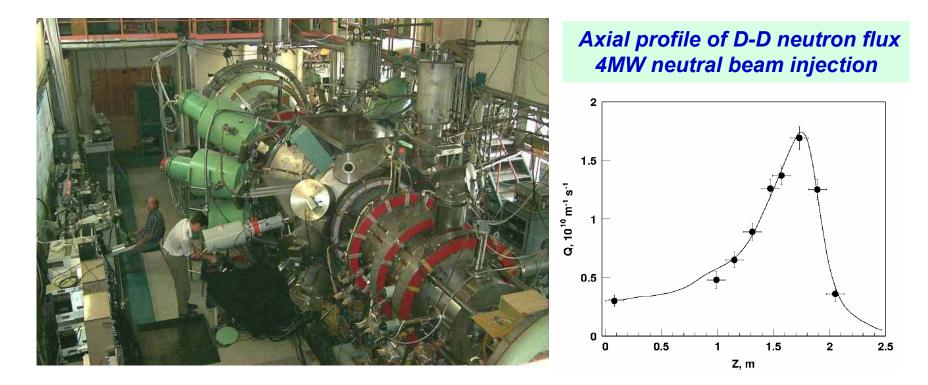
Options for a Component Test Facility (ST, Tokamak, GDT)

Martin Peng Oak Ridge National Laboratory & National Spherical Torus Experiment Princeton Plasma Physics Laboratory

Meeting of FESAC Sub-Panel on "DEMO in 35 Years"

> October 28 – 30, 2002 Livermore, CA

CTF Is a User Facility for Technology Developers - What Are the Options and Issues?

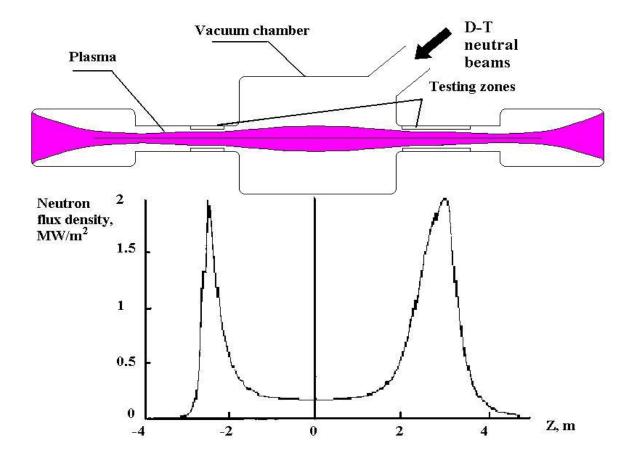

- "The CTF facility will provide the necessary integrated *(fusion nuclear)* technology) testing environment of high neutron and surface fluxes, steady state plasma (or long pulse with duty cycle >80% per pulse), electromagnetic fields, large test area and volume, and high neutron fluence."
- Required performance:
 - 14 MeV W₁ > 1 MW/m²
 - Testing area > 10 m²
 - Fluence > 0.3 MW-yr/m² per year
- Options:
 - Gas Dynamic Trap (brief summary first)

Small A (ST)

Conventional A (AT) (current results of assessment)

- What are the physics, engineering, and technology issues of CTF?
- Can CTF support fusion development effectively? ٠

Gas Dynamic Trap (GDT) Budker Institute of Nuclear Physics, Novosibirsk, Russia (IAEA-CN-94/EX/C1-4Rb, FEC 2002, Lyon, France)

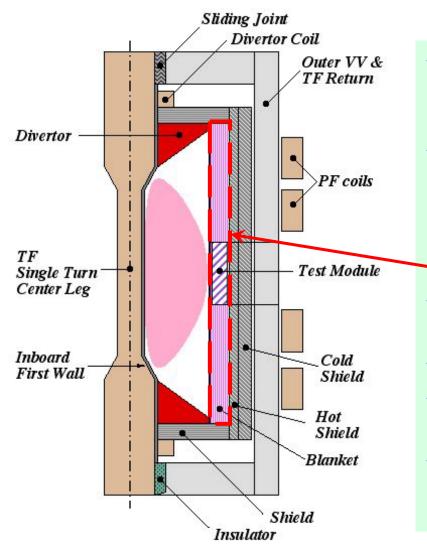

Recent Physics Progress

- MHD stability of simple mirror geometry ($\beta \sim 40\%$ at turning points)
- Modeled sloshing ion confinement
- Suppression of longitudinal electron thermal conductivity via very large B expansion ratio ~ (M/m)^{1/2}

Layout of GDT NS & Neutron Flux Density Distribution Along the Trap

(Courtesy of E. P. Kruglyakov)

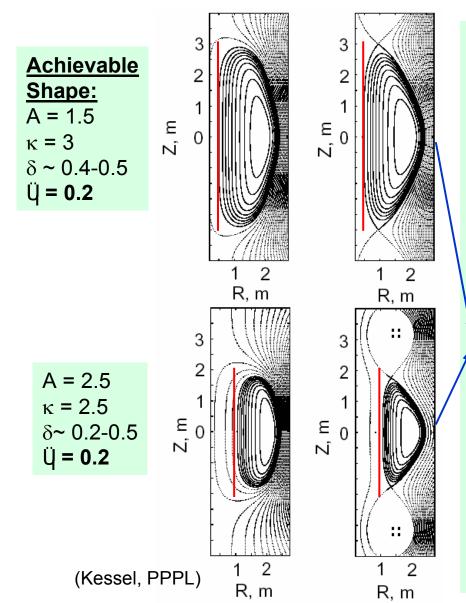
- Testing Zone = 1 m², WL = 2 MW/m², Tritium Consumption ~ 0.15 kg/yr
- Could provide large material testing volume (~ 0.3 m³ for > 0.5 MW/m²)


Main Parameters OF GDT, GDT-U, GDT-NS

(Courtesy of E. P. Kruglyakov)

PARAMETER	GDT (Achieved)	GDT-U (Projected)	GDT-NS (Projected)
MAGNETIC FIELD AT MID-PLANE (T) MIRROR RATIO	0.22 ~70	0.35 45	1.3 10
NBI PARAMETERS: INJECTION ANGLE BEAM ENERGY (keV) POWER (MW) DURATION (ms)	45° 15-17 4 1	45° 25-30 10 4-5	30° 65 35 Steady state
PLASMA PARAMETERS: DENSITY (10 ¹³ cm ⁻³) ELECTRON TEMP (keV)	8 0.1	4.4 0.3	~10 0.75
FAST IONS DENSITY AT TURNING POINTS (10 ¹³ cm ⁻³)	1	5	10
D-T NEUTRON FLUX DENSITY (MW/m ²)		(equivalent) 0.5	2
TEST ZONE AREA (m ²)			1

Key Engineering Design Features to Support the Component Test Mission Are Being Explored


Basic Configuration

<u>Features Required by Small Size</u> <u>& High Neutron Fluence</u>

- Single-turn demountable center leg for toroidal field coil required to achieve small size and simplified design.
- Fast remote replacement of all fusion nuclear test components (blanket, FW, PFC) & center post required to permit high neutron fluence.
 - Blanket test area \propto (R+a) κ a outboard.
- Adequate tritium breeding ratio required for long term fuel sufficiency.
- Accommodate high heat fluxes on PFC.
- 15-60 MA power supply for Single-turn TF.
- Initial core components could use DEMO-relevant technologies (such as from ITER and long-pulse tokamaks).

Initial CTF Parameters Are Being Estimated for Low and Conventional A Using Common Bases

Common Physics Design Bases

- Start with "low-Q"
 - "No-wall" plasma for $W_L = 1 MW/m^2$
 - H(98H) \leq 1.4, β_{N} ~ 3 4.5, $q_{cvl} \geq 2$
- Capable of "high Q"
 - "Stabilized" high performance plasma
 - H(98H) \leq 1.8, β_{N} ~ 5 8, $q_{\text{cyl}} \geq$ 2.5
 - Push to maximum B_T , I_{TFC}
 - Goal: $W_L = 5 MW/m^2$
 - Achievable shape via far away coils
 - Blanket shield (d/a) grows with A
 - Dependent on internal inductance, $\ddot{\boldsymbol{U}}$
- NBI, RF heating and current drive
- Physics-technology heat flux solutions
 - Large P/R \rightarrow big challenge
 - Low A SOL \rightarrow new physics?
 - Tungsten (ITER, Tore Supra), Li, etc.

Initial CTF Parameters Are Being Estimated for Low and Conventional A Using Common Bases

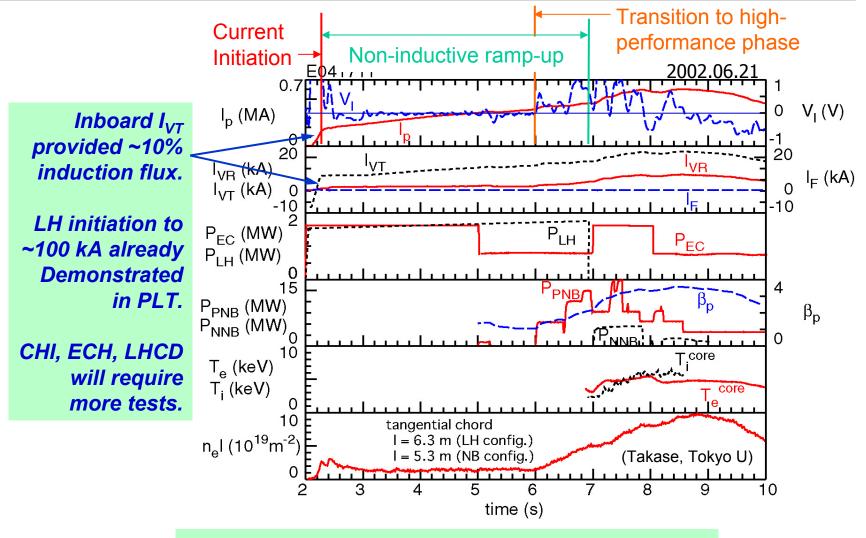
А	1.5	2.0	2.5
n wall load (MW/m ²)	1-5	1-5	1-5
H(98H)	1.4-1.8	1.4-1.8	1.4-1.8
$A_{test} \sim 2\pi (R_0 + a) \kappa a (m^2)$	47	47	47
R ₀ (m)	1.5	1.9	2.3
B _{tf} (T)	2.0-2.5	4.5	5.6
I _{tf} (MA)	15-19	43	64
l _p (MA)	13-15	16-13	13-11
κ	3.00	2.75	2.50
β _T (%)	24-38	7-13	4-9
β _N (%)	3.8-6.5	1.8-4.5	1.7-4.3
P _{fusion} (MW)	105-523	123-614	140-700
Q	1.9-17	3.2-28	3.5-33
P _{NBI(H&CD)} (MW)	54-31	39-22	41-21
(P _{heat} -P _{rad})/R0 (MW/m)	39-62	31-56	27-52
T _{consumption} /yr (gm)*	9-45	111-556	199-996
P _{elec_input} (MW)	293-306	413-361	484-432

(Beam-plasma fusion not included)

Common Engineering Design Bases

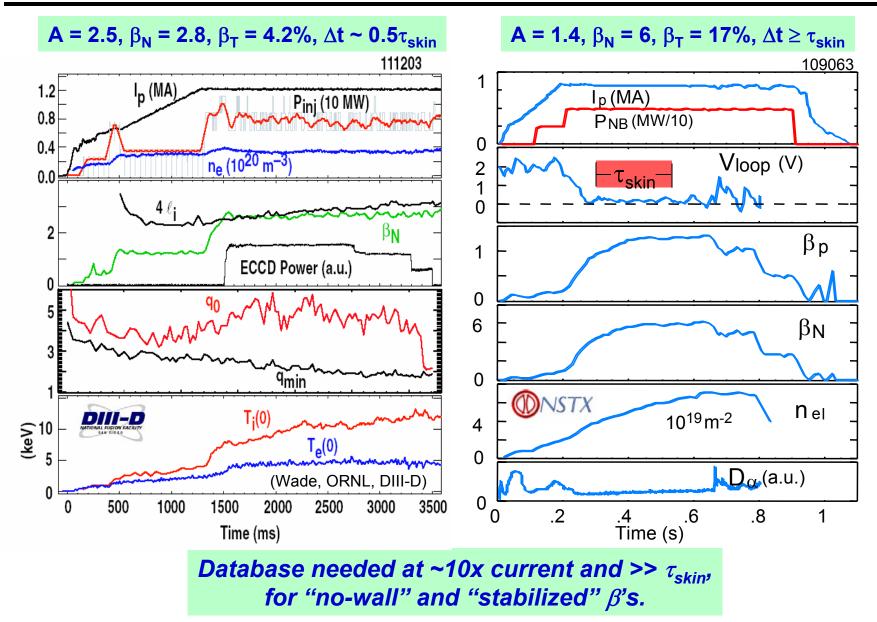
- Equal outboard testing area, initially
- One-turn TF, (VNS, ARIES-ST)
 - Water cooled (T≤ 150°C, f_W =20%)
 - Glidcop Cu alloy ($\sigma \le 100$ MPA)
 - Current return via aluminum VV shell
- Component efficiencies
 - TF power supply $\eta\text{=}95\%$
 - NBI η=45%
 - Balance of plant 20MW
- *Neutronics, blanket assumptions
 - Line-of-sight fusion neutron absorption on TF center leg
 - 90% neutron capture & breeding by outboard blanket
 - Need neutronics calculations

(Neumeyer, PPPL)

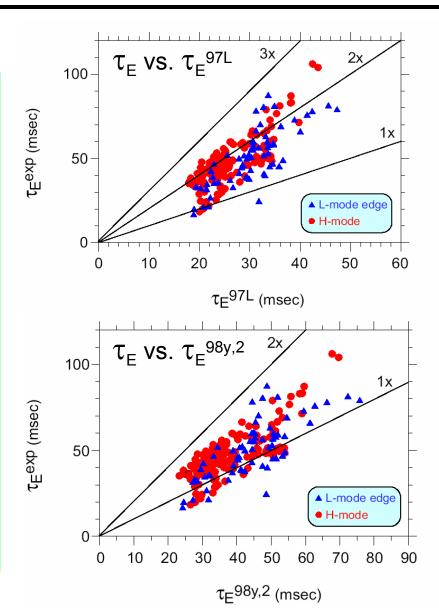

As a Technology Test Facility, CTF Requires Well-Established Physics Database

- Solenoid-free initiation to ~ 1 MA & ramp up further to ~ 10 MA
 - Initiation: ECH-EBH, LHCD, bootstrap, CHI, etc.
 - Ramp-up: ECW-EBW CD, LHCD, bootstrap, FW, NBI, current hole?
- Non-inductive sustainment with f_{BS} = 0.5 \rightarrow 0.9 (W $_{L}$ = 1 \rightarrow 5 MW/m²)

	"No-Wall"	"Stabilized"
MHD Equilibrium & Stability	 β_N = 3 – 4.5, β_T = 5 – 25% Field error & large plasma flow Tearing modes vs. low & hi q Disruptions, ELM's, pedestal 	• $\beta_N \rightarrow 4.5 - 8$, $\beta_T \rightarrow 10 - 50\%$ • J-profile control, aligned J_{BS} • Plus resistive wall modes • A dependence?
Transport & Turbulence	 Close to neoclassical ions Large flow shearing, ρ_i* 	 χ control → ∇p, J_{BS} control Effects of β₀ ~ 1
Wave-Plasma- Fast Particles	Beam ion phys in good shapeRF needs phys-tech solutions	ECW in good shape at high AFW, EBW under test at low A
Boundary Physics	 A-dependence observed L-mode or inboard limited? Requires DND at low A? 	 Requires DND at low A Higher P/R! Needs phys-tech solutions
Burning Plasma	• Low Q (~2-3)	• High Q (~10-20)


Solenoid-less Formation of High-Performance Plasma Nearly Demonstrated on JT60U

(IAEA-CN-94/PD/T-2, FEC 2002, Lyon, France)


Database needed at ~10x plasma current.

Near Sustainment Are Achieved with High $\beta_N \& \beta_T$ Values at ~ 1MA Level in High and Low A

Low-A Global Confinement Has Reached (& Exceeded?) High-A Levels, Relative to Scaling Laws

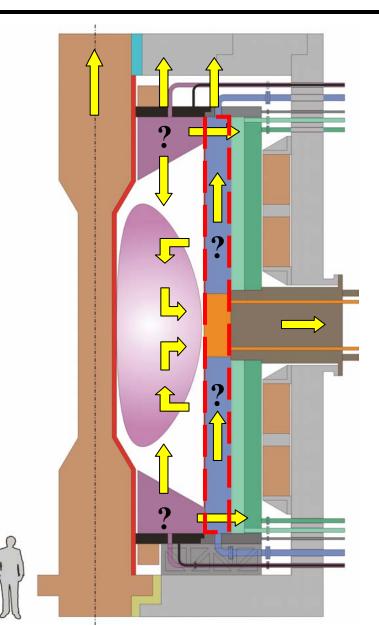
- A ~ 1.3 1.5, similar to A
 = 2.5 3.0 results
- H(97L) → 2.6
 H(98H) → 1.7
- True for both H-mode and L-mode edge plasmas! Assume H(98H) = 1.4 – 1.8
- Understanding underlying physics important for nextstep device
- Database needed at 5 10 MA level for CTF

CTF Enabling Technology and Engineering Requirements Need Assessment

- TF System Engineering
 - TF center leg optimization and fabrication technology
 - Multi-MA, high efficiency TF power supply
- Plasma facing components
 - Highly reliable and remotely replaceable divertor components (large MTBF and small MTTR)
 - Take advantage of DEMO-relevant ITER designs
- Heating, current drive, and fueling
 - 300 kV negative ion beam under development by LHD, JT60U
 - Highly reliable and remotely replaceable RF launchers
 - FW at 30-100 MHz available, EBW at 50-100 GHz nearly available
- Requires database from long-pulse high performance tests (Tore Supra, KStar, LHD, ITER, test stands, etc.) to raise MTBF
- Requires efficient Remote Maintenance (RM) to reduce MTTR

How to Take Advantage of Single-Turn TF Coil and Reduced Device Size?

TF center leg

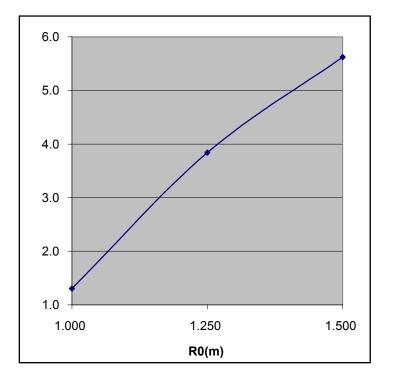

- Replaced vertically from above
- Blanket test modules
 - Integrated port assemblies replaced at port interface
 - Similarly for heating modules
- Test blankets
 - Integrated assembly(s) removed vertically or as modules through mid-plane ports?

Divertor

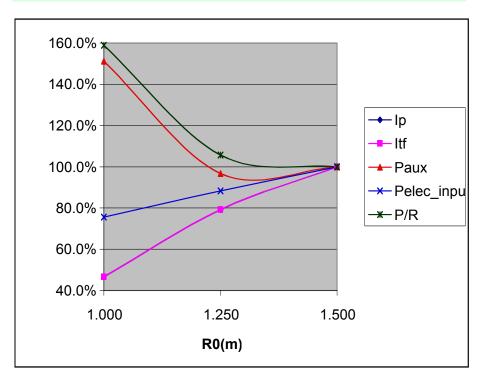
 Integrated assemblies removed vertically, or as port assemblies, or as modules through mid-plane ports?

Permanent and/or hands-on

- Shield
- VV/TF coil outer leg
- PF coils



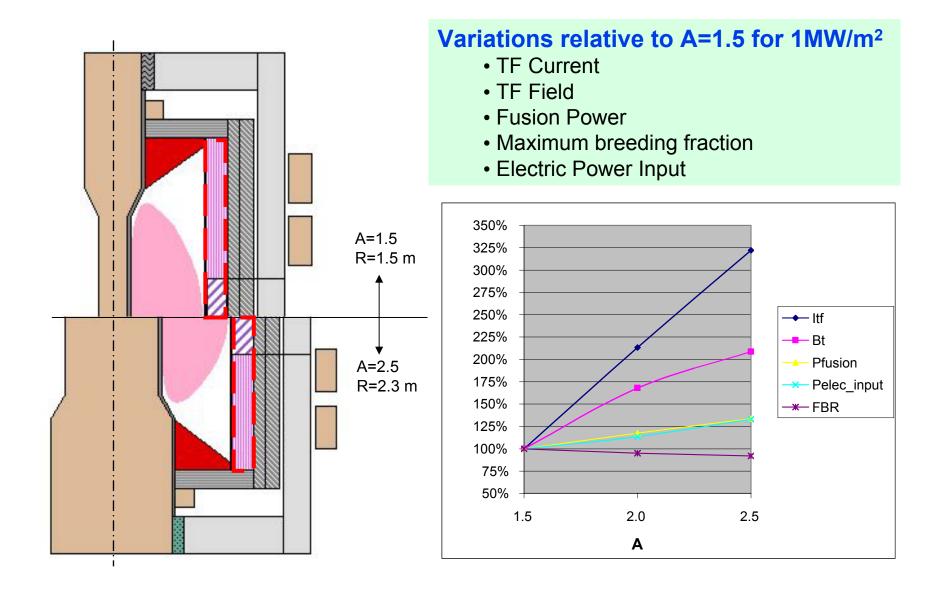
On-going Assessment Will Clarify Technical Characteristics of CTF Options


Performance Variation with R₀

(beam-plasma fusion not included)

Max. Achievable Wall Loading Assuming "stabilized" plasma

Performance Relative to $R_0=1.5$ m Assuming "no-wall" plasma, for 1MW/m²



Compact CTF with Simplified Configuration Can Make Major Contributions to DEMO Availability

- Demountable single-turn TF center leg allows smaller simplified toroidal devices (R ~ 1 – 2 m) with potential RM advantages
- Range in A and R can provide $W_L \sim 1 \text{ MW/m}^2$ in initial operation
- Plasma and enabling technology database already encouraging
- Need demonstrated long-pulse, high-performance physics data at 5 – 10 MA
- Continued physics and technology development raises the potential for achieving $W_L \sim 5 \; MW/m^2$ in CTF
- GDT neutron source provides an option between IFMIF and VNS
- Work is needed to determine the best candidates, involving physics researchers, technology developers and providers, and facility builders

Back Up

The Effects of Variations in Aspect Ratio Will be Identified and Quantified

