Size in Astronomy Often....angular size!

- Angular size of body parts: thumb, fist, pinky held at arm's length
- View near and distant objects
- Measure angular size of fist at arm's length

Angular Size of Fist (If time permits....or later.)

- Work in pairs
- Need: string (about 2 m.) and protractor
- Hold fist with arm outstretched
- Loop string around fist with two ends meeting at your eye
- Angle formed with vertex at eye
- Measure angle with protractor

Angles in a circle

L

A

Angle A ~ $(L/r) \times 57.3$ degrees

Diameter/Distance Relationship

d = distance to the object

D = diameter of the object (moon, sun, star, nebula, galaxy)

Angle $A = (D/d) \times 57.3$ degrees

Note: This is called the "small angle approximation"

How large are the angles in Astronomy?

- Moon: Diameter = 3480 km, distance = 384,000 km
- Sun: Diameter = 870,000 miles, distance = 94 million miles
- Use the formula in the previous slide to calculate the angular sizes of the moon and the sun.

Results of calculations

- Both the moon and sun have angular sizes of about 0.5 degrees!
- Does this surprise you?
- What astronomical event demonstrates this?
- Will your fist or only a finger block out the moon?
- Try your pinky at arm's length.

Angular units in Astronomy

- Moon and Sun our largest objects
- Need much smaller unit than the degree
- I hour = 60 minutes; 1 minute = 60 seconds
- 1 degree = 60 arcminutes; 1 arcminute = 60 arcseconds
- 1 degree = 3600 arcsecs (written 3600'')

The Small Angle Formula

The Small Angle formula becomes: Angle A = $(D/d) \ge 206,265$ (A in arcseconds)

Angular Size of Jupiter

- Jupiter: Diameter = 142,000 km, distance = 5.2 AU from the sun
- Remember: Earth is 1 AU from sun....and 1 AU = 1.5 x 10¹¹ meters.
- What's the angular size of Jupiter as viewed from the earth at "opposition" (when we're both on the same side of the sun)?

Results of calculation

Did you get about 46 arcsecs? (46")
Possible errors: (a) distance to Jupiter is 4.2 AU in this case, (b) not changing km to meters or vice versa

How big is an arcsecond?

- Place one meter stick on top of another.
- Insert a sheet of paper between the sticks at one end.
- The angle formed is about 25 arcseconds!
- Compare this to Jupiter's angular size, but keep in mind that Jupiter is 630 billion meters away!

Plate Scale

- Open Images: Tracking Jupiter's Moons
- Open Jup5
- Determine the diameter of Jupiter in pixels using slice.
- PS (plate scale) = arcsecs/pixel
- Calculate the PS using previous calculation of Jupiter's angular size.

Result of calculation

Diameter of Jupiter = 67 pixels (approx.)
Angular size of Jupiter = 46" (approx.)
Plate Scale = 46/67 = 0.69 arcsecs/pixel
PS is unique to each telescope/camera combination

Using Plate Scale

Click "log" on Jup5

- Measure distance to "Io" (lower left moon) from center of Jupiter using "slice".
- Convert pixels to angle (") using the PS you calculated earlier. A = (PS) x (pixels)
- Use small angle formula to calculate Io-Jupiter distance in km. Assume 4.2 AU for Earth-Jupiter distance.

Results of Calculations Io-Jupiter ~ 147 pixels • Angle $A = 147 \ge 0.69 \sim 101$ " • d (Earth-Jup) = $4.2 \times 1.5 E8 = 6.3 E8 km$. • D (Io-Jup) = $(A \times d) / 206,265 = 3.1 \text{ E5 km}.$

"A Grain of Sand"

- Open A2218 image (download if necessary from HOU website: galaxy cluster
- "A Grain of Sand" (APPRECIATE!)
- Calculate angular size of image using a "grain of sand" held at arm's length (small angle formula).
- Measure the number of pixels across the A2218 image.

"A Grain of Sand" (con.)

- Determine the PS of this image. You have the arcsecs and the pixels.
- Measure the pixel size of a galaxy.
- Determine the angular size of the galaxy using the PS.
- Assume this galaxy is about the size of the Milky Way ~100,000 LY across.

"A Grain of Sand" (con.)

- You now know the angular size of this galaxy and can assume its actual diameter.
- Use the small angle formula to determine the distance to the galaxy in LY.
- Angle $A = (D/d) \ge 206,265$
- A bit of Algebra manipulation is required!
- For one of the larger galaxies I get about one billion LY away!

