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ABSTRACT

INTERVAL MATCHING AND CONTROL  FOR HEXAHEDRAL MESH

GENERATION OF SWEPT VOLUMES

Jason F. Shepherd

Department of Civil Engineering

Master of Science

Surface meshing algorithms require certain relationships among the number 

intervals on the curves that bound the surface. Assigning the number of intervals to 

the curves in the model such that all relationships are satisfied is called interval assi

ment.  Volume meshing algorithms also require certain relationships among the num

of intervals on each of the curves on the volume.  These relationships are not alway

tured by the surface meshing requirements. This thesis presents a new technique fo

matically identifying volume constraints.  In this technique, volume constraints are

grouped with surface constraints and are solved simultaneously.
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A sweepable volume has source, target, and linking surfaces.  The technique

described in this thesis uses graph algorithms to identify independent, parallel sets o

ing surfaces, and determine if they correspond to through-holes or blind-holes.  For 

holes, the algorithm generates constraints that prevent the hole from being too deep

interval parameter space and, thus, penetrating opposite target surfaces.  For each 

set, the adjoining source and target surfaces are partially ordered by the structure o

linking set. A small set of representative paths for each linking set is found, and the r

sentative paths for all linking sets are gathered and distilled by Gaussian elimination i

small set of constraints.
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Chapter 1 - Introduction

The finite element method is a powerful engineering tool for analyzing model

with complex geometry.  However, the technology has also produced it’s own set of

obstacles.  A fundamental step of the finite element method is breaking the geometr

smaller pieces known as finite elements.  This step is also known as mesh generatio

has proven to be one of the most time consuming tasks in the process.  Many algor

have been devised in an attempt to automate this process, but currently there is no 

meshing technique that appears to fulfill all of the mesh generation requirements.

Research into mesh generation continues to enhance these algorithms to make them

powerful and robust.

In many cases, the most time and labor intensive task of mesh generation is

geometry and attribute preparation prior to meshing.  This preparation step includes

specifying the number of mesh intervals on each edge of a surface, or interval assignm

This thesis presents the development of an algorithm designed to further automate 

process of assigning intervals to sweepable volumes.

The Finite Element Method

The finite element method is a fundamental modeling technique with widespr

use and growing popularity in the engineering community.  In use since the late 196

this technique uses a numerical approximation of partial differential equations to mo
1
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the effects of heat transfer, fluid flow, and stress for objects with complex geometry. 

drawback of the finite element method is the significant amount of expertise and tim

required to complete a successful analysis.  Much of the research into the finite elem

method focuses on further automating the process, which would allow personnel with

training to use the process, improve productivity, and achieve more accurate solutio1

The most time consuming and expertise intensive part of the finite element method 

discretization of the model’s geometry into finite elements, the process known as me

generation.

The fundamental concept of mesh generation is to approximate the complex o

with a grid or collection of simpler objects.  The set of elements used to approximate

geometric object is known as the mesh.  The mathematical model developed from th

finite element mesh allows the computation of physical parameters, such as stress,

temperature, pressure, etc. The computed physical parameters of each of the eleme

then be used to represent a continuous solution for the whole geometry.

The finite element method is an approximate method, and, therefore, the quali

the mesh can affect the results produced. In practical cases, it is difficult to have perf

shaped elements because many of the elements must be distorted to fit the geomet

good mesh will tend to minimize the amount of distortion found in the element.  The

quality of the mesh generated is largely a function of the technique, or scheme, selec

generate the mesh.
2
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Mesh Generation by Mapping Techniques

Mapping algorithms provide a powerful mesh generation technique because 

generate both a regular grid of elements and have a very small percentage of irregu

nodes.  The mesh shown in Figure 1.1 is an example of a mapped surface mesh (i.e

parameter space mapping).

Figure 1.1 - Parametric Surface Mapping

Meshes generated by mapping algorithms have the following advantages4:

o Boundary Sensitivity:  Mapping a region produces an all quadrilateral mes

that closely follows the shape of the boundary.  Rows of elements end at g

metric corners, intersect perpendicularly at large interior angles, and follow

contour of smooth boundary segments.  Since well-shaped elements are 

ally critical near the boundary, this characteristic is of particular importanc

o Orientation Insensitive: Different orientations of the geometry do not resul

different meshes.  Mapped element approaches thus provide repeatability

consistency.

o Regular:  A mapped mesh results in a very regular pattern of connectivity

among the nodes.  An interior mesh node is considered regular if it is con

nected to four elements. Irregular nodes can appear with mapping techniq

but they are few in number and can be placed away from the boundaries.
3
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Most commercial mesh generation codes15,16employ mapping algorithms to

generate all-quadrilateral meshes.  The mapping techniques rely on picking the four

logical corners of the surfaces, and insuring an equal interval counts on opposite side

grid can be placed on the surface to match the interval counts on each of the sides,

producing the all-quadrilateral mesh.

Appropriate assignment of intervals between the four logical corners of a surfa

required to produce an acceptable mesh. Improper interval assignment often leads to

quality meshes, or the subsequent failure of the meshing algorithm. Therefore, autom

interval assignment algorithms have been developed using linear programs to ensur

interval feasibility across sets of surfaces.9, 12, 14

Mesh Generation via Submapping

Since only simple primitives such as rectangular areas and hexahedral region

be meshed directly with a mapping algorithm, many geometric models do not lend

themselves directly to mapping algorithms. Therefore, such geometric models must

be divided, or decomposed, into mappable sub-regions before they can be meshed.

decomposition of the geometry can be accomplished manually or virtually. One algor

for automatic virtual decomposition and mapping is known as submapping.
4
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Figure 1.2 - Surface Decomposition by Submapping (R = reversal,
C = corner, E = end, S = side)

A submapping algorithm attempts to identify the logical locations at which to

divide, or decompose, the solid model by looking for “corners” in the geometry.  To

accomplish this, the interior angles on a surface are calculated and then classified a

(~π/2), sides (~π), corners (~3π/2), or reversals (~2π).  From these angle classifications

appropriate division points between sub-volumes can be determined.  If an angle is 

corner or a reversal, a division must be made at that point. The process continues un

corners and reversals have been eliminated.13 Figure 1.2 shows an example of a surface

decomposition and Figures 1.3 and 1.4 show examples of a volume decomposition 

completed submapping mesh.
5



Figure 1.3- Volume Decomposition by Submapping

Figure 1.4 - Volume Meshing by Submapping
6



t

re also

 is

esh

d the

single

le

1.7.
Mesh Generation via Sweeping

A volume is said to be sweepable if topologically equivalent source and targe

surfaces are connected by mappable or submappable linking surfaces. Such solids a

known as two and one-half dimensional volumes because a meshed source surface

easily projected layer by layer through the linking surfaces to the target surface. The m

is not really created at the volume level; rather, it is created at the surface level and

projected through the linking surfaces to fill the volume with hexahedra.

Figure 1.5 - One-to-One Sweep10

Sweepable volumes are often classified by the number of source surfaces an

number of target surfaces the volume possesses.  These classifications are usually 

source to single target, multiple source to single target, and multiple source to multip

target. An example of each of these types of volumes is shown in Figures 1.5, 1.6 and
7



r

ired

as

rvals is

e

As can be seen in Figures 1.6 and 1.7, the complexity of the geometry, and thus the

difficulty of producing an acceptable mesh, increases as the number of source and/o

target surfaces increase.

Figure 1.6 - Many-to-One Sweep

Until recently, multiple source to multiple target sweepable volumes have requ

manual decomposition before the meshing could be completed.  Recent research h

automated the process for this class of volumes2, 8 however, because some interval

constraints cannot be propagated across the surfaces, the process of assigning inte

still a manual operation.  Because of the inherent complexity of many of volumes, th

interval assignment is often difficult and time-consuming.
8
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Figure 1.7 - Many-to-Many Sweep

Surface Interval Assignment

The mapping and submapping meshing schemes rely heavily on proper corn

picking and edge interval assignment to be successful.  However, because the surfa

a volume or set of volumes are all interconnected through the curves, the interval

assignment for the surfaces must be done simultaneously to achieve feasible results

the use of linear programs, and interval linear programs, an optimized interval assign

for each curve on the volume can be obtained simultaneously.9, 12, 14  The constraint

equations for these linear programs can be derived from each surface’s meshing sc

and geometry.  For example, mapping and submapping require an even number of

intervals bounding the surface, and the interval counts on opposite sets of edges mu

equal.
9
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Once the constraint equations for each surface have been formulated, the lin

program attempts to produce an optimized interval assignment for each edge. If a so

is found then the new intervals can be assigned to each edge.

Volume Interval Assignment

This thesis presents an enhancement to the interval assignment algorithm

described above where only surface constraints were considered in the interval assig

algorithm.  Here volume constraints are added to the linear program to guarantee pr

interval assignment to a greater population of cases.

Volume constraints are required on many submappable and sweepable volum9

For a simple example where volume constraints are required, consider the solid sho

Figure 1.8, with a through hole extending from the source surface to the target surfac

the intervals along the edges of the through hole are not equal to the intervals along

outer edge path from source to target, then this volume is no longer sweepable.  Sim

constraints for volumes with non-through holes are also required.

Figure 1.8 - Sweepable Rectangular Tube
10
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As the complexity of the volume geometry increases, the formulation of the

volume interval constraints becomes more difficult. The volume shown in Figure 1.9 i

example of a complex sweepable volume. The volume interval constraint that is need

ensure the sweepability of the volume is also given in Figure 1.9. The formulation of

constraint will be demonstrated in Chapter 4.

Figure 1.9 - Many-to-many sweepable volume showing the necessary
volume interval constraints to ensure sweepability.

Note: K is an edge along the hole through the volume.
(IA = the number of intervals on edge A, etc.)

In many cases, the formulation of the volume constraints can become tedious

time-consuming and frustrating. This thesis presents an algorithm which would auto

this procedure.  The remainder of the material in this thesis will be presented as follo

o Chapter Two - review of literature in interval assignment algorithms and a

matic hexahedral mesh generation via sweeping algorithms
11
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o Chapter Three - presentation of the volume interval assignment algorithm

o Chapter Four - examples of several volumes to which the algorithm has be

applied

o Chapter Five - review developments made by this thesis, as well as a pro

for areas of future research.
12
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Chapter 2 - Interval Assignment Background

This chapter presents a review of recent developments in sweeping and inter

assignment algorithms used to generate hexahedral meshes in a volume.  The focu

linear programs used for interval assignment, surface interval constraints on sweepa

volumes, and enhancements to sweeping algorithms. The specific details of algorith

enhancements will be based on their implementation in CUBIT3, a mixed hexahedral and

tetrahedral mesh generation tool kit developed by Sandia National Laboratories.

This chapter is broken up into three main sections.  First, a brief discussion o

linear programs used for interval assignment is provided.  Next, a description of inte

constraint formulation procedures for mappable and submappable surfaces is given

Finally, developments made to sweeping algorithms to enhance the capability are

considered.

Linear Programs and Interval Assignment

A linear program is an optimization problem in which the objective function an

design constraints are linear functions of the design variables17.  For interval assignment,

the design constraints are derived from the surface geometry and meshing scheme, a

design variables are the intervals on the curves of the surfaces.
13
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Introduction to Linear Programs

The term linear programming describes a particular class of mathematical

extremization problems in which both the objective function and the constraint relatio

are linear functions19. The general form of a linear program can be stated mathematic

as: find x = (x1, x2,…,xn)t so as to optimize (either maximize or minimize) the objec

function subject to the specified constraints.  Each constraint may be a greater-than

inequality (<=), a less-than inequality (>=) or an equality (=).  Linear programs have 

following format:

optimize: z = c1x1 + c1x1 + ... + cnxn

subject to: a1,1x1+ a1,2x2 + ... +  a1,nxn  (<=, =, >=) b1

a2,1x1+ a2,2x2 + ... +  a2,nxn  (<=, =, >=) b2

... ... ...

an,1x1+ an,2x2 + ... +  an,nxn  (<=, =, >=) bn

x1, x2 , ... , xn  >= 0

A special feature of a linear program results from the fact that any derivatives

the objective function with respect to the design variables are constants which are n

necessarily zero.  This implies that any extrema of the linear program must be locat

the boundary of the design space, and not to the interior of the design space.  Beca

constraint relations in a linear program are also linear functions, an optimal design m

lie at the intersection of two or more constraint functions.

Because large number of variables and constraints are often associated with

linear program, several methods have been designed which will reliably and efficien

move from one extreme point to the next until a solution is found which both optimizes
14
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objective function and satisfies all of the design constraints.  The most popular of th

methods are the simplex methods17.

An integer linear program is a linear program which has the additional constr

of restricting all of the design variables to integer values.  Integer programs are

combinatorial problems, which are generally more difficult to solve than regular linea

programming problems.  Cutting-plane and branch and bound algorithms exist for th

solution of such problems9.

Linear Programs and Interval Assignment

The use of linear programming for interval control was first introduced by Tam a

Armstrong12 and later implemented into CUBIT by Mark Whitely14.  The design

variables in the linear program are the actual intervals on the curves of the volumes o

of volumes.  Constraint equations are formulated based on the surface geometry an

meshing scheme.  The formulation of these constraint equations will be discussed in

next section.

 Tam and Armstrong proposed an objective function which minimized the sum

the weighted differences between the goal intervals and the intervals assigned by the

program9, 12. The optimal solution to this linear program was often to change the interv

on very few curves, with the resulting changes often being quite large.

Later work by Scott Mitchell9 altered the objective function to minimize the

lexicographic vector of weighted differences between the goal intervals and the assi

intervals. This is accomplished by adding two extra “delta” variables to each curve w

are used to compute the positive and negative value between the assigned interval 
15
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goal interval. The deltas are weighted inversely proportional to the goal, and an addit

variable, M, is used to compute the maximum of the weighted deltas. The algorithm

has two steps.

The first step solves a linear program for the constraints without the integer

programming constraints.  This results in a solution for the intervals where the soluti

not necessarily an integer.  The new non-integer interval values are then rounded to

nearest integer value.  The second step is to use these nearly feasible values and s

integer program with all of the design constraints.  This is accomplished using a bra

and bound technique.  The solution is expected to be near the solution found in the 

step, so to reduce the amount of time required to complete the procedure, the depth

branch and bound search is limited.

The resulting interval assignment has a relative change in intervals which is sm

rather than the resulting number of curves with interval assignment changes being s

This technique gives interval assignments which have very high fidelity to the goal

intervals, spreading out the changes over multiple curves, thus, reducing mesh disto9.

Surface Interval Constraints

The constraint equations supplied to the linear program are derived from the

meshing algorithms applied to the surface, as well as firmness constraints on edges

supplied when the intervals are initially assigned.  The constraints derived from the

surface meshing algorithms are described in this section.
16
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Surface Mapping Constraints

The surface mapping methods presented in this section are based on standa

mapping procedures.  In general, these mapping algorithms work well and yield high

quality meshes in regions which have roughly parallel opposing sides. The most effic

form of a mapping algorithm does not have a limit on the number of surface bounda

curves. The technique is to find four sets of edges on the surface, or the four logical s

which form  a logical quadrilateral for the surface.14

To form a logical quadrilateral for the surface, four vertices must be found wh

form the best corners of the quadrilateral.  The four corner vertices are found using 

corner picking algorithm which compares the set of interior surface angles and selec

four vertices which are nearest to a perfect right angle (i.e. 90 degrees).9, 14

Once the logical corners of the surface are found, the sets of edges between these 

vertices form the four logical sides of the quadrilateral.  The constraint set for the su

can now be formulated.  For a mapping surface, the constraint is that the sum of the

intervals on opposite sets of edges are required to be equal, as shown in Figures 2.

2.2.
17



Figure 2.1 - Surface Mapping Interval Constraints

Figure 2.2 - Surface Mapping Interval Assignment and Mesh
18
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Surface Submapping Constraints

A surface which is submappable is similar to a mappable surface, except for 

addition of vertices with interior surface angles which are nearly 270 and/or 360 degr

At these vertex locations, the surface must be decomposed into mappable sub-regio

The resulting mesh is a well-formed grid.13, 14

To facilitate interval assignment, a submappable surface can be placed in a lo

j coordinate system.  Each edge on the surface is given a classification into a local i

plane. Starting at an arbitrary vertex on the surface and proceeding around the surfac

counter-clockwise direction, each edge is classified as [+i], [-i], [+j], or [-j].13, 14  The

classification is accomplished by calculating the interior angle between consecutive c

and assigning the proper direction based on the calculated angle.  An example of th

process is shown in Figure 2.3.

Figure 2.3 - Surface Submapping Vertex Traversal

This method of traversing the surface boundary curves for the purpose of defi

their position in the local i-j coordinate system, provides the basis for the formulation
19
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interval constraints through the use of an “unfolded” surface geometry method.14  The

unfolded surface geometry can be used to formulate the constraint equations for ea

surface.

The unfolded geometry is formed by taking all curves classified as [+i] and

grouping them into one side of the unfolded geometry, and similarly, the opposite sid

the collection of [-i] edges. This procedure is followed for the [j] edges, with the result

unfolded geometry as shown in Figure 2.4.

Figure 2.4 - Surface Submapping Edge Parameterization and Constraint
Equations Using the “Unfolded” Surface Geometry

The constraints for the submappable surface are then formed in the same way the

constraints for a mapped surface were formed. That is, the sum of the intervals on th

edges must be equal to the sum of the intervals on the [-i] edges, and similarly for the

and [-j] edges.
20
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Other Constraints

Other meshing schemes can also supply constraints to the edges on a surfac

example, paving, an advancing-front meshing algorithm, requires that the sum of the

intervals on all the curves be even.9  Although these constraints rarely affect the interva

assignment on a sweepable volume, which mainly deals with the mapping and

submapping constraints, they must also be considered in the linear program.

The “firmness” of an interval count on each of the edges can also supply

constraints to the linear program.  Intervals may be specified as being hard (cannot 

changed) or soft (can be modified slightly).9, 14  An interval which is specified as hard

supplies the additional equality constraint to the linear program, while soft constraints

goals for an optimal solution.

Sets of surfaces

Mappable and submappable surfaces often have boundary curves which are s

with other surfaces.  Due to these shared boundary curves, the interval constraints f

one surface are partially propagated to the next surface through the shared bounda

curves.  An example a series of surfaces is shown in Figure 2.5.  Note that if all of th

surfaces are assumed to be mappable and the intervals on edge “A” are hard set at a

interval count, then the intervals on edges “B” through “K” are propagated through th

surfaces and must be equal to “A”.
21
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Figure 2.5 - Interval Constraints Imposed by Connecting Surfaces

These interconnected surfaces can be thought of as “chains” of surfaces.  Th

interconnected nature of the interval constraints on these surface chains is importan

submappable and sweepable volumes which contain holes. If the intervals on these c

are not constrained together, an infeasible interval assignment may result.

Sweeping Algorithms and Volume Constraints

Sweepable Volumes

A sweepable, or two and one-half dimensional, volume is a volume that has a

topologically constant cross section along a single axis.10 There are several approaches t

mesh generation via sweeping, but common to all is the idea of identifying surfaces 

volume to serve as “sources” and “targets”, and a complementary set to serve as “lin

sides”. The source surface(s) is meshed, and then swept along the linking sides tow

target surface.  This is feasible provided the linking surfaces are meshed with a map

or submapping algorithm.7
22
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Sweepable volumes are often classified by the number of source surfaces an

number of target surfaces.  A volume with one source surface and one target surfac

known as a single source to single target sweep.  Volumes with more than one sour

only one target are known as many-to-one sweeps, and volumes with many sources

many targets are known as many-to-many sweeps.

Until recently, many-to-many sweeps were not possible without decomposing

volume first.  Recent developments have enabled this class of volumes to be swept

automatically2, 8.  This is accomplished through a series of source and target surface

projections and subsequent surface imprinting through sweep layers.  Each of the s

layers is represented by a single interval along the linking surfaces.  It is crucial that

interval assignment on the linking surfaces be correct in order to guarantee proper

imprinting on the correct surface and the eventual success of the meshing scheme. D

the inherent complexity of the many-to-many type volumes, interval assignment can

tedious and time-consuming process, even with the aid of surface constraints and a

program.  To ease this process, volume interval constraints need to be added to the

program.
23



other

ught of

chain

raints

able,

nd on

ains

ints

ithin

rval

tly, a

 that

 the

terval

 in the

ed in
Volume Interval Constraints

The linking surfaces on a sweepable volume are often interconnected to each

through shared edges. Sets of surfaces connected through shared edges can be tho

as “chains” of surfaces. Interval assignment and constraints are propagated around a

of linking surfaces through the interconnected edges.  When all of the interval const

are met for each chain of linking surfaces, this chain can be guaranteed to be sweep

with respect to interval assignment.

A problem arises, however, when more than one chain of linking surfaces is

connected to a source or target surface on a volume.  These cases are normally fou

volumes with holes.  Because there are no shared curves connecting the surface ch

within the hole to the surface chains on the exterior of the volume, the interval constra

are not propagated among the chains.  The result is that many times the intervals w

the hole do not match the intervals on the exterior of the volume.  This improper inte

assignment eventually leads to the failure of the sweeping algorithm, and, subsequen

time intensive process to remedy the interval assignment problem.  It is this problem

this thesis is to address.

The remedy to this problem is to formulate constraint equations which couple

interval constraints between the surface chains to each other. These new “volume in

constraints” can be supplied to the linear program in addition to the surface interval

constraints.  The surface and volume constraints can then be solved simultaneously

linear program. The remainder of this thesis focuses on a new algorithm, implement

CUBIT, which formulates and supplies these additional volume interval constraints.
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Chapter 3 - Volume Interval Assignment

In this chapter the volume interval assignment algorithm for sweepable volum

will be presented. This algorithm automates the process of assigning intervals for ho

a sweepable volume.

Before describing the volume interval assignment process, a brief description

graphs will be given by way of introduction to the algorithm.  Following these

descriptions, the general algorithm will be described with detail into each step of the

process. The description of the algorithm will be based on its implementation in CUB3,

a mixed hexahedral and tetrahedral mesh generation tool kit developed by Sandia Na

Laboratories.

Introduction to Graphing Algorithms and Definitions

The volume interval assignment routine uses a graphing algorithm to identify p

of edges from a source surface to a target surface on a sweepable volume.  The go

find at least one edge path per linking surface chain and constrain the sum of the inte

on each independent chain’s edge path to be equal.  This effectively couples the inte

assignment on the two chains together.  A brief introduction to graphing algorithms a

the terms used in conjunction with this research will be given in this section.

What is a graph?
25
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A graph consists of a set of objects called vertices and another set known as e

such that each edge is identified with an unordered pair of vertices.6  The most common

representation of a graph is by means of a diagram, in which the vertices are repres

as points and each edge as a line segment connecting it’s corresponding vertices.  F

3.1 and 3.2 are examples of graphs.

Figure 3.1 & 3.2 - Example Graphs
26
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Because of a graph’s inherent simplicity, graph theory has a very wide range 

applications in engineering; physical, social, and biological sciences; in linguistics; an

numerous other areas.  A graph can be used to represent almost any physical situa

involving discrete objects and a relationship among them.

By supplying additional data or constraints to the vertices and/or edges in the

graph, the graph can be used to solve flow problems for city water systems, electric

circuits, shortest path problems, etc. In addition, the graph structure is ideal for some

storage and data searching algorithms, lending itself nicely to many applications

associated with computers and computer programming.

In this work, the vertices in the graph are known as “sweep vertices.” The edge

the graph correspond to either a curve or a periodic surface on the volume. A collectio

sweep vertices is known as a “super vertex.”

The Volume Interval Assignment Algorithm

The volume interval assignment routine begins with an arbitrary sweepable

volume on which the source surface(s) and target surface(s) have been designated.

goal of the routine is to detect instances of independent and parallel sets of linking su

chains and supply interval constraints to couple the interval assignment on the surfa

chains.

Initial Graph Creation

To accomplish the goal of the algorithm, a volume must be designated as

sweepable with the source and target surfaces given. A graph can then be created fro

volume geometry.  Each vertex on the volume becomes a sweep vertex in the newly
27
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created graph.  Edges in the graph are represented by the curves or periodic surfac

between the vertices on the volume.  An example of a sweepable volume is shown i

Figure 3.3 with source surfaces surfaces S1 and S2 and the target surface T1.

Figure 3.3 - Example Sweepable Volume

As can be seen in Figure 3.3, the connectivity of the vertices through the volum

curves is not always enough to determine an edge path from a source surface to a t

surface.  This is seen readily at vertex “A” in which there is not an edge path from th

vertex to the target surface.  In other words, all edge paths from vertex “A” loop back

source surface S1 and vertex “A” without ever encountering a vertex on a target surf

Final Graph Creation

To alleviate this problem, a collapse of the source and target surfaces takes p

where each of the vertices on a source or target surface is coalesced into one verte

collapse creates a new vertex type in the graph called a “super vertex”. A super verte
28



each

faces,

ce to a

to be
collection of sweep vertices.  A super vertex contains the connectivity knowledge of 

individual sweep vertex on the source/target surface, thereby expanding the search

capacity of the graph across the surface.  This collapse of the source and target sur

and formation of the super vertices is shown in Figure 3.4.

Figure 3.4 - Source and Target Collapse to Form Super Vertices

Searching the Graph

Once the initial and final graph setups have been completed, the parallel and

independent surface chains can be searched to find edge paths from a source surfa

target surface.  Each edge within an each edge path will later be assigned a weight 

used in formulating the constraint equations.
29
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Where to Search

To reduce the total number of constraint equations written to the interval linea

program, only source surfaces with independent and parallel sets of the linking surfa

chains need to be searched.  It is necessary to find the instances of the independen

parallel linking surface chains, and find one representative edge path from the sourc

surface to the target surface per chain.

An assumption has been made with regards to the multiple chain detection.  

assumption is that each instance of multiple linking surface chains attached to a sou

surface or set of source surfaces corresponds to multiple edge loops on the source

surface(s), as shown in Figure 3.5.  The edge loops are found by first collating the s

or target  surfaces with shared edges.  If the remaining edges on the surface(s) form

than one edge loop, then this surface becomes a candidate for further searching an

volume interval constraint formulation.

Figure 3.5 - Combining Edges on Surfaces A, B, C, & D
to Form Two Edge Loops
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From each loop a search will be initiated that will lead to a representative pat

edges from the source surface(s) to the target surface.  Each loop on the source su

can be thought of as a sub-vertex within the collapsed surface(s) super-vertex.  Sea

will normally be initiated from these sub-vertices.

The Breadth-First Search

The graph searching algorithm used in the volume interval assignment algorith

a variant of a breadth-first search.  The breadth-first search algorithm was chosen fo

reasons.  First, the shortest path between the start vertex and any other vertex withi

graph is always returned5.  This is advantageous because the shortest path represents

fewest edges which must be constrained against each other.  This results in an optim

linear program which can have added benefits in speed for larger models. Second, t

breadth-first search generates a breadth-first tree which can be used to translate an o

list of vertices to edges to be used in formulating the constraint equations.

The search algorithm works by taking a starting vertex and systematically

exploring each of the edges to “discover” every vertex that is reachable from the sta

vertex.  The shortest distance, or fewest number of edges, from the starting vertex t

reachable vertices is also computed.  The breadth first search is so named because

expands the frontier between discovered and undiscovered vertices uniformly acros

breadth of the frontier.  That is, the search discovers all vertices at distance (k) from

starting vertex before discovering any vertices at a distance (k+1). 5

To keep track of progress, a color is given to every vertex indicate the state o

vertex in the search. The three states in the search process correspond to the three
31
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white, gray, or black.  All vertices start out white and later, and as they are searched

become gray, then black. A vertex is discovered the first time it is encountered during

search, at which time it becomes gray, then black. Gray and black vertices, therefore,

been discovered.  As the graph search progresses, the white vertices represent the

of undiscovered vertices. 5

The breadth first search constructs a breadth-first tree, initially containing only

starting vertex. Whenever a white vertex is discovered in the list of connected vertices

white vertex is added to the tree, and the color is changed to gray.  Because only wh

vertices are added to the tree, a vertex can be discovered at most once, and therefo

vertex, or descendant, in the tree can have only one parent relative to the starting ver

the tree.

The search progresses level by level by adding white vertices to the tree below

gray vertex being searched. Once the desired final vertex is found, the search algorit

stopped and the resulting tree can be searched from the final vertex to the start vertex

the parent-descendant relationship within the tree. An example of a graph search is s

step-by-step in Figure 3.6.
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Figure 3.6 - The Breadth-First Search

Search Completion

For a sweepable volume, a search begins at a sub-vertex found on a source s

with more than one edge loop, as described earlier.  Prior to beginning the search, e

vertex within the super-vertex has the color set to black, with the exception of the su

vertex. This ensures that the search cannot loop back on itself. This step also ensure

of unique edge paths from the source surface to the target surface, that is no two ed
33



rtex,

his

ertices

et

uper-

ssfully

 the

 to

t and

e.

d the

er
paths from differing sub-vertices on the source surface will contain exactly the same

edges.

The search continues in the breadth-first fashion until the first target super-ve

or a specified target super-vertex, is encountered.  At this point, the search ends

successfully, and an ordered list of vertices is obtained from the breadth-first tree.  T

ordered list of vertices can then be translated to a set of edges between each of the v

in the list.  This set of edges represents an edge path from the sub-vertex to the targ

surface.

Blind Holes

A blind hole in a volume is a hole that does not pass completely through the

volume.  A graph search of a blind hole creates an interesting result.  Because the s

vertex is blacked out prior to the search, and because the search is completed succe

only when the target super-vertex is found, a search within a blind hole can never be

completed.  Using this knowledge, blind holes can be detected using the graphing

algorithm.

The constraint equation for a blind hole edge path is to set the intervals within

blind hole to be less than the intervals without the blind hole.  The search is allowed

continue until the blind hole’s bottom is found.  The search is terminated at this poin

the breadth-first tree is traversed to obtain the ordered vertex list within the blind hol

This vertex list is flagged as belonging to a blind hole rather than a through hole, an

corresponding constraint equation can be setup with a less-than inequality (<=), rath

than a equality (=).  An example of a volume containing a blind hole and the

corresponding graph is shown in figure 3.7.
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Figure 3.7 - Graph with a Blind hole

Vertex to Curve Translation

The ordered vertex list must be translated to a set of edges representing an e

path from the source surface to the target surface.  Due to the collapse of the sourc

target surfaces to form the super vertices, each set of consecutive vertices in the ord

vertex list does not necessarily share a corresponding edge. Therefore, the translatio

consists of finding edges from a vertex to a source/target surface and from a source

surface to a vertex.

Constraint Formulation

Once the ordered list vertices has been translated to edges, the constraint

formulation for each edge path can begin.  This is accomplished by attaching a weig

termed a sweep weight, to each of the edges in the list.
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The weight associated with each edge is found by systematically traversing t

edge list and determining the direction of traversal for the edge.  An edge which is b

traversed from a source towards a target is given a weight of one, while an edge bei

traversed from a target to a source is given a weight of -1.  An edge which is found t

parallel to the source or target surface is given a weight of zero.

The direction of traversal is found by using the previous edge and weight in th

edge list. If the edge is the first edge in the list, the angle is calculated between the s

surface’s normal vector and the vector represented by the edge.  If the calculated an

approximately 180 degrees, the edge is being traversed from the source to the target,

assigned an edge weight of one.

The direction of traversal for the edges following the first edge in the list can b

found by using the previous edges direction of traversal and comparing it to the curr

edges direction of traversal.  If they are found to be in approximately the same direc

the previous edge’s sweep weight is also assigned to the current edge’s sweep weig

Variations in the direction of traversal from the previous edge to the current edge cha

the weight accordingly to either a zero or a negative one, depending on the calculate

angle between the two edges.

Once all edges in the edge list have a weight assigned to them, the constrain

equations can be formulated.  The sum of the products of the weight and the edge’s

interval count for each path correspond to one side of a constraint equation.  Two

corresponding edge paths from the same source surface are constrained as being “

to” for a through hole or “less than” for a blind hole.  Figure 3.8 shows an example o

constraint equation formulated for the example sweepable volume.
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Figure 3.8 - Search, Translation and Volume Interval Constraint Equations

Interval Assignment

The formulated constraint equations are supplied to the same interval linear

program which was developed for the surface interval assignment.  Using the same

program for the surfaces and volumes, the interval assignment on each edge can be

optimized for all constraints on the volume, not just the surfaces.9, 14

The constraint equations are stored in the linear program as a matrix.  The m

representation of these equations is advantageous because matrix operations can b

performed on the constraint equations to simplify the optimization of the intervals.  T

volume interval constraint equations have a Gaussian elimination step which is perfo

to simplify the constraint equations and reduce any ambiguity that may occur in the

process of forming the constraints.
37



Figure 3.9 - Linear Program
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Once the Gaussian elimination procedure has distilled the set of volume

constraints as much as possible, the constraints are added to the system constraint m

The linear program for the example volume in this chapter is shown in Figure 3.9. Fig

3.9 also displays the volume as an unfolded set of surfaces to act as a map for interp

the linear program.  The volume constraints are added to the linear program enablin

surface and volume constraints to be solved simultaneously.

Once the linear program has been solved, an integer linear program must als

solved to ensure that all of the system constraints are met and that all intervals are i

numbers, as discussed in Chapter 2.
39



from

is

items

the

ied

le.
Chapter 4 - Example Problems

This chapter presents some examples of volumes and the results produced

the volume interval matching algorithm.  The examples used for demonstration in th

chapter have been chosen for their ease of showing the steps of the algorithm.

Each demonstration will progress through each step of the algorithm describing the 

taking place at each step.  The steps of the algorithm are:

1. Initial graph formation

2. Final graph formation

3. Searching the Graph

4. Vertex to curve translation

5. Edge weight assignment

6. Constraint equation formulation and addition of the constraint equations into

linear program.

Other examples of meshed geometries to which the algorithm has been appl

will be shown at the end of the chapter.

Many-to-One Example with Blind and Through Holes

The first example is a many-to-one sweep with a through hole and a blind ho

The geometry is shown in Figure 4.1.
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Figure 4.1 - Many-to-One Example Volume

Initial Graph Creation

The initial graph for this geometry is created from the vertices of the geometry

sweep vertex is formed for each vertex on the volume.  Each sweep vertex is given

knowledge of any vertex to which it is connected through an edge in the geometry.  

sweep vertex can be accessed through the geometry vertex.  The connected vertice

stored in a list of vertices on each of the sweep vertices.

Vertices which are connected through periodic surfaces must also have knowl

of each other.  This is accomplished by simply adding these vertices to the vertex lis

stored in the sweep vertex.

With the connectivity data stored on each sweep vertex, some geometry sear

can be accomplished.  However, due to incomplete connectivity across surfaces, no

searches from a vertex on a source surface would eventually reach a target surface

Therefore, a collapse of the source and target surfaces is affected to complete the

necessary connectivity.
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Final Graph Creation

A new data structure is created by the collapse of the source and target surfa

known as a super vertex.  The super vertex retains the connectivity knowledge of ea

the sweep vertices within the super vertex.  This is important due to the differentiatio

which must take place when a surface is to be searched.

Just prior to collapse, a query of the source and target surfaces is initiated to

determine if any of the source or target surfaces share curves with any of the other s

or target surfaces.  If any of these surfaces share edges, then the two super vertices

each of these surfaces must be combined.

To limit the number of searches which are required to take place, the number

edge loops for each surface or set of surfaces is determined.  The assumption is tha

surface sets with multiple edge loops will have multiple chains of linking surfaces

attached to them. For each edge loop on the surface(s), a sub-vertex will be formed w

the super vertex.  A sub-vertex is the base of each breadth-first search tree during th

subsequent searching step.  The collapse, along with the formation of the super ver

and sub-vertices, is shown in Figure 4.2 for the example geometry.
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Figure 4.2- Source and Target Surface Collapse to Form
Super Vertices and the Final Graph

Graph Search

With the final graph formed, the next step is to search from each sub-vertex to

the shortest list of vertices from a sub-vertex to the target super-vertex.  A breadth-fi

search is used to accomplish this step.  To prevent identical paths of curves from be

returned by the search, all of the sub-vertices on the super vertex, with the exception

sub-vertex being searched, are blacked out prior to starting the search.  This guaran

unique edge path per sub-vertex, and also ensures that each chain of linking surfac

be represented by an edge path in the constraint equations which are formulated lat

Blind holes present an interesting situation in the search.  A successful searc

completed upon encountering the target super-vertex, but because all of the sub-ve
43
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have been blacked out prior to searching, any search within a blind hole results in fa

of the search algorithm.  The subsequent failure is used to detect the blind holes an

breadth-first tree is used to find a partial path of curves representing the blind hole. 

partial path is flagged as being a blind hole and the constraint equations are set up

accordingly.  The search results for the example volume are shown in Figure 4.3, wh

each set of dashed lines represents an independent and parallel edge path from the

vertex to the target super vertex.

Figure 4.3 - Search Results for Two Sets of Sub-Vertices

Vertex-to-Curve Translation

An ordered list of vertices from  the sub-vertex to the target super vertex resu

from the search procedure.  This ordered list of vertices must be translated to a list o

corresponding curves representing an edge path for each chain of linking surfaces att

to the source surface(s). The translation process requires finding the corresponding

or periodic surface between two vertices in the ordered list.  The vertices which are
44
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returned in the ordered list are the geometry vertices, not the sweep or super vertice

Therefore, the translation algorithm is required to find a corresponding curve between

geometry vertices, a geometry vertex and a super vertex, or between two super vert

The original volume with the translated edges is shown in Figure 4.4.

Figure 4.4 - Search Results Translated Back to Original Volume

Edge Weight Assignment

A weight will be multiplied by the curves interval count and the sum of the produ

of all the weights and interval counts for all of the curves in the translated list correspo

to one side of a constraint equation.

The weight on each edge is either +/-1 or zero corresponding to the sweep

direction for the volume.  A curve which is being traversed in a direction from the so

to a target is given a weight of one.  A curve being traversed opposite the sweep dir

is assigned a weight of negative one, and perpendicular to the sweep direction is giv

weight of zero.
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The edge weight and sweep direction is determined from a local angle calcul

between a given curve in the curve path list and the previous curve in the same list. I

curve is the first curve in the list, the weight is determined by calculating the interior an

between the first curve and the source surface normal at the curves location on the 

surface.  The surface normal or previous curve sweep weight is always known and t

sweep weights can be found by simply stepping through the list in order until the entire

of curves has been assigned weight.

Constraint Formulation and the Linear Program

Each super vertex with sub-vertices will contain a set of corresponding constr

equations which needs to be added to the linear program.  Every path from the supe

vertex must be constrained against every other path on the super vertex.  This is

accomplished by summing the product of the weight and the interval count on each 

within a path, and then either setting two paths equal to each other for a through ho

setting one side less than the other for blind holes.  Every path is constrained again

least one other path on the super vertex.

The newly formulated constraint equations are added to the linear program’s

constraint matrix through a specially written interface for volume interval assignmen

Once all constraints have been written to the constraint matrix, the constraints are dis

through a Gaussian elimination procedure.  This step reduces the overall size of the

constraint matrix, thereby speeding the solution of the linear and the integer linear

programs. The example volume with the final set of volume interval constraints is sh

in Figure 4.5.
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Figure 4.5- Original Volume with Volume Interval Constraint Equation
(IA = number of intervals on curve A, etc.)

Many-to-Many Sweep Example

The second example in this chapter demonstrates the capability of the algorith

handle all types of sweepable volumes.  The example shown in this section is a man

many sweepable volume, and the procedure is shown in a step-by-step manner. Figu

is the example volume used in this section.
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Figure 4.6 - Many-to-Many Example Volume

Initial and Final Graph Creation

Graph creation for the many-to-many example is the same as the previous

example.  All vertices are first assigned a sweep vertex and connectivity information

then transferred to the super vertex during the collapse stage.

Once all sweep vertices have been defined and set, the source and target su

are combined, as necessary, and any instances of multiple edge loops are found. Fo

edge loop, a sub-vertex is formed, and for each source/target surface or set of surfa

super vertex is formed by the collapse of the sweep vertices on the surface(s).  This

process is shown in Figure 4.7.
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Figure 4.7- Final Graph

Graph Search

The graph search procedure is altered slightly for the many-to-many case.  T

corresponding curve paths from each sub-vertex must correlate by having similar en

target super vertices in order for the constraint equations to be correct.  Therefore, a

knowledge of the target super vertex at which the search is terminated is added to th

source super vertex. All searches which begin at the given source super vertex must

the same target super vertex so that the paths can be related in the constraint equa

The search progresses in the same manner as for the many-to-one example, except

search is completed successfully upon reaching the specified target super vertex.  E

super vertex may then have a different target super vertex as the final destination of

search.  Figure 4.8 shows the result of a search from each of the super vertices with

vertices.
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Vertex-to-Curve Translation and Edge Weight Determination

Vertex-to-curve translation and edge weight determination is similar for both t

many-to-one and the many-to-many type sweeps.

Constraint Formulation and the Linear Program

The constraints formed in this step are also similar to the many-to-one type sw

case.  The final volume interval constraints for the example volume are shown in Fig

4.9.
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Figure 4.9- Volume with Volume Interval Constraint Equations

Example Cam Shaft

The final example in this chapter demonstrates the capability of the algorithm

handle fairly complex types of sweepable volumes.  The example shown in this sect

a many-to-many sweepable volume.  The procedure for generating the volume inter

constraints will be shown in a step-by-step manner.  These constraints will be added

linear program in addition to the constraints imposed by the surfaces’ geometry and

meshing schemes.  Figure 4.10 is the example volume used in this section.
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Figure 4.10 - Cam Shaft

Initial and Final Graph Creation

Graph creation for the cam shaft is the same as the previous example. All ver

are first assigned a sweep vertex and connectivity information is transferred to the s

vertex. At this stage, the super vertices can be formed by collapsing the source and

surfaces.  The final graph for this example is shown in Figure 4.11.
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Figure 4.11- Final Graph for the Cam Shaft

Graph Search

The graph search procedure is the same as for the previous many-to-many c

All search paths beginning at a given source super vertex must end at the same targe

vertex so that the paths can be related in the constraint equations. The search progre

the same manner as for the many-to-one example, except that the search is comple

successfully upon reaching the specified target super vertex.  Each super vertex ma

have a different target super vertex as the final destination of the search.  Figure 4.1

shows the result of the search from the sub-vertex for the cam shaft example.

Figure 4.12 - Graph Search Results
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Constraint Formulation and the Linear Program

The constraints are formed after translation of the search results and edge w

are determined.  The constraint is the sum of the edge weight multiplied by the inter

count on each edge for each path from the source to the target.  The final volume in

constraints for the example volume are shown in Figure 4.13.  These constraints wil

supplied to the linear program in addition to the surface constraints.  The addition of

volume constraints effectively couples the surface constraints for the through hole to

outer surfaces of the volume.

Figure 4.13- Volume with Volume Interval Constraint Equations
Note: K is an edge extending through the interior hole.

(In = the number of intervals on edge n.)

Other Examples

Figures 4.14 through 4.17 display examples of meshed volumes to which this

algorithm has been applied.
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Figure 4.14 - Example Volume with Through Hole

Figure 4.15- Example Volume with a Through Hole
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Figure 4.16 - Example Volume with a Blind Hole

Figure 4.17 - Example Volume with a Blind Hole and Through Holes
56



ed in

cs that

r of

alled

bers

uter

time

user

uld
Chapter 5 - Conclusion

This chapter presents a brief summary of the research and algorithms develop

this thesis. Finally, several possible areas of future enhancements and research topi

were not covered in this thesis will be discussed.

Summary

Surface meshing algorithms require certain relationships between the numbe

mesh edges (intervals) on the curves bounding a surface.  Assigning the number of

intervals to all of the curves in the model such that all relationships are satisfied is c

interval assignment.  Volume meshing algorithms also require certain relationships

between numbers of intervals that are not always captured by the surface meshing

requirements. For example, sweeping a hollow cylindrical solid requires that the num

of intervals between the top and bottom annuluses are the same for the inner and o

cylinder walls.

This thesis presented a new technique for automatically identifying volume

interval constraints.  Volume interval constraints were grouped with surface interval

constraints and solved simultaneously.  This technique reduced the amount of user 

required to mesh models composed of sweepable volumes with holes; previously a 

often had to manually identify constraints and set intervals before these volumes wo

successfully mesh.
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A sweepable volume has source, target, and linking surfaces. Each maximal

connected set of linking surfaces defines a blind-hole, a through-hole, or the outer sh

the volume. Note the outer shell is topologically equivalent to a through-hole.  Within

linking set, the numbers of intervals between source and target surfaces are already

favorably constrained by the surface mapping constraints. However, between two lin

sets the numbers of intervals may need to be explicitly constrained for the volume.

The procedure described in this thesis used graph algorithms to identify linkin

sets, and determine if they correspond to through-holes or blind-holes.  For blind-ho

the algorithm generates constraints that prevent the hole from being too deep in inte

parameter space and penetrating opposite target surfaces.  For each linking set, the

adjoining source and target surfaces are partially ordered by the structure of the link

set.  Representative chains of curves capture this partial ordering; the level of a surf

the end of a chain must be equal to the level of the surface at the beginning of the c

plus the number of intervals assigned to the chain. A small set of representative pat

each linking set is found.  Note that not all source/target pairs generate a path.  The

representative paths for all linking sets are gathered and distilled by Gaussian elimin

into a small set of constraints.

Interval assignment has other considerations besides meshing scheme cons

a user sets the number of intervals on individual curves, and designates them as ha

(cannot be modified) or soft-set (merely a goal).  Note that in some cases there is no

interval assignment solution. The interval assignment constraints and goals are solv

a series of (integer) linear programs.  The resulting numbers of intervals are assigne

each curve in the model, and subsequently meshing the surfaces and volumes will n

change these numbers.
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Future Areas of Research

While many areas of possible research in volume interval assignment have b

covered in this thesis, a few areas still remain.  This section will discuss five areas, w

are:

1.  Resolution of path initialization problems

2.  Edge parameterization

3.  Corner picking globalization

4.  Volume interval assignment for submappable volumes

5.  Blind hole interval constraint formulation for many-to-many sweeps

Path Initialization

The original research for volume interval assignment made the assumption th

only surfaces with multiple edge loops would contain independent and parallel edge p

leading from the source surface(s) to the target. In some cases, this is not necessarily

Consider the volume shown in Figure 5.1, where a source has a single edge loop, b

contains multiple chains of linking surfaces.
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Figure 5.1 - Path Initialization Problem

A solution to the problem shown in Figure 5.1 is to search for the edge paths

from the source surface(s) to the target surface, and then from the target surface to 

source surface(s).  This solves the problem for the multiple source to one target

classification; however, there is still potential for a small set of volumes in the multip

source to multiple target classification to have an incomplete set of constraints to ve

the sweepability of the volume.

Edge Parameterization

The constraint equations from the volume interval assignment algorithm depe

on the weight assigned to each edge in the edge path.  The weights are assigned b

determining if the edge is parallel, perpendicular, or parallel but opposite to the volu

sweep direction.  The sweep direction is calculated locally by using the angles betw
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successive edges in the edge path.  Angles between successive edges are calculat

an interior angle of two vectors formed from the edges.  For some cases, this is not

necessarily indicative of the sweep direction for the volume. One possible solution to

problem is to parameterize the edges of the volume globally using the surface vertex

and assigning the edge to an [i-j] space, where the [i]  direction is always the sweep

direction.  This, however, is not an easy problem and brings us to the next area of fu

research, global corner picking.

Global Corner Picking

The corner picking algorithm for surfaces often guarantees success for the su

locally, but in some instances, can cause an infeasible or unsolveable set of constra

within the interval assignment linear program.  An example of this type of infeasibilit

shown in Figure 5.2.  If vertex “A” is chosen as a corner for the linking surface, the

volume is no longer sweepable with the source and target surface specified, and,

subsequently, the edge parameterization for the volume will also be incorrect.  An

algorithm is needed which will pick the corners to ensure feasibility of the global probl

for the interval assignment algorithm. Such a corner picking algorithm could also be u

to verify the sweepability of a volume, given the source and target surfaces.
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Figure 5.2 - Global Corner Picking Problem

Volume Interval Assignment for Submappable Volumes

Submappable volumes can, to some extent, be thought of as a specialized su

of sweepable volumes. Volume interval assignment for a submappable volume could

be handled similarly to the algorithm for volume interval assignment for sweepable

volumes.

A submappable volume can essentially be swept in three directions.  By ensu

that the volume interval constraints are formulated and supplied to the linear progra

each of the three sweep directions, submappability with respect to interval assignmen

be assured using the same algorithm described by this thesis.

Blind Holes and Many-to-Many Sweeps

Multiple blind holes on a multiple source to multiple target sweepable volume

present an interesting problem for interval assignment.  Not only are the intervals

constrained within the blind hole to be less than the intervals along the outer surface o
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volume, but there is also the problem of potential overlap for blind holes protruding fro

source and blind holes protruding from target surfaces.  Figure 5.3 shows the possib

cases of blind holes in many-to-many volume sweeps.

Figure 5.3 - Blind Hole Cases in Many-to-Many Sweeps.
Case A: No Potential Overlap;
Case B: Full Potential Overlap;

Case C: Partial Potential Overlap

Potential solutions to this problem must handle the detection of overlap betwe

the blind hole’s bottom and the geometry boundary.  One idea has been to use the

intersection detection algorithm described by Mingwu Lai in his work on multiple sou

to multiple target sweeping8.  However, the algorithm assumes a proper interval

assignment prior to the intersection detection. Thus the problem becomes circular, an

difficulty of the problem increases.
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Glossary

Chain of Surfaces - A set of surfaces connected to each other by shared edges.  Cha
surfaces usually form closed loops and are usually found as the outer skin of a volume
set of surfaces comprising a through hole.  In a sweepable volume, the linking surfa
will form at least one chain around the volume.  Multiple chains of linking surfaces a
found on sweepable volumes containing holes.

Graph - A graph consists of a set of objects known as vertices, and another set know
edges, such that each edge is identified with an unordered pair of vertices.  Graphs 
usually represented by means of a diagram.

Linking Surface - The surfaces which connect the source and target surfaces on a
sweepable volume.  Linking surfaces must be mappable or submappable.

Source- The surface or set of surfaces on a sweepable volume upon which the mesh
originates.  The source surface must be topologically equivalent to the target surface

Sub-Vertex- A vertex in the graph derived from a super vertex and containing only par
the total connectivity data for a super vertex.  Sub-vertices are formed from individua
loops of edges on a source surface, or set of source surfaces.  Subsequent searche
sweepable volume graph usually originate from a sub-vertex.

Super Vertex - A collection of sweep vertices containing all connectivity data of each
sweep vertex.  The super vertex is formed by collapsing all sweep vertices on a sou
target surfaces into a single vertex.

Sweep Vertex - On a sweepable volume, a sweep vertex is a vertex in the graph of the
volume.  A sweep vertex contains the connectivity data to other sweep vertices whic
forms the graph.  The connectivity data is simply the edges in the graph to which thi
vertex is connected.

Sweepable Volume - A volume is said to be sweepable if topologically equivalent sourc
and target surfaces are connected by mappable or submappable linking surfaces.  T
source is meshed first, and then copied, or “swept”, layer by layer along the linking
surfaces.

Target - The surface or set of surfaces on a sweepable volume upon which the mesh
terminates.  The target surface must be topologically equivalent to the source surfac
surfaces.
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