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Accumulated evidence from searching for candidate gene-disease associations of complex diseases can offer
some insights as the field moves toward discovery-oriented approaches with massive genome-wide testing. Meta-
analyses of 50 non–human lymphocyte antigen gene-disease associations with documented overall statistical
significance (752 studies) show summary odds ratios with a median of 1.43 (interquartile range, 1.28–1.65). Many
different biases may operate in this field, for both single studies and meta-analyses, and these biases could
invalidate some of these seemingly ‘‘validated’’ associations. Studies with a sample size of >500 show a median
odds ratio of only 1.15. The median sample size required to detect the observed summary effects in each pop-
ulation addressed in the 752 studies is estimated to be 3,535 (interquartile range, 1,936–9,119 for cases and
controls combined). These estimates are steeply inflated in the presence of modest bias. Population heterogeneity,
as well as gene-gene and gene-environment interactions, could steeply increase these estimates and may be
difficult to address even by very large biobanks and observational cohorts. The one visible solution is for a large
number of teams to join forces on the same research platforms. These collaborative studies ideally should be
designed up front to also assess more complex gene-gene and gene-environment interactions.
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Abbreviation: IQR, interquartile range.

Human genome epidemiology is rapidly changing from
the investigation of single genes and gene variants to the
adoption of discovery-oriented approaches that encompass
searching across millions of genetic variants (1, 2). More-
over, the challenge of accumulating evidence and modeling
gene-gene interactions and gene-environment interactions is
becoming more tangible as more rich databases are accu-
mulated based on collaborative case-control studies and
large cohort studies and biobanks. Theoretical debates have
been ongoing for some time on the exact contribution of
single variants and the magnitude of expected genetic ef-
fects (3). The accumulated evidence from candidate gene-

disease association studies to date can give us some useful
evidence to also guide future efforts. In this paper, we briefly
review the implications of small effect sizes of individual
genetic variants on the design and interpretation of genetic
studies of complex diseases

HOW LARGE ARE EFFECT SIZES OF INDIVIDUAL
GENETIC VARIANTS FOR COMPLEX DISEASES?

We scrutinized an updated, comprehensive database of
122 meta-analyses of non–human lymphocyte antigen gene-
disease association studies of unrelated subjects on distinct,
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nonoverlapping associations with binary outcomes, where
data were available on each included study to create the
pertinent 2-by-2 table (4). The a priori rules for selection of
meta-analyses, studies, and genetic contrasts have been de-
scribed previously (4–6). In brief, whenever information was
available to create both 2-by-2 and 2-by-3 tables, we selected
the former. Among the possible genetic contrasts that could
result in 2-by-2 tables, we chose the one proposed by the first
study on the postulated association; when it was unclear, we
chose the one proposed by the meta-analysis. When this was
also unclear, the order of preferencewas recessivemodel, dom-
inant model, allele-based model. Availability of information
on 2-by-2 tables ensured that all data were reanalyzed consis-
tently across studies in a meta-analysis and that the frequency
of the genetic variant of interest was precisely recorded for
both the cases and controls and could be used for analysis.

Fifty meta-analyses concluded with a statistically sig-
nificant association (p < 0.05) even when between-study
heterogeneity was accounted for by random-effects calcu-
lations (DerSimonian and Laird model (7)). These 50 asso-
ciations included a total of 752 studies. The published
systematic reviews from which these 50 meta-analyses were
derived examined only the specific gene variant in 39 meta-
analyses, several variants of the same gene in seven meta-
analyses, and variants from several genes perceived to be in
the same pathway in another four meta-analyses. All studies
on the 50 associations could be considered a typical com-
parison of cases and controls (case-control studies, cross-
sectional studies, cases vs. population controls, prevalence
data from cohort designs); only two meta-analyses also
clearly included studies with a prospective cohort design
and incident events.

Common phenotypes included cardiovascular disease out-
comes (n¼ 10), various cancers (n¼ 7), schizophrenia (n¼
7), dementia (n¼ 4), diabetes and its complications (n¼ 3),
and cerebrovascular outcomes (n ¼ 3). The five most com-
mon genes implicated in the associations are shown in
table 1. It is interesting that four of these five genes are also
included on the list of the five genes for which the highest
number of papers appear in the published literature accord-

ing to the Human Genome Epidemiology (HuGE) Published
Literature database as of September 6, 2005 (http://www.
cdc.gov/genomics/search/aboutHPLD.htm). Postulated gene-
disease associations are primarily described for the most
sought-after candidate genes. Does this reflect that these
genes are indeed important for many different outcomes?
Does it mean that once an association has been proposed for
a specific disease, bias is created and many other spurious
associations of the same variant are then also reported for
other diseases, or is it a manifestation of searching ‘‘under
the lamp-post’’ until now? Probably what we see is a combi-
nation of all three factors.

Figure 1 shows the distribution of the genetic effects in
the 50 meta-analyses (left panel) and in the 752 individual
studies (right panel). We chose the direction of the genetic
contrast in such a way that all summary odds ratios are
higher than 1.00. For the meta-analyses, the median sum-
mary odds ratio is 1.43, with an interquartile range (IQR) of
1.28–1.65 and a range of 1.10–2.58. The distribution of the
odds ratios in the 752 studies shows a median of 1.30 (IQR,
1.01–1.90). We should acknowledge that some of these
seemingly significant gene-disease associations may not be
true despite the fact that evidence of their presence comes
from a considerable number of studies. In particular, for
associations in the 1.1–1.3 range, even limited reporting or
publication bias could produce a spurious effect (8).

There were 168 out of 752 studies that had more than 500
participants or alleles (depending on the assessed contrasts).
These ‘‘larger’’ studies are part of 42 meta-analyses, whereas
eight meta-analyses are composed entirely of studies with
a smaller sample size. The distribution of effect sizes across
these 168 studies shows a median odds ratio of only 1.15 and
an IQR of 1.01–1.45. Of the 42 meta-analyses with studies
whose sample size exceeds 500, only 14 maintain formal
statistical significance when limited to these larger studies.
The median summary odds ratio for these 14 gene-disease
associations is 1.45 (IQR, 1.28–1.64; range, 1.21–2.24).

Most of the genetic variants involved in these 50 postu-
lated associations are relatively common. For the 752 indi-
vidual studies, the median proportion for the minor genetic
group (the less-frequent group according to the assumed
genetic model) in the controls is 24.8 percent (IQR,
9.7–40.7 percent).

Overall, these data suggest that typical effect sizes of
individual genetic variants for complex diseases pertain to
odds ratios of 1.2–1.6. Some smaller effects are possible but
are extremely difficult to differentiate from the potential
impact of bias. Bias cannot be excluded even for the larger
effects. Bias could be due to a large variety of factors. Their
detailed description goes beyond the scope of this commen-
tary but includes poor quality and design problems in single
studies (9, 10), low prior probability of an association and
relatively high p values (8, 11), reporting and publication
biases (12, 13), and biased criteria for inclusion of studies in
meta-analysis.

IMPLICATIONS FOR SAMPLE SIZE REQUIREMENTS

One might then ask: Even if these summary effect sizes
reflect the truth and if they are representative of the effect

TABLE 1. The five most common genes* implicated in genetic

associationsy

Rank Gene Associations Publications

1 ACE 6 731

2 MTHFR 5 729

3 APOE 3 905

4 GSTM1 3 538

5 DRD3 3 65

* ACE, angiotensin I converting enzyme 1; MTHFR, 5,10-methyl-

enetetrahydrofolate reductase; APOE, apolipoprotein E; GSTM1,

glutathione S-transferase M1; DRD3, dopamine receptor D3.

y The number of significant associations is based on the database

of 50 meta-analyses. The number of published studies pertains to in-

dexed papers in the Human Genome Epidemiology (HuGE) Published

Literature database for the period October 1, 2000, to September 6,

2005.Human lymphocyteantigengenetic variants are not considered in

either database.
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sizes for individual genetic variants associated with com-
plex diseases, what kinds of studies are needed to document
them in various population settings? Let us focus on the
population settings in which these prior studies have already
been conducted. For each of the 752 studies, we estimated
the required sample so as to have 90 percent power to detect
at a ¼ 0.05 the genetic effect size seen in the respective
meta-analysis, if the frequency of the genetic variants in the
control group is that observed in the study. The choice of
a ¼ 0.05 represents a typical threshold for claiming statis-
tical significance. Aiming for lower a values (e.g., to ac-
commodate multiple testing) would further increase the
required sample size steeply. We assume the same allocation
ratio between cases and controls in these hypothetical well-
powered studies as the allocation ratio in the original stud-
ies. The actual allocation ratios are usually close to 1, with
a median of 0.93 cases per control and an IQR of 0.53–1.15;
using an allocation ratio of 1 for all calculations makes little
difference overall (not shown in detail here). However, one
should note that some studies understandably seem to have
difficulty recruiting cases, even with the relatively small
sample sizes used to date. Maintaining a reasonable alloca-
tion ratio may be a challenge if much larger samples are to
be recruited, but, for now, let us assume that it can be done.
Sample size calculations were implemented in Intercooled
Stata 8.2 by using the sampsi Stata module (Stata Corpora-
tion, College Station, Texas).

Figure 2 shows that the required total sample size (cases
and controls combined) can be very large. The left panel
gives the distribution of the necessary sample sizes per

study, with a median of 3,535 and an IQR of 1,936–9,119
for cases and controls combined. The numbers required are
much larger compared with studies conducted to date in the
field. On median, 13.3-fold more subjects would have to be
genotyped than in each original study conducted in each
population (IQR, 5.9–31.4) (figure 2, right panel). If we
try to account for even limited bias, these sample size re-
quirements can be inflated considerably. For example, if the
true odds ratios are 0.1 lower than the observed summary
effect sizes (an assumption that may be quite conservative,
based on the above), then the median required sample size
becomes 6,244 (IQR, 2,698–35,444). If half of the observed
summary effect is due to bias and half is real (e.g., for
observed summary log(odds ratio) ¼ 0.46, the true effect
is 0.23), the median required sample size becomes 14,618
(IQR, 7,791–36,435).

CAVEATS AND LIMITATIONS

Meta-analyses in this field are becoming increasingly
popular (14), but they cover only a portion of the available
evidence on gene-disease associations. According to the
HuGE Published Literature database, as of October 11,
2005, there were at least 17,467 published reports of original
studies on human genome epidemiology, most of them (n ¼
16,267) pertaining to gene-disease associations (15). It is
unclear, however, whether the decision to perform and re-
port a meta-analysis would be influenced by the postulated
effect size of a significant association. Second, we acknowl-
edge that some of the excluded, statistically nonsignificant

FIGURE 1. Left panel: distribution of summary odds ratios based on random-effects calculations in 50 meta-analyses with formally statistically
significant results for gene-disease associations of common diseases. Calculations were performed with Intercooled Stata 8.2 software (Stata
Corporation, College Station, Texas). Right panel: distribution of odds ratios in the 752 studies included in these 50meta-analyses. For both panels,
the median is shown by a vertical line. For eligibility criteria for the screening of the meta-analyses, refer to Ioannidis et al. (4–6). A full list of
nonoverlapping meta-analyses with binary outcomes is available in the online supplement to reference 4, and a full list of the data from the 50
included meta-analyses per study is available from the authors.
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meta-analyses may have been underpowered to detect an
existing, true genetic association (5). However, other aspects
being equal, on average these effects are likely to be smaller
than those included; thus, sample size requirements would
be even larger.

Third, nondifferential measurement error in these studies
may dilute the observed effect sizes, but it is more likely that
selective reporting biases in favor of significant results are
stronger and more than counterbalance this diluting impact.
Fourth, the meta-analyzed variant may be in linkage dis-
equilibrium with only the true culprit that has a larger odds
ratio. However, the current discovery-oriented approaches
generally do not necessarily target only the true, biologi-
cally important functional culprits. If anything, the 50 asso-
ciations analyzed here probably have stronger functional
support than the vast majority of associations that would
be obtained currently through whole genome association
analyses and other high-throughput approaches. Finally, our
analyzed sample did not include any of the very few genetic
variants that have been identified to date with a postulated odds
ratio exceeding 3. The only such meta-analysis published in
the time frame of our literature search (the apolipoprotein E
gene (APOE) and Alzheimer’s disease (16)) did not provide
2-by-2 tables per study.Considerations for the searchof variants
with very strong effects probably are different.

In the presence of genuine heterogeneity (e.g., ethnic or
‘‘racial’’diversity) in the genetic effects (17), synergistic gene-
gene interactions (18), and synergistic gene-environment
interactions (19), the required sample sizes would easily in-
crease further. For example, if the effect is present in only one
ethnic subgroup or combination of gene(s) and environmental
exposures, then analysis of an entire sample may wash out

the effect and reduce power. Misclassification is also a major
concern for measurement of environmental exposures, but it
can also affect genotyping. In the presence of even modest
nondifferential misclassification, the required sample sizes
increase steeply (20).

HOW DO WE MEET THE EMERGING CHALLENGES OF
HUMAN GENOME EPIDEMIOLOGY?

Meeting the goals of the current research agenda in ge-
netic association studies would probably require sample
sizes in the range of several thousands to more than tens
of thousands to answer the simpler questions, and sample
sizes possibly in the range of 50,000–100,000 or even lar-
ger to answer questions of modest complexity. These num-
bers pertain to case-control studies, including in particular
those nested within even larger cohorts. Even the single
largest general-purpose observational cohorts and biobanks
(21, 22) would be challenged to meet these numbers. Except
for very common diseases, such as coronary artery disease,
where a considerable fraction of the population may be suit-
able cases, for most diseases, the largest biobanks and co-
horts may be unable to provide conclusive answers. For
example, for Parkinson’s disease, if the frequency of the
disease in a general population cohort is 1 percent, then
the cohort must include 500,000 subjects to enable enroll-
ment of approximately 5,000 cases with the disease to con-
clusively answer the simple questions.

A cohort base of several million subjects may have to be
recruited to answer the somewhat more complex questions.
Finally, for the most common diseases, such as coronary
artery disease noted above, it is unclear whether a broadly

FIGURE 2. Left panel: distribution of the total sample sizes (cases and controls combined) required for 90% power to detect associations of the
magnitude suggested by the summary odds ratio of a meta-analysis and the control frequency actually observed in each of the 752 studies (refer to
the text for calculation details). Calculations are based on two-sided tests. Right panel: distribution of the ratio of the required (as in left panel) vs. the
actual sample size used in the 752 studies. Calculations were performed with Intercooled Stata 8.2 software (Stata Corporation, College Station,
Texas).
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defined phenotype would be sufficient to capture the under-
lying genetic complexity. The failure of single genetic
variants–disease association studies of coronary artery dis-
ease to date (23, 24)may bedue to the fact that such a common
phenotype may reflect an array of many subphenotypes, each
with a different genetic background. The pertinent sub-
phenotypes, even if appropriately deciphered without get-
ting lost in exploratory subgroup analyses, may have
much lower prevalence and incidence rates and thus ex-
tremely high sample size requirements to delineate their
risk factors. Etiologic heterogeneity with diverse subphe-
notypes of different genetic background in less common
diseases would be even more difficult to address.

The effort to identify more complex effects should not
be abandoned. Because of the small effect sizes of indi-
vidual genetic variants, it may be reasonable to look for
complex genotypes that operate in biologic pathways and
gene-environment interactions. Yang et al. (25) have shown
that the combination of a few genetic variants (10 to 20) at
multiple loci, each with a modest effect size (odds ratio
of about 1.5), may account for a substantial portion of the
population attributable fraction for many common diseases.
Of course, we do not know the form of joint effects of ge-
netic variants (multiplicative, additive, or otherwise) nor
how these variants interact with environmental factors. Con-
ventional wisdom has taught us that looking for interactions
usually requires a vast expansion of sample sizes of the
original studies; however, under certain plausible biologic
scenarios of more extreme interactions among genes and
genes and environmental factors, there could be increased
statistical power for looking for such interactions in studies
designed to detect marginal effects of individual genotypes
(26, 27). The search for more complex genotypes with stron-
ger effects in such studies also makes sense in terms of the
eventual application of these findings to genomic medicine.
As shown by Holtzman and Marteau (28) and confirmed in
the analyses presented here, individual genetic variants with
weak or modest effect sizes are unlikely to be used for pre-
diction and prevention of common diseases, whereas the
combination of genetic variants, even with modest individ-
ual effect sizes, can lead to a marked increase in the ability
to predict disease risks (29).

If heterogeneity is immense across populations, it is ques-
tionable whether this predictive enterprise is feasible at all. If
most genetic variance is highly defined by very ‘‘private’’
genetic variation interacting with highly ‘‘private’’ environ-
mental exposures, then epidemiology is probably not the way
to address risk factors for complex diseases. Yet, it is unclear
whether anything else can take the place of epidemiologic
investigation in this pursuit (30). Given the complexity of the
genetics of common diseases, we should foster good a priori
hypotheses regarding genes and environmental factors, inno-
vative study designs, and strong collaborative efforts.

At a minimum, research teams working with the same
disease and sets of questions should join forces in networks
with common objectives. This goal is currently a major
effort of the HuGENet ‘‘network of networks’’ initiative
(31, 32). Reaching the point where our knowledge base
for genetic associations for complex diseases is reliable is
not easy. However, such knowledge is likely to be highly

desirable because it would allow us to explain a large pro-
portion of the cause of most common diseases and may also
lead to new therapeutic avenues and tailored preventive in-
terventions. A road map has been recently proposed on how
to reach this goal (32). It emphasizes efforts that will min-
imize bias in the published and unpublished literature, en-
hance data synthesis across diverse teams of investigators,
grade the credibility of the evidence accumulated, and main-
tain updated field-wide synopses that summarize the evolv-
ing knowledge in a specific field in as systematic and
unbiased a manner as possible. Eventually, the impact on
individual and public health could be considerable.
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