
Distributed Operations for the Mars Exploration Rover
Mission with the Science Activity Planner
Justin V. Wick, John L. Callas, Jeffrey S. Norris, Mark W. Powell, Marsette A. Vona, I11

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA

Abstract-Due to the length of the Mars Exploration Rover used by scientists in the high level planning process, an
Mission, most scientists were unable to stay at the central effort was begun to adapt SAP to use outside of JPL and
operations facility at the Jet Propulsion Laboratory. This provide a collaborative framework for scientists to operate it
created a need for distributed operations software, in the in.
form of the Distributed Science Activity Planner. The
distributed architecture saved a considerable amount of
money and increased the number of individuals who could 2. CENTRALIZED OPERATIONS
be actively involved in the mission, contributing to its
success.

1. INTRODUCTION ... 1
2. CENTRALIZED OPERATIONS 1
3. MOVING TO DISTRIBUTED OPERATIONS 2
4. ARCHITECTURE AND IMPLEMENTATION 6
5. TECHNICAL CHALLENGES 6
6. MISSION IMPACT .. 7

... 7. CONCLUSION 8
REFERENCES ... 8
BIOGRAPHY ERROR! BOOKMARK NOT DEFINED.

During the centralized phase of the MER mission, scientists
were gathered in a single building at JPL, and used the
planning and analysis software in a specially configured
computing environment, which was called the Flight
Operations System. The Flight Operations System was the
platform for the Ground Data System (GDS) software that
drove the data processing and planning processes for the
mission.

The Science Activity Planner (SAP) is a GDS tool that is
used to perform dual roles facilitating manual science and
engineering-level data analysis, and planning the daily
actions of each rover in a coarse, high level fashion. This
tactical decision making process is similar to that practiced
in the FIDO field tests [2].

The Mars Exploration Rover Mission has been an
unqualified success. At the time of writing, both Spirit and During each day the tactical process starts with a science

Opportunity have exceeded their operational lifetimes by a meeting during which scientists are briefed about the current

factor of three. Both rovers continue to roam Mars, situation. After this, the scientists break up into "theme

returning a wealth of valuable new information to Earth.\ groups" such as "atmospheric" or "soils" or "long term
planning" and work in parallel, using SAP to construct

The unprecedented length of the Mars Exploration Rovers
mission created many challenges for mission planners.
Although the original architecture of the mission planning
system was intended to be distributed in nature[l], budget
constraints did not allow for the development of this
capability. As a result, the planning software was designed
in such a way that it was heavily reliant upon internal
computing resources at JPL, making it unusable at remote
sites.

sequences of instructions for the rover that reflect their
scientific goals. During this several hour period, the data is
analyzed within SAP, points in space are designated as
targets for the rover's actions, and the potential plans are put
together. After this time, the final plan is debated and
assembled in the Science Operations Working Group
(SOWG) meeting. Possible scientific observations from
each group are ranked according to importance. After a
structured debate, the accepted observations are arranged
together in SAP to meet the daily energy, time, and

In March 2004, as the primary mission for both rovers drew
bandwidth budgets that have been established by the
engineering team. The final merged plan is then delivered

to a close, it became evident that both rovers were llkely to
for further refinement and processing downstream to be

continue operating long past their original 90 sol lifetimes.
converted to the actual sequence of instructions sent to the

Faced with the reality that mission scientists would shortly
rover.

begin departing from JPL to their respective research
institutions, the-decision was made to change the system to

Collaboration within the system was facilitated by a
accommodate the participation of scientists at remote sites.

homogeneous computing environment consisting of custom-
Because the Science Activity Planner was the primary tool

built workstations running the Linux operating system.

There was a central Network File System server (the OSS)
for each rover (MER-A and MER-B) and also a central SQL
database server for each. Because all downlinked data and
planning information were kept in these two central
repositories, collaboration was simple. When a scientist
saved a plan file, it was iinlnediately available to all others
to be analyzed and merged. Target designation, critical to
the planning process, was also synchronized with low
latency via the central SQL server. All science workstations
were guaranteed to have access to the exact same set of data.

Due to budget and lifestyle constraints, the mission was
shifted to a new, more distributed mission architecture. The
cost of keeping relevant scientists on location in Pasadena
was prohibitive, and many of the scientists and engineers
had family elsewhere in the world for which they were
responsible. Because of this, the decision was made to
create an environment in which scientists could tactically
plan with SAP at remote sites. This software environment
would have to:

0 Make planning-relevant downlink data available
to the remote scientists in a timely fashion.

0 Allow scientists to interactively share targets
designations.

0 Facilitate the sharing of plan files that contain
the scientific observations for the day.

0 Dynamically create indexing metadata of
available data products to make it available in SAP.

0 Maintain operational security through use of
encryption, authentication, and firewalls.

It was decided that the best possible action was to closely
replicate the JPL software environment, rather than change
SAP itself. SAP expects a highly structured filesystem
database containing images, range data, three dimensional
meshes, spectral data records, coordinate frame information,
planning constraints, and plan files. Because no available
network file system server was fast enough to be used by
SAP interactively, the relevant data sets would have to be
mirrored locally. This also meant that the indexing of that
data (which is how SAP knows what information is available

data type. The job of the data synchronization subsystem
was to replicate the internal filesystein database of
downlinked data on client workstations around the world.

The first solution to this problem that was developed utilized
an open source program known as RSYNC, which can
synchronize files and directories recursively between
machines, through a secure ssh tunnel. A daemon was
created that repeatedly synchronized the directories for
recent sols with a central server. The central server itself
was to be filled with the SAP-relevant data from the
operational NFS servers.

The problem with this approach was that because it relies
heavily on polling, and tens of thousands of files and
directories had to be recursively compared. It was decided
that it would place too much load on the server to have an
acceptably low latency for data delivery. Worse,
overloading issues were already a severe problem on the
operational NFS server, and it was decided that this solution
would most likely exacerbate the situation.

It was then decided to create a second data synchronization
solution, utilizing the JPL Multi-mission Image Processing
Lab's (MIPL) File Exchange Interface (FEI). FEI is a
system that MIPL uses to automatically push out data to
remote sites, such as research institutions or museums.
While it supports polling and client-initiated downloading, it
also has an event-driven server-push mode that relies on the
"subscriptions" of a client to a set of file types. Because this
system has a very low latency (on the order of 2 seconds
within the JPL network) and is very well load balanced, this
was chosen.

The main problem associated with this approach was that
FEI does not keep track of the path in the filesystem to the
directory where a particular file came from - this data would
have to be reconstructed. In addition to this, FEI contains a
large number of files that cannot be used by SAP and are not
relevant for tactical planning. Because of the low bandwidth
at many remote sites, the files would have to be filtered for
relevance prior to downloading. The system also had to
allow for the gathering of archived files from specific sols of
interest - a feature not natively supported by FEI.

on the filesystem) would also have to be done locally. Also,
the sharing of targets and plans presented a challenge, as the The fmal solution was to have two methods of getting files -

an automatic subscription program, and a manual archived servers hosting the plans and targets were not accessible
outside of JPL. file retrieval program. Both programs used a filter to

determine whether or not a given file was desired based on

Data Synchronization its relevance (and in the case-of archival data, whether or not
it fell in a specified range of sols). Also, a script was

The first matter was to arrange for the data to be delivered to assembled that could sort the files into their final locations

the remote SAP workstations. SAP expects data to exist in a based solely on the file names. This was made possible by
the fact that the file names systematically encode the data highly structured, hierarchical system of folders, numbering

well over a million for each rover. This filesystem database type, instrument name, time acquired, and from which rover

is known as the Operational Software System, or OSS. The the data was obtained.

folders separate data by sol (martian day), instrument, and

Each workstation established a connection with the FEI
server, and signed up to be "notified" when files in a
relevant "filetype" were made available. This notification
was pushed from the server to the client, at which time the
client decided, based on the filename, if the file was
desirable. If the file was wanted, it was retrieved from the
server and then sorted into the filesystem. This system has
latencies on the order of minutes or less, and has nearly idea
bandwidth use (the serverlclient messages are very short).

Obtaining access to archival data was somewhat less
straightforward. That program, given a rover designation (A
or B, for Spirit or Opportunity) and a desired range of sols,
downloads an entire roster of all available files in relevant
filetypes. It then filters the names of files to fmd those
which fall into the specified range of sols, and also do not
currently exist on the local filesystem. This roster listing
process is very inefficient and takes several minutes,
however downloading the data can take hours, so the -
overhead is acceptable.

The fmal step in the data synchronization is the Data State
Manager Daemon - a daemon process that scans available
downlinked data products and creates a comprehensive
index of what data is available. Every thirty seconds the
most recent sols are scanned (and occasionally older sols,
according to a probabilistic algorithm) to see if new data has
been made available. When new data is discovered, it is
processed and incorporated into the index, making it
available for SAP. A nearly identical process is run at JPL,
where the cost of all open SAP instances scanning each sol
would have been prohibitive.

Target Synchronization

Target synchronization was another vital component of the
distributed SAP system. At JPL, targets were synchronized
between machines by storing them in a central SQL server.
The various SAP instances would poll the server every two
seconds, checking timestamps in the database to see if new
targets had been created, or if old ones had been modified.
There were no security issues because the database was not
accessible from the outside world, and all individuals using
computers that could access the database were cleared to
designate targets.

In a distributed setup, however, everything changed. It was
not going to be possible to make the central JPL target
server available to machines outside of JPL for security
reasons, however each remote site had to be able to see the
same targets as users at JPL with minimal latency.
Moreover, there had to be a method to take targets from
outside JPL and import them to the internal JPL server.
This entire process was required to be as low-latency and
automatic as possible, while maintaining operational
security.

The solution that we arrived at was that there should be a
secondary, "external" SQL server that would be accessible
to authorized machines outside of JPL. A script at JPL
forwarded changes and new additions to the JPL internal
target database out to the external server every few seconds.
Because of the nature of the database, it was acceptable for

targets to exist in the external database but not in the internal
database without causing any problems. Plan files, however,
reference targets (to decide where to drive, or aim a camera,
etc). If a plan were brought into JPL that referenced an
external target, that target would have to be manually
imported by a script at JPL. That script would have to then
extract a static copy of the target from the plan file text.
This process was considered secure because it required a
human in the loop to verify that the target was valid. Also,
the external server was protected by a strict firewall that
only allowed access fi-om a set of secured university
computers that were certified as part of the planning process.
The data from JPL was encrypted using an SSH tunnel, with

public key authentication.

A final consideration for target sharing was the complication
that was caused by SAP'S use of MySQL database polling -
the newly changed entries in the JPL target database had to
have a timestamp in the remote database that would cause
the remote SAP clients to notice the change. Due to various
internal details of the SAP client and MySQL servers, these
timestamps had to be adjusted into the future before being
sent to the external targets server.

Plan Shaving

The issues associated with plan sharing were similar to that
of target synchronization in that the central server (in this
case, the internal NFS server at JPL) was not accessible to
the outside world. Also, there were similar security
concerns - plan files coming out of JPL automatically were
not considered to be a security issue, however no one fi-om
outside JPL could be able to insert a plan file into the
normal planning directories inside JPL.

The solution that was decided upon was that there should be
two repositories for plan files, one inside JPL (the NFS
server) and one outside JPL. These two repositories would
automatically synchronize, however no user outside JPL
could be allowed to write a file that would propagate to a
normal planning directory inside JPL. Instead, users outside
JPL would have to place plans into special "external"
directories. The planning directories inside JPL for each sol
had names such as "apxs" or "soil", etc, broken down by
group, and each containing an additional named "working"
directory. The planning directories were modified by
adding another directory named "external" in each subgroup
directory. A user outside JPL could submit their plan to the
central external plan server, but only if it resided inside an
"external" directory.

The majority of synchronization was automatic. JPL's NFS
server was considered the canonical source for "internal"
plans. Every 30 seconds the next 5 sols worth of internal
plans were sent to the external seker. Every 30 seconds or
so, those same sols were synchronized from the external
server to the SAP workstations at each institution. However,
because there was no single canonical source for plans
created at an institution, it was decided that submission of an
"external" plan to the central server would be a manual
process. Once an "external" plan was submitted to the
central server, within 30 seconds it would be copied to the
sane directory on the JPL NFS server, to be seen by those at
JPL. This is how planned observations that were created
outside of JPL could become part of the final plan at the
SOWG meeting held at JPL.

Figure 1

A computer external to JPL can create a target in the

4. ARCHITECTURE AND IMPLEMENTAT~ON external database, making it available to all other external
SAP instances. If the target needs to be used inside JPL, an

Figure 1 illustrates the overall architecture of the system. external plan file is saved and then submitted to the plan

The left side of the diagram represents the portion of the server; a copy arrives at the JPL OSS. A person, either at
JPL, or logged in remotely, then runs the import-target

system running at JPL. The lower right comer of the
diagram shows the servers at Washington University of St. script, giving it the plan file, and the name of the target to be

imported. The import-target program reads the target data Louis. Finally, the upper right represents each individual
Distributed SAP workstation. The dataflow is illustrated by from the plan file, and then enters it into the local JPL

database. Any open internal SAP instances can then see the
colored arrows: blue for downlink data, green for plans, and

new target, and it can be used in the fmal, official plan.
yellow for targets. The cylindrical shapes represent servers,
and the named rectangles signify a process or collection of
processes that are logically grouped together. A name in red
signifies that the process requires a human intervention.
Whether or not a target or plan being transferred was created
inside or outside JPL is indicated by an "int" or "ext" label
on the associated arrow. Names ending in "d" refer to
"daemon" processes that run constantly in the background.
RSVP is an engineering level planning program that is used
by some scientists remotely, and uses much of the same data
as SAP

Downlinked Data

Planning Data

The final component of the system is the shared planning
dataflow (green arrows). Just like shared targets, there are
two separate places where plans can be generated - internal
to JPL by SAP, or external to JPL by SAP. Inside JPL, they
are kept in special directories on the OSS. An automated
process, Plansubmitd, polls the OSS every 30 seconds to
check for new plans, or newly modified plans, and uploads
them to the external planning server at Washington
University. A similar process, Plansyncd, polls the server
for new or newly modified external plans to be imported.

To understand how the system works, one should first Plansyncd imports all changed plans to a staging area, but

examine the downlink data flow (blue arrows). The Multi- only copies external plans to the actual OSS for security

mission Image Processing Laboratory (MIPL) is the source reasons. This prevents anything submitted to the external

of all processed imagery used in this system. That, along server from affecting the internal plans without intervention

with the "Inconpushoutd" - a daemon that pushes out initial &om a human at JPL.

conditions of the rover for a sol, the planning constraints,
and coordinate frame information - supply the FEI server The right side to this dataflow concerns the remote sites. If

with the files that are needed for use of SAP outside of JPL. a plan is created or modified at a remote site, and the user
wants to share it with the rest of the distributed SAP users,

After the files are sent to the FEI server, the clients are
notified of the newly available files through the "Sapfeid", a
daemon that handles all of the processes that wait for new
files. If the files are deemed relevant, they are downloaded
fi-om the server into a temporary directory, and then put
away into the local OSS (the local set of folders that hold the
data for each sol). The new data is noticed by the DSMd
(Data State Manager daemon), which then indexes it. After
that the data can be accessed by SAP.

Target Data

The target dataflow is more symmetric - a target can
originate either at JPL or at an external workstation. SAP
instances at JPL create targets in the internal database. A
JPL computer running the "targetsyncd" - the target
synchronization daemon - takes newly generated targets and
sends them outwards to the centralized target server at
Washington University. Every time an external SAP client
opens a plan from a given sol, it fetches the targets
associated with that sol from the central server. The SAP
client also maintains a polling thread that keeps looking for
new targets being made on that sol.

the "submit-plan" script is run. This sends the file to the
server (overwriting any older version of that file if it
previously existed). Also, a slightly different version of the
Plansyncd is running in the background. It is identical the
JPL version, except that it copies both internal and external
plans to the local OSS.

Programming Languages Used

All of the daemon programs were written in Perl 5, and
utilized utility shell scripts. The import-target program is a
combination of a Perl frontend and a Java backend. Perl
was used because the system is tied heavily to the underlying
OS, and it made invocation of Unix commands and file
manipulation particularly easy. Also a large amount of the
work done by these programs involved text parsing.

The technical challenges in this project were many and
varied. Most of the challenges involved reliable
communication between all of the parts of the system,
atomicity of transactions, and server load. Also, out of

necessity, many parts of the system used software in ways
that were not originally intended.

The most common technical challenge of the entire project
was the large set of problems created by repeated polling of
filesystems and servers. Because the MER GDS has no
centralized, common event-driven architecture, most of the
components of the distributed system use some form of
polling to handle propagated changes. Polling itself is not a
significant challenge in software development, however the
efficiency of the polling was a severe limiting factor in what
design choices that were available, and it forced us to use
nondeterministic algorithms for some of the less important
parts of the system.

Our data indexing process, the Data State Manager (DSM),
needed to poll tens of thousands of subdirectories of the
filesystem every thirty seconds. This grew to the point
where it was untenable, so a compromise was made in the
system's design. Instead of scanning all sol data directories
every 30 seconds, it would scan only the three most recent
for new data constantly. The older directories would have a
probability of being scanned each 30 second sweep such that
about 95% of all sols would be scanned in a given 24 hour
period. The use of nondeterministic algorithms was
considered safe because older sols tended not to change
often, and their changes tended not to be important.

Another example where polling was a bottleneck was the
Plan Synchronization Daemon. The Plan Synchronization
Daemon (plansync) relied heavily on polling of a central
server. Plansync used the RSYNC client tunneled through
SSH, and rsync only permits one directory to be recursively
synchronized per connection. Because of this, and the fact
that the first five upcoming sols had to be synchronized
every thirty seconds, each requiring a separate connection,
the ssh authentication server on the central planning server
became intolerably slow. While plans still propagated, it
was at a reduced rate, and often connections to the server
were rejected due to the overload. As of this writing, we
plan to replace this polling process with a manual process
due to the incredible load it places on the server.

A different issue encountered was reliable communications
through a highly heterogeneous network environment.
There were a lot of very complicated firewalls involved -
two levels at JPL, at least two at Washington University of
Saint Louis, and usually between one and two firewalls at
other institutions. SSH tunneling made communications
through these firewalls possible, however this required
authentication keys to be distributed. Network failures were
not entirely uncommon, and temporary workarounds had to
be set up in the event that a server was not reachable. Server
load and reliability was often the deciding factor for the
success of the Distributed SAP system.

One of the biggest causes of bugs was the relative

heterogeneity of systems running SAP outside of JPL.
Inside JPL the software was run exclusively on Red Hat
Linux 7.3 boxes, all of which contained identical processors
and graphics cards. Outside, Red Hat Linux 7.3, 8, 9, Red
Hat Enterprise Linux 3, and Fedora Core 1 were in use.
This was a problem because it required different systems to
use different versions of the FEI client, which was not fully
tested on Fedora Core 1. Also, newer Linux distributions
shipped version 5.8 of Perl, which has subtly different
semantics for a few very important operations, such as
regular expression matching. This lead to a few bugs
involving data delivery, which were very difficult to track
down.

Last but not least was the fact that some software
components of the system were being used in ways that their
creators had not intended; this sometimes put the system into
odd states requiring manual intervention. The FEI server
system was not designed, for instance, to notify clients if a
file that already existed on the server was modified, only
when new files were added. So, when certain important
configuration files had to be pushed out, they had to be
removed and then added to FEI. Also, FEI had no method
of filtering files based on the sol they belong to, or specific
details of the file type; this had to be implemented in one of
the more complicated Perl programs that we created. The
same goes for the lack of filesystem metadata preservation
in FEI - the files had to be sorted by a Perl program, based
solely on the name of the file - a fact that precluded the
sorting of certain types of files accurately.

The impact of the Distributed Science Activity Planner on
the MER mission was very significant. By allowing
scientists to analyze data and collaboratively plan at remote
institutions, Distributed SAP was a primary enabling factor
in the feasibility of the distributed operations architecture.

Transitioning to distributed operations has saved a
considerable amount of money during the extended mission.
Travel costs were significantly lower, there was a much

reduced demand for temporary housing, and most scientists
returned to using normal work areas at their home
institution, freeing resources at JPL. The funding reduction
itself is important because it is unlikely that many
individuals could be actively involved with the planning
process if all operations were conducted at JPL; the
participating team would have to be very small, which
would seriously reduce the science return of the mission.

This new distributed architecture has had negative impact on
the mission as well - communications are much harder when
people are not in the same room. Also, a significant amount
of time was spent emailing screen shots back and forth, due
to the fact that many mission computer programs were not

designed to be collaborative over a distance. Much of the
communications difficulties were mitigated by the use of
teleconferencing equipment, web cameras, and Virtual
Network Computing, and SSH. There are still aspects to the
system that need improved, however, the net impact of
moving to a distributed architecture is overwhelmingly
positive.

The Distributed Science Activity Planner has contributed to
the success of distributed operation for the Mars Exploration
Rover mission. Scientists were able to analyze data and plan
from their home institution, and collaborate with other
scientists around the world. The distributed operations
architecture has enabled a large science team to operate
Spirit and Opportunity well beyond the original mission
lifetime as they continue to return valuable scientific
information to earth. Distributed MER operations will serve
as a model for missions into the future.

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

[I] Robert Steinke, Paul G. Backes, and Jeffrey S.
Norris. Distributed mission operations with the multi-
mission encrypted communication system. In Proceedings
IEEE Aerospace Conference, Big Sky, Montana, March 9-
16 2002.

[2] Paul G. Backes , Jefkey S. Norris , Mark W.
Powell , Marsette A. Vona , Robert Steinke , and Justin
Wick. The Science Activity Planner for the Mars
Exploration Rover Mission: FIDO Field Test Results. In
Proceedings IEEE Aerospace Conference, Big Sky,
Montana, March 8-15 2003.

