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Fuel and Air Fuel and Air Gombustion
Begin to Ignite

Fuel & Air Charge Undergoes Compression
Spontaneous Reaction Throughout Cylinder
Low Temperature and Fast Reaction Gives Low NO,



Fundamentals of HCCI| Reaction 1

ldeally, a Homogeneous Fuel-Air Mixture
IS One in Which the Composition and the
Thermodynamic Conditions are Uniform
Throughout the Reaction Phase

€ Reaction Starts When the Thermodynamic
Conditions are Sufficient to Initiate Chain
Branching Reactions

&® Reaction Rates and Reaction Duration are
Kinetically Controlled



Fundamentals of HCC| Reaction 2

Practical Fuel-Air Mixtures Have Both
Compositional and Thermodynamic

In-|

omogenelties

€ Reaction Begins in the Fuel Richest and
the Highest Temperature Locations

& Reaction Rates and Reaction Duration are
Affected by Mixing and Heat Transfer



Port Injection Configuration

Alr-Assist Pressure-
Swirl Injector

Timed to Valve
Opening

Liquid Drops
Acceptable

Evaporation During
Compression




HCCI Development Problems

SOR Control
€ No SOR Property Defined

Mixture Preparation

& Total Evaporation Before the Start of
Reaction




Typical HCCI| Engine Heat Release

Main Heat Release

Inital Heat Release
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Start ofi Reaction

Effects of Compression Temperature History.
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sVVarious Intake Temperatures and EGR
In All Cases SOR is Very Near 650 K



Mixture Preparation

Effects of Intake Temperature

—=&—Diesel, CR=14

—* 20% Blend CR=14
== *40% Blend CR=14
= %= 60% Blend CR=14
=% '80% Blend CR=14

140 150
Intake Air Temp. (C)

Slight BSN Advantage With Blends
Critical Temp. For These Conditions 150C
Naphtha & Gasoline Had Zero BSN for
All Conditions



SOR and Mixture Preparation

Effects of Intake Temperature

Diesel, 14 CR

—a&—20%, 14 CR
— +— 40%, 14 CR
— - 60%, 14 CR
-- A --80%, 14 CR
= = Gasoling, 16 CR
= 'Naphtha, 14 CR

* 'Naphtha, 16 CR

9
3
-
=)
S
=
=
Q
3
=

N
ol

145 150
Start Of Reaction (CAD)

All Fuels Advanced SOR Compared to Diesel

Naphtha Operates at Lower Intake Temp.
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HCCI Rules

Fuel Related

All Fuel Must Be Evaporated Prior to
the Start of Reaction

€ Liguid Fuel Drops Burn As Diffusion
Flames With High NOx and PM

Fuels Must Have Start of Reaction

Temperatures and Ignition Delay

Times (Ignition Characteristics) Such

"hat Reaction Begins at TDC
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Fuel-Blending with Two Fueling
Systems

=l .,...of F-T naphthg
This englne 's fuel system accommodates
one gaseous fuel and one liquid fuel
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Choice of Fuels Used

Natural Gas used because:

€ This engine was already equipped with fuel
system engine can still be operated at full load on
spark-ignited natural gas fueling

& Natural gas has low reactivity (high-octane
number)

F-T naphtha used because:
@ |t is sufficiently volatile for use with port injection

@ |ts auto-ignition characteristics work with this
compression ratio

Other fuels can be used with this engine
concept with slight modifications
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Combustion Phasing Control
Through Fuel-Blending

Intake Air

High reactivity Low reactivity More reactive

(low-octane) fuel (high-octane) fuel mixture
advances

combustion
Less reactivég

mixture
retards

combustion

Premise for this approach:

By altering the propensity of the air-fuel mixture to auto-
ignite, it is possible to control the combustion phasing
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Single-Fuel HCC]

Multi-Cylinder Engine on F-T Naphtha
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HCCI combustion
of a single fuel
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Typical HCCI combustion phasing advance
with increasing load and vice-versa
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Fuel-Blending Approach

Mutli-Cylinder Engine on F-TNaphtha and Natural Gas
140
1000 RPM (approx.) ,
97 kPa MAP X Increasing
Constant Amount of F-T Naphtha Natural Gas
Increasing Natural Gas Amount

(o))
o

N
o
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Dual-fuel HCCI combustion phasing is not affected
by low-reactivity fuel (natural gas) amount
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Start ofi Reaction

Effects of Compression Temperature History.
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sVVarious Intake Temperatures and EGR
In All Cases SOR is Very Near 650 K
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IQT Description

The IQT Is a Constant Volume
Combustion Bomb Apparatus

he System Includes:

& Heated Pressure Vessel

® Single Shot Fuel Injection System
€ System Controller

€ Data Acquisition System
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QT Pressure Vessel and Injection
System
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IQT Pressure Vessel

1IN
lﬁlghpf" ___ Thermocouple
and valve ; | I,l Chamber Surface

Injection Nozzla Thermocouple
’ Pressure Transd ucer —

Pressure Transducerand
Housing

Thermoesuple |

Nezzle Tip — |

Y e
Combustion Chamber ] b ,;'
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IQT Fuel Injection System
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IQT Controller and Data
Acguisition System




QT Operation

The Pressure Vessel is Charged with
Air at High Pressure and Heated to
the Test Temperature

Fuel is Injected

Needle Lift and Vessel Pressure are
Recorded and used to Determine the
Ignition Delay and Other Parameters
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QT Raw Data
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IQT CN Calibration

Calibration Shift is
Minor

Calibration Checked
Daily

CETANE NUMBER
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QT Application
HCCI Fuel Rating

Octane Number and Cetane Number
were Developed for Sl and CI Engine
Applications

€ Developments were Evolutionary

HCCI Results Indicate that Neither are
Adequate for Reflecting the SOR In an
HCCI Engine

& Data Indicates that some Measure of
Autoignition Temperature (AIT) is Needed

& Elevated Pressure AIT Defined in IQT  ,



EPAIT Measurement in IQT

IQT Used to Measure EHN in FT Diesel Fuel
the Elevate Pressure
AIT (EPAIT)

Tests Done at Different
Temperatures

A Fixed Ignition Delay

Time Is Selected and

Used to Define the

Ignition Temperature 450 460 470 480 490 500 510 520 530
Temp, °C
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Fuels Tested

Fuels Tested:

80% HEXADECANE / 20% HEPTAMETHY LNONANE
60% HEXADECANE / 40% HEPTAMETHYLNONANE

© 40% HEXADECANE / 60% HEPTAMETHY LNONANE ‘ O N R efe re n Ce F u e I
%20% HEXADECANE / 80% HEPTAMETHYLNONANE

€ CN Reference Fuel
Blends

€ FT Naphtha + EHN
&€ Gasoline-DF2 Blends

IGNITION DELAY (ms)

4 0 ppm EHN 500 ppm EHN 80% ISOOCTANE / 20% nHEPTANE
A 60% ISOOCTANE / 40% NHEPTANE
4 1000 ppm EHN ¢ 2000 ppm EHN © 40% ISOOCTANE / 60% NHEPTANE

X 3000 ppm EHN 9 4000 ppm EHN X 20% ISOOCTANE / 80% nHEPTANE

490 500 510 520 nHEPTANE

TEST TEMPERATURE (C)

v ‘ ISOOCTANE not shown on this graph.

[&)]

IGNITION DELAY
n
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Data Conversion

T =419.3 + 385.5 exp(-0.541 tq)

2.5 3.0 35 4.0 4.5 5.0
Delay Time, ms

FT Additized with EHN

5.5

Need Temperature
at Ignition for
Different Ignition
Delay Times

€ Simple Inversion and
Regression

Inverted Data Used

to Interpolate and

Extrapolate to Define

a Common Delay

time 20



Octane Number vs Cetane Number

ON = 146 - 3.7*CN
+ 0.08946* CN2
- 0.001263* CN3
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EPAIT vs CN

Elevated Pressure Autoignition Temperature

CetaneV;umber CN HaS SOme
Relationship to EPAIT
CN Does Not

Universally Relate to
EPAIT

ON Relationship Is
Worse Than the CN
Cetane Number Relat|0n5h|p
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EPAIT vs ON

The ON Relationship
IS hot as Good as
the CN Relationship
& Negative ON is
Possibly Meaningless

&® More Deviation with
the Additized Fuel

® Shape Inflection
Makes Definition of : : a0 -
EPAIT Difficult Octane Number
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Correlation
IQT-EPAIT Data and Engine Data

SOR in the Engine is
Based on the Pre-
Reaction

SOR Predicted using
an Arrhenius Type
Rate Expression

® Verified by Engine
HRR Measurements 480 500 520

Correlation is Fair EPAIT @ 11 ms (°C)
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Future of HCCI Method

Need to Test More Fuels in both the
IQT and the HCCI VCR Engine

& Follow the IQT Test Method Described
€® Engine Tests in SWRI VCR Test Engine

& Test Fuels:
More GTL Products
Petroleum Naphtha Fractions
Additized ON Reference Fuel Blends
Additized Gasolines
Alternative Fuels

& Relate to SOR In the Engine 34
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