
National Renewable Energy Laboratory
1617 Cole Boulevard, Golden, Colorado 80401-3393
303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

National Renewable Energy Laboratory
Innovation for Our Energy Future

A national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy

NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-
GO10337

Technical Report
NREL/EL-500-38230
August 2005

FAST User’s Guide
Jason M. Jonkman, Marshall L. Buhl Jr.

National Renewable Energy Laboratory
1617 Cole Boulevard, Golden, Colorado 80401-3393
303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

 Technical Report

NREL/EL-500-38230
August 2005

FAST User’s Guide
Jason M. Jonkman, Marshall L. Buhl Jr.

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States
government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste

i

DOCUMENT REVISION RECORD
Revision Date Description

1.00 09-Jul-2002 First publication. Supports FAST v4.0.
1.10 04-Sep-2002 Inserted an additional output channel (TipSpdRat or TSR) and additional prefixes (“-”, “_”,

“m”, or “M”) for reversing the sign of the selected output channels.
Still supports FAST v4.0.

1.20 28-Feb-2003 Clarified the descriptions of several input variables.
1.21 31-Mar-2003 Replaced drivetrain references from “rotational” to “torsional.”
1.22 03-Apr-2003 Fixed the labels on the drawings of the coordinate systems.
1.30 08-Sep-2003 Added description of the FAST-to-ADAMS preprocessor and associated inputs.

Added placeholders for the inputs of the currently undocumented FAST linearization and
noise prediction routines.

Clarified the descriptions of several input variables.
Renamed input switch TeetDMod to TeetMod and altered its functionality so that routine

UserTeet() can implement user-defined teeter spring and damper models.
Added supplementary output names for the blade root in-plane, out-of-plane, flap, and edge

bending moments.
1.31 03-Oct-2003 Added description of the FAST linearization analysis capability.

Clarified the descriptions of several input variables.
1.32 07-Oct-2003 Updated the example summary, AeroDyn, and linearization output files.

Had the Linearization chapter type edited by NREL communications.
1.40 28-Oct-2003 Changed the extension of the input file names from .fad or .inp to “.fst”

Added Alpha, PrecrvRef, and PreswpRef to the FAST-to-ADAMS preprocessor.
Supports FAST v4.4.

1.41 07-Nov-2003 Inserted additional output channels for the blade and tower torsional deflections.
Moved the origin of the nacelle/yaw coordinate system to the tower-top.

1.42 11-Dec-2003 Documented that the dummy supplied UserGen() routine now calls the sample
UserVSCont() routine.

2.00 05-Mar-2004 Added description of new FAST furling capability and associated I/O.
Added additional output channels for blade tip-to-tower clearances.
Clarified the descriptions of several input variables.
Supports FAST v5.0.

2.10 01-Oct-2004 Added a chapter on how to compile FAST.
Documented upgrades relating to turbine control, including yaw and high-speed shaft brake

control.
Added a description on the interface between FAST and Simulink and on the interface

between FAST and Bladed-style DLL master controllers.
Clarified the descriptions of several input variables.
Added supplementary output names for the angular speed and acceleration of the high-speed

shaft and generator.
Supports FAST v5.1.

3.00 09-Jun-2005 Added description of new platform motion and loading functionality.
Documented upgrades relating to turbine control and output capabilities.
Added additional output channels and names for the angular (rotational) deflections of the

tower-top and blade tips.
Clarified the descriptions of several input and output parameters.
Supports FAST v6.0.

3.01 12-Aug-2005 Incorporated editorial changes from NREL communications.
Added reference to the certification report from Germanischer Lloyd WindEnergie.
Added a Sample Input Files section in the Input Files chapter.
Added flowcharts for explaining how the progam uses the blade pitch, nacelle yaw, variable-

speed, generator, and HSS brake control input parameters during runtime.
Modified the description of how Bladed-style DLL controllers are interfaced.
Added supplementary output names for blade pitch angles and nacelle yaw motions and

moment and modified the description of output CThrstRad.
Still supports FAST v6.0.

FAST User's Guide iii Last updated on August 12, 2005 for version 6.0

TABLE OF CONTENTS

Document Revision Record.. i
Table of Contents.. iii
Figures...v
Tables...v
Foreword..vii
Acknowledgements..viii
Upgrading to FAST v6.0 from v5.1 ... ix
Upgrading to FAST v5.1 from v5.0 .. x
Upgrading to FAST v5.0 from v4.4 .. xii
Using This Manual..xiv
Modes of Operation.. 1
Running FAST .. 3
Compiling FAST ... 5
Model Description .. 7
General Description 7
Coordinate Systems 7

Inertial Frame Coordinate System 8
Tower-Base Coordinate System 8
Tower-Top/Base-Plate Coordinate System 8
Nacelle/Yaw Coordinate System 8
Shaft Coordinate System 9
Azimuth Coordinate System 9
Hub Coordinate System 9
Coned Coordinate Systems 9
Blade Coordinate Systems 9

Turbine Layout 10
Flexible Tower and Blades 10
Drivetrain 11
Generator 11
Nacelle Yaw 12
Rotor-Furl 12
Tail-Furl 13
Rotor-Teeter 14
Support Platform 15
Rotor Aerodynamics 16
Tail Fin Aerodynamics 16
Controls ...25
General Description 25
Blade Pitch Control 25
Variable-Speed Torque Control 26
HSS Brake Control 27
Nacelle Yaw Control 28

FAST User's Guide iv Last updated on August 12, 2005 for version 6.0

Master Controllers and the Bladed-Style DLL Interface 30
Tip Brakes 32
Simulating Special Events 33

Turbine Startup 33
Normal Pitch-to-Feather Shutdown 33
Shutdown Where One Blade Fails to Feather 33
One Blade Feathers Accidentally 33
HSS Brake Shutdown after Loss of Grid 33
HSS Brake Shutdown with Generator Brake 33
Normal Tip Brake Shutdown 33
Tip Brake Shutdown after Loss of Grid 33
Accidental Deployment of a Tip Brake 33
Idling Turbine 33
Parked Turbine 34

Simulink Interface ...35
General Description 35
Getting Started 35
Specific Input File Options for the FAST S-Function 36
Customizing the Simulink Model 37
Linearization..39
General Description 39
Periodic Steady State Solution 39
Model Linearization 41
Post Processing 43
ADAMS Preprocessor ...45
General Description 45
Compiling and Linking ADAMS 45
Guidelines for Creating ADAMS Datasets 46
Running ADAMS 48
Description of the Extracted ADAMS Datasets 49
Input Files ..53
Sample Input Files 53
Primary Input File 53
Tower Input File 54
Blade Input Files 54
AeroDyn Input Files 55
Platform Input File 55
Furling Input File 55
ADAMS-Specific Input File 55
Linearization Control-Input File 55
Output Files ...93
References...125

FAST User's Guide v Last updated on August 12, 2005 for version 6.0

FIGURES

Figure 1. Modes of Operation...1
Figure 2. Example display output. ..3
Figure 3. Tower-base coordinate system. ...8
Figure 4. Tower-top/base-plate coordinate system. ..8
Figure 5. Nacelle/yaw coordinate system. ..8
Figure 6. Shaft coordinate system...9
Figure 7. Hub coordinate system. ...9
Figure 8. Coned coordinate system...9
Figure 9. Blade coordinate system..10
Figure 10. Tower mode shapes. ..10
Figure 11. Blade layout. ...11
Figure 12. Simple-induction-generator torque/speed curve..11
Figure 13. Thevenin-equivalent-induction-generator torque/speed curve. ...12
Figure 14. Layout of a conventional, downwind, two-bladed turbine (a) and a close-up of its hub (b).17
Figure 15. Layout of a two-bladed rotor illustrating δ3. ...18
Figure 16. Layout of a conventional, upwind, three-bladed turbine. ..19
Figure 17. Layout of a three-bladed, upwind, furling turbine: furl axes...20
Figure 18. Layout of a three-bladed, upwind, furling turbine: rotor-furl structure21
Figure 19. Layout of a three-bladed, upwind, furling turbine: tail-furl structure..22
Figure 20. Support platform / foundation layout. ...23
Figure 21. Flowchart of Blade Pitch Control Runtime Options..26
Figure 22. Torque/speed curve for simple variable-speed control..26
Figure 23. Flowchart of Variable-Speed, Generator, and HSS Brake Control Runtime Options.28
Figure 24. Flowchart of Nacelle Yaw Control Runtime Options. ..30
Figure 25. Interface to a Bladed-Style Master Controller DLL. ...31
Figure 26. FAST Wind Turbine Block. ..35
Figure 27. Simulink Model OpenLoop.mdl. ...36
Figure 28. Periodic Steady State Computation. ..41
Figure 29. Input and Output Files. ..54
Figure 30. Sample output file. ..120
Figure 31. Sample linearization model file...121
Figure 32. Sample summary file...122
Figure 33. Sample AeroDyn options file. ...124

TABLES

Table 1. FAST Source Files..5
Table 2. User-Specified Routines. ..6
Table 3. Parameter Settings to be Used With Bladed-Style Master Controller DLLs.31
Table 4. Differences Between FAST’s and Bladed’s Interface to Master Controller DLLs.32
Table 5. Control Input Settings...43
Table 6. Wind Input Disturbance Settings. ...43
Table 7. Sample Models Provided with the FAST Archive. ..53
Table 8. Primary-Input-File Parameters. ..56
Table 9. Tower-Input-File Parameters. ...70
Table 10. Blade-Input-File Parameters. ..73
Table 11. AeroDyn-Input-File Parameters. ..77
Table 12. Platform-Input-File Parameters. ...80
Table 13. Furling-Input-File Parameters. ...82

FAST User's Guide vi Last updated on August 12, 2005 for version 6.0

Table 14. ADAMS-Specific-Input-File Parameters..88
Table 15. Linearization Control-Input-File Parameters. ...90
Table 16. Output Parameters for Wind Motions...94
Table 17. Output Parameters for Blade 1 Tip Motions...95
Table 18. Output Parameters for Blade 2 Tip Motions...96
Table 19. Output Parameters for Blade 3 Tip Motions...98
Table 20. Output Parameters for Blade 1 Local Span Motions. ...100
Table 21. Output Parameters for Blade Pitch Motions. ..101
Table 22. Output Parameters for Teeter Motions. ..101
Table 23. Output Parameters for Shaft Motions. ..102
Table 24. Output Parameters for Nacelle Inertial Measurement Unit Motions. ...103
Table 25. Output Parameters for Rotor-Furl Motions...104
Table 26. Output Parameters for Tail-Furl Motions. ..104
Table 27. Output Parameters for Nacelle Yaw Motions. ..104
Table 28. Output Parameters for Tower-Top, Yaw-Bearing Motions. ...105
Table 29. Output Parameters for Local Tower Motions. ..107
Table 30. Output Parameters for Platform Motions..108
Table 31. Output Parameters for Blade 1 Root Loads. ...110
Table 32. Output Parameters for Blade 2 Root Loads. ...111
Table 33. Output Parameters for Blade 3 Root Loads. ...112
Table 34. Output Parameters for Blade 1 Local Span Loads..113
Table 35. Output Parameters for Hub and Rotor Loads. ..114
Table 36. Output Parameters for Shaft Strain-Gage Loads. ...115
Table 37. Output Parameters for Generator and HSS Loads. ...115
Table 38. Output Parameters for Rotor-Furl Bearing Loads. ...116
Table 39. Output Parameters for Tail-Furl Bearing Loads. ..116
Table 40. Output Parameters for Tail Fin Aerodynamic Loads..116
Table 41. Output Parameters for Tower-Top, Yaw-Bearing Loads..117
Table 42. Output Parameters for Tower Base Loads. ...117
Table 43. Output Parameters for Local Tower Loads...118
Table 44. Output Parameters for Platform Loads. ..119

FAST User's Guide vii Last updated on August 12, 2005 for version 6.0

FOREWORD

The FAST (Fatigue, Aerodynamics, Structures,
and Turbulence) Code is a comprehensive aeroelastic
simulator capable of predicting both the extreme and
fatigue loads of two- and three-bladed horizontal-axis
wind turbines (HAWTs). This document covers the
features of FAST and outlines its operating procedures.

The FAST Code is the result of the marriage of
three distinct codes; the FAST2 Code for two-bladed
HAWTs; the FAST3 Code for three-bladed HAWTs;
and the AeroDyn (1) aerodynamics subroutines for
HAWTs. While combining these three codes, changes
were made in the computational loops and in the
kinematic calculations of the FAST codes. An
intermediate version of FAST, called FAST_AD, used
different executable files for two- and three-bladed
turbines. The version of FAST documented in this
report, which was developed in 2002, uses a single
executable for both types of turbines. These changes
resulted in a code that runs very quickly, so the code is
indeed, fast.

In 2003, additional features were added to the
FAST Code, including the ability to develop periodic
linearized state matrices for controls design and the
ability to use FAST as a preprocessor for generating
ADAMS® datasets of wind turbine models (“ADAMS”
is used to imply “ADAMS®” throughout this
document). Aeroacoustic noise prediction algorithms
have also been introduced.

Additional features were added to the FAST Code
again in 2004. New model features added include a
lateral offset and skew angle of the rotor shaft, rotor-
furling, tail-furling, tail inertia and aerodynamics, yaw
control, and high-speed shaft (HSS) brake control. An
interface has been developed between FAST and a
master controller implemented as a dynamic-link-
library (DLL) in the style of Garrad Hassan's Bladed
wind turbine software package (2). An interface has
also been developed between FAST and Simulink®
with MATLAB® (“Simulink” and “MATLAB” are
used to imply “Simulink®” and “MATLAB®”
throughout this document), enabling users to
implement advanced turbine controls in Simulink’s
convenient block diagram form.

In 2005, FAST and ADAMS with AeroDyn were
evaluated by Germanischer Lloyd WindEnergie and
found suitable for "the calculation of onshore wind

turbine loads for design and certification" (3).
Additional features were also added to the Codes.
These include new nacelle inertial measurement unit
and tower strain gage outputs, upgrades to the simple
variable-speed control model, and new support
platform motion and loading functionality. Despite the
addition of six new platform motion degrees of
freedom, the Code was also better-optimized so that it
runs 15% faster than previous versions (or faster,
depending on the options being modeled).

This manual is an updated subset of one originally
written at Oregon State University (OSU) (4). The
original manual included a detailed discussion of the
theory behind FAST_AD (an earlier incarnation of
FAST) and a validation of the code. For these two
topics, please refer to the original. Also available is
Buhl and others (5), which is a structural verification
of FAST_AD against ADAMS. Both FAST and
ADAMS use the AeroDyn subroutine set, so the
structural-verification study did not provide any
verification of the aerodynamics of FAST_AD. A
more recent verification of FAST against ADAMS is
provided in Jonkman and Buhl (6).

The Modes of Operation chapter describes the
different types of analysis available in FAST and a
brief description on how to run the code is provided in
the Running FAST chapter. If you want to recompile
FAST, you can find the information you’ll need in the
Compiling FAST chapter. The Model Description
chapter discusses the degrees of freedom for both two-
and three-bladed HAWTs. The Controls chapter
documents methods for actively controlling many
aspects of the turbine operation during simulation.
Active controls can also be implemented in Simulink
as described in the Simulink Interface chapter. The
Linearization chapter documents how to extract
linearized wind turbine models out of FAST. The
functionality of using FAST as a preprocessor for
creating ADAMS datasets is documented in the
ADAMS Preprocessor chapter. The Input Files chapter
describes the various program input files. Finally, the
Output Files chapter lists the possible output
parameters. It also describes the optional summary and
element output files.

FAST User's Guide viii Last updated on August 12, 2005 for version 6.0

ACKNOWLEDGEMENTS
Funding for FAST development came from the

U.S. Department of Energy under contract No. DE-
AC36-83CH10093 to the National Renewable Energy
Laboratory (NREL). Later improvements were funded
by the U.S. Department of Energy under contract No.
DE-AC36-98-GO10337 to NREL.

The authors would like to thank Tim Weber, Lisa
Freeman, and Ross Harman of OSU; Norm Weaver of
InterWeaver Consulting; and Kirk Pierce, formerly of
NREL, for their past developments of FAST and
FAST_AD. We would also like to thank the folks at
Windward Engineering for developing and interfacing

the AeroDyn routines that we link with the FAST
structural-dynamics routines and for writing an
example pitch-control routine. Tim McCoy of Global
Energy Concepts and Craig Hansen of Windward
Engineering took time from their busy schedules to
review drafts of this manual. Our editors, Kathy
O’Dell, Ruth Baranowski, and Janie Homan, helped a
lot by converting our twisted prose into readable
English. Another tip of the hat goes to the many folks
in the wind-energy industry who tested FAST and
provided us with their valuable feedback.

FAST User's Guide ix Last updated on August 12, 2005 for version 6.0

UPGRADING TO FAST V6.0 FROM V5.1
This section describes how to update input files

created previously for FAST v5.1 so that they are
compatible with FAST v6.0. New users can skip to the
section entitled Using This Manual.

FAST v6.0 contains an improvement to the simple
variable-speed control model, a few upgrades and
modifications to the output capabilities, and new
support platform motion and loading functionality.

The simple variable-speed control model has been
upgraded to include a linear transition Region 2½, in
addition to the previously-available Regions 2 and 3.
See the updated Variable-Speed Torque Control
section of the Controls chapter and the Turbine Control
section of Table 8 for more information.

You can now specify up to 5 strain gage locations
along the tower for examining local tower motions and
loads output, similar to what is available for blade 1.
You can also specify the location in the nacelle of an
inertial measurement unit (IMU)—this location is used
for new nacelle motion outputs. See the Output section
of Table 8 and the Output Files chapter for more
information.

The new support platform motion and loading
functionality represents a major expansion in the
number of degrees of freedom and loading options
available in FAST. Detailed information on these new
features and associated inputs are presented throughout
this manual where appropriate. In particular, see the
Support Platform section and Figure 20 of the Model
Description chapter, the Platform Input File section of
the Input Files chapter, the Platform Model section of
Table 8, and Table 12.

Despite the addition of six new platform motion
DOFs (translational surge, sway, and heave and
rotational roll, pitch and yaw), the Code was also
better-optimized so that it runs 15% faster than
previous versions (or faster, depending on the options
being modeled).

With the addition of support platform motion
functionality, it made sense to add more information to
the FAST summary (.fsm) file. See the Output Files
chapter, especially Figure 32, for more information

It also made made sense to rename some of the
output parameters. The output channels WindVxt,
WindVyt, and WindVzt in FAST v5.1 were renamed to
WindVxi, WindVyi, and WindVzi in v6.0, respectively,
since the wind speeds relative to the inertia frame (i)
are now more important than the wind speeds relative
to the tower-base frame (t), which can now move
relative to the inertia frame. WindVxi, WindVyi, and
WindVzi in FAST v6.0 will give the same results as
WindVxt, WindVyt, and WindVzt gave in v5.1, since

the tower-base was stationary in v5.1. See Table 16 of
the Output Files chapter for more information.

The names of the output channels pertaining to the
blade tip accelerations were also changed since they
are now output in the local blade coordinate system
instead of the undeflected coordinate system—see
Table 17, Table 18, and Table 19 of the Output Files
chapter for more information. The names of the output
channels pertaining to the tower-top / yaw bearing
angular (rotational) velocities and accelerations were
also changed since they are now output in the tower-
top / base-plate coordinate system instead of the tower
base coordinate system—see Table 28 of the Output
Files chapter for more information. These changes
were made so that the associated outputs are in
coordinate systems that are easier to measure in the
“real world”.

Updating to FAST v6.0 from v5.1 requires a few
modifications to FAST’s primary input file, even if you
want to keep your turbine model configuration
unchanged. Additionally, to take advantage of FAST’s
new support platform motion functionality, a new file
of inputs must be assembled. In addition to the
changes listed below, please be aware that all of the
inputs that had a lower limit restriction of –180 degrees
in v5.1 where changed to greater than –180 degreees
in FAST v6.0. This change was made since the –180
degrees (inclusive) restriction caused problems in
ADAMS where the ATAN2() FUNCTION is used to
initialize variables.

The changes to the primary input file are as
follows (in the order they appear in the file):

• Replace inputs RatGenSp and Reg2TCon
with inputs VS_RtGnSp, VS_RtTq,
VS_Rgn2K, and VS_SlPc in the turbine
control section. Inputs VS_RtGnSp and
VS_Rgn2K are simply renamed versions of
inputs RatGenSp and Reg2TCon.
VS_RtTq and VS_SlPc are new inputs used
to specify the rated generator torque in Region
3 and the rated generator slip percentage in
Region 2½, respectively. These new inputs
are needed to specify the characteristics of the
improved simple variable-speed generator
controller, which now includes Region 2½ in
addition to Regions 2 and 3.

• Add a new platform model section including a
header plus inputs PtfmModel and PtfmFile
between the Thevenin-equivalent induction
generator and tower sections. PtfmModel is a
switch used to indicate the type of support
platform as follows: {0: none, 1: onshore, 2:

FAST User's Guide x Last updated on August 12, 2005 for version 6.0

fixed bottom offshore, 3: floating offshore}.
If PtfmModel is not 0, FAST will read in an
additional file of inputs for defining the model
properties of the support platform. PtfmFile
is the name of this file. In FAST v6.0, all
nonzero PtfmModel options will work the
same way by reading in PtfmFile. In future
versions, the format of PtfmFile will depend
on which PtfmModel option is selected.

• Add inputs NcIMUxn, NcIMUyn, and
NcIMUzn between inputs SttsTime and
ShftGagL in the output section. These three
new inputs define the distance from the tower-
top to the nacelle inertial measurement unit in
the downwind, lateral, and vertical directions,
respectively.

• Add inputs NTwGages and TwrGagNd
between inputs ShftGagL and NBlGages in
the output section. Inputs NTwGages and
TwrGagNd define the tower strain gage
locations like inputs NBlGages and
BldGagNd do for blade 1.

If you want to leave your model unchanged when
converting to FAST v6.0, use the following
equivalency relationships when defining the new inputs
from the old, now obsolete, inputs:

VS_RtGnSp = RatGenSp

VS_RtTq = Reg2TCon • (RatGenSp^2)

VS_Rgn2K = Reg2Tcon

VS_SlPc = 9999.9E-9
 (a very small don’t care > 0.0)

PtfmModel = 0

PtfmFile = <may be left blank>

NcIMUxn = 0.0 (a don’t care)

NcIMUyn = 0.0 (a don’t care)

NcIMUzn = 0.0 (a don’t care)

NTwGages = 0

TwrGagNd = <may be left blank>

Finally, if you use the FAST-to-ADAMS
preprocessor to create ADAMS wind turbine datasets,
upgrading from FAST v5.1 to v6.0 also requires you to
upgrade from v12.17 to v12.18 of the ADAMS to
AeroDyn (A2AD) source files and to recompile the
ADAMS user-created dynamic-link-library (DLL).
This is because ADAMS datasets generated using
FAST v6.0 must be simulated with an ADAMS user-
created DLL compiled using the source files from
A2AD v12.18. All of the new features for FAST v6.0
listed above are also available in the FAST-to-ADAMS
preprocessor.

UPGRADING TO FAST V5.1 FROM V5.0
This section describes how to update input files

created previously for FAST v5.0 so that they are
compatible with FAST v5.1. New users can skip to the
section entitled Using This Manual.

FAST v5.1 contains many upgrades relating to
turbine control. Yaw control features have been added
to the simulation and linearization analysis modes and
the ADAMS preprocessor. “Hooks” for user-defined
high-speed shaft brake models have also been added to
FAST and the FAST-generated ADAMS datasets.
Within user-defined routines, you now have the option
of switching DOFs on-or-off at runtime and you now
have the ability of accessing the current value of any
available output parameter without changing the
number of arguments passed to the routines. The user-
defined pitch control routine written by Craig Hansen,
which is linked with the executable version of FAST,
has also been upgraded. An interface has been
developed between FAST and Simulink, so that you
can implement advanced turbine controls in Simulink’s

convenient block diagram form. An interface has also
been developed between FAST and a master controller
dynamic-link-library (DLL) implemented in the style
of Garrad Hassan’s Bladed wind turbine software
package (this interface is not linked with the distributed
executable, but is available as a source file containing a
set of subroutines, which can be compiled with FAST
in place of the built-in example control routines; the
same set of routines can be used to interface FAST-
generated ADAMS datasets with Bladed DLL
controllers). Finally, the ramp-up of aerodynamic
loads, which occurred over the first two seconds of
simulation in previous versions, has been eliminated;
thus, trim solutions and/or start-up transients may be
different than in previous versions.

Detailed information on these new features and
their associated input parameters are presented
throughout this manual where appropriate. In
particular, a description of yaw control is provided in
the new Nacelle Yaw Control section of the Controls

FAST User's Guide xi Last updated on August 12, 2005 for version 6.0

chapter, user-defined high-speed shaft brake control is
described in the HSS Brake Control section of the
Controls chapter, master controller DLLs are described
in the Master Controllers and the Bladed-Style DLL
Interface section of the Controls chapter, upgrades to
Craig’s pitch controller should be apparent by
examining the example Pitch.ipt input file located in
FAST’s CertTest folder, and a description of FAST’s
new interface to Simulink is given in the new Simulink
Interface chapter.

Updating to FAST v5.1 from v5.0 requires a few
modifications to FAST’s primary and linearization
control-input files, even if you want to keep your
turbine model configuration unchanged. The changes
to the primary input file are as follows (in the order
they appear in the file):

• Add inputs YCMode and TYCOn before
PCMode. Inputs YCMode and TYCOn
define yaw control options like inputs
PCMode and TPCOn do for pitch control.

• Change pitch control mode input PCMode so
that 0 means none, 1 means user-defined from
routine PitchCntrl(), and 2 means user-
defined from Simulink.

• Change variable speed control mode input
VSContrl so that 0 means none, 1 means
simple variable speed control model, 2 means
user-defined from routine UserVSCont(), and
3 means user-defined from Simulink.

• Add input HSSBrMode between TimGenOf
and THSSBrDp. Input HSSBrMode
provides a switch between the simple and
user-defined from routine UserHSSBr() high-
speed shaft brake models.

• Add inputs TYawManS, TYawManE, and
NacYawF between TBDepISp(3) and
TPitManS(1). Inputs TYawManS,
TYawManE, and NacYawF define override
yaw control options like inputs TPitManS,
TPitManE, and BlPitchF do for pitch control.

The changes to the linearization control-input file
are as follows (in the order they appear in the file):

• Change trim case input TrimCase so that 1
means find nacelle yaw, 2 means find
generator torque (region 2 linearization), and
3 means find collective blade pitch (region 3
linearization).

• Add input NInputs before CntrlInpt.
NInputs defines the number of control inputs
in the output linearized state matrices.

• Change input CntrlInpt so that it is a list of
control inputs from 1 to NInputs where 1 is
nacelle yaw angle, 2 is nacelle yaw rate, 3 is
generator torque, 4 is collective blade pitch, 5
is individual pitch of blade 1, 6 is individual
pitch of blade 2, and 7 is individual pitch of
blade 3.

If you want to leave your turbine model
configuration unchanged when converting to FAST
v5.1, use the following equivalency relationships when
defining the new inputs from the old, now obsolete,
inputs:

YCMode = 0

TYCon = 9999.9 (a don’t care)

PCMode = 0 if PCMode was 0 in v5.0
 = 1 if PCMode was 1 or 2 in v5.0

VSContrl = same value as VSContrl in v5.0

HSSBrMode = 1

TYawManS = 9999.9 (a don’t care > TMax)

TYawManE = 9999.9 (a don’t care ≥
TYawManS)

NacYawF = 0.0 (a don’t care)

TrimCase = 2 if TrimCase was 1 in v5.0
 = 3 if TrimCase was 2 in v5.0

NInputs = 0 if CntrlInpt was 0 in v5.0
 = 1 if CntrlInpt was 1 or 2 in v5.0
 = NumBl if CntrlInpt was 3 in v5.0
 = 2 if CntrlInpt was 4 in v5.0
 = 1 + NumBl if CntrlInpt was 5 in v5.0

CntrlInpt = <may be left blank> if CntrlInpt
 was 0 in v5.0

 = 3 if CntrlInpt was 1 in v5.0
 = 4 if CntrlInpt was 2 in v5.0
 = 5,6 if CntrlInpt was 3 and

 NumBl = 2 in v5.0
 = 5,6,7 if CntrlInpt was 3 and

 NumBl = 3 in v5.0
 = 3,4 if CntrlInpt was 4 in v5.0
 = 3,5,6 if CntrlInpt was 5 and

 NumBl = 2 in v5.0
 = 3,5,6,7 if CntrlInpt was 5 and

 NumBl = 3 in v5.0

If you compile FAST yourself, please note that
new source files FAST_Prog.f90, UserVSCont_KP.f90,
and BladedDLLInterface.f90 have been added to, and
source file PitchCntrl.f90 has been removed from, the
Source folder in the FAST archive. Please see the new
Compiling FAST chapter for more information.

Finally, if you use the FAST-to-ADAMS
preprocessor to create ADAMS wind turbine datasets,
upgrading from FAST v5.0 to v5.1 also requires you to
upgrade from v12.16 to v12.17 of the ADAMS to
AeroDyn (A2AD) source files and to recompile the

FAST User's Guide xii Last updated on August 12, 2005 for version 6.0

ADAMS user-created dynamic-link-library (DLL).
This is because ADAMS datasets generated using
FAST v5.1 must be simulated with an ADAMS user-
created DLL compiled using the source files from

A2AD v12.17. All of the new features for FAST v5.1
listed above are also available in the FAST-to-ADAMS
preprocessor.

UPGRADING TO FAST V5.0 FROM V4.4
FAST v5.0 contains a major expansion in the

range of turbine configurations available relative to
those available in FAST v4.4. This section describes
how to update input files created previously for FAST
v4.4 so that they are compatible with FAST v5.0. New
users can skip to the section entitled Using This
Manual.

New to FAST v5.0 is the availability of a lateral
offset and skew angle of the rotor shaft, rotor-furling,
tail-furling, and tail inertia and aerodynamics. These
new features support the analysis of most small wind
turbine configurations. A few new mass and inertia
terms are also available for conventional turbine
configurations including a yaw bearing point mass, a
lateral offset for the nacelle mass, and a hub inertia for
3-bladed rotors (the hub inertia was previously
available only for 2-bladed rotor configurations).

While upgrading FAST, we tried to minimize the
number of changes to the input files as a courtesy to
our users; nevertheless, some changes were
unavoidable. Updating to FAST v5.0 from v4.4
requires a few modifications to FAST’s primary and
ADAMS-specific input files, even if you want to keep
your turbine model configuration unchanged.
Additionally, to take advantage of FAST’s new model
configuration properties for small wind turbines, a new
file of inputs must be assembled. Detailed information
on the new features and associated inputs are presented
throughout this manual where appropriate. In
particular, a description of the input file for specifying
additional model properties for a furling turbine is
provided in Table 13.

The changes to the primary input file are as
follows (in the order they appear in the file):

• Remove input TiltDOF.
• Remove input NacTilt.
• Replace inputs ParaDNM and PerpDNM

with inputs NacCMxn, NacCMyn, and
NacCMzn. These three new inputs define the
distance from the tower-top to the nacelle
mass center in the downwind, lateral, and
vertical directions, respectively. This is in
contrast to how ParaDNM and PerpDNM
previously located the nacelle mass center
relative to the rotor shaft.

• Add input ShftTilt between inputs TwrRBHt
and Delta3. ShftTilt defines the rotor shaft

tilt angle, replacing what used to be input
NacTilt.

• Add input YawBrMass before NacMass.
YawBrMass defines the point mass of the
yaw bearing.

• Remove input NacTIner.
• Replace the entire nacelle-tilt section, which

includes the header plus inputs TiltSpr,
TiltDamp, TiltSStP, TiltHStP, TiltSSSp, and
TiltHSSp, with a furling section, which
includes a header plus inputs Furling and
FurlFile. Furling is a flag used to tell FAST
whether or not to read in an additional file of
inputs for defining the model configuration of
a furling turbine. FurlFile is the name of this
file.

The changes to the ADAMS-specific input file are
as follows (in the order they appear in the file):

• Add input LSSLength between inputs
HSSLength and GenRad. LSSLength
defines the length of the low-speed shaft
cylinder used for LSS graphical output in
ADAMS. This is in contrast to how the LSS
previously extended from the hub to the yaw
axis.

• Remove inputs TetPnLngth and
TeetPinRad. These inputs were deemed
unnecessary graphical output in ADAMS.

• Add input BoomRad after input
ThkOvrChrd at the end of the file.
BoomRad defines the radius of the tail boom
cylinder used for tail boom graphical output in
ADAMS.

If you want to leave your turbine model
configuration unchanged when converting to FAST
v5.0, use the following equivalency relationships when
defining the new inputs from the old, now obsolete,
inputs:

NacCMxn = ParaDNM • COS(NacTilt) -
PerpDNM • SIN(NacTilt)

NacCMyn = 0.0

NacCMzn = ParaDNM • SIN(NacTilt) +
PerpDNM • COS(NacTilt) + Twr2Shft

ShftTilt = NacTilt

FAST User's Guide xiii Last updated on August 12, 2005 for version 6.0

YawBrMass = 0.0

Furling = False

FurlFile = <may be left blank>

LSSLength = ABS(OverHang)

BoomRad = 0.0

Note that the above equations are only applicable
if your existing FAST v4.4 model had the nacelle-tilt
degree of freedom disabled (TiltDOF = False). If your
existing FAST v4.4 model had the nacelle-tilt degree of
freedom enabled (TiltDOF = True)*, you will now need
to assemble the FurlFile in order to define the model
properties of your tilting turbine. This is because the
nacelle-tilt degree of freedom has been replaced with
the more general rotor-furl degree of freedom.

Finally, if you use the FAST-to-ADAMS
preprocessor to create ADAMS wind turbine datasets,
upgrading from FAST v4.4 to v5.0 also requires you to
upgrade from v12.15 to v12.16 of the ADAMS to
AeroDyn (A2AD) source files and to recompile the
ADAMS user-created dynamic-link-library (DLL).
This is because ADAMS datasets generated using
FAST v5.0 must be simulated with an ADAMS user-
created DLL compiled using the source files from
A2AD v12.16. All of the new features for FAST v5.0
listed above are also available in the FAST-to-ADAMS
preprocessor.

* The only example, known by the authors, of a wind
turbine with a tilting-nacelle degree of freedom is the Wind
Eagle 300 turbine from Cannon Wind Eagle Corporation.

FAST User's Guide xiv Last updated on August 12, 2005 for version 6.0

USING THIS MANUAL
We use several typographic conventions in this

manual to make it easy to distinguish various entities.
Most titles and headings are formatted with the Arial
bold typeface. This manual uses the Times New
Roman typeface for body text. To make it easy to spot
Variable Names within the body text, we formatted
them with the Arial typeface. We did the same for
routine names but appended a pair of parentheses to the
end of the name (for example, Routine()). We
formatted file names with Times New Italic so that we
wouldn’t have to deal with the awkward situation of
having to include punctuation within the quote marks,
which might cause confusion. Examples are formatted
with the Letter Gothic typeface.

FAST User's Guide 1 Last updated on August 12, 2005 for version 6.0

MODES OF OPERATION

FAST has two different forms of operation or
analysis modes (see Figure 1). Switch AnalMode in
the primary input file is used to control this mode.

The first analysis mode is time-marching of the
nonlinear equations of motion—that is, simulation.
During simulation, wind turbine aerodynamic and
structural response to wind-inflow conditions is
determined in time. Active controls for determining
many aspects of the turbine operation may be
implemented during simulation analyses as described
in the Controls chapter. Outputs of simulations include
time-series data on the aerodynamic loads as well as
loads and deflections of the structural members of the
wind turbine as described in the Output Files chapter.
These outputs can be used, for example, to predict both
the extreme and fatigue loads of HAWTs. The
aerocoustic signature of an operating turbine is another
output that can be obtained from simulation.

Simulation analyses can be run using the
distributed Windows executable program file or as a
dynamic-link-library (DLL) interfaced with Simulink.
When running the executable version of FAST, active
controls must be implemented through user-defined
routines that have been linked with FAST during
creation of the executable or as a master controller
implemented as a DLL in the style of Garrad Hassan's
Bladed wind turbine software package. When running
FAST as a DLL interfaced with Simulink, active
controls can be implemented in the Simulink
environment in addition to the implementations
available with the FAST executable. Most of the
contents of this manual relate to simulation using the
FAST executable; there is no chapter in this manual
devoted specifically to this mode of operation. The
Simulink Interface chapter documents how to run

simulations using FAST as a DLL interfaced with
Simulink.

The second form of analysis provided in FAST is
linearization. FAST has the capability of extracting
linearized representations of the complete nonlinear
aeroelastic wind turbine modeled in FAST. This
analysis capability is useful for developing state
matrices of a wind turbine “plant” to aid in controls
design and analysis. It is also useful for determining
the full system modes of an operating or stationary
HAWT through the use of a simple eigenanalysis. The
Linearization chapter documents how to extract
linearized wind turbine models out of FAST. The
linearization capability is only available in the
Windows executable version (not the DLL interface
with Simulink).

Another feature available in FAST is the ADAMS
preprocessor. The ADAMS preprocessor feature is
separate from the two analysis modes available in
FAST. It is not considered an analysis mode of FAST,
because it does not make use of the aeroelastic wind
turbine model available in FAST. Instead, the
ADAMS preprocessor uses the input parameters
available in the FAST input files to construct an
ADAMS dataset of a complete aeroelastic wind
turbine. ADAMS then becomes the code in which
different wind turbine analyses (simulation or
linearization) are performed. The ADAMS
preprocessor feature of FAST is documented, not
surprisingly, in the ADAMS Preprocessor chapter of
this manual and is controlled by switch ADAMSPrep
in FAST’s primary input file. The ADAMS
preprocessor capability is only available in the
Windows executable version (not the DLL interface
with Simulink).

Figure 1. Modes of Operation.

Linearization
(exe only)

System
Properties

FAST
Input Files

FAST

Time-Series
Data

Periodic State
Matrices

ADAMSAeroDyn

ADAMS
Datasets

Simulation
(exe or

Simulink DLL)

AeroDyn

FAST-to-ADAMS
Preprocessor

(exe only)

Time-Series
Data

Simulation
(ADAMS Solver)

AeroDyn
Input Files

User-Defined
Routines

User-Defined
Routines

FAST User's Guide 3 Last updated on August 12, 2005 for version 6.0

RUNNING FAST

This section documents how to run the FAST
Windows executable program file that we distribute in
the FAST archive available at our Web page
http://wind.nrel.gov/designcodes/simulators/fast/. For
a description on how to run FAST with Simulink, see
the Simulink Interface chapter.

Before you run FAST, you will want to install it in
such a way that you can run it from any folder. For
instructions on installing codes such as FAST, please
read Buhl (7).

To run the executable, open a command prompt
window in the directory in which you want to work.
The command-line syntax is:

fast [/h] [<input file>]

where:

/h prints a help message.
<input file> is the name of the primary input file.

The default name is primary.fst).

When FAST runs, it first prints out a line

informing you of the version and compile date of the
code. If it cannot find the input file, it aborts with an
error message. If it finds a valid input file, FAST

echoes the title line from the input file. If aerodynamic
calculations are requested in your input file, the
AeroDyn routines then print out some startup
messages. If running a time-marching analysis, next,
you will see one line that is repeatedly overwritten
telling you what the status of the simulation is. It will
update this line periodically.

At the end of the simulation, FAST prints out
some run-time statistics as seen in Figure 2. The Total
Real Time is the amount of time passed from the time
you started the program to the time it completes. The
Total CPU Time is a measure of the computer time
used for the entire FAST run, which includes the time
it takes to read in the input files and set up the model.
The difference between these two times is the amount
of time your computer was busy with other things
while running FAST. The Simulation Time is the
amount of time simulated. The Simulation CPU Time
is the amount of computer time use during that time-
marching part of the simulation. The Simulation Time
Ratio is the ratio of the amount of time simulated to the
simulation CPU time. The bigger this number is, the
faster your computer is. If the value is greater than 1,
then FAST can simulate an event in less time than it
would take in real life. If the value is less than 1, then
it might be time to upgrade your computer ☺.

Figure 2. Example display output.

 Running FAST (v4.00, 09-Jul-2002).

 FAST certification test #1 for AWT-27CR2 with many

DOFs.

Heading of the aerodyn.ipt file :
AWT-27CR aerodynamic parameters for FAST certification

test #01.

Detected hub-height wind file:
 "Wind/Shr12_30.wnd"

 Aerodynamics loads calculated using AeroDyn(12.46, 23-

May-2002)

 Total Real Time: 7.141 seconds
 Total CPU Time: 7.1406 seconds
 Simulation Time: 20 seconds
 Simulation CPU Time: 7.1094 seconds
 Simulation Time Ratio: 2.8132

 FAST completed normally.

FAST User's Guide 5 Last updated on August 12, 2005 for version 6.0

COMPILING FAST

You should not need to compile FAST unless you
want to create and link a user-defined routine, make
changes to the source code, or port FAST to an
operating system other than Microsoft Windows. The
FAST Windows executable program file that we
distribute in the archive can be used for all other
purposes.

You must include both FAST’s and AeroDyn’s
source files in a workspace in order to compile FAST.
AeroDyn’s source code, which is available in the
AeroDyn archive, is available for download from our
Web page
http://wind.nrel.gov/designcodes/simulators/aerodyn/.
All of the FAST source code resides in the Source
folder of the FAST archive. The FAST Windows
executable program file that we distribute in the FAST
archive is compiled using the Compaq Visual Fortran
(CVF) Standard Edition compiler version 6.6.B. Table
1 lists the FAST source files used to compile this
program file.

When compiling using CVF, we have the
Debugging Level set to "Minimal", the Warning Level
set to "Normal Warnings", and the Optimization Level
set to "Full Optimizations". We also use Project
Options /assume:byterecl, /compile_only, /nologo,
/stand, /traceback, and /warn:nofileopt. We
recommend that you use the same compiler and project
options when compiling FAST using the CVF
compiler.

All of the CVF compiler-dependent code in FAST
resides in the files called SysCVF.f90 and
ModCVF.f90. (AeroDyn also contains some CVF
compiler-dependent code) If you want to port FAST to
another platform or compiler, you should have to
change only these two files. Also included in the
Source folder are files SysLL.f90, ModLL.f90,
SysLU.f90, and ModLU.f90. Files SysLL.f90 and
ModLL.f90 should be used when compiling FAST in
Lahey Linux (LL). Files SysLU.f90 and ModLU.f90
should be used when compiling FAST in Lahey Unix
(LU). In the FAST archive, we also distribute a file
named make_LL. This is a makefile that was
developed by Hugh Currin who used it to compile an
older version of FAST (v4.03) in LL. Please be aware
that the NWTC does not have an LL or LU compiler,
and as such, we have not been able to update the LL
and LU source files and LL makefile to accommodate
upgrades to the program. Nevertheless, these sample
files should be a useful starting point if you need to
port FAST to another operating system.

Table 1. FAST Source Files.

Source File Description
FAST_Prog.f90 Contains PROGRAM

FAST(), which guides the
program’s execution

FAST_Mods.f90 Contains MODULEs that
store variables used by
FAST’s routines

FAST_IO.f90 Contains routines related to
program input and output

FAST.f90 Contains routines that make-
up the “guts” of FAST,
including the equations of
motion and their solution

AeroCalc.f90 Contains the interface routines
between FAST and AeroDyn

FAST2ADAMS.f90 Contains routines that make
up the FAST-to-ADAMS
preprocessor

FAST_Lin.f90 Contains routines used during
a linearization analysis

SetVersion.f90 Contains a routine that sets the
program version number

GenUse.f90 Contains general-purpose
routines

NoiseMods.f90 Contains a MODULE that
stores variables used by the
aeroacoustic routines

NoiseSubs.f90 Contains routines related to
aeroacoustics

ModCVF.f90 Contains a MODULE that
stores compiler-dependent
variables

SysCVF.f90 Contains compiler-dependent
routines

UserSubs.f90 Contains dummy placeholders
of all available user-specified
routines

PitchCntrl_ACH.f90 Contains an example pitch
control routine written by A.
Craig Hansen

UserVSCont_KP.f90 Contains an example variable-
speed torque control routine
written by Kirk Pierce

FAST includes “hooks” for ten user-specified

routines as summarized in Table 2. Dummy
placeholder versions of these routines are all contained
within source file UserSubs.f90.

FAST User's Guide 6 Last updated on August 12, 2005 for version 6.0

Table 2. User-Specified Routines.

Routine Description
PitchCntrl() User-specified blade pitch control

(either independent or rotor-
collective) model

UserGen() User-specified generator torque
and power model

UserHSSBr() User-specified high-speed shaft
brake model

UserPtfmLd() User-specified platform loading
model

UserRFrl() User-specified rotor-furl spring /
damper model

UserTeet() User-specified rotor-teeter spring /
damper model

UserTFin() User-specified tail fin
aerodynamics model

UserTFrl() User-specified tail-furl spring /
damper model

UserVSCont() User-specified variable-speed
torque and power control model

UserYawCont() User-specified nacelle-yaw
control model

In order to interface FAST with your own user-

specified routines, you can develop your own logic
within these dummy placeholders and recompile
FAST, or comment out the appropriate dummy
placeholders, create your own routines in their own
source files, and recompile FAST while linking in
these additional source files. For example, as implied

in Table 1, the executable version of FAST that is
distributed with the archive is linked with the example
PitchCntrl() routine contained in source file
PitchCntrl_ACH.f90 and the example UserGen() and
UserVSCont() routines contained in source file
UserVSCont_KP.f90. Thus, the dummy placeholders
for routines PitchCntrl(), UserGen(), and
UserVSCont() are commented out within source file
UserSubs.f90. The example pitch controller was
written by A. Craig Hansen (ACH) and the example
generator and variable speed controllers were written
by Kirk Pierce (KP). Please see the aforementioned
source files for additional information on these
example user-specified routines.

Also contained in the Source folder is a file named
BladedDLLInterface.f90. This source file contains
example PitchCntrl(), UserHSSBr(), UserVSCont(),
and UserYawCont() routines that may be used to
interface FAST with a master controller implemented
as a dynamic-link-library (DLL) in the style of Garrad
Hassan's Bladed wind turbine software package (2). In
order to compile FAST with these routines, you must
comment-out the dummy placeholder versions of
routines PitchCntrl(), UserHSSBr(), UserVSCont(),
and UserYawCont() contained in source file
UserSubs.f90 and recompile FAST with the addition of
source file BladedDLLInterface.f90. The executable
version of FAST that is distributed with the FAST
archive is not linked with the routines contained within
source file BladedDLLInterface.f90. Please see the
Master Controllers and the Bladed-Style DLL Interface
section of the Controls chapter for more information.

FAST User's Guide 7 Last updated on August 12, 2005 for version 6.0

MODEL DESCRIPTION

General Description
The FAST code can model the dynamic response

of both two- and three-bladed, conventional,
horizontal-axis wind turbines. The wind turbine
configuration may optionally include rotor-furling, tail-
furling, and tail aerodynamics—features useful in the
analysis of most small wind turbines. The code was
evaluated by Germanischer Lloyd WindEnergie and
found suitable for "the calculation of onshore wind
turbine loads for design and certification" (3).

The FAST model employs a combined modal and
multibody dynamics formulation. The model for two-
bladed turbines relates nine rigid bodies (earth, support
platform, base plate, nacelle, armature, gears, hub, tail,
and structure furling with the rotor) and four flexible
bodies (tower, two blades, and drive shaft) through 22
degrees of freedom (DOFs). Accounted for in the
degrees of freedom are platform translation and
rotation (6 DOF), tower flexibility (4 DOF), nacelle
yaw (1 DOF), variable generator and rotor speeds (2
DOF), blade teetering (1 DOF), blade flexibility (6
DOF), rotor-furl (1 DOF), and tail-furl (1 DOF).
Flexibility in the blades and tower are characterized
using a linear modal representation that assumes small
deflections. The three rotational DOFs of the support
platform (roll, pitch, and yaw) also employ a small
angle approximation. The remaining DOFs may
exhibit large displacements without loss of accuracy.
The DOFs are further described below.

The first six DOFs (the most recent additions)
originate from the translational (surge, sway, and
heave) and rotational (roll, pitch, and yaw) motions of
the support platform relative to the inertia frame.

Two DOFs originate from the first bending mode
of the tower in the longitudinal and transverse
directions. Two more DOFs model the second bending
mode in the same directions. The tower is rigidly
attached to the support platform through a cantilever
connection.

Another DOF accounts for the nacelle yaw motion,
which can be free or fixed with a torsional yaw spring.
The rotor can be either upwind or downwind with the
rotor providing yaw loads.

The next DOF accounts for variations in generator
speed. Another DOF accounts for drivetrain flexibility
associated with torsional motion between the generator
and the hub/rotor.

Another DOF accounts for teeter motion of the
blades about a pin located on the hub. Dampers,
springs, or a combination of both can restrict teeter
motion.

The next two DOFs arise from the first flapwise
bending mode of each blade. Two more DOFs
originate from the second flapwise bending modes.
Blade edgewise motion accounts for the next two
DOFs. The blades are rigidly attached to the hub
through a cantilever connection. Motion of the blades
is along the local principal axes. See the discussion of
blade mode shapes in the Flexible Tower and Blades
section on page 10 for details.

The last two DOFs are associated with furling of
the rotor and tail about the yawing-portion of the
structure atop the tower. The rotor-furl DOF can also
be used to model torsional flexibility in the gearbox
mounting if you align the rotor-furl axis with the rotor
shaft axis. The amount of furling motion can be
restricted with springs, dampers, or a combination of
both.

The FAST code can also model a three-bladed
HAWT with 24 DOFs. The first six DOFs originate
from the translational (surge, sway, and heave) and
rotational (roll, pitch, and yaw) motions of the support
platform relative to the inertia frame. The next four
DOFs account for tower motion; two are longitudinal
modes, and two are lateral modes. Yawing motion of
the nacelle provides another DOF. The next DOF is
for the generator azimuth angle, and another DOF is
the compliance in the drivetrain between the generator
and hub/rotor. These DOFs account for variable rotor
speed and drive-shaft flexibility. The next three DOFs
are the blade flapwise tip motion for the first mode.
Three more DOFs give the tip displacement for each
blade for the second flapwise mode. The next three
DOFs are for the blade edgewise tip displacement for
the first edgewise mode. The last two DOFs are for
rotor- and tail-furl.

For both the two- and three-bladed wind turbine
configurations, you can enable any combination of the
available DOFs and features during your analysis. The
DOFs and features most applicable to you are dictated
by the configuration of the wind turbine you are
analyzing.

Coordinate Systems
Figure 3 through Figure 9 show the coordinate

systems used for input and output parameters.
Coordinate systems t, n, h, and b conform to the
International Electrotechnical Commission (IEC)
standard for wind turbines (8). Additional coordinate
systems i, p, a, s, and c are necessary for interpreting
some of the output parameters. Some of the coordinate
systems used internally by FAST differ from these.
FAST takes care of these conversions for you.

FAST User's Guide 8 Last updated on August 12, 2005 for version 6.0

Inertial Frame Coordinate System

Origin The point about which the translational
motions of the support platform (surge,
sway, and heave) are defined.

xi axis Pointing in the nominal (0°) downwind
direction.

yi axis Pointing to the left when looking in the
nominal downwind direction.

zi axis Pointing vertically upward opposite to
gravity.

Tower-Base Coordinate System
This coordinate system is fixed in the support

platform so that it translates and rotates with the
platform.

Origin Intersection of the center of the tower and
the tower base connection to the support
platform.

xt axis When the support platform has no pitch
or yaw displacement, it is aligned with
the xi axis (pointing horizontally in the
nominal downwind direction).

yt axis When the support platform has no roll or
yaw displacement, it is aligned with the yi
axis (pointing to the left when looking in
the nominal downwind direction).

zt axis Pointing up from the center of the tower.
When you request output of motions or loads for

various locations along the tower with the TwrGagNd
array, a local coordinate system similar to the standard
tower system is used, but the local coordinate systems
orient themselves with the deflected tower.

Figure 3. Tower-base coordinate system.

Tower-Top/Base-Plate Coordinate System
This coordinate system is fixed to the top of the

tower. It translates and rotates as the platform moves

and the tower bends, but it does not yaw with the
nacelle.

Origin A point on the yaw axis at a height of
TowerHt above ground level [onshore or
mean sea level [offshore] (see Figure
14(a), Figure 16, or Figure 20).

xp axis When the tower is not deflected, it is
aligned with the xt axis.

yp axis When the tower is not deflected, it is
aligned with the yt axis.

zp axis When the tower is not deflected, it is
aligned with the zt axis. It is also the yaw
axis.

Figure 4. Tower-top/base-plate

coordinate system.

Nacelle/Yaw Coordinate System
This coordinate system translates and rotates with

the top of the tower, plus it yaws with the nacelle.

Origin The origin is the same as that for the
tower-top/base-plate coordinate system.

xn axis Pointing horizontally toward the
nominally downwind end of the nacelle.

yn axis Pointing to the left when looking toward
the nominally downwind end of the
nacelle.

zn axis Coaxial with the tower/yaw axis and
pointing up.

Figure 5. Nacelle/yaw coordinate system.

Zp
Yp

Xp

zn yn

xn

xt

yt zt

0°

wind

FAST User's Guide 9 Last updated on August 12, 2005 for version 6.0

Shaft Coordinate System
The shaft coordinate system does not rotate with

the rotor, but it does translate and rotate with the tower
and it yaws with the nacelle and furls with the rotor.
The nacelle inertial measurement unit uses this
coordinate system for all of its motion outputs. Shaft
bending moments at the hub and at the position
denoted by ShftGagL use this coordinate system or the
rotating hub coordinate system shown below.

Origin Intersection of the yn-/zn-plane and the
rotor axis.

xs axis Pointing along the (possibly tilted) shaft
in the nominally downwind direction.

ys axis Pointing to the left when looking from the
tower toward the nominally downwind
end of the nacelle.

zs axis Orthogonal with the xs and ys axes such
that they form a right-handed coordinate
system.

Figure 6. Shaft coordinate system.

Azimuth Coordinate System
The azimuth, or a, coordinate system is located at

the origin of the shaft coordinate system, but it rotates
with the rotor. When Blade 1 points up, the azimuth
and shaft coordinate systems are parallel. For three-
bladed rotors, blade 3 is ahead of blade 2, which is
ahead of blade 1, so that the order of blades passing
through a given azimuth is 3-2-1-repeat.

Hub Coordinate System
The hub coordinate system rotates with the rotor.

It also teeters in two-bladed models.

Origin Intersection of the rotor axis and the plane
of rotation (non-coned rotors) or the apex
of the cone of rotation (coned rotors).

xh axis Pointing along the hub centerline in the
nominal downwind direction.

yh axis Orthogonal with the xh and zh axes such
that they form a right-handed coordinate
system.

zh axis Perpendicular to the hub centerline with
the same azimuth as Blade 1.

Figure 7. Hub coordinate system.

Coned Coordinate Systems
There is a coned coordinate system for each blade

that rotates with the rotor. The coordinate system does
not pitch with the blades and it also teeters in two-
bladed models. For three-bladed rotors, blade 3 is
ahead of blade 2, which is ahead of blade 1, so that the
order of blades passing through a given azimuth is 3-2-
1-repeat.

Origin The origin is the same as that for the
hub coordinate system.

Xc,i axis Orthogonal with the yc,i and zc,i axes
such that they form a right-handed
coordinate system. (i = 1, 2, or 3 for
blades 1, 2, or 3, respectively)

Yc,i axis Pointing towards the trailing edge of
blade i if the pitch and twist were zero
and parallel with the chord line. (i = 1,
2, or 3 for blades 1, 2, or 3,
respectively)

Zc,i axis Pointing along the pitch axis towards
the tip of blade i. (i = 1, 2, or 3 for
blades 1, 2, or 3, respectively)

Figure 8. Coned coordinate system.

Blade Coordinate Systems
These coordinate systems are the same as the

coned coordinate systems, except that they pitch with
the blades and their origins are at the blade root. For
three-bladed rotors, blade 3 is ahead of blade 2, which
is ahead of blade 1, so that the order of blades passing
through a given azimuth is 3-2-1-repeat.

zs ys

xs

xh

yhzh

Xc,i

Yc,i
Zc,i

FAST User's Guide 10 Last updated on August 12, 2005 for version 6.0

Origin Intersection of the blade’s pitch axis
and the blade root.

xb,i axis Orthogonal with the yb and zb axes such
that they form a right-handed coordinate
system. (i = 1, 2, or 3 for blades 1, 2,
or 3, respectively)

yb,i axis Pointing towards the trailing edge of
blade i and parallel with the chord line
at the zero-twist blade station. (i = 1, 2,
or 3 for blades 1, 2, or 3, respectively)

zb,i axis Pointing along the pitch axis towards
the tip of blade i. (i = 1, 2, or 3 for
blades 1, 2, or 3, respectively)

When you request output of motions or loads for
various span locations along the blade with the
BldGagNd array, a local coordinate system similar to
the standard blade system, but the x-axis and y-axis are
aligned with the local principal axes and the local
coordinate systems orient themselves with the
deflected blade.

Wind
zb,i

yb,i

xb,i

Figure 9. Blade coordinate system.

Turbine Layout
Figure 14 and Figure 15 show the layout of a

conventional, downwind, two-bladed turbine and
Figure 16 shows the layout of a conventional, upwind,
three-bladed turbine. Figure 17 through Figure 19
show the layout of an upwind turbine with both rotor-
and tail-furling. Figure 20 shows the layout of the
support platform regardless of the above ground
[onshore] or above water [offshore] configuration.
These figures also include some of the important input
dimensions. For definitions of these parameters, please
see the Turbine Configuration section of Table 8 on
page 61 for nonfurling turbines, the same section of
Table 13 on page 82 for furling turbines, and the same
section of Table 12on page 81 for the support platform.

Flexible Tower and Blades
FAST models flexible elements, such as the tower

and blades, using a linear modal representation. The
reliability of this representation depends on the
generation of accurate mode shapes, which are input
into FAST. You can use a program called Modes (9)
to generate these shapes and copy its output to your
FAST input file. Modes uses essentially the same
structural data as FAST. Although the tower and blade
input files include flags to calculate the mode shapes
internally, we have not implemented this feature in the
code.

For the tower, you will need to know the tower-top
mass to run Modes. If you do not know the tower-top
mass, you can obtain it by first running FAST with a
rigid tower and with dummy mode shapes, and then
reading the summary output file, which includes the
tower-top mass (see Figure 32 on page 122). FAST
allows you to specify four different mode shapes for
the tower. The two fore-aft modes are defined
separately from the two side-to-side modes. The mode
shapes take the form of a sixth-order polynomial with
the zeroth and first terms always being zero. This is
because the mode shapes are cantilevered at the base so
they must have zero deflection and slope there. At the
top of the tower, where the normalized height is 1, the
deflection must have a normalized value of 1. This
means the sum of the polynomial coefficients must add
to 1. See Figure 10 for a graphic example of tower
mode shapes.

Deflection

To
w

er
 H

ei
gh

t

First Mode

Second Mode

Figure 10. Tower mode shapes.

The blade mode shapes are defined in a way
similar to that of the tower. For the blades, FAST can
use two flapwise modes and one edgewise mode. The
modes are defined with respect to the local structural
twist, that is, the shapes twist with the blade, are three-
dimensional, and do not lie within a single plane. In
the case of a twisted blade, the tip will deflect in both
the in-plane and out-of-plane directions due to a pure

FAST User's Guide 11 Last updated on August 12, 2005 for version 6.0

flapwise deflection. The edgewise mode works in a
similar fashion. When generating blade modes for a
variable-speed turbine, you should choose a typical
rotor speed for the cases you will simulate when
generating the mode shapes. Usually, the rotor speed
has little effect on the mode shapes, but it will have a
significant effect on the frequency of vibration. Still,
you may want to generate multiple mode shapes for
different rotor speeds to see whether there is a
significant impact on the results.

HubRad

RNodes5

DRNodes5

Hub Centerline

Pitch
Axis

Node 5

Figure 11. Blade layout.

Drivetrain
The drivetrain is modeled as an equivalent shaft

separating the generator from the hub. The shaft can
have a linear torsional spring and a linear torsional
damper. Use the drivetrain DOF flag, DrTrDOF, to
enable this feature. The equation governing the
restoring torque of the spring/damper is:

Tres = DTTorSpr•(RotorPos – GboxPos) +
DTTorDmp•(RotorSpeed – GboxSpeed)

The constants DTTorSpr and DTTorDmp are the
equivalent torsional stiffness and damping constants
for the combined low-speed shaft (LSS), gearbox, and
high-speed shaft (HSS). All values used in this
equation are cast on the LSS side of the gearbox.

You can simulate losses of the torque being
transmitted through the gearbox by setting the gearbox
efficiency, GBoxEff, to some value less than 100%.
When generating power, FAST will multiply the LSS
torque by the efficiency and divide by the gearbox ratio
to determine HSS torque. When motoring, FAST will
multiply the HSS torque by the efficiency and gearbox
ratio to compute the torque on the LSS.

Generator
The generator flag, GenDOF, also governs the

behavior of the drivetrain, with several options
available. Disabling it will force the generator side of
the shaft to turn at a constant speed.

You can control when to start the generator with
the GenTiStr flag in conjunction with either
SpdGenOn or TimGenOn. If GenTiStr is True, the
generator torque will be zero until TimGenOn.

Otherwise, the generator torque will be zero until the
generator speed reaches SpdGenOn.

You can control when to stop the generator with
the GenTiStp flag in conjunction with TimGenOf. If
GenTiStp is True, the generator torque will be set to
zero after TimGenOf. Otherwise, the generator will
stay on until its power reaches zero. Once the
generator is turned off by either method, it will stay off
until the end of the simulation. If you are not going to
simulate a shutdown or a loss of grid, set GenTiStp to
True and TimGenOf to a value greater than TMax.
Please see the Simulation Special Events section in the
Controls chapter for more information about this
subject.

Enabling GenDOF will also invoke one of several
generator models. The choice of the model is
determined by the setting of the GenModel switch or
the VSContrl switch. Unless the VSContrl switch is 0,
GenModel will be ignored. Please see the Variable-
Speed Torque Control section in the Controls chapter
for more information on the variable-speed control
options.

If you set VSContrl to 0 and GenModel to 1,
FAST will use the simple induction generator model.
This model uses just four parameters: rated generator
slip percentage (SIG_SlPc), the synchronous (zero-
torque) generator speed (SIG_SySp), the rated torque
(SIG_RtTq), and the pullout ratio (SIG_PORt). This
results in the torque/speed curve seen in Figure 12. In
the chart, the rated rotor speed, ΩR, is derived from the
synchronous speed and the slip percent:

ΩR = SIG_SySp• (1 + 0.01•SIG_SlPc)

Generator Speed

G
en

er
at

or
 T

or
qu

e

ΩR

SIG_SySp (Ω0)

SIG_RtTq SIG_RtTq•SIG_PO

–

+

Figure 12. Simple-induction-generator
torque/speed curve.

The simple model is really too simple to use for a
turbine startup. Instead, set VSContrl to 0 and
GenModel to 2 to invoke the more-accurate generator
model that uses the Thevenin Equivalent Circuit
equations for a three-phase induction generator. This
model uses eight input parameters. These values are
input in engineering units instead of using the per-unit
values (normalized by base values) often found in

FAST User's Guide 12 Last updated on August 12, 2005 for version 6.0

generator specification sheets. FAST’s Thevenin-
equivalent equations assume a Y-connected, three-
phase-generator configuration. If you have a delta-
connected configuration, you must divide your
impedances by three and your voltage by 3 to convert
the values to a Y-connected configuration. Table 8
includes a detailed description of the input parameters
and an example torque/speed curve can be seen in
Figure 13.

Generator Speed

To
rq

ue

Figure 13. Thevenin-equivalent-induction-

generator torque/speed curve.

Users can create their own generator model by
modifying the supplied dummy subroutine UserGen()
available (but commented out) in the UserSubs.f90
source file. To use your own generator model, it will
be necessary to compile the modified file and link it
with the rest of the code. FAST will call UserGen() if
you set VSContrl to 0 and GenModel to 3. The
UserGen() routine linked with the distributed
executable version of FAST, which is supplied in
source file UserVSCont_KP.f90, currently calls
subroutine UserVSCont(), so that setting GenModel
to 3 causes FAST to behave as if VSContrl is set to 2.
The routine that calls UserGen() passes the HSS speed
and expects the electrical generator torque and
electrical power to be returned. But within routine
UserGen(), you have the ability to access the current
value of any output parameter available from FAST
without changing the number of arguments passed to
the routine. Also, you have the option of switching the
generator DOF on-or-off at runtime within UserGen()
by overriding input GenDOF. Please see the supplied
dummy routines in UserSubs.f90 and the Controls
chapter for further details.

You can simulate generator losses by setting the
generator efficiency, GenEff, to some value less than
100%. When generating power, FAST will multiply
the mechanical generator power by the efficiency to
determine electrical generator power. When motoring,
FAST will multiply the electrical generator power by
the efficiency to compute the mechanical generator
power. FAST does not use the generator efficiency for
the Thevenin model since the Thevenin model
incorporates a more complex expression for the
electrical power based on the input circuit resistances.

The flowchart provided in Figure 23 of the
Controls chapter explains how the program uses the
generator model input parameters during runtime, as
described above. In this flowchart, GenTq is the
instantaneous electrical generator torque, GenPwr is
the instantaneous electrical generator power, and
GenSpeed is the instantaneous HSS (generator)
speed. The additional logic presented in the flowchart
explains how the program uses the variable-speed
torque and HSS brake control input parameters during
runtime.

Nacelle Yaw
FAST can model nacelle yaw as a perfect hinge

with no resistance forces by setting YawDOF to True
and the yaw spring constant, YawSpr, and the yaw
damping constant, YawDamp, to zero. You can also
model a free-yaw machine with yaw damping by
setting YawDamp to a nonzero value.

You can model the flexibility and damping in the
yaw drive of a yaw-driven turbine whose commanded
yaw position is held constant, by setting YawDOF to
True, YCMode to 0, and YawSpr and YawDamp to a
nonzero value. FAST will use input parameter
YawNeut as the neutral yaw position (i.e., constant
yaw command) and NacYaw as the initial yaw angle.
In this case, the torque transmitted through the yaw
bearing, YawMom, is:

YawMom = YawSpr • (YawPos – YawNeut)
+ YawDamp•YawRate

where YawPos is the instantaneous yaw position.
For a fixed-yaw simulation, set YawDOF to False,

YCMode to 0, TYawManS greater than TMax, and
NacYaw to the fixed nacelle yaw angle.

You can also actively control the nacelle-yaw
motion during a simulation. Please see the Nacelle
Yaw Control section in the Controls chapter for
information on active yaw control options.

Rotor-Furl
The rotor-furl DOF allows you to model the

unusual configuration of a bearing that permits the
rotor and drivetrain to rotate about the yawing-portion
of the structure atop the tower. The rotor-furl DOF can
alternatively be used to model torsional flexibility in
the gearbox mounting if you align the rotor-furl axis
with the rotor shaft axis. In order to include rotor-
furling in your model, you must designate the turbine
as a furling machine by setting input Furling from the
primary input file to True. Then you must assemble
the furling input file, FurlFile, and use the rotor-furl
flag, RFrlDOF, to enable this feature.

The angular rotor-furl motion takes place about the
rotor-furl axis defined by inputs RFrlPntxn,
RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt

FAST User's Guide 13 Last updated on August 12, 2005 for version 6.0

available in FurlFile. Inputs RFrlPntxn, RFrlPntyn,
and RFrlPntzn locate an arbitrary point on the rotor-
furl axis relative to the tower-top. Inputs RFrlSkew
and RFrlTilt then define the angular orientation of the
rotor-furl axis passing through this point. See Figure
17 for a schematic.

The rotor-furl bearing can be an ideal bearing with
no friction by setting RFrlMod to 0; by setting
RFrlMod to 1, it also has a standard model that
includes a linear spring, linear damper and Coulomb
damper, as well as up- and down-stop springs, and up-
and down-stop dampers. FAST models the stop
springs with a linear function of rotor-furl deflection.
The rotor-furl stops start at a specified angle and work
as a linear spring based on the deflection past the stop
angles. The rotor-furl dampers are linear functions of
the furl rate and start at the specified up-stop and
down-stop angles. These dampers are bidirectional,
resisting motion equally in both directions once past
the stop angle.

A user-defined rotor-furl spring and damper model
is also available. To use it, set RFrlMod to 2 and
create a subroutine entitled UserRFrl() with the
parameters RFrlDef, RFrlRate, DirRoot, ZTime, and
RFrlMom:

RFrlDef: Current rotor-furl angular deflection
in radians (input)

RFrlRate: Current rotor-furl angular rate in
rad/sec (input)

ZTime: Current simulation time in sec (input)
DirRoot: Simulation root name including the

full path to the current working
director (input)

RFrlMom: Rotor-furl moment in N·m (output)

The source file UserSubs.f90 contains a dummy
UserRFrl() routine; replace it with your own and
rebuild FAST. Within routine UserRFrl() you have
the option of switching the rotor-furl DOF on-or-off at
runtime by overriding input RFrlDOF. You can also
access the current value of any output parameter
available from FAST without changing the number of
arguments passed to the routine. Please see the dummy
UserRFrl() routine for a description of how to take
advantage of these incredibly flexible features.
Parameter DirRoot may be used to write a record of
what is done in UserRFrl() to be stored with the
simulation results.

The geometries of the hub and rotor-furl structure
mass center, which are both components of the furling-
rotor assembly, are defined relative to the tower-top as
shown in Figure 18. This definition was chosen in
order to avoid having to define a coordinate system in
the furling-rotor assembly since such a coordinate
system would most likely have an obscure orientation,
making it difficult for users to input configuration
information relative to it. This definition also avoids

the complications involved in having to define
geometries differently, depending on whether or not a
rotor-furl assembly exists separately from the nacelle,
which depends on whether rotor-furl is present or
absent in the turbine. The developers of FAST also
believe that defining geometry relative to the tower-top
is the most standard convention. For instance, analysts
usually think of the rotor shaft offset as the lateral
distance between the rotor shaft axis and the yaw axis
(input Yaw2Shft in FAST), not as a distance relative
to some coordinate system in the structure furling with
the rotor.

Since the component geometry of the furling-rotor
assembly is defined relative to the tower-top, this
geometry naturally changes with the rotor-furl angle.
In order to avoid having to define different geometries
for different rotor-furl positions (for example,
variations in the initial rotor-furl angle), FAST expects
the component geometry of the furling-rotor assembly
to be defined/input at a rotor-furl angle of zero. As
such, the initial rotor-furl angle does not affect the
specification of any other rotor-furl geometry. Stated
another way, the input geometries for the rotor-furl
assembly components define the rotor configuration
when the rotor-furl angle is zero regardless of initial
rotor-furl position. Users should be clear of this
convention when assembling their furling input file.

Defining the geometry of the rotor-furl structure
relative to the tower-top instead of in some coordinate
system inherent in the furling-rotor assembly also has
some undesirable consequences. The following
example will highlight a drawback to the input
convention used in FAST and, at the same time,
illustrate how the convention works. Consider the case
of a small wind turbine company who has settled on
the rotor-furl assembly configuration, including the
location of the rotor-furl bearing attachment point on
this assembly, but has yet to determine the best
location of the rotor-furl axis with respect to the
yawing portion of the structure atop the tower. If the
design analyst wants to test the rotor-furl response at
several different rotor-furl axis locations, this will
require him/her to alter not just one input parameter
(i.e., the rotor furl axis point) but several input
parameters collectively. For instance, if he/she wants
to alter the lateral (yn) location of the rotor-furl axis,
this will require him/her to shift inputs RFrlPntyn,
RfrlCMyn, and Yaw2Shft by the same amount since
shifting the rotor-furl axis relative to the tower-top also
shifts the rotor-furl assembly.

Tail-Furl
The tail-furl DOF allows you to model the unusual

configuration of a bearing that permits the tail to rotate
about the yawing-portion of the structure atop the
tower. In order to include tail-furling in your model,
you must designate the turbine as a furling machine by

FAST User's Guide 14 Last updated on August 12, 2005 for version 6.0

setting input Furling from the primary input file to
True. Then you must assemble the furling input file,
FurlFile, and use the tail-furl flag, TFrlDOF, to enable
this feature.

The angular tail-furl motion takes place about the
tail-furl axis defined by inputs TFrlPntxn, TFrlPntyn,
TFrlPntzn, TFrlSkew, and TFrlTilt available in
FurlFile. Inputs TFrlPntxn, TFrlPntyn, and
TFrlPntzn locate an arbitrary point on the tail-furl axis
relative to the tower-top. Inputs TFrlSkew and
TFrlTilt then define the angular orientation of the tail-
furl axis passing through this point. See Figure 17 for
a schematic.

The tail-furl bearing can be an ideal bearing with
no friction by setting TFrlMod to 0; by setting
TFrlMod to 1, it also has a standard model that
includes a linear spring, linear damper and Coulomb
damper, as well as up- and down-stop springs, and up-
and down-stop dampers. FAST models the stop
springs with a linear function of tail-furl deflection.
The tail-furl stops start at a specified angle and work as
a linear spring based on the deflection past the stop
angles. The tail-furl dampers are linear functions of
the furl rate and start at the specified up-stop and
down-stop angles. These dampers are bidirectional,
resisting motion equally in both directions once past
the stop angle.

A user-defined tail-furl spring and damper model
is also available. To use it, set TFrlMod to 2 and
create a subroutine entitled UserTFrl() with the
parameters TFrlDef, TFrlRate, ZTime, DirRoot, and
TFrlMom:

TFrlDef: Current tail-furl angular deflection in
radians (input)

TFrlRate: Current tail-furl angular rate in
rad/sec (input)

ZTime: Current simulation time in sec (input)
DirRoot: Simulation root name including the

full path to the current working
director (input)

TFrlMom: Tail-furl moment in N·m (output)

The source file UserSubs.f90 contains a dummy
UserTFrl() routine; replace it with your own and
rebuild FAST. Within routine UserTFrl() you have the
option of switching the tail-furl DOF on-or-off at
runtime by overriding input TFrlDOF. You can also
access the current value of any output parameter
available from FAST without changing the number of
arguments passed to the routine. Please see the dummy
UserTFrl() routine for a description of how to take
advantage of these incredibly flexible features.
Parameter DirRoot may be used to write a record of
what is done in UserTFrl() to be stored with the
simulation results.

The geometries of the tail boom mass center, tail
fin mass center, and tail fin aerodynamic surface,

which are all components of the furling-tail assembly,
are defined relative to the tower-top as shown in Figure
19. This definition was chosen in order to avoid
having to define a coordinate system in the furling-tail
assembly since such a coordinate system would most
likely have an obscure orientation, making it difficult
for users to input configuration information relative to
it. This definition also avoids the complications
involved in having to define geometries differently,
depending on whether or not a tail-furl assembly exists
separately from the nacelle, which depends on whether
tail-furl is present or absent in the turbine.

Since the component geometry of the furling-tail
assembly is defined relative to the tower-top, this
geometry naturally changes with the tail-furl angle. In
order to avoid having to define different geometries for
different tail-furl positions (for example, variations in
the initial tail-furl angle), FAST expects the component
geometry of the furling-tail assembly to be
defined/input at a tail-furl angle of zero. As such, the
initial tail-furl angle does not affect the specification of
any other tail-furl geometry. Stated another way, the
input geometries for the tail-furl assembly components
define the tail configuration when the tail-furl angle is
zero regardless of initial tail-furl position. Users
should be clear of this convention when assembling
their furling input file. Further clarification on this
furling geometry convention is provided in the Rotor-
Furl section above.

Rotor-Teeter
For two-bladed turbines, FAST can model a

teetering rotor. To enable the teeter DOF, set
TeetDOF to True.

The teeter bearing can be an ideal bearing with no
friction by setting TeetMod to 0; by setting TeetMod
to 1, it also has a standard model that includes a spring,
stop, and damper. FAST models the spring with a
linear function of teeter deflection. The teeter stop
starts at a specified angle and works as a linear spring
based on the deflection past the stop angle. The teeter
damper is a linear function of teeter rate that starts at a
specified angle.

A user-defined teeter-spring and damper model is
also available. To use it, set TeetMod to 2 and create
a subroutine entitled UserTeet() with the parameters
TeetDef, TeetRate, ZTime, DirRoot, and TeetMom:

TeetDef: Current teeter deflection in radians
(input)

TeetRate: Current teeter rate in rad/sec (input)
ZTime: Current simulation time in sec (input)
DirRoot: Simulation root name including the

full path to the current working
director (input)

TeetMom: Teeter moment in N·m (output)

FAST User's Guide 15 Last updated on August 12, 2005 for version 6.0

The source file UserSubs.f90 contains a dummy
UserTeet() routine; replace it with your own and
rebuild FAST. Within routine UserTeet() you have
the option of switching the rotor-teeter DOF on-or-off
at runtime by overriding input TeetDOF. You can
also access the current value of any output parameter
available from FAST without changing the number of
arguments passed to the routine. Please see the dummy
UserTeet() routine for a description of how to take
advantage of these incredibly flexible features.
Parameter DirRoot may be used to write a record of
what is done in UserTeet() to be stored with the
simulation results.

FAST also allows you to specify a δ3 angle for the
teeter hinge. By teetering about an angle that is not
perpendicular to the blades, you can introduce
flap/pitch coupling to your rotor. This is thought to
add aerodynamic restoring forces to the blade. Positive
δ3 will cause the leading edge of the downwind-most
blade to feather into the wind. This is illustrated in
Figure 15. See Malcolm’s paper (10) for an analysis of
δ3.

Support Platform
You can model the support platform in an onshore

foundation, fixed bottom offshore foundation, or
floating offshore configuration by setting the value of
input switch PtfmModel from the primary input file to
1, 2, or 3, respectively. Setting PtfmModel to 0
disables the platform models—in this case, FAST will
rigidly attach the tower to the inertia frame (ground)
through a cantilever connection.

The support platform model properties are
designated using the input parameters available in the
platform input file, PtfmFile. In FAST v6.0, all
nonzero PtfmModel options work the same way by
reading in PtfmFile. In future versions, the format of
this file will depend on which PtfmModel option is
selected.

A layout of the configuration properties available
for the support platform is given in Figure 20. The
platform reference point, located by input parameter
PtfmRef, is the origin in the platform about which the
translational (surge, sway, and heave) and rotational
(roll, pitch, and yaw) motions of the support platform
are defined. It is also the point at which external
loading is applied to the platform.

In FAST v6.0, only user-defined platform loading
is available. For a value of 0 for PtfmLdMod
(available in PtfmFile), there will be no platform
loading and the support reactions normally produced
will be set to zero (causing the wind turbine to fall due
to gravity if PtfmHvDOF is True).

If you set PtfmLdMod to 1, FAST will call a user
defined routine named UserPtfmLd() to compute the
platform loading. The platform loads returned by
UserPtfmLd() should contain contributions from any

external load acting on the platform other than loads
transmitted from the wind turbine. For example, these
loads should contain contributions from foundation
stiffness and damping [not floating] or mooring line
restoring and damping [floating], as well as hydrostatic
and hydrodynamic contributions [offshore]. The
platform loads will be applied on the platform at the
instantaneous platform reference position (located by
input PtfmRef).

To use this feature, set PtfmLdMod to 1 and create
a subroutine entitled UserPtfmLd() with the
parameters X(6), XD(6), ZTime, DirRoot,
PtfmAM(6,6), and PtfmFt(6):

X(6): A vector of size 6 containing the 3
components of the current platform
translational displacement in meters
and the 3 components of the current
platform rotational displacement in
radians (input)

XD(6): A vector of size 6 containing the 3
components of the current platform
translational velocity in m/sec and
the 3 components of the current
platform rotational (angular) velocity
in rad/sec (input)

ZTime: Current simulation time in sec (input)
DirRoot: Simulation root name including the

full path to the current working
director (input)

PtfmAM(6,6): A symmetric matrix of size 6 X 6
containing the current added mass
matrix of the platform with units of
kg, kg·m and kg·m2 (output)

PtfmFt(6): A vector of size 6 containing 3
translational and 3 rotational
components of the current portion of
the platform load, with units of N and
N·m, associated with everything but
the added mass effects (output)

As implied by the outputs above, the routine
assumes that the platform loads are transmitted through
a medium like soil [foundation] and/or water
[offshore], so that added mass effects are important.
Consequently, the routine assumes that the total
platform load can be written as:

 PtfmF(i) = SUM(-PtfmAM(i,j)•XDD(j), j = 1,2,…,6)
 + PtfmFt(i) (for i = 1,2,…,6)

where,

PtfmF(i): The ith component of the total load
applied on the platform; positive in
the direction of positive motion of
the ith DOF of the platform

PtfmAM(i,j): The (i,j) component of the platform
added mass matrix

FAST User's Guide 16 Last updated on August 12, 2005 for version 6.0

XDD(j): The jth component of the platform
acceleration vector

PtfmFt(i): The ith component of the portion of
the platform load associated with
everything but the added mass
effects; positive in the direction of
positive motion of the ith DOF of the
platform

The order of indices in all arrays passed to and
from routine UserPtfmLd() is asfollows:

1 = Platform surge / xi-component of platform
translation

2 = Platform sway / yi-component of platform
translation

3 = Platform heave / zi-component of platform
translation

4 = Platform roll / xi-component of platform
rotation

5 = Platform pitch / yi-component of platform
rotation

6 = Platform yaw / zi-component of platform
rotation

The source file UserSubs.f90 contains a dummy
UserPtfmLd() routine; replace it with your own and
rebuild FAST. Within routine UserPtfmLd() you have
the option of switching the platform DOFs on-or-off at
runtime by overriding inputs PtfmSgDOF,
PtfmSwDOF, PtfmHvDOF, PtfmRDOF,
PtfmPDOF, and PtfmYDOF. You can also access the
current value of any output parameter available from
FAST without changing the number of arguments
passed to the routine. Please see the dummy
UserPtfmLd() routine for a description of how to take
advantage of these incredibly flexible features.
Parameter DirRoot may be used to write a record of
what is done in UserPtfmLd() to be stored with the
simulation results.

When using UserPtfmLd(), please note that the
hydrostatic restoring contribution to the hydrodynamic
force returned by the routine should not contain the
effects of body weight, as is often done in classical
marine hydrodynamics. The effects of body weight are
included within FAST and ADAMS.

Rotor Aerodynamics
The AeroDyn aerodynamic subroutine library

supplies the aerodynamics algorithms for the rotor.
Although we include descriptions of the parameters in
the AeroDyn input file in Table 11, please refer to the
AeroDyn User’s Guide (1) for most of the details on
this package. Input flag CompAero can be used to
disable aerodynamics calculations while debugging a
model.

Tail Fin Aerodynamics
Your model can optionally include tail fin

aerodynamic loads. In order to include them, you must
designate the turbine as a furling machine by setting
input Furling from the primary input file to True and
then assemble the furling input file, FurlFile. A furling
model may also exclude tail fin aerodynamic loads by
setting TFinMod in FurlFile to 0.

You can choose to invoke a simple tail fin
aerodynamics model built into FAST by setting
TFinMod to 1. By accessing information from
AeroDyn, this model computes the relative velocity of
the wind-inflow and its angle of attack relative to the
tail fin chordline and uses an AeroDyn airfoil table
chosen by the user (TFinNFoil) to determine the lift
and drag forces acting at the tail fin center-of-pressure.
Set SubAxInd to False if you want the wind velocity at
the tail fin to be unobstructed by the rotor wake. Set
SubAxInd to True if you want FAST to decrease (i.e.,
subtract) the wind velocity at the tail fin center-of-
pressure by the average rotor induced velocity in the
rotor shaft direction.

You also have the option of implementing far
more sophisticated tail fin aerodynamics models by
supplying your own routines that can easily be linked
with the rest of FAST. To do this, set TFinMod to 2
and create a subroutine entitled UserTFin(). The
source file UserSubs.f90 contains a dummy
UserTFin() routine; replace it with your own and
rebuild FAST. The routine that calls UserTFin()
passes the tail-furl angle and rate and tail-fin center-of-
pressure location and velocity and expects the angle of
attack, lift and drag coefficients, local dynamic
pressure, as well as the normal and tangential forces to
be returned. But within routine UserTFin(), you have
the ability to access the current value of any output
parameter available from FAST without changing the
number of arguments passed to the routine. Please see
the supplied dummy routine in UserSubs.f90 for further
details.

FAST User's Guide 17 Last updated on August 12, 2005 for version 6.0

Figure 14. Layout of a conventional, downwind, two-bladed turbine (a) and a close-up of its hub
(b).

Wind

Teeter Pin

UndSling

HubCM

OverHang

Teeter Pin

HubRad
Pitch Axis

Rotor Axis

TipRad

TowerHt
Apex of Cone

of Rotation

Hub C.M.

Nacelle C.M.

(a)
(b)

PreCone

Teeter

Apex of Cone
of Rotation

Yaw Axis

Rotor Axis

Twr2Shft
NacCMzn

NacCMxn

ShftTilt

Yaw Bearing
C.M.

NcIMUzn

NcIMUxn

Nacelle IMU

FAST User's Guide 18 Last updated on August 12, 2005 for version 6.0

Figure 15. Layout of a two-bladed rotor illustrating δ3.

Teeter
Axis

Looking
Downwind

+δ3

Direction
of

Rotation

Leading Edge

FAST User's Guide 19 Last updated on August 12, 2005 for version 6.0

Figure 16. Layout of a conventional, upwind, three-bladed turbine.

Wind

Rotor Axis

Yaw Axis

TipRad

Precone
(negative as shown)

Apex of Cone
of Rotation

ShftTilt
(negative as shown)

OverHang

Nacelle C.M.

Hub C.M.

HubCM
(negative as shown)

Pitch Axis

HubRad

TowerHt

(negative as shown) Twr2Shft

Yaw Bearing
C.M.

NacCMzn

NacCMxn

NcIMUzn

NcIMUxn

Nacelle IMU

FAST User's Guide 20 Last updated on August 12, 2005 for version 6.0

Figure 17. Layout of a three-bladed, upwind, furling turbine: furl axes.

zn

yn

xn

Tail-furl
axis

Arbitrary point on
rotor-furl axis

Arbitrary point on
tail-furl axis

Rotor-furl
axis

Yaw bearing
C.M.

Rotor-furl

Tail-furl

Wind

FAST User's Guide 21 Last updated on August 12, 2005 for version 6.0

Figure 18. Layout of a three-bladed, upwind, furling turbine: rotor-furl structure

zn

yn

xn

Rotor shaft
axis

C.M. of structure that
furls with the rotor [not

including rotor]

Rotor
rotation

Wind

Yaw bearing
C.M.

FAST User's Guide 22 Last updated on August 12, 2005 for version 6.0

Figure 19. Layout of a three-bladed, upwind, furling turbine: tail-furl structure.

zn

yn

xn

Tail fin
chordline

Tail boom
C.M.

Tail fin
C.M.

Tail fin
C.P.

Yaw bearing
C.M.

Wind

Tail fin x

Tail fin z

Tail fin y

FAST User's Guide 23 Last updated on August 12, 2005 for version 6.0

Figure 20. Support platform / foundation layout.

Wind

TowerHt

TwrDraft

PtfmCM

Yaw Bearing
C.M.

Yaw Axis

PtfmRef

Ground Level [onshore] or
Mean Sea Level [offshore]

Platform C.M.

Platform
Reference Point

Support
Platform

Tower

Surge

Roll

Sway

Pitch

Yaw

Heave

Tower Base

FAST User's Guide 25 Last updated on August 12, 2005 for version 6.0

CONTROLS

General Description
During time-marching analyses, FAST makes it

possible to control your turbine and model specific
conditions in many ways. Five basic methods of
control are available: pitching the blades, controlling
the generator torque, applying the HSS brake,
deploying the tip brakes, and yawing the nacelle. The
simpler methods of controlling the turbine require
nothing more than setting some of the appropriate input
parameters in the Turbine Control section of the
primary input file. Methods of control that are more
complicated require you to either write your own
routines, compile them, and link them with the rest of
the program or implement your own routines in a
Simulink model with which FAST can be interfaced to.
For information on linking FAST with your own user-
defined controllers, please see the Compiling FAST
chapter. For information on interfacing FAST with
Simulink, please see the Simulink Interface chapter.

To aid in wind turbine controls design and
analysis, linearization routines are also included in
FAST. Please reference the Linearization chapter for
documentation on linearization functionality.

Blade Pitch Control
One of the most common forms of turbine control

is full-span blade pitch control. To disable active pitch
control, set the PCMode switch to 0.

Setting PCMode to 1 will cause FAST to call a
user-written routine called PitchCntrl() at every time
step.

A. Craig Hansen wrote a real pitch-control routine,
and we supply that in the file PitchCntrl_ACH.f90.
This routine is linked with the executable version of
FAST distributed in the archive. Craig’s routine
controls either power (Region 2) or rotor speed
(Region 3) with collective pitch control. The value of
CntrlRgn, a parameter specified in an input file named
Pitch.ipt, which Craig’s routine calls, determines the
type of control used. An example Pitch.ipt file is
located in FAST’s CertTest folder. The data in this file
are for the WindPACT 15A1001 model. Unless you
are modeling that turbine, you will need to replace his
Pitch.ipt file with your own. Please contact Craig
Hansen for additional information on this pitch
controller.

Additionally, A dummy version of routine
PitchCntrl() is available (but commented out) in source
file UserSubs.f90. You can write your own routine
here and link it with FAST, though this option requires
the use of a compiler. This user-defined pitch control
routine can act independently for each blade or be

rotor-collective. Within routine PitchCntrl() you have
the ability to access the current value of any output
parameter available from FAST without changing the
number of arguments passed to the routine. Please see
the dummy PitchCntrl() routine for a description of
how to take advantage of this incredibly flexible
feature.

There is no pitch actuator model built into FAST
(though there is in ADAMS datasets generated by
FAST); thus, you must implement your own actuator
model into routine PitchCntrl() if you want to include
actuator dynamics effects.

When using the PitchCntrl() routine, you can
delay the time it becomes effective by setting the
TPCOn parameter to a value greater than zero and
BlPitchi to the initial blade pitch angles. In this case,
routine PitchCntrl() will not be called until time
TPCOn is reached.

Setting PCMode to 2 causes FAST to accept pitch
demands externally from Simulink. In this case,
TPCOn must be set to zero since the authority to start
and stop the controller is reserved for the Simulink
model. You must be using FAST as a DLL interfaced
with Simulink in order to use this feature. Please see
the Simulink Interface chapter for further details.

Although the input file includes a parameter for
partial-span pitch (PSpnElN), we have not yet
implemented this feature in the code.

With or without pitch control enabled, after time
TPitManSi, the ith blade will pitch to BlPitchFi using a
linear ramp from its current value at TPitManSi until
TPitManEi. If pitch control is enabled when PCMode
is not 0, the pitch commands determined from inputs
TPitManSi, TPitManEi, and BlPitchFi override
whatever commands come from the pitch controller.
You can use TPitManSi and TPitManEi to simulate a
pitch for startup, shutdown, or runaway fault pitch
event. By setting one blade different from the other(s),
you can simulate a fault condition in which one blade
unexpectedly pitches or fails to pitch.

For a constant-pitch simulation, set PCMode to 0,
TPitManSi greater than TMax, and BlPitchi to the
fixed blade pitch angles.

The flowchart provided in Figure 21 explains how
the program uses the blade pitch control input
parameters during runtime, as described above. In this
flowchart, BlPitchi is the instantaneous blade pitch
angle and BlPitchComi is the instantaneous blade pitch
angle command of blade i (i = 1, 2, or 3 for blades 1, 2,
or 3, respectively is implied).

FAST User's Guide 26 Last updated on August 12, 2005 for version 6.0

Figure 21. Flowchart of Blade Pitch Control Runtime Options.

Variable-Speed Torque Control
Variable-speed generator torque control is another

common form of turbine control. To disable active
torque control, set the VS_Contrl switch to 0—in this
case, FAST will use one of the generator models as
described in the Generator section of the Model
Description chapter.

We supply a simple variable-speed control system
that uses input parameters VS_RtGnSp, VS_RtTq,
VS_Rgn2K, and VS_SlPc and results in the
torque/speed curve seen in Figure 22. You can enable
this control system by setting VSContrl to 1.

Generator Speed

G
en

er
at

or
 T

or
qu

e

VS_RtGnSp

VS_Rgn2K•(GenSpd^2)

Region 2

Region 3

Cut In
Region 2 1/2

VS_RtTq

VS_SlPc

Figure 22. Torque/speed curve for simple

variable-speed control.

As shown, this simple variable-speed control
model distinguishes between Region 2 (maximum-
power control), Region 3 (constant-torque control), and
Region 2½ (linear transition). Region 2½ is a linear
transition between Regions 2 and 3, with a torque slope
corresponding to the slope of an equivalent induction
machine. Region 2½ is commonly needed since a wind
turbine does not typically reach rated torque at its rated
speed using Region 2’s control law [i.e., the optimal
gain VS_Rgn2K is typically lower than that which
would make VS_RtTq = VS_Rgn2K • (
VS_RtGnSp^2), since the rated speed, VS_RtGnSp,
is generally limited from optimal in order to limit tip
speed for noise reasons]. If you want to effectively
eliminate Region 2½ from this model, set VS_RtTq =
VS_Rgn2K • (VS_RtGnSp^2) and VS_SlPc =
9999.9E-9 (a very small don’t care > 0.0).

A setting of 2 for VSContrl will tell FAST to call
a user-written routine named UserVSCont() at every
time step after the generator is turned on. Kirk Pierce
wrote an example routine when he worked at NREL
and this routine, which is contained in source file
UserVSCont_KP.f90, is linked with the executable
version of FAST that is distributed in the archive. His
routine uses a table lookup scheme with a built-in time
delay, which reads data from a file named Spd_Trq.dat,
an example of which is located in FAST’s CertTest
folder. The data in this file are for the Small Wind
Research Turbine (SWRT). Unless you are modeling
that turbine, you will need to replace his Spd_Trq.dat

Finish
User-Written Subroutine:
BlPitchCom i defined by

PitchCntrl ()

FAST/Simulink Interface:
BlPitchCom i defined

externally from Simulink

0

1

2

PCMode
setting?

Time <
TPCOn

?

False True

Time Integration:
Time = Time + DT

Time <
TMax

?

TrueFalse

Equations of Motion
Time <

TPitManSi
?

False True

Override Pitch Maneuver:
BlPitchCom i = F(TPitManSi,
TPitManEi, BlPitchFi, Time,
BlPitchi@Time=TPitManSi)

No Pitch Actuator:
BlPitch i = BlPitchComi

Initialization:
BlPitchCom i = BlPitchi

Start:
Time = 0

BlPitchi = BlPitchi (IC)

FAST User's Guide 27 Last updated on August 12, 2005 for version 6.0

file with your own. Please note that Kirk Pierce’s
routine only works when GBRatio is set to 1.0.

Additionally, A dummy version of routine
UserVSCont() is available (but commented out) in
source file UserSubs.f90. You can write your own
routine here and link it with FAST, though this option
requires the use of a compiler. The routine that calls
UserVSCont() passes the HSS speed and expects the
electrical generator torque and electrical power to be
returned. But within routine UserVSCont(), you have
the ability to access the current value of any output
parameter available from FAST without changing the
number of arguments passed to the routine. Also, you
have the option of switching the generator DOF on-or-
off at runtime within UserVSCont() by overriding
input GenDOF. Please see the supplied dummy
routine in UserSubs.f90 for further details.

Setting VSContrl to 3 causes FAST to accept
electrical generator torque and electrical power
demands externally from Simulink. In this case, the
authority to start and stop the generator is reserved for
the Simulink model. Thus, GenTiStr and GenTiStp
must be set to True, TimGenOn must be set to zero,
and TimGenOf must be set greater than TMax. You
must be using FAST as a DLL interfaced with
Simulink in order to use this feature. Please see the
Simulink Interface chapter for further details.

The flowchart provided in Figure 23 explains how
the program uses the variable-speed torque control
input parameters during runtime, as described above.
In this flowchart, GenTq is the instantaneous electrical
generator torque, GenPwr is the instantaneous
electrical generator power, and GenSpeed is the
instantaneous HSS (generator) speed. The additional
logic presented in the flowchart explains how the
program uses the generator model and HSS brake
control input parameters during runtime.

HSS Brake Control
By default, the HSS brake is disabled at the

beginning of a run. At time THSSBrDp, the brake
will start to deploy. If you do not want the brake to
deploy during a given run, set THSSBrDp to a value
greater than TMax.

If you set HSSBrMode to 1, FAST will use a
simple HSS brake model in which the brake torque will
ramp linearly from zero at time THSSBrDp to full
brake torque of HSSBrTqF over HSSBrDT seconds.
The HSS brake is based on the Coulomb model of

sliding friction. Once full brake torque is reached, the
magnitude of the torque is constant as long as the shaft
speed is nonzero. When the speed is zero, the torque
takes on any value to prevent motion of the shaft (the
HSS can only move again if the external torque
exceeds the full braking torque).

A user-defined HSS brake model is also available.
Set HSSBRMode to 2 to tell FAST to call the user-
written routine named UserHSSBr() at every time step
after time THSSBrDp. A dummy version of routine
UserHSSBr() is available in source file UserSubs.f90.
You can write your own routine here and link it with
FAST, though this option requires the use of a
compiler. The routine that calls UserHSSBr() passes
the HSS speed and time and expects the fraction of
full braking torque to be returned (0.0 = off – no brake
torque, 1.0 = full brake torque). As in the simple HSS
brake model, the magnitude of the full breaking torque
is specified in input HSSBrTqF. The fraction of full
braking torque may continually vary, permitting you to
continually switch the HSS brake on and off during the
simulation. Input HSSBrDT is ignored when
HSSBRMode is set to 2.

Within routine UserHSSBr(), you have the ability
to access the current value of any output parameter
available from FAST without changing the number of
arguments passed to the routine. Also, you have the
option of switching the generator DOF on-or-off at
runtime within UserHSSBr() by overriding input
GenDOF. Please see the supplied dummy routine in
UserSubs.f90 for further details.

The flowchart provided in Figure 23 explains how
the program uses the HSS brake control input
parameters during runtime, as described above. In this
flowchart, HSSBrFrac is the instantaneous fraction of
full braking torque [limited to values between 0.0 and
1.0 (inclusive)] and GenSpeed is the instantaneous
HSS (generator) speed. The additional logic presented
in the flowchart explains how the program uses the
variable-speed and generator model control input
parameters during runtime.

FAST User's Guide 28 Last updated on August 12, 2005 for version 6.0

Figure 23. Flowchart of Variable-Speed, Generator, and HSS Brake Control Runtime Options.

Nacelle Yaw Control
You can actively control the nacelle-yaw motion

during a simulation. To disable active yaw control, set
YCMode to 0.

Setting YCMode to 1 will cause FAST to call a
user-written routine called UserYawCont() at every
time step. A dummy version of routine
UserYawCont() is available in source file
UserSubs.f90. You can write your own routine here
and link it with FAST, though this option requires the
use of a compiler. Though there are a few others, the
most important arguments of routine UserYawCont()
are as follows:

YawPos: Current nacelle-yaw angular position
in radians (input)

YawRate: Current nacelle-yaw angular rate in
rad/sec (input)

WindDir: Current horizontal hub-height wind
direction (positive about the zt-axis)
in radians (input)

YawError: Current nacelle-yaw error estimate
(positive about the zt-axis) in radians
(input)

ZTime: Current simulation time in sec (input)
YawPosCom: Commanded nacelle-yaw angular

position (demand yaw angle) in
radians (output)

YawRateCom:Commanded nacelle-yaw angular
rate (demand yaw rate) in rad/sec
(output)

As indicated, the yaw controller must always
specify a command (demand) yaw angle,
YawPosCom, and command (demand) yaw rate,
YawRateCom. Normally, you should correlate these
commands so that the commanded yaw angle is the
integral of the commanded yaw rate, or likewise, the
commanded yaw rate is the derivative of the
commanded yaw angle. FAST will not compute these
correlations for you and does not check to ensure that
they are correlated. In some situations, it is desirable
to set one of the commands (either yaw angle or yaw
rate) to zero depending on the desired transfer function
of FAST's built-in actuator model (see below for a

User-Written Subroutine:
GenTq & GenPwr defined

by UserVSCont()

Simple Variable-Speed Control:
GenTq & GenPwr = F(GenSpeed , VS_RtGnSp ,

VS_RtTq , VS_Rgn2K, VS_SlPc, GenEff)

Simple Induction Generator:
GenTq & GenPwr = F(GenSpeed, SIG_SlPc,
SIG_SySp, SIG_RtTq, SIG_PORt, GenEff)

FAST/Simulink Interface:
GenTq & GenPwr defined
externally from Simulink

Thevenin-Equivalent Induction Generator:
GenTq & GenPwr = F(GenSpeed,

TEC_Freq , TEC_NPol , TEC_SRes,
TEC_Rres , TEC_VLL , TEC_SLR,

TEC_RLR, TEC_MR)

GenTiStp
Enabled?

GenTiStr
Enabled?

GenSpeed
>=

SpdGenOn
?

Time >=
TimGenOf

?

GenPwr
<= 0

?

GenDOF
Enabled?

TrueFalse TrueFalse

0

1

2

3

1

2

3

TrueTrue TrueTrueFalseFalse FalseFalse

GenTq = 0
GenPwr = 0

TrueFalse

Time Integration:
Time = Time + DT

GenSpeed = F(GenSpeed , GenAccel)

Time >=
TimGenOn

?

Has the
generator
ever been

online?

False True
Start:

Time = 0
GenSpeed =

GBRatio*RotSpeed (IC)

Is the
generator
offline?

False True User-Written Subroutine:
GenTq & GenPwr defined

by UserGen()

Generator is offline

Generator is online
VSContrl
setting?

GenModel
setting?

Time <
TMax

?

TrueFinish False

Equations of Motion:
GenAccel = 0

Equations of Motion:
GenAccel =

F(GenTq+HSSBrTq , etc.)

Simple HSS Brake Control:
HSSBrFrac = F(THSSBrDp ,

HSSBrDT , Time)

HSSBrMode
setting?

User-Written Subroutine:
HSSBrFrac defined by

UserHSSBr()

1

2Apply HSS Brake:
HSSBrTq = SIGN(HSSBrFrac *HSSBrTqF , GenSpeed)

HSSBrFrac = 0
Time >=

THSSBrDp
?

TrueFalse

FAST User's Guide 29 Last updated on August 12, 2005 for version 6.0

discussion of FAST's built-in actuator model). In
general, the commanded yaw angle and rate should
never be defined independent of each other with both
commands nonzero.

Setting YCMode to 2 causes FAST to accept
demand yaw angles and rates externally from
Simulink. You must be using FAST as a DLL
interfaced with Simulink in order to use this feature.
Please see the Simulink Interface chapter for further
details.

The yaw controller's effect on the FAST model
depends on whether or not the yaw DOF is enabled. If
the yaw DOF is disabled (YawDOF = False), then the
commanded yaw angle and rate from routine
UserYawCont() or Simulink will be the actual yaw
angle and yaw rate used internally by FAST (in
general, you should ensure these are correlated). In
this case, any desired actuator effects should be built
within the yaw control routine. Also in this case,
FAST will not compute the correlated yaw
acceleration, but assume that it is zero. If the
commanded yaw rate is zero while the commanded
yaw angle is changing in time, then the yaw controller's
effect on yaw angle is the identical to routine
PitchCntrl()'s effect on pitch angle (i.e., routine
PitchCntrl() commands changes in pitch angle with no
associated changes in pitch rate or pitch acceleration).
For yaw control, this situation should be avoided
however, since yaw-induced gyroscopic pitching loads
on the turbine brought about by the yaw rate may be
significant.

If the nacelle yaw DOF is enabled (YawDOF =
True), then the commanded yaw angle and rate from
routine UserYawCont() or Simulink become the
neutral yaw angle, YawNeut, and neutral yaw rate,
YawRateNeut, in FAST's built-in second-order
actuator model defined by inputs YawSpr and
YawDamp. In the time domain, the equation for the
yaw DOF is then:

YawIner•YawAccel + YawDamp•YawRate +
YawSpr•YawPos =
YawDamp•YawRateNeut +
YawSpr•YawNeut + YawTq

where YawIner is the instantaneous inertia of the
nacelle, rotor, and tail about the yaw axis and YawTq
is the torque about the yaw axis applied by external
forces above the yaw bearing, such as wind loading.
Thus, the torque transmitted through the yaw bearing,
YawMom, is:

YawMom = YawSpr• (YawPos – YawNeut) +
YawDamp• (YawRate – YawRateNeut)

If the commanded yaw angle and rate are
correlated (so that the commanded yaw angle is the
integral of the commanded yaw rate, or likewise, the
commanded yaw rate is the derivative of the

commanded yaw angle), then FAST's built-in second-
order actuator model will have the following
characteristic transfer function, T(s):

T(s) = YawDamp•s + YawSpr
 YawIner•s2 + YawDamp•s + YawSpr
 = 2•ζ•ω n•s + ω n

2
 s2 + 2•ζ•ωn•s + ωn

2

where ωn = SQRT(YawSpr/YawIner) is the yaw
actuator natural frequency in rad/sec and ζ =
YawDamp / (2•SQRT(YawSpr•YawIner)) is the
yaw actuator damping ratio in fraction of critical.

If only the yaw angle is commanded, and
YawRateCom is zeroed, then the charecteristic
transfer function of FAST's built-in second-order
actuator model simplifies to:

T(s) = YawSpr
 YawIner•s2 + YawDamp•s + YawSpr
 = ω n

2
 s2 + 2•ζ•ωn•s + ωn

2

If only the yaw rate is commanded, and
YawPosCom is zeroed, then the charecteristic transfer
function of FAST's built-in second-order actuator
model simplifies to:

T(s) = YawDamp
 YawIner•s2 + YawDamp•s + YawSpr
 = 2•ζ•ω n
 s2 + 2•ζ•ωn•s + ωn

2

Within routine UserYawCont() you have the
option of switching the nacelle-yaw DOF on-or-off at
runtime by overriding input YawDOF. You can also
access the current value of any output parameter
available from FAST without changing the number of
arguments passed to the routine. Please see the dummy
UserYawCont() routine for a description of how to
take advantage of these incredibly flexible features.

When using the UserYawCont() routine, you can
delay the time it becomes effective by setting the
TYCOn parameter to a value greater than zero and
NacYaw and YawNeut to the initial nacelle yaw angle
and neutral yaw position, respectively (the neutral yaw
rate, YawRateNeut, is always assumed zero until
active yaw control is enabled). In this case, routine
UserYawCont() will not be called until time TYCOn
is reached. TYCOn must be set to zero when
controlling yaw from Simulink, when YCMode is set
to 2, since the authority to start and stop the yaw
controller is reserved for Simulink.

With or without yaw control or the yaw DOF
enabled, after time TYawManS, the nacelle will yaw
to NacYawF using a linear ramp from its current value
at TYawManS until TYawManE. If yaw control is
enabled when YCMode is not 0, the yaw commands
determined from inputs TYawManS, TYawManE,
and NacYawF override whatever commands come

FAST User's Guide 30 Last updated on August 12, 2005 for version 6.0

from the yaw controller. Also, the yaw commands
determined from inputs TYawManS, TYawManE,
and NacYawF pass through FAST’s built-in second-
order actuator model if the yaw DOF is enabled when
YawDOF is set to True. You can use TYawManS and
TYawManE to simulate a yaw for startup, shutdown,
or runaway yaw event.

For a fixed-yaw simulation, set YawDOF to False,
YCMode to 0, TYawManS greater than TMax, and
NacYaw to the fixed nacelle yaw angle.

You can also enable passive nacelle-yaw control
during a simulation. Please see the Nacelle Yaw
section in the Model Description chapter for
information on passive yaw control options.

The flowchart provided in Figure 24 explains how
the program uses the nacelle yaw control input
parameters during runtime, as described above.

Figure 24. Flowchart of Nacelle Yaw Control Runtime Options.

Master Controllers and the Bladed-
Style DLL Interface

In the Source folder of the FAST archive, we
distribute a source file named BladedDLLInterface.f90.
This source file contains example PitchCntrl(),
UserHSSBr(), UserVSCont(), and UserYawCont()
routines that may be used to interface FAST with a
master controller implemented as a dynamic-link-
library (DLL) in the style of Garrad Hassan's Bladed

wind turbine software package. All four routines call
routine BladedDLLInterface(), which contains a call
to the Bladed-style DLL that evaluates as DISCON().
See Figure 25 for a schematic. Routine
BladedDLLInterface() USEs a MODULE named
BladedDLLParameters(), which stores values of
PARAMETER constants used in the interface.
Routines BladedDLLInterface() and
BladedDLLParameters() are also contained in source
file BladedDLLInterface.f90.

Finish

User-Written Subroutine:
YawPosCom & YawRateCom

defined by UserYawCont()

FAST/Simulink Interface:
YawPosCom & YawRateCom

defined externally from Simulink

0

1

2

YCMode
setting?

Time <
TYCOn

?

False True

YawDOF
Enabled?

TrueFalse

Time Integration:
Time = Time + DT

YawPos = F(YawPos , YawRate)
YawRate = F(YawRate , YawAccel)

Time <
TMax

?

TrueFalse

Equations of Motion:
YawAccel = 0

Equations of Motion:
YawAccel = F(YawMom, etc.)

Yaw Actuator:
YawNeut = YawPosCom

YawRateNeut = YawRateCom
YawMom = YawSpr*(YawPos-YawNeut)
+ YawDamp*(YawRate -YawRateNeut)

Time <
TYawManS

?

False True

Override Yaw Maneuver:
YawPosCom & YawRateCom =

F(TYawManS, TYawManE, NacYawF,
Time, YawPos@Time=TYawManS)

No Yaw Actuator:
YawPos = YawPosCom

YawRate = YawRateCom

YawDOF
Enabled?

TrueFalse

Initialization:
YawPosCom = YawPos

YawRateCom = YawRate

Initialization:
YawPosCom = YawNeut

YawRateCom = 0

Start:
Time = 0

YawPos = NacYaw (IC)
YawRate = 0

FAST User's Guide 31 Last updated on August 12, 2005 for version 6.0

Figure 25. Interface to a Bladed-Style Master Controller DLL.

Source file BladedDLLInterface.f90 is useful if
you have a DLL controller created for a Bladed model
and you want to use the same controller for your FAST
model. This source file is also a useful template if you
prefer to control pitch, HSS brake torque, electrical
generator torque, and/or nacelle yaw with a single
master controller, regardless of whether or not you use
the Bladed code and regardless of whether or not you
want to work with DLLs. As it is developed, the same
source file can be used to interface both FAST and
ADAMS to Bladed-style master controller DLLs.

In order to use these routines, you must first set the
values of the PARAMETERs contained in MODULE
BladedDLLParameters() as required by your model.
These PARAMETERs are model-specific inputs
available in the Bladed code, which are not available
inputs in FAST, and are passed to the Bladed DLL in
this interface. You must then comment-out the dummy
placeholder versions of routines PitchCntrl(),
UserHSSBr(), UserVSCont(), and UserYawCont()
contained in source file UserSubs.f90 and recompile
FAST with the addition of source file
BladedDLLInterface.f90—see the Compiling FAST
chapter for more information. The executable version
of FAST that is distributed with the archive is not
linked with the routines contained within source file
BladedDLLInterface.f90. After you have compiled
FAST with the routines in BladedDLLInterface.f90,
you must modify several input parameters from the
primary input file in order to use the Bladed-style
controller. These parameters and the necessary settings
are listed in Table 3 (these conditions are not tested by
these example routines).

This interface is valid for DLLs of the style
specified in Appendices A and B of the Bladed User
Manual of Bladed version 3.6 (2). The documentation
provided there is not repeated here. If you are running
FAST using a master controller DLL developed in
Bladed, please be aware of the differences indicated in
Table 4 between this interface and Bladed's interface.

Table 3. Parameter Settings to be Used
With Bladed-Style Master Controller DLLs.

Parameter Setting Reason
YCMode 1 Tells FAST to use routine

UserYawCont() for active
yaw control

TYCOn 0.0 Tells FAST to start active
yaw control at the
beginning of the simulation

PCMode 1 Tells FAST to use routine
PitchCntrl() for active pitch
control

TPCOn 0.0 Tells FAST to start active
pitch control at the
beginning of the simulation

VSContrl 2 Tells FAST to use routine
UserVSCont() for active
variable-speed torque
control

GenTiStr True Tells FAST to start torque
control based on time
TimGenOn

GenTiStp True Tells FAST to stop torque
control based on time
TimGenOf

Blade Pitch
Control

PitchCntrl()

Nacelle Yaw
Control

UserYawCont()

Variable-Speed
Control

UserVSCont()

Aeroelastic
Model

(FAST,
ADAMS)

Blade Pitch
Angles

Nacelle Yaw
Angle and Rate

Control Measurements

Gen. Torque
and Power

Override
Maneuvers

Interface to
Master

Controller
BladedDLL
Interface()

IF (Time-LastTime
 >=DT) THEN

 LastTime=Time

 CALL DISCON

ENDIF

Master Controller
(Bladed-Style DLL)

DISCON()

HSS Brake
Control

UserHSSBr()Fraction of Full
Brake Torque

FAST User's Guide 32 Last updated on August 12, 2005 for version 6.0

TimGenOn 0.0 Tells FAST to start torque
control at the beginning of
the simulation

TimGenOf >TMax Tells FAST not to stop
controlling torque
throughout the simulation

HSSBrMode 2 Tells FAST to use routine
UserHSSBr() for control
of the HSS brake

THSSBrDp 0.0 Tells FAST to start HSS
brake torque control at the
beginning of the simulation

Table 4. Differences Between FAST’s and

Bladed’s Interface to Master Controller DLLs.

Record Difference
1 The status flag is not set to -1 for the final

call at the end of the simulation
10 The pitch actuator type is always set to 0

by FAST, indicating pitch position
actuator; as such, the returned value of
Record 46, demanded pitch rate
(Collective pitch), is always ignored

29 The yaw control type is always set to 0 by
FAST indicating yaw rate control; as such,
the returned value of Record 41, demanded
yaw actuator torque, is always ignored

35 The generator contactor status, is
initialized to 1 by FAST indicating main
(high speed) or variable speed generator;
the generator can be turned off in the DLL
by setting Record 35 to 0 or by setting
Record 47 to 0.0; if the DLL redefines
Record 35 to something other than 0 or 1
(such as 2 = low speed generator), the
program will abort

41 The demanded yaw actuator torque is
always ignored in accordance with the
specification of Record 29

46 The demanded pitch rate (Collective pitch)
is always ignored in accordance with the
specification of Record 10

55 The pitch override returned by the DLL
must be set to 0 indicating no override
(i.e., pitch demands come for the DLL);
the program will abort otherwise

56 The torque override returned by the DLL
must be set to indicating no override (i.e.,
torque demands come for the DLL); the
program will abort otherwise

62 The maximum number of values which
can be returned for logging is always set to
0 by FAST indicating none

63 The record number for start of logging
output is always set to 0 (a don't care) by
FAST in accordance with the specification

of Record 62
64 The maximum number of characters which

can be returned in "OUTNAME" is always
set to 0 in accordance with the
specification of Record 62

65 The number of variables returned for
logging returned by the DLL must be set to
0 by the DLL indicating none in
accordance with the specification of
Record 62; the program will abort
otherwise

72 The generator start-up resistance is always
ignored

79 The request for loads is ignored; instead,
the blade, hub, and yaw bearing loads are
always passed to the DLL as if Record 79
was set to 4

80 The variable-slip current demand toggle
switch is always ignored; instead, the
generator torque demand from Record 47
is always used

81 The variable-slip current demand is always
ignored in accordance with the handling of
Record 80

We distribute a dummy placeholder version of the

source file DISCON.f90 in the FAST archive. You
may use DISCON.f90 as a template for creating your
own master controller DLL if you do not already have
one created. Please refer to appendices A and B of the
Bladed User Manual for further information.

Tip Brakes
The tip brakes can be controlled in two ways. You

can set a time at which each brake is deployed
(TTpBrDpi), or you can set a rotor speed at which each
brake is deployed (TBDepISpi). The tip brakes for
different blades are controlled separately. If your
turbine does not have tip brakes, set the tip-brake drag
terms, TBDrConN and TBDrConD, to zero. You
should also set the deployment times and speeds to
values greater than those that are likely to occur during
the run so that FAST won’t waste time on unused
calculations.

If you do use tip brakes, you will need to provide
realistic values for the drag terms and the amount of
time it takes to deploy them once they’ve started to
deploy (TpBrDT). The brakes take this long to deploy
for time- and speed-initiated deployments. Once the
brakes deploy, they remain so until the end of the run.
The interpolated drag term during the deployment
follows an “S” curve from TBDrConN to TBDrConD.

FAST does not orient the tip-brake forces with
blade pitch. The tangential velocity of the blade tip,
not taking into account wind motion, is used to
calculate the dynamic pressure. Because of these

FAST User's Guide 33 Last updated on August 12, 2005 for version 6.0

approximations, you should adjust TBDrConD so that
the rotor decelerates as expected.

Simulating Special Events
There are many special events that can be modeled

with FAST. Although we will illustrate many of them
in this section, we cannot document all of them. We
hope that these examples will be sufficient so that you
can figure out how to model other cases.

Turbine Startup
There are several ways to start a turbine. One

common way is to pitch the blades from feather to the
run position and let the wind accelerate the rotor until a
certain speed is reached. To model this case, set
PCMode to 0, GenTiStr to False, and SpdGenOn to
an appropriate value. For each blade, set TPitManS to
the time you want to start the maneuver, TPitManE to
the end time for the maneuver, BlPitch to the feather
position, and BlPitchF to the run position.

You can also start a stall-regulated turbine by
motoring. To perform a motor start, set PCMode to 0,
GenTiStr to True, and TimGenOn to an appropriate
value. You should also use either variable-speed
control or the Thevenin-equivalent-induction-generator
model. Do not use the simple-induction-generator
model, because it does not have a realistic startup
torque.

Normal Pitch-to-Feather Shutdown
To simulate this case, you’ll need to set the pitch

maneuver start and stop times (TPitManS and
TPitManE) and the initial and final pitch settings
(BlPitch and BlPitchF). Set TiGenOn to zero and, if
you want to use the generator as a brake, set GenTiStp
to False. This will disengage the generator when the
turbine slows enough to drop the power to zero.

Shutdown Where One Blade Fails to Feather
This case is the same as the previous example, but

either set the times (TPitManS and TPitManE) for one
blade to values greater than TMax or set the final pitch
value, BlPitchF, to the initial pitch value (BlPitch) or
some other value that is different from the other
blade(s).

One Blade Feathers Accidentally
This case is the same as the previous example, but

either set the times (TPitManS and TPitManE) for the
non-feathering blade(s) to values greater than TMax, or
set the final pitch value(s), BlPitchF, to the initial pitch
value(s) (BlPitch).

HSS Brake Shutdown after Loss of Grid
To model an emergency shutdown where the HSS

brake stops the rotor, set GenTiStp to True and
TimGenOf to the time you want the grid to fail. When
using the simple built-in HSS brake model

(HSSBrMode = 1), set THSSBrDp to a short time
after TimGenOf and HSSBrDt to the amount of time
it takes to fully apply the brake (the brake torque will
ramp from zero to full in a linear fashion). When using
a user-defined HSS brake model (HSSBrMode = 2),
you may specify a nonlinear ramp. Input HSSBrTqF
specifies the maximum full brake torque in both cases.

HSS Brake Shutdown with Generator Brake
FAST can model a shutdown in which the

generator acts as a dynamic brake until the rotor slows
enough that the HSS brake can stop the rotor, but for
now you must write the logic yourself by supplying a
UserGen() routine and linking it with the rest of the
code. We hope to find an easier way by adding a few
input parameters.

Normal Tip Brake Shutdown
To model a normal shutdown, in which the tip

brakes decelerate the rotor, set TTpBrDp to
appropriate values for each blade. As with the pitch-
to-feather shutdown, set GenTiStp to False so that the
generator will disengage when power drops to zero.

Tip Brake Shutdown after Loss of Grid
This case is similar to the previous case, but you’ll

use the TBDepISp array to make FAST use rotor
speed to deploy the tip brakes. You can also model the
special case in which one brake deploys at a higher
speed than the other(s) or not at all by setting its
deployment initiation speed to a higher speed.

Accidental Deployment of a Tip Brake
You can easily model the accidental deployment

of a tip brake. For one blade, set TTpBrDp to a value
less than TMax. For the other blade(s), set TTpBrDp
to value(s) greater than TMax. For all blades, set
TBDepISp to large numbers so that the brakes will
never deploy because of rotor speed. You will also
need to set TBDrConN, TBDrConD, and TpBrDT to
appropriate values.

Idling Turbine
You can simulate an idling turbine by enabling the

generator DOF (GenDOF) and setting GenTiStr to
True and TimGenOn to a value greater than TMax to
ensure that the generator never goes online. You will
also want to initialize the rotor speed (RotSpeed) to a
small or zero value, set the generator inertia (GenIner)
to a non-zero value, and set the gearbox efficiency
(GboxEff) to a value less than 100%. The torque
passing through the non-perfect gearbox to the
generator-rotor inertia will tend to resist acceleration of
the turbine rotor. You can also add some speed-
independent drag to the drivetrain by applying a light
brake load. To do so, tell the brake to always be on by
setting THSSBrDp and HSSBrDt to 0, and then set
the brake torque (HSSBrTqF) to a small value.

FAST User's Guide 34 Last updated on August 12, 2005 for version 6.0

Parked Turbine
One of the standard IEC test cases is to model the

turbine in high winds when the turbine is parked. If
your turbine uses full-span pitch, set the values of
BlPitch and BlPitchF to the feathered setting. Also set
TpitManS and TpitManE to 0 so the blades are
feathered during the entire simulation.

If you park your turbine by applying a HSS brake,
you can model this condition by disabling the generator
DOF (GenDOF) with RotSpeed set to zero and
enabling the drivetrain DOF (DrTrDOF) to allow the

drivetrain to ring. Another possibility is to enable
GenDOF, but set GenTiStr and TimGenOn so the
generator never starts. Set THSSBrDp and HSSBrDT
to zero so the HSS brake is always on. You will need
to set the HSSBrTqF to a realistic value.

For potential failure modes, you can model the
case in which the brake torque is insufficient to hold
the turbine. The generator DOF must be enabled for
this case. You can examine another potential failure by
setting one of the blades so that it pitches to a non-
feathered value at some time during the run.

FAST User's Guide 35 Last updated on August 12, 2005 for version 6.0

SIMULINK INTERFACE

General Description
Simulink is a popular simulation tool for controls

design that is distributed by The Mathworks, Inc. in
conjunction with MATLAB. Simulink has the ability
to incorporate custom Fortran routines in a block
called an S-Function. The FAST subroutines have
been linked with a MATLAB standard gateway
subroutine in order to use the FAST equations of
motion in an S-Function that can be incorporated in a
Simulink model. This introduces tremendous
flexibility in wind turbine controls implementation
during simulation. Generator torque control, nacelle
yaw control, and pitch control modules can be designed
in the Simulink environment and simulated while
making use of the complete nonlinear aeroelastic wind
turbine equations of motion available in FAST.

The wind turbine block, as shown in Figure 26,
contains the S-Function block with the FAST equations
of motion. It also contains blocks that integrate the
DOF accelerations to get velocities and displacements.
Thus the equations of motion are formulated in the
FAST S-function but solved using one of the Simulink
solvers.

Figure 26. FAST Wind Turbine Block.

The interface between FAST and Simulink is very
similar to the interface developed for the Symbolic
Dynamics (SymDyn) code, which is a controls-oriented
HAWT analysis tool developed by researchers at
NREL (11). The structural model of FAST, however,
is of higher fidelity than that of SymDyn.

Getting Started
In order to build a Simulink model that uses the

FAST wind turbine dynamics in an S-Function, you
must purchase the commercial MATLAB software
with the additional Simulink package. MATLAB is
available from The Mathworks, Inc.
(http://www.mathworks.com/). A working knowledge
of Simulink model development is also essential.

The FAST archive contains several files that are
pertinent to FAST’s interface with Simulink as
described below:

FAST_SFunc.dll The FAST S-Function
compiled as a dynamic-link-
library (DLL). This DLL
contains the structural
dynamic routines from FAST,
the aerodynamic routines from
AeroDyn, and interfaces to
Simulink.

Simsetup.m This MATLAB script file
prompts the user for the FAST
primary input file name and
calls Read_FAST_Input.m,
which initializes model
variables. It must be called
from the MATLAB workspace
before you run a Simulink
model with the FAST S-
Function.

Read_FAST_Input.m This MATLAB script file is
called by Simsetup.m and
reads the FAST input files to
initialize parameters in a
Simulink model. Users should
not change this file.

OpenLoop.mdl An example Simulink model
containing the FAST S-
Function block, blocks that
integrate the DOFs, and
constant open loop control
input blocks.

Test01_SIG.mdl An example Simulink model
containing the FAST S-
Function block, blocks that
integrate the DOFs, and the
simple induction generator
model for FAST certification
test #01 implemented within
Simulink.

To run a FAST model in Simulink, first transfer
files Simsetup.m and OpenLoop.mdl from the
SimulinkSamples folder to the directory containing the
primary input file of a FAST model that you want to
use. If you want to use one of the certification test files
from the CertTest folder, you may have to make a few
minor changes to some of the input parameters in order
to use the FAST S-Function in Simulink (refer to the
next section for the reason).

Now open a MATLAB command window. In
MATLAB, add the folder where files FAST_SFunc.dll
and Read_FAST_Input.m are stored to the MATLAB

FAST User's Guide 36 Last updated on August 12, 2005 for version 6.0

path by choosing “Set Path…” from the File menu,
clicking “Add Folder…”, selecting the folder, and
pressing Save and Close. Next, change the current
working directory in MATLAB to the directory in
which the FAST model files (including files
Simsetup.m and OpenLoop.mdl) are stored. Type
“Simsetup” into the MATLAB command prompt. The
script file will prompt you for the name of the primary
input file of FAST; type in the root name with
extension. Next, open the example Simulink model,
OpenLoop.mdl, by choosing Open… from the File
menu. The Simulink model should appear as in Figure
27 below (the green block in Figure 27 contains the
FAST wind turbine block shown in Figure 26).
Finally, click on the Play (►) button in the Simulink
window to run the simulation.

Figure 27. Simulink Model OpenLoop.mdl.

The FAST S-Function will generate the same
ASCII output files as would be generated during a
normal FAST simulation. These output files use the
root name of the primary input file and append _SFunc
to the name. For example, if the primary input file
were named fast.fst, the main output file from the
FAST S-Function will be named fast_SFunc.out
whereas the the FAST executable would generate
fast.out. The output for the certification test files
should agree quite well with the corresponding output
from FAST. There will be slight differences due to the
different solvers and precisions employed by each
program.

If for any reason an error occurs during a
simulation, the FAST S-Function will display the error
message in a Simulation Diagnostics pop-up box and
abort. Warning messages routinely written to the
command-line window by the FAST executable are not
echoed to a pop-up box nor are they echoed to the
MATLAB workspace by the FAST S-Function. We
hope to add this capability in the future.

Specific Input File Options for the
FAST S-Function

As implied above, FAST input files must be
created in order to use the FAST S-Function. Some

input parameters directly control the execution of the
Simulink model; others cause the FAST S-Function to
abort; most behave exactly as they do in the executable
version of FAST.

FAST input variables TMax and DT may be used
to control the Simulink simulation by entering them in
the Stop time and Fixed step size boxes, which are
contained in the “Simulation parameters…” window
available from the Simulation menu of the Simulink
model. These are only available if a fixed step solver
is selected. The fixed step solver, ode4, most closely
emulates the solver used by FAST. These settings
have already been specified in OpenLoop.mdl but may
be changed by you depending on your preference.

Under the Turbine Control section of FAST’s
primary input file, you have the option of determining
whether blade pitch, nacelle yaw, and/or variable-speed
torque is controlled by the Simulink model or by using
one of FAST’s intrinsic controllers. To control blade
pitch commands from Simulink, set PCMode to 2. In
this case, TPCOn must be set to zero since the
authority to start and stop the controller is reserved for
the Simulink model. If PCMode is either 0 or 1, the
model will behave exactly as a standalone FAST model
and the pitch commands from Simulink will be
ignored. Similarly, to control nacelle yaw angle and
rate commands from Simulink, set YCMode to 2. In
this case, TYCOn must be set to zero since the
authority to start and stop the controller is reserved for
the Simulink model. To model a variable-speed torque
controller in Simulink, VSContrl must be set to 3. In
this case, the authority to start and stop the generator is
reserved for the Simulink model. Thus, GenTiStr and
GenTiStp must be set to True, TimGenOn must be set
to zero, and TimGenOf must be set greater than
TMax.

The override pitch and yaw maneuvers specified in
FAST’s primary input file will supercede any pitch and
yaw commands that originate in Simulink regardless of
the setting of PCMode and YCMode. You may use
these to force faults in you pitch and yaw controllers.

Some features of FAST are not available within
Simulink. Thus, when running FAST within Simulink,
the FAST S-Function will abort if any of these features
are selected. The ADAMS preprocessor and the
linearization capability are not available in the FAST
S-Function; thus, ADAMSPrep and AnalMode must
be set to 1. The high-speed shaft brake option is not
available in the FAST S-Function so THSSBrDp must
be set greater than TMax. Finally, Simulink can only
use the initial conditions for revolute DOFs, including
Azimuth, RotSpeed, TeetDefl, NacYaw, RotFurl,
and TailFurl. Specifying nonzero values for IPDefl,
OoPDefl, TTDspFA, and TTDspSS will cause the
FAST S-Function to abort.

FAST User's Guide 37 Last updated on August 12, 2005 for version 6.0

Customizing the Simulink Model
This section provides a few more details on the

FAST interface to Simulink. This should provide you
with enough guidance so that you can modify the
example Simulink models to include your own torque,
yaw, and/or pitch controllers.

The wind turbine block requires three inputs and
has one output as shown in Figure 26 and Figure 27.
Electrical generator torque and electric power demands
must be supplied in the first input, nacelle yaw position
and rate demands must be supplied in the second input,
and blade pitch demand angles for all blades must be
supplied in the third input. Data must be provided for
all inputs in order for the Simulink model to run. For
instance, if you want to use the FAST simple induction
generator model (by setting VSContrl to 0 and
GenModel to 1) rather than developing a torque
controller in your Simulink model, you may use
Constant blocks to supply dummy electrical generator
torque and electrical power demands to the FAST wind
turbine block—these will not be used by the wind
turbine block, but they must be present. This is
demonstrated in OpenLoop.mdl. Similarly, values
must be supplied for the yaw position and rate, and the
blade pitch angles. The blade pitch angles are stored in
a vector sized according to the number of blades.

In addition to the data available in the primary
output file generated by the S-Function, the wind
turbine block will also output a variable array named
OutData that contains the output data selected in the
FAST input file through input OutList. OutData
contains output data at every model time step (whereas
the primary output file uses the value of DecFact) and
is available in the Simulink environment at runtime for
feeding back control measurements. Thus, the control
measurement channels your Simulink controller needs
must be specified in OutList. OutData will also be
available in the MATLAB workspace for
postprocessing.

The output data names listed in OutList are also
available in MATLAB and Simulink workspaces in a
variable cell array named, appropriately, OutList. This
variable is created by the Read_FAST_Input.m script

file. You can access specific channels from the
OutData array by using the OutList cell array. For
example, to obtain the rotor speed (assuming rotor
speed was specified in OutList) at the 3rd time step
(3rd row) in the MATLAB workspace, type
“OutData(3,strmatch(‘RotSpeed’,OutList))” in the
MATLAB command prompt. Using this technique,
you don’t need to remember the specific order you
listed the output channel names in OutList.

You can modify the Simsetup.m script file to
initialize variables for any additions you make to the
Simulink model for torque, yaw, and pitch control. If
you modify Simsetup.m, remember to use “clear all” or
“clear functions” to clear the MATLAB memory
before repeating a simulation. As provided, “clear all”
is the first command in Simsetup.m. The character
array named input_fast, which is defined in
Simsetup.m, must contain the name of the primary
input file. Also, the script that reads the FAST input
file for model initialization, Read_FAST_Input.m, must
be called before running a simulation and after
input_fast has been defined. Other than these
requirements, you are free to perform any controller
design or initialization steps in Simsetup.m or your own
script before performing a simulation in Simulink.

As an example of a Simulink model more
advanced than OpenLoop.mdl, we distribute a Simulink
model named Test01_SIG.mdl in the FAST archive. In
this example, the simple induction generator (available
when VSContrl is set to 0 and GenModel is set to 1)
is implemented in Simulink rather than FAST for
certification test #01 (by setting VSContrl to 2). To
run this example, follow the directions in the comments
at the end of Simsetup.m. The output should be very
similar to that of certification test #01 run with the
FAST executable. There will be slight differences due
to the different solvers and precisions employed by
each program.

FAST User's Guide 39 Last updated on August 12, 2005 for version 6.0

LINEARIZATION

General Description
FAST has the capability of extracting linearized

representations of the complete nonlinear aeroelastic
wind turbine modeled in the code. This analysis
capability is useful for developing state matrices of a
wind turbine “plant” to aid in controls design and
analysis. It is also useful for determining the full
system modes of an operating or stationary HAWT
through the use of a simple eigenanalysis. A FAST
linearization analysis is invoked by setting input
parameter AnalMode in the primary input file to 2.

The linearization routines follow a procedure
similar to that used by the Symbolic Dynamics
(SymDyn) code, which is a controls-oriented HAWT
analysis tool developed by researchers at NREL (11).
The structural model of FAST, however, is of higher
fidelity than that of SymDyn.

The linearization process consists of two steps: (1)
computing a periodic steady state operating point
condition for the DOFs and (2) numerically linearizing
the FAST model about this operating point to form
periodic state matrices. The output state matrices can
then be azimuth-averaged for nonperiodic, or time-
invariant controls development.

Periodic Steady State Solution
The first step in the linearization process is

determining an operating point to linearize the model
about. An operating point is a set of values of the
system DOF displacements, DOF velocities, DOF
accelerations, control inputs, and wind inputs that
characterize a steady condition of the wind turbine.
For a wind turbine operating in steady winds, this
operating point is periodic—that is, the operating point
values depend on the rotor azimuth orientation. This
periodicity is driven by aerodynamic loads, which
depend on the rotor azimuth position in the presence of
prescribed shaft tilt, wind shear, yaw error, or tower
shadow. Gravitational loads also drive the periodic
behavior when there is a prescribed shaft tilt or
appreciable deflection of the tower due to thrust
loading. It is important to determine an accurate
operating point because the linearized model is only
accurate for values of the DOFs and inputs that are
close to the operating point values.

To compute a steady state solution, the program
inputs must necessarily produce a time invariant model
(other than azimuth dependence). To insure this time
invariant condition, FAST performs a number of
checks on some of the input parameters before running
a linearization analysis. FAST will abort without
computing the linearized state matrices if any of the

following conditions are not met. First, active yaw and
pitch control must be disabled by setting YCMode and
PCMode to 0. FAST can’t be linearized during a
startup or shutdown event, thus GenTiStr and
GenTiStp must both be set True, TimGenOn must be
set to 0.0, and TimGenOf must be set greater than
TMax during a linearization analysis. Inputs
THSSBrDp, TiDynBrk, TTpBrDpi, TYawManS, and
TPitManSi must also be set greater than TMax, and
TBDepISpi must be set much greater than RotSpeed.
In AeroDyn, dynamic stall and dynamic inflow must be
disabled if CompAero is True; thus StallMod should
be set to “STEADY” and InfModel to
“EQUIIL”ibrium. Also, you must use a hub-height
wind data file (input WindFile) that does not vary with
time. At least one DOF must be enabled during a
linearization analysis because it is useless to have a
“plant” model with zero states. Finally, CompNoise
must be disabled during a linearization analysis.

Inputs CalcStdy, TrimCase, DispTol, and
VelTol, which are available in the linearization control-
input-file of FAST (identified by parameter LinFile in
FAST’s primary input file), are the parameters used to
manage the steady state solution computation in FAST.

Input parameter CalcStdy is a flag used to
indicate whether a periodic steady state solution is
computed before linearizing the model. To disable the
steady state solution computation, set CalcStdy to
False. In this case, the operating point is prescribed by
the values of the initial conditions specified in FAST’s
primary input file. That is, when CalcStdy is False,
the operating point is set to the condition in which all
displacements, velocities, and accelerations are zero,
except those specified with nonzero initial conditions
(for instance, the azimuth DOF will increment at a
constant rate if and when the rotor is spinning).

Setting CalcStdy to True causes FAST to
compute a steady state solution before linearizing the
model. During a steady state solution computation,
FAST integrates the nonlinear equations of motion in
time until the solution “converges”. “Convergence” is
determined as follows. At each iteration, or one period
of revolution of the rotor, a 2-norm of the differences
between conditions at the beginning and end of the
iteration is computed. A 2-norm is computed for both
the angular displacement vector differences and
angular velocity vector differences. Input parameters
DispTol and VelTol are used as convergence
tolerances for the displacement 2-norm and velocity 2-
norm, respectively. The smaller the values of DispTol
and VelTol, the tighter the tolerances. Once both of
the computed 2-norms become smaller than or equal to
the input convergence tolerances, the solution is
considered to have “converged”. If the solution has not

FAST User's Guide 40 Last updated on August 12, 2005 for version 6.0

converged by the time TMax is reached, the iteration
stops and FAST aborts without computing the
linearized state matrices. See Figure 28 for a
schematic.

The calculation of an operating point depends on
whether the rotor is spinning or stationary, whether the
turbine is variable or constant speed, and whether the
operating point is in Region 2 (below rated wind speed)
or Region 3 (above rated wind speed). Again, see
Figure 28 for a schematic.

To linearize a stationary HAWT, it is best to use
the static equilibrium point as the steady state operating
point. In this case, the steady state operating point is
not periodic because the rotor is not spinning. To
obtain the static equilibrium condition, set CalcStdy to
True, GenDOF to False, and RotSpeed to zero.
FAST will then integrate in time until the convergence
tolerance conditions are met. This operation can be
performed with or without aerodynamic thrust effects
as indicated by input flag CompAero.

For variable speed wind turbines, one often wants
to determine the periodic operating point in
conjunction with a trim analysis. A trim analysis is the
process of trimming a control input in order to reach a
desired azimuth-averaged rotor speed while holding all
other inputs constant. The FAST linearization
functionality allows for three forms of trim as specified
by input switch TrimCase. For all three cases, the
desired azimuth-averaged rotor speed is prescribed by
input parameter RotSpeed from the primary input file
(which is also used as the initial rotor speed). Input
parameter TrimCase is ignored when either CalcStdy
or GenDOF is False.

For variable speed turbines in Region 2, set
CalcStdy to True, GenDOF to True, RotSpeed to the
desired azimuth-averaged rotor speed (nonzero), and
TrimCase to 2. Setting TrimCase to 2 causes FAST
to trim electrical generator torque, while maintaining
constant rotor collective blade pitch (indicated by
inputs BlPitchi from the primary input file), to reach
the desired azimuth-averaged rotor speed condition.

For variable speed turbines in Region 3, set
CalcStdy to True, GenDOF to True, RotSpeed to the
desired azimuth-averaged rotor speed (nonzero), and
TrimCase to 3. Setting TrimCase to 3 causes FAST
to trim rotor collective blade pitch to reach the desired
azimuth-averaged rotor speed condition. In this case,
the initial “guess” blade pitch angles are given by
BlPitchi, and the electrical generator torque is
determined by the torque-speed relationship indicated
by inputs VSContrl or GenModel. For typical Region
3 trim, collective pitch can be trimmed while
maintaining a constant generator torque by setting
TrimCase to 3, VSContrl to 1, VS_RtTq to the
desired constant generator torque, and VS_RtGnSp,

VS_Rgn2K, and VS_SlPc to 9999.9E-9 (very small
don’t cares > 0.0).

The third trim option is for the nacelle yaw control
input. To trim nacelle yaw, set CalcStdy to True,
GenDOF to True, RotSpeed to the desired azimuth-
averaged rotor speed (nonzero), and TrimCase to 1.
Nacelle yaw can be trimmed with or without the yaw
DOF enabled. With yaw DOF enabled (YawDOF =
True), setting TrimCase to 1 causes FAST to trim the
neutral yaw angle, YawNeut, which passes through
FAST’s built-in, second-order actuator model, while
maintaining constant rotor collective blade pitch
(indicated by inputs BlPitchi from the primary input
file), to reach the desired azimuth-averaged rotor speed
condition. In this case, the yaw actuator, which is
described in the Nacelle Yaw Control section of the
Controls chapter, will be inherent in the output
linearized model. With yaw DOF disabled (YawDOF
= False), setting TrimCase to 1 causes FAST to trim
the actual nacelle yaw angle, while maintaining
constant rotor collective blade pitch (indicated by
inputs BlPitchi from the primary input file), to reach
the desired azimuth-averaged rotor speed condition. In
this case, the yaw actuator will be absent from the
output linearized model.

For constant speed machines, set GenDOF to
False. FAST will then ignore input TrimCase, and the
trim analysis will be bypassed during the computation
of the periodic steady state operating condition.

With or without trim, if a steady state solution has
trouble converging, try increasing the simulation
runtime, TMax; increasing system-damping values; or
increasing the convergence tolerances, DispTol and
VelTol. Some steady state solutions may take 300
seconds or more of simulation time to converge,
depending on the nature of the wind turbine model,
system-damping values, and convergence tolerances
used. When trimming, also make sure that the
condition you are trying to trim to is “reasonable”. For
example, during Region 3 trim (TrimCase = 3), it may
be impossible to find a rotor collective blade pitch
angle at a given rotor speed and wind speed if the
constant generator torque is too large. The steady state
solution computation may become unstable if the initial
guess of nacelle yaw is too large when trimming yaw
(TrimCase = 1). During Region 2 trim (TrimCase =
2), the solution computation may also become unstable
if your desired rotor speed is below the rotor speed that
results in the maximum power coefficient at a given
wind speed and rotor collective blade pitch angle. In
this case, the only way to obtain a successful trim
solution is to increase your desired rotor speed
condition.

FAST User's Guide 41 Last updated on August 12, 2005 for version 6.0

Figure 28. Periodic Steady State Computation.

Model Linearization
Once a periodic steady state solution has been

found, FAST numerically linearizes the complete
nonlinear aeroelastic model about the operating point.
Since the operating point is periodic with the rotor
azimuth position, the linearized representation of the
model is also periodic. Inputs NAzimStep, MdlOrder,
NInputs, CntrlInpt, NDisturbs, and Disturbnc, which
are available in the linearization control-input-file of
FAST (identified by parameter LinFile in FAST’s
primary input file), are the parameters used to manage
the model linearization output.

FAST will output the periodic linearized model at
a number of equally spaced rotor azimuth steps as
indicated by input parameter NAzimStep. The first
rotor azimuth location is always the initial azimuth
position indicated by inputs Azimuth and AzimB1Up.
The subsequent azimuth steps increment in the
direction of rotation. Once a periodic steady state
solution has been found, FAST interpolates the
solution to these azimuth locations. If RotSpeed is
zero, FAST will override NAzimStep and only
linearize the model about the initial azimuth position
(as if NAzimStep was set to 1). If you are interested
in time-invariant control, you’ll obtain a more accurate
model if you output the linearized model at a number
of different azimuth steps (by setting NAzimStep
larger than 1) and then average the resulting matrices
rather than using one azimuth location by setting
NAzimStep equal to 1. A tool that will do this matrix

averaging for you is described in the Post Processing
section below.

The FAST linearization routines can be used to
develop both a first- and a second-order linearized
representation of the nonlinear aeroelastic model. The
order of the model is determined by input switch
MdlOrder. To understand the difference between
these representations, we must examine how the
linearized state matrices relate to the nonlinear model.

The complete nonlinear aeroelastic equations of
motion as modeled in FAST can be written as follows:

() ()dM q,u,t q f q,q,u,u ,t 0+ =

where M is the mass matrix, f is the nonlinear “forcing
function” vector, q is the vector of DOF displacements,
(and q and q are the DOF velocities and
accelerations), u is the vector of control inputs, ud is the
vector of wind input “disturbances”, and t is time.
Note that in the steady state solution, only the DOF
displacement, velocity, and acceleration vectors are
periodic with the rotor azimuth position. The vector of
control inputs and the vector of wind disturbances are
not periodic. In the above notation, capital letters
represent matrices and lower case underlined letters
represent vectors.

FAST numerically linearizes the aeroelastic
equations of motion by perturbing (represented by a ∆)
each of the system variables about their respective
operating point (op) values:

Interpolate to selected
azimuth steps

Add artificial
damping

Yes

Is

?

n 1 n

n 1 n

q q DispTol

AND

q q VelTol

+

+

− ≤

− ≤

Simulate through
1 rotor revolution

Trim control
input

No

Advance period:
n = n + 1

GenDOF
enabled?

No

Yes

CalcStdy?

Yes

Use initial
conditions

No

op op op

op dop

q ,q ,q ,

u ,u

TMax
reached? Abort

No

Yes

FAST User's Guide 42 Last updated on August 12, 2005 for version 6.0

op
q q q∆= + ,

op
q q q∆= + ,

op
q q q∆= + ,

opu u u∆= + , and d dop du u u∆= + .

Substituting these expressions into the equations of
motion and expanding as a Taylor series approximation
results in the second-order (MdlOrder equal 2)
linearized representation of the equations:

ddM q C q K q F u F u∆ ∆ ∆ ∆ ∆+ + = +
,

where

op
M M=

is the mass matrix,

op

f
C

q
∂

=
∂

is the damping/gyroscopic matrix,

op

fMK q
q q

 ∂∂
= +

∂ ∂

is the stiffness matrix,

op

fMF q
u u

∂ ∂
= − + ∂ ∂

is the control input matrix, and

d
d op

f
F

u
∂

= −
∂

is the wind input disturbance matrix. The “
op

”
notation is used to signify that the partial derivatives
are computed at the operating point. Internally within
FAST, these partial derivatives are computed using the
central difference perturbation numerical technique.

Along with the linearized equations of motion,
FAST also develops a linearized system associated
with output measurements y. The collection of output
measurements is specified in list OutList at the end of
the primary input file. The second-order linearized
representation of the output system is as follows:

ddy VelC q DspC q D u D u∆ ∆ ∆ ∆= + + +

where VelC is the velocity output matrix, DspC is the
displacement output matrix, D is the control input

transmission matrix, and Dd is the wind input
disturbance transmission matrix.

The DOF displacement, velocity, and acceleration
perturbation vectors (q∆ , q∆ , and q∆) are replaced
with the first-order state vector x and state derivative
vector x :

q
x

q

∆

∆
 =

 and
q

x
q

∆

∆
 =

in order to determine the first-order (MdlOrder equal
1) representation of the system:

ddx Ax B u B u∆ ∆= + +

ddy C x D u D u∆ ∆= + +

In this form, the state matrix A, control input
matrix B, wind input disturbance matrix Bd, and output
state matrix C are related to their second-order
counterparts as follows:

1 1

0 I
A

M K M C− −

= − −

, 1

0
B

M F−

=

,

d 1
d

0
B

M F−

=

, and []C DspC VelC=

where I is the identity matrix and 0 is a matrix of zeros.
The control input transmission matrix D and wind
input disturbance transmission matrix Dd are identical
between the first- and second-order representations of
the linearized system.

The sizes of the preceding matrices and vectors
depend on the number of DOFs enabled and the
number of control inputs and wind input disturbances
selected. This is very convenient in controls-related
work where it is useful to begin with a simple
linearized “plant” model and then progressively add
complexity in steps.

The number and type of DOFs incorporated in q,
q , and q are determined by the number of DOFs
enabled. At least one DOF must be enabled during a
linearization analysis because a “plant” model with
zero states is useless.

The number and type of control inputs
incorporated in u are specified through input
parameters NInputs and CntrlInpt. NInputs is the
number of control inputs. Valid values are integers
from 0 to 4 + NumBl (inclusive). CntrlInpt is a list of
numbers corresponding to different types of control
inputs. Possible values are 1 to 7 (inclusive) (7 is only
available if NumBl = 3). The numbers correspond to

FAST User's Guide 43 Last updated on August 12, 2005 for version 6.0

the seven control inputs described in Table 5. You
must enter at least NInputs values in this list. You can
separate the values with combinations of tabs, spaces,
and commas, but you may use only one comma
between numbers. If NInputs is 0, input parameter
CntrlInpt will be skipped.

Table 5. Control Input Settings.

CntrlInpt
Setting

Description

1 Nacelle yaw angle command
2 Nacelle yaw rate command
3 Electrical generator torque
4 Rotor collective blade pitch
5 Individual pitch of blade 1
6 Individual pitch of blade 2
7 Individual pitch of blade 3 (unavailable

if NumBl = 2)

If the yaw DOF is enabled (YawDOF = True),

then the commanded yaw angle and rate from
CntrlInpt setting 1 and 2 are the neutral yaw angle,
YawNeut, and neutral yaw rate, YawRateNeut, in
FAST's built-in second-order actuator model. In this
case, the yaw actuator, which is described in the
Nacelle Yaw Control section of the Controls chapter,
will be inherent in the output linearized model. If the
yaw DOF is disabled (YawDOF = False), then the
commanded yaw angle and rate from CntrlInpt setting
1 and 2 are the actual yaw angle and yaw rate. In this
case, the yaw actuator will be absent from the output
linearized model.

The number and type of wind input disturbances
incorporated in ud are specified through input
parameters NDisturbs and Disturbnc. NDisturbs is
the number of wind input disturbances. Valid values
are integers from 0 to 7 (inclusive). Disturbnc is a list
of numbers corresponding to different types of wind
input disturbances. Possible values are 1 to 7
(inclusive). The numbers correspond to the seven
inputs available in the hub-height wind data files of
AeroDyn as described in Table 6. You must enter at
least NDisturbs values in this list. You can separate
the values with combinations of tabs, spaces, and
commas, but you may use only one comma between
numbers. If NDisturbs is 0, input parameter
Disturbnc will be skipped.

Table 6. Wind Input Disturbance Settings.

Disturbnc
Setting

Description

1 Horizontal hub-height wind speed, V
2 Horizontal wind direction, DELTA
3 Vertical wind speed, VZ
4 Horizontal wind shear, HSHR
5 Vertical power law wind shear, VSHR
6 Linear vertical wind shear, VLinSHR
7 Horizontal hub-height wind gust, VG

As an example of the size of the output linearized

state matrices, consider a three-bladed turbine (NumBl
equal 3) modeled with only the FlpDOF1 and
GenDOF DOFs set to True (enabled). Assume also
that NInputs is set to 2 with CntrlInpt set to 3,4 and
NDisturbs is set to 1 with Disturbnc set to 1. This
model has 4 DOFs (variable speed generator and one
flap mode for each of the three blades), 2 control inputs
(electrical generator torque and rotor collective blade
pitch), and 1 wind input disturbance (horizontal hub-
height wind speed). Thus, q has size 4x1, x has size
8x1, M has size 4x4, A has size 8x8, B has size 8x2, Bd
has size 8x1, etc. If 12 parameters were listed in
OutList in this example, then C would have size 12x8,
D would have size 12x2, etc. Each of these matrices
would be output at each of the NAzimStep number of
equally spaced azimuth steps. Note also that if
NInputs were set to 0 instead of 2 in this example, then
the B and D matrices would be absent from the
linearized system.

The name of the primary output file during a
linearization analysis uses the path and root name of
the primary input file and appends .lin for an extension.
For example, if the input file were named fast.fst, the
main output file will be named fast.lin. This output file
contains the periodic state matrices of the linearized
system, the periodic operating point states and state
derivatives, the periodic operating point output
measurements, the constant operating point values of
the control inputs and wind inputs, and other
information that is useful for post processing and for
making use of the linearized model. An example
linearized model file is shown in Figure 31.

Post Processing
The numerous output vectors and matrices may be

overwhelming, and one may wonder how to analyze
and make use of them. To aid in this effort, we have
developed a post processing script file in MATLAB
entitled Eigenanalysis.m. This script file is included in
the FAST archive in the CertTest folder. This script
file can be used as a basis for more advanced
utilization of the FAST linearization output. It is

FAST User's Guide 44 Last updated on August 12, 2005 for version 6.0

written in MATLAB because MATLAB is the tool
most commonly used in controls-related design work.

To run the Eigenanalysis.m script file, open a
MATLAB command window, change the current
working directory to the directory in which the script
file is stored, and type “Eigenanalysis” into the
MATLAB command prompt. The script file will
prompt you for the name of the FAST linearization
output file to process. Type only the root name of this
file—omit the .lin extension. The name may optionally
include an absolute or relative path if Eigenanalysis.m
is not stored in the same directory as the FAST
linearization output file. Naturally, a FAST
linearization analysis must be run before the
Eigenanalysis.m script file is run, and a linearization
output file must be available for processing.

Running Eigenanalysis.m will cause MATLAB to
read in the periodic state matrices from the FAST
linearization output file. If the linearized model is
second-order, the script will then compute the first-
order state matrices from the second-order matrices
using the equations documented above. If the
linearized model is first-order, the script will not
compute the second-order matrices from the first-order
state matrices because the process cannot be reversed
(there is no unique solution available without

knowledge of the mass matrix). The form of the state
matrix A without damping (as if C were zero) is
computed next. Azimuth-averaged matrices are then
computed for all available periodic matrices. Finally,
the script will perform an eigenanalysis on the periodic
and azimuth-averaged state matrix A, with and without
damping. The resulting eigenvalues and eigenvectors
are the full system natural frequencies and mode
shapes. The natural frequencies are available in both
rad/sec and Hz.

After the script file has completed execution, type
“who” into the MATLAB command prompt. This will
cause MATLAB to list the available variables. The
variable names are descriptive enough that they can be
discerned without further documentation. For
example, the azimuth-averaged full system natural
frequencies of the nondamped system, in Hz, are
available in variable FrequenciesAvgHzNoDamp.
Their associated mode shapes are available in variable
ModeShapesAvgNoDamp.

Please refer to MATLAB documentation for
additional help on running MATLAB and learning
commands that are useful for controls-related design
work, which make use of linearized models output
from FAST.

FAST User's Guide 45 Last updated on August 12, 2005 for version 6.0

ADAMS PREPROCESSOR

General Description
FAST has the capability of extracting “equivalent”

ADAMS (Automatic Dynamic Analysis of Mechanical
Systems) wind turbine datasets from the turbine
properties specified in the FAST input file(s). That is,
FAST has the functionality of acting like an ADAMS
preprocessor capable of creating ADAMS datasets of
wind turbine models through FAST’s simple property-
input-style interface. Thus, FAST can be used as an
alternative to the ADAMS/WT toolkit (12) or other
preprocessors used to create ADAMS datasets of wind
turbine models. The FAST to ADAMS preprocessor
feature is enabled through the switch ADAMSPrep in
the primary input file. This chapter, which describes
the FAST to ADAMS preprocessor, assumes the reader
is familiar with the basics of ADAMS.

The main advantages for using FAST to create
ADAMS datasets are to ensure consistency between
FAST and ADAMS models and to facilitate quick and
easy creation of ADAMS datasets. The FAST-to-
ADAMS preprocessor supports the mentality that all
pertinent configuration information be stored in a
single location (i.e., the FAST input files). The FAST
to ADAMS preprocessor provides a natural
progression from the medium-complexity FAST wind
turbine models to the highly complex models possible
using ADAMS. Once a working FAST model has
been developed, little additional effort is required to
create the more advanced ADAMS model. This is a
useful way to impress your boss—you can accomplish
a lot of work with very little effort. ☺

The ADAMS datasets extracted from FAST
contain all the functionality and usability associated
with the FAST model, while bypassing some of
FAST’s limitations. All the turbine control paradigms
available in FAST, as discussed in the Controls
chapter, are incorporated into the ADAMS model.
These include the functionality of yawing the nacelle,
pitching the blades, controlling the generator and HSS
brake torque, and deploying the tip brakes. The
ADAMS datasets incorporate the same generator,
drivetrain compliance, nacelle yaw, rotor-furl, tail-furl,
rotor teeter, and support platform models and DOFs
used by FAST. Also, all of the output parameters
specified at the end of FAST’s primary input file are
passed into the ADAMS datasets. This eliminates the
need to develop a REQSUB() user-written subroutine
for request output every time an ADAMS dataset is
generated. Once an ADAMS analysis is run, the
format of the ADAMS output file containing time-
series data is identical to that of the FAST format so

that post-processing techniques are compatible for the
codes.

Additionally, the ADAMS interface is developed
in such a way that all user-defined routines developed
for FAST, including UserGen(), UserVSCont(),
UserHSSBr(), UserPtfmLd(), UserTeet(),
UserRFrl(), UserTFrl(), UserTFin(),
UserYawCont(), and PitchCntrl(), can be linked with
ADAMS just as easily as they can be with FAST. The
routines do not need to be modified in any way for
compatibility with ADAMS. The AeroDyn input files
are also fully compatible between the FAST models
and the associated, extracted ADAMS datasets.

One of FAST’s limitations that is bypassed by
ADAMS is the assumed-mode approximation of the
blades and tower. The blades and tower of the
extracted ADAMS model are developed from FAST’s
distributed mass and stiffness inputs using ADAMS’
conventional approach of modeling flexible members
through a series of lumped masses connected by
stiffness and damping FIELDs. Nevertheless, FAST’s
valuable DOF-switching functionality is still available
in the ADAMS model, so these flexibilities can be
eliminated through a simple flag, just as they can be in
FAST (in ADAMS the flexibilities are eliminated
collectively, not one mode at a time).

Moreover, several characteristics not implemented
in the FAST model are incorporated into the extracted
ADAMS model. These include torsional and
extensional DOFs for the blades and tower, flap/twist
coupling in the blades, precurved and preswept blades,
mass and elastic offsets for the blades, mass offsets for
the tower, actuator dynamics for the blade pitch
controls, graphical output capabilities, and others
documented below.

Compiling and Linking ADAMS
Using the extracted ADAMS datasets requires the

purchase and installation of the commercial ADAMS
multibody-dynamics and analysis package. ADAMS is
available from MSC.Software Corporation of Santa
Ana, California. You will also need a compiler. For
the PC, you should use the Compaq Visual Fortran
compiler, but its predecessor, Digital Fortran, will also
work.

Additionally, one must download the ADAMS to
AeroDyn (A2AD) source files (13) and compile and
link the ADAMS user-created dynamic-link-library
(DLL). This is where the compiler is required.

The A2AD archive is available for download from
our Web page
http://wind.nrel.gov/designcodes/simulators/adams2ad/
. The source files included in the archive, which are

FAST User's Guide 46 Last updated on August 12, 2005 for version 6.0

pertinent to creating the DLL needed to run the
ADAMS datasets extracted from FAST, are as follows:

GFOSUB.f90 Contains an interface for the
user-defined support platform
loading model and routines
that interface ADAMS to
AeroDyn so that AeroDyn can
provide ADAMS with
aerodynamic forces on each
blade element.

SENSUB.f90 Contains a routine to detect
the occurrence of a successful
forward time step. This is
needed for the AeroDyn
interface.

REQSUB_FAST.f90 Contains routines for
calculating the desired
ADAMS output as specified in
FAST’s primary input file.

SFOSUB_FAST.f90 Contains a routine for
implementing the generator
and variable-speed control
models and an interface for the
user-defined rotor teeter,
rotor-furl, and tail-furl spring
and damper models.

VARSUB_FAST.f90 Contains a routine for
computing the demand blade
pitch angles and demand
nacelle yaw angle and rate.

VFOSUB_FAST.f90 Contains routines for
computing the tip-brake drag
and tail fin aerodynamic
forces.

Source files GFOSUB.f90 and SENSUB.f90 are the
generic routines provided in the A2AD archive for
interfacing any ADAMS model to AeroDyn. A good
description of these files is provided in (13).
GFOSUB.f90 had to be modified slightly in order to
incorporate an interface to the user-defined support
platform loading model contained in routine
UserPtfmLd(). Source files REQSUB_FAST.f90,
SFOSUB_FAST.f90, VARSUB_FAST.f90, and
VFOSUB_FAST.f90 were written explicitly for running
ADAMS datasets extracted from FAST.

Also included in the A2AD archive is a file named
CompileLinkA2AD.bat. This is a DOS command script
useful for compiling and linking the ADAMS DLL,
named appropriately, ADAMS.dll. You will need to
modify this script before you can run it on your PC.
Open the script with your favorite editor. You will
need to change the variables DF_LOC, A2AD_LOC,
AD_LOC, and FAST_LOC. Set them so they point to
the locations of Digital Fortran and the A2AD,
AeroDyn, and FAST source files respectively. The
location of the FAST source files is needed so that the

same user-defined routines developed for FAST,
including UserGen(), UserVSCont(), UserHSSBr(),
UserPtfmLd(), UserTeet(), UserRFrl(), UserTFrl(),
UserTFin(), UserYawCont(), and PitchCntrl(), can
be used with the ADAMS model as well.

Once these path variables are set, save the updated
script and run it from a command prompt by simply
typing its name. You can also run the script by double-
clicking on it from Windows Explorer. Note that a file
named newline.txt, which is also contained in the
A2AD archive, must be located in the same directory
as the CompileLinkA2AD.bat script in order for the
script to work. The script will create ADAMS.dll. This
one DLL can be used to run any ADAMS datasets
extracted from FAST. In other words, you will only
need to create ADAMS.dll once (unless you change any
of the user-defined routines or source files).

Guidelines for Creating ADAMS
Datasets

Here is the recommended procedure for creating
ADAMS datasets using the FAST to ADAMS
preprocessor:

Step 1. Create a working FAST model. Do this
by specifying the desired settings in the FAST input
files, running a simulation, and then verifying that the
response predictions are reasonable.

One drawback to creating both FAST and
ADAMS models from the same input file(s) is that if
an error is made when inputting properties for a FAST
model, the extracted ADAMS model will contain the
same error. All redundancy checks available when
FAST and ADAMS models are created independently
are eliminated. To minimize resulting repercussions,
make sure that the FAST model is in working order
and is outputting reasonable response predictions
before creating the ADAMS datasets.

Step 2. Update the FAST input files to include the
additional input specifications required for creating
ADAMS datasets.

The creation of ADAMS datasets using the FAST
to ADAMS preprocessor requires the specification of
additional parameters in the input file ADAMSFile.
This file contains ADAMS-specific inputs related to
the blade pitch actuators, graphical output capabilities,
and other ADAMS-specific functionalities.

Furthermore, additional distributed blade and
tower stiffness and inertial properties must be specified
in the blade and tower input files. These are input by
including additional columns of distributed data. For
the blades, the additional columns are for distributed
torsional and extensional stiffnesses, the distributed
flap/twist coupling coefficient, distributed inertias,
distributed offsets for identifying the reference axis for
precurved and preswept blades, and distributed mass
and elastic offsets. For the tower, the additional
columns are for distributed torsional and extensional

FAST User's Guide 47 Last updated on August 12, 2005 for version 6.0

stiffnesses, distributed inertias, and distributed mass
offsets. See the sample input files and the Input Files
chapter for more details on these additional inputs.

Several input parameters are handled differently
between FAST and the ADAMS preprocessor. Users
of the FAST to ADAMS preprocessor should be aware
of these differences.

The time step size input parameter, DT, is used by
the ADAMS preprocessor to specify the maximum step
size the integrator is allowed to take in the variable-
step-size numerical-integration scheme that is used by
ADAMS. Users of the ADAMS preprocessor should
be aware that this is in slight contradiction to how DT
is used to specify the constant time step size for the
numerical integration scheme that is used by FAST.

Since the blade and tower models incorporated
into the ADAMS datasets do not operate on the modal
principle, input parameters associated with modal
properties are naturally handled differently in the
ADAMS preprocessor.

Blade flap and edge damping ratios incorporated
in ADAMS FIELD statements are set equal to the same
ratios used for the first flap and edge modes in FAST.
These ratios are determined by inputs BldFlDmp(1)
and BldEdDmp(1) in the blade input file(s). The value
of input BldFlDmp(2) does not affect the creation of
ADAMS datasets.

Likewise, tower fore-aft and side-to-side damping
ratios incorporated in ADAMS FIELD statements are
set equal to the same ratios used for the first fore-aft
and side-to-side modes in FAST. These ratios are
determined by inputs TwrFADmp(1) and
TwrSSDmp(1) in the tower input files. The values of
inputs TwrFADmp(2) and TwrSSDmp(2) do not
affect the creation of ADAMS datasets.

Moreover, the modal stiffness tuner input
parameters contained in the blade and tower data files
are completely ignored by the ADAMS preprocessor.

Blade flexibility is controlled by enabling the first
blade modes through input flags FlapDOF1 and
EdgeDOF. Enabling blade flexibility enables all
blade flap, edge, torsional, and extensional DOFs;
conversely, disabling the flexibility removes all of
these DOFs. When using the ADAMS extractor, the
setting of FlapDOF1 must be identical to that of
EdgeDOF to emphasize that the flap DOFs can’t be
enabled without also enabling edge DOFs or vice-
versa. The setting of input flag FlapDOF2 does not
affect the creation of the ADAMS datasets.

Tower flexibility is controlled by enabling the first
tower modes through input flags TwFADOF1 and
TwSSDOF1. Enabling tower flexibility enables all
tower fore-aft, side-to-side, torsional, and extensional
DOFs, and conversely, disabling the flexibility
removes all of these DOFs. When using the ADAMS
extractor, the setting of TwFADOF1 must be identical
to that of TwSSDOF1 to emphasize that the fore-aft

DOFs can’t be enabled without also enabling side-to-
side DOFs or vice-versa. The setting of input flags
TwFADOF2 and TwSSDOF2 do not effect the
creation of the ADAMS datasets.

Support platform rotational DOFs are controlled
by enabling input flags PtfmRDOF, PtfmPDOF, and
PtfmYDOF. Due to the method ADAMS uses to
implement the rotational DOFs, FAST cannot build an
ADAMS dataset if one of the platform rotational DOFs
is set differently than the other two. Thus, you must set
PtfmRDOF, PtfmPDOF, and PtfmYDOF to the same
value (i.e., all .True or all False). There is no
restriction on which combination of support platform
translational DOFs are enabled.

Additionally, some features available in FAST
can’t be modeled in ADAMS. Thus, when creating
ADAMS datasets using the FAST to ADAMS
preprocessor, FAST will abort and not create the
ADAMS dataset if any of these features are selected.

Mechanical gearbox efficiency losses are very
difficult to model in ADAMS. Thus, GboxEff must be
set to 100% when creating ADAMS datasets.
Similarly, the physics of a gearbox whose LSS and
HSS rotate in opposite directions are difficult to model
in ADAMS. Thus, GBRevers must be set to False
when creating ADAMS datasets.

The initial displacements of the blades and tower,
specified using inputs OoPDefl, IPDefl, TTDspFA,
and TTDspSS, must all be zero when creating
ADAMS datasets. This is due to the difficulty
involved in assembling an ADAMS dataset that
contains deflected flexible members at the model
definition phase. The initial teeter angle, TeetDefl,
must also be set to zero when creating ADAMS
datasets. This restriction exists since the generic
GFOSUB.f90 routines provided in the A2AD archive
will not read initial blade element data properly if
TeetDefl is nonzero. All of the other initial conditions
specified in FAST’s primary input file, including the
initial rotor speed (RotSpeed), are incorporated in the
ADAMS datasets.

Due to a restriction in ADAMS, the title line of
FAST’s primary input file, the third line in the file,
must not contain any of the characters “,”, “;”, “&”, or
“!” when creating ADAMS datasets. This is because
the title is stored as a STRING statement in the
ADAMS datasets (used for providing header
information in the primary output file) and because
ADAMS STRING statements prohibit the use of these
characters.

Sensible limits are placed on the number of blade
and tower elements so that a reasonable numbering
scheme could be implemented for ADAMS blade and
tower PART, MARKER, and FIELD statements. This
restriction is that neither TwrNodes nor BldNodes
can be greater than 99.

FAST User's Guide 48 Last updated on August 12, 2005 for version 6.0

Finally, users of the FAST-to-ADAMS
preprocessor should also be aware that the linearization
control features and Simulink interface available in
FAST are not available in the extracted ADAMS
models.

Step 3. Run FAST with ADAMSPrep set at 2 or
3. When ADAMSPrep is set to 2, FAST creates the
ADAMS datasets and stops. When ADAMSPrep is set
to 3, FAST creates the ADAMS datasets and then
proceeds to run the FAST simulation as well.

When running, FAST generates two ADAMS files
as follows:
<RootName>_ADAMS.adm
 The ADAMS dataset containing

statements that characterize the
model configuration, analysis
settings, and output.

<RootName>_ADAMS.acf
 The ADAMS command file

containing statements that enable
DOFs and drive the time-
marching simulation.

where RootName is the name of the primary input file.
For example, if the input file were named fast.fst, the
extracted ADAMS files will be named
fast_ADAMS.adm and fast_ADAMS.acf.

An additional file named
<RootName>_ADAMS_LIN.acf is generated when flag
MakeLINacf is enabled in the ADAMSFile. This third
file contains statements that drive an
ADAMS/LINEAR eigenanalysis of the model. The
eigenanalysis is performed with no gravity, rotor speed,
damping, or aerodynamics, no matter how the
associated inputs are otherwise specified in FAST’s
input files.

If you want to change the ADAMS model
properties or analysis settings, simply change the
desired input properties in the FAST input file(s) and
run FAST again to create the updated ADAMS
datasets. This causes FAST to overwrite your old
datasets if they are located in the same directory in
which FAST is called. You never need to manually
change the ADAMS datasets unless you want to
change the ADAMS model to include features not
supported by the FAST-to-ADAMS preprocessor.

Before running the ADAMS simulation, it may be
beneficial to examine the model in ADAMS View to
make sure the configuration is as expected. To do this,
open ADAMS View, choose Import… from the File
menu, and then browse and select the ADAMS dataset
(.adm) of interest.

Running ADAMS
Before running ADAMS, it is imperative that you

first understand FAST. This is because the extracted
ADAMS datasets are considerably more complex than

their associated FAST models. Please refer to Step 1
of the previous section for additional information
regarding this issue.

Using ADAMS.dll, an extracted ADAMS dataset,
and an extracted ADAMS control/command file, you
can run the ADAMS simulation using the Run Custom
Solver prompts available in ADAMS Solver.
Experienced users of ADAMS can also develop script
files so that ADAMS.dll can be run from any directory
without manually going through the ADAMS Solver
prompts.

In order to get the ADAMS simulation to run
smoothly and converge accurately, you will most likely
need to play around with the time step size and
integrator error. The FAST-to-ADAMS preprocessor
automatically enters a default integrator error of 0.001
for all of the ADAMS INTEGRATOR/GSTIFF
statements. This should be suitable for most
simulations, but may require adjustment for some.

Please refer to (13) for additional hints on running
ADAMS simulations.

ADAMS generates several output files. The
primary output file of interest has a .plt (for plot)
extension. This file contains the columns of time-
series data with one column for each parameter that is
requested in the primary input file. The format of this
output file is identical to that of FAST’s .out file so that
post-processing techniques are compatible for the
codes. The other files created are generic ADAMS
output files generated by ADAMS Solver. It may or
may not be useful to review these.

When examining time-series data output from
ADAMS, please be aware of the following limitations.
If the tower is rigid, the tower base loads will all be
output with zeros—unfortunately, we haven’t found a
reason or workaround for this anomoly. Also, when
outputting local span blade loads, be aware that the
loads at the outboard strain gages will be under-
predicted by ADAMS. This is because ADAMS lumps
all of its mass at the center of each segment (rigid body
inertia effects are also included), and thus, the mass of
the segment in which the local span loads are output
does not contribute to the local load. This difference
shows most in the outboard part of the blade and
becomes insignificant toward the root. Finally, be
aware that the gyroscopic pitching moments induced
when the nacelle yaws while the drivetrain is spinning
will be over-predicted by ADAMS. This results from
the fact that the HSS is lumped to the LSS in the
ADAMS model. A detailed explanation of why this
lumping affects the gyroscopic pitch moments is
provided in (6).

If SaveGrphcs is enabled in ADAMSFile,
ADAMS will also generate a graphics output file with
a .gra extension. The graphics output file may be used
to view an animation of the ADAMS simulation. To
view the simulation, open ADAMS View, choose

FAST User's Guide 49 Last updated on August 12, 2005 for version 6.0

Import… from the File menu, and then browse and
select the ADAMS graphics file of interest. Once
loaded, the animation can be played by choosing
Animation Controls… from the Review menu. When
running many ADAMS simulations, it is beneficial to
disable SaveGrphcs—ADAMS will not then generate
the graphics output file and will run faster as a result.

When ADAMS is run using the control/command
file for the ADAMS/LINEAR analysis, a results output
file with a .res extension is generated. To animate the
system mode shapes, open ADAMS View, choose
Import… from the File menu, and then browse and
select the ADAMS results file of interest. Once
loaded, the system modes can be animated by choosing
Linear Modes Controls… from the Review menu. If
you only require a listing of the system natural
frequencies, these results are written and can be
retrieved from either the .out (output) or .msg
(message) files automatically generated by ADAMS
Solver.

Description of the Extracted ADAMS
Datasets

This section documents qualitatively how the
extracted ADAMS datasets are organized and how the
various components of the wind turbine model are
implemented in ADAMS. If you are interested in
manually modifying the ADAMS datasets in order to
incorporate features not available by the FAST-to-
ADAMS preprocessor, it is important to review this
section first. If you have no interest in learning how
the various components of the wind turbine model are
implemented in ADAMS, you may skip this section
entirely.

To learn the exact details on how the ADAMS
datasets are generated, see the file FAST2ADAMS.f90
in the FAST source code. This Fortran file contains
three subroutines, one for generating each of the
ADAMS files output by FAST.

In general, the ADAMS datasets generated by
FAST employ the same PART and MARKER
numbering conventions as recommended in (13). For
reference, a complete listing of all of the ADAMS
statements (PARTs, MARKERs, FIELDs, JOINTs,
etc.) contained in the extracted ADAMS datasets is
provided on our Web page http://wind.nrel.gov/
designcodes/adams2ad/FAST2ADAMSStatements
.xls. However, not all extracted ADAMS datasets
contain every statement documented in this
spreadsheet—only statements that are needed are
included. For example, if the generator speed is held
fixed by disabling the generator DOF, then the
SFORCE statement used to model an unneeded
generator torque will not be included in the ADAMS
dataset.

When examining the ADAMS datasets, it is
important to note that the system units for all

statements in the ADAMS datasets are in kilonewtons,
kilograms, meters, and seconds for the force, mass,
length, and time units respectively. These are specified
through the use of a UNITS statement. The
acceleration of gravity, specified using an ACCGRAV
statement, acts in the negative z-direction of the
GROUND reference frame and MARKER.

The ADAMS dataset containing statements that
characterize the model configuration, analysis settings,
and output (the .adm file) is organized into five main
sections. The first is a header section containing
comments that identify the model name and describe
how and when the dataset was created. The second
section contains definitions of all model PART,
MARKER, and GRAPHICS statements. The third
section contains the constraint JOINT and MOTION
statements, and the fourth section contains force
definitions, including FIELD, FRICTION, SFORCE,
VFORCE, GFORCE, and SPRINGDAMPER
statements. The last section contains definitions of
analysis settings and output.

In each section that contains model definition
statements, the model is assembled from the ground up,
from the support platform through the blade tip. So,
for example, if you want to examine the tower FIELD
statements, look at the statements near the beginning of
the force definition section.

The ADAMS command (.acf) files contain
commands used to drive the simulation. These include
an INTEGRATOR statement and either
SIMULATE/DYNAMICS or LINEAR/EIGENSOL
commands, depending on the type of analysis
performed. The .acf files also contain DEACTIVATE
commands used to remove superfluous constraints and
enable DOFs based on the specifications in the feature
flags section of FAST’s primary input file. Additional
details on this last point are provided at the end of this
section.

Each tower and blade element is characterized by
its own PART statement. The center of mass
MARKERs of these PARTs are located at the same
vertical (for tower) and radial (for blade) locations as
the analysis nodes used in FAST. For blades, the
transverse locations of the center of mass MARKERs
are positioned with the reference axis and center-of-
gravity offsets specified in the blade input file. For
towers, the transverse locations of the center of mass
MARKERs are identified using the distributed center-
of-gravity offsets specified in the tower input file.
Interconnecting each PART is a stiffness and damping
FIELD statement. The FIELDs attach to the PARTs at
elastic axis MARKERs, which are located in the same
transverse planes as the center of mass MARKERs of
each PART. For the blades, the transverse locations of
the elastic axis MARKERs are identified using the
distributed reference axis and elastic-axis offsets

FAST User's Guide 50 Last updated on August 12, 2005 for version 6.0

specified in the blade file, and for the tower, are
assumed coincident with the tower axis.

Users should note that a flexible member (a blade
or tower) with “N” analysis nodes, will be assembled
using “N+1” FIELD statements. “N-1” of the FIELD
statements are used to interconnect the “N” analysis
nodes to each another. The “Nth” FIELD statement is
used to cantilever node 1 to the flexible member’s rigid
base. The “(N+1)th” FIELD statement is used to
connect node “N” to the tip of the flexible member,
which for the tower is the tower-top and for a blade is
the tip brake. For blades with no tip brakes (indicated
by setting the associated TipMass to zero), the DOFs
associated with the outermost FIELD statement are
never enabled.

The support platform, tower top, bed plate,
nacelle, generator, HSS, LSS, teeter pin, hub, pitch
plates, tip brakes, tail, and structure furling with the
rotor are all modeled using rigid PART statements.
Each of these PARTs contains several MARKERs for
identifying various locations and directions.

In the graphics output, each tower and blade
element is identified with its own unique GRAPHICS
statement. Additional GRAPHICS statements are used
to illustrate the rigid tower base, nacelle, gearbox,
HSS, LSS, generator, hub, tail boom, and tail fin.

The yaw bearing is modeled with a revolute
JOINT. Nacelle yaw demand angles and rates, arising
from both advanced yaw control algorithms and
override yaw maneuver specifications, are computed in
VARSUB() and stored in VARIABLE statements. If
necessary, based on settings in FAST’s primary input
file, routine VARSUB() calls FAST’s user-defined
yaw control routine, UserYawCont(). The difference
between the yaw demand angle and actual yaw angle
(yaw error) and the yaw demand rate and actual yaw
rate (yaw rate error) is passed through a yaw actuator
model that is implemented with an explicit function-
based SFORCE statement. This is the same yaw
actuator inherent in equivalent FAST models. If the
yaw DOF is disabled, the yaw JOINT is “locked” using
a steady MOTION statement, but the yaw DOF cannot
be disabled if yaw control is enabled (the ADAMS
preprocessor will abort if you try).

The rotor-furl bearing is modeled with a revolute
JOINT. When RFrlMod is set to 1, the standard, linear
compliance is modeled with a rotational
SPRINGDAMPER statement and the nonlinear up- and
down- spring and damper stops are modeled with
explicit function-based SFORCE statements. When
RFrlMod is set to 2, the user-defined rotor-furl spring
and damper model provided in routine UserRFrl() is
interfaced to ADAMS from routine SFOSUB(), which
in turn, is called from an SFORCE statement. If the
rotor-furl DOF is disabled, the rotor-furl JOINT is
“locked” using a steady MOTION statement.

Likewise, the tail-furl bearing is modeled with a
revolute JOINT. When TFrlMod is set to 1, the
standard, linear compliance is modeled with a
rotational SPRINGDAMPER statement and the
nonlinear up- and down- spring and damper stops are
modeled with explicit function-based SFORCE
statements. When TFrlMod is set to 2, the user-
defined tail-furl spring and damper model provided in
routine UserTFrl() is interfaced to ADAMS from
routine SFOSUB(), which in turn, is called from an
SFORCE statement. If the tail-furl DOF is disabled,
the tail-furl JOINT is “locked” using a steady
MOTION statement.

Low-speed shaft compliance is modeled with a
revolute JOINT and a rotational SPRINGDAMPER
statement. When drivetrain rotational flexibility is
disabled, the JOINT is “locked” with a zero-valued
MOTION statement.

Drivetrain torque models, including both the
generator models and variable-speed control models,
are implemented with an SFORCE (1-component
scalar force) statement that calls routine SFOSUB().
This routine implements each type of drivetrain torque
model available in FAST. The parameters passed to
SFOSUB() depend on the type of drivetrain torque
model selected in FAST’s primary input file. If
necessary, SFOSUB() will call the user-defined
UserGen() or UserVSCont() routines.

The high-speed shaft brake is implemented with a
preload-only FRICTION statement. Since the
magnitude of the preload torque cannot be time-
varying, the full friction torque is applied throughout
the entire simulation. To negate the unwanted
resistance before THSSBrDp, an SFORCE statement
that calls SFOSUB() is used to apply a cancellation
torque between the shaft and the nacelle. The
SFOSUB() also applies the linear ramping component
of the braking torque (over time increment HSSBrDT)
when HSSBrMode is set to 1. Alternatively,
SFOSUB() calls FAST’s user-defined HSS brake
routine UserHSSBr() to determine the fraction of
torque to cancel out when HSSBrMode is set to 2.

The teeter bearing is modeled with a revolute
JOINT. When TeetMod is set to 1, the standard,
nonlinear teeter spring and damper models are
implemented with explicit function-based SFORCE
statements. When TeetMod is set to 2, the user-
defined teeter spring and damper model provided in
routine UserTeet() is interfaced to ADAMS from
routine SFOSUB(), which in turn, is called from an
SFORCE statement. If the teeter DOF is disabled, the
teeter JOINT is “locked” using a steady MOTION
statement.

The blade pitch bearing is modeled with a revolute
JOINT. Blade pitch demand angles, arising from both
advanced pitch control algorithms and override pitch
maneuver specifications, are computed in VARSUB()

FAST User's Guide 51 Last updated on August 12, 2005 for version 6.0

and stored in VARIABLE statements. If necessary,
based on settings in FAST’s primary input file, routine
VARSUB() calls FAST’s user-defined pitch control
routine, PitchCntrl(). The difference between the pitch
demand angle and actual pitch angle (pitch error) is
passed through a pitch actuator model that is
implemented with an explicit function-based SFORCE
statement. If pitch is not actively controlled during the
simulation, the pitch JOINT is “locked” using a steady
MOTION statement.

As described in the A2AD User’s Guide (13),
ADAMS is interfaced to AeroDyn through routines
provided in the A2AD source file GFOSUB.f90.
Routine GFOSUB(), which is contained in
GFOSUB.f90, is called from GFORCE (6-component
general force) statements placed in the ADAMS
dataset. There is one GFORCE statement for each
blade analysis node (or element) in every blade.

A GFORCE statement, together with the
GFOSUB(), is also used to interface ADAMS with the
user-defined support platform loading model, routine
UserPtfmLd().

Tip-brake drag forces are modeled using VFORCE
(3-component vector force) statements that call routine
VFOSUB(). The VFOSUB() routine employs the
same simple logic FAST uses for computing tip brake
drag forces.

Tail fin aerodynamic loads are also modeled using
a VFORCE (3-component vector force) statement that
calls routine VFOSUB(). When TFinMod is set to 1,
the VFOSUB() routine employs the same simple logic
FAST uses for computing the tail fin aerodynamic
loads. When TFinMod is set to 2, the user-defined tail
fin aerodynamic model provided in routine UserTFin()
is interfaced to ADAMS from routine VFOSUB().

All output parameter names, units, and identifiers
are stored in the ADAMS dataset using ARRAY and
STRING statements. These are read in by routines in

the A2AD source file REQSUB_FAST.f90 to determine
which channels to output. Additional parameters
needed for computing output data are passed to
REQSUB(), a routine contained in file
REQSUB_FAST.f90. Routine REQSUB() is, in turn,
called using a REQUEST statement in the ADAMS
dataset.

No matter which DOFs are enabled when
generating the ADAMS datasets with the FAST-to-
ADAMS preprocessor, the ADAMS dataset is always
assembled so that it possesses no DOFs upon initiation.
That is, all DOFs are essentially “locked” during the
model-loading phase. This is achieved by placing
fixed JOINTs between each PART of the flexible
blades and tower, placing an ORIENTATION JOINT
between the GROUND and support platform PART,
and by specifying steady MOTION statements at all
revolute JOINTs for the yaw, rotor-furl, tail-furl, teeter,
shaft, and blade pitch bearings.

Once the simulation begins using the ADAMS
command (.acf) file, the first time step is processed
with all the DOFs “locked”. After the first time step,
the selected DOFs are enabled by removing the
superfluous MOTION, JPRIM, and fixed JOINT
statements through the use of DEACTIVATE
commands. Processing the first time step with zero
DOFs ensures that the initial condition solution, which
always precedes the first SIMULATE/DYNAMICS
event, does not “kick” the system when the rotor is
initially spinning at some nonzero-valued rate. Instead,
the simulation always begins with no initial
deflections. This technique essentially bypasses the
startup problems pertaining to most ADAMS datasets
as discussed in (13). The transient behavior associated
with the startup of an ADAMS analysis, should be
nearly identical to that associated with the startup of a
corresponding FAST analysis.

FAST User's Guide 53 Last updated on August 12, 2005 for version 6.0

INPUT FILES

Sample Input Files
The sections that follow describe the format of the

various program input files. In the FAST archive, we
provide a sample set of 17 models, including all

pertinent input files. Table 7 provides a general
description of these sample models. The sample input
files associated with these models are available in the
CertTest folder and should be used as templates for
creating your own models.

Table 7. Sample Models Provided with the FAST Archive.

Test
Name Turbine Name

No.
Blades

(-)

Rotor
Diameter

(m)

Rated
Power
(kW) Test Description

Test01 AWT-27CR2 2 27 175 Flexible, fixed yaw error, steady wind
Test02 AWT-27CR2 2 27 175 Flexible, start-up, HSS brake shut-down, steady wind
Test03 AWT-27CR2 2 27 175 Flexible, free yaw, steady wind
Test04 AWT-27CR2 2 27 175 Flexible, free yaw, turbulence
Test05 AWT-27CR2 2 27 175 Flexible, generator start-up, tip-brake shutdown, steady wind
Test06 AOC-15/50 3 15 50 Flexible, generator start-up, tip-brake shutdown, steady wind
Test07 AOC-15/50 3 15 50 Flexible, free yaw, turbulence
Test08 AOC-15/50 3 15 50 Flexible, fixed yaw error, steady wind
Test09 UAE VI downwind 2 10 20 Flexible, yaw ramp, steady wind
Test10 UAE VI upwind 2 10 20 Rigid, power curve, ramp wind
Test11 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, pitch failure, turbulence
Test12 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, ECD event
Test13 WP 1.5 MW 3 70 1500 Flexible, variable speed & pitch control, turbulence
Test14 WP 1.5 MW 3 70 1500 Flexible, stationary linearization, vacuum
Test15 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, tail-furl, EOG01 event
Test16 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, tail-furl, EDC01 event
Test17 SWRT 3 5.8 10 Flexible, variable speed control, free yaw, tail-furl, turbulence

Primary Input File
FAST uses a primary input file to describe the

wind turbine operating parameters and basic geometry.
However, the blade, tower, furling, and aerodynamic
parameters and wind-time histories are read from
separate files. Additionally, input parameters related to
FAST linearization and parameters only necessary for
creation of ADAMS datasets are read in from separate
files (see Figure 29). Descriptions of the individual
inputs in the various files are provided below. Output
files are discussed in the Output Files chapter.

The primary input file has a default name of
primary.fst, which FAST will try to open if you do not
specify a file name on the command line. If you want
to use different names for different cases, you can
specify a file with a different name on the command
line. Files with spaces in their paths or names must be
delimited by quotes. File names are limited to 99
characters and may include absolute or relative paths.

The parameter input files have a simple text format
that can be read and modified by any text editor. Most
lines in the input file are divided into three sections:
value(s), variable name(s), and description. For lines
that require more than one value, separate them with
spaces, tabs, or commas. Anything past the last value

on the line is treated as a comment. Values for string
variables must be delimited with a pair of apostrophes
or double quotes. Logical flags must be unquoted
strings that start with t or T for True and f or F for
False. The Variable-Name section contains the
variable name used internally by the program and in
references for other parameters. The Description
section of the line contains a brief description of the
parameter as a reminder to the user of its purpose. This
section also contains the physical units of the
numerical value, where appropriate. A sample line
from the input file for input parameter TMax, divided
into its sections is shown below:

 20.0 TMax - Total run time (s)

Note that there are no blank lines in the input files.
The program reads each line in sequential order. You
should never add or delete any lines except in the
various sections that allow it. The tower, blade and
AeroDyn input files have sections where you enter one
line per input station analysis node. The primary
FAST input file has a list of output parameters at the
end of the file that can be as long as you like.

Note also that lines containing section or file titles
may be altered to suit the user. FAST ignores these
lines when it reads the input, but these lines should not

FAST User's Guide 54 Last updated on August 12, 2005 for version 6.0

be deleted for the same reasons mentioned in the
previous paragraph.

Some parameters do not apply to two-bladed
turbines, and others do not apply to three-bladed
turbines. FAST treats these as comments. Any text
may be used on the unused lines, or they may even be
blank, but they must exist. The sample input files
identify such parameters.

Several other files are read for additional
parameters. One of the parameters in the primary file
is the name of the tower file (TwrFile). There are three
other parameters designating the names of the three
blade input files (BldFilei). If you want to use identical
properties for all blades, you may specify the same

name three times. One more parameter in the primary
input file identifies the name of the file containing
additional model properties for a furling turbine
(FurlFile), another specifies the aerodynamic noise
input file (NoiseFile), and another identifies the name
of the AeroDyn input file (ADFile). Additionally, the
name of the input file relating to a FAST linearization
analysis (LinFile) and the name of the file containing
ADAMS-specific data input (ADAMSFile) are further
parameters in the primary input file.

Table 8 lists the input parameters for the primary
input file.

Linearization

FAST AeroDyn

Simulation
FAST-to-ADAMS

Preprocessor

Primary

Tower

Furling Primary

Periodic
Matrices

Element

Wind

Linear

ADAMS-
Specific

Time
Series

Blade(s)
Airfoil(s)

ADAMS
Dataset/

Control(s)

Platform

Summary Summary

Figure 29. Input and Output Files.

Tower Input File
In the tower file, there is a table for the tower

characteristics, which requires several columns of data
in the Distributed Tower Properties section of the input
file. Only the first four columns are used to
characterize the FAST model. The last six columns are
used only for creating ADAMS datasets using the
FAST-to-ADAMS preprocessor feature of FAST. You
need to enter only one line if the tower is uniform.
You must specify a zero for the location of this single
station. If you model a non-uniform tower, you must
specify at least two stations; the first must be at the 0
location and the last must have a location of 1 (for
100% of the flexible height of the tower). FAST will

linearly interpolate these data to the centers of the
equally spaced segments, which are the analysis nodes.
There are TwrNodes segments or analysis nodes. To
get the most accurate results from these properties,
include data points for the analysis nodes in the input
table.

Table 9 lists the input parameters for the tower
input file. FAST reads this file even if you requested
no tower DOFs.

Blade Input Files
In the blade input files, there are tables of blade

characteristics. There are several columns of data in
the Distributed Blade Properties section, each of which
must be separated from the other by a space, tab, or

FAST User's Guide 55 Last updated on August 12, 2005 for version 6.0

comma. Only the first six columns are used to
characterize the FAST model. The last 11 columns are
used only for creating ADAMS datasets using the
FAST-to-ADAMS preprocessor feature of FAST. You
need to enter only one line if the blade is uniform. You
must specify a zero for the location of this single
station. If you model non-uniform blades, you must
specify at least two stations; the first must be at the
zero location and the last must have a location of 1 (for
100% span). FAST will linearly interpolate these data
to the analysis nodes specified in the AeroDyn input
file. There are BldNodes segments or analysis nodes.
To get the most accurate results from these properties,
include data points for the analysis nodes in the input
table.

Table 10 lists the input parameters for the blade
input files. FAST reads this file even if you requested
no blade DOFs.

AeroDyn Input Files
Table 11 lists the input parameters for the primary

AeroDyn input file. AeroDyn also uses other input
files. The current version of AeroDyn accommodates
two types of wind files. One type specifies hub-height
wind data that also includes wind shears and gusts.
You can use IECWind (14) or WindMaker (15) to
generate these files for standard IEC wind conditions.
You can also fabricate these simple text files from
scratch or even use field-test data. The other type of
wind file contains full-field wind data in a binary form.
TurbSim (16), SNwind (17), or SNLWIND-3D (18)
can generate these files. They contain two-dimensional
grids of three-component winds that march past the
turbine at a mean wind speed. AeroDyn also reads one
or more files containing airfoil data.

Please see the AeroDyn user’s guide (1) for
additional details on these files. FAST reads these files
even if you disabled aerodynamic calculations.

Platform Input File
Table 12 lists the input parameters for the platform

input data file. This file contains inputs related to the
support platform configuration, motions, and loading.

FAST only reads the platform input file if
PtfmModel from the primary input file is nonzero. In
FAST v6.0, all nonzero PtfmModel options will work
the same way by reading in the PtfmFile described in
Table 12. In future versions, the format of this file will
depend on which PtfmModel option is selected.

Furling Input File
Table 13 lists the input parameters for the furling

input file. The inputs pertain to the lateral offset and
skew angle of the rotor shaft, rotor-furling, tail-furling,
and tail inertia and aerodynamics. If the turbine you
want to model contains any of these characteristics,
you must assemble the furling input file even if your
turbine does not “furl” in the common sense of the
word. For example, if the turbine you want to model
contains a tail, you must assemble the furling input file
regardless of whether or not your tail, or rotor, actively
furls about the yawing-portion of the structure atop the
tower.

It is clear that the inputs available in the furling
input file define the core configuration of the turbine,
just like those available in the primary input file. The
reason we separated the parameters between the two
input files is that the parameters available in the furling
input are unique to small wind turbines. The challenge
in defining the unique configurations of small wind
turbines relative to the configurations of conventional
machines is clearly demonstrated by the contents of the
furling input file. Who said small wind turbines are
easier to design than large wind turbines?

The furling input file is organized into sections
similar to those available in the primary input file.
This supports the notion that the furling file is simply a
continuation and expansion of the core configuration-
definition designations available in the primary file.

FAST only reads the furling input file if the model
is designated as a furling machine (when Furling is set
to True).

ADAMS-Specific Input File
Table 14 lists the input parameters for the

ADAMS-specific-input data file. This file contains
inputs related to the blade pitch actuators, graphical
output capabilities, and other ADAMS-specific
functionalities.

FAST does not read this file if ADAMS datasets
are not generated (when ADAMSPrep is set to 1).

Linearization Control-Input File
Table 15 lists the input parameters relating to a

FAST linearization analysis. FAST only reads in this
file when performing a linearization analysis (when
AnalMode is set to 2).

FAST User's Guide 56 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters.

Simulation Control

Echo Setting this flag to True will cause FAST to echo input values as it reads them. It writes the data
to the file echo.out. This is a useful tool to debug problems with your input files. For normal
operation, set this parameter to False. (flag)

ADAMSPrep This switch determines whether or not the ADAMS preprocessor is enabled. Setting
ADAMSPrep to 1 disables the ADAMS preprocessor and causes FAST to run its simulation as
normal. A setting of 2 turns on the ADAMS preprocessor and turns off FAST; when FAST is run,
the ADAMS datasets are created and FAST stops without performing a simulation. A setting of 3
enables both FAST and the ADAMS preprocessor; when FAST is run, the ADAMS datasets are
created and FAST proceeds to run its simulation. Using values other than 1, 2, or 3 will cause
FAST to abort. ADAMSPrep must be 1 when FAST is interfaced with Simulink. (switch)

AnalMode This switch determines whether to perform a time-marching analysis (simulation) or a
linearization analysis (i.e., AnalMode stands for the analysis mode). A setting of 1 indicates a
time-marching analysis. To perform a linearization analysis, set AnalMode to 2. Using values
other than 1 or 2 will cause FAST to abort. AnalMode must be 1 when FAST is interfaced with
Simulink. This input is not used in the FAST-to-ADAMS preprocessor. (switch)

NumBl This is the number of blades on the rotor. Valid values are 2 and 3. (-)
TMax The overall simulation runtime. For time-marching simulations, the simulation stops when TMax

is reached. When computing a steady state solution during a linearization analysis, the iteration
stops and FAST aborts if the solution has not converged by the time TMax is reached. (sec)

DT This is the time step for the constant-step-size numerical-integration scheme that is used by FAST.
For ADAMS datasets extracted from FAST, DT is used to specify the maximum step size the
integrator is allowed to take in the variable-step-size numerical-integration scheme that is used by
ADAMS. You should be careful to choose an appropriate value for DT because if DT is too small
or too large, the numerical solution will become unstable. Whenever you make changes to the
configuration of your model, you should experiment with different values for DT and choose
the largest value that does not affect your results. (sec)

Turbine Control

YCMode This is the yaw-control-mode switch for user-defined nacelle yaw control. Setting it to 0 disables
user-defined yaw control. Setting it to 1 causes FAST to call a user-written routine called
UserYawCont() at every time step past TYCOn. We supply a dummy routine in the software
folder to help you write your own. Setting YCMode to 2 causes FAST to accept yaw position and
rate demands externally from Simulink. The simple yaw maneuvers described below override the
control setting determined by the user-supplied yaw controllers. Please see the Controls chapter
for further details. YCMode must be 0 during a linearization analysis and must not be 2 unless
FAST is interfaced with Simulink. Using values other than 0, 1, or 2 will cause FAST to abort.
(switch)

TYCOn The time to enable active nacelle yaw control. This parameter is used only if YCMode is set to a
non-zero value. TYCOn must not be negative and must equal zero when YCMode is 2. Please
see the Controls chapter for further details. (sec)

PCMode This is the pitch-control-mode switch for user-defined pitch control. Setting it to 0 disables user-
defined pitch control. Setting it to 1 causes FAST to call a user-written routine called PitchCntrl()
at every time step past TPCOn. A real pitch-control routine created by Craig Hansen is linked
with FAST, but we supply a dummy routine in the software folder to help you write your own.
Setting PCMode to 2 causes FAST to accept pitch demands externally from Simulink. The
simple pitch maneuvers described below override the control setting determined by the user-
supplied pitch controllers. Please see the Controls chapter for further details. PCMode must be 0
during a linearization analysis and must not be 2 unless FAST is interfaced with Simulink. Using
values other than 0, 1, or 2 will cause FAST to abort. (switch)

FAST User's Guide 57 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Turbine Control (continued)

TPCOn The time to enable active pitch control. This parameter is used only if PCMode is set to a non-
zero value. TPCOn must not be negative and must equal zero when PCMode is 2. Please see the
Controls chapter for further details. (sec)

VSContrl This switch determines whether the generator torque is actively controlled for variable speed
machines. The generator DOF flag, GenDOF, must be enabled to use this feature. Setting
VSContrl to 0 will cause FAST to use one of the generator models defined by GenModel below
to determine the generator torque. A setting of 1 for VSContrl will invoke a simple variable-
speed model that uses the next four input parameters to determine the generator torque. Setting
VSContrl to 2 will enable a user-written routine, UserVSCont(), to determine the generator
torque. A sample routine is included in the file UserVSCont_KP.f90 and a dummy placeholder is
available (and commented out) in UserSubs.f90. Setting VSContrl to 3 causes FAST to accept
generator torque and electrical power demands externally from Simulink. VSContrl must not be 3
unless FAST is interfaced with Simulink. Using values other than 0, 1, 2, or 3 will cause FAST to
abort. Please see the Controls chapter for further details. (switch)

VS_RtGnSp The simple variable-speed control changes from the Region 2½ (linear torque versus speed
transition) to Region 3 (constant-torque control) at this generator speed (HSS speed). See Figure
22 for details. This value must not be less than zero, but it is ignored if VSContrl is not equal to
1. (rpm)

VS_RtTq This is the constant (or rated) torque applied to the HSS by the generator in Region 3 for the
simple variable-speed controller. See Figure 22 for details. This value must not be less than zero,
but it is ignored if VSContrl is not equal to 1. (N·m)

VS_Rgn2K When in Region 2 for the simple variable-speed controller, the generator speed is squared and
multiplied by VS_Rgn2K to compute the generator torque to apply to the HSS. See Figure 22 for
details. This value must not be less than zero, but it is ignored if VSContrl is not equal to 1.
(N·m/rpm2)

VS_SlPc This is the rated generator slip percentage in the linear torque versus speed transition Region 2½
for the simple variable-speed controller. Similar to the simple induction generator input parameter
SIG_SlPc, input VS_SlPc should be computed as the difference between the rated and the
equivalent synchronous generator speed, divided by the equivalent synchronous speed, and then
converted to percent. See Figure 22 for details. This value must greater than zero, but it is
ignored if VSContrl is not equal to 1. (%)

GenModel This switch determines which generator model is used when GenDOF is enabled and VSContrl is
set to 0. Setting it to 1 enables the simple-induction-generator model, whose parameters are
defined in the Simple-Induction-Generator section below. Setting it to 2 enables the Thevenin-
equivalent induction-generator model, whose parameters are defined in the Thevenin-Equivalent-
Induction-Generator section below. Setting it to 3 will cause FAST to call the user-written
subroutine, UserGen(). A UserGen() routine (found in UserVSCont_KP.f90), which calls
routine UserVSCont() as if VSContrl was set to 2, is normally linked with the program and a
dummy placeholder of UserGen() is also available (and commented out) in source file
UserSubs.f90. In order to define your own generator model, you will need to write your own
routine to replace it to use this option. Using values other than 1, 2, or 3 will cause FAST to abort.
(switch)

GenTiStr This flag determines whether the generator is brought online at a specific time (TimGenOn) or a
specific generator speed (SpGenOn). To use this feature, you must enable the generator DOF
(GenDOF). GenTiStr must be True and TimGenOn must be 0.0 during a linearization analysis
(AnalMod = 2) or when VSContrl is set to 3. (flag)

GenTiStp This flag determines whether the generator is taken offline at a specific time (TimGenOf) or when
power falls to zero. To use this feature, you must enable the generator DOF (GenDOF).
GenTiStp must be True and TimGenOf must greater than TMax during a linearization analysis
(AnalMod = 2) or when VSContrl is set to 3. (flag)

SpGenOn If GenTiStr is False, the generator will switch on and stay on once the HSS speed reaches
SpGenOn. This is used to do a speed startup of the generator. It applies to all generator models,
including user-defined and variable-speed control. (rpm)

FAST User's Guide 58 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Turbine Control (continued)

TimGenOn If GenTiStr is True, the generator will switch on at time TimGenOn. This is used to do a timed
startup of the generator. It applies to all generator models, including user-defined and variable-
speed control. GenTiStr must be True and TimGenOn must be 0.0 during a linearization
analysis (AnalMod = 2) or when VSContrl is set to 3. (sec)

TimGenOf This parameter determines the time to turn off the generator when GenTiStp is True. This can be
used for a shutdown maneuver or to simulate a loss of grid. This value is used whether you do a
timed or speed-based startup. Normally, you won’t simulate a startup and a loss of grid (or shut-
down) in the same run. In those cases, you will probably want to set this value to be greater than
TMax. When you do want to use TimGenOf, you will probably want to enable GenTiStr and set
TimGenOn to 0. TimGenOf must be greater than or equal to TimGenOn if GenTiStr is
enabled. This parameter is not used if GenTiStp is False. In that case, the generator is taken
offline when the power drops to zero. GenTiStp must be True and TimGenOf must greater than
TMax during a linearization analysis (AnalMod = 2) or when VSContrl is set to 3. (sec)

HSSBrMode This switch determines which HSS brake model is used when GenDOF is enabled. Setting it to 1
enables the simple built-in HSS brake torque with a linear ramp-up from zero to HSSBrTqF over
time HSSBrDT. Setting it to 2 causes FAST to call a user-written routine called UserHSSBr() at
every time step past THSSBrDp. We supply a dummy routine in the software folder to help you
write your own. Please see the Controls chapter for further details. Using values other than 1 or 2
will cause FAST to abort. (switch)

THSSBrDp At this time, the HSS brake will be deployed. In the simple model (HSSBrMode = 1), the
braking torque will start its linear ramp to full torque, which happens after HSSBrDT seconds. In
the user-defined model (HSSBrMode = 2), routine UserHSSBr() determines the fraction of full
braking torque after deployment. You will probably want to turn the generator off a short time
before this with TimGenOf before starting the HSS brake maneuver. THSSBrDp must greater
than TMax during a linearization analysis (AnalMod = 2) or when FAST is interfaced with
Simulink. (sec)

TiDynBrk The dynamic generator brake engages at this time. This input is CURRENTLY IGNORED since
logic for the dynamic generator brake is not currently coded in FAST. TiDynBrk must greater
than TMax during a linearization analysis. (sec)

TTpBrDpi The ith tip brake will start to deploy at this time. The drag constant for this brake will start to ramp
up from TBDrConN to TBDrConD. You can specify different times for different brakes to
simulate such conditions as one brake accidentally deploying or a situation in which one brake
fails to deploy when commanded to do so. TTpBrDpi must greater than TMax during a
linearization analysis. Only the first two values are used for two-bladed turbines. (sec)

TBDepISpi The ith tip brake will start to deploy when the rotor speed reaches TBDepISpi. Up to this point,
the drag constant for the tip brake is TBDrConN. Once the tip brake starts to deploy, it will take
TpBrDT seconds to reach full deployment, where it will remain deployed and using TBDrConD
for the drag constant. During the TpBrDT second deployment, the drag constant for the tip brake
will have an s-shaped ramp from TBDrConN to TBDrConD. TBDeplSpi must much greater than
RotSpeed during a linearization analysis. Only the first two values are used for two-bladed
turbines. (rpm)

TYawManS With or without yaw control or the yaw DOF enabled, after time TYawManS, the nacelle will
yaw to NacYawF using a linear ramp from its current value at TYawManS until TYawManE. If
yaw control is enabled when YCMode is not 0, the yaw commands determined from inputs
TYawManS, TYawManE, and NacYawF override whatever commands come from the yaw
controller. Also, the yaw commands determined from inputs TYawManS, TYawManE, and
NacYawF pass through FAST’s built-in second-order actuator model if the yaw DOF is enabled
when YawDOF is set to True. You can use TYawManS and TYawManE to simulate a yaw for
startup, shutdown, or runaway yaw event. For a fixed-yaw simulation, set YawDOF to False,
YCMode to 0, TYawManS greater than TMax, and NacYaw to the fixed nacelle yaw angle.
TYawManS must greater than TMax during a linearization analysis. (sec)

TYawManE The nacelle yaw command will hold at a constant a setting of NacYawF from this time until the
end of the run. TYawManE must be set larger or equal to TYawManS. (sec)

FAST User's Guide 59 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Turbine Control (concluded)

NacYawF The nacelle yaw command will hold at a constant setting of NacYawF from TYawManE until the
end of the run. (degrees)

TPitManSi With or without pitch control enabled, after time TPitManSi, the ith blade will pitch to BlPitchFi
using a linear ramp from its current value at TPitManSi until TPitManEi. If pitch control is
enabled when PCMode is not 0, the pitch commands determined from inputs TPitManSi,
TPitManEi, and BlPitchFi override whatever commands come from the pitch controller. You can
use TPitManSi and TPitManEi to simulate a pitch for startup, shutdown, or runaway pitch event.
By setting one blade different from the other(s), you can simulate a fault condition in which one
blade unexpectedly pitches or fails to pitch. For a constant-pitch simulation, set PCMode to 0,
TPitManSi greater than TMax, and BlPitchi to the fixed blade pitch angles. TPitManSi must
greater than TMax during a linearization analysis. Only the first two values are used for two-
bladed turbines. (sec)

TPitManEi The ith blade will hold at a constant a setting of BlPitchFi from this time until the end of the run.
TPitManEi must be set larger or equal to TPitManSi. Only the first two values are used for two-
bladed turbines. (sec)

BlPitchi When PCMode is 0 during a time-marching analysis or if TrimCase is 1 or 2 while computing a
steady state solution during a linearization analysis, the ith blade will hold at a constant setting of
BlPitchi until TPitManSi. If PCMode is not 0 or if TrimCase is 3 while computing a steady
state solution during a linearization analysis, BlPitchi is the initial pitch. The pitch angle is
relative to the chord line at the point of zero aerodynamic twist and is positive towards feather
(leading edge upwind). These values must be greater than –180 and less than or equal to 180
degrees. Only the first two values are used for two-bladed turbines. (deg)

BlPitchFi The ith blade will hold at a constant setting of BlPitchFi from TPitManEi until the end of the run.
This is relative to the chord line at the point of zero aerodynamic twist and is positive towards
feather (leading edge upwind). Only the first two values are used for two-bladed turbines. (deg)

Environmental Conditions

Gravity The gravitational acceleration constant. (m/sec2)

Feature Flags*

FlapDOF1 The first flapwise blade-bending mode will be enabled when this flag is True. When enabled, you
should ensure that the corresponding mode shape specified in the blade input files is accurate. For
ADAMS datasets extracted from FAST, this flag is used to enable or disable blade flexibility and
its value must be identical to that of EdgeDOF. (flag)

FlapDOF2 The second flapwise blade-bending mode will be enabled when this flag is True. It is possible to
enable the second mode without enabling the first mode, but it should be done only for research
purposes. When enabled, you should ensure that the corresponding mode shape specified in the
blade input files is accurate. The value of this input does not effect the creation of ADAMS
datasets. (flag)

EdgeDOF The first edgewise blade-bending mode will be enabled when this flag is True. When enabled,
you should ensure that the corresponding mode shape specified in the blade input files is accurate.
For ADAMS datasets extracted from FAST, this flag is used to enable or disable blade flexibility
and its value must be identical to that of FlapDOF1. (flag)

TeetDOF This flag enables rotor teetering when set to True. If this option is disabled, teeter can be set to
any fixed angle. This flag is ignored for three-bladed turbines. (flag)

* You must enable at least one DOF during a linearization analysis (AnalMode set to 2). During a time-marching analysis
(AnalMode set to 1), there is no restriction.

FAST User's Guide 60 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Feature Flags (concluded)

DrTrDOF If set to True, this flag will enable torsional flexibility of the drivetrain. This models the drivetrain
between the generator and rotor as a lumped torsion spring and damper. (flag)

GenDOF The generator DOF will be enabled when this flag is True. This allows use of the various
variable-speed control schemes and generator models during a time-marching analysis or a trim
solution during a linearization analysis. If False, the HSS will rotate at a fixed rate
(RotSpeed*GBRatio). (flag)

YawDOF When set to True, this flag enables the nacelle yaw DOF. The initial nacelle yaw angle is
specified with NacYaw. If YawDOF is disabled, the yaw angle will be fixed at NacYaw. (flag)

TwFADOF1 The first tower fore-aft bending mode will be enabled when this variable is set to True. When en-
abled, you should ensure that the corresponding mode shape specified in the tower input file is ac-
curate. For ADAMS datasets extracted from FAST, this flag is used to enable or disable tower
flexibility and its value must be identical to that of TwSSDOF1. (flag)

TwFADOF2 The second tower fore-aft bending mode will be enabled when this variable is set to True. Except
for research purposes, this flag should be set to True only if TwFADOF1is True. When enabled,
you should ensure that the corresponding mode shape specified in the tower input file is accurate.
The value of this input does not effect the creation of ADAMS datasets. (flag)

TwSSDOF1 The first tower side-to-side bending mode will be enabled when this variable is set to True. When
enabled, you should ensure that the corresponding mode shape specified in the tower input file is
accurate. For ADAMS datasets extracted from FAST, this flag is used to enable or disable tower
flexibility and its value must be identical to that of TwFADOF1. (flag)

TwSSDOF2 The second tower side-to-side bending mode will be enabled when this variable is set to True. Ex-
cept for research purposes, this flag should be set to True only if TwSSDOF1 is True. When en-
abled, you should ensure that the corresponding mode shape specified in the tower input file is ac-
curate. The value of this input does not effect the creation of ADAMS datasets. (flag)

CompAero This flag determines whether aerodynamic loads will be computed using the AeroDyn
aerodynamic modules. If False, the simulation will occur in a vacuum (no airloads). AeroDyn
input properties are specified in the ADFile (see input below). The ADFile must exist even if
CompAero is False, since RNodes determines the location of the structural analysis points.
(flag)

CompNoise A series of semi-empirical aeroacoustic noise prediction algorithms has been incorporated into
FAST by Pat Moriarty of NREL/NWTC. The algorithms predict six different forms of
aerodynamically produced noise including turbulent inflow, turbulent boundary layer trailing
edge, separating flow, laminar boundary layer vortex shedding, trailing edge bluntness vortex
shedding, and tip vortex formation. These noise sources are then superimposed to calculate and
output the total aerocoustic signature of an operating wind turbine. CURRENTLY, THE NOISE
PREDICTION INTERFACE IS NOT DOCUMENTED IN THIS GUIDE (except as it effects the
primary-input-file). Details on the contents and validation of the aeroacoustic noise prediction
models are provided in [19]. Questions related to the noise prediction models and interface should
be directed to Pat Moriarty, preferably at night or on weekends ☺.

 The CompNoise flag determines whether aerodynamic noise will be computed. Aerodynamic
noise input properties are specified in the NoiseFile (see input below). CompAero must be
enabled if CompNoise is enabled. CompNoise must be False during a linearization analysis.
The value of this input does not effect the creation of ADAMS datasets since the aeroacoustic
algorithms are not linked to ADAMS. (flag)

FAST User's Guide 61 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Initial Conditions

OoPDefl This is the initial, out-of-plane, blade-tip displacement. The same value is used for all blades.
Note that by specifying values for initial conditions close to the steady-state conditions, the
numerical solution technique will reach trimmed conditions faster. It is positive downwind. It is
possible to specify combinations of tip displacements that are not meaningful for the blade
structural pretwist distribution and the DOFs that are enabled. If so, FAST will issue a warning
message and choose meaningful values for you. The value of OoPDefl must be zero (no initial
deflection) when creating ADAMS datasets or when FAST is interfaced with Simulink. (m)

IPDefl This is the initial, in-plane, blade-tip displacement. The same value is used for all blades. Note
that by specifying values for initial conditions close to the steady-state conditions, the numerical
solution technique will reach “trimmed conditions” faster. It is positive clockwise when looking
upwind. It is possible to specify combinations of tip displacements that are not meaningful for the
blade structural pretwist distribution and the DOFs that are enabled. If so, FAST will issue a
warning message and choose meaningful values for you. The value of IPDefl must be zero (no
initial deflection) when creating ADAMS datasets or when FAST is interfaced with Simulink. (m)

TeetDefl This is the initial or fixed teeter angle. It is positive when Blade 1 is deflected downwind of the
rotor. This value must be greater than –180 and less than or equal to 180 degrees and must be zero
when creating ADAMS datasets. This parameter is ignored for three-bladed turbines. (deg)

Azimuth This is the initial azimuth angle for Blade 1. Please note that for three-bladed rotors, blade 3 is
ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given
azimuth is 3-2-1-repeat. Azimuth works in conjunction with AzimB1Up, which is input in the
Turbine Configuration section that follows. This value must be greater or equal to 0 and less than
360 degrees. (deg)

RotSpeed This is the initial angular speed of the rotor. During a linearization analysis, this is also the
desired azimuth-average rotor speed for a trim solution. This value must not be negative. The
turbine rotates clockwise when looking downwind. (rpm)

NacYaw This is the initial or fixed nacelle yaw angle. It is positive counterclockwise when looking down
on the turbine. This value must be greater than –180 and less than or equal to 180 degrees. (deg)

TTDspFA This is the initial fore-aft tower-top displacement. It is positive downwind. The value of
TTDspFA must be zero (no initial deflection) when creating ADAMS datasets or when FAST is
interfaced with Simulink. (m)

TTDspSS This is the initial side-to-side tower-top displacement. It is positive to the right when looking
upwind. The value of TTDspSS must be zero (no initial deflection) when creating ADAMS
datasets or when FAST is interfaced with Simulink. (m)

Turbine Configuration

TipRad The blade-tip radius is the distance from the apex of the cone of rotation to the blade tip along the
pitch axis instead of the perpendicular distance from the axis of rotation. See Figure 14(a) and
Figure 16. This value must be greater than zero. (m)

HubRad The hub radius is the distance from the apex of the cone of rotation to the blade root along the
pitch axis instead of the perpendicular distance from the axis of rotation. The blade root loads are
defined at this radial span location. See Figure 14(b) and Figure 16. This value must be greater
than or equal to zero and less than TipRad. (m)

PSpnElN This is the blade element number corresponding to the innermost blade element that is part of the
pitchable portion of the blade for partial-span pitch control. The pitch of all the blade elements
from PSpnElN to BldNodes are controlled by the BlPitch(:) array, whereas all the blade
elements from 1 to (PSpnElN - 1) are not pitchable. Note that PSpnElN is CURRENTLY
IGNORED by FAST; that is, the logic for partial-span pitch control has not yet been codified in
FAST. This value must be an integer between 1 and BldNodes (inclusive). (-)

UndSling The undersling is the distance from the teeter pin to the apex of the cone of rotation. It is positive
upwind. This parameter is ignored for three-bladed turbines. See Figure 14(b). (m)

HubCM This is the distance from the rotor apex to the hub mass center. It is positive downwind. See
Figure 14(b) and Figure 16. (m)

FAST User's Guide 62 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Turbine Configuration (concluded)

OverHang This is the distance along the rotor shaft from the yn-/zn-plane to the teeter pin for two-bladed
turbines or from the yn-/ zn-plane to the rotor apex for three-bladed turbines. It is positive
downwind, so use a negative number for upwind turbines. For turbines with rotor-furl, this
distance defines the configuration at a furl angle of zero. See Figure 14(a), Figure 16, and Figure
18. (m)

NacCMxn This is the downwind distance to the nacelle mass center (reference input NacMass) from the top
of the tower, measured parallel to the xn-axis. It is positive downwind. See Figure 14(a) and
Figure 16. (m)

NacCMyn This is the lateral distance to the nacelle mass center (reference input NacMass) from the top of
the tower, measured parallel to the yn-axis. It is positive to the left when looking downwind or
positive into the page of Figure 14(a) and Figure 16. (m)

NacCMzn This is the vertical distance to the nacelle mass center (reference input NacMass) from the top of
the tower, measured parallel to the zn-axis. It is positive upward when looking downwind. See
Figure 14(a) and Figure 16. (m)

TowerHt The tower height is the distance from ground level [onshore] or mean sea level [offshore] to the
top of the tower and yaw bearing. This value must be greater than zero. See Figure 14(a), Figure
16, and Figure 20. (m)

Twr2Shft This is the vertical distance from the top of the tower and yaw bearing to the intersection of the
rotor shaft axis and the yn-/zn-plane. The distance is measured parallel to the zn-axis. See Figure
14(a), Figure 16, and Figure 18. The combination of TipRad, TowerHt, Twr2Shft, OverHang,
and ShftTilt must ensure that the blade tip does not hit the ground. This value also cannot be
negative. For turbines with rotor-furl, this distance defines the configuration at a furl angle of
zero. (m)

TwrRBHt The tower rigid base height is the distance from tower base to the beginning of the flexible portion
of the tower. The tower base loads are defined at this elevation. This value must be greater or
equal to zero and less than TowerHt + TwrDraft. (m)

ShftTilt This is the tilt angle of the rotor shaft from the nominally horizontal plane. Positive tilt means that
the downwind end of the shaft is the highest. This value must be between –90 and 90 degrees.
Upwind turbines have negative tilt for improved tower clearance. For turbines with rotor-furl, this
angle defines the configuration at a furl angle of zero. See Figure 14(a), Figure 16, and Figure 18.
(deg)

Delta3 This teeter pin orientation angle allows coupling between the flapping due to teeter and blade
pitch. A positive value means that the blade that teeters downwind has a positive change in pitch
(leading edge upwind). See Figure 15 and the discussion on page 13 for details. This value must
be between –90 and 90 degrees (exclusive) and is ignored for three-bladed turbines. (deg)

PreConei The coning angle for the ith blade is positive downwind for upwind and downwind rotors. See
Figure 14(a) and Figure 16. These values must be greater than –180 and less than or equal to 180
degrees. Only the first two values are used for two-bladed turbines. (deg)

AzimB1Up All input and output azimuth values are measured with respect to this number. If this value is 0
and the rotor azimuth is 180 degrees, then Blade 1 is pointing down. Please keep in mind that the
rotor rotates clockwise when looking downwind, so an azimuth value of 90 degrees means Blade 1
is pointing to the right (looking downwind) when AzimB1Up is 0. If AzimB1Up is 270 degrees
and Azimuth is 0 degrees, then Blade 1 is to the right when looking downwind. Also note that for
three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of
blades passing through a given azimuth is 3-2-1-repeat. (deg)

FAST User's Guide 63 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Mass and Inertia

YawBrMass This is the mass of the yaw bearing. Its center is located at the top of the tower, at the origin of the
tower-top/base-plate and nacelle/yaw coordinate systems. This value must not be negative. (kg)

NacMass This is the mass of the nacelle. The center of the nacelle mass is located at the point specified by
inputs NacCMxn, NacCMyn, and NacCMzn relative to the tower-top. It includes everything
atop the tower excluding the rotor (blades, hub, and tip brakes), yaw bearing, and systems that furl
(tail boom, tail fin, and structure furling with the rotor). This value must not be negative. (kg)

HubMass This is the mass of the hub. Its center is located a distance of HubCM from the rotor apex. This
value must not be negative. (kg)

TipMassi This is the tip-brake mass for the ith blade. This value must not be negative. Only the first two
values are used for two-bladed turbines. (kg)

NacYIner This is the nacelle moment of inertia about the yaw axis. It includes all mass contained in
NacMass. This value must be greater than NacMass•(NacCMxn2 + NacCMyn2). (kg·m2)

GenIner This is the moment of inertia of the high-speed portion of the drivetrain including the gearbox,
HSS, and generator. If torsional flexibility of the drivetrain is enabled, the compliance is between
the inertia of the rotor and this inertia. This value will be multiplied by the square of the gear ratio
to map it to the low-speed reference frame. This value must not be negative. (kg·m2)

HubIner The hub moment of inertia is measured about the teeter axis for two-bladed turbines or about the
rotor shaft axis for three-bladed turbines. For two-bladed turbines, it includes those parts that
teeter, except for the blades and tip brakes, and must be greater than HubMass•(UndSling –
HubCM)2. For three-bladed turbines, it excludes the blades and tip brakes and must not be
negative. (kg·m2)

Drivetrain

GBoxEff The gearbox efficiency is the ratio of the output shaft power to the input shaft power. Enter it as a
percentage from 0 to 100. The value of GboxEff must be 100 (no mechanical losses) when
creating ADAMS datasets. (%)

GenEff The generator efficiency is the ratio of its output power to its input power. It is used by the
simple-induction-generator model (GenModel = 1) to obtain the electrical power from the
mechanical power, which is a product of the generator torque and HSS speed. It is also used by
the simple variable-speed, generator torque controller (VSContrl = 1) in the same manor. Enter it
as a percentage from 0 to 100. GenEff is ignored by the Thevenin-equivalent induction-generator
model (GenModel = 2), which incorporates a more complex expression for the electrical power
based on the input circuit resistances. The value of GenEff is passed to UserGen() and
UserVSCont() for the user-defined generator model (GenModel = 3) and user-defined variable-
speed, generator torque controller (VSContrl = 2) respectively, but the user-defined models allow
for the flexibility of implementing any relationship between input and output power. (%)

GBRatio This is the ratio of the HSS speed to the LSS speed. This value must be greater than zero and
should be 1.0 for a direct-drive turbine. (-)

GBRevers Set this value to True if the direction of rotation of the LSS is opposite that of the HSS.
GBRevers must be set to False when creating ADAMS datasets. (flag)

HSSBrTqF This maximum mechanical brake torque value is applied to the HSS end of the drivetrain
compliance. This value must not be negative. It is used by both the simple (HSSBrMode = 1)
and user-defined (HSSBrMode = 2) HSS brake models. (N·m)

HSSBrDT For the simple HSS brake model (HSSBrMode = 1), this is the amount of time it takes the HSS
brake to reach full torque once it is applied. The ramp from off to full torque is linear. This value
must not be negative and is unused when HSSBrMode is set to 2. (sec)

DynBrkFi This is name of a file containing a curve of mechanical generator torques versus HSS speeds
defining the dynamic generator brake characteristics. The name may optionally include an
absolute or relative path. This file name must contain fewer than 100 characters and must be
enclosed in apostrophes or double quotes. This input is CURRENTLY IGNORED since logic for
the dynamic generator brake is not currently coded in FAST. (-)

FAST User's Guide 64 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Drivetrain (concluded)

DTTorSpr The equivalent drive-train torsional spring constant includes compliance in the LSS, the gearbox,
and the HSS. This value must not be negative. (N·m/rad)

DTTorDmp The equivalent drive-train torsional damping constant includes compliance in the LSS, the
gearbox, and the HSS. This value must not be negative. (N·m/sec)

Simple Induction Generator

SIG_SlPc The rated generator slip percentage is the difference between the rated and the synchronous
generator speed divided by the synchronous generator speed, and then converted to percent. See
Figure 12 for details. This value must be greater than zero, but it is ignored if GenModel is not
equal to 1 or VSContrl is not equal to 0. (%)

SIG_SySp This is the synchronous or zero-torque generator speed. See Figure 12 for details. This value
must be greater than zero, but it is ignored if GenModel is not equal to 1 or VSContrl is not equal
to 0. (rpm)

SIG_RtTq This is the torque supplied by the generator when running at rated speed. See Figure 12 for de-
tails. This value must be greater than zero, but it is ignored if GenModel is not equal to 1 or
VSContrl is not equal to 0. (N·m)

SIG_PORt The pullout ratio is the ratio of the pullout torque and the rated torque. The negative of this value
is also used for the startup torque. See Figure 12 for details. This value must be greater than or
equal to one, but it is ignored if GenModel is not equal to 1 or VSContrl is not equal to 0. (-)

Thevenin-Equivalent, 3-Phase, Induction Generator

TEC_Freq This is the line frequency of the electrical grid. This value must be greater than zero and should be
50 (Europe) or 60 (U.S.), but it is ignored if GenModel is not equal to 2 or VSContrl is not equal
to 0. (Hz)

TEC_NPol This is the number of poles in the generator. This value must be an even integer greater than zero,
but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0. (-)

TEC_SRes This is the resistance of the generator stator in the complete circuit. This value must be greater
than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0. (ohms)

TEC_RRes This is the resistance of the generator rotor in the complete circuit. This value must be greater
than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0. (ohms)

TEC_VLL This is the line-to-line voltage of the generator. This value must be greater than zero and is often
690 in Europe or 480 or 575 in the U.S., but it is ignored if GenModel is not equal to 2 or
VSContrl is not equal to 0. (volts)

TEC_SLR This is the leakage reactance of the generator stator in the complete circuit. This value must be
greater than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0. It
is usually a small number and is close in value to the stator resistance. (ohms)

TEC_RLR This is the leakage reactance of the generator rotor in the complete circuit. This value must be
greater than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0. It
is usually a small number and is close in value to the rotor resistance. (ohms)

TEC_MR This is the magnetizing reactance of the complete generator circuit. This value must be greater
than zero, but it is ignored if GenModel is not equal to 2 or VSContrl is not equal to 0. It is
usually about 10-50 times greater than the leakage reactances. (ohms)

FAST User's Guide 65 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Platform Model

PtfmModel This is a switch used to indicate the type of support platform and to tell FAST whether or not to
read in an additional file of inputs for defining the model properties of the support platform (see
next input PtfmFile). The additional inputs in PtfmFile pertain to the to the support platform
configuration, motions, and loading. Setting PtfmModel to 1 specifies an onshore foundation.
Setting it to 2 specifies a fixed bottom offshore foundation. Setting it to 3 specifies a floating
offshore configuration. Setting PtfmModel to 0 disables the platform models—in this case, FAST
will rigidly attach the tower to the inertia frame (ground) through a cantilever connection. Using
values other than 0, 1, 2, or 3 will cause FAST to abort.

PtfmFile This is the name of the file that contains additional model properties for the support platform. The
name may optionally include an absolute or relative path. This file name must contain fewer than
100 characters and must be enclosed in apostrophes or double quotes. FAST will only read this
file if PtfmModel is nonzero. See Table 12 for a listing of input parameters contained in this file.
In FAST v6.0, all nonzero PtfmModel options will work the same way by reading in PtfmFile. In
future versions, the format of this file will depend on which PtfmModel option is selected.
(quoted string)

Tower

TwrNodes The tower is divided into TwrNodes equal-length segments. The nodes at the centers of these
segments are used for the integration of elastic forces. The more segments you use, the more
accurate the integral will be, but the greater the computational time will be. A good compromise
for this parameter is 20. This value must be an integer greater than 0. When creating ADAMS
datasets, this value must be no more than 99. (-)

TwrFile This is the name of the file that contains the tower properties. The name may optionally include
an absolute or relative path. This file name must contain fewer than 100 characters and must be
enclosed in apostrophes or double quotes. FAST will read this file even when there are no tower
DOFs. See Table 9 for a listing of input parameters contained in this file. (quoted string)

Nacelle Yaw

YawSpr This is the torsional spring stiffness in FAST’s built-in, second-order, nacelle yaw actuator model.
The linear nacelle-yaw spring moment is proportional to the nacelle-yaw error through this
constant. If a yaw actuator natural frequency is known in place of an actuator spring stiffness,
compute the spring stiffness as follows: YawSpr = YawIner•ωn

2, where ωn is the natural
frequency in rad/sec and YawIner is the nominal inertia of the nacelle, rotor, and tail about the
yaw axis in kg·m2. This value must not be negative. (N·m/rad)

YawDamp This is the torsional damping constant in FAST’s built-in, second-order, nacelle yaw actuator
model. The linear nacelle-yaw damping moment is proportional to the nacelle-yaw rate error
through this constant. If a yaw actuator natural frequency and damping ratio are known in place of
an actuator damping constant, compute the damping constant as follows: YawDamp =
2•ζ•YawIner•ωn, where ωn is the natural frequency in rad/sec, ζ is the damping ratio in fraction of
critical, and YawIner is the nominal inertia of the nacelle, rotor, and tail about the yaw axis in
kg·m2. This value must not be negative. (N·m/(rad/sec))

YawNeut When YCMode is 0, this is the neutral nacelle yaw position (constant yaw command) as described
on page 12. When YCMode is not zero, this is the initial, constant yaw command before active
yaw control is enabled at time TYCOn. This value must be greater than –180 and less than or
equal to 180 degrees. (deg)

FAST User's Guide 66 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Furling

Furling This flag is used to tell FAST whether or not to read in an additional file of inputs for defining the
model configuration of a furling turbine (see next input FurlFile). The additional inputs in
FurlFile pertain to the lateral offset and skew angle of the rotor shaft, rotor-furling, tail-furling,
and tail inertia and aerodynamics. If the turbine you want to model contains any of these
characteristics, you must assemble the furling input file even if your turbine does not “furl” in the
common sense of the word. For example, if the turbine you want to model contains a tail, you
must assemble the furling input file regardless of whether or not your tail, or rotor, actively furls
about the yawing-portion of the structure atop the tower. (flag)

FurlFile This is the name of the file that contains additional model properties for a furling turbine. The
name may optionally include an absolute or relative path. This file name must contain fewer than
100 characters and must be enclosed in apostrophes or double quotes. FAST will only read this
file if the model is designated as a furling machine (when Furling is set to True). See Table 13 for
a listing of input parameters contained in this file. (quoted string)

Rotor Teeter

TeetMod The teeter springs and dampers can be modeled three ways. For a value of 0 for TeetMod, there
will be no teeter spring nor damper and the moment normally produced will be set to zero. A
TeetMod of 1 will invoke simple spring and damper models using the inputs provided below as
appropriate coefficients. If you set TeetMod to 2, FAST will call the routine UserTeet() to
compute the teeter spring and damper moments. You should replace the dummy routine supplied
with the code with your own, which will need to be linked with the rest of FAST. Using values
other than 0, 1, or 2 will cause FAST to abort. This parameter is ignored for three-bladed turbines.
(switch)

TeetDmpP The teeter damper is effective when the teeter deflection exceeds this value. This value must be
between 0 and 180 degrees (inclusive). This parameter is ignored for three-bladed turbines and
when TeetMod is not set to 1. (deg)

TeetDmp The linear teeter damping moment is proportional to the teeter rate through this constant and is
effective when the teeter deflection exceeds TeetDmpP. This value must not be negative. This
parameter is ignored for three-bladed turbines and when TeetMod is not set to 1. (N·m/(rad/sec))

TeetCDmp The Coulomb-friction damping moment resists teeter motion, but it is a constant that is not
proportional to the teeter rate. However, if the teeter rate is zero, the damping is zero. This value
must not be negative. This parameter is ignored for three-bladed turbines and when TeetMod is
not set to 1. (N·m)

TeetSStP The teeter soft-stop spring is effective when the teeter deflection exceeds this value. This value
must be between 0 and 180 degrees (inclusive). This parameter is ignored for three-bladed
turbines and when TeetMod is not set to 1. (deg)

TeetHStP The teeter hard-stop spring is effective when the teeter deflection exceeds this value. This value
must be between TeetSStP and 180 degrees (inclusive). This parameter is ignored for three-
bladed turbines and when TeetMod is not set to 1. (deg)

TeetSSSp The linear teeter soft-stop spring restoring moment is proportional to the teeter soft-stop deflection
by this constant and is effective when the teeter deflection exceeds TeetSStP. This value must
not be negative. This parameter is ignored for three-bladed turbines and when TeetMod is not set
to 1. (N·m/rad)

TeetHSSp The linear teeter hard-stop spring restoring moment is proportional to the teeter hard-stop
deflection by this constant and is effective when the teeter deflection exceeds TeetHStP. This
value must not be negative. This parameter is ignored for three-bladed turbines and when
TeetMod is not set to 1. (N·m/rad)

FAST User's Guide 67 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Tip Brakes

TBDrConN When tip brakes are not deployed (normal operation), this value is multiplied by the dynamic
pressure to produce the drag of the brakes at the tip of every blade. This value is Cd times the flat
plate drag area. This value must not be negative. (m2)

TBDrConD When tip brakes are deployed (braking operation), the tip drag follows an S curve from
TBDrConN to this fully deployed value. The resulting value is multiplied by the dynamic
pressure to produce the drag of the brakes at the tip of every blade. This value is Cd times the flat
plate drag area. This value must not be negative. (m2)

TpBrDT When tip brakes are deployed it takes TpBrDT seconds to fully deploy them. This value must not
be negative. (m2)

Blades

BldFilei This is the name of the file that contains the properties for the ith blade. The names may optionally
include an absolute or relative path. These file names must contain fewer than 100 characters and
must be enclosed in apostrophes or double quotes. Only the first two names are used for two-
bladed turbines. FAST will read this file even when there are no blade DOFs. See Table 10 for a
listing of input parameters contained in this file. Please note that for three-bladed rotors, blade 3 is
ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a given
azimuth is 3-2-1-repeat. (quoted string)

AeroDyn

ADFile This is the name of the file that contains the AeroDyn aerodynamics parameters. The name may
optionally include an absolute or relative path. This file name must contain fewer than 100
characters and must be enclosed in apostrophes or double quotes. FAST will read this file even
when aerodynamic calculations are disabled. See Table 11 for a listing of input parameters
contained in this file. (quoted string)

Noise

NoiseFile This is the name of the file that contains input parameters needed for aeroacoustic noise
predictions. The name may optionally include an absolute or relative path. This file name must
contain fewer than 100 characters and must be enclosed in apostrophes or double quotes. FAST
will not read in this file if aerodynamic noise is not computed (when CompNoise is False) and
during linearization analyses (when AnalMode is set to 2). Also, the inputs in this file do not
effect the creation of ADAMS datasets. (quoted string)

ADAMS

ADAMSFile This is the name of the file that contains input parameters needed only for creation of ADAMS
datasets. The name may optionally include an absolute or relative path. This file name must
contain fewer than 100 characters and must be enclosed in apostrophes or double quotes. FAST
will not read in this file if ADAMS datasets are not generated (when ADAMSPrep is set to 1).
See Table 14 for a listing of input parameters contained in this file. (quoted string)

FAST User's Guide 68 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (continued).

Linearization Control

LinFile This is the name of the file that contains FAST linearization input parameters. The name may
optionally include an absolute or relative path. This file name must contain fewer than 100
characters and must be enclosed in apostrophes or double quotes. FAST will not read in this file
for time-marching analyses, when a linearization analysis is not performed (when AnalMode is
set to 1) and the inputs in this file do not effect the creation of ADAMS datasets. See Table 15 for
a listing of input parameters contained in this file. (quoted string)

Output

SumPrint Set this value to True if you want FAST to generate the summary file (see Figure 32). (flag)
TabDelim Set this value to True if you want FAST to delimit the tabular output data with tabs instead of

using fixed-width columns. Tab-delimited files are easier to import into spreadsheets, and fixed-
column files are better for viewing with a text editor or for printing. (flag)

OutFmt FAST will use this string as the numerical format specifier for output of floating-point values.
The length of this string must not exceed 20 characters and must be enclosed in apostrophes or
double quotes. You may not specify an empty string. To ensure that fixed-width column data
align properly with the column titles, you should ensure that the width of the field is 10 characters.
Using an E, EN, or ES specifier will guarantee that you will never overflow the field because the
number is too big, but such numbers are harder to read. Using an F specifier will give you
numbers that are easier to read, but you may overflow the field. Please refer to any Fortran
manual for details for format specifiers. (quoted string)

TStart This tells the program how much simulation time should pass before outputting data to the tabular
output file. A delay of at least five seconds is advised to allow the transient effects associated with
starting from rest to damp out. This value must not be negative or greater than TMax. This
parameter is ignored during a linearization analysis. (sec)

DecFact This parameter sets the decimation factor for output. FAST will output data only once each
DecFact integration time steps. For instance, a value of 5 will cause FAST to generate output
only every fifth time step. This value must be an integer greater than zero. (-)

SttsTime This parameter represents the amount of simulation time between the status messages that are
displayed to the screen during the simulation. The messages show how much simulation time has
elapsed and estimate when the job will complete. This value must be greater than zero. The value
of this input does not effect the creation of ADAMS datasets. (sec)

NcIMUxn This is the downwind distance to the virtual nacelle inertial measurement unit (IMU) from the top
of the tower, measured parallel to the xn-axis. It is positive downwind. See Figure 14(a) and
Figure 16. (m)

NcIMUyn This is the lateral distance to the virtual nacelle inertial measurement unit (IMU) from the top of
the tower, measured parallel to the yn-axis. It is positive to the left when looking downwind or
positive into the page of Figure 14(a) and Figure 16. (m)

NcIMUzn This is the vertical distance to the virtual nacelle inertial measurement unit (IMU) from the top of
the tower, measured parallel to the zn-axis. It is positive upward when looking downwind. See
Figure 14(a) and Figure 16. (m)

ShftGagL The distance from the teeter pin (two blades) or rotor apex (three blades) to the shaft-moment
output station along the positive xs axis allows you to put a virtual strain gage anywhere you like
along the shaft. It is positive for upwind rotors. (m)

FAST User's Guide 69 Last updated on August 12, 2005 for version 6.0

Table 8. Primary-Input-File Parameters (concluded).

Output (concluded)

NTwGages The number of strain-gage locations along the tower indicates the number of input values on the
next line. Valid values are integers from 0 to 5 (inclusive). (-)

TwrGagNd The virtual strain-gage locations along the tower are assigned to the tower analysis nodes specified
on this line. Possible values are 1 to TwrNodes (inclusive), where 1 corresponds to the node
closest to the tower base (but not at the base) and a value of TwrNodes corresponds to the node
closest to the tower top. The exact elevations of each analysis node in the undeflected tower,
relative to the base of the tower, are determined as follows:

 Elev. of node J = TwrRBHt + (J – ½) • [(TowerHt + TwrDraft – TwrRBHt) / TwrNodes]
 (for J = 1,2,…,TwrNodes)

 You must enter at least NTwGages values on this line. If NTwGages is 0, this line will be
skipped, but you must have a line taking up space in the input file. You can separate the values
with combinations of tabs, spaces, and commas, but you may use only one comma between
numbers. (-)

NBlGages The number of strain-gage locations along the blade indicates the number of input values on the
next line. Valid values are integers from 0 to 5 (inclusive). (-)

BldGagNd The virtual strain-gage locations along the blade are assigned to the blade analysis nodes specified
on this line. Possible values are 1 to BldNodes (inclusive), where 1 corresponds to the node
closest to the blade root (but not at the root) and a value of BldNodes corresponds to the node
closest to the blade tip. The radial span locations of the analysis nodes are determined by
AeroDyn input RNodes. You must enter at least NBlGages values on this line. If NBlGages is
0, this line will be skipped, but you must have a line taking up space in the input file. You can
separate the values with combinations of tabs, spaces, and commas, but you may use only one
comma between numbers. (-)

OutList For a time-marching analysis, this list of parameters determines what you want printed in the
output file. For a linearization analysis, this provides the list of output measurements. The line
containing the array name OutList is a comment line, which must then be followed by one or
more lines containing quoted strings that in turn contain one or more parameter names. Separate
the parameter names by any combination of commas, semicolons, spaces, and/or tabs. If you
prefix a parameter name with a minus sign, “-”, underscore, “_”, or the characters “m” or “M”,
FAST will multiply the value for that channel by –1 before writing the data. The parameters are
written in the order they are listed in the input file. You may include any parameter as many times
as you like. FAST allows you to use multiple lines so that you can break your list into meaningful
groups and so the lines can be shorter. However, you cannot have the strings within the quotes
longer than 1000 characters, so you are effectively limited to 100 channels per line in the input
file. The limit on the total number of output channels in all lines is 200. During time-marching
analyses, the simulation time will always be the first column in the output file and is not explicitly
entered in this list. You may enter comments after the closing quote on any of the lines. For
instance, you may want to group all of your blade loads together on one line and then comment the
line to document the fact that they are blade loads. Entering a line with the string “END” at the
beginning of the line or at the beginning of a quoted string found at the beginning of the line will
cause FAST to quit scanning for more lines of channel names. See Table 16 through Table 44 for
the list of possible parameters. (-)

FAST User's Guide 70 Last updated on August 12, 2005 for version 6.0

Table 9. Tower-Input-File Parameters.

The following input parameters are contained in the file indicated by input TwrFile from the primary input file.
FAST will read this file even when there are no tower DOFs.

Tower

NTwInpSt The table of tower sectional data that follows below has NtwInpSt rows of data. The values in
this table will be interpolated to the TwrNodes analysis nodes. For uniform towers, you may set
this value to 1 and include just one row in the table with the fractional height set to 0. This value
must be an integer greater than 0. There is no upper limit on the number of input stations. (-)

CalcTMode When set to True, this flag tells FAST to calculate the tower mode shapes internally instead of
using the input mode shapes. This feature is NOT CURRENTLY ENABLED, so set the value to
False. (flag)

TwrFADmpi This is the tower’s fore-aft structural damping in percent of critical for the ith bending mode.
Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive). The damping ratio for
the second mode should usually be greater than the damping ratio for the first mode. The value
for the first mode is used to determine the tower fore-aft damping ratio for the FIELD statements
of extracted ADAMS datasets. The value for the second mode does not effect the creation of
ADAMS datasets. (%)

TwrSSDmpi This is the tower’s side-to-side structural damping in percent of critical for the ith bending mode.
Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive). The damping ratio for
the second mode should usually be greater than the damping ratio for the first mode. The value
for the first mode is used to determine the tower side-to-side damping ratio for the FIELD
statements of extracted ADAMS datasets. The value for the second mode does not effect the
creation of ADAMS datasets. (%)

Tower Adjustment Factors

FAStTunri These tower stiffness tuners allow you to adjust the stiffness only during the calculation of the ith
tower fore-aft bending mode. Set them to 1.0 to leave the stiffness unchanged. The values of
these inputs do not effect the creation of ADAMS datasets. (-)

SSStTunri These tower stiffness tuners allow you to adjust the stiffness only during the calculation of the ith
tower side-to-side bending mode. Set them to 1.0 to leave the stiffness unchanged. The values of
these inputs do not effect the creation of ADAMS datasets. (-)

AdjTwMa This factor adjusts the tower mass as it is input. This effects all calculations using the tower mass.
Set it to 1.0 to leave the mass unchanged. (-)

AdjFASt This factor adjusts the tower fore-aft stiffness as it is input. This effects all calculations using the
tower fore-aft stiffness. Set it to 1.0 to leave the fore-aft stiffness unchanged. (-)

AdjSSSt This factor adjusts the tower side-to-side stiffness, as it is input. This effects all calculations using
the tower side-to-side stiffness. Set it to 1.0 to leave the side-to-side stiffness unchanged. (-)

Distributed Tower Properties

HtFract This is the fractional height along tower for the other parameters in this table. Values must vary
from 0 to 1. If you are modeling a uniform tower, set NTwInpSt to 1 and set HtFract to 0 for the
single row of distributed tower properties. (-)

TMassDen This is the tower section mass per unit length. It should be computed as the integral of the mass
density over the cross-sectional area of the section. That is, TMassDen = (),ρ∫∫ x y dxdy ,

where (),ρ x y is the mass density in kg/m3 and x and y are the fore-aft and side-to-side
distances in meters from the tower section mass center to the differential area element,
respectively. These values must be greater than zero. (kg/m)

FAST User's Guide 71 Last updated on August 12, 2005 for version 6.0

Table 9. Tower-Input-File Parameters (continued).

Distributed Tower Properties (continued)

TwFAStif This is the tower section fore-aft stiffness. It should be computed as the integral of the modulus of
elasticity times the square of the fore-aft distance from the tower centerline to the differential area

element over the cross-sectional area of the section. That is, TwFAStif = () 2,∫∫ E x y x dxdy ,

where (),E x y is the modulus of elasticity in N/m2 and x and y are the fore-aft and side-to-side
distances in meters from the tower centerline to the differential area element, respectively. These
values must be greater than zero. (N·m2)

TwSSStif This is the tower section side-to-side stiffness. It should be computed as the integral of the
modulus of elasticity times the square of the side-to-side distance from the tower centerline to the
differential area element over the cross-sectional area of the section. That is, TwSSStif =

() 2,∫∫ E x y y dxdy , where (),E x y is the modulus of elasticity in N/m2 and x and y are the

fore-aft and side-to-side distances in meters from the tower centerline to the differential area
element, respectively. These values must be greater than zero. (N·m2)

TwGJStif This is the tower section torsion stiffness used for creation of ADAMS datasets. The FAST model
does not use it. It should be computed as the integral of the modulus of rigidity times the square
of the radial distance from the tower centerline to the differential area element over the cross-
sectional area of the section. That is, TwGJStif = ()()2 2, +∫∫G x y x y dxdy , where

(),G x y is the modulus of rigidity in N/m2 and x and y are the fore-aft and side-to-side distances
in meters from the tower centerline to the differential area element, respectively. When creating
ADAMS datasets, these values must be greater than zero. If the ADAMS preprocessor is
disabled, this input can be left blank. (N m2)

TwEAStif This is the tower section extensional stiffness used for creation of ADAMS datasets. The FAST
model does not use it. It should be computed as the integral of the modulus of elasticity over the

cross-sectional area of the section. That is, TwEAStif = (),∫∫ E x y dxdy , where (),E x y is

the modulus of elasticity in N/m2 and x and y are the fore-aft and side-to-side distances in meters
from the tower centerline to the differential area element, respectively. When creating ADAMS
datasets, these values must be greater than zero. If the ADAMS preprocessor is disabled, this
input can be left blank. (N)

TwFAIner This is the tower section fore-aft mass inertia per unit length used for creation of ADAMS
datasets. The FAST model does not use it. It should be computed as the integral of the mass
density times the square of the fore-aft distance from the tower section mass center to the
differential area element over the cross-sectional area of the section. That is, TFAIner =

() 2,ρ∫∫ x y x dxdy , where (),ρ x y is the mass density in kg/m3 and x and y are the fore-aft

and side-to-side distances in meters from the tower section mass center to the differential area
element, respectively. When creating ADAMS datasets, these values must not be less than zero.
If the ADAMS preprocessor is disabled, this input can be left blank. (kg m)

TwSSIner This is the tower section side-to-side mass inertia per unit length used for creation of the ADAMS
dataset. The FAST model does not use it. It should be computed as the integral of the mass
density times the square of the side-to-side distance from the tower section mass center to the
differential area element over the cross-sectional area of the section. That is, TSSIner =

() 2,ρ∫∫ x y y dxdy , where (),ρ x y is the mass density in kg/m3 and x and y are the fore-aft

and side-to-side distances in meters from the tower section mass center to the differential area
element, respectively. When creating ADAMS datasets, these values must not be less than zero.
If the ADAMS preprocessor is disabled, this input can be left blank. (kg m)

FAST User's Guide 72 Last updated on August 12, 2005 for version 6.0

Table 9. Tower-Input-File Parameters (concluded).

Distributed Tower Properties (concluded)

TwFAcgOf This is the tower section mass offset measured from the tower centerline in the fore-aft direction,
positive downwind. It is used for creation of the ADAMS dataset. The FAST model does not use
it. If the ADAMS preprocessor is disabled, this input can be left blank. (m)

TwSScgOf This is the tower section mass offset measured from the tower centerline in the side-to-side
direction, positive toward the left when looking downwind. It is used for creation of the ADAMS
dataset. The FAST model does not use it. If the ADAMS preprocessor is disabled, this input can
be left blank. (m)

Tower Fore-Aft Mode Shapes

TwFAM1Shi These are the coefficients of the polynomial equation used to model the first fore-aft mode shape
of the tower. The five coefficients (second through sixth) of the polynomial equation define the
mode shape, where the variable in the polynomial varies from 0 to 1. The zeroth and first terms
are not included in the list because they must always be 0 for cantilevered beams. The polynomial
should describe a curve that has a value of 1 at the free end. That is, the five numbers must add up
to 1. (-)

TwFAM2Shi These are the coefficients of the polynomial equation used to model the second fore-aft mode
shape of the tower. The five coefficients (second through sixth) of the polynomial equation define
the mode shape, where the variable in the polynomial varies from 0 to 1. The zeroth and first
terms are not included in the list because they must always be 0 for cantilevered beams. The
polynomial should describe a curve that has a value of 1 at the free end. That is, the five numbers
must add up to 1. (-)

Tower Side-to-Side Mode Shapes

TwSSM1Shi These are the coefficients of the polynomial equation used to model the first side-to-side mode
shape of the tower. The five coefficients (second through sixth) of the polynomial equation define
the mode shape, where the variable in the polynomial varies from 0 to 1. The zeroth and first
terms are not included in the list because they must always be 0 for cantilevered beams. The
polynomial should describe a curve that has a value of 1 at the free end. That is, the five numbers
must add up to 1. (-)

TwSSM2Shi These are the coefficients of the polynomial equation used to model the second side-to-side mode
shape of the tower. The five coefficients (second through sixth) of the polynomial equation define
the mode shape, where the variable in the polynomial varies from 0 to 1. The zeroth and first
terms are not included in the list because they must always be 0 for cantilevered beams. The
polynomial should describe a curve that has a value of 1 at the free end. That is, the five numbers
must add up to 1. (-)

FAST User's Guide 73 Last updated on August 12, 2005 for version 6.0

Table 10. Blade-Input-File Parameters.

The following input parameters are contained in the file indicated by input BldFile from the primary input file.
FAST will read this file even when there are no blade DOFs.

Blade Parameters

NBlInpSt The table of blade sectional data that follows below has NBlInpSt rows of data for each blade.
The values in this table will be interpolated to the BldNodes analysis nodes. For uniform
(untwisted and untapered) blades, set this value to 1 and enter only one row in the distributed-
properties table. For that row, set BlFract equal to zero. This value must be an integer greater
than zero. There is no upper limit on the number of input stations. (-)

CalcBMode When set to True, this flag tells FAST to calculate the blade mode shapes internally instead of
using the input mode shapes. This feature is NOT CURRENTLY ENABLED, so set the value to
False. (flag)

BldFlDmpi The structural damping for the ith flapwise blade-bending mode is entered in percent of critical
damping. Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive). The second
mode should usually have a higher damping ratio than the first. The value for the first mode is
used to determine the blade-flap damping ratio for the FIELD statements of extracted ADAMS
datasets. The value for the second mode does not effect the creation of ADAMS datasets. (%)

BldEdDmp The structural damping for the edgewise blade bending mode is entered in percent of critical
damping. Typical values are 0.5%–1.5% and must be between 0 and 100 (inclusive). The value is
used to determine the blade-edge damping ratio for the FIELD statements of extracted ADAMS
datasets. (%)

Blade Adjustment Factors

FlStTunri These flapwise stiffness tuners allow you to adjust the flapwise stiffness only during the
calculation of the ith flap-bending mode. Set them to 1 to leave the stiffnesses unchanged. The
values of these inputs do not effect the creation of ADAMS datasets. (-)

AdjBlMs This factor allows you to adjust equally all the blade mass densities in the Distributed Blade
Properties section. The adjustment is made as the data are read in, so this adjustment will affect
all calculations that depend on the blade mass properties. This value must be greater than 0. (-)

AdjFlSt This factor allows you to adjust equally all the flap stiffnesses in the Distributed Blade Properties
section. The adjustment is made as the data are read in, so this adjustment will affect all
calculations that depend on the blade stiffness. This value must be greater than 0. (-)

AdjEdSt This factor allows you to adjust equally all the edge stiffnesses in the Distributed Blade Properties
section. The adjustment is made as the data are read in, so this adjustment will affect all
calculations that depend on the blade stiffness. This value must be greater than 0. (-)

Distributed Blade Properties

BlFract This is the fractional distance of the blade along the blade pitch axis. Values must vary from 0 to
1. The first row, which corresponds to the root of the blade, must have a value of 0. The last row,
which corresponds to the tip of the blade, must have a value of 1. FAST will interpolate this data
table to produce values at the locations specified in the AeroDyn input file. If you don’t want
FAST to use linear interpolation for this, you should specify data at the same analysis nodes
specified in the AeroDyn input file in addition to the root and tip points. (-)

FAST User's Guide 74 Last updated on August 12, 2005 for version 6.0

Table 10. Blade-Input-File Parameters (continued).

Distributed Blade Properties (continued)

AeroCent This input is used to locate the aerodynamic center of the corresponding airfoil section.
AeroCent represents the fractional distance along the chordline from the leading to the trailing
edge, where it is assumed that pitch axis passes through the airfoil section at 25% chord so that
the leading edge is 25% ahead of the pitch axis along the chordline and the trailing edge is 75% aft
of the pitch axis along the chordline. AeroCent is limited to values between 0.0 and 1.0; a value
of 0.0 corresponds to the leading edge, a value of 0.25 corresponds to the blade pitch axis, and a
value of 1.0 corresponds to the trailing edge in FAST models. If the pitch axis in the turbine blade
you are trying to model does not actually pass through the airfoil section at 25% chord (at a
cylindrical root, for example, where it passes at 50% chord), then the AeroCent input may cause
confusion and may not correspond to notation you are used to. The following equation will
convert from your notation to FAST's notation:

 AeroCent = 0.25 - [(fraction of chord from leading edge to actual pitch axis)
 - (fraction of chord from leading edge to actual aerodynamic center)]

 For example, in a cylindrical root, where both the actual pitch axis and aerodynamic center lie at
50% chord, you must set AeroCent as follows:

AeroCent = 0.25 - [(0.5) - (0.5)] = 0.25 (corresponding to the fact that the aerodynamic center
 lies on the pitch axis)

 Also as an example, if your pitch axis lies at 30% chord and the aerodynamic center lies at 25%
chord, you must set AeroCent as follows:

AeroCent = 0.25 - [(0.3) - (0.25)] = 0.20 (corresponding to the fact that the aerodynamic
 center lies 5% ahead of the pitch axis)

 ADAMS models generated using the FAST-to-ADAMS preprocessor assume that the reference
axis, indicated by inputs PrecrvRef and PreswpRef, passes through each airfoil section at 25%
chord; thus, a value of 0.25 for AeroCent corresponds to the blade reference axis in ADAMS
models. In this case, the equation above can be adopted if the reference axis in the turbine blade
you are trying to model does not pass through 25% chord by substituting “pitch” with “reference”.
(-)

StrcTwst This is the structural twist angle. It indicates the orientation of the principal axis. A positive
structural twist is one that points the leading edge more upwind. These values must be greater
than –180 and less than or equal to 180 degrees. (deg)

BMassDen This is the blade section mass per unit length. It should be computed as the integral of the mass

density over the cross-sectional area of the section. That is, BMassDen = (),ρ∫∫ x y dxdy ,

where (),ρ x y is the mass density in kg/m3 and x and y are the flapwise and edgewise distances
in meters from the blade section mass center to the differential area element, respectively. These
values must be greater than zero. (kg/m)

FlpStff This is the blade section flapwise stiffness, not the out-of-plane stiffness. It should be computed
as the integral of the modulus of elasticity times the square of the flapwise distance from the blade
section elastic center to the differential area element over the cross-sectional area of the section.

That is, FlpStff = () 2,∫∫ E x y x dxdy , where (),E x y is the modulus of elasticity in N/m2 and

x and y are the flapwise and edgewise distances in meters from the blade section elastic center to
the differential area element, respectively. These values must be greater than zero. (N·m2)

FAST User's Guide 75 Last updated on August 12, 2005 for version 6.0

Table 10. Blade-Input-File Parameters (continued).

Distributed Blade Properties (continued)

EdgStff This is the blade section edgewise stiffness, not the in-plane stiffness. It should be computed as
the integral of the modulus of elasticity times the square of the edgewise distance from the blade
section elastic center to the differential area element over the cross-sectional area of the section.
That is, EdgStff = () 2,∫∫ E x y x dxdy , where (),E x y is the modulus of elasticity in N/m2

and x and y are the flapwise and edgewise distances in meters from the blade section elastic center
to the differential area element, respectively. These values must be greater than zero. (N·m2)

GJStff This is the blade section torsion stiffness used for creation of the ADAMS dataset. The FAST
model does not use it. It should be computed as the integral of the modulus of rigidity times the
square of the radial distance from the blade section elastic center to the differential area element

over the cross-sectional area of the section. That is, GJStff = ()()2 2, +∫∫G x y x y dxdy ,

where (),G x y is the modulus of rigidity in N/m2 and x and y are the flapwise and edgewise
distances in meters from the blade section elastic center to the differential area element,
respectively. When creating ADAMS datasets, these values must be greater than zero. If the
ADAMS preprocessor is disabled, this input can be left blank. (N m2)

EAStff This is the blade section extensional stiffness used for creation of the ADAMS dataset. The FAST
model does not use it. It should be computed as the integral of the modulus of elasticity over the

cross-sectional area of the section. That is, EAStff = (),E x y dxdy∫∫ , where (),E x y is the

modulus of elasticity in N/m2 and x and y are the flapwise and edgewise distances in meters from
the blade section elastic center to the differential area element, respectively. When creating
ADAMS datasets, these values must be greater than zero. If the ADAMS preprocessor is
disabled, this input can be left blank. (N)

Alpha This is the blade section flap/twist coupling coefficient. Valued values are between –1 and 1
(exclusive). Positive values correspond to the blade twisting towards feather as the blade bends
downwind due to thrust loading. Likewise, the blade will twist toward stall as it flaps downwind
due to thrust loading if Alpha is negative. Set Alpha to zero to eliminate the coupling between
flap bending and torsion. The FAST model does not use it. If the ADAMS preprocessor is
disabled, this input can be left blank. (-)

FlpIner This is the blade section flapwise mass inertia per unit length used for creation of the ADAMS
dataset. The FAST model does not use it. It should be computed as the integral of the mass
density times the square of the flapwise distance from the blade section mass center to the
differential area element over the cross-sectional area of the section. That is, FlpIner =

() 2,ρ∫∫ x y x dxdy , where (),ρ x y is the mass density in kg/m3 and x and y are the flapwise

and edgewise distances in meters from the blade section mass center to the differential area
element, respectively. When creating ADAMS datasets, these values must not be less than zero.
If the ADAMS preprocessor is disabled, this input can be left blank. (kg m)

EdgIner This is the blade section edgewise mass inertia per unit length used for creation of the ADAMS
dataset. The FAST model does not use it. It should be computed as the integral of the mass
density times the square of the edgewise distance from the blade section mass center to the
differential area element over the cross-sectional area of the section. That is, EdgIner =

() 2,x y y dxdyρ∫∫ , where (),ρ x y is the mass density in kg/m3 and x and y are the flapwise

and edgewise distances in meters from the blade section mass center to the differential area
element, respectively. When creating ADAMS datasets, these values must not be less than zero.
If the ADAMS preprocessor is disabled, this input can be left blank. (kg m)

FAST User's Guide 76 Last updated on August 12, 2005 for version 6.0

Table 10. Blade-Input-File Parameters (concluded).

Distributed Blade Properties (concluded)

PrecrvRef This is the sectional offset that defines the reference axis for precurved blades. This value is
directed from the blade pitch axis along the xb,i-axis, positive nominally downwind. For upwind
turbines, this value should be negative in order to increase tower clearance. PrecrvRef must be
set to zero for blades without precurve. If PrecrvRef and PreswpRef (next input) are both zero,
the reference axis and pitch axis are coincident. The FAST model does not use it. If the ADAMS
preprocessor is disabled, this input can be left blank. (m)

PreswpRef This is the sectional offset that defines the reference axis for preswept blades. This value is
directed from the blade pitch axis along the yb,i-axis, negative in the direction of rotation.
PreswpRef must be set to zero for blades without presweep. If PrecrvRef (previous input) and
PreswpRef are both zero, the reference axis and pitch axis are coincident. The FAST model does
not use it. If the ADAMS preprocessor is disabled, this input can be left blank. (m)

FlpcgOf This is the blade section mass offset measured from the reference axis in the flapwise direction,
positive toward the suction surface. It is used for creation of the ADAMS dataset. The FAST
model does not use it. If the ADAMS preprocessor is disabled, this input can be left blank. (m)

EdgcgOf This is the blade section mass offset measured from the reference axis in the edgewise direction,
positive toward the trailing edge. It is used for creation of the ADAMS dataset. The FAST model
does not use it. If the ADAMS preprocessor is disabled, this input can be left blank. (m)

FlpEAOf This is the blade section elastic offset measured from the reference axis in the flapwise direction,
positive toward the suction surface. It is used for creation of the ADAMS dataset. The FAST
model does not use it. If the ADAMS preprocessor is disabled, this input can be left blank. (m)

EdgEAOf This is the blade section elastic offset measured from the reference axis in the edgewise direction,
positive toward the trailing edge. It is used for creation of the ADAMS dataset. The FAST model
does not use it. If the ADAMS preprocessor is disabled, this input can be left blank. (m)

Blade Mode Shapes

BldFl1Shi These are the coefficients of the polynomial equation used to model the first flapwise mode shape
of the blade. The five coefficients (second through sixth) of the polynomial equation define the
mode shape, where the variable in the polynomial varies from 0 to 1. The zeroth and first terms
are not included in the list because they must always be 0 for cantilevered beams. The polynomial
should describe a curve that has a value of 1 at the free end. That is, the five numbers must add up
to 1. (-)

BldFl2Shi These are the coefficients of the polynomial equation used to model the second flapwise mode
shape of the blade. The five coefficients (second through sixth) of the polynomial equation define
the mode shape, where the variable in the polynomial varies from 0 to 1. The zeroth and first
terms are not included in the list because they must always be 0 for cantilevered beams. The
polynomial should describe a curve that has a value of 1 at the free end. That is, the five numbers
must add up to 1. (-)

BldEdgShi These are the coefficients of the polynomial equation used to model the edgewise mode shape of
the blade. The five coefficients (second through sixth) of the polynomial equation define the
mode shape, where the variable in the polynomial varies from 0 to 1. The zeroth and first terms
are not included in the list because they must always be 0 for cantilevered beams. The polynomial
should describe a curve that has a value of 1 at the free end. That is, the five numbers must add up
to 1. (-)

FAST User's Guide 77 Last updated on August 12, 2005 for version 6.0

Table 11. AeroDyn-Input-File Parameters.

The following input parameters are contained in the file indicated by input ADFile from the primary input file.
AeroDyn will read this file even when CompAero from the primary input file is disabled. For more details about
the parameters documented here, please see the latest AeroDyn User’s Guide [1].

Aerodynamics

ADTitle This is an input-file descriptor that is displayed on the screen during execution. AeroDyn will
read the first 96 characters of the text. There is no need to put it in quotes. You may enter
anything you like—even an empty string, but you must consume exactly one line in the input file.
(nonquoted string)

SysUnits This string controls the setting of the SIUnits flag, which tells AeroDyn whether to assume input
and output parameters are given in metric or English units. This string must be “SI” for FAST.
Some other codes that use AeroDyn allow input and output parameters in English units, but FAST
does not. (nonquoted string)

StallMod This string controls the setting of the DynStall flag, which tells AeroDyn whether or not to use the
Leishman-Beddoes dynamic stall in AeroDyn. The only permissible values are “BEDDOES” and
“STEADY”. This string is normally set to “BEDDOES” to use dynamic stall for production
simulations. During a linearization analysis, dynamic stall must be disabled by specifying
StallMod to “STEADY”. (nonquoted string)

UseCm This string controls the setting of the PitchMom flag, which tells AeroDyn whether to compute
pitching moments in AeroDyn. The only permissible values are “USE_CM” and “NO_CM”.
Although pitching moments will have an effect on the loads and motion of the turbine in FAST,
there is no twist degree of freedom. (nonquoted string)

InfModel This string controls the setting of the DynInflo flag, which tells AeroDyn whether to use the
generalized-dynamic-wake model or the equilibrium-inflow model. The two possible string
values are “DYNIN” and “EQUIL”. For production runs, this string should be set to “DYNIN”.
During a linearization analysis, the “EQUIL”ibrium-inflow model must be engaged. (nonquoted
string)

IndModel When using the equilibrium-inflow model, this quoted string controls the setting of the AxialInd
and TangInd flags. The three possible values are “NONE”, “WAKE”, and “SWIRL”. A setting
of “NONE” disables both flags, a setting of “WAKE” enables just the AxialInd flag, and a setting
of “SWIRL” enables both flags. If you are doing production runs using equilibrium inflow, you
should set this value to “SWIRL”. (nonquoted string)

AToler When using the equilibrium inflow model, an iterative solution is used to calculate the induction
factors. AeroDyn uses the value of AToler as the convergence criterion. A good default value to
use is 0.005. This value may be reduced to increase accuracy or increased to speed the calcula-
tions. This value must be greater than zero. (-)

TLModel When using the equilibrium inflow model, you can select from two tip-loss models or disable tip-
loss calculations. {“NONE”: no tip-loss calculations, “PRAND”: standard Prandtl tip-loss model,
“GTECH”: Georgia Tech’s modified Prandtl model} (nonquoted string)

HLModel When using the equilibrium inflow model, you can include or disable hub-loss calculations.
{“NONE”: no hub-loss calculations, “PRAND”: standard Prandtl hub-loss model} (nonquoted
string)

WindFile This quoted string holds the name or root name of the wind input file. AeroDyn will check the file
system to determine whether the file contains hub-height wind data or full-field (FF) wind data.
For FF winds, omit the file extension. The file name may optionally include an absolute or rela-
tive path. This file name must contain fewer than 100 characters and must be enclosed in apostro-
phes or double quotes. During a linearization analysis, you must use a hub-height wind data file
that does not vary with time. (quoted string)

HH This is the height above the ground [onshore] or height above the mean sea level [offshore] that
AeroDyn will use as a hub height for the winds. You should set this to TowerHt + Twr2Shft +
OverHang•SIN(ShftTilt). This value must not be negative. (m)

FAST User's Guide 78 Last updated on August 12, 2005 for version 6.0

Table 11. AeroDyn-Input-File Parameters (continued).

Aerodynamics (concluded)

TwrShad The tower-shadow maximum velocity deficit is the fractional amount the horizontal wind speed is
reduced at the middle of the shadow a distance T_Shad_RefPt downstream from the center of the
tower. This varies from 0 to 1. A value of 0 means there is no shadow. A value of 1 means the
wind is completely stopped. A typical number might be something like 0.3. This value must not
be negative. (-)

ShadHWid The tower-shadow half-width tells AeroDyn how wide the tower shadow is at a distance
T_Shad_RefPt downstream from the center of the tower. This number should normally be
slightly larger than the half-width of the tower, as the tower shadow usually widens as it goes
downstream. This value must not be negative. (m)

T_Shad_RefPt This distance downstream of the tower specifies the point where the input values of the velocity
deficit and shadow width are defined. An appropriate value would be the horizontal distance from
the tower centerline to the hub, which would be OverHang•COS(ShftTilt). This value must not
be negative. (m)

Rho This is the ambient air density at the altitude of the hub. The standard density at sea level is 1.225.
By setting this value to 0 you will effectively eliminate all aerodynamic forces on the turbine, but
you will save a lot of calculations by instead disabling the CompAero flag. This value must not
be negative. (kg/m3)

KinVisc This is the ambient relative viscosity at the altitude of the hub. This value is not currently used in
AeroDyn or FAST, but it will eventually be used to compute the Reynolds number. The standard
relative viscosity at sea level is 1.46e-5. This value must not be negative. (kg/m·sec)

DTAero This is the time step size that tells AeroDyn how often to compute aerodynamic forces. This value
must be greater than zero. It does not need to be specified as an integral multiplier of FAST’s time
step, DT, but if it is not, FAST will still only call AeroDyn at the least greatest integer multiple of
DT that is larger or equal to DTAero. (sec)

NumFoil This parameter determines how many airfoil tables will be available for assignment to the various
blade stations and tail fin airfoil. Any non-zero number of airfoil files can be specified. Any or all
of them may be used by more than one blade station or never used at all. (-)

FoilNmi The next NumFoil lines are a list of airfoil-table file names entered in quoted strings. The file
names are limited to 80 characters and may contain absolute or relative paths. Leading and
trailing spaces are trimmed, but imbedded spaces are kept. Leading spaces count against the 80-
character limit. Only one filename is entered on each line. (quoted strings)

BldNodes The blades will have BldNodes analysis nodes in FAST, which are used for the integration of
aerodynamic and elastic forces. The more segments you use, the more accurate the integral will
be, but the greater the computational time will be. A good compromise for this parameter is 20.
This integer number must be greater than 1. When creating ADAMS datasets, this value must be
no more than 99. (-)

FAST User's Guide 79 Last updated on August 12, 2005 for version 6.0

Table 11. AeroDyn-Input-File Parameters (concluded).

Distributed Blade Information

RNodes These values are the distances of the analysis nodes from the rotor apex along the pitch axis,
which is not consistent with the YawDyn convention for 3-bladed turbines (but is consistent
for 2-bladed turbines). The analysis nodes are located at the centers of the blade segments. You
do not have complete freedom to put the RNodes anywhere you like. For instance, they cannot
be at the blade root or tip. It is also not always possible to alternate between nodes that are close
together and far apart. An easy way to ensure consistency is to divide the blade segments and then
compute the centers of the segments to use for the RNodes. The nodes do not need to be equally
spaced. These values must fall between the HubRad and TipRad (exclusive). (m)

AeroTwst This is the aerodynamic twist angle. It indicates the orientation of the chord of the local airfoil. A
positive aerodynamic twist is one that points the leading edge more upwind. These values must be
greater than –180 and less than or equal to 180 degrees. (deg)

DRNodes These values represent the portion of the blade span that is assigned to an analysis node. This
length times the local chord defines the area used in the aerodynamics calculations. The sum of all
the DRNodes should add up to the blade length. FAST checks the values of the RNodes and
DRNodes to make sure they are consistent and meaningful. These values must be greater than
zero. (m)

Chord These values are the local chords of the analysis nodes. This local chord times DRNodes defines
the area used in the aerodynamics calculations. These values must be greater than zero. (m)

NFoil These integers tell AeroDyn which of the input airfoil files (FoilNm) are assigned to the various
analysis nodes. For instance, a value of 2 means that node 2 will use FoilNm2 for the local airfoil.
Airfoils may be assigned to more than one blade station. These values must be between 1 and
NumFoil. (-)

PrnElm If the whole word “PRINT” is found anywhere on a line, the element data for that element will be
printed to the element output file (element.plt). You can also enter the nonquoted string
“NOPRINT”, or leave this field blank to skip printing element data for this element. (nonquoted,
case-insensitive string)

FAST User's Guide 80 Last updated on August 12, 2005 for version 6.0

Table 12. Platform-Input-File Parameters.

The following input parameters are contained in the file indicated by input PtfmFile from the primary input file.
FAST will only read this file if PtfmModel from the primary input file is nonzero. In FAST v6.0, all nonzero
PtfmModel options will work the same way by reading in the PtfmFile described here. In future versions, the
format of this file will depend on which PtfmModel option is selected.

Feature Flags

PtfmSgDOF The support platform surge DOF will be enabled when this is True. The surge DOF allows the
platform to translate horizontally relative to the inertia frame as shown in Figure 20. The platform
reference point (located by input PtfmRef) translates with the platform during this motion. The
initial surge displacement is specified with PtfmSurge. If PtfmSgDOF is disabled, the surge
displacement will be fixed at PtfmSurge. (flag)

PtfmSwDOF The support platform sway DOF will be enabled when this is True. The sway DOF allows the
platform to translate horizontally relative to the inertia frame as shown in Figure 20. The platform
reference point (located by input PtfmRef) translates with the platform during this motion. The
initial sway displacement is specified with PtfmSway. If PtfmSwDOF is disabled, the sway
displacement will be fixed at PtfmSway. (flag)

PtfmHvDOF The support platform heave DOF will be enabled when this is True. The heave DOF allows the
platform to translate vertically relative to the inertia frame as shown in Figure 20. The platform
reference point (located by input PtfmRef) translates with the platform during this motion. The
initial heave displacement is specified with PtfmHeave. If PtfmHvDOF is disabled, the heave
displacement will be fixed at PtfmHeave. (flag)

PtfmRDOF The support platform roll DOF will be enabled when this is True. The roll DOF allows the
platform to tilt (rotate) about its reference point (located by input PtfmRef) relative to the inertia
frame as shown in Figure 20. The initial roll displacement is specified with PtfmRoll. If
PtfmRDOF is disabled, the roll displacement will be fixed at PtfmRoll. (flag)

PtfmPDOF The support platform pitch DOF will be enabled when this is True. The pitch DOF allows the
platform to tilt (rotate) about its reference point (located by input PtfmRef) relative to the inertia
frame as shown in Figure 20. The initial pitch displacement is specified with PtfmPitch. If
PtfmPDOF is disabled, the pitch displacement will be fixed at PtfmPitch. (flag)

PtfmYDOF The support platform yaw DOF will be enabled when this is True. The yaw DOF allows the
platform to yaw (rotate) about its reference point (located by input PtfmRef) relative to the inertia
frame as shown in Figure 20. The initial yaw displacement is specified with PtfmYaw. If
PtfmYDOF is disabled, the yaw displacement will be fixed at PtfmYaw. (flag)

Initial Conditions

PtfmSurge This is the fixed or initial support platform surge displacement. The surge displacement indicates
a horizontal translation of the platform relative to the inertia frame as shown in Figure 20. (m)

PtfmSway This is the fixed or initial support platform sway displacement. The sway displacement indicates a
horizontal translation of the platform relative to the inertia frame as shown in Figure 20. (m)

PtfmHeave This is the fixed or initial support platform heave displacement. The heave displacement indicates
a vertical translation of the platform relative to the inertia frame as shown in Figure 20. (m)

PtfmRoll This is the fixed or initial support platform roll displacement. The roll displacement indicates a tilt
rotation of the platform about its reference point (located by input PtfmRef) relative to the inertia
frame as shown in Figure 20. This value must be between –15 and 15 degrees (inclusive). (deg)

PtfmPitch This is the fixed or initial support platform pitch displacement. The pitch displacement indicates a
tilt rotation of the platform about its reference point (located by input PtfmRef) relative to the
inertia frame as shown in Figure 20. This value must be between –15 and 15 degrees (inclusive).
(deg)

PtfmYaw This is the fixed or initial support platform yaw displacement. The yaw displacement indicates a
yaw rotation of the platform about its reference point (located by input PtfmRef) relative to the
inertia frame as shown in Figure 20. This value must be between –15 and 15 degrees (inclusive).
(deg)

FAST User's Guide 81 Last updated on August 12, 2005 for version 6.0

Table 12. Platform-Input-File Parameters (concluded).

Turbine Configuration

TwrDraft The tower draft is the downward distance from ground level [onshore] or mean sea level
[offshore] to the tower base platform connection. This value must be greater than –TowerHt. See
Figure 20. (m)

PtfmCM This is the downward distance from ground level [onshore] or mean sea level [offshore] to the
support platform mass center. This value must not be less than TwrDraft. See Figure 20. (m)

PtfmRef This is the downward distance from ground level [onshore] or mean sea level [offshore] to the
support platform reference point. The platform reference point is the origin in the platform about
which the translational (surge, sway, and heave) and rotational (roll, pitch, and yaw) motions of
the support platform are defined. It is also the point at which external loading is applied to the
platform—see input parameter PtfmLdMod. This value must not be less than TwrDraft. See
Figure 20. (m)

Mass and Inertia

PtfmMass This is the mass of the support platform. Its center is located a downward distance of PtfmCM
from ground level [onshore] or mean sea level [offshore]. If TwrRBHt is nonzero, the mass of the
rigid portion of the tower should be included with the support platform mass in PtfmMass. This
value must not be negative. (kg)

PtfmRIner This is the support platform moment of inertia in roll about the platform mass center. It includes
all mass contained in PtfmMass. This value must not be negative. (kg·m2)

PtfmPIner This is the support platform moment of inertia in pitch about the platform mass center. It includes
all mass contained in PtfmMass. This value must not be negative. (kg·m2)

PtfmYIner This is the support platform moment of inertia in yaw about the platform mass center. It includes
all mass contained in PtfmMass. This value must not be negative. (kg·m2)

Platform Loading

PtfmLdMod In FAST v6.0, only user-defined platform loading is available. For a value of 0 for PtfmLdMod,
there will be no platform loading and the support reactions normally produced will be set to zero
(causing the wind turbine to fall due to gravity if PtfmHvDOF is True). If you set PtfmLdMod to
1, FAST will call the routine UserPtfmLd() to compute the platform loading. You should replace
the dummy routine supplied with the code with your own, which will need to be linked with the
rest of FAST. The platform loads returned by UserPtfmLd() should contain contributions from
any external load acting on the platform other than loads transmitted from the wind turbine. For
example, these loads should contain contributions from foundation stiffness and damping [not
floating] or mooring line restoring and damping [floating], as well as hydrostatic and
hydrodynamic contributions [offshore]. The platform loads will be applied on the platform at the
instantaneous platform reference position (located by input PtfmRef). The routine assumes that
the platform loads are transmitted through a medium like soil [foundation] and/or water [offshore],
so that added mass effects are important. See the dummy UserPtfmLd() routine for more
information. Using values other than 0 or 1 for PtfmLdMod will cause FAST to abort. (switch)

FAST User's Guide 82 Last updated on August 12, 2005 for version 6.0

Table 13. Furling-Input-File Parameters.

The following input parameters are contained in the file indicated by input FurlFile from the primary input file.
FAST will only read this file if the model is designated as a furling machine (when Furling from the primary input
file is set to True).

Feature Flags

RFrlDOF The rotor-furl DOF will be enabled when this is True. The initial rotor-furl angle is specified with
RotFurl. If RFrlDOF is disabled, the rotor-furl angle will be fixed at RotFurl. (flag)

TFrlDOF The tail-furl DOF will be enabled when this is True. The initial tail-furl angle is specified with
TailFurl. If TFrlDOF is disabled, the tail-furl angle will be fixed at TailFurl. (flag)

Initial Conditions

RotFurl This is the fixed or initial rotor-furl angle. It is positive about the rotor-furl axis as shown in
Figure 17. The rotor-furl axis is defined through inputs RFrlPntxn, RFrlPntyn, RFrlPntzn,
RFrlSkew, and RFrlTilt below. This value must be greater than –180 and less than or equal to
180 degrees. (deg)

TailFurl This is the fixed or initial tail-furl angle. It is positive about the tail-furl axis as shown in Figure
17. The tail-furl axis is defined through inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew,
and TFrlTilt below. This value must be greater than –180 and less than or equal to 180 degrees.
(deg)

Turbine Configuration

Yaw2Shft This is the lateral offset distance from the yaw axis to the intersection of the rotor shaft axis with
the yn-/zn-plane. The distance is measured parallel to the yn-axis. It is positive to the left when
looking downwind as shown in Figure 18. For turbines with rotor-furl, this distance defines the
configuration at a furl angle of zero. (m)

ShftSkew This is the skew angle of the rotor shaft in the nominally horizontal plane. Positive skew acts like
positive nacelle yaw as shown in Figure 18; however, ShftSkew should only be used to skew the
shaft a few degrees away from the zero-yaw position and must not be used as a replacement for
the yaw angle. This value must be between –15 and 15 degrees (inclusive). For turbines with
rotor-furl, this angle defines the configuration at a furl angle of zero. (deg)

RFrlCMxn This is the downwind distance to the center of mass of the structure that furls with the rotor (not
including the rotor—reference input RFrlMass) from the top of the tower, measured parallel to
the xn-axis. It is positive downwind. See Figure 18. For turbines with rotor-furl, this distance
defines the configuration at a furl angle of zero. (m)

RFrlCMyn This is the lateral distance to the center of mass of the structure that furls with the rotor (not
including the rotor—reference input RFrlMass) from the top of the tower, measured parallel to
the yn-axis. It is positive to the left when looking downwind. See Figure 18. For turbines with
rotor-furl, this distance defines the configuration at a furl angle of zero. (m)

RFrlCMzn This is the vertical distance to the center of mass of the structure that furls with the rotor (not
including the rotor—reference input RFrlMass) from the top of the tower, measured parallel to
the zn-axis. It is positive upward when looking downwind. See Figure 18. For turbines with
rotor-furl, this distance defines the configuration at a furl angle of zero. (m)

BoomCMxn This is the downwind distance to the tail boom mass center (reference input BoomMass) from the
top of the tower, measured parallel to the xn-axis. It is positive downwind. See Figure 19. For
turbines with tail-furl, this distance defines the configuration at a furl angle of zero. (m)

BoomCMyn This is the lateral distance to the tail boom mass center (reference input BoomMass) from the top
of the tower, measured parallel to the yn-axis. It is positive to the left when looking downwind.
See Figure 19. For turbines with tail-furl, this distance defines the configuration at a furl angle of
zero. (m)

BoomCMzn This is the vertical distance to the tail boom mass center (reference input BoomMass) from the
top of the tower, measured parallel to the zn-axis. It is positive upward when looking downwind.
See Figure 19. For turbines with tail-furl, this distance defines the configuration at a furl angle of
zero. (m)

FAST User's Guide 83 Last updated on August 12, 2005 for version 6.0

Table 13. Furling-Input-File Parameters (continued).

Turbine Configuration (continued)

TFinCMxn This is the downwind distance to the tail fin mass center (reference input TFinMass) from the top
of the tower, measured parallel to the xn-axis. It is positive downwind. See Figure 19. For
turbines with tail-furl, this distance defines the configuration at a furl angle of zero. (m)

TFinCMyn This is the lateral distance to the tail fin mass center (reference input TFinMass) from the top of
the tower, measured parallel to the yn-axis. It is positive to the left when looking downwind. See
Figure 19. For turbines with tail-furl, this distance defines the configuration at a furl angle of
zero. (m)

TFinCMzn This is the vertical distance to the tail fin mass center (reference input TFinMass) from the top of
the tower, measured parallel to the zn-axis. It is positive upward when looking downwind. See
Figure 19. For turbines with tail-furl, this distance defines the configuration at a furl angle of
zero. (m)

TFinCPxn This is the downwind distance to the tail fin center-of-pressure from the top of the tower,
measured parallel to the xn-axis. It is positive downwind. See Figure 19. For turbines with tail-
furl, this distance defines the configuration at a furl angle of zero. (m)

TFinCPyn This is the lateral distance to the tail fin center-of-pressure from the top of the tower, measured
parallel to the yn-axis. It is positive to the left when looking downwind. See Figure 19. For
turbines with tail-furl, this distance defines the configuration at a furl angle of zero. (m)

TFinCPzn This is the vertical distance to the tail fin center-of-pressure from the top of the tower, measured
parallel to the zn-axis. It is positive upward when looking downwind. See Figure 19. For
turbines with tail-furl, this distance defines the configuration at a furl angle of zero. (m)

TFinSkew This is the skew angle of the tail fin chordline in the nominally horizontal plane. Positive skew
orients the nominal horizontal projection of the tail fin chordline about the zn-axis. The
aforementioned chordline is the chordline passing through the tail fin center-of-pressure. See
Figure 19. This value must be greater than –180 and less than or equal to 180 degrees. For
turbines with tail-furl, this angle defines the configuration at a furl angle of zero. (deg)

TFinTilt This is the tilt angle of the tail fin chordline from the nominally horizontal plane. The
aforementioned chordline is the chordline passing through the tail fin center-of-pressure. This
value must be between –90 and 90 degrees (inclusive). Positive tilt means that the trailing edge of
the tail fin is higher than the leading edge. See Figure 19. For turbines with tail-furl, this angle
defines the configuration at a furl angle of zero. (deg)

TFinBank This is the bank angle of the tail fin plane about the tail fin chordline. The aforementioned
chordline is the chordline passing through the tail fin center-of-pressure. This value must be
greater than –180 and less than or equal to 180 degrees. See Figure 19. For turbines with tail-furl,
this angle defines the configuration at a furl angle of zero. (deg)

RFrlPntxn This is the downwind distance to an arbitrary point on the rotor-furl axis from the top of the tower,
measured parallel to the xn-axis. It is positive downwind. The arbitrary point referred to in this
input must be the same point identified by inputs RFrlPntyn and RFrlPntzn. Inputs RFrlPntxn,
RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the orientation of the rotor-furl axis and
associated DOF, RFrlDOF. See Figure 17. (m)

RFrlPntyn This is the lateral distance to an arbitrary point on the rotor-furl axis from the top of the tower,
measured parallel to the yn-axis. It is positive to the left when looking downwind. The arbitrary
point referred to in this input must be the same point identified by inputs RFrlPntxn and
RFrlPntzn. Inputs RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the
orientation of the rotor-furl axis and associated DOF, RFrlDOF. See Figure 17. (m)

RFrlPntzn This is the vertical distance to an arbitrary point on the rotor-furl axis from the top of the tower,
measured parallel to the zn-axis. It is positive upward when looking downwind. The arbitrary
point referred to in this input must be the same point identified by inputs RFrlPntxn and
RFrlPntyn. Inputs RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the
orientation of the rotor-furl axis and associated DOF, RFrlDOF. See Figure 17. (m)

FAST User's Guide 84 Last updated on August 12, 2005 for version 6.0

Table 13. Furling-Input-File Parameters (continued).

Turbine Configuration (concluded)

RFrlSkew This is the skew angle of the rotor-furl axis in the nominally horizontal plane. Positive skew
orients the nominal horizontal projection of the rotor-furl axis about the zn-axis. Inputs
RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew, and RFrlTilt define the orientation of the rotor-
furl axis and associated DOF, RFrlDOF. See Figure 17. This value must be greater than –180
and less than or equal to 180 degrees. (deg)

RFrlTilt This is the tilt angle of the rotor-furl axis from the nominally horizontal plane. This value must be
between –90 and 90 degrees (inclusive). Inputs RFrlPntxn, RFrlPntyn, RFrlPntzn, RFrlSkew,
and RFrlTilt define the orientation of the rotor-furl axis and associated DOF, RFrlDOF. See
Figure 17. (deg)

TFrlPntxn This is the downwind distance to an arbitrary point on the tail-furl axis from the top of the tower,
measured parallel to the xn-axis. It is positive downwind. The arbitrary point referred to in this
input must be the same point identified by inputs TFrlPntyn and TFrlPntzn. Inputs TFrlPntxn,
TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the orientation of the tail-furl axis and
associated DOF, TFrlDOF. See Figure 17. (m)

TFrlPntyn This is the lateral distance to an arbitrary point on the tail-furl axis from the top of the tower,
measured parallel to the yn-axis. It is positive to the left when looking downwind. The arbitrary
point referred to in this input must be the same point identified by inputs TFrlPntxn and
TFrlPntzn. Inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the
orientation of the tail-furl axis and associated DOF, TFrlDOF. See Figure 17. (m)

TFrlPntzn This is the vertical distance to an arbitrary point on the tail-furl axis from the top of the tower,
measured parallel to the zn-axis. It is positive upward when looking downwind. The arbitrary
point referred to in this input must be the same point identified by inputs TFrlPntxn and
TFrlPntyn. Inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the
orientation of the tail-furl axis and associated DOF, RFrlDOF. See Figure 17. (m)

TFrlSkew This is the skew angle of the tail-furl axis in the nominally horizontal plane. Positive skew orients
the nominal horizontal projection of the tail-furl axis about the zn-axis. Inputs TFrlPntxn,
TFrlPntyn, TFrlPntzn, TFrlSkew, and TFrlTilt define the orientation of the tail-furl axis and
associated DOF, TFrlDOF. See Figure 17. This value must be greater than –180 and less than or
equal to 180 degrees. (deg)

TFrlTilt This is the tilt angle of the tail-furl axis from the nominally horizontal plane. This value must be
between –90 and 90 degrees (inclusive). Inputs TFrlPntxn, TFrlPntyn, TFrlPntzn, TFrlSkew,
and TFrlTilt define the orientation of the tail-furl axis and associated DOF, TFrlDOF. See Figure
17. (deg)

Mass and Inertia

RFrlMass This is the mass of the structure that furls with the rotor (not including the rotor). The center of
this mass is located at the point specified by inputs RFrlCMxn, RFrlCMyn, and RFrlCMzn
relative to the tower-top at a rotor-furl angle of zero. It includes everything that furls with the
rotor excluding the rotor (blades, hub, and tip brakes). This value must not be negative. (kg)

BoomMass This is the mass of the tail boom. The center of the tail boom mass is located at the point specified
by inputs BoomCMxn, BoomCMyn, and BoomCMzn relative to the tower-top at a tail-furl angle
of zero. It includes everything that furls with the tail except the tail fin (see next input). This
value must not be negative. (kg)

TFinMass This is the mass of the tail fin. The center of the tail fin mass is located at the point specified by
inputs TFinCMxn, TFinCMyn, and TFinCMzn relative to the tower-top at a tail-furl angle of
zero. TFinMass and BoomMass combined should include everything that furls with the tail.
This value must not be negative. (kg)

RFrlIner This is the moment of inertia of the structure that furls with the rotor (not including the rotor)
about the rotor-furl axis. It includes all mass contained in RFrlMass. This value must be greater
than RFrlMass•(perpendicular distance between rotor-furl axis and C.M. of the structure
that furls with the rotor [not including the rotor])2. (kg·m2)

FAST User's Guide 85 Last updated on August 12, 2005 for version 6.0

Table 13. Furling-Input-File Parameters (continued).

Mass and Inertia (concluded)

TFrlIner This is the tail boom moment of inertia about the tail-furl axis. It includes all mass contained in
BoomMass. This value must be greater than BoomMass•(perpendicular distance between
tail-furl axis and tail boom C.M.)2. (kg·m2)

Rotor-Furl

RFrlMod The rotor-furl springs and dampers can be modeled three ways. For a value of 0 for RFrlMod,
there will be no rotor-furl spring nor damper and the moment normally produced will be set to
zero. A RFrlMod of 1 will invoke simple spring and damper models using the inputs provided
below as appropriate coefficients. If you set RFrlMod to 2, FAST will call the routine UserRFrl()
to compute the rotor-furl spring and damper moments. You should replace the dummy routine
supplied with the code with your own, which will need to be linked with the rest of FAST. Using
values other than 0, 1, or 2 will cause FAST to abort. (switch)

RFrlSpr The linear rotor-furl spring restoring moment is proportional to the rotor-furl deflection through
this constant. This value must not be negative and is only used when RFrlMod is set to 1.
(N·m/rad)

RFrlDmp The linear rotor-furl damping moment is proportional to the rotor-furl rate through this constant.
This value must not be negative and is only used when RFrlMod is set to 1. (N·m/(rad/sec))

RFrlCDmp This Coulomb-friction damping moment resists rotor-furl motion, but it is a constant that is not
proportional to the rotor-furl rate. However, if the rotor-furl rate is zero, the damping is zero.
This value must not be negative and is only used when RFrlMod is set to 1. (N·m)

RFrlUSSP The rotor-furl up-stop spring is effective when the rotor-furl deflection exceeds this value. This
value must be greater than –180 and less than or equal to 180 degrees and is only used when
RFrlMod is set to 1. (deg)

RFrlDSSP The rotor-furl down-stop spring is effective when the rotor-furl deflection exceeds this value. This
value must be greater than –180 and less than or equal to RFrlUSSP degrees and is only used
when RFrlMod is set to 1. (deg)

RFrlUSSpr The linear rotor-furl up-stop spring restoring moment is proportional to the rotor-furl up-stop
deflection by this constant and is effective when the rotor-furl deflection exceeds RFrlUSSP.
This value must not be negative and is only used when RFrlMod is set to 1. (N·m/rad)

RFrlDSSpr The linear rotor-furl down-stop spring restoring moment is proportional to the rotor-furl down-
stop deflection by this constant and is effective when the rotor-furl deflection exceeds RFrlDSSP.
This value must not be negative and is only used when RFrlMod is set to 1. (N·m/rad)

RFrlUSDP The rotor-furl up-stop damper is effective when the rotor-furl deflection exceeds this value. This
value must be greater than –180 and less than or equal to 180 degrees and is only used when
RFrlMod is set to 1. (deg)

RFrlDSDP The rotor-furl down-stop damper is effective when the rotor-furl deflection exceeds this value.
This value must be greater than –180 and less than or equal to RFrlUSDP degrees and is only
used when RFrlMod is set to 1. (deg)

RFrlUSDmp The linear rotor-furl up-stop damping moment is proportional to the rotor-furl rate by this constant
and is effective when the rotor-furl deflection exceeds RFrlUSDP. This value must not be
negative and is only used when RFrlMod is set to 1. (N·m/(rad/sec))

RFrlDSDmp The linear rotor-furl down-stop damping restoring moment is proportional to the rotor-furl rate by
this constant and is effective when the rotor-furl deflection exceeds RFrlDSDP. This value must
not be negative and is only used when RFrlMod is set to 1. (N·m/(rad/sec))

FAST User's Guide 86 Last updated on August 12, 2005 for version 6.0

Table 13. Furling-Input-File Parameters (continued).

Tail-Furl

TFrlMod The tail-furl springs and dampers can be modeled three ways. For a value of 0 for TFrlMod, there
will be no tail-furl spring nor damper and the moment normally produced will be set to zero. A
TFrlMod of 1 will invoke simple spring and damper models using the inputs provided below as
appropriate coefficients. If you set TFrlMod to 2, FAST will call the routine UserTFrl() to
compute the tail-furl spring and damper moments. You should replace the dummy routine
supplied with the code with your own, which will need to be linked with the rest of FAST. Using
values other than 0, 1, or 2 will cause FAST to abort. (switch)

TFrlSpr The linear tail-furl spring restoring moment is proportional to the tail-furl deflection through this
constant. This value must not be negative and is only used when TFrlMod is set to 1. (N·m/rad)

TFrlDmp The linear tail-furl damping moment is proportional to the tail-furl rate through this constant. This
value must not be negative and is only used when TFrlMod is set to 1. (N·m/(rad/sec))

TFrlCDmp This Coulomb-friction damping moment resists tail-furl motion, but it is a constant that is not
proportional to the tail-furl rate. However, if the tail-furl rate is zero, the damping is zero. This
value must not be negative and is only used when TFrlMod is set to 1. (N·m)

TFrlUSSP The tail-furl up-stop spring is effective when the tail-furl deflection exceeds this value. This value
must be greater than –180 and less than or equal to 180 degrees and is only used when TFrlMod is
set to 1. (deg)

TFrlDSSP The tail-furl down-stop spring is effective when the tail-furl deflection exceeds this value. This
value must be greater than –180 and less than or equal to TFrlUSSP degrees and is only used
when TFrlMod is set to 1. (deg)

TFrlUSSpr The linear tail-furl up-stop spring restoring moment is proportional to the tail-furl up-stop
deflection by this constant and is effective when the tail-furl deflection exceeds TFrlUSSP. This
value must not be negative and is only used when TFrlMod is set to 1. (N·m/rad)

TFrlDSSpr The linear tail-furl down-stop spring restoring moment is proportional to the tail-furl down-stop
deflection by this constant and is effective when the tail-furl deflection exceeds TFrlDSSP. This
value must not be negative and is only used when TFrlMod is set to 1. (N·m/rad)

TFrlUSDP The tail-furl up-stop damper is effective when the tail-furl deflection exceeds this value. This
value must be greater than –180 and less than or equal to 180 degrees and is only used when
TFrlMod is set to 1. (deg)

TFrlDSDP The tail-furl down-stop damper is effective when the tail-furl deflection exceeds this value. This
value must be greater than –180 and less than or equal to TFrlUSDP degrees and is only used
when TFrlMod is set to 1. (deg)

TFrlUSDmp The linear tail-furl up-stop damping moment is proportional to the tail-furl rate by this constant
and is effective when the tail-furl deflection exceeds TFrlUSDP. This value must not be negative
and is only used when TFrlMod is set to 1. (N·m/(rad/sec))

TFrlDSDmp The linear tail-furl down-stop damping restoring moment is proportional to the tail-furl rate by this
constant and is effective when the tail-furl deflection exceeds TFrlDSDP. This value must not be
negative and is only used when TFrlMod is set to 1. (N·m/(rad/sec))

FAST User's Guide 87 Last updated on August 12, 2005 for version 6.0

Table 13. Furling-Input-File Parameters (concluded).

Tail Fin Aerodynamics

TFinMod The tail fin aerodynamics can be modeled three ways. For a value of 0 for TFinMod, there will be
no tail fin aerodynamics and the aerodynamic loads normally produced will be set to zero. A
TFinMod of 1 will invoke a simplified tail fin aerodynamics model using the inputs provided
below as appropriate parameters. If you set TFinMod to 2, FAST will call the routine UserTFin()
to compute the tail fin aerodynamic loads. You should replace the dummy routine supplied with
the code with your own, which will need to be linked with the rest of FAST. Using values other
than 0, 1, or 2 will cause FAST to abort. (switch)

TFinNFoil This integer tells AeroDyn which of the input airfoil files (FoilNm) is assigned to the tail fin. For
instance, a value of 2 means that the tail fin will use FoilNm2 for the local tail fin airfoil. The tail
fin airfoil may be assigned to the same airfoil as one or more blade stations. This value must be
between 1 and NumFoil and is only used when TFinMod is set to 1. (-)

TFinArea This is the plan form area of the tail fin plate used to relate the local dynamic pressure and airfoil
coefficients to aerodynamic loads. This value must not be negative and is only used when
TFinMod is set to 1. (m2)

SubAxInd Set this value to False if you want the wind velocity at the tail fin to be unobstructed by the rotor
wake. Set this value to True if you want FAST to decrease (i.e., subtract) the wind velocity at the
tail fin center-of-pressure in the rotor shaft direction by the average rotor axial induction. This
input is only used when TFinMod is set to 1. (flag)

FAST User's Guide 88 Last updated on August 12, 2005 for version 6.0

Table 14. ADAMS-Specific-Input-File Parameters.

The following input parameters are contained in the file indicated by input ADAMSFile from the primary input file.
FAST will only read this file if the FAST-to-ADAMS preprocessor is enabled (when ADAMSPrep from the
primary input file is set to 2 or 3).

Feature Flags

SaveGrphcs If set to True, this flag tells ADAMS to generate a graphics output file for viewing an animation of
the ADAMS simulation. Set this to False if you don’t want graphics output generated; this saves a
lot of hard disk space if the simulation is long. (flag)

MakeLINacf If set to True, this flag tells FAST to generate an ADAMS control/command file used to drive an
ADAMS/LINEAR eigenanalysis of the model. The eigenanalysis is performed with no gravity,
rotor speed, damping, or aerodynamics, no matter how the associated inputs are otherwise
specified in FAST’s other input file(s). Set to False if you don’t want this additional
control/command file generated. SaveGrphcs must be True if this input is True. (flag)

Damping Parameters

CRatioTGJ This is the ratio of the tower’s torsional damping to stiffness in ADAMS. A typical value is 0.01
and it must not be negative. (-)

CRatioTEA This is the ratio of the tower’s extensional damping to stiffness in ADAMS. A typical value is
0.01 and it must not be negative. (-)

CRatioBGJ This is the ratio of a blade’s torsional damping to stiffness in ADAMS. A typical value is 0.01
and it must not be negative. The same ratio is used for all blades. (-)

CRatioBEA This is the ratio of a blade’s extensional damping to stiffness in ADAMS. A typical value is 0.01
and it must not be negative. The same ratio is used for all blades. (-)

Blade Pitch Actuator Parameters

BPActrSpr This is the torsional spring stiffness of the blade pitch actuators in ADAMS. The linear blade
pitch spring moment is proportional to the pitch error through this constant. If a pitch actuator
natural frequency is known in place of an actuator spring stiffness, compute the spring stiffness as
follows: BPActrSpr = PitchIner•ωn

2, where ωn is the natural frequency in rad/sec and PitchIner
is the nominal inertia of the blade about the pitch axis in kg·m2. The same stiffness is used for all
blade pitch actuators and it must not negative. (N·m/rad)

BPActrDmp This is the torsional damping constant of the blade pitch actuators in ADAMS. The linear blade
pitch damping moment is proportional to the blade pitch rate through this constant. If a pitch
actuator natural frequency and damping ratio are known in place of an actuator damping constant,
compute the damping constant as follows: BPActrDmp = 2•ζ•PitchIner•ωn, where ωn is the
natural frequency in rad/sec, ζ is the damping ratio in fraction of critical, and PitchIner is the
nominal inertia of the blade about the pitch axis in kg·m2. The same damping is used for all blade
pitch actuators and it must not be negative. (N·m/(rad/sec))

GRAPHICS Parameters

NSides This is the number of line segments ADAMS includes when drawing GRAPHICS cylinder and
frustum statements in graphical output. This value must not be negative. (-)

TwrBaseRad This is the radius of the tower base (at elevation TwrRBHt above base of the tower). It is used to
define GRAPHICS cylinders for depicting the linearly tapered tower in ADAMS’ graphical
output. This value must not be negative. (m)

TwrTopRad This is the radius of the tower-top (at elevation TowerHt). It is used to define GRAPHICS
cylinders for depicting the linearly tapered tower in ADAMS’ graphical output. This value must
not be negative. (m)

FAST User's Guide 89 Last updated on August 12, 2005 for version 6.0

Table 14. ADAMS-Specific-Input-File Parameters (concluded).

GRAPHICS Parameters (concluded)

NacLength This is the length of the nacelle. It is used to define the nacelle GRAPHICS frustum statement for
ADAMS’ graphical output. The nacelle GRAPHICS is centered about the point of intersection
between the rotor shaft axis and the yn-/zn-plane. This value must not be negative or larger than
twice the magnitude of OverHang. (m)

NacRadBot This is the radius of the bottom of the nacelle (opposite side of rotor). It is used to define the
nacelle GRAPHICS frustum statement for ADAMS’ graphical output. This value must not be
negative. (m)

NacRadTop This is the radius of the top of the nacelle (same side as rotor). It is used to define the nacelle
GRAPHICS frustum statement for ADAMS’ graphical output. This value must not be negative.
(m)

GBoxLength This is the length, width, and height of a cube depicting the gearbox in ADAMS’ graphical output.
It is used to define the gearbox GRAPHICS box statement. The gearbox GRAPHICS is centered
about the point of intersection between the low- and high-speed shafts. This value must not be
negative. (m)

GenLength This is the length of the generator. It is used to define the length of a GRAPHICS cylinder
depicting the generator. The generator GRAPHICS extends from the end of the HSS. This value
must not be negative. (m)

HSSLength This is the length of the HSS. It is used to define the length of a GRAPHICS cylinder depicting
the HSS. The HSS GRAPHICS extends from the end of the LSS. The generator GRAPHICS
originates at the end of the HSS opposite the rotor. This value must not be negative. (m)

LSSLength This is the length of the LSS. It is used to define the length of a GRAPHICS cylinder depicting
the LSS. The LSS GRAPHICS extends toward the tower from the teeter pin for two-bladed
turbines or from the rotor apex for three-bladed turbines. The HSS GRAPHICS originates at the
end of the LSS opposite the rotor. This value must not be negative. (m)

GenRad This is the radius of the generator. It is used to define the radius of a GRAPHICS cylinder
depicting the generator for ADAMS’ graphical output. This value must not be negative. (m)

HSSRad This is the radius of the HSS. It is used to define the radius of a GRAPHICS cylinder depicting
the HSS for ADAMS’ graphical output. This value must not be negative. (m)

LSSRad This is the radius of the LSS. It is used to define the radius of a GRAPHICS cylinder depicting
the LSS for ADAMS’ graphical output. This value must not be negative. (m)

HubCylRad This is the radius of the cylinder depicting the hub in ADAMS’ graphical output. It is used in the
hub GRAPHICS cylinder statements, which extend from the apex of the cone of rotation to the
blade roots along the pitch axes. This value must not be negative. (m)

ThkOvrChrd This is the ratio of blade thickness to blade chord for depicting the blade elements in ADAMS’
graphical output. It is used in the blade element GRAPHICS box statements. The same value is
used for each blade element of each blade and must not be negative. (m)

BoomRad This is the radius of the tail boom. It is used to define the radius of a GRAPHICS cylinder
depicting the tail boom for ADAMS’ graphical output. The tail boom GRAPHICS extends from
the specified point on the tail-furl axis (characterized by inputs TFrlPntxn, TFrlPntyn, and
TFrlPntzn) to a point just below the tail fin center-of-pressure. This value must not be negative.
(m)

FAST User's Guide 90 Last updated on August 12, 2005 for version 6.0

Table 15. Linearization Control-Input-File Parameters.

The following input parameters are contained in the file indicated by input LinFile from the primary input file.
FAST will only read this file when a linearization is performed (when AnalMode from the primary input file is set
to 2).

Periodic Steady State Solution

CalcStdy This flag determines whether a periodic steady state solution is computed before linearizing the
model. If False, the next three inputs are ignored and the linearization occurs about the initial
conditions specified in FAST’s primary input file. That is, when CalcStdy is False, the operating
point is set to the condition in which all displacements, velocities, and accelerations are zero,
except those specified with nonzero initial conditions (for instance, the azimuth DOF will
increment at a constant rate if and when the rotor is spinning). If CalcStdy is True and
RotSpeed is nonzero, FAST integrates in time until a periodic steady state solution is reached.
The method of solution is determined by the next input, TrimCase. FAST is then linearized
about this periodic operating point. If CalcStdy is True and RotSpeed is zero, FAST will
disable GenDOF (if previously enabled) and integrate in time until a static equilibrium position is
found. FAST is then linearized about this position. The accuracy of the steady state solution is
determined through input convergence tolerances DispTol and VelTol (see below). This input is
not used in the FAST-to-ADAMS preprocessor. (flag)

TrimCase This switch determines, for a variable speed machine, which control input to trim in order to reach
the desired azimuth-averaged rotor speed indicated through input RotSpeed (which is also the
initial rotor speed). Setting it to 1 causes FAST to trim nacelle yaw command (demand) angle,
while maintaining constant rotor collective blade pitch (indicated by inputs BlPitchi), to reach the
desired azimuth-averaged rotor speed. With yaw DOF enabled (YawDOF = True), the nacelle
yaw command is the neutral yaw angle, YawNeut, which is passed through FAST’s built-in,
second-order actuator model. With yaw DOF disabled (YawDOF = False), the nacelle yaw
command is the actual nacelle yaw angle. Setting TrimCase to 2 causes FAST to trim electrical
generator torque, while maintaining constant rotor collective blade pitch (indicated by inputs
BlPitchi), to reach the desired azimuth-averaged rotor speed (i.e., Region 2 trim). Setting
TrimCase to 3 causes FAST to trim rotor collective blade pitch to reach the desired azimuth-
averaged rotor speed (i.e., Region 3 trim). In this case, the initial “guess” blade pitch angles are
given by BlPitchi and the electrical generator torque is determined by the torque-speed
relationship indicated by inputs VSContrl or GenModel. For typical Region 3 trim, collective
pitch can be trimmed while maintaining a constant generator torque by setting TrimCase to 3,
VSContrl to 1, VS_RtTq to the desired constant generator torque, and VS_RtGnSp,
VS_Rgn2K, and VS_SlPc to 9999.9E-9 (very small don’t cares > 0.0). Input parameter
TrimCase is ignored when either CalcStdy or GenDOF is False. For a constant speed machine,
GenDOF should be set to False when linearizing FAST, in which case, input TrimCase is
ignored. Using values other than 1, 2, or 3 will cause FAST to abort. This input is not used in the
FAST-to-ADAMS preprocessor. (switch)

DispTol This is the convergence tolerance for the 2-norm of angular displacements in the calculation of
periodic steady state solution. The steady state solution is found when this tolerance and VelTol
are both met. The smaller the number, the tighter the tolerance is. This input is ignored if
CalcStdy is False. This input is not used in the FAST-to-ADAMS preprocessor. (rad)

VelTol This is the convergence tolerance for the 2-norm of angular velocities in the calculation of the
periodic steady state solution. The steady state solution is found when this tolerance and DispTol
are both met. The smaller the number, the tighter the tolerance is. This input is ignored if
CalcStdy is False. This input is not used in the FAST-to-ADAMS preprocessor. (rad/s)

FAST User's Guide 91 Last updated on August 12, 2005 for version 6.0

Table 15. Linearization Control-Input-File Parameters (concluded).

Model Linearization

NAzimStep This is the number of equally spaced rotor azimuth steps in the output periodic linearized model.
The first rotor azimuth location is always the initial azimuth position indicated by inputs Azimuth
and AzimB1Up. The subsequent azimuth steps increment in the direction of rotation. If
RotSpeed is zero, FAST will override NAzimStep and only linearize the model about the initial
azimuth position (as if NAzimStep was set to 1). This input is not used in the FAST-to-ADAMS
preprocessor. (-)

MdlOrder This is the order of the output linearized model. A setting of 1 causes FAST to output the first-
order representation of the linearized model. A setting of 2 causes FAST to output the second-
order representation of the linearized model. Using values other than 1 or 2 will cause FAST to
abort. This input is not used in the FAST-to-ADAMS preprocessor. (-)

Inputs and Disturbances

NInputs The number of control inputs indicates the number of input values on the next line. Valid values
are integers from 0 to 4 + NumBl (inclusive). This input is not used in the FAST-to-ADAMS
preprocessor. (-)

CntrlInpt This is a list of numbers corresponding to different types of control inputs. Possible values are 1
to 7 (inclusive) (7 is only available if NumBl = 3). The numbers correspond to seven control
inputs as follows: (1) nacelle yaw angle command, (2) nacelle yaw rate command, (3) electrical
generator torque, (4) rotor collective blade pitch, (5) individual pitch of blade 1, (6) individual
pitch of blade 2, and (7) individual pitch of blade 3 (unavailable if NumBl = 2). If the yaw DOF is
enabled (YawDOF = True), then the commanded yaw angle and rate from CntrlInpt setting 1 and
2 are the neutral yaw angle, YawNeut, and neutral yaw rate, YawRateNeut, in FAST's built-in
second-order actuator model. In this case, the yaw actuator, which is described in the Nacelle
Yaw Control section of the Controls chapter, will be inherent in the output linearized model. If
the yaw DOF is disabled (YawDOF = False), then the commanded yaw angle and rate from
CntrlInpt setting 1 and 2 are the actual yaw angle and yaw rate. In this case, the yaw actuator will
be absent from the output linearized model. You must enter at least Ninputs values on the line of
input CntrlInpt. If NInputs is 0, this line will be skipped, but you must have a line taking up
space in the input file. You can separate the values with combinations of tabs, spaces, and
commas, but you may use only one comma between numbers. This input is not used in the FAST-
to-ADAMS preprocessor. (-)

NDisturbs The number of wind input disturbances indicates the number of input values on the next line.
Valid values are integers from 0 to 7 (inclusive). This input is not used in the FAST-to-ADAMS
preprocessor. (-)

Disturbnc This is a list of numbers corresponding to different types of wind input disturbances. Possible
values are 1 to 7 (inclusive). The numbers correspond to the seven inputs available in the hub-
height wind data files of AeroDyn as follows: (1) horizontal hub-height wind speed, V, (2)
horizontal wind direction, DELTA, (3) vertical wind speed, VZ, (4) horizontal wind shear, HSHR,
(5) vertical power law wind shear, VSHR, (6) linear vertical wind shear, VLinSHR, and (7)
horizontal hub-height wind gust, VG. You must enter at least NDisturbs values on this line. If
NDisturbs is 0, this line will be skipped, but you must have a line taking up space in the input file.
You can separate the values with combinations of tabs, spaces, and commas, but you may use only
one comma between numbers. This input is not used in the FAST-to-ADAMS preprocessor. (-)

FAST User's Guide 93 Last updated on August 12, 2005 for version 6.0

OUTPUT FILES

The program generates one or more output files
based on settings in the input file.

For time-marching analyses, the primary output
file contains columns of time-series data with one
column for each parameter that is requested in the
primary input file. The name of this file uses the path
and root name of the primary input file and appends
.out for an extension. For example, if the input file
were named fast.fst, the main output file will be named
fast.out. The available output parameters are shown in
Table 16 through Table 44 and are also documented in
the OutList.txt file of the FAST archive. An example
output file is shown in Figure 30.

In some situations, some output channels are
meaningless. For instance, if aerodynamic calculations
are disabled, parameters such as the wind speed are
invalid. You can still leave those parameters in your
output list, but the data generated will be all zeros. The
name and units for the channel will also be replaced
with “INVALID” and “CHANNEL” respectively.
Output loads and motions follow the IEC system.
Please refer to Figure 3 through Figure 9 to get a sense
for which directions are positive.

For linearization analyses, the primary output file
provides the periodic state matrices of the linearized
model. The name of this file uses the path and root
name of the primary input file and appends .lin for an
extension. For example, if the input file were named
fast.fst, the main output file will be named fast.lin. An
example linearized model file is shown in Figure 31.

If the SumPrint flag is set to True, FAST
generates a second output file, with a .fsm for an
extension. In the above example, this file will be

named fast.fsm. This file contains some of the basic
input file parameters and computed inertia properties of
the blades and tower. An example summary file is
shown in Figure 32.

If the SumPrint flag is set to True, AeroDyn also
generates a summary file that contains blade-element
geometry data, airfoil data files at the corresponding
blade element, and the summary of combined
FAST/AeroDyn input parameters. In the above
example, this file will be named fast.opt. An example
of this AeroDyn output can be found in Figure 33.

If ADAMSPrep is set to 2 or 3, FAST generates
ADAMS dataset files corresponding to the model
configuration and analysis settings specified in the
FAST input file(s). See the ADAMS Preprocessor
chapter for a description of these output files.

A final file is generated only when the word
“PRINT” is found on one or more of the lines defining
the blade elements in the AeroDyn input file. This file
contains a time series of aerodynamic data and has a
.elm extension, as in, fast.elm. Please see the AeroDyn
User’s Guide [1] for details on this file.

When running FAST within Simulink, the output
file names use the root name of the primary input file
and append _SFunc to the name. For example, if the
primary input file were named fast.fst, the main output
file from the FAST S-Function will be named
fast_SFunc.out whereas the the FAST executable
would generate fast.out. Please see the Simulink
Interface chapter for further details.

FAST User's Guide 94 Last updated on August 12, 2005 for version 6.0

Table 16. Output Parameters for Wind Motions.

Name Other Name(s) Description Convention Units

WindVxi uWind Nominally downwind component of the hub-height
wind velocity (unavailable if CompAero is False)

Directed along the
xi-axis (m/sec)

WindVyi vWind Cross-wind component of the hub-height wind
velocity (unavailable if CompAero is False)

Directed along the
yi-axis (m/sec)

WindVzi wWind Vertical component of the hub-height wind velocity
(unavailable if CompAero is False)

Directed along the
zi-axis (m/sec)

TotWindV Total hub-height wind speed magnitude
(unavailable if CompAero is False) N/A (m/sec)

HorWindV Horizontal hub-height wind speed magnitude
(unavailable if CompAero is False)

In the xi- and yi-
plane (m/sec)

HorWndDir

Horizontal hub-height wind direction. Please note
that FAST uses the opposite of the sign convention
that AeroDyn uses. Put a “-“, “_”, “m”, or “M”
character in front of this variable name in the input
file to change its sign if you want to use the
AeroDyn convention. (unavailable if CompAero is
False)

About the zi-axis (deg)

VerWndDir Vertical hub-height wind direction (unavailable if
CompAero is False)

About an axis
orthogonal to the zi-
axis and the
HorWindV-vector

(deg)

FAST User's Guide 95 Last updated on August 12, 2005 for version 6.0

Table 17. Output Parameters for Blade 1 Tip Motions.

Name Other
Name(s) Description Convention Units

TipDxc1 OoPDefl1 Blade 1 out-of-plane tip deflection (relative to the
pitch axis)

Directed along the
xc,1-axis (m)

TipDyc1 IPDefl1 Blade 1 in-plane tip deflection (relative to the pitch
axis)

Directed along the
yc,1-axis (m)

TipDzc1 TipDzb1 Blade 1 axial tip deflection (relative to the pitch
axis)

Directed along the
zc,1- and zb,1-axes (m)

TipDxb1 Blade 1 flapwise tip deflection (relative to the pitch
axis)

Directed along the
xb,1-axis (m)

TipDyb1 Blade 1 edgewise tip deflection (relative to the pitch
axis)

Directed along the
yb,1-axis (m)

TipALxb1 Blade 1 local flapwise tip acceleration (absolute) Directed along the
local xb,1-axis (m/sec^2)

TipALyb1 Blade 1 local edgewise tip acceleration (absolute) Directed along the
local yb,1-axis (m/sec^2)

TipALzb1 Blade 1 local axial tip acceleration (absolute) Directed along the
local zb,1-axis (m/sec^2)

TipRDxb1 RollDefl1

Blade 1 roll (angular/rotational) tip deflection
(relative to the undeflected position). In ADAMS,
it is output as an Euler angle computed as the 3rd
rotation in the yaw-pitch-roll rotation sequence. It
is not output as an Euler angle in FAST, which
assumes small blade deflections, so that the rotation
sequence does not matter.

About the xb,1-axis (deg)

TipRDyb1 PtchDefl1

Blade 1 pitch (angular/rotational) tip deflection
(relative to the undeflected position). In ADAMS,
it is output as an Euler angle computed as the 2nd
rotation in the yaw-pitch-roll rotation sequence. It
is not output as an Euler angle in FAST, which
assumes small blade deflections, so that the rotation
sequence does not matter.

About the yb,1-axis (deg)

TipRDzc1 TipRDzb1
TwstDefl1

Blade 1 torsional tip deflection (relative to the
undeflected position). This output will always be
zero for FAST simulation results. Use it for
examining blade torsional deflections of ADAMS
simulations run using ADAMS datasets created
using the FAST-to-ADAMS preprocessor. In
ADAMS, it is output as an Euler angle computed as
the 1st rotation in the yaw-pitch-roll rotation
sequence. Please note that this output uses the
opposite of the sign convention used for blade pitch
angles.

About the zc,1- and
zb,1-axes (deg)

TipClrnc1 TwrClrnc1
Tip2Twr1

Blade 1 tip-to-tower clearance estimate. This is
computed as the perpendicular distance from the
yaw axis to the tip of blade 1 when the blade tip is
below the yaw bearing. When the tip of blade 1 is
above the yaw bearing, it is computed as the
absolute distance from the yaw bearing to the blade
tip. Please note that you should reduce this value by
the tower radius to obtain the actual tower
clearance.

N/A (m)

FAST User's Guide 96 Last updated on August 12, 2005 for version 6.0

Table 18. Output Parameters for Blade 2* Tip Motions.

Name Other
Name(s) Description Convention Units

TipDxc2 OoPDefl2 Blade 2 out-of-plane tip deflection (relative to the
pitch axis)

Directed along the
xc,2-axis (m)

TipDyc2 IPDefl2 Blade 2 in-plane tip deflection (relative to the pitch
axis)

Directed along the
yc,2-axis (m)

TipDzc2 TipDzb2 Blade 2 axial tip deflection (relative to the pitch
axis)

Directed along the
zc,2- and zb,2-axes (m)

TipDxb2 Blade 2 flapwise tip deflection (relative to the pitch
axis)

Directed along the
xb,2-axis (m)

TipDyb2 Blade 2 edgewise tip deflection (relative to the pitch
axis)

Directed along the
yb,2-axis (m)

TipALxb2 Blade 2 local flapwise tip acceleration (absolute) Directed along the
local xb,2-axis (m/sec^2)

TipALyb2 Blade 2 local edgewise tip acceleration (absolute) Directed along the
local yb,2-axis (m/sec^2)

TipALzb2 Blade 2 local axial tip acceleration (absolute) Directed along the
local zb,2-axis (m/sec^2)

TipRDxb2 RollDefl2

Blade 2 roll (angular/rotational) tip deflection
(relative to the undeflected position). In ADAMS,
it is output as an Euler angle computed as the 3rd
rotation in the yaw-pitch-roll rotation sequence. It
is not output as an Euler angle in FAST, which
assumes small blade deflections, so that the rotation
sequence does not matter.

About the xb,2-axis (deg)

TipRDyb2 PtchDefl2

Blade 2 pitch (angular/rotational) tip deflection
(relative to the undeflected position). In ADAMS,
it is output as an Euler angle computed as the 2nd
rotation in the yaw-pitch-roll rotation sequence. It
is not output as an Euler angle in FAST, which
assumes small blade deflections, so that the rotation
sequence does not matter.

About the yb,2-axis (deg)

TipRDzc2 TipRDzb2
TwstDefl2

Blade 2 torsional tip deflection (relative to the
undeflected position). This output will always be
zero for FAST simulation results. Use it for
examining blade torsional deflections of ADAMS
simulations run using ADAMS datasets created
using the FAST-to-ADAMS preprocessor. In
ADAMS, it is output as an Euler angle computed as
the 1st rotation in the yaw-pitch-roll rotation
sequence. Please note that this output uses the
opposite of the sign convention used for blade pitch
angles.

About the zc,2- and
zb,2-axes (deg)

TipClrnc2 TwrClrnc2
Tip2Twr2

Blade 2 tip-to-tower clearance estimate. This is
computed as the perpendicular distance from the
yaw axis to the tip of blade 2 when the blade tip is
below the yaw bearing. When the tip of blade 2 is
above the yaw bearing, it is computed as the
absolute distance from the yaw bearing to the blade

N/A (m)

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a
given azimuth is 3-2-1-repeat.

FAST User's Guide 97 Last updated on August 12, 2005 for version 6.0

Name Other
Name(s) Description Convention Units

tip. Please note that you should reduce this value by
the tower radius to obtain the actual tower
clearance.

FAST User's Guide 98 Last updated on August 12, 2005 for version 6.0

Table 19. Output Parameters for Blade 3* Tip Motions.

Name Other
Name(s) Description Convention Units

TipDxc3 OoPDefl3 Blade 3 out-of-plane tip deflection (relative to the
pitch axis) (unavailable for two-bladed turbines)

Directed along the
xc,3-axis (m)

TipDyc3 IPDefl3 Blade 3 in-plane tip deflection (relative to the pitch
axis) (unavailable for two-bladed turbines)

Directed along the
yc,3-axis (m)

TipDzc3 TipDzb3 Blade 3 axial tip deflection (relative to the pitch
axis) (unavailable for two-bladed turbines)

Directed along the
zc,3- and zb,3-axes (m)

TipDxb3 Blade 3 flapwise tip deflection (relative to the pitch
axis) (unavailable for two-bladed turbines)

Directed along the
xb,3-axis (m)

TipDyb3 Blade 3 edgewise tip deflection (relative to the pitch
axis) (unavailable for two-bladed turbines)

Directed along the
yb,3-axis (m)

TipALxb3 Blade 3 local flapwise tip acceleration (absolute)
(unavailable for two-bladed turbines)

Directed along the
local xb,3-axis (m/sec^2)

TipALyb3 Blade 3 local edgewise tip acceleration (absolute)
(unavailable for two-bladed turbines)

Directed along the
local yb,3-axis (m/sec^2)

TipALzb3 Blade 3 local axial tip acceleration (absolute)
(unavailable for two-bladed turbines)

Directed along the
local zb,3-axis (m/sec^2)

TipRDxb3 RollDefl3

Blade 3 roll (angular/rotational) tip deflection
(relative to the undeflected position). In ADAMS,
it is output as an Euler angle computed as the 3rd
rotation in the yaw-pitch-roll rotation sequence. It
is not output as an Euler angle in FAST, which
assumes small blade deflections, so that the rotation
sequence does not matter. (unavailable for two-
bladed turbines)

About the xb,3-axis (deg)

TipRDyb3 PtchDefl3

Blade 3 pitch (angular/rotational) tip deflection
(relative to the undeflected position). In ADAMS,
it is output as an Euler angle computed as the 2nd
rotation in the yaw-pitch-roll rotation sequence. It
is not output as an Euler angle in FAST, which
assumes small blade deflections, so that the rotation
sequence does not matter. (unavailable for two-
bladed turbines)

About the yb,3-axis (deg)

TipRDzc3 TipRDzb3
TwstDefl3

Blade 3 torsional tip deflection (relative to the
undeflected position). This output will always be
zero for FAST simulation results. Use it for
examining blade torsional deflections of ADAMS
simulations run using ADAMS datasets created
using the FAST-to-ADAMS preprocessor. In
ADAMS, it is output as an Euler angle computed as
the 1st rotation in the yaw-pitch-roll rotation
sequence. Please note that this output uses the
opposite of the sign convention used for blade pitch
angles. (unavailable for two-bladed turbines)

About the zc,3- and
zb,3-axes (deg)

TipClrnc3 TwrClrnc3
Tip2Twr3

Blade 3 tip-to-tower clearance estimate. This is
computed as the perpendicular distance from the
yaw axis to the tip of blade 3 when the blade tip is

N/A (m)

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a
given azimuth is 3-2-1-repeat.

FAST User's Guide 99 Last updated on August 12, 2005 for version 6.0

Name Other
Name(s) Description Convention Units

below the yaw bearing. When the tip of blade 3 is
above the yaw bearing, it is computed as the
absolute distance from the yaw bearing to the blade
tip. Please note that you should reduce this value
by the tower radius to obtain the actual tower
clearance. (unavailable for two-bladed turbines)

FAST User's Guide 100 Last updated on August 12, 2005 for version 6.0

Table 20. Output Parameters for Blade 1 Local Span Motions*.

Name Other
Name(s) Description Convention Units

Spn1ALxb1 Blade 1 local flapwise acceleration (absolute) of
span station 1 (unavailable if NBlGages = 0)

Directed along the
local xb,1-axis (m/sec^2)

Spn1ALyb1 Blade 1 local edgewise acceleration (absolute) of
span station 1 (unavailable if NBlGages = 0)

Directed along the
local yb,1-axis (m/sec^2)

Spn1ALzb1 Blade 1 local axial acceleration (absolute) of span
station 1 (unavailable if NBlGages = 0)

Directed along the
local zb,1-axis (m/sec^2)

Spn2ALxb1 Blade 1 local flapwise acceleration (absolute) of
span station 2 (unavailable if NBlGages < 2)

Directed along the
local xb,1-axis (m/sec^2)

Spn2ALyb1 Blade 1 local edgewise acceleration (absolute) of
span station 2 (unavailable if NBlGages < 2)

Directed along the
local yb,1-axis (m/sec^2)

Spn2ALzb1 Blade 1 local axial acceleration (absolute) of span
station 2 (unavailable if NBlGages < 2)

Directed along the
local zb,1-axis (m/sec^2)

Spn3ALxb1 Blade 1 local flapwise acceleration (absolute) of
span station 3 (unavailable if NBlGages < 3)

Directed along the
local xb,1-axis (m/sec^2)

Spn3ALyb1 Blade 1 local edgewise acceleration (absolute) of
span station 3 (unavailable if NBlGages < 3)

Directed along the
local yb,1-axis (m/sec^2)

Spn3ALzb1 Blade 1 local axial acceleration (absolute) of span
station 3 (unavailable if NBlGages < 3)

Directed along the
local zb,1-axis (m/sec^2)

Spn4ALxb1 Blade 1 local flapwise acceleration (absolute) of
span station 4 (unavailable if NBlGages < 4)

Directed along the
local xb,1-axis (m/sec^2)

Spn4ALyb1 Blade 1 local edgewise acceleration (absolute) of
span station 4 (unavailable if NBlGages < 4)

Directed along the
local yb,1-axis (m/sec^2)

Spn4ALzb1 Blade 1 local axial acceleration (absolute) of span
station 4 (unavailable if NBlGages < 4)

Directed along the
local zb,1-axis (m/sec^2)

Spn5ALxb1 Blade 1 local flapwise acceleration (absolute) of
span station 5 (unavailable if NBlGages < 5)

Directed along the
local xb,1-axis (m/sec^2)

Spn5ALyb1 Blade 1 local edgewise acceleration (absolute) of
span station 5 (unavailable if NBlGages < 5)

Directed along the
local yb,1-axis (m/sec^2)

Spn5ALzb1 Blade 1 local axial acceleration (absolute) of span
station 5 (unavailable if NBlGages < 5)

Directed along the
local zb,1-axis (m/sec^2)

* These motions are for the nodes you specify with the BldGagNd input array.

FAST User's Guide 101 Last updated on August 12, 2005 for version 6.0

Table 21. Output Parameters for Blade* Pitch Motions.

Name Other
Name(s) Description Convention Units

PtchPMzc1
PtchPMzb1
BldPitch1
BlPitch1

Blade 1 pitch angle (position)

Positive towards
feather about the
minus zc,1- and
minus zb,1-axes

(deg)

PtchPMzc2
PtchPMzb2
BldPitch2
BlPitch2

Blade 2 pitch angle (position)

Positive towards
feather about the
minus zc,2- and
minus zb,2-axes

(deg)

PtchPMzc3
PtchPMzb3
BldPitch3
BlPitch3

Blade 3 pitch angle (position) (unavailable for two-
bladed turbines)

Positive towards
feather about the
minus zc,3- and
minus zb,3-axes

(deg)

Table 22. Output Parameters for Teeter Motions.

Name Other
Name(s) Description Convention Units

TeetPya RotTeetP
TeetDefl

Rotor teeter angle (position) (unavailable for three-
bladed turbines) About the ya-axis (deg)

TeetVya RotTeetV Rotor teeter angular velocity (unavailable for
three-bladed turbines) About the ya-axis (deg/sec)

TeetAya RotTeetA Rotor teeter angular acceleration (unavailable for
three-bladed turbines) About the ya-axis (deg/sec^2)

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a
given azimuth is 3-2-1-repeat.

FAST User's Guide 102 Last updated on August 12, 2005 for version 6.0

Table 23. Output Parameters for Shaft Motions.

Name Other
Name(s) Description Convention Units

LSSTipPxa
LSSTipPxs
LSSTipP
Azimuth

Rotor azimuth angle (position) About the xa- and
xs-axes (deg)

LSSTipVxa
LSSTipVxs
LSSTipV
RotSpeed

Rotor azimuth angular speed About the xa- and
xs-axes (rpm)

LSSTipAxa
LSSTipAxs
LSSTipA
RotAccel

Rotor azimuth angular acceleration About the xa- and
xs-axes (deg/sec^2)

LSSGagPxa LSSGagPxs
LSSGagP

LSS strain-gage azimuth angle (position) (on the
gearbox side of the LSS)

About the xa- and
xs-axes (deg)

LSSGagVxa LSSGagVxs
LSSGagV

LSS strain-gage angular speed (on the gearbox
side of the LSS)

About the xa- and
xs-axes (rpm)

LSSGagAxa LSSGagAxs
LSSGagA

LSS strain-gage angular acceleration (on the
gearbox side of the LSS)

About the xa- and
xs-axes (deg/sec^2)

HSShftV GenSpeed Angular speed of the HSS and generator

Same sign as
LSSGagVxa /
LSSGagVxs /
LSSGagV

(rpm)

HSShftA GenAccel Angular acceleration of the HSS and generator

Same sign as
LSSGagAxa /
LSSGagAxs /
LSSGagA

(deg/sec^2)

TipSpdRat TSR Rotor blade tip speed ratio (unavailable if
CompAero is False) N/A (-)

FAST User's Guide 103 Last updated on August 12, 2005 for version 6.0

Table 24. Output Parameters for Nacelle Inertial Measurement Unit Motions*.

Name Other
Name(s) Description Convention Units

NcIMUTVxs Nacelle inertial measurement unit translational
velocity (absolute)

Directed along the
xs-axis (m/sec)

NcIMUTVys Nacelle inertial measurement unit translational
velocity (absolute)

Directed along the
ys-axis (m/sec)

NcIMUTVzs Nacelle inertial measurement unit translational
velocity (absolute)

Directed along the
zs-axis (m/sec)

NcIMUTAxs Nacelle inertial measurement unit translational
acceleration (absolute)

Directed along the
xs-axis (m/sec^2)

NcIMUTAys Nacelle inertial measurement unit translational
acceleration (absolute)

Directed along the
ys-axis (m/sec^2)

NcIMUTAzs Nacelle inertial measurement unit translational
acceleration (absolute)

Directed along the
zs-axis (m/sec^2)

NcIMURVxs Nacelle inertial measurement unit angular
(rotational) velocity (absolute) About the xs-axis (deg/sec)

NcIMURVys Nacelle inertial measurement unit angular
(rotational) velocity (absolute) About the ys-axis (deg/sec)

NcIMURVzs Nacelle inertial measurement unit angular
(rotational) velocity (absolute) About the zs-axis (deg/sec)

NcIMURAxs Nacelle inertial measurement unit angular
(rotational) acceleration (absolute) About the xs-axis (deg/sec^2)

NcIMURAys Nacelle inertial measurement unit angular
(rotational) acceleration (absolute) About the ys-axis (deg/sec^2)

NcIMURAzs Nacelle inertial measurement unit angular
(rotational) acceleration (absolute) About the zs-axis (deg/sec^2)

* The location of the nacelle inertial measurement unit is determined by inputs NcIMUxn, NcIMUyn, and NcIMUzn.

FAST User's Guide 104 Last updated on August 12, 2005 for version 6.0

Table 25. Output Parameters for Rotor-Furl Motions.

Name Other
Name(s) Description Convention Units

RotFurlP RotFurl Rotor-furl angle (position) About the rotor-furl
axis (see Figure 17) (deg)

RotFurlV Rotor-furl angular velocity About the rotor-furl
axis (see Figure 17) (deg/sec)

RotFurlA Rotor-furl angular acceleration About the rotor-furl
axis (see Figure 17) (deg/sec^2)

Table 26. Output Parameters for Tail-Furl Motions.

Name Other
Name(s) Description Convention Units

TailFurlP TailFurl Tail-furl angle (position) About the tail-furl
axis (see Figure 17) (deg)

TailFurlV Tail -furl angular velocity About the tail-furl
axis (see Figure 17) (deg/sec)

TailFurlA Tail -furl angular acceleration About the tail-furl
axis (see Figure 17) (deg/sec^2)

Table 27. Output Parameters for Nacelle Yaw Motions.

Name Other
Name(s) Description Convention Units

YawPzn

YawPzp
NacYawP
NacYaw
YawPos

Nacelle yaw angle (position) About the zn- and
zp-axes (deg)

YawVzn
YawVzp

NacYawV
YawRate

Nacelle yaw angular velocity About the zn- and
zp-axes (deg/sec)

YawAzn
YawAzp

NacYawA
YawAccel

Nacelle yaw angular acceleration About the zn- and
zp-axes (deg/sec^2)

NacYawErr

Nacelle yaw error estimate. This is computed as
follows: NacYawErr = HorWndDir - YawPzn -
YawBrRDzt - PtfmRDzi. This estimate is not
accurate instantaneously in the presence of
significant tower deflection or platform angular
(rotational) displacement since the angles used in
the computation are not all defined about the same
axis of rotation. However, the estimate should be
useful in a yaw controller if averaged over a time
scale long enough to diminish the effects of tower
and platform motions (i.e., much longer than the
period of oscillation). (unavailable if CompAero
= False)

About the zi-axis (deg)

FAST User's Guide 105 Last updated on August 12, 2005 for version 6.0

Table 28. Output Parameters for Tower-Top, Yaw-Bearing Motions.

Name Other
Name(s) Description Convention Units

YawBrTDxp Tower-top / yaw bearing fore-aft (translational)
deflection (relative to the undeflected position)

Directed along the
xp-axis (m)

YawBrTDyp
Tower-top / yaw bearing side-to-side
(translational) deflection (relative to the
undeflected position)

Directed along the
yp-axis (m)

YawBrTDzp Tower-top / yaw bearing axial (translational)
deflection (relative to the undeflected position)

Directed along the
zp-axis (m)

YawBrTDxt TTDspFA Tower-top / yaw bearing fore-aft (translational)
deflection (relative to the undeflected position)

Directed along the
xt-axis (m)

YawBrTDyt TTDspSS
Tower-top / yaw bearing side-to-side
(translational) deflection (relative to the
undeflected position)

Directed along the
yt-axis (m)

YawBrTDzt TTDspAx Tower-top / yaw bearing axial (translational)
deflection (relative to the undeflected position)

Directed along the
zt-axis (m)

YawBrTAxp Tower-top / yaw bearing fore-aft (translational)
acceleration (absolute)

Directed along the
xp-axis (m/sec^2)

YawBrTAyp Tower-top / yaw bearing side-to-side
(translational) acceleration (absolute)

Directed along the
yp-axis (m/sec^2)

YawBrTAzp Tower-top / yaw bearing axial (translational)
acceleration (absolute)

Directed along the
zp-axis (m/sec^2)

YawBrRDxt TTDspRoll

Tower-top / yaw bearing angular (rotational) roll
deflection (relative to the undeflected position).
In ADAMS, it is output as an Euler angle
computed as the 3rd rotation in the yaw-pitch-roll
rotation sequence. It is not output as an Euler
angle in FAST, which assumes small tower
deflections, so that the rotation sequence does not
matter.

About the xt-axis (deg)

YawBrRDyt TTDspPtch

Tower-top / yaw bearing angular (rotational)
pitch deflection (relative to the undeflected
position). In ADAMS, it is output as an Euler
angle computed as the 2nd rotation in the yaw-
pitch-roll rotation sequence. It is not output as an
Euler angle in FAST, which assumes small tower
deflections, so that the rotation sequence does not
matter.

About the yt-axis (deg)

YawBrRDzt TTDspTwst

Tower-top / yaw bearing torsional deflection
(relative to the undeflected position). This output
will always be zero for FAST simulation results.
Use it for examining tower torsional deflections
of ADAMS simulations run using ADAMS
datasets created using the FAST-to-ADAMS
preprocessor. In ADAMS, it is output as an Euler
angle computed as the 1st rotation in the yaw-
pitch-roll rotation sequence.

About the zt-axis (deg)

YawBrRVxp Tower-top / yaw bearing angular (rotational) roll
velocity (absolute) About the xp-axis (deg/sec)

YawBrRVyp Tower-top / yaw bearing angular (rotational)
pitch velocity (absolute) About the yp-axis (deg/sec)

FAST User's Guide 106 Last updated on August 12, 2005 for version 6.0

Name Other
Name(s) Description Convention Units

YawBrRVzp

Tower-top / yaw bearing angular (rotational)
torsion velocity. This output will always be very
close to zero for FAST simulation results. Use it
for examining tower torsional deflections of
ADAMS simulations run using ADAMS datasets
created using the FAST-to-ADAMS
preprocessor. (absolute)

About the zp-axis (deg/sec)

YawBrRAxp Tower-top / yaw bearing angular (rotational) roll
acceleration (absolute) About the xp-axis (deg/sec^2)

YawBrRAyp Tower-top / yaw bearing angular (rotational)
pitch acceleration (absolute) About the yp-axis (deg/sec^2)

YawBrRAzp

Tower-top / yaw bearing angular (rotational)
torsion acceleration. This output will always be
very close to zero for FAST simulation results.
Use it for examining tower torsional deflections
of ADAMS simulations run using ADAMS
datasets created using the FAST-to-ADAMS
preprocessor. (absolute)

About the zp-axis (deg/sec^2)

FAST User's Guide 107 Last updated on August 12, 2005 for version 6.0

Table 29. Output Parameters for Local Tower Motions*.

Name Other
Name(s) Description Convention Units

TwHt1ALxt
Local tower fore-aft (translational) acceleration
(absolute) of tower gage 1 (unavailable if
NTwGages = 0)

Directed along the
local xt-axis (m/sec^2)

TwHt1ALyt
Local tower side-to-side (translational) acceleration
(absolute) of tower gage 1 (unavailable if
NTwGages = 0)

Directed along the
local yt-axis (m/sec^2)

TwHt1ALzt
Local tower axial (translational) acceleration
(absolute) of tower gage 1 (unavailable if
NTwGages = 0)

Directed along the
local zt-axis (m/sec^2)

TwHt2ALxt
Local tower fore-aft (translational) acceleration
(absolute) of tower gage 2 (unavailable if
NTwGages < 2)

Directed along the
local xt-axis (m/sec^2)

TwHt2ALyt
Local tower side-to-side (translational) acceleration
(absolute) of tower gage 2 (unavailable if
NTwGages < 2)

Directed along the
local yt-axis (m/sec^2)

TwHt2ALzt
Local tower axial (translational) acceleration
(absolute) of tower gage 2 (unavailable if
NTwGages < 2)

Directed along the
local zt-axis (m/sec^2)

TwHt3ALxt
Local tower fore-aft (translational) acceleration
(absolute) of tower gage 3 (unavailable if
NTwGages < 3)

Directed along the
local xt-axis (m/sec^2)

TwHt3ALyt
Local tower side-to-side (translational) acceleration
(absolute) of tower gage 3 (unavailable if
NTwGages < 3)

Directed along the
local yt-axis (m/sec^2)

TwHt3ALzt
Local tower axial (translational) acceleration
(absolute) of tower gage 3 (unavailable if
NTwGages < 3)

Directed along the
local zt-axis (m/sec^2)

TwHt4ALxt
Local tower fore-aft (translational) acceleration
(absolute) of tower gage 4 (unavailable if
NTwGages < 4)

Directed along the
local xt-axis (m/sec^2)

TwHt4ALyt
Local tower side-to-side (translational) acceleration
(absolute) of tower gage 4 (unavailable if
NTwGages < 4)

Directed along the
local yt-axis (m/sec^2)

TwHt4ALzt
Local tower axial (translational) acceleration
(absolute) of tower gage 4 (unavailable if
NTwGages < 4)

Directed along the
local zt-axis (m/sec^2)

TwHt5ALxt
Local tower fore-aft (translational) acceleration
(absolute) of tower gage 5 (unavailable if
NTwGages < 5)

Directed along the
local xt-axis (m/sec^2)

TwHt5ALyt
Local tower side-to-side (translational) acceleration
(absolute) of tower gage 5 (unavailable if
NTwGages < 5)

Directed along the
local yt-axis (m/sec^2)

TwHt5ALzt
Local tower axial (translational) acceleration
(absolute) of tower gage 5 (unavailable if
NTwGages < 5)

Directed along the
local zt-axis (m/sec^2)

* These motions are for the nodes you specify with the TwrGagNd input array.

FAST User's Guide 108 Last updated on August 12, 2005 for version 6.0

Table 30. Output Parameters for Platform Motions.

Name Other
Name(s) Description Convention Units

PtfmTDxt Platform horizontal surge (translational)
displacement

Directed along the
xt-axis (m)

PtfmTDyt Platform horizontal sway (translational)
displacement

Directed along the
yt-axis (m)

PtfmTDzt Platform vertical heave (translational)
displacement

Directed along the
zt-axis (m)

PtfmTDxi PtfmSurge Platform horizontal surge (translational)
displacement

Directed along the
xi-axis (m)

PtfmTDyi PtfmSway Platform horizontal sway (translational)
displacement

Directed along the
yi-axis (m)

PtfmTDzi PtfmHeave Platform vertical heave (translational)
displacement

Directed along the
zi-axis (m)

PtfmTVxt Platform horizontal surge (translational) velocity Directed along the
xt-axis (m/sec)

PtfmTVyt Platform horizontal sway (translational) velocity Directed along the
yt-axis (m/sec)

PtfmTVzt Platform vertical heave (translational) velocity Directed along the
zt-axis (m/sec)

PtfmTVxi Platform horizontal surge (translational) velocity Directed along the
xi-axis (m/sec)

PtfmTVyi Platform horizontal sway (translational) velocity Directed along the
yi-axis (m/sec)

PtfmTVzi Platform vertical heave (translational) velocity Directed along the
zi-axis (m/sec)

PtfmTAxt Platform horizontal surge (translational)
acceleration

Directed along the
xt-axis (m/sec^2)

PtfmTAyt Platform horizontal sway (translational)
acceleration

Directed along the
yt-axis (m/sec^2)

PtfmTAzt Platform vertical heave (translational) acceleration Directed along the
zt-axis (m/sec^2)

PtfmTAxi Platform horizontal surge (translational)
acceleration

Directed along the
xi-axis (m/sec^2)

PtfmTAyi Platform horizontal sway (translational)
acceleration

Directed along the
yi-axis (m/sec^2)

PtfmTAzi Platform vertical heave (translational) acceleration Directed along the
zi-axis (m/sec^2)

PtfmRDxi PtfmRoll

Platform roll tilt angular (rotational) displacement.
In ADAMS, it is output as an Euler angle
computed as the 3rd rotation in the yaw-pitch-roll
rotation sequence. It is not output as an Euler
angle in FAST, which assumes small rotational
platform displacements, so that the rotation
sequence does not matter.

About the xi-axis (deg)

PtfmRDyi PtfmPitch

Platform pitch tilt angular (rotational)
displacement. In ADAMS, it is output as an Euler
angle computed as the 2nd rotation in the yaw-
pitch-roll rotation sequence. It is not output as an
Euler angle in FAST, which assumes small
rotational platform displacements, so that the
rotation sequence does not matter.

About the yi-axis (deg)

FAST User's Guide 109 Last updated on August 12, 2005 for version 6.0

Name Other
Name(s) Description Convention Units

PtfmRDzi PtfmYaw

Platform yaw angular (rotational) displacement.
In ADAMS, it is output as an Euler angle
computed as the 1st rotation in the yaw-pitch-roll
rotation sequence. It is not output as an Euler
angle in FAST, which assumes small rotational
platform displacements, so that the rotation
sequence does not matter.

About the zi-axis (deg)

PtfmRVxt Platform roll tilt angular (rotational) velocity About the xt-axis (deg/sec)

PtfmRVyt Platform pitch tilt angular (rotational) velocity About the yt-axis (deg/sec)

PtfmRVzt Platform yaw angular (rotational) velocity About the zt-axis (deg/sec)

PtfmRVxi Platform roll tilt angular (rotational) velocity About the xi-axis (deg/sec)

PtfmRVyi Platform pitch tilt angular (rotational) velocity About the yi-axis (deg/sec)

PtfmRVzi Platform yaw angular (rotational) velocity About the zi-axis (deg/sec)

PtfmRAxt Platform roll tilt angular (rotational) acceleration About the xt-axis (deg/sec^2)

PtfmRAyt Platform pitch tilt angular (rotational) acceleration About the yt-axis (deg/sec^2)

PtfmRAzt Platform yaw angular (rotational) acceleration About the zt-axis (deg/sec^2)

PtfmRAxi Platform roll tilt angular (rotational) acceleration About the xi-axis (deg/sec^2)

PtfmRAyi Platform pitch tilt angular (rotational) acceleration About the yi-axis (deg/sec^2)

PtfmRAzi Platform yaw angular (rotational) acceleration About the zi-axis (deg/sec^2)

FAST User's Guide 110 Last updated on August 12, 2005 for version 6.0

Table 31. Output Parameters for Blade 1 Root Loads.

Name Other
Name(s) Description Convention Units

RootFxc1 Blade 1 out-of-plane shear force at the blade root Directed along the
xc,1-axis (kN)

RootFyc1 Blade 1 in-plane shear force at the blade root Directed along the
yc,1-axis (kN)

RootFzc1 RootFzb1 Blade 1 axial force at the blade root Directed along the
zc,1- and zb,1-axes (kN)

RootFxb1 Blade 1 flapwise shear force at the blade root Directed along the
xb,1-axis (kN)

RootFyb1 Blade 1 edgewise shear force at the blade root Directed along the
yb,1-axis (kN)

RootMxc1 RootMIP1 Blade 1 in-plane moment (i.e., the moment caused
by in-plane forces) at the blade root About the xc,1-axis (kN·m)

RootMyc1 RootMOoP1 Blade 1 out-of-plane moment (i.e., the moment
caused by out-of-plane forces) at the blade root About the yc,1-axis (kN·m)

RootMzc1 RootMzb1 Blade 1 pitching moment at the blade root About the zc,1- and
zb,1-axes (kN·m)

RootMxb1 RootMEdg1 Blade 1 edgewise moment (i.e., the moment caused
by edgewise forces) at the blade root About the xb,1-axis (kN·m)

RootMyb1 RootMFlp1 Blade 1 flapwise moment (i.e., the moment caused
by flapwise forces) at the blade root About the yb,1-axis (kN·m)

FAST User's Guide 111 Last updated on August 12, 2005 for version 6.0

Table 32. Output Parameters for Blade 2* Root Loads.

Name Other
Name(s) Description Convention Units

RootFxc2 Blade 2 out-of-plane shear force at the blade root Directed along the
xc,2-axis (kN)

RootFyc2 Blade 2 in-plane shear force at the blade root Directed along the
yc,2-axis (kN)

RootFzc2 RootFzb2 Blade 2 axial force at the blade root Directed along the
zc,2- and zb,2-axes (kN)

RootFxb2 Blade 2 flapwise shear force at the blade root Directed along the
xb,2-axis (kN)

RootFyb2 Blade 2 edgewise shear force at the blade root Directed along the
yb,2-axis (kN)

RootMxc2 RootMIP2 Blade 2 in-plane moment (i.e., the moment caused
by in-plane forces) at the blade root About the xc,2-axis (kN·m)

RootMyc2 RootMOoP2 Blade 2 out-of-plane moment (i.e., the moment
caused by out-of-plane forces) at the blade root About the yc,2-axis (kN·m)

RootMzc2 RootMzb2 Blade 2 pitching moment at the blade root About the zc,2- and
zb,2-axes (kN·m)

RootMxb2 RootMEdg2 Blade 2 edgewise moment (i.e., the moment caused
by edgewise forces) at the blade root About the xb,2-axis (kN·m)

RootMyb2 RootMFlp2 Blade 2 flapwise moment (i.e., the moment caused
by flapwise forces) at the blade root About the yb,2-axis (kN·m)

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a
given azimuth is 3-2-1-repeat.

FAST User's Guide 112 Last updated on August 12, 2005 for version 6.0

Table 33. Output Parameters for Blade 3* Root Loads.

Name Other
Name(s) Description Convention Units

RootFxc3 Blade 3 out-of-plane shear force at the blade root
(unavailable for two-bladed turbines)

Directed along the
xc,3-axis (kN)

RootFyc3 Blade 3 in-plane shear force at the blade root
(unavailable for two-bladed turbines)

Directed along the
yc,3-axis (kN)

RootFzc3 RootFzb3 Blade 3 axial force at the blade root (unavailable for
two-bladed turbines)

Directed along the
zc,3- and zb,3-axes (kN)

RootFxb3 Blade 3 flapwise shear force at the blade root
(unavailable for two-bladed turbines)

Directed along the
xb,3-axis (kN)

RootFyb3 Blade 3 edgewise shear force at the blade root
(unavailable for two-bladed turbines)

Directed along the
yb,3-axis (kN)

RootMxc3 RootMIP3
Blade 3 in-plane moment (i.e., the moment caused
by in-plane forces) at the blade root (unavailable for
two-bladed turbines)

About the xc,3-axis (kN·m)

RootMyc3 RootMOoP3
Blade 3 out-of-plane moment (i.e., the moment
caused by out-of-plane forces) at the blade root
(unavailable for two-bladed turbines)

About the yc,3-axis (kN·m)

RootMzc3 RootMzb3 Blade 3 pitching moment at the blade root
(unavailable for two-bladed turbines)

About the zc,3- and
zb,3-axes (kN·m)

RootMxb3 RootMEdg3
Blade 3 edgewise moment (i.e., the moment caused
by edgewise forces) at the blade root (unavailable
for two-bladed turbines)

About the xb,3-axis (kN·m)

RootMyb3 RootMFlp3
Blade 3 flapwise moment (i.e., the moment caused
by flapwise forces) at the blade root (unavailable for
two-bladed turbines)

About the yb,3-axis (kN·m)

* For three-bladed rotors, blade 3 is ahead of blade 2, which is ahead of blade 1, so that the order of blades passing through a
given azimuth is 3-2-1-repeat.

FAST User's Guide 113 Last updated on August 12, 2005 for version 6.0

Table 34. Output Parameters for Blade 1 Local Span Loads*.

Name Other
Name(s) Description Convention Units

Spn1MLxb1 Blade 1 local edgewise moment at span station 1
(unavailable if NBlGages = 0)

About the local xb,1-
axis (kN·m)

Spn1MLyb1 Blade 1 local flapwise moment at span station 1
(unavailable if NBlGages = 0)

About the local yb,1-
axis (kN·m)

Spn1MLzb1 Blade 1 local pitching moment at span station 1
(unavailable if NBlGages = 0)

About the local zb,1-
axis (kN·m)

Spn2MLxb1 Blade 1 local edgewise moment at span station 2
(unavailable if NBlGages < 2)

About the local xb,1-
axis (kN·m)

Spn2MLyb1 Blade 1 local flapwise moment at span station 2
(unavailable if NBlGages < 2)

About the local yb,1-
axis (kN·m)

Spn2MLzb1 Blade 1 local pitching moment at span station 2
(unavailable if NBlGages < 2)

About the local zb,1-
axis (kN·m)

Spn3MLxb1 Blade 1 local edgewise moment at span station 3
(unavailable if NBlGages < 3)

About the local xb,1-
axis (kN·m)

Spn3MLyb1 Blade 1 local flapwise moment at span station 3
(unavailable if NBlGages < 3)

About the local yb,1-
axis (kN·m)

Spn3MLzb1 Blade 1 local pitching moment at span station 3
(unavailable if NBlGages < 3)

About the local zb,1-
axis (kN·m)

Spn4MLxb1 Blade 1 local edgewise moment at span station 4
(unavailable if NBlGages < 4)

About the local xb,1-
axis (kN·m)

Spn4MLyb1 Blade 1 local flapwise moment at span station 4
(unavailable if NBlGages < 4)

About the local yb,1-
axis (kN·m)

Spn4MLzb1 Blade 1 local pitching moment at span station 4
(unavailable if NBlGages < 4)

About the local zb,1-
axis (kN·m)

Spn5MLxb1 Blade 1 local edgewise moment at span station 5
(unavailable if NBlGages < 5)

About the local xb,1-
axis (kN·m)

Spn5MLyb1 Blade 1 local flapwise moment at span station 5
(unavailable if NBlGages < 5)

About the local yb,1-
axis (kN·m)

Spn5MLzb1 Blade 1 local pitching moment at span station 5
(unavailable if NBlGages < 5)

About the local zb,1-
axis (kN·m)

* These loads are for the nodes you specify with the BldGagNd input array.

FAST User's Guide 114 Last updated on August 12, 2005 for version 6.0

Table 35. Output Parameters for Hub and Rotor Loads.

Name Other
Name(s) Description Convention Units

LSShftFxa

LSShftFxs
LSSGagFxa
LSSGagFxs
RotThrust

LSS thrust force (this is constant along the shaft
and is equivalent to the rotor thrust force)

Directed along the
xa- and xs-axes (kN)

LSShftFya LSSGagFya Rotating LSS shear force (this is constant along the
shaft)

Directed along the
ya-axis (kN)

LSShftFza LSSGagFza Rotating LSS shear force (this is constant along the
shaft)

Directed along the
za-axis (kN)

LSShftFys LSSGagFys Nonrotating LSS shear force (this is constant along
the shaft)

Directed along the
ys-axis (kN)

LSShftFzs LSSGagFzs Nonrotating LSS shear force (this is constant along
the shaft)

Directed along the
zs-axis (kN)

LSShftMxa

LSShftMxs
LSSGagMxa
LSSGagMxs

RotTorq
LSShftTq

LSS torque (this is constant along the shaft and is
equivalent to the rotor torque)

About the xa- and
xs-axes (kN·m)

LSSTipMya
Rotating LSS bending moment at the shaft tip
(teeter pin for two-bladed turbines, apex of rotation
for three-bladed turbines)

About the ya-axis (kN·m)

LSSTipMza
Rotating LSS bending moment at the shaft tip
(teeter pin for two-bladed turbines, apex of rotation
for three-bladed turbines)

About the za-axis (kN·m)

LSSTipMys
Nonrotating LSS bending moment at the shaft tip
(teeter pin for two-bladed turbines, apex of rotation
for three-bladed turbines)

About the ys-axis (kN·m)

LSSTipMzs
Nonrotating LSS bending moment at the shaft tip
(teeter pin for two-bladed turbines, apex of rotation
for three-bladed turbines)

About the zs-axis (kN·m)

CThrstAzm
Azimuth location of the center of thrust. This is
estimated using values of LSSTipMys,
LSSTipMzs, and RotThrust.

About the xa- and
xs-axes (deg)

CThrstRad CThrstArm

Dimensionless radial (arm) location of the center of
thrust. This is estimated using values of
LSSTipMys, LSSTipMzs, and RotThrust.
(nondimensionalized using the undeflected tip
radius normal to the shaft and limited to values
between 0 and 1 (inclusive))

Always positive
(directed radially
outboard at azimuth
angle CThrstAzm)

(-)

RotPwr LSShftPwr Rotor power (this is equivalent to the LSS power) N/A (kW)

RotCq LSShftCq
Rotor torque coefficient (this is equivalent to the
LSS torque coefficient) (unavailable if CompAero

is False)
N/A (-)

RotCp LSShftCp
Rotor power coefficient (this is equivalent to the
LSS power coefficient) (unavailable if CompAero

is False)
N/A (-)

RotCt LSShftCt
Rotor thrust coefficient (this is equivalent to the
LSS thrust coefficient) (unavailable if CompAero

is False)
N/A (-)

FAST User's Guide 115 Last updated on August 12, 2005 for version 6.0

Table 36. Output Parameters for Shaft Strain-Gage Loads.

Name Other
Name(s) Description Convention Units

LSSGagMya Rotating LSS bending moment at the shaft's strain
gage (shaft strain gage located by input ShftGagL) About the ya-axis (kN·m)

LSSGagMza Rotating LSS bending moment at the shaft's strain
gage (shaft strain gage located by input ShftGagL) About the za-axis (kN·m)

LSSGagMys
Nonrotating LSS bending moment at the shaft's
strain gage (shaft strain gage located by input
ShftGagL)

About the ys-axis (kN·m)

LSSGagMzs
Nonrotating LSS bending moment at the shaft's
strain gage (shaft strain gage located by input
ShftGagL)

About the zs-axis (kN·m)

Table 37. Output Parameters for Generator and HSS Loads.

Name Other
Name(s) Description Convention Units

HSShftTq HSS torque (this is constant along the shaft)

Same sign as
LSShftTq /
RotTorq /
LSShftMxa /
LSShftMxs /
LSSGagMxa /
LSSGagMxs

(kN·m)

HSShftPwr HSS power Same sign as
HSShftTq (kW)

HSShftCq HSS torque coefficient (unavailable if CompAero
is False) N/A (-)

HSShftCp HSS power coefficient (unavailable if CompAero
is False) N/A (-)

GenTq Electrical generator torque

Positive reflects
power extracted and
negative represents a
motoring-up
situation or power
input

(kN·m)

GenPwr Electrical generator power Same sign as
GenTq (kW)

GenCq Electrical generator torque coefficient (unavailable
if CompAero is False) N/A (-)

GenCp Electrical generator power coefficient (unavailable
if CompAero is False) N/A (-)

HSSBrTq HSS brake torque (i.e., the moment applied to the
HSS by the brake)

Always positive
(indicating
dissipation of
power)

(kN·m)

FAST User's Guide 116 Last updated on August 12, 2005 for version 6.0

Table 38. Output Parameters for Rotor-Furl Bearing Loads.

Name Other
Name(s) Description Convention Units

RFrlBrM Rotor-furl bearing moment About the rotor-furl
axis (see Figure 17) (kN·m)

Table 39. Output Parameters for Tail-Furl Bearing Loads.

Name Other
Name(s) Description Convention Units

TFrlBrM Tail-furl bearing moment About the tail-furl
axis (see Figure 17) (kN·m)

Table 40. Output Parameters for Tail Fin Aerodynamic Loads.

Name Other
Name(s) Description Convention Units

TFinAlpha

Tail fin angle of attack. This is the angle between
the relative velocity of the wind-inflow at the tail fin
center-of-pressure and the tail fin chordline.
(unavailable if CompAero is False)

About the tail fin z-
axis, which is the
axis in the tail fin
plane normal to the
chordline (see Figure
19)

(deg)

TFinCLift Tail fin dimensionless lift coefficient (unavailable if
CompAero is False) N/A (-)

TFinCDrag Tail fin dimensionless drag coefficient (unavailable
if CompAero is False) N/A (-)

TFinDnPrs

Tail fin dynamic pressure, equal to ½•Rho•Vrel
2

where Vrel is the relative velocity of the wind-inflow
at the tail fin center-of-pressure (unavailable if
CompAero is False)

N/A (Pa)

TFinCPFx Tangential aerodynamic force at the tail fin center-
of-pressure (unavailable if CompAero is False)

Directed along the
tail fin x-axis, which
is the axis along the
chordline, positive
towards the trailing
edge (see Figure 19)

(kN)

TFinCPFy Normal aerodynamic force at the tail fin center-of-
pressure (unavailable if CompAero is False)

Directed along the
tail fin y-axis, which
is orthogonal to the
tail fin plane (see
Figure 19)

(kN)

FAST User's Guide 117 Last updated on August 12, 2005 for version 6.0

Table 41. Output Parameters for Tower-Top, Yaw-Bearing Loads.

Name Other
Name(s) Description Convention Units

YawBrFxn Rotating (with nacelle) tower-top / yaw bearing
shear force

Directed along the
xn-axis (kN)

YawBrFyn Rotating (with nacelle) tower-top / yaw bearing
shear force

Directed along the
yn-axis (kN)

YawBrFzn YawBrFzp Tower-top / yaw bearing axial force Directed along the
zn- and zp-axes (kN)

YawBrFxp Tower-top / yaw bearing fore-aft (nonrotating) shear
force

Directed along the
xp-axis (kN)

YawBrFyp Tower-top / yaw bearing side-to-side (nonrotating)
shear force

Directed along the
yp-axis (kN)

YawBrMxn Rotating (with nacelle) tower-top / yaw bearing roll
moment About the xn-axis (kN·m)

YawBrMyn Rotating (with nacelle) tower-top / yaw bearing
pitch moment About the yn-axis (kN·m)

YawBrMzn YawBrMzp
YawMom Tower-top / yaw bearing yaw moment About the zn- and

zp-axes (kN·m)

YawBrMxp Nonrotating tower-top / yaw bearing roll moment About the xp-axis (kN·m)

YawBrMyp Nonrotating tower-top / yaw bearing pitch moment About the yp-axis (kN·m)

Table 42. Output Parameters for Tower Base Loads.

Name Other
Name(s) Description Convention Units

TwrBsFxt Tower base fore-aft shear force Directed along the
xt-axis (kN)

TwrBsFyt Tower base side-to-side shear force Directed along the
yt-axis (kN)

TwrBsFzt Tower base axial force Directed along the
zt-axis (kN)

TwrBsMxt Tower base roll (or side-to-side) moment (i.e., the
moment caused by side-to-side forces) About the xt-axis (kN·m)

TwrBsMyt Tower base pitching (or fore-aft) moment (i.e., the
moment caused by fore-aft forces) About the yt-axis (kN·m)

TwrBsMzt Tower base yaw (or torsional) moment About the zt-axis (kN·m)

FAST User's Guide 118 Last updated on August 12, 2005 for version 6.0

Table 43. Output Parameters for Local Tower Loads*.

Name Other
Name(s) Description Convention Units

TwHt1MLxt Local tower roll (or side-to-side) moment of tower
gage 1 (unavailable if NTwGages = 0)

About the local xt-
axis (kN·m)

TwHt1MLyt Local tower pitching (or fore-aft) moment of tower
gage 1 (unavailable if NTwGages = 0)

About the local yt-
axis (kN·m)

TwHt1MLzt Local tower yaw (or torsional) moment of tower
gage 1 (unavailable if NTwGages = 0)

About the local zt-
axis (kN·m)

TwHt2MLxt Local tower roll (or side-to-side) moment of tower
gage 2 (unavailable if NTwGages < 2)

About the local xt-
axis (kN·m)

TwHt2MLyt Local tower pitching (or fore-aft) moment of tower
gage 2 (unavailable if NTwGages < 2)

About the local yt-
axis (kN·m)

TwHt2MLzt Local tower yaw (or torsional) moment of tower
gage 2 (unavailable if NTwGages < 2)

About the local zt-
axis (kN·m)

TwHt3MLxt Local tower roll (or side-to-side) moment of tower
gage 3 (unavailable if NTwGages < 3)

About the local xt-
axis (kN·m)

TwHt3MLyt Local tower pitching (or fore-aft) moment of tower
gage 3 (unavailable if NTwGages < 3)

About the local yt-
axis (kN·m)

TwHt3MLzt Local tower yaw (or torsional) moment of tower
gage 3 (unavailable if NTwGages < 3)

About the local zt-
axis (kN·m)

TwHt4MLxt Local tower roll (or side-to-side) moment of tower
gage 4 (unavailable if NTwGages < 4)

About the local xt-
axis (kN·m)

TwHt4MLyt Local tower pitching (or fore-aft) moment of tower
gage 4 (unavailable if NTwGages < 4)

About the local yt-
axis (kN·m)

TwHt4MLzt Local tower yaw (or torsional) moment of tower
gage 4 (unavailable if NTwGages < 4)

About the local zt-
axis (kN·m)

TwHt5MLxt Local tower roll (or side-to-side) moment of tower
gage 5 (unavailable if NTwGages < 5)

About the local xt-
axis (kN·m)

TwHt5MLyt Local tower pitching (or fore-aft) moment of tower
gage 5 (unavailable if NTwGages < 5)

About the local yt-
axis (kN·m)

TwHt5MLzt Local tower yaw (or torsional) moment of tower
gage 5 (unavailable if NTwGages < 5)

About the local zt-
axis (kN·m)

* These loads are for the nodes you specify with the TwrGagNd input array.

FAST User's Guide 119 Last updated on August 12, 2005 for version 6.0

Table 44. Output Parameters for Platform Loads.

Name Other
Name(s) Description Convention Units

PtfmFxt Platform horizontal surge shear force Directed along the
xt-axis (kN)

PtfmFyt Platform horizontal sway shear force Directed along the
yt-axis (kN)

PtfmFzt Platform vertical heave force Directed along the
zt-axis (kN)

PtfmFxi Platform horizontal surge shear force Directed along the
xi-axis (kN)

PtfmFyi Platform horizontal sway shear force Directed along the
yi-axis (kN)

PtfmFzi Platform vertical heave force Directed along the
zi-axis (kN)

PtfmMxt Platform roll tilt moment About the xt-axis (kN·m)

PtfmMyt Platform pitch tilt moment About the yt-axis (kN·m)

PtfmMzt Platform yaw moment About the zt-axis (kN·m)

PtfmMxi Platform roll tilt moment About the xi-axis (kN·m)

PtfmMyi Platform pitch tilt moment About the yi-axis (kN·m)

PtfmMzi Platform yaw moment About the zi-axis (kN·m)

FAST User's Guide 120 Last updated on August 12, 2005 for version 6.0

Figure 30. Sample output file.

These predictions were generated by FAST (v4.00, 09-Jul-2002) on 09-Jul-2002 at 09:38:47.
The aerodynamic calculations were made by AeroDyn (12.46, 23-May-2002).

 FAST certification test #1 for AWT-27CR2 with many DOFs.

 Time uWind Azimuth TeetDefl RootMyc1 RootMxc1 RotTorq YawBrMzn TTDspFA
 (sec) (m/sec) (deg) (deg) (kN·m) (kN·m) (kN·m) (kN·m) (m)
 10.000 1.039E+01 1.180E+01 1.031E+00 3.533E+01 2.039E+01 3.613E+01 -2.280E+00 4.922E-02
 10.020 1.039E+01 1.831E+01 9.697E-01 3.642E+01 2.085E+01 3.558E+01 -1.996E+00 4.920E-02
 10.040 1.039E+01 2.482E+01 8.946E-01 3.632E+01 2.235E+01 3.525E+01 -2.426E+00 4.920E-02
 10.060 1.039E+01 3.134E+01 8.081E-01 3.538E+01 2.447E+01 3.514E+01 -3.286E+00 4.920E-02
 10.080 1.039E+01 3.785E+01 7.116E-01 3.473E+01 2.672E+01 3.517E+01 -4.282E+00 4.918E-02
 10.100 1.039E+01 4.436E+01 6.067E-01 3.503E+01 2.868E+01 3.526E+01 -5.124E+00 4.913E-02
 10.120 1.039E+01 5.088E+01 4.943E-01 3.604E+01 3.011E+01 3.541E+01 -5.681E+00 4.906E-02
 10.140 1.039E+01 5.739E+01 3.751E-01 3.707E+01 3.110E+01 3.565E+01 -5.993E+00 4.900E-02
 10.160 1.039E+01 6.391E+01 2.498E-01 3.759E+01 3.191E+01 3.600E+01 -6.148E+00 4.897E-02
 10.180 1.039E+01 7.042E+01 1.198E-01 3.769E+01 3.271E+01 3.642E+01 -6.184E+00 4.896E-02
 10.200 1.039E+01 7.694E+01 -1.301E-02 3.777E+01 3.353E+01 3.684E+01 -6.121E+00 4.896E-02
 10.220 1.039E+01 8.345E+01 -1.463E-01 3.813E+01 3.424E+01 3.720E+01 -5.908E+00 4.895E-02
 10.240 1.039E+01 8.997E+01 -2.775E-01 3.868E+01 3.465E+01 3.745E+01 -5.546E+00 4.893E-02
 10.260 1.039E+01 9.649E+01 -4.041E-01 3.916E+01 3.468E+01 3.764E+01 -5.027E+00 4.892E-02
 10.280 1.039E+01 1.030E+02 -5.241E-01 3.939E+01 3.431E+01 3.777E+01 -4.365E+00 4.892E-02
 10.300 1.039E+01 1.095E+02 -6.357E-01 3.942E+01 3.365E+01 3.787E+01 -3.590E+00 4.895E-02
 10.320 1.039E+01 1.160E+02 -7.378E-01 3.945E+01 3.276E+01 3.791E+01 -2.757E+00 4.899E-02
 10.340 1.039E+01 1.226E+02 -8.296E-01 3.959E+01 3.170E+01 3.791E+01 -1.938E+00 4.902E-02
 10.360 1.039E+01 1.291E+02 -9.103E-01 3.985E+01 3.045E+01 3.788E+01 -1.210E+00 4.905E-02
 10.380 1.039E+01 1.356E+02 -9.793E-01 4.009E+01 2.902E+01 3.783E+01 -6.359E-01 4.907E-02
 10.400 1.039E+01 1.421E+02 -1.036E+00 4.028E+01 2.743E+01 3.777E+01 -1.897E-01 4.909E-02
 10.420 1.039E+01 1.486E+02 -1.079E+00 4.039E+01 2.570E+01 3.772E+01 1.200E-01 4.912E-02
 10.440 1.039E+01 1.551E+02 -1.107E+00 4.055E+01 2.384E+01 3.768E+01 2.992E-01 4.914E-02

10.460 1.039E+01 1.617E+02 -1.121E+00 4.054E+01 2.179E+01 3.762E+01 2.539E-01 4.917E-02

FAST User's Guide 121 Last updated on August 12, 2005 for version 6.0

Figure 31. Sample linearization model file.

This linearized model file was generated by FAST (v6.00c-jmj, 15-Apr-2005) on 15-Apr-2005 at 11:24:16.
The aerodynamic calculations were made by AeroDyn (12.57, 29-Sept-2004).

 FAST model of a 1.5 MW 3-bladed upwind baseline turbine.

Some Useful Information:

 Type of steady state solution found Trimmed collective blade pitch (TrimCase = 3)
 Period of steady state solution (sec) 2.93212E+00
 Iterations needed to find steady state solution 34
 Displacement 2-norm of steady state solution (rad) 9.01316E-05
 Velocity 2-norm of steady state solution (rad/s) 4.84390E-05
 Number of equally-speced azimuth steps, NAzimStep 4
 Order of linearized model, MdlOrder 1
 Number of active (enabled) DOFs 4 (8 states)
 Number of control inputs, NInputs 2
 Number of input wind disturbances, NDisturbs 1
 Number of output measurements 5

Order of States in Linearized State Matrices:

 Row/column 1 = Variable speed generator DOF (internal DOF index = DOF_GeAz)
 Row/column 2 = 1st flapwise bending-mode DOF of blade 1 (internal DOF index = DOF_BF(1,1))
 Row/column 3 = 1st flapwise bending-mode DOF of blade 2 (internal DOF index = DOF_BF(2,1))
 Row/column 4 = 1st flapwise bending-mode DOF of blade 3 (internal DOF index = DOF_BF(3,1))
 Row/column 5 to 8 = First derivatives of row/column 1 to 4.

Order of Control Inputs in Linearized State Matrices:

 Column 1 = electrical generator torque (N·m) 7.95744E+03 op
 Column 2 = rotor collective blade pitch (rad) 3.41938E-01 op

Order of Input Wind Disturbances in Linearized State Matrices:

 Column 1 = horizontal hub-height wind speed (m/s) 1.80000E+01 op

Order of Output Measurements in Linearized State Matrices:

 Row 1 = GenTq (kN·m)
 Row 2 = GenPwr (kW)
 Row 3 = BldPitch1 (deg)
 Row 4 = OoPDefl1 (m)
 Row 5 = IPDefl1 (m)

Linearized State Matrices:

----------------------------- Azimuth = 0.00 deg -----------------------------
op State | op | A - State | B - Input | Bd - Dstrb
Derivativs | States | Matrix | Matrix | Matrix
 2.143E+00 | 4.712E+00 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
 2.222E-01 | 4.928E-01 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
-3.294E-02 | 6.283E-01 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
-1.825E-01 | 4.442E-01 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
 8.973E-05 | 2.143E+00 | 3.515E-05 1.380E-01 1.373E-01 1.374E-01 1.087E-01 8.897E-03 9.439E-03 6.190E-03 | -3.027E-05 1.867E+00 | -7.305E-03
 8.147E-03 | 2.222E-01 | 6.668E+00 -7.072E+01 -3.559E+00 -3.562E+00 -7.968E+01 -8.571E+00 -2.437E-01 -1.607E-01 | 7.851E-04 -8.277E+02 | 1.282E+01
-4.493E-01 | -3.294E-02 | -2.788E+00 -3.578E+00 -7.014E+01 -3.563E+00 -8.379E+01 -2.273E-01 -8.909E+00 -1.590E-01 | 7.847E-04 -8.522E+02 | 1.308E+01
 3.781E-01 | -1.825E-01 | -4.118E+00 -3.579E+00 -3.560E+00 -7.020E+01 -6.411E+01 -2.279E-01 -2.445E-01 -6.834E+00 | 7.847E-04 -7.148E+02 | 1.124E+01

op Output | This colmn | C - Output | D - Trnsmt | Dd - DTsmt
Measurmnts | is blank | Matrix | Matrix | Matrix
 7.957E+00 | | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 1.000E-03 0.000E+00 | 0.000E+00
 1.425E+03 | | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.650E+02 0.000E+00 0.000E+00 0.000E+00 | 1.791E-01 0.000E+00 | 0.000E+00
 1.959E+01 | | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 5.730E+01 | 0.000E+00
 4.459E-01 | | -2.134E-06 9.048E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 -2.092E-01 | 0.000E+00
-2.091E-01 | | -4.269E-07 -4.243E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 -4.459E-01 | 0.000E+00

[lines deleted]

----------------------------- Azimuth = 270.00 deg -----------------------------
op State | op | A - State | B - Input | Bd - Dstrb
Derivativs | States | Matrix | Matrix | Matrix
 2.143E+00 | 3.142E+00 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
-6.944E-02 | 4.126E-01 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
 2.108E-01 | 5.462E-01 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
-1.409E-01 | 6.073E-01 | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00
 2.973E-05 | 2.143E+00 | 8.486E-04 1.374E-01 1.379E-01 1.373E-01 1.021E-01 6.150E-03 9.160E-03 6.822E-03 | -3.027E-05 1.795E+00 | -4.572E-03
 5.245E-01 | -6.944E-02 | -3.978E-01 -7.029E+01 -3.577E+00 -3.560E+00 -6.344E+01 -6.790E+00 -2.369E-01 -1.769E-01 | 7.851E-04 -7.094E+02 | 1.113E+01
-1.025E-01 | 2.108E-01 | 5.913E+00 -3.563E+00 -7.069E+01 -3.559E+00 -8.454E+01 -1.609E-01 -8.656E+00 -1.756E-01 | 7.852E-04 -8.561E+02 | 1.272E+01
-4.959E-01 | -1.409E-01 | -6.108E+00 -3.565E+00 -3.577E+00 -7.011E+01 -7.481E+01 -1.555E-01 -2.372E-01 -7.050E+00 | 7.845E-04 -7.755E+02 | 1.121E+01

op Output | This colmn | C - Output | D - Trnsmt | Dd - DTsmt
Measurmnts | is blank | Matrix | Matrix | Matrix
 7.957E+00 | | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 1.000E-03 0.000E+00 | 0.000E+00
 1.425E+03 | | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.650E+02 0.000E+00 0.000E+00 0.000E+00 | 1.791E-01 0.000E+00 | 0.000E+00
 1.959E+01 | | 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 5.730E+01 | 0.000E+00
 3.734E-01 | | -4.269E-07 9.048E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 -1.751E-01 | 0.000E+00
-1.751E-01 | | 1.921E-06 -4.243E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 -3.734E-01 | 0.000E+00

FAST User's Guide 122 Last updated on August 12, 2005 for version 6.0

Figure 32. Sample summary file.

This summary information was generated by FAST (v6.00c-jmj, 15-Apr-2005) on 15-Apr-2005
at 16:37:53.

 FAST certification Test #01: AWT-27CR2 with many DOFs with fixed yaw error and steady
wind.

Turbine features:

 Downwind, two-bladed rotor with teetering hub.
 Rigid foundation.
 The model has 13 of 22 DOFs active (enabled) at start-up.
 Enabled First flapwise blade mode DOF.
 Enabled Second flapwise blade mode DOF.
 Enabled Edgewise blade mode DOF.
 Enabled Rotor-teeter DOF.
 Enabled Drivetrain rotational-flexibility DOF.
 Enabled Generator DOF.
 Disabled Rotor-furl DOF.
 Disabled Tail-furl DOF.
 Disabled Yaw DOF.
 Enabled First tower fore-aft bending-mode DOF.
 Enabled Second tower fore-aft bending-mode DOF.
 Enabled First tower side-to-side bending-mode DOF.
 Enabled Second tower side-to-side bending-mode DOF.
 Disabled Platform horizontal surge translation DOF.
 Disabled Platform horizontal sway translation DOF.
 Disabled Platform vertical heave translation DOF.
 Disabled Platform roll tilt rotation DOF.
 Disabled Platform pitch tilt rotation DOF.
 Disabled Platform yaw rotation DOF.
 Enabled Computation of aerodynamic loads.
 Disabled Computation of aeroacoustics.

Time steps:

 Structural (s) 0.00400000
 Aerodynamic (s) 0.00400000

Some calculated parameters:

 Hub-Height (m) 42.672
 Flexible Tower Length (m) 41.980
 Flexible Blade Length (m) 12.573

Rotor mass properties:

 Rotor Mass (kg) 2200.608
 Rotor Inertia (kg-m^2) 41755.996
 Blade 1 Blade 2
 ------- -------
 Mass (kg) 435.304 435.304
 Second Mass Moment (kg-m^2) 15434.709 15434.709
 First Mass Moment (kg-m) 2120.280 2120.280
 Center of Mass (m) 4.871 4.871

Additional mass properties:

 Tower-top Mass (kg) 7216.038
 Tower Mass (kg) 36907.137
 Turbine Mass (kg) 44123.176
 Mass Incl. Platform (kg) 44123.176

FAST User's Guide 123 Last updated on August 12, 2005 for version 6.0

Figure 32. Sample summary file (concluded).

Interpolated tower properties:

Node TwFract HNodes DHNodes TMassDen FAStiff SSStiff
 (-) (-) (m) (m) (kg/m) (Nm^2) (Nm^2)
 1 0.024 1.000 1.999 879.160 1.564E+10 1.564E+10
 2 0.071 2.999 1.999 879.160 1.564E+10 1.564E+10
 3 0.119 4.998 1.999 879.160 1.564E+10 1.564E+10

[lines deleted]

 19 0.881 36.982 1.999 879.160 1.564E+10 1.564E+10
 20 0.929 38.981 1.999 879.160 1.564E+10 1.564E+10
 21 0.976 40.980 1.999 879.160 1.564E+10 1.564E+10

Interpolated blade 1 properties:

Node BlFract RNodes DRNodes AeroCent StrcTwst BMassDen FlpStff EdgStff
 (-) (-) (m) (m) (-) (deg) (kg/m) (Nm^2) (Nm^2)
 1 0.050 1.813 1.257 0.250 10.500 58.496 2.760E+07 8.618E+07
 2 0.150 3.070 1.257 0.250 10.404 49.105 1.582E+07 9.772E+07
 3 0.250 4.327 1.257 0.250 9.852 48.912 1.043E+07 1.065E+08
 4 0.350 5.585 1.257 0.250 9.096 42.735 6.827E+06 8.982E+07
 5 0.450 6.842 1.257 0.250 7.692 36.024 4.463E+06 6.640E+07
 6 0.550 8.099 1.257 0.250 5.613 30.272 2.821E+06 4.508E+07
 7 0.650 9.356 1.257 0.250 3.575 24.996 1.677E+06 2.751E+07
 8 0.750 10.614 1.257 0.250 1.990 20.925 8.835E+05 1.819E+07
 9 0.850 11.871 1.257 0.250 1.012 16.201 3.821E+05 9.658E+06
 10 0.950 13.128 1.257 0.250 0.395 9.536 1.030E+05 2.780E+06

Interpolated blade 2 properties:

Node BlFract RNodes DRNodes AeroCent StrcTwst BMassDen FlpStff EdgStff
 (-) (-) (m) (m) (-) (deg) (kg/m) (Nm^2) (Nm^2)
 1 0.050 1.813 1.257 0.250 10.500 58.496 2.760E+07 8.618E+07
 2 0.150 3.070 1.257 0.250 10.404 49.105 1.582E+07 9.772E+07
 3 0.250 4.327 1.257 0.250 9.852 48.912 1.043E+07 1.065E+08
 4 0.350 5.585 1.257 0.250 9.096 42.735 6.827E+06 8.982E+07
 5 0.450 6.842 1.257 0.250 7.692 36.024 4.463E+06 6.640E+07
 6 0.550 8.099 1.257 0.250 5.613 30.272 2.821E+06 4.508E+07
 7 0.650 9.356 1.257 0.250 3.575 24.996 1.677E+06 2.751E+07
 8 0.750 10.614 1.257 0.250 1.990 20.925 8.835E+05 1.819E+07
 9 0.850 11.871 1.257 0.250 1.012 16.201 3.821E+05 9.658E+06
 10 0.950 13.128 1.257 0.250 0.395 9.536 1.030E+05 2.780E+06

FAST User's Guide 124 Last updated on August 12, 2005 for version 6.0

Figure 33. Sample AeroDyn options file.

This file was generated by AeroDyn(12.56, 24-Sep-2003) in FAST (v4.31, 03-Oct-2003) on 03-Oct-2003 at 16:08:06.

Inputs read in from aerodyn.ipt:

AWT-27CR aerodynamic parameters for FAST certification test #1.
SI Units for input and output
BEDDOES Dynamic stall model [Beddoes]
NO_CM Aerodynamic pitching moment model [NO Pitching Moments calculated]
DYNIN Inflow model [Dynamic Inflow]
SWIRL Induction factor model [Normal and Radial flow induction factors calculated]
0.005 Convergence tolerance for induction factor
[Not Used] Tip-loss model
[Not Used] Hub-loss model
"Wind/AWT27/Shr12_30.wnd" is the Hub-height wind file
42.672 Wind reference (hub) height, m
0.3 Tower shadow centerline velocity deficit
1 Tower shadow half width, m
2.432 Tower shadow reference point, m
1.225 Air density, kg/m^3
1.4639e-5 Kinematic air viscosity, m^2/'sec
0.004 Time interval for aerodynamic calculations, sec
10 Number of airfoil files used. Files listed below:
"AeroData/AWT27/AWT27_05.dat"
"AeroData/AWT27/AWT27_15.dat"
"AeroData/AWT27/AWT27_25.dat"
"AeroData/AWT27/AWT27_35.dat"
"AeroData/AWT27/AWT27_45.dat"
"AeroData/AWT27/AWT27_55.dat"
"AeroData/AWT27/AWT27_65.dat"
"AeroData/AWT27/AWT27_75.dat"
"AeroData/AWT27/AWT27_85.dat"
"AeroData/AWT27/AWT27_95.dat"
10 Number of blade elements per blade
RELM(m) Twist(deg) DR(m) Chord(m) File ID Elem Data RELM and Twist ignored by ADAMS (but placeholders must be
present)
1.81265 5.8 1.2573 0.859 1
3.07 5.2 1.2573 1.045 2
4.32725 4.66 1.2573 1.145 3
5.58455 3.73 1.2573 1.124 4
6.84185 2.64 1.2573 1.054 5
8.1 1.59 1.2573 0.976 6
9.35645 0.73 1.2573 0.885 7
10.61375 0.23 1.2573 0.775 8
11.87105 0.08 1.2573 0.651 9
13.12835 0.03 1.2573 0.493 10

Hub-height wind file info:
 Initial horizontal wind speed = 12 mps
 Initial wind direction = 30 deg
 Initial vertical wind speed = 0 mps
 Initial horiz. wind shear coeff. = 0
 Initial power law vert. wind shear coeff. = 0.2
 Initial linear vert. wind shear coeff. = 0
 Initial gust wind speed = 0 mps

 BEDDOES DYNAMIC STALL PARAMETERS:

 CN SLOPE 6.0090 6.0190 6.0280 6.0340 6.1280 6.2040 6.2710 6.2580 6.1560 6.1180
 STALL CN (UPPER) 1.8090 1.8130 1.8170 1.8200 1.7430 1.6770 1.6180 1.7910 1.7490 1.8400
 STALL CN (LOWER) -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
 ZERO LIFT AOA -4.2450 -4.2560 -4.2730 -4.2850 -3.2970 -2.4840 -1.7820 -1.4010 -1.2780 -1.2320
 MIN DRAG AOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 MIN DRAG COEFF 0.0107 0.0101 0.0094 0.0090 0.0080 0.0071 0.0064 0.0062 0.0064 0.0065

 VORTEX TRANSIT TIME FROM LE TO TE 11.00000
 PRESSURE TIME CONSTANT 1.700000
 VORTEX TIME CONSTANT 6.000000
 F-PARAMETER TIME CONSTANT 3.000000

FAST User's Guide 125 Last updated on August 12, 2005 for version 6.0

REFERENCES

1. Laino, D.J.; Hansen, A.C. “User’s Guide to the Wind Turbine Dynamics Computer Software AeroDyn.” Salt Lake City,
Utah: Windward Engineering, LC, August 2001.

2. Bossanyi, E.A. “GH Bladed Version 3.6 User Manual.” Document 282/BR/010 Issue 12. Garrad Hassan and Partners
Limited, 2003.

3. Manjock, A. “Evaluation Report: Design Codes FAST and ADAMS® for Load Calculations of Onshore Wind Turbines.”
Report No. 72042. Humburg Germany: Germanischer Lloyd WindEnergie GmbH, May 26, 2005.

4. Wilson, R.E.; Walker, S.N.; Heh, P. “Technical and User’s Manual for the FAST_AD Advanced Dynamics Code.”
OSU/NREL Report 99-01. Corvallis, Oregon: Oregon State University, May 1999.

5. Buhl, Jr. M.L.; Wright; A.D.; Pierce, K.G. “FAST_AD Code Verification: A Comparison to ADAMS.” The 20th ASME
Wind Energy Symposium, Reno, Nevada, January 8–11, 2001. NREL/CP-500-28848. Golden, Colorado: National
Renewable Energy Laboratory, 2001.

6. Jonkman, J.M.; Buhl, Jr. M.L. “New Development’s for the NWTC’s FAST Aeroelastic HAWT Simulator.” The 23rd ASME
Wind Energy Symposium, Reno, Nevada, January 5–8, 2004. NREL/CP-500-35077. Golden, Colorado: National Renewable
Energy Laboratory, 2004.

7. Buhl, Jr. M.L. “Installing NWTC Design Codes on PCs Running Windows NT®.” National Renewable Energy Laboratory,
http://wind.nrel.gov/designcodes/papers/setup.pdf. Last modified Dec. 22, 2000; accessed April 5, 2002. NREL/EP-500-
29384. Golden, Colorado.

8. IEC/TS 61400-13 ed. 1 “Wind Turbine Generator Systems – Part 13: Measurement of Mechanical Loads.” International
Electrotechnical Commission (IEC), 2001.

9. Buhl Jr., M.L. “A Simple Mode-Shape Generator for Both Towers and Rotating Blades.” NWTC Design Codes (Modes),
http://wind.nrel.gov/designcodes/preprocessors/modes/. Last modified April 29, 2002; accessed July 9, 2002.

10. Malcolm, D.J. “How a Teetered Rotor with Delta-3 Really Works.” The 2000 ASME Wind Energy Symposium, January 10-
13, 2000, Reno, Nevada. New York, New York: American Institute of Aeronautics and Astronautics, 2000.

11. Stol, K.A.; Bir, G.S. “SymDyn User’s Guide,” NREL/EL-500-33845. Golden, Colorado: National Renewable Energy
Laboratory, 2003.

12. Elliot, A.S.; Wright, A.D. “ADAMS/WT User’s Guide,”
http://wind.nrel.gov/designcodes/simulators/adamswt/docs_v2.0/index.html. Last modified December, 1998; accessed June
13, 2003.

13. Laino, D.J.; Hansen, A.C. “User’s Guide to the Computer Software Routines AeroDyn Interface for ADAMS®.” Salt Lake
City, Utah: Windward Engineering, LC, September 2001.

14. Laino, D., “IECWind: A Program to Create IEC Wind Data Files.” NWTC Design Codes (IECWind),
http://wind.nrel.gov/designcodes/preprocessors/iecwind/. Last modified June 19, 2001; accessed July 9, 2002.

15. Laino, D., “WindMaker: A Program to Create IEC Wind Data Files.” NWTC Design Codes (WindMaker),
http://wind.nrel.gov/designcodes/preprocessors/windmaker/. Last modified May 12, 2000; accessed July 9, 2002.

16. Jonkman, B.J.; Buhl Jr., M.L. “TurbSim User’s Guide,” http://wind.nrel.gov/designcodes/preprocessors/turbsim/turbsim.pdf.
Last modified May 26, 2005; accessed August 11, 2005.

17. Buhl Jr., M.L. “SNwind User’s Guide,” http://wind.nrel.gov/designcodes /preprocessors/snwind/snwind.pdf. Last modified
October 22, 2001; accessed July 9, 2002.

18. Kelley, N.D., “SNLWIND-3D: A Stochastic, Full-Field, Turbulent-Wind Simulator for Use with BLADED and the
Aerodyn-Based Design Codes (YawDyn, FAST_AD, and ADAMS®).” NWTC Design Codes (SNLWIND-3D),
http://wind.nrel.gov/designcodes/preprocessors/snlwind3d/. Last modified July 20, 2000; accessed July 9, 2002.

19. Moriarty, P.J.; Migliore, P.G. “Semi-Emperical Aeroacoustic Noise Prediction Code for Wind Turbines”, NREL/TP-500-
34478. Golden, Colorado: National Renewable Energy Laboratory, 2003.

