1.999   879.160  1.564E+10  1.564E+10 
   2    0.071    2.999    1.999   879.160  1.564E+10  1.564E+10 
   3    0.119    4.998    1.999   879.160  1.564E+10  1.564E+10 
 
[lines deleted] 
 
  19    0.881   36.982    1.999   879.160  1.564E+10  1.564E+10 
  20    0.929   38.981    1.999   879.160  1.564E+10  1.564E+10 
  21    0.976   40.980    1.999   879.160  1.564E+10  1.564E+10 
 
 
Interpolated blade 1 properties: 
 
Node  BlFract   RNodes  DRNodes  AeroCent  StrcTwst  BMassDen    FlpStff    EdgStff 
 (-)      (-)      (m)      (m)       (-)     (deg)    (kg/m)     (Nm^2)     (Nm^2) 
   1    0.050    1.813    1.257     0.250    10.500    58.496  2.760E+07  8.618E+07 
   2    0.150    3.070    1.257     0.250    10.404    49.105  1.582E+07  9.772E+07 
   3    0.250    4.327    1.257     0.250     9.852    48.912  1.043E+07  1.065E+08 
   4    0.350    5.585    1.257     0.250     9.096    42.735  6.827E+06  8.982E+07 
   5    0.450    6.842    1.257     0.250     7.692    36.024  4.463E+06  6.640E+07 
   6    0.550    8.099    1.257     0.250     5.613    30.272  2.821E+06  4.508E+07 
   7    0.650    9.356    1.257     0.250     3.575    24.996  1.677E+06  2.751E+07 
   8    0.750   10.614    1.257     0.250     1.990    20.925  8.835E+05  1.819E+07 
   9    0.850   11.871    1.257     0.250     1.012    16.201  3.821E+05  9.658E+06 
  10    0.950   13.128    1.257     0.250     0.395     9.536  1.030E+05  2.780E+06 
 
 
Interpolated blade 2 properties: 
 
Node  BlFract   RNodes  DRNodes  AeroCent  StrcTwst  BMassDen    FlpStff    EdgStff 
 (-)      (-)      (m)      (m)       (-)     (deg)    (kg/m)     (Nm^2)     (Nm^2) 
   1    0.050    1.813    1.257     0.250    10.500    58.496  2.760E+07  8.618E+07 
   2    0.150    3.070    1.257     0.250    10.404    49.105  1.582E+07  9.772E+07 
   3    0.250    4.327    1.257     0.250     9.852    48.912  1.043E+07  1.065E+08 
   4    0.350    5.585    1.257     0.250     9.096    42.735  6.827E+06  8.982E+07 
   5    0.450    6.842    1.257     0.250     7.692    36.024  4.463E+06  6.640E+07 
   6    0.550    8.099    1.257     0.250     5.613    30.272  2.821E+06  4.508E+07 
   7    0.650    9.356    1.257     0.250     3.575    24.996  1.677E+06  2.751E+07 
   8    0.750   10.614    1.257     0.250     1.990    20.925  8.835E+05  1.819E+07 
   9    0.850   11.871    1.257     0.250     1.012    16.201  3.821E+05  9.658E+06 
  10    0.950   13.128    1.257     0.250     0.395     9.536  1.030E+05  2.780E+06 
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Figure 33.  Sample AeroDyn options file. 

 

This file was generated by AeroDyn(12.56, 24-Sep-2003) in FAST (v4.31, 03-Oct-2003) on 03-Oct-2003 at 16:08:06. 
 
Inputs read in from aerodyn.ipt: 
 
AWT-27CR aerodynamic parameters for FAST certification test #1.                  
SI  Units for input and output          
BEDDOES Dynamic stall model                 [Beddoes] 
NO_CM  Aerodynamic pitching moment model   [NO Pitching Moments calculated] 
DYNIN  Inflow model                        [Dynamic Inflow] 
SWIRL  Induction factor model              [Normal and Radial flow induction factors calculated] 
0.005  Convergence tolerance for induction factor 
[Not Used] Tip-loss model                      
[Not Used] Hub-loss model                      
"Wind/AWT27/Shr12_30.wnd" is the Hub-height wind file 
42.672 Wind reference (hub) height, m 
0.3  Tower shadow centerline velocity deficit 
1  Tower shadow half width, m 
2.432  Tower shadow reference point, m 
1.225  Air density, kg/m^3 
1.4639e-5 Kinematic air viscosity, m^2/'sec 
0.004  Time interval for aerodynamic calculations, sec 
10  Number of airfoil files used. Files listed below: 
"AeroData/AWT27/AWT27_05.dat" 
"AeroData/AWT27/AWT27_15.dat" 
"AeroData/AWT27/AWT27_25.dat" 
"AeroData/AWT27/AWT27_35.dat" 
"AeroData/AWT27/AWT27_45.dat" 
"AeroData/AWT27/AWT27_55.dat" 
"AeroData/AWT27/AWT27_65.dat" 
"AeroData/AWT27/AWT27_75.dat" 
"AeroData/AWT27/AWT27_85.dat" 
"AeroData/AWT27/AWT27_95.dat" 
10  Number of blade elements per blade 
RELM(m) Twist(deg) DR(m) Chord(m) File ID Elem Data RELM and Twist ignored by ADAMS (but placeholders must be
present) 
1.81265 5.8  1.2573 0.859 1  
3.07 5.2  1.2573 1.045 2  
4.32725 4.66  1.2573 1.145 3  
5.58455 3.73  1.2573 1.124 4  
6.84185 2.64  1.2573 1.054 5  
8.1 1.59  1.2573 0.976 6  
9.35645 0.73  1.2573 0.885 7  
10.61375 0.23  1.2573 0.775 8  
11.87105 0.08  1.2573 0.651 9  
13.12835 0.03  1.2573 0.493 10  
 
 
Hub-height wind file info: 
  Initial horizontal wind speed             = 12 mps 
  Initial wind direction                    = 30 deg 
  Initial vertical wind speed               = 0 mps 
  Initial horiz. wind shear coeff.          = 0 
  Initial power law vert. wind shear coeff. = 0.2 
  Initial linear vert. wind shear coeff.    = 0 
  Initial gust wind speed                   = 0 mps 
 
  BEDDOES DYNAMIC STALL PARAMETERS: 
 
   CN SLOPE          6.0090    6.0190    6.0280    6.0340    6.1280    6.2040    6.2710    6.2580    6.1560    6.1180 
   STALL CN (UPPER)  1.8090    1.8130    1.8170    1.8200    1.7430    1.6770    1.6180    1.7910    1.7490    1.8400 
   STALL CN (LOWER) -1.0000   -1.0000   -1.0000   -1.0000   -1.0000   -1.0000   -1.0000   -1.0000   -1.0000   -1.0000 
   ZERO LIFT AOA    -4.2450   -4.2560   -4.2730   -4.2850   -3.2970   -2.4840   -1.7820   -1.4010   -1.2780   -1.2320 
   MIN DRAG AOA      0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
   MIN DRAG COEFF    0.0107    0.0101    0.0094    0.0090    0.0080    0.0071    0.0064    0.0062    0.0064    0.0065 
   
     VORTEX TRANSIT TIME FROM LE TO TE    11.00000     
     PRESSURE TIME CONSTANT               1.700000     
     VORTEX TIME CONSTANT                 6.000000     
     F-PARAMETER TIME CONSTANT            3.000000     
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