

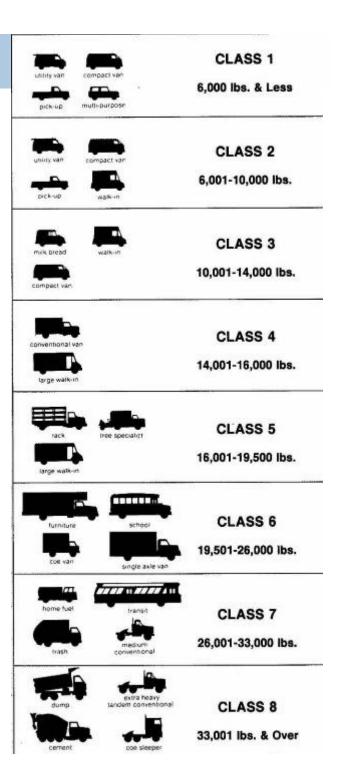
Estimation of Fuel Use by Idling Commercial Trucks

TRB 85th Annual Meeting Washington, DC

January 22-26, 2006

Linda Gaines, Anant Vyas, and John L. Anderson

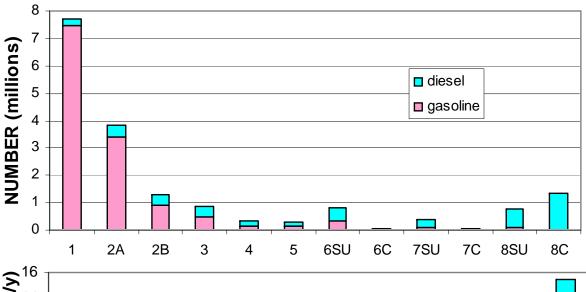
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

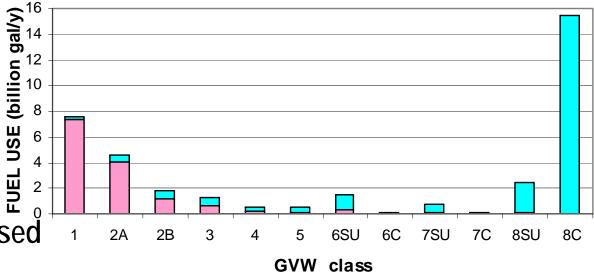


Trucks are classified into 8 classes

- Based on gross vehicle weight (GVW)
 - Includes empty vehicle plus cargo
 - Classes formulated >50 years ago
- Classes 1 and 2 include commercial and personal vehicles
 - Our analysis removes personal vehicles
 - Commercial uses include service and retail, construction, agriculture, manufacturing
 - Class 2 is divided into 2A and 2B (>8,500 lbs.)
- Single unit (SU) trucks cover classes 1-8
 - Flatbed, pickup, dump, van dominate
- Combination (C) trucks are in classes 6-8
 - About half have sleepers
 - Travel long distances
 - Driver often sleeps in truck
 - Trailers include vans, tankers, and flatbeds

Vehicle Inventory and Use Survey is conducted every 5 years


- 2002 data released in 2005
- Sample of 98,682* represents 85.2 million trucks
 - 79.8 million light trucks in use (Classes 1-2)
 - 66.5 million personal use
 - 13.3 million commercial use
 - 4 million single-unit heavy trucks
 - 1.4 million combination trucks (about half with sleepers)
- Information includes over 200 attributes of each truck.
 - numbers by class, body type, model year; miles traveled (by trip length), fuel economy
- We analyzed the Census Bureau microdata file with SAS software
- See http://www.census.gov/svsd/www/vius/products.html for survey methodology, questionnaires, and publications


^{*} including 3,250 "not in use"

Classes 1 and 2 dominate commercial vehicle numbers ->

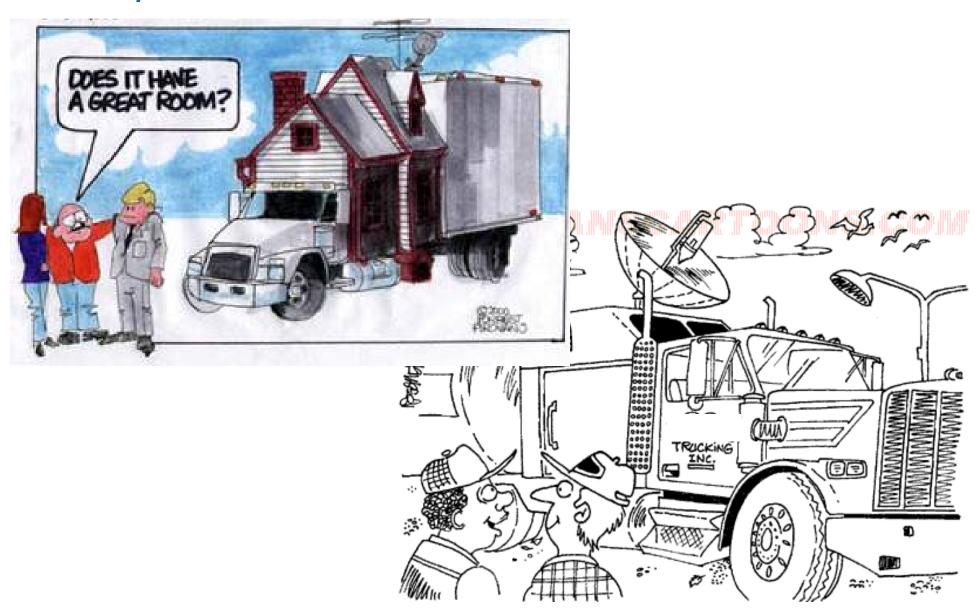
but Class 8 uses the most fuel →

Previous analysis focused on Class 8

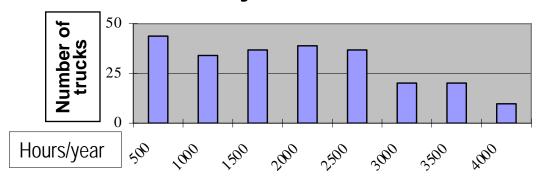
Commercial trucks use 14 billion gallons of gasoline and 23 billion gallons of diesel annually

Why do sleepers idle overnight?

- For services to resting driver and friend
 - Heating, ventilation, and air conditioning (HVAC)
 - Power for appliances
 - TV, microwave, refrigerator, computer, hair drier
- To keep fuel and engine warm
- To mask out noises and smells
- Because other drivers do it
- For safety


Where?

- At truck stops and rest areas
 - Not enough parking spots where needed
- In shopping center parking lots
- On ramps and roadsides
- Near first morning appointment
 - Enables prompt arrival
- At home base


Sleepers have all the comforts of home

How much do these sleeper trucks idle?

- Conservative estimate 6 hours/day, 300 days/year: 1800 hours/year
 - Caterpillar study consistent with this
- UC Davis survey reveals broad distribution

Previous work estimated annual impacts

- Baseline was 458,000 long-haul trucks idling overnight
- Emission of 140,000 t NO_x, 2400 t CO, and 7.6 million t CO₂
- Use of over 800 million gallons diesel fuel (5% of all heavy truck fuel)
 - Value over \$2 billion
- Noise
- Engine wear and increased maintenance costs

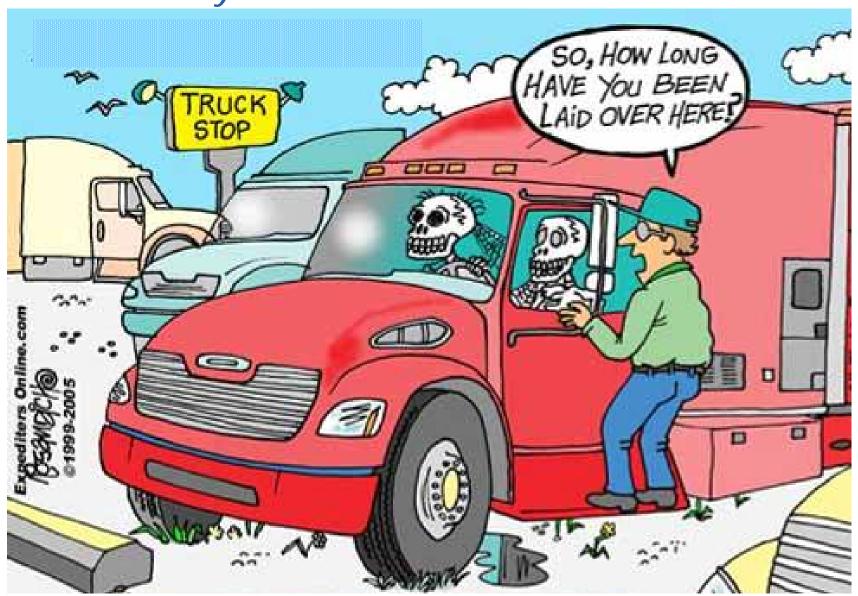
Several technologies can reduce overnight idling

- All reduce fuel use, emissions, and noise
- All can be retrofit or manufacturer option
- Degree of cab comfort varies
- On-board equipment
 - Automatic engine stop-start controls
 - Heaters and air conditioners
 - Auxiliary power units and similar devices
- Wayside units (electrified parking spaces)
 - Single or dual system
- Simple measures can reduce energy demand
 - Insulation to reduce heat transfer
 - Shades to reduce solar load
 - Waste heat recovery from coolant
 - Load management to reduce peak

Workday idling is important

Long-duration idling occurs

- At ports and terminals
- At busy delivery sites
- At border crossings
- At restaurants


All truck types may idle during the work day

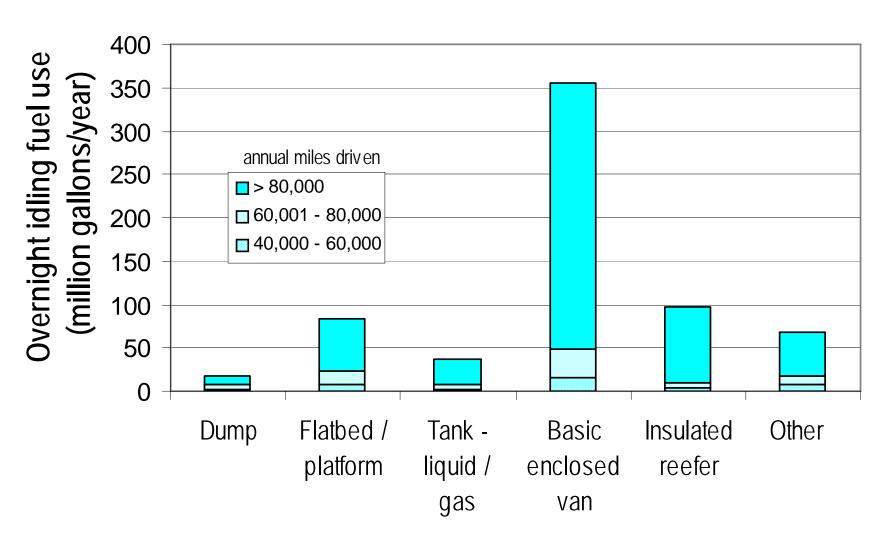
- We focus on long-duration idling (>30 minutes)
 - Power take-off excluded
- Idling reduction devices do not enable slow movement in queue ("creep mode")
- Scheduling can reduce workday idling
- Workday idling has not been studied
- This work suggests that it could be significant use of fuel

Drivers may need to wait for their next loads

Conservative idling time estimates were assumed

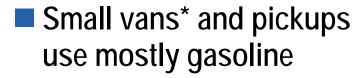
- VIUS data were used to categorize trucks
- Idling time was estimated based on type and annual distance traveled
- Overnight idling →
 - Sleepers only
 - Longer distances imply driver sleeps in tractor more often
- Workday idling (see next slide)
 - All truck classes.
 - Shorter trips assumed to include more idling during day
 - We estimated up to 900 h/y or 3 h/d (utility vehicles)
 - Workers use truck as base when they go underground or up poles
- Fuel use is very sensitive to assumptions
 - Real idling data are needed!

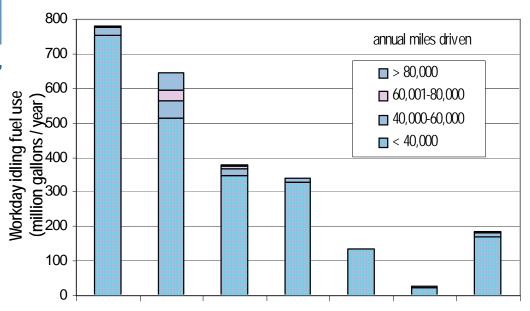
Annual miles (thousands)	Overnight idling hours per year		
<40	0		
40-60	720		
60-80	1260		
>80	1800		

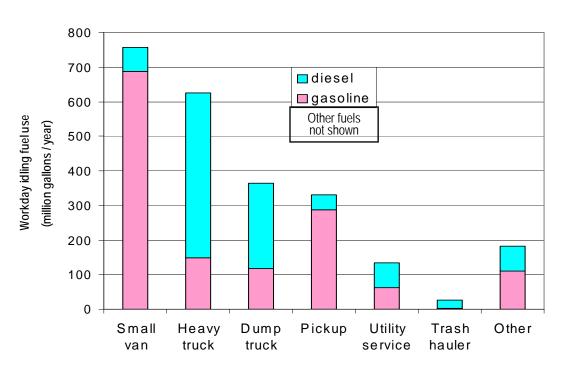


Workday idling times were estimated based on truck type

Aggregated category	Body types included	Annual mileage category (1000s)	Assumed annual idling hours	
Utility	Service utility	<40 40-60 60-80 >80	900 675 450 225	
Small van	Minivan, full-size van, multi-stop van, other van	<40 40-60	600 450	
Dump truck	Dump (all classes)	60-80	300	
Heavy truck (high idle)	Basic enclosed van, reefer, drop frame	>80	150	
Heavy truck (lower idle)	Flatbed, tanker	<40 40-60	300 225 150 75	
Trash hauler	Trash/garbage	60-80 >80		
Pickup	Pickup (classes 1-2)	<40	150 112	
Other	SUV, armored, concrete mixer, concrete pumper, crane, curtainside, low boy, pole, other service, street sweeper, tank (dry/bulk), tow/wrecker, vacuum, insulated non-reefer, open top, car carrier, livestock, mobile home toter, unknown.	- 40-60 60-80 >80	75 37	


Sleepers hauling basic enclosed vans dominate overnight idling fuel use




Idling during the work day may be very significant

Short-range trucks dominate (by assumption)

Heavy trucks* and dump trucks use the most diesel

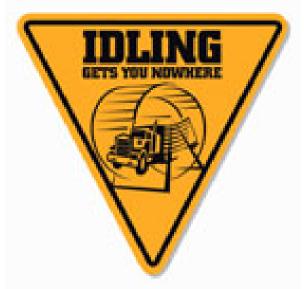
^{*} See category definitions on slide 12

Idling may use over 8% of commercial truck fuel

	Fuel use (million gallons/year)			
	Gasoline	Diesel	Other	Total
Overnight idling	0	666	0	666
Workday idling	1,416	1,002	73	2,491
Total long-duration idling fuel use	1,416	1,668	73	3,157
Total fuel use for commercial trucks	13,922	22,681	378	36,982
Idling % of total use by fuel type	10.2%	7.4%	19%	8.5%

Workday contribution could overshadow overnight idling

- Overnight contribution is at least 666 million gallons per year
 - Based on very conservative assumptions
 - Average 6 hours/night for longest haul
 - Fewer for <80,000 miles per year
- Workday contribution could be over 2.5 billion gallons per year
 - This is ~7% of fuel use by these vehicles
 - Idling duration estimates were based on vehicle duties
 - No actual data were available
 - Results are very sensitive to assumptions
 - Example: Removing pickup trucks subtracts 350 million gallons from total!
 - Data are needed
 - Current idling reduction technology does not address "creep mode"
 - Technology development could provide significant benefits
 - Hybrid trucks could turn engines off and use electric motors to move them


Conclusions

- Total usage of petroleum by long-duration idling of commercial trucks may exceed 3 billion gallons per year
 - 45% is gasoline, 53% diesel fuel
- Actual idling practices by different vehicle classes are not well known
- Data should be gathered to determine the scope of the problem
- Development of technology to allow engines to be off in queues would save energy and reduce emissions

ACKNOWLEDGMENTS

- We thank the Office of FreedomCAR and Vehicle Technologies at the U.S. Department of Energy for continued support.
- Argonne is operated by the University of Chicago under Contract W-31-109-Eng-38, for the U.S. Department of Energy.

