Euler Equation - Wave Equation Connection

T. H. Pulliam

Stanford University

Wave Equation

1. The One-dimensional (1-D) Wave Equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0 \tag{1}
\end{equation*}
$$

with a the wave speed.
2. Is a Good Representative Equation For the Euler Equations
3. First Part of The Course We Will Use the 1-D Wave Equation to Derive and Analyze Various Aspects of Accuracy, Stability and Efficiency
4. What Motivates This Model Equation?

One Dimensional Euler Equations

1. The Euler Equations are

$$
\begin{gather*}
\frac{\partial Q}{\partial t}+\frac{\partial E}{\partial x}=0 \tag{2}\\
Q=\left[\begin{array}{c}
\rho \\
\rho u \\
e
\end{array}\right], \quad E=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
u(e+p)
\end{array}\right] \tag{3}
\end{gather*}
$$

Equation of state

$$
\begin{equation*}
p=(\gamma-1)\left(e-\frac{1}{2} \rho\left(u^{2}\right)\right) \tag{4}
\end{equation*}
$$

where γ is the ratio of specific heats, generally taken as 1.4.

Quasi-Linear Form

1. First We Re-Write the Euler Equations, Eq. 2, in Change Rule Form (Quasi-Linear)
2. Let $\frac{\partial E}{\partial x}=\left(\frac{\partial E}{\partial Q}\right) \frac{\partial Q}{\partial x}$, where $\frac{\partial E}{\partial Q}$ needs to be defined since E and Q are vectors.
3. The term $\frac{\partial E}{\partial Q}$ is A Tensor, Actually a Matrix Defined As the Jacobian of the Flux Vector E with respect to Q.
4. Eq. 2 can be rewritten as (A defined below)

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+A \frac{\partial Q}{\partial x}=0 \tag{5}
\end{equation*}
$$

Generalized Forms

1. Redefine Q and E In terms of Independent Variables q_{1}, q_{2}, q_{3} as

$$
\begin{gathered}
Q=\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{c}
\rho \\
\rho u \\
e
\end{array}\right] \\
E=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{c}
q_{2} \\
\frac{q_{2}^{2}}{q_{1}}+(\gamma-1)\left(q_{3}-\frac{1}{2} \frac{q_{2}^{2}}{q_{1}}\right) \\
\frac{q_{2}}{q_{1}}\left(q_{3}+(\gamma-1)\left(q_{3}-\frac{1}{2} \frac{q_{2}^{2}}{q_{1}}\right)\right)
\end{array}\right]
\end{gathered}
$$

Jacobian Derivation

1. The Definition of the Jacobian $A=\frac{\partial E}{\partial Q}$,

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
\frac{\partial e_{1}}{\partial q_{1}} & \frac{\partial e_{1}}{\partial q_{2}} & \frac{\partial e_{1}}{\partial q_{3}} \\
\frac{\partial e_{2}}{\partial q_{1}} & \frac{\partial e_{2}}{\partial q_{2}} & \frac{\partial e_{2}}{\partial q_{3}} \\
\frac{\partial e_{3}}{\partial q_{1}} & \frac{\partial e_{3}}{\partial q_{2}} & \frac{\partial e_{3}}{\partial q_{3}}
\end{array}\right] \\
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{\gamma-3}{2} u^{2} & (3-\gamma) u & \gamma-1 \\
-\frac{\gamma e u}{\rho}+(\gamma-1) u^{3} & \frac{\gamma e}{\rho}-\frac{3(\gamma-1) u^{2}}{2} & \gamma u
\end{array}\right]
\end{gathered}
$$

Linear Diagonalized Form of Euler Equations

1. Freeze the Jacobian Matrix A at a Reference State A_{0}
2. This Can Be Justified By Small Perturbation Theory, Asymptotic Analysis, etc.
3. We now have

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+A_{0} \frac{\partial Q}{\partial x}=0 \tag{6}
\end{equation*}
$$

4. The matrix A (and the corresponding A_{0}) has a complete set of eigenvectors and eigenvalues.

Eigensystem of A

1. Let $A=X \Lambda X^{-1}$ and conversely $\Lambda=X^{-1} A X$
(a) X is the $3 x 3$ eigenvector matrix of A
(b) Λ is the diagonal eigenvalue matrix with elements, $\lambda_{1}, \lambda_{2} \lambda_{3}$.
(c) For the Euler Equations, $\lambda_{1}=u, \lambda_{2}=u+c$, and $\lambda_{3}=u-c$ with $c=\sqrt{\frac{\gamma p}{\rho}}$ the speed of sound.

Diagonalization of Euler Equations

1. Using the Eigen-System of A_{0} we can transform Eq. 6 to

$$
\begin{gather*}
X_{0}^{-1}\left[\frac{\partial Q}{\partial t}+A_{0} X_{0} X_{0}^{-1} \frac{\partial Q}{\partial x}\right]=0 \\
\frac{\partial\left[X_{0}^{-1} Q\right]}{\partial t}+\left[X_{0}^{-1} A_{0} X_{0}\right] \frac{\partial\left[X_{0}^{-1} Q\right]}{\partial x}=0 \\
\frac{\partial W}{\partial t}+\Lambda_{0} \frac{\partial W}{\partial x}=0 \tag{7}
\end{gather*}
$$

with $W=X_{0}^{-1} Q$

Characteristic Form of Euler Equations

1. The Equations in Characteristic Form are uncoupled

$$
\begin{equation*}
\frac{\partial w_{i}}{\partial t}+\lambda_{0 i} \frac{\partial w_{i}}{\partial x}=0 \tag{8}
\end{equation*}
$$

for $i=1,2,3$
2. So for each i we have the wave equation, Eq.1, where $u=w_{i}$ and $a=\lambda_{0 i}$
3. Therefore, any process, analysis, stability, etc results applied to the wave equation holds for each characteristic equation of w_{i}

Model Equation Justification

1. To Complete the process
(a) Transform back to physical variables $Q=X_{0} W$
(b) X_{0} is a constant matrix (it is made up of elements at the frozen state and therefore not a function of x, t)
(c) The resulting Q is just linear combinations of the w_{i} and any results applied to w_{i} also apply to q_{i}.
(d) For example, if any of the w_{i} are divergent (unstable, going to infinity, inaccurate, etc), the q_{i} behave consistent with the w_{i}

CONCLUSIONS

1. The wave equation Eq:1:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0 \tag{9}
\end{equation*}
$$

is an appropriate model equation for the Euler Equations
2. PS: GET USE TO SEEING IT FOR THE NEXT FEW WEEKS!!

