North Aleutian Basin Play 3: Black Hills Uplift-Amak Basin (Eocene-Miocene)

Geological Assessment

<u>GRASP UAI</u>: AAAAA HAD <u>Play Area</u>: 6,990 square miles <u>Play Water Depth Range</u>: 15-700 feet <u>Play Depth Range</u>: 2,000-20,000 feet (mostly 2,000-5,000 feet) Play Exploration Chance: 0.105

Play 3, Black Hills Uplift-Amak Basin (Eocene- Miocene), North Aleutian Basin OCS Planning Area, 2006 Assessment, Undiscovered Technically- Recoverable Oil & Gas												
Assessment Results as of November 2005 Resource												
Commodity	F	Resources	*									
(Units)	F95	Mean	F05									
BOE (Mmboe)	0	210	1,077									
Total Gas (Tcfg)	0.000	0.312	1.877									
Total Liquids (Mmbo)	0	155	743									
Free Gas** (Tcfg)	0.000	0.249	1.588									
Solution Gas (Tcfg)	0.000	0.063	0.289									
Oil (Mmbo)	0	149	706									
Condensate (Mmbc)	0	6	38									
* Risked, Technically ** Free Gas Includes		Non-Associate	ed Gas									
F95 = 95% chance th given quantity	at resources w	vill equal or ex	ceed the									
F05 = 5% chance tha quantity	t resources wil	ll equal or exc	eed the given									
BOE = total hydrocar equivalent, where 1 b gas	0,	•										
Mmb = millions of bai	rrels											
Tcf = trillions of cubic	feet											
Table 1												

Play 3, the "Black Hills Uplift-Amak Basin" play, is a subordinate play in the North Aleutian Basin OCS Planning Area, with 9% (210 Mmboe) of the Planning Area energy endowment (2,287 Mmboe). The overall assessment results for play 3 are shown in table 1. Oil and gas-condensate liquids form 74% of the energy endowment of play 3. Table 5 reports the detailed assessment results by commodity for play 3.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of North Aleutian basin play 3. Table 4 reports the risk model used for play 3. The location of play 3 is shown in figure 1.

The Black Hills uplift is a regional arch that extends west from the Alaska Peninsula to join the shelf-edge uplift that forms the west boundary of St. George basin. The Black Hills uplift is onlapped by the Tertiary-age sedimentary fill of both the North Aleutian and Amak basins, but only rocks correlative to the Bear Lake-Stepovak sequence of play 1 crest the top of the uplift. Over the crest, the Bear Lake-Stepovak-equivalent sequence ranges up to 5,000 feet thick and directly overlies moderately deformed Mesozoic sedimentary rocks. Rocks of the lower part of the Stepovak Formation and the Tolstoi Formation are truncated at faults and unconformities on the north and south flanks of the uplift. No wells have penetrated the Tolstoi-equivalent strata in the Amak basin south of the Black Hills uplift. In onshore areas, rocks correlative to the Bear Lake-Stepovak play sequence were penetrated by 9 wells (David River 1/1A, Hoodoo Lake 1, Hoodoo Lake 2, Sandy River 1, Port Heiden 1, Ugashik 1, Becharof Lake 1, Great Basins 1, and Great Basins 2 wells). Offshore, correlative rocks were penetrated at the North Aleutian Shelf COST 1 well (North Aleutian basin) and at the St. George Basin COST 2, Monkshood 1, and Bertha 1 wells (St. George basin). The closest point of offshore control is the Bertha 1 well, located on the crest of the

Black Hills uplift. The Bear Lake-Stepovak-equivalent sequence at the Bertha 1 well is mostly marine and non-coalbearing, and is a more distal facies than the correlative coal-bearing (nonmarine to inner neritic) sequences penetrated onshore and at the North Aleutian Shelf COST 1 well.

No pools of oil or gas have been discovered in the Bear Lake-Stepovak play sequence or correlative rocks of plays 1 and 3. Gas shows are widely associated with coals in the Bear Lake and Stepovak Formations and oil shows have been noted in these formations in 3 wells onshore (Becharof Lake 1, Sandy River 1, and David River 1/1A wells). Flow tests recovered gas from the Tolstoi Formation in the Becharof Lake 1 well and oil shows were noted in 4 Tolstoi penetrations (North Aleutian Shelf COST 1, Becharof Lake 1, Hoodoo Lake 2, and David River 1/1A wells). No oil or gas shows are associated with the Bear Lake-Stepovak sequence in the Bertha 1 well, located on the Black Hills uplift near the west boundary of play 3.

Most of the oil and gas resources of play 3 are associated with broad, low-amplitude anticlines draped over culminations on the Black Hills uplift. Mapped traps have closure areas ranging up to 133,000 acres. Thick (maximum = 220 feet), highly porous, and plentiful (sum to 1,706 feet net, or 59% of sequence) reservoir sandstones are present in the Bear Lake-Stepovakequivalent sequence in the Bertha 1 well. No regional seal caps the abundant sandstones in the Bear Lake-Stepovakequivalent sequence at the Bertha 1 well.

No oil source rocks have been identified in the Tertiary sedimentary fill of either the North Aleutian or Amak basins. In the North Aleutian basin (and presumably the Amak basin), coals and shales with Type III

(coal-like) organic matter are abundant and could form sources for both biogenic and thermogenic gas, condensate, and minor oil. In the southwest part of the North Aleutian basin, thousands of feet of Tertiary rocks are thermally mature and could generate oil and gas, given appropriate organic compositions (fig. 19). However, the Amak basin fill reaches a maximum thickness of only 12,500 feet. The depth to the 0.6% vitrinite reflectance isograd at the North Aleutian Shelf COST 1 well is 12,312 feet subsea. If the depth for this isograd at the COST well is extrapolated to Amak basin, only about 200 feet of rocks at the floor of the Amak basin are forecast to be thermally mature and capable of generating petroleum. It is therefore unlikely that Amak basin forms a source for significant quantities of petroleum. In any case, gas and condensate generated in the deep parts of either Amak or North Aleutian basins must migrate laterally tens of miles through areas highly dissected by very young strike-slip faults (that follow the margins of the Black Hills uplift). Because of the risks of losses through long-distance lateral migration and diversion at faults, it is unlikely that significant quantities of gas and condensate generated in the Amak or North Aleutian basins would reach traps on the Black Hills uplift.

The Black Hills uplift is underlain by an assemblage of folded Mesozoic sedimentary rocks that include strata age-equivalent to known regional oil source beds of Middle Jurassic (Kialagvik Fm. or Tuxedni Gp.) and Late Triassic (Kamishak Fm.) ages. The Middle Jurassic Tuxedni Group is the source for 1.6 billion barrels of original oil reserves in northern Cook Inlet (AKDO&G, 2002), most of which is pooled in Tertiary-age rocks that overlie the Tuxedni Group. The Tuxedni-correlative sequence—the Kialagvik Formation—is present in the Cathedral River 1 well onshore and equivocal geochemical anomalies may suggest a past role as an oil source. In the Cathedral River 1 well, oil shows were widely observed in the rocks overlying the Kialagvik Formation. The Kialagvik Formation is thermally overmature (TAI = 3.0 to 3.8) and post oil-generative in the Cathedral River 1 well. It is probable that Mesozoic oil sources in this area generated and expelled the oil in a past (pre-Tertiary) cycle of deep burial, long before the deposition of the Tertiary-age rocks flanking or overlapping the Black Hills arch. Oilcharging of the Tertiary-age rocks in play 3 must therefore rely upon capturing oil remobilized out of Mesozoic reservoirs where it was sequestered perhaps 30 million years earlier during Mesozoic (Late Cretaceous?) burial and oil generation. The hypothetical Mesozoic oil pools within the Black Hills uplift must first survive uplift, deep erosion, and re-burial beneath Oligocene and younger strata. The Mesozoic oil pools must remain intact during creation of the drape anticlines in Tertiary rocks over culminations on the Black Hills uplift. Once the drape anticlines had formed, fault disruption of the Mesozoic pools must then trigger the release of the oil sequestered in Mesozoic reservoirs. The released oil then migrates upward in some (necessarily) focused or non-dispersive pattern en route to Tertiary-age reservoir sandstones in the drape anticlines. The charge model for play 3 prospects is dependent upon a long chain of critical events and therefore seems likely to fail.

Two major risk factors for play 3 relate to: **1) migration** (must re-migrate oil from underlying disrupted Mesozoic pools or gas from distant generation centers in North Aleutian or Amak basins, crossing numerous young faults); and **2) seal** (the reservoir sequence over the crest of the Black Hills uplift is very sand-rich and is not capped by a regional seal).

Play 3, Black Hills Uplift-Amak Basin, North Aleutian Basin OCS Planning Area, 2006 Assessment, Conditional BOE Sizes of Ten Largest Pools											
Assessment Results as of November 2005											
Pool Rank	BOE Resources *										
FOOLKalik	F95	Mean	F05								
1	20	378	1302								
2	6	110	365								
3	3	52	169								
4 1.7 30 98 5 1.2 20 64											
											6
7	0.8	11									
8	0.7	9	27								
9	0.6	7	22								
10	0.5	6	19								
Energy-Equivalent (N F95 = 95% chance the given quantity F05 = 5% chance the quantity BOE = total hydrocar	* Conditional, Technically-Recoverable, Millions of Barrels Energy-Equivalent (Mmboe), from "PSRK.out" file F95 = 95% chance that resources will equal or exceed the given quantity F05 = 5% chance that resources will equal or exceed the given quantity BOE = total hydrocarbon energy, expressed in barrels-of-oil- equivalent, where 1 barrel of oil = 5,620 cubic feet of natural										

A maximum of 13 hypothetical pools is forecast by the aggregation of the risk model and the prospect numbers model for play 3. These pools range in mean conditional (unrisked) recoverable volumes from 4 Mmboe (pool rank 13) to 378 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 20 Mmboe (F95) to 1,302 Mmboe (F05), or, in the gas case, from 0.11 Tcfge (F95) to 7.32 Tcfge (F05). Table 2 shows the conditional sizes of the 10

In the computer simulation for play 3, a total of 15,323 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each

largest pools in play 3.

successive class. Pool size class 11 contains the largest share (2,521, or 16%) of simulation pools (conditional, technically recoverable BOE resources) for play 3. Pool size class 11 ranges from 32 to 64 Mmboe. The largest pool among the 15,323 simulation pools falls within pool size class 19, which ranges in size from 8,192 to 16,384 Mmboe (or 46-92 Tcfge). Table 6 reports statistics for the simulation pools developed in the *GRASP* computer model for play 3.

<u>Basin</u> : North Aleutian Basin <u>Play Number</u> : 3 <u>Play UAI Number</u> : AAAAA HAD		<u>Assessor(s)</u> : K.W. Sherwood, D. Comer, J. Larson <u>Date</u> : December 2004 <u>Play Name</u> : Black Hills Uplift - Amak Basin (Eocene-Miocene)														
<u>Play Area</u> : 6,990 mi2 (4.5 million acres) Reservoir Thermal Maturity: 0.23%-2.00% Rc	o (mostly 0.23	9%-0.31% R	D)		Expected	<u>h Range</u> : 2,000-12,5 <u>Oil Gravity</u> : 35 ⁰ AP e <u>r Depth Range</u> : 15	I .	•)						
POOLS Module (Volumes o	of Pools,	Acre-F	eet)													
Fractile	F100	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15 F10 F05			F02	F01	F00			
Prospect Area (acres)-Model Input*	2667 (act)		2350 (fit)		5916	25230/48696			57316				13338			
Prospect Area (acres)-Model Output**	509	1643	2471	4869	11201	19995/23424	25426	38733	49245	70155	78000	82000	13312			
Fill Fraction (Fraction of Area Filled)	0.02	0.07	0.08	0.12	0.15	0.17/0.08	0.2	0.26	0.28	0.33	0.4	0.45	1			
Productive Area of Pool (acres)	42	226	343	706	1734	3554/5194	4054	6211	8543	12700	17000	20000	5648			
Pay Thickness (feet)	3	21	29	52	98	151/180*	184	258	324	340	375	400	550			
^r model fit to prospect area data in BESTFIT ^{r*} output from @RISK after aggregation with fill	fraction					*** original fit to Coo	ok Inlet data	a								
MPRO Module (Numbers of												•				
Input Play Level Chance	0.42		Prospect L	evel Chan	ice	0.25			Exploratio	on Chance		0.105				
Output Play Level Chance*	0.4126															
First Occurrence of Non Zero Pools As Reported in PSUM			•									-				
Risk Model		hance				roleum System Fac					t Chance	4				
		.6		Migration		nighly-faulted path		ry source)		0	ł					
	0.	.7	Seal (no regional seal over reservoir)								.5	+				
												1				
Fractile	F99	F95	F90	F75	F50	Mean/Std. Dev.	F25	F15	F10	F05	F02	F01	F00			
	1		10	13	14		45	16	17	17.5		18	20			
Numbers of Prospects in Play	10	11	12	15	14	14.61/1.83	15	10		17.5	17.7	10				
	10	11	12	15	14	14.61/1.83 1.53/2.12	15 3	4	5	6	17.7 7	7	13			
	10 Zero Pools a		12	15	14								13			
				Number of				4		6			13			
Numbers of Pools in Play	Zero Pools a 1 (F40.00)	t F41.28	Mean			1.53/2.12		4	5	6	7		13			
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul	Zero Pools a 1 (F40.00)	t F41.28	Mean			1.53/2.12		4	5	6	7					
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul Fractile	Zero Pools a 1 (F40.00) es (Play	t F41.28 7 Resou	Mean rces)	Number of	f Pools	1.53/2.12	3	4 Maximu	5 m Number	6 of Pools	7	7	F00			
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul Fractile Oil Recovery Factor (bbl/acre-foot)	Zero Pools a 1 (F40.00) es (Play F100	t F41.28 7 Resou F95	Mean rces) F90	Number of F75	F Pools	1.53/2.12 1.53 Mean/Std. Dev.	3 F25	4 Maximu F15	5 m Number F10	6 of Pools F05	7 13 F02	7	13 F00 1300 1963			
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul Fractile Dil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot)	Zero Pools a 1 (F40.00) es (Play F100 42	t F41.28 7 Resou F95 129	Mean rces) F90 158	Number of F75 221	F Pools F50 311	1.53/2.12 1.53 Mean/Std. Dev. 343/177	3 F25 427	4 Maximu F15 500	5 m Number F10 558	6 of Pools F05 644	7 13 F02 800	7 F01 960	F00 1300 1963			
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul Fractile Dil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot) Gas Oil Ratio (Sol'n Gas)(cf/bbl)	Zero Pools a 1 (F40.00) es (Play F100 42 8	t F41.28 Resou F95 129 441	Mean rces) F90 158 531	F75 221 686	Fools F50 311 873	1.53/2.12 1.53 Mean/Std. Dev. 343/177 888/302	3 F25 427 1074	4 Maximu F15 500 1194	5 m Number F10 558 1271	6 of Pools F05 644 1389	7 13 F02 800 1450	7 F01 960 1550	F00 1300 1965 1110			
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul Fractile Dil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot) Gas Oil Ratio (Sol'n Gas)(cf/bbl) Condensate Yield ((bbl/Mmcfg)	Zero Pools a 1 (F40.00) es (Play F100 42 8 56 1	r F41.28 Resou F95 129 441 162 14	Mean rces) F90 158 531 195	F75 221 686 267 21	F50 311 873 376 25	1.53/2.12 1.53 Mean/Std. Dev. 343/177 888/302 426/220	3 F25 427 1074 531	4 Maximu F15 500 1194 638	5 m Number 558 1271 723 34	6 of Pools 644 1389 871 35	7 13 F02 800 1450 1073 37	7 F01 960 1550 1100	F00 1300 1963 1110 50			
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul Fractile Oil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot) Gas Oil Ratio (Sol'n Gas)(cf/bbl) Condensate Yield ((bbl/Mmcfg) Pool Size Distribution Statistics from POOL	Zero Pools a 1 (F40.00) es (Play F100 42 8 56 1 s (1,000 BOE	r F41.28 Resou F95 129 441 162 14	Mean F90 158 531 195 17 μ (mu)= 10	F75 221 686 267 21 0.662	Fools F50 311 873 376 25 σ ² (sigma	1.53/2.12 1.53 Mean/Std. Dev. 343/177 888/302 426/220 25/7 squared)= 2.666	3 F25 427 1074 531 29	4 Maximu F15 500 1194 638 32	5 m Number 558 1271 723 34	6 of Pools F05 644 1389 871 35 Jumber Ger	7 13 F02 800 1450 1073 37	7 F01 960 1550 1100 39	F00 1300 1963 1110 50			
Numbers of Pools in Play Minimum Number of Pools POOLS/PSRK/PSUM Modul Fractile Oil Recovery Factor (bbl/acre-foot) Gas Recovery Factor (Mcfg/acre-foot) Gas Oil Ratio (Sol'n Gas)(cf/bbl) Condensate Yield ((bbl/Mmcfg) Pool Size Distribution Statistics from POOL BOE Conversion Factor (cf/bbl)	Zero Pools a 1 (F40.00) es (Play F100 42 8 56 1 s (1,000 BOE 5620	r F41.28 Resou F95 129 441 162 14	Mean F90 158 531 195 17 μ (mu)= 10 Probability	F75 221 686 267 21 0.662 r Any Pool	Fools F50 311 873 376 25 σ ² (sigma Contains	1.53/2.12 1.53 Mean/Std. Dev. 343/177 888/302 426/220 25/7 squared)= 2.666 Both Oil and Free G	3 F25 427 1074 531 29 as (Gas Cas	4 Maximu F15 500 1194 638 32 32	5 m Number 558 1271 723 34	6 of Pools F05 644 1389 871 35 Number Ger 0.4	7 13 F02 800 1450 1073 37	7 F01 960 1550 1100 39	F00 1300 1963 1110 50			
	Zero Pools a 1 (F40.00) es (Play F100 42 8 56 1 s (1,000 BOE	r F41.28 Resou F95 129 441 162 14	Mean F90 158 531 195 17 μ (mu)= 10 Probability	F75 221 686 267 21 0.662 r Any Pool	Fools F50 311 873 376 25 σ ² (sigma Contains	1.53/2.12 1.53 Mean/Std. Dev. 343/177 888/302 426/220 25/7 squared)= 2.666	3 F25 427 1074 531 29 as (Gas Cas	4 Maximu F15 500 1194 638 32 32	5 m Number 558 1271 723 34	6 of Pools F05 644 1389 871 35 Jumber Ger	7 13 F02 800 1450 1073 37	7 F01 960 1550 1100 39	F0 130 196 111 50			

North Aleutian Play 3 Summary-2006 Assessment

As	sess	ment Province:	North Aleutian Basin OCS Planning Area		. Black Hills Uplift - Amak Basin Eocene-Miocene)						
		Assessor(s):	K.W. Sherwood, D. Comer, J. Larson		A HAD						
			1-Jan-05	Play UAI.	AAAA						
ert	ainty)) based on consid	<i>iantitative</i> probability of success (i.e., between zero a leration of the <i>qualitative</i> assessment of ALL element im geologic parameter assumptions have been met of	nts within the component was							
						Play Chance Factors	Averge Condition Prospect Chance				
1.			component (1a * 1b * 1c)		1	0.6000	0.5000				
		Probability of effi rock of adequate	Quality, Effective, Mature Source Rock icient source rock in terms of the existence of sufficie quality located in the drainage area of the reservoirs		1a	1.00	1.00				
	b.		sion and Migration ective expulsion and migration of hydrocarbons from	the source rock to the	1b	0.60	0.50				
	C.	Preservation Probability of effe	ective retention of hydrocarbons in the prospects afte	er accumulation.	1c	1.00	1.00				
2.	Res	servoir compo	nent (2a * 2b)		2	1.0000	1.0000				
	a.	Presence of res									
	b.		esence of reservoir facies with a minimum net thickne esource assessment). tv	ess and net/gross ratio (as	2a	1.00	1.00				
		Probability of effe	ectiveness of the reservoir, with respect to minimum specified in the resource assessment).	effective porosity, and	2b	1.00	1.00				
3.		p component		0.7000	0.5000						
		assessment).	sence of the trap with a minimum rock volume (as sp	pecified in the resource	3a	1.00	1.00				
	b.	Effective seal m Probability of effe	echanism ective seal mechanism for the trap.		3b	0.70	0.50				
)v	erall		(Marginal Probability of hydrocarbons, MF	Phc)		0.4200					
		(1 * 2 * 3) Produ	ict of All Subjective Play Chance Factors			0.4200					
ve	erag		Prospect Chance ¹ Ict of All Subjective Conditional Prospect Chance Fac	ctors			0.2500				
			the Play exists (where all play chance factors = 1 stent with play chance and prospect distribution		3 of Gui	de					
X	olora	ation Chance (Product of Over	all Play Chance and Average Conditional Prospect C	Chance)		0.	1050				
0	mme	ents: See guida	nce document for explanation of the Risk Analysis F	orm	•						

 Table 4. Risk model for North Aleutian basin play 3, 2006 assessment.

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region

GRASP Model Version: 8.29.2005) Computes the Geologic Resource Potential of the Play

Play UA		C	Play No.		3	
World	Level	-	World	Level	Resources	
Country	Level	-	UNITED	STATES	OF	AMERICA
Region	Level	-	MMS	-	ALASKA	REGION
Basin	Level	-	NORTH	ALEUTIAN	BASIN	
Play	Level	-	Play		3 Black Hills	Uplift - Amak Basin
Geologist	Sherwood	/	Comer	/	Larson	
Remarks	2005	5 Assessment				
Run Date & Time:		Date	19-Sep-0	05 Time	14:07:5	53

Summary of Play Potential

Product	MEAN	Standard Deviation
BOE (Mboe)	210,410	470,200
Oil (Mbo)	148,820	373,980
Condensate (Mbc)	6,093	17,152
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	248,940	681,860
Solution Gas (Mmcfg)	62,990	175,980

10000 (Number of Trials in Sample) 0.4126 (MPhc [Probability] of First Occurrence of Non-Zero Resource)

Windowing Feature: used

Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)
100	0	0	0	0	0
99.99	0	0	0	0	0
99	0	0	0	0	0
95	0	0	0	0	0
90	0	0	0	0	0
85	0	0	0	0	0
80	0	0	0	0	0
75	0	0	0	0	0
70	0	0	0	0	0
65	0	0	0	0	0
60	0	0	0	0	0
55	0	0	0	0	0
50	0	0	0	0	0
45	0	0	0	0	0
40	18,084	9,913	870	36,854	4,178
35	81,880	47,531	3,718	152,350	19,800
30	150,570	92,628	6,133	253,230	37,909
25	225,130	144,850	8,386	341,620	62,444
20	324,050	198,230	13,519	553,580	77,544
15	456,270	303,560	15,742	646,920	122,860
10	663,810	453,540	22,132	864,720	192,630
8	783,570	558,610	22,521	908,310	229,390
6	955,530	657,900	29,369	1,231,400	276,220
5	1,077,200	705,640	37,591	1,587,800	289,030
4	1,217,700	867,920	35,234	1,404,600	363,220
2	1,715,000	1,282,900	39,709	1,661,100	544,140
1	2,275,300	1,792,900	41,702	1,697,100	779,420
0.1	4,312,600	3,951,100	15,452	583,050	1,362,000
0.01	6,569,400	6,073,800	835	34,955	2,746,000
0.001	9,685,700	8,652,200	84	3,496	5,804,400

 Table 5.
 Assessment results by commodity for North Aleutian basin play 3, 2006 assessment.

Basin:	NORTH AL	EUTIAN BA	SIN			Model Simul	lation "Pools	" Reporte	d by "F	ieldsiz	e.out" G	RASP M	odule										
	Black Hill			n																			
	: AAAAAH																						
07.1.100																							
	Classifica	tion and Size		Poo	I Count Statis	tics		Pool	Types Co	ount	Mixed P	ool Range	Oil Poo	l Range	Gas Po	ol Range	Total Po	ol Range			Pool Resource	Statistics (MMBOE)	
Class	Min (MMBOE)	Max (MMBOE)	Pool Count	Percentage	Trial Average	Trials w/Pool Avg		Mixed Pool	Oil Pool	Gas Pool	Min	Max	Min	Мах	Min	Мах	Min	Max		Min	Max	Total Resource	Average Resource
1	0.0312	0.0625	3	0.019578	0.0003	0.000727		2	1	0	1	1	1	1	0	0	1	1		0.039438	0.060823	0.155729	51,909536
2	0.0625	0.125	4	0.026105	0.0004	0.000969		1	2	1	1	1	1	1	1	1	1	1		0.067153	0.124915	0.364610	91,15261
3	0.125	0.25	18	0.11747	0.0018	0.004362		5	4	9	1	1	1	1	1	1	1	1		0.126170	0.246997	3.641255	202.29195
4	0.25	0.5	60	0.391568	0.006	0.014538		25	16	19	1	1	1	1	1	1	1	1		0.268904	0.497585	23,718012	395.30021
5	0.5	1	140	0.913659	0.014	0.033923		51	49	40	1	1	1	1	1	1	1	2		0.504160	0.999933	103.324543	738.03246
6	1	2	320	2.088364	0.032	0.077538		126	104	90	1	2	1	2	1	2	1	3		1.007409	1.998132	489.314822	1.52910
7	2	4	624	4.072309	0.0624	0.151199		226	194	204	1	2	1	2	1	2	1	3		2.003329	3.997451	1862.126000	2.98417
8	4	8	1139	7.43327	0.1139	0.275987		464	373	302	1	3	1	2	1	2	1	3		4.001815	7.989694	6791.046000	5.96228
9	8	16	1744	11.381583	0.1744	0.422583		695	647	402	1	3	1	4	1	2	1	5		8.000080	15.999747	20554.984000	11.78611
10	16	32	2362	15.414736	0.2362	0.572329		937	906	519	1	4	1	3	1	3	1	4		16.000233	31.996418	55207.503000	23.37320
11	32	64	2521	16.452393	0.2521	0.610855		1026	999	496	1	3	1	3	1	3	1	5		32.014252	63.984028	116124.374000	46.06282
12	64	128	2440	15.923775	0.244	0.591228		973	1017	450	1	4	1	3	1	2	1	5		64.034489	127.967359	222596.856000	91.22821
13	128	256	1889	12.327873	0.1889	0.457717		787	811	291	1	3	1	3	1	2	1	4		128.039834	255.776717	341072.971000	180.55741
14	256	512	1182	7.713894	0.1182	0.286407		464	571	147	1	2	1	2	1	2	1	3		256.278784	511.003356	417328.713000	353.06997
15	512	1024	569	3.713372	0.0569	0.137873		226	305	38	1	2	1	2	1	2	1	3		512.829557	1020.336000	399708.214000	702.47491
16	1024	2048	242	1.579325	0.0242	0.058638		82	141	19	1	2	1	2	1	1	1	2		1026.713000	2026.543000	333511.915000	1.37814
17	2048	4096	58	0.378516	0.0058	0.014054		16	40	2	1	1	1	1	1	1	1	2		2064.536000	3754.216000	151613.131000	2.61402
18	4096	8192	6	0.039157	0.0006	0.001454		1	5	0	1	1	1	1	0	0	1	1		4198.308000	6115.990000	28019.575000	4.66992
19	8192	16384	1	0.006526	0.0001	0.000242		0	1	0	0	0	1	1	0	0	1	1		9111.398000	9111.398000	9111.398000	9.11139
20	16384	32768	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.00000
21	32768	65536	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.00000
22	65536	131072	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.00000
23	131072	262144	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.00000
24	262144	524288	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.00000
25	524288	1048576	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0.000000	0.000000	0.000000	0.00000
Not Clas			1	0.006526	0.0001	0.000242	Below Class	0	0	1									Below Class	0.017078	0.017078	0.017078	17.07821
		Totals	15323	99.999992	1.5323	3.712866	Above Class	0	0	0									Above Class	0.000000	0.000000	0.000000	0.00000
	r of Pools r r of Pools t											Max refe					nt size c	lass that		Min and Max refetered that occur within		esources of the relevation the simulation.	ant size class
	r of Trials v																						

Table 6. Statistics for simulation pools created in computer sampling run for North Aleutian basin play 3, 2006 assessment.

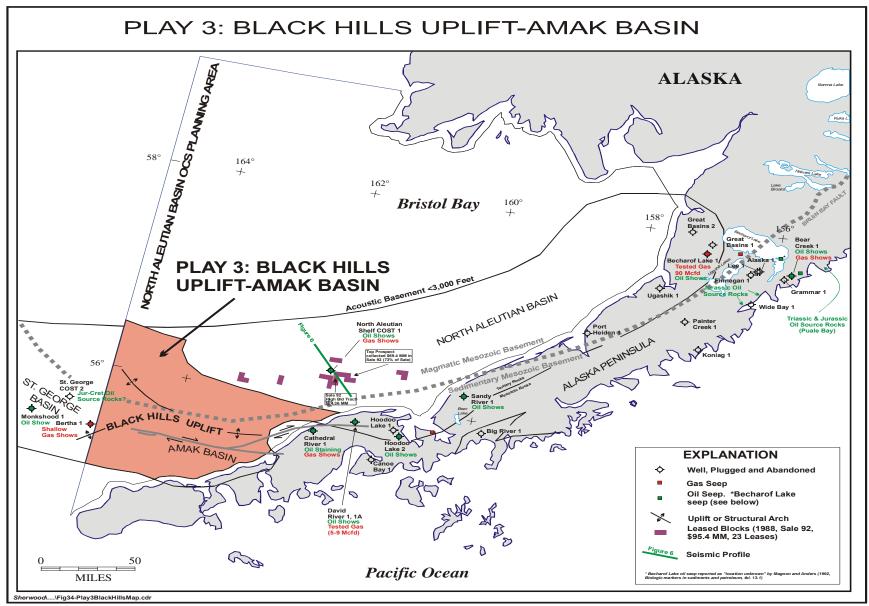


Figure 1. Map location of North Aleutian basin play 3, 2006 assessment.