

DECODES
Device Conversion and Delivery System

Version 7.3
User’s Guide

by

Ilex Engineering, Inc

9250 Bendix Road, North
Columbia, MD 21044

Tel: 410.715.1117
Email: info@ilexeng.com

Revision 3

April, 2007

Table of Contents
1. INTRODUCTION TO DECODES.. 1

1.1 WHAT’S NEW? ... 3
1.1.1 New Features for DECODES 7.1 ... 3
1.1.2 New Features for DECODES 6.5 ... 3
1.1.3 New Features for DECODES 6.4 ... 3
1.1.4 New Features for DECODES 6.3 ... 3
1.1.5 New Features for DECODES 6.2 ... 3
1.1.6 New Features for DECODES 6.1 ... 3
1.1.7 New Features for DECODES 6.0 ... 4

2. DECODES THEORY OF OPERATIONS ... 6
2.1 DECODES SOFTWARE CONPONENTS.. 7
2.2 DECODES DATABASE ARCHITECTURE... 8

2.2.1 Setup Information ... 8
2.2.1.1 Enumerations ... 8
2.2.1.2 Time Zones .. 10
2.2.1.3 Sensor Data Types ... 10
2.2.1.4 Engineering Units .. 11

2.2.2 Properties ... 11
2.2.3 Decoding, Formatting, and Converting Specifications .. 12

2.2.3.1 Equipment Models ... 12
2.2.4 Sites & Site Names.. 12
2.2.5 Platform Information.. 13
2.2.6 Presentation and Unit Conversion ... 15
2.2.7 Routing Specification Information.. 17

3. CONFIGURING DECODES... 18
3.1 THE “DECODES.PROPERTIES” FILE.. 18

3.1.1 Surrogate Keys Generated by SQL Database... 20
3.1.2 Date Formats in SQL Database.. 20

3.2 SQL DATABASE FORMAT CHANGES .. 21
4. MAINTAINING THE DECODES DATABASE.. 22

4.1 INITIALIZING YOUR EDITABLE DECODES DATABASE.. 22
4.1.1 Standard XML Setup Files.. 22
4.1.2 Importing Data from EMIT or Pre-Release-5 DECODES ... 23
4.1.3 Importing XML Data from Other DECODES Sites .. 24

4.2 INTERACTIVELY EDITING THE DATABASE.. 24
4.3 UPDATING THE INSTALLED DATABASE .. 25
4.4 EXPORTING PLATFORMS TO XML FILES .. 26
4.5 EXPORTING THE ENTIRE DATABASE .. 27
4.6 OTHER DATABASE UTILITIES ... 27

4.6.1 Creating the Platform Cross-Reference File .. 27
4.6.2 Creating LRGS-Style Network List Files .. 28

5. THE DECODES DATABASE EDITOR .. 29
5.1 GUI ORGANIZATION .. 30

5.1.1 List Panels in General .. 30
5.1.2 Edit Panels in General.. 30
5.1.3 Exiting the Editor.. 30

5.2 THE PLATFORM EDIT PANEL .. 32
5.2.1 Platform Sensors... 32
5.2.2 Transport Media ... 32

5.3 THE SITE EDIT PANEL .. 34

5.4 THE PLATFORM-CONFIG EDIT PANEL .. 36
5.4.1 The Decoding Script Edit Dialog.. 38

5.5 THE EQUIPMENT-MODEL EDIT PANEL ... 41
5.6 THE PRESENTATION GROUP EDIT PANEL ... 42

5.6.1 Using a Presentation Group as a Sensor Filter.. 43
5.7 THE DATA SOURCE EDIT PANEL .. 44
5.8 THE NETWORK LIST EDIT PANEL... 46
5.9 THE ROUTING SPECIFICATION EDIT PANEL.. 47
5.10 IMPORT XML FILES ... 48
5.11 EXPORT RECORDS TO AN XML FILE .. 49
5.12 INSTALL RECORDS TO YOUR PRODUCTION DATABASE.. 50

5.12.1 Automatic Installation when You Change Records.. 50
5.12.2 Manual Installation to the Production Database... 51

6. THE DECODES FORMAT LANGUAGE ... 52
6.1 EXECUTION OF FORMAT STATEMENTS BY A ROUTING SPEC .. 52
6.2 STEPPING THROUGH THE SCRIPT AND THE DATA ... 52
6.3 FORMAT OPERATION OVERVIEW ... 53
6.4 SKIPPING AND POSITIONING OPERATIONS.. 55
6.5 THE CHECK OPERATION... 55
6.6 THE SCAN OPERATION ... 56
6.7 THE JUMP OPERATION.. 56

6.7.1 The Repeat Operation... 56
6.8 FIELD OPERATIONS .. 57

6.8.1 Field Length and Delimiters:.. 58
6.8.2 Date Fields ... 59
6.8.3 Time Fields ... 60
6.8.4 Time Interval Fields.. 61
6.8.5 Minute Interval and Offset Fields... 61
6.8.6 Format Label Fields ... 62
6.8.7 Sensor Value Fields .. 63

6.9 SPECIAL DECODING FEATURES .. 63
6.9.1 How to Omit Specific Sensor Values .. 63
6.9.2 Data Delimited by either a Plus or Minus Sign.. 63

7. DECODES ROUTING SPECIFICATIONS .. 64
7.1 HOW TO RUN A ROUTING SPECIFICATION .. 65

7.1.1 Routing Spec Properties ... 66
7.1.2 Adding Network List Names from the Command Line.. 66
7.1.3 Overriding Time Range from the Command Line... 66
7.1.4 Status Output File... 67
7.1.5 Optional Lock File.. 67

7.2 TIME TAGGING DATA SAMPLES ... 67
7.3 EXPANDING ENVIRONMENT VARIABLES .. 69

8. DATA SOURCES ... 70
8.1 LRGS DATA SOURCE... 70

8.1.1 Timeouts in LRGS Data Sources .. 72
8.2 FILE DATA SOURCE.. 73

8.2.1 Delimiting Messages Within the File.. 73
8.3 DIRECTORY DATA SOURCE .. 74
8.4 HOT BACKUP GROUP DATA SOURCE ... 76
8.5 ROUND ROBIN GROUP DATA SOURCE.. 77
8.6 SOCKET STREAM DATA SOURCE.. 78

8.6.1 Using SocketStreamDataSource for NOAAPORT .. 80

9. OUTPUT FORMATTERS... 81
9.1 SHEF OUTPUT FORMAT... 82
9.2 SHEFIT OUTPUT FORMAT ... 84
9.3 HUMAN READABLE OUTPUT FORMAT.. 85
9.4 EMIT-ASCII FORMAT... 86
9.5 EMIT-ORACLE FORMAT .. 87
9.6 DUMP FORMATTER... 88
9.7 USGS STDFMT OUTPUT FORMATTER.. 89
9.8 TRANSMIT MONITOR FORMATTER ... 90

10. CONSUMERS .. 92
10.1 PIPE CONSUMER... 92
10.2 FILE CONSUMER... 93
10.3 DIRECTORY CONSUMER ... 94

11. SPECIAL CONSIDERATIONS FOR EDL FILES .. 95
11.1 HOW DOES DECODES FIND THE PLATFORM RECORD? ... 95
11.2 TIME ZONES FOR DATES & TIMES IN EDL FILES ... 95

12. SPECIFIC SCENARIOS... 97
12.1 HOW TO CREATE A NEW PLATFORM SPECIFICATION... 97

Create a Site for the New Platform... 97
Create an Equipment Model Record for the New Platform .. 97
Create a Configuration for the New Platform .. 98

Rules and Conventions for Configuration Naming ... 99
Enter the Sensor and Formatting Information ... 100

Create the Platform Record .. 101
Add the new Platform to a Network List ... 102
Testing the new Platform in a Routing Spec ... 102

13. REFERENCE LIST EDITOR .. 103
13.1 ENUMERATIONS ... 104
13.2 ENGINEERING UNITS .. 105
13.3 ENGINEERING UNIT CONVERSIONS... 106
13.4 DATA TYPE EQUIVALENCIES.. 107

14. RATING COMPUTATION USING USGS RDB FILES ... 108
14.1 STORE THE RDB FILES IN A KNOWN DIRECTORY .. 109
14.2 ASSOCIATE RDB FILES WITH PLATFORM SENSORS.. 109
14.3 CONFIGURE THE COMPUTATION PROCESSOR ... 110
14.4 SIMPLE ASCII TABLE FILES... 111
14.5 RUN YOUR ROUTING SPEC WITH COMPUTATIONS ENABLED ... 111

15. THE DECODES PLATFORM WIZARD.. 112
15.1 PLATFORM WIZARD START PANEL .. 113
15.2 PLATFORM WIZARD SITE PANEL.. 114
15.3 PLATFORM WIZARD SENSORS PANEL... 115
15.4 PLATFORM WIZARD EQUIPMENT MODEL PANEL ... 116
15.5 PLATFORM WIZARD DECODING SCRIPT PANEL.. 116
15.6 PLATFORM SPECIFIC INFORMATION ... 118
15.7 SAVE YOUR WORK .. 119

16. THE INTERACTIVE DECODING WIZARD.. 120
16.1 THE FILE SCANNING PANEL ... 121
16.2 THE DECODING AND TIME SHIFT PANEL .. 122

16.3 THE SAVE-RESULTS PANEL ... 123
17. USGS NATIONAL WATER INFORMATION SYSTEM (NWIS) INTEGRATION 124

17.1 CONFIGURE DECODES FOR YOUR NWIS DATABASE ... 124
17.2 NWIS MAPPING FOR SITES AND SITE NAMES .. 125
17.3 ADDITIONAL NWIS SENSOR PARAMETERS.. 127

APPENDIX A: ENGINEERING UNIT LIST.. 141

Table of Figures
FIGURE 1-1: WHAT DECODES DOES. .. 1
FIGURE 2-1: DECODES DETAILED DATA FLOW .. 6
FIGURE 2-2: DECODES COMPONENTS... 7
FIGURE 2-3: ENUMERATIONS ERD.. 8
FIGURE 2-4: DATA TYPES ERD... 10
FIGURE 2-5: ENGINEERING UNITS & CONVERTERS ERD. ... 11
FIGURE 2-6: EQUIPMENT MODEL ERD.. 12
FIGURE 2-7: SITES AND SITE NAMES ERD. ... 12
FIGURE 2-8: PLATFORM INFORMATION ERD... 13
FIGURE 2-9: PRESENTATION AND UNIT CONVERSION ERD... 15
FIGURE 2-10: ROUTING SPECIFICATION ERD.. 17
FIGURE 5-1: DATABASE EDITOR PLATFORM LIST SCREEN. ... 29
FIGURE 5-2: PLATFORM CONFIG EDIT PANEL. .. 31
FIGURE 5-3: PLATFORM EDIT PANEL... 33
FIGURE 5-4: TRANSPORT MEDIUM EDIT DIALOG. ... 34
FIGURE 5-5: THE SITE EDIT PANEL. .. 35
FIGURE 5-6: PLATFORM CONFIG EDIT PANEL. .. 36
FIGURE 5-7: EDIT CONFIG SENSOR DIALOG. ... 37
FIGURE 5-8: DECODING SCRIPT EDIT DIALOG SHOWING INTERACTIVE DECODING....................................... 39
FIGURE 5-9: LOAD SAMPLE MESSAGE DIALOG. .. 40
FIGURE 5-10: EQUIPMENT MODEL EDIT DIALOG. ... 41
FIGURE 5-11: PRESENTATION GROUP EDIT PANEL.. 43
FIGURE 5-12: DATA SOURCE EDIT PANEL SHOWING LRGS DATA SOURCE. ... 44
FIGURE 5-13: DATA SOURCE EDIT PANEL SHOWING HOT BACKUP GROUP... 45
FIGURE 5-14: NETWORK LIST EDIT PANEL.. 46
FIGURE 5-15: ROUTING SPECIFICATION EDIT PANEL. ... 47
FIGURE 5-16: IMPORT XML FILES DIALOG... 48
FIGURE 5-17: IMPORT DIALOG SHOWING SUCCESSFUL SCAN... 48
FIGURE 5-18: THE EXPORT DIALOG. ... 49
FIGURE 5-19: THE AUTO-INSTALL DIALOG... 50
FIGURE 5-20: MANUAL INSTALL DIALOG.. 51
FIGURE 7-1: DATA FLOW FOR ROUTING SPECIFICATIONS. .. 64
FIGURE 9-1: EXAMPLE OF SHEF .A OUTPUT... 83
FIGURE 9-2: EXAMPLE OF SHEF .E OUTPUT.. 83
FIGURE 9-3: EXAMPLE OF SHEFIT OUTPUT FORMAT. .. 84
FIGURE 9-4: EXAMPLE OF HUMAN READABLE OUTPUT FORMAT.. 85
FIGURE 9-5: EXAMPLE OF EMIT-ASCII FORMAT. .. 86
FIGURE 9-6: EXAMPLE OF EMIT-ORACLE OUTPUT FORMAT.. 87
FIGURE 9-7: EXAMPLE OF DUMP OUTPUT FORMAT... 88
FIGURE 9-8: EXAMPLE OF USGS STDFMT OUTPUT. ... 89
FIGURE 9-9: EXAMPLE OF TRANSMIT MONITOR FORMAT. .. 90
FIGURE 13-1: REFERENCE LIST EDITOR ENUMERATIONS TAB. ... 103
FIGURE 13-2: REFERENCE LIST EDITOR ENGINEERING UNITS TAB. .. 105
FIGURE 13-3: REFERENCE LIST EDITOR EU CONVERSIONS TAB. .. 106
FIGURE 13-4: REFERENCE LIST EDITOR - DATA TYPE EQUIVALENCIES TAB... 107
FIGURE 14-1: USGS RDB RATING FILE EXAMPLE ... 108
FIGURE 14-2: SELECT PLATFORM SENSOR AND PRESS "SENSOR PROPERTIES". ... 109
FIGURE 14-3: PLATFORM SENSOR PROPERTIES DIALOG.. 110
FIGURE 14-4: EXAMPLE "COMPUTATIONS.CONF" FILE... 110
FIGURE 14-5: EXAMPLE OF SIMPLE ASCII TABLE FILE... 111
FIGURE 15-1: PLATFORM WIZARD START PANEL.. 113
FIGURE 15-2: PLATFORM WIZARD SITE PANEL. .. 114
FIGURE 15-3: PLATFORM WIZARD SENSORS PANEL.. 115
FIGURE 15-4: PLATFORM WIZARD EQUIPMENT MODEL PANEL. ... 116

FIGURE 15-5: PLATFORM WIZARD DECODING SCRIPT PANEL. .. 117
FIGURE 15-6: PLATFORM WIZARD "PLATFORM SPECIFIC INFO" PANEL. ... 118
FIGURE 15-7: PLATFORM WIZARD "SAVE YOUR WORK" PANEL. ... 119
FIGURE 16-1: DECODING WIZARD - FILE SCANNING PANEL. .. 121
FIGURE 16-2: DECODING WIZARD - DECODING AND TIME SHIFT PANEL. ... 122
FIGURE 16-3: DECODING WIZARD - SAVE RESULTS PANEL. ... 123
FIGURE 17-1: SITE NAME EDIT DIALOG. ... 125
FIGURE 17-2: EDIT CONFIG SENSOR DIALOG. ... 127
FIGURE 17-3: EDIT PLATFORM SENSOR DIALOG. .. 128

DECODES User Guide 1

1. Introduction to DECODES
DECODES stands for DEvice COnversion and DElivery System. DECODES is a suite of
software that takes data from a variety of recording devices and converts it into standard
engineering units, suitable for entry into a database.

The types of recording devices include both Electronic Data Loggers (EDLs), which are
electronic recorders whose data for the most part are manually retrieved, and Data
Collection Platforms (DCPs), whose data are retrieved by satellite telemetry.

The operations performed by DECODES are depicted in Figure 1-1.

Retrieve the Data

Decode & Time-
Tag the Data

Convert Data to
Engineering Units

Present Data in a
Usable Format

Compute Derived
Parameters

Save data to
some media

Figure 1-1: What DECODES Does.

The fourth step, “Compute Derived Parameters” is not implemented in the current
release.

Currently DECODES can handle data from any GOES DCP received either from a
GOES receiver or over DOMSAT. It has the basic capability to parse data from EDL
files, but this capability has not been extensively tested in the current release.

Data can be retrieved from saved files or over the network from an LRGS.

DECODES can handle any ASCII format currently in use by the DCS. This includes true
ASCII values or the pseudo-binary values common in compact random messages.

DECODES User Guide 2

DECODES uses a database of platform specifications to tell it how to decode data from a
given source. DECODES manages a fairly complex database that includes entities for:

DataSource Where to retrieve raw data from: Directory, File, LRGS Network
Connection, shared memory, etc. If an LRGS network connection
is specified, you can specify network lists, time-ranges, etc.

Platforms & Sites Site-specific parameters such as transmission times, GOES channel
numbers, DCP address, etc.

DecodingScript A structured scripting language that tells DECODES how to
extract time-tagged samples from the raw messages

EU-Converters How to convert raw values into engineering units, and how to
convert between various types of engineering units (e.g. feet to
meters).

PresentationInfo How to format each type of sample. For example, you might want
all stage values to be presented in centimeters with 10.3 resolution.

DataTypes DECODES knows how to convert between the USGS (EPA)
numeric codes and SHEF physical element codes.

Formatters How to format data on output. Formatters are implemented for
SHEF, SHEFIT, Human-Readable, and “Dump”.

Consumers Where to put the output data: files, directories, pipes, etc.

RoutingSpec Puts all of the above together. A RoutingSpec says where to get the
raw data, how to decode it, how to EU convert it, how to format it,
and where to send it.

DECODES is written in 100% pure Java. Therefore there should be (almost) no porting
issues in running it on any modern computing platform. Ilex Engineering has tested it
under Windows 2000 and Linux.

DECODES merges the capabilities of the former DECODES software used by U.S.
Geological Survey (USGS) with the EMIT (Environmental Message Interpreter
Translator) software used by several U.S. Army Corps of Engineers (USACE) districts.

DECODES is open-source software. It was developed by Ilex Engineering, Inc., under a
contract jointly funded by USGS and USACE. To obtain a copy of DECODES software,
contact the U.S.G.S. Water Resources Division Headquarters.

For more information on Ilex Engineering, Inc., visit our web site at www.ilexeng.com,

call us at 410.465.6948, or email us at info@ilexeng.com.

DECODES User Guide 3

1.1 What’s New?

1.1.1 New Features for DECODES 7.1
• New settings in the “decodes.properties” file: TransportMediumTypePreference and

DataTypeStdPreference. See Table 3-1 for details.
• Import, Export, and Install functions have been integrated into the graphical database

editor. See sections 5.10 through 5.12.
• There is a new “decoding wizard” application. See Chapter 16.
• Several changes have been made to the DECODES SQL Database Schema. See the

DECODES Database Schema document for details.
• DECODES has been integrated with the USGS NWIS Database. See Chapter 17.

1.1.2 New Features for DECODES 6.5
• The Installation section of the manual has been split into a separate document.
• Enhancements to the SHEF formatter allow you to output a full 7-character SHEF

code. The SHEF formatter also will now always output the maximum number of
decimal points as specified by the presentation group. This is a work-around for
parsers which require all samples to have decimal points.

• New “decodes.properties” values to support timezones for compatibility with SQL
database systems from Ingres, Oracle, and Postgres. The new values are called
“sqlDateFormat” and “sqlTimeZone”. See Table 3-1 for details.

• DirectoryDataSource property called “OneMessageFile”. If set, it assumes that each
file contains a separate raw message. See section 8.3 for details.

1.1.3 New Features for DECODES 6.4
• The Routing Spec (rs) and Database Editor (dbedit) commands can now take a –E

option to specify the Explicit location of an XML database. This allows you to run
from a database other than your normal editable or installed one.

• Field Operations can now specify more than one delimiter character. See section
6.8.1.

1.1.4 New Features for DECODES 6.3
• A new database editor has been added called the “Platform Wizard”. This is

especially valuable for novice users as it guides you through the complex process of
created or editing platform records. See Chapter 15.

1.1.5 New Features for DECODES 6.2
• Support for RDB file rating conversions. See Chapter 14.

1.1.6 New Features for DECODES 6.1
• Where is my routing.log file? Routing specs now write individual log files with the

name of the spec and a “.log” extension. These log files are placed in a directory

DECODES User Guide 4

specified by the ‘RoutingStatusDir’ value in the decodes.properties file. If undefined,
this defaults to $DECODES_INSTALL_DIR/routstat.

• New Load Message dialog in the database editor makes it easy to retrieve a sample
message to test your scripts.

• New Reference List Editor Application – see chapter 13.
• Support for DCP Monitor Web Application – See separate DECODES Web

Applications Manual.
• For EDL Files, you can now specify a time-zone in the transport medium. See section

11.2 and Figure 5-4 for details.
• The –R switch has been added to the ‘rs’ routing-spec command to remove redundant

DCP data from the output. Do not use this switch for EDL files.
• You can now do platform specific offsets and scaling for each sensor. See section

5.2.1 for details.

1.1.7 New Features for DECODES 6.0
• New dialog-based installation procedure replaces the manual unpacking of zip files

and environment variable setting.
• The database has been enhanced to support many new features. Some of these

features are implemented in 6.0. Some will be implemented in the near future.
• SQL ‘Sequences’ are now segregated from other portions of the database. This will

facilitate support for Ingres and Oracle.
• Support for EDL (Electronic Data Logger) Files. USGS provided examples of the

wide variety of format and time-tagging conventions.
• Complete support for all date & time operators.
• Data order can now be set explicitely within the decoding script. This replaces the

non-intuitive ‘TimeOrder’ property values.
• The Site records now contain elevation and a free-form description field.
• Properties can now be associated with Platform Records.
• Transport Medium records contain additional GOES parameters like Preamble and

Time Adjustment.
• Configuration Sensors may now have multiple data types associated with them.
• Presentation Group Rounding Rules have been redone to be more useful.
• The ‘rs’ (Routing Spec) command now has options for setting network lists and time

ranges. Previously these needed to be set in the database records. This will result in
fewer, more flexible, routing specs.

• The ‘Directory Data Source’ is now implemented. A routing-spec can now watch a
specified directory (or group of directories) for new files to appear. We expect this to
be used heavily for EDL files.

• A new format operator ‘w’ can be used to skip any amount of white space (spaces,
tabs, carriage returns, linefeeds).

• A new field type, ‘MINT’, can be used for parsing time intervals in the message
given as a number of minutes. Field type ‘MINT-‘ used for specifying negative
interval. For details, see section 6.8.5.

DECODES User Guide 5

• A new field type, ‘MOFF’, can be used for parsing a minute-offset from the message.
Many GOES DCPs contain a minute offset to find the time of the first sample. You
can now use these values. For details, see section 6.8.5.

• The LRGS Message Browser now has a ‘Display All’ button.
• SHEF Formatter option for complete 7-char SHEF codes.
• Numerous GUI improvements and bug-fixes.
• New “sutron standard” example files in the to_import directory. This uses a flexible

format that can handle most sutron ascii message formats.

DECODES User Guide 6

2. DECODES Theory of Operations
Figure 2-1 provides a more detailed data flow diagram of what happens when data is
decoded. In each box in the figure, different algorithms and parameters are applied
according to information in your database.

DataSource

LRGS,
DRS,

GOES DRGS,
File,

Directory,
LOS Radio,

etc.

Decode &
Convertraw data

Equation
Processor

Extract samples,
time-tag,

convert to EU

Stage-to-flow,
other algorithms,

table-lookup,
USGS Rating Tables,

etc.

extracted
samples

Presentation
extracted
& derived
samples

Formatting

Converted to desired EUs,
rounding rules applied

Consumer

SHEF, SHEFIT,
Human Readable,

STDMSG, EUMSG,
DUMP Debug, etc.

Complete,
formatted data

File, Directory, Pipe,
Program, Socket, GUI,

etc.

Convert to desired
engineering units, apply

rounding rules, etc.

Figure 2-1: DECODES Detailed Data Flow

DECODES User Guide 7

2.1 DECODES Software Conponents
Figure 2-2 shows the DECODES software components and how they relate.

Editable
Database

(XML or SQL)

Installed
Database

(XML)

Database Editor GUI

Old
DECODES

& EMIT
(SDF) Files

EmitImport

XML Files
from other
Districts

DbImport DbInstall

RoutingSpec
Executer

Joe User

Raw Data Decoded
Data

DbExport
PlatformExport

LRGS, DRGS,
other data sources

Figure 2-2: DECODES Components.

EmitImport can accept files from EMIT and legacy DECODES systems. These older
software packages could export what was commonly called an SDF or Site Device File.
If you currently use EMIT or an older version of DECODES, you can import your
platform specifications directly into the new Java DECODES.

DbImport accepts XML files from other organizations using DECODES. A primary goal
of DECODES is to encourage interagency cooperation.

Two utilities, DbExport and PlatformExport can be used to create XML files for
exchange.

An extensive GUI database editor is provided for creating new DECODES specifications
and modifying existing ones. The editor has features for interactively decoding raw data
on-the-fly as you modify your specifications.

The DbInstall utility takes records from your editable database that you have blessed, and
places them into the “installed database” for your production system.

DECODES User Guide 8

The Routing Specs use information from the installed database to decode and convert raw
data from a variety of sources.

2.2 DECODES Database Architecture
This chapter provides an overview of the DECODES database. For a more complete
listing of elements, along with SQL and XML schema, see the DECODES 5 Database
Schema Document.

We divide database records into two categories:

• Setup Information – These are records that should rarely change, such as standard
unit conversions, data type records, etc.

• Decoding & Converting Specifications – You will modify these records as you add,
delete, or modify platforms; pull data from different sources; integrate new back-end
databases; etc. An extensive GUI editor (see Chapter 5) is provided for maintaining
these records.

Database information is shown using Entity Relationship Diagrams (ERD). These
diagrams show the information contained in each entity and how different entities relate
(shared keys, etc.).

2.2.1 Setup Information
Setup information should rarely change. The DECODES distribution comes with fully-
populated tables of setup information. This will be sufficient for most organizations.

Currently the only way to modify Setup Information is to modify XML files by hand.
Future releases will include a setup GUI.

2.2.1.1 Enumerations

Figure 2-3: Enumerations ERD.

There are several places where an object must hold a string that must be constrained to
one of several valid choices (i.e. an enumeration type). DECODES contains static tables
in the database to store the valid choices for these enumerations. GUI programs can use
these tables to offer pull-down menus for selection. They can also be used for validation
when importing an XML file from another agency.

DECODES User Guide 9

An enumeration is made up of a single ‘Enum’ entity and a series of associated
‘EnumValue’ entities. Think of ‘Enum’ as a type, and ‘EnumValue’ as the associated
values that are valid for that type.

The Enum entity holds the name of the type. Table 2-1 lists the enumerations used in the
DECODES database.

Enum Name Description
SiteNameType The ‘type’ values for site names. DECODES comes pre-loaded with four site

name types: NWSHB5, USGS (site number), USGS-DRGS, Local.
DataTypeStandard SHEF-PE, EPA-Code, etc.
RecordingMode F=Fixed regular interval, V=Variable, triggered, or random.
ScriptType Different ways to extract data from the raw platform messages. “Standard”

scripts use the DECODES format statements to extract samples from your
messages. This enumeration provides a hook for creating custom decoders.

TransportMediumType GOES (either self-timed or random), File, Modem, NWSTG, etc.
DataOrder A=ascending, D=descending. “Ascending” means that the earliest samples

appear in the message first.
UnitFamily “Metric” or “English”
UnitConversionAlgorithm Four algorithms for converting from one EU to another:

• “none” means no-conversion-necessary. In other words, the input and
output units are synonyms. Example mL and cc.

• “linear”: y = Ax + B
• “USGS-Standard”: y = A * (B + x)C + D
• “Poly-5”: y = Ax5 + Bx4 + Cx3 + Dx2 + Ex + F

Other algorithms can be easily added in the future.

Measures A list of physical quantities that are measured by sensors. Used to associate
units in different unit families. For example Meters and yards are related
because they both are ‘measures’ of length. This list includes “arc”, “area”,
“flow”, “length”, “temperature”, “time”, “velocity”, “voltage”, and “volume”.

EquationScope DCP, DCF, NL, SITE, ALL
LookupAlgorithm Linear, Exponential, Logarithmic, Truncating, Rounding, or “Exact-Match”
OutputFormat The following output formats are currently implemented

• SHEF – Standard Hydrometeorologic Exchange Format
• SHEFIT – Intermediate format used by USACE
• Human-Readable – compact row/column format
• EMIT-ASCII – Compatible with the “ASCII” format produced by EMIT
• EMIT-ORACLE – Compatible with the “ORACLE” format produced by

EMIT

DataConsumer Data Consumers specify where to send data once it has been decoded,
converted, and formatted:
• File – write to a specified output file
• Directory – write each message to a separate file in a specified directory.
• Pipe – send data to standard output, usually for piping into another

program.
DataSourceType Data Sources provide raw messages to the decoder:

• File – read raw messages stored in a file
• Directory – Each file in the specified directory should contain a single

raw message
• LRGS – Connect to an LRGS or DRS over the network and pull messages
• HotBackupGroup – Used to specify a group of LRGS systems. If one

DECODES User Guide 10

connection fails, use another in the group.
• RoundRobinGroup – Read data continually from a group of other data

sources (directories, files, LRGS, etc.)
• SocketStream - Reads a stream of messages from a TCP socket.

Table 2-1: Enumerations in the DECODES Database.

2.2.1.2 Time Zones
The initial release 5.0 of DECODES included database entities for time-zones. These
have been removed in DECODES 5.1 (and later).

DECODES now uses the internal Java time zone definitions. Routing Spec and Site
entities hold references to time zones by storing a “TimeZone ID” recognized by Java.

A list of the time zones supported by Sun Microsystem’s Java 1.4 is provided in
Appendix B. You can also construct a custom time zone by specifying an offset to GMT.
For example, “GMT-06:00” would mean 6 hours behind GMT, corresponding to Central
Standard Time with no support for Daylight time.

2.2.1.3 Sensor Data Types

Figure 2-4: Data Types ERD.

DECODES can accommodate different systems for representing data types. Each data
type is denoted by a ‘standard’ and a ‘code’. For example “SHEF:HG” could be used for
stream stage values.

The database also contains records that assert an equivalence between two data types. For
example, the SHEF code HG is equivalent to the EPA code 00065. These records allow
the software output data in different coding standards, regardless of the agency
maintaining the DCP.

For example, USGS may prepare platform records using EPA codes. USACE could use
these records without modification, telling DECODES to convert all the data types to
SHEF.

DECODES User Guide 11

2.2.1.4 Engineering Units
The DECODES database contains a list of commonly-used of standard and English
engineering units. It also contains records that specify conversions between them. Figure
2-5 shows these database entries.

Conversions are performed with one of the following algorithms:

• None (means that EUs are synonyms like cc and ml)
• Linear
• USGS Standard Equation
• 5th order polynomial.

Figure 2-5: Engineering Units & Converters ERD.

2.2.2 Properties
There are several places in the model where we left “hooks” for arbitrary information that
may be used by a particular agency. This type of information is stored in a set of
properties associated with some other entity.

DECODES User Guide 12

2.2.3 Decoding, Formatting, and Converting Specifications

2.2.3.1 Equipment Models
The EquipmentModel entity captures information about a piece of hardware, such as a
platform, a transport medium, or a sensor.

Figure 2-6: Equipment Model ERD.

The EquipmentModel entity stores information about the model and manufacturer of
these pieces of equipment.

An equipment model may have an arbitrary set of properties. An example of a likely
property might be time-ordering for platforms.

2.2.4 Sites & Site Names

Figure 2-7: Sites and Site Names ERD.

DECODES User Guide 13

In DECODES, a “Site” is simply a location. This is a little bit different from the concept
in EMIT where a site is synonymous with a platform. In DECODES, a site may contain
more than one platform, and a platform may be reporting sensors at different sites.

Consequently, the Site entity contains attributes that describe the location only.

A site can have many names. For example, USACE typically uses the National Weather
Service HB5 name. USGS uses a numeric site ID. Other agencies may define a “local”
name specific to their organization.

One or more sensors can exist at a site. Normally these are associated directly with the
platform at the same site. However, sometimes a sensor can be associated with a platform
at a different site.

2.2.5 Platform Information

Agency
Description
Expiration
[Named-Properties]

Platform

Name
Description

PlatformConfig

RecordingMode
RecordingInterval
TimeFirstSample
AbsoluteMin
AbsoluteMax
[Named Properties]

[Named-Properties]

MediumType
MediumId
ChannelNum
XmitTimes
scriptName
timeAdjustment

TrasportMedium

1

1...*

10...*

1

0...* 0...*

10,1

Lat/Lon/Elev
State
Region
Nearest City
Timezone
Country
Description

Site

NameType
Name

SiteName

1...*

1 0...*

0,1

Location & Naming Info Platform-Specific Info Configuration Info Shared by Multiple Platforms

ScriptName
ScriptType
FormatStatements
timeOrder

DecodesScript

RawUnitConverter
Coefficients

ScriptSensor

1

0...*

0...*

Script selection by DCP Address &
Channel Num

PlatformSensor ConfigSensor

standard
code

DataType1

1

1...*

1

1

1

Figure 2-8: Platform Information ERD.

The “Platform” entity is the central entry point for decoding. The decoder recognizes an
incoming message by its TransportMedium information. For example a GOES DCP has a
unique DCP address. Each TransportMedium record points to a particular “Platform”.

The Platform has a PlatformConfig which determines the sensors installed in the
platform, and the scripts used to decode information from that platform.

Each PlatformConfig has a series of ConfigSensors. Each ConfigSensor has a unique
“sensorNumber”. Each ConfigSensor has a data type and may have a group of properties
(ConfigSensorProperties).

DECODES User Guide 14

The same PlatformConfig may be used by several platforms. For example, a group of
Sutron 8200s which have identical sensors and message formats may share the same
PlatformConfig.

Platform-specific information about sensors may be stored in the PlatformSensor and
PlatformSensorProperty entities.

A DecodesScript contains the instructions for decoding messages from a platform that
were received over a given transport medium. For example, a platform may have a data
logger and a GOES transmitter. The GOES DCP messages would be decoded with one
script, and the data logger files decoded with a different one. The choice of which script
to use is based on which “TransportMedium” the data was received on.

DECODES User Guide 15

2.2.6 Presentation and Unit Conversion

Figure 2-9: Presentation and Unit Conversion ERD.

Refer back to the diagram in the Platform Information section. Note that the
“ScriptSensor” points to a “UnitConverter”. In that case, the UnitConverter translates the
raw value contained in a message into its initial Engineering Units value. A typical case
would be a stage sensor that reports in tenths of inches. The initial unit converter would
convert the value to inches by dividing by 10.

In Figure 2-9, a UnitConverter converts from one EU into another. A library of standard
unit conversions is built into DECODES. This enables you to specify which units you
want to output, regardless of who created the decoding specification.

DECODES User Guide 16

An “EngineeringUnit” belongs to a family (English or metric). It also has a unique
abbreviation (e.g. “mm”) and a full name (“millimeters”). It uses one of the algorithms
listed in Table 2-1.

A “DataPresentation” entity also uses a set of RoundingRules to determine the display
resolution for a given data type. For example, a DataPresentation entity for stage values
might assert that values should be output in inches. and…

• If the value is between 0…1, use 3 decimal places
• If the value is between 1 and 10, use 2 decimal places
• If the value is above 10, use 0 decimal places.

DECODES User Guide 17

2.2.7 Routing Specification Information

Figure 2-10: Routing Specification ERD.

DECODES uses a “Routing Specification” to determine:

• Where to get data from (Data source entities)
• Which data to get (Network Lists)
• How to format data for output
• Where to send it once it is decoded and converted

A “NetworkList” in DECODES is analogous to a network list used by DOMSAT
systems. It is simply a list of transport media (i.e. DCP addresses or NESS IDs).

DECODES User Guide 18

3. Configuring DECODES

3.1 The “decodes.properties” File
The release directory contains a file called “decodes.properties”. This file contains
“name=value” pairs, one per line. The options are shown in Table 3-1. “Default Value” is
the value that will be used by the software if the property is missing from the file.

The installation procedure will create a “decodes.properties” file based on selections you
made in the dialogs.

DECODES User Guide 19

Property Name Default Value Description

DatabaseType “none” This is the type for the installed database. The value
should be either “XML” or “SQL”. In the future, we plan
to add “XMLURL”, for an XML database accessible via
the Internet.

DatabaseLocation N/A This is the location for accessing the installed database.
For “XML”-type databases, this is a directory name
containing the DECODES directory tree.
For “SQL”-type databases, this is a JDBC database-url.
See section 5.2 for more information about the format of
this value.
For “XMLURL”-type databases, this is a URL.

SiteNameTypePreference NWSHB5 Specifies the “preferred” type for DCP names. By default
this is the Handbook-5 standard used by the National
Weather Service.

EditDatabaseType “xml” The is the type for the Editable database. The same
values allowed for the DatabaseType property are allowed
here; viz “XML” or “SQL”.

EditDatabaseLocation N/A This is the location for accessing the editable database.
The same values allowed for the DatabaseLocation
property are allowed here.

EditOutputFormat “Human-Readable” Output format to test decoding scripts within dbedit.
EditPresentationGroup N/A Presentation group used to format samples when testing

decoding scripts within the editor.
EditTimeZone “UTC” Time zone used when decoding sample data within the

editor. Using UTC makes it easy to correlate sample times
with the DCP message time stamp.

jdbcDriverClass org.postgresql.Driver Full Java class name of the JDBC driver here.
SqlKeyGenerator Java Class Name Class name of SQL key generator. See section 3.1.1.
SqlDateFormat String Template Format template for date/time stamps. See section 3.1.2

below.
sqlTimeZone String Time zone in which SQL will represent date/time stamps.

If blank, it will be derived from system settings.
RoutingStatusDir Directory Name Default: $DECODES_INSTALL_DIR/statmon

By default, your routing specs will periodically place their
status in this directory. The “Routing Status Monitor”
Web Application can be used to make this information
visible via a web page.

DefaultDataSource Data Source Name Default: “drot.wcda.noaa.gov”.
This is used in the database editor (dbedit) to retrieve
sample messages to test your decoding.

TransportMediumTypePrefere
nce

String Used in the database editor list panels to choose which of
the (possibly several) transport media to display.

DataTypeStdPreference String Used by editor and some output formatters to choose
which of the (possibly several) data types to display.

decwizTimeZone String Time zone used in the decoding wizard displays.
decwizDebugLevel 0, 1, 2, 3 Debug level in trace log 0=no debug info, 3=most

verbose.
decwizOutputFormat String Default = “stdmsg”.
decwizRawDataDir Directory Default location to move raw data files into.
decwizDecodedDataDir Directory Default location to save decoded data in.
decwizSummaryLog File Name Default file to append decoding summaries to.
hdbSiteDescriptions True or False Default = false. Set to true to automatically place the

preferred name at the beginning of the description. HDB
requires this.

Table 3-1: DECODES Property Values.

DECODES User Guide 20

3.1.1 Surrogate Keys Generated by SQL Database
If you are using a SQL database, DECODES uses a class that you specify to generate
surrogate keys. The class must implement the decodes.sql.KeyGenerator interface.

In the decodes.properties file, set the SqlKeyGenerator property as follows:

• For PostgreSQL, use: decodes.sql.SequenceKeyGenerator
• For Oracle, use: decodes.sql.OracleSequenceKeyGenerator

Other key generators may be added in the future.

3.1.2 Date Formats in SQL Database
SQL database products vary in the format used for storing and retrieving date/time
values. The Java code uses a “java.text.SimpleDateFormat” object to format and parse
dates. See the Java API manual page for a complete description on possible strings.

In the decodes.properties file, set the SqlDateFormat property as follows:

• For PostgreSQL, use: yyyy-MM-dd HH:mm:ss
• For Oracle, use: dd-MMM-yyyy HH:mm:ss

DECODES User Guide 21

3.2 SQL Database Format Changes
The database format has changed slightly for each major release (5, 6, and 7).

If you use a DECODES XML Database on a Single Machine: Don’t Worry! The new
DECODES programs will read the old XML files just fine. When you edit and commit an
entity, the XML files will be saved with the new format.

If you use a DECODES XML Database Shared between Multiple Machines: You
will want to upgrade all of the machines to the new release of DECODES. A problem can
arise if you save a database element with version-7 format and then try to use it with an
older release.

If you are nervous about upgrading everything at the same time, we recommend making a
copy of your old database hierarchy. Run version 7 on a copy of the database until you
are comfortable that it will work operationally.

If you use a DECODES SQL Database: Several of the table definitions have changed
for versions 6 and 7. The new software will work fine on an old database but you may not
be able to use some of the new features. We recommend that you create a new
DECODES (version 7) database, as described in the DECODES Installation Guide. Then
use ‘dbexport’ to dump the old database to an XML file. Finally use ‘dbimport’ to import
everything to the new database.

DECODES User Guide 22

4. Maintaining the DECODES Database
Take a moment to refer back to Figure 2-2. Note that the Editable Database is separate
from the Installed database. This section describes tools that you will use to:

• Import EMIT and pre-release-5 DECODES files into the editable database.
• Import Platform and other database XML files from other organizations using

DECODES 5+.
• Create a new Editable database from scratch.
• Install components from the Editable Database to the Installed Database

4.1 Initializing Your Editable DECODES Database
This section describes how to initialize and populate your first editable database.

4.1.1 Standard XML Setup Files
If you are using an SQL database as your editable database, refer back to Chapter 5. This
section is for the older XML editable database.

The setup files contain collections of information that probably does not need to change
from one organization to another. Currently the only way to edit this information is to use
a text editor to modify the XML files.

The files are all found under $DECODES_INSTALL_DIR/edit-db:

datatype/DataTypeEquivalenceList.xml: Described in section 2.2.1.3, this file contains
definitions for common SHEF and USGS/EPA numeric type codes. You may want to edit
this file if you use uncommon or custom type-codes.

enum/EnumList.xml: Described in section 2.2.1.1. You will probably not need to edit
this file unless you are adding custom Java code to the DECODES system.

eu/EngineeringUnitList.xml: Described in section 2.2.1.4, this file contains records
which describe most commonly-used English and Metric units. It also contains
conversion algorithms & coefficients to convert between units that measure the same
physical parameter.

DECODES User Guide 23

4.1.2 Importing Data from EMIT or Pre-Release-5 DECODES
Synopsis:

emitimport <options> file1 file2 . . .

Options:
-t name-type Sets the preferred site-name type to the specified value. The

default is NWSHB5.
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.
-v Validate only: Do not actually import any data. Just issue

warnings about conflicts and parsing errors.
-x Instead of importing into your editable-database, create an

XML file containing the converted data. With this option,
the program is a translator rather than an importer.

-o Keep old records on conflict. Default is to overwrite old
records with new ones.

Description:
This program can accept SDF files (SDF stands for Site Device File) from EMIT or pre-
release-5 DECODES. It can also accept network list files from LRGS or DRS systems.

It creates new DECODES database records and places them into the editable database.

This program writes log messages to a file called “util.log” in the current directory.

Examples:
DECODES contains several sample files in the to_import sub-directory. To import these
files type:

cd $DECODES_INSTALL_DIR
emitimport to_import/*

DECODES User Guide 24

4.1.3 Importing XML Data from Other DECODES Sites
Synopsis:

dbimport <options> file1 file2 . . .

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.
-v Validate only: Do not actually import any data. Just issue

warnings about conflicts and parsing errors.
-o Keep old records on conflict. Default is to overwrite old

records with new ones.

Description:
This program accepts XML files that were created by the export utilities described in
section 4.4. Imported records are added to your editable database.

DbImport ignores ‘setup’ records that are part of a large database dump. This allows you
to exchange a dump of your entire database with other users, without fear that special
changes they make in the database structure will affect you. The following record types
are only imported if the corresponding file is placed on the command line:

• Enumeration Records – found in the file enum/EnumList.xml
• Engineering Units and Conversion – found in the file eu/EngineeringUnitList.xml

This program writes log messages to a file called “util.log” in the current directory.

Examples:
pxport –a > platform-dump.xml
...at a different organization
dbimport platform-dump.xml

4.2 Interactively Editing the Database
The script ‘dbedit’ starts the interactive Database Editor GUI. See section 5 for
instructions on using this program.

DECODES User Guide 25

4.3 Updating the Installed Database
Synopsis:

dbinstall <options>

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.

Description:
The purpose of this program is top copy records that are ready for production from your
Editable database into your Installed database.

This program writes log messages to a file called “util.log” in the current directory.

The dbinstall program copies all of the setup information from your editable database
into your installed database.

If you examine the diagrams for the various database entities in you will see
“isProduction” parameters in the following record types:

• EqTable
• EquationSpec
• Platform
• PresentationGroup
• RoutingSpec

For these record types, only the entites where the “isProduction” value is true will be
copied. You can set this value for selected records in the Database Editor GUI (See
section 5)

As a time-saving alternative, special script called ‘markproduction’ has been prepared.
This script sets the isProduction flag to true for all records in the editable database.

Examples:
...after importing records to the editable database
dbinstall

DECODES User Guide 26

4.4 Exporting Platforms to XML Files
Synopsis:

pxport <options>

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.
-n network-list Export platforms referenced by the named network list.
-s site-name Export the platform record for a specific site.
-a Export all platforms.
-c config-name Export platforms that use a given platform configuration.
-i Export from the installed database. The default is to export

from the editable database.

Description:
This program writes XML records containing platforms (and all subordinate records such
as site, config, script, and transport media). Records are written to standard output.

Multiple instances of the above options are acceptable. See examples below.

This program writes log messages to a file called “util.log” in the current directory.

Examples:
Dump all platforms to a single XML file:

pxport –a > platform-dump.xml

Export three specific sites:
pxport –s TCLG1 –s HUDG1 –s LHMG1 > threesites.xml

Export platforms referenced by Atlanta’s network list:
pxport –n Atlanta > Atlanta-platforms.xml

DECODES User Guide 27

4.5 Exporting the Entire Database
You can export the entire database to an XML file with the ‘dbexport’ command:

dbexport > file By default exports the editable database.

dbexport –i > file Option to export installed database

This command is very useful for taking periodic backups of the DECODES database.

4.6 Other Database Utilities

4.6.1 Creating the Platform Cross-Reference File
If you look in the edit-db/platform directory you will see that each platform is stored in a
separate file named with a ‘p’ followed by a numeric ID assigned to the platform.

Each database assigns an arbitrary numeric key ID field to platforms as they are added to
the database. For the most part this key is invisible to you and you shouldn’t have to
worry about it.

Also in this directory is a file called PlatformList.xml. This file is a cross reference that
maps site names, configuration names, and DCP addresses to each platform.

If you suspect that your cross reference file has been corrupted, you can rebuild the
PlatformList.xml file directly. This can happen if you add files to the platform directory
using tar, zip, cp, copy, etc.

To run the program type:
java decodes.xml.CreatePlatformXref database-root

where ‘database-root’ is the path to the top of the XML database. For example, if you
want to build the cross reference in your editable database, and you installed DECODES
in /usr/local/decodes, type:

java decodes.xml.CreatePlatformXref /usr/local/decodes/edit-db

DECODES User Guide 28

4.6.2 Creating LRGS-Style Network List Files
The LRGS and DRS support an alternative file format for network lists. LRGS Network
Lists are ASCII files containing a list of DCP addresses, one per line:

DCP-Addr:DCP-Name Comment…

The line starts with a (8 hex-digit) DCP address, followed by a colon, followed by a
blank-delimited DCP Name, followed by a free-form comment field.

When you run a routing spec that uses an LrgsDataSource, the software converts any
network lists you specified into the above format, and sends them to the server. The
LRGS DCP Data Server (DDS) then only sends the messages from those platforms.

Older SCO-DRS servers do not support network list transfers. If your data source is a
SCO DRS, do the following:

1. Add a property called “sendnl” set to the value “false” to the data source record.
2. Generate the LRGS-style network list file using the “nl2lrgs” utility (see below).
3. Use FTP or some other file-transfer mechanism to copy the list onto the SCO DRS.

Place it in the ‘drs’ home directory (/usr/drs).
4. Repeate steps 2 and 3 every time the list is modified.

The “nl2lrgs” utility
nl2lrgs [-e] list1 list2 ...

The “nl2lrgs” will create a file in the current directory for each list specified. The file will
have the same name as the network list, with a “.nl” extension.

The “-e” argument forces the utility to pull the network list from your editable database.
The default is to use the installed database.

DECODES User Guide 29

5. The DECODES Database Editor
Synopsis:

dbedit <options>

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.
-E databaseLoc Edit the XML database at the specified location. This

overrides the editable database location specified in your
DECODES Properties file.

The editor starts as shown in Figure 5-1.

Figure 5-1: Database Editor Platform List Screen.

DECODES User Guide 30

5.1 GUI Organization
A row of Tabs appears along the top corresponding to the different kinds of records in the
database (Platforms, Sites, Configs, etc.)

5.1.1 List Panels in General
Underneath each of those tabs you will see a “List” tab. In Figure 5-1, the Platform tab is
selected, so we see the List of platforms.

Click on the column header in the List tab to sort the elements by the columns value. In
Figure 5-1 the ‘Site’ column header was clicked, so we see elements sorted by Site name.

Along the bottom of the List tab you see buttons with the following labels:

Open To edit a database record, click on it in the list and press Open

New Press new to create a new database record.

Copy To copy a database record, click on it in the list and press Copy. You will be
prompted for a name for the copy.

Delete To delete a database record, click on it in the list and press Delete.

Wizard This is a placeholder for future features. We plan to implement wizard dialogs
to guide you through creating various types of database entries. Currently the
only ‘Wizard’ implemented is under the Configs tab. This Config wizard is
simply a prototype that doesn’t do anything currently.

Help Coming soon: This button will bring up a context sensitive help screen.

5.1.2 Edit Panels in General
When you Open a record, a new tab appears to the right of the list tab. For example,
Figure 5-2 shows the result after we do the following:

• Select the Configs top-level tab.
• Select the record HA555A-GA-008 from the list
• Press the Open button.

Separate edit screens have been implemented for each type of database record. In this edit
screen you would change all of the parameters for HA555A-GA-008.

Notice the bottom of the Edit Panel. The Commit button writes the record back to the
database. You can do this at any time. It does not close the panel.

The Close button closes the edit panel. If you have made changes to the record you will
be asked if you want to save them.

5.1.3 Exiting the Editor
You can exit the editor by selecting File-Exit or by closing the window. If you have edit
panels open in which changes have not been saved, you will be forced to close these
panels before you can exit.

DECODES User Guide 31

Figure 5-2: Platform Config Edit Panel.

DECODES User Guide 32

5.2 The Platform Edit Panel
The platform edit panel is shown in Figure 5-3.

Every platform is associated with a site. Press the Site Choose button to bring up a dialog
in which you can select a site.

Every platform is associated with a configuration. Press the Config Choose button to
make this association. Be careful: Sensors are defined in the configuration.

The Owner Agency and Description are simple free-form type-in fields. They are
informational and not used by other DECODES software.

If you want this platform to be placed into the ‘install-database’ by the dbinstall utility
(see section 4.3), check the ‘Production’ checkbox.

Platforms change over time (sensors are added, removed, etc.). You can capture a
historical version for a platform by pressing the ‘Make Historical Version’ button. Each
historical version is a separate record with a specified Expiration time.

5.2.1 Platform Sensors
Information about sensors which is specific to a platform is stored here.

• If a sensor on this platform is actually located at a different site, you can associate the
sensor with a site. In most cases, however, the “Actual Site” field is blank, meaning
that this sensor is at the same site as the platform.

• You can associate arbitrary properties with a sensor to be used by downstream
DECODES modules. In the example shown, the USGS DBNO and DDNO are
associated with each sensor.

You can do simple scale and offset adjustments to sensor values on a platform specific
basis. To do this add any of the following properties to the Platform Sensor Properties
set:

• preoffset – A number added to each sensor value. This is done prior to scaling.
• scale – A number to be multiplied by each sensor value.
• offset – A number added to each sensor value (after scaling).

You can set a “minimum” and “maximum” property on each sensor. The value should be
the absolute min/max values that are to be considered valid for this sensor on this
platform. Values outside this range will be discarded and considered missing.

Note – minimum and maximum checks are done after offset and scaling.

5.2.2 Transport Media
Transport Media define how the data from this platform is retrieved. The data may need
to be decoded differently depending on whether it was received over DOMSAT, DRGS,
or EDL file, even though it came from the same platform.

The example shown shows two transport media for GOES-Self-Timed on channel 31.

DECODES User Guide 33

You can add or delete transport media by clicking the buttons to the right of the list.
Clicking Edit brings up the dialog shown in Figure 5-4.

Note that in this dialog, you associate each transport medium with the name of a “Script”
which will be used to decode the data. Scripts are discussed more in section 5.4.

Figure 5-3: Platform Edit Panel.

DECODES User Guide 34

Figure 5-4: Transport Medium Edit Dialog.

5.3 The Site Edit Panel
Figure 5-5 shows an example of the Site Edit Panel. Recall that in DECODES, a site is
simply a location with one or more names. The example shows a site near Athens, GA
that has three names: A USGS station number of 02217500, a NWS Handbook 5 name of
ATHG1, and a DRGS name of “ATHENS”. On the right are type-in fields for descriptive
information about the site.

DECODES User Guide 35

Figure 5-5: The Site Edit Panel.

DECODES User Guide 36

5.4 The Platform-Config Edit Panel
Figure 5-6 shows an example platform configuration edit panel for a DCP maintained by
the USGS. Configurations are associated with hardware. In this case it is a Sutron model
SU8200D DCP. Press the Equipment Model Select button to change this association.

As a convenience, this panel shows you the current number of platforms that are using
this configuration. This may be important if you plan to make modifications. Your
modifications will effect all platforms using the config.

The center of the panel contains a list of Sensors defined in this configuration. Using the
buttons to the right, you can Delete, Edit, or Add sensors in this list. If you edit or add a
sensor, you will see the dialog shown in Figure 5-7.

At the bottom of the panel you see a list of decoding scripts. Decoding scripts do the
work of extracting sensor samples from your raw message. Using the buttons to the right,
you can Delete, Edit, or Add scripts in this list. If you edit or add a script, you will see the
dialog shown in Figure 5-8

A new button has been added for DECODES Version 6.0, labeled “Add DCP PMs”. This
button will add canned sensors used by USGS for “performance measurements”. These
map to the values in the DOMSAT header so that they can be treated like sensors. These
additional sensors will start with sensor number 100. They are only used by the USGS
standard-message output formatter.

Figure 5-6: Platform Config Edit Panel.

DECODES User Guide 37

Figure 5-7: Edit Config Sensor Dialog.

DECODES User Guide 38

5.4.1 The Decoding Script Edit Dialog
This dialog, shown in Figure 5-8 is one of the most important screens in the editor.
Anyone who has worked with EMIT or older versions of DECODES will tell you that the
hard part is getting the scripts right.

At the very top of the screen you see the name of the configuration that this script
belongs to, the name of the script, and a selection for data order.

The name of the script must be unique within the configuration. You are strongly
encouraged to follow these conventions:

• Script Name ‘ST’ for Self Timed GOES DCP Messages,
• Script Name ‘RD’ for Random GOES DCP Messages,
• Script Name ‘EDL’ for Electronic Data Logger Files.

Below the top line, there are four main areas of this dialog:

• Format Statements
• Sensor Units & Conversions
• Sample Message
• Decoded Data

Format Statements: Type the label in the left column and the statement in the right.
Each statement must have a label. You can break up a long format statement on two lines
with the same label.

The Order of Format Statements is Important! The script will always start with the first
statement in the list. You can select a statement and press the Up or Down buttons to
move statements around in the list. You can use the Add button to add a new statement at
the end of the list. The Delete button will ask you for confirmation before deleting the
selected statement.

Sensor Units & Conversions: In this list you assign units to each sensor and a raw
conversion algorithm. In the example shown the user has selected the algorithm for
Battery voltage. Linear conversion (y = Ax + B) has been selected for both parameters.
You then type the coefficients directly in the table.

Sample Message Area: You can load raw data and interactively try to decode it using
your format statements and conversions. You can do this several ways.

To load a sample GOES DCP message from your LRGS server, do this:

• Press the ‘Load’ button to bring up the dialog shown in Figure 5-9.
• Select “Load from LRGS”.
• Select an LRGS server from the list.
• Enter the DCP address, and optionally, the channel number.
• Click OK.

DECODES User Guide 39

To load a sample message of any type from a file, do this:

• Press the ‘Load’ button to bring up the dialog shown in Figure 5-9.
• Select “Load from File”.
• Enter the file name, or press the ‘Select’ button to navigate to it from a menu.
• Click OK.

You can also copy/paste from other applications directly into the Sample Message area.
Use the standard copy/paste commands (CTRL-C=copy, CTRL-V=paste).

Press the ‘Decode’ button to apply the format statements to the raw data. The results are
shown in the Decoded Data area.

The syntax of format statements is described in section 6, The DECODES Format
Language.

Figure 5-8: Decoding Script Edit Dialog Showing Interactive Decoding.

DECODES User Guide 40

Figure 5-9: Load Sample Message Dialog.

DECODES User Guide 41

5.5 The Equipment-Model Edit Panel
Figure 5-10 shows and example of this dialog. Most of the information here is descriptive
in nature and not used by downstream DECODES modules.

An exception to this is the “DataOrder” property. If you place this property into an
Equipment Model record with the value D (for Descending) or A (for Ascending), then
the decoder will apply this to data from platforms using a configuration assigned to this
equipment model.

Again the association goes like this: Platform Config Equipment Model

Figure 5-10: Equipment Model Edit Dialog.

DECODES User Guide 42

5.6 The Presentation Group Edit Panel
An example of this panel is shown in Figure 5-11.

A Presentation Group determines how data will be formatted for output. This includes:

• What engineering units will be used on output.
• Numeric rounding rules to apply to each sample value

Look at the example. The first line in the Presentation Elements table says to display HG
(stage) values in units of ‘ft’, or feet. The second line says that PC (precipitation) values
are to be displayed in inches.

If you leave the Units field blank, then the value will be output in whatever values are
decoded by the script. In other words, no conversion on output will be done.

The third line has a qualifier: It says that HR (reservoir height) values recorded on a
Campbell Scientific CR-10B recorder should be displayed in inches. Hence you can get
very fined-grained control over display settings.

Finally, notice the last line in this table is for data type “SHEF-PE:*”. The ‘*’ means any
data type that is not explicitly listed elsewhere.

Notice that in the example the first line of the Presentation Elements table is selected (i.e.
highlighted). When you select a presentation element, the Rounding Rules table at the
bottom shows the rules to apply to those parameters.

For each rounding rule you specify a maximum value, significant digits, and maximum
number of (fractional) decimal digits. Hence, the resolution can change over the possible
ranges of values.

DECODES User Guide 43

Figure 5-11: Presentation Group Edit Panel.

5.6.1 Using a Presentation Group as a Sensor Filter
A presentation group can be used to omit specified data types from your routing spec
output. Suppose you want to run a routing spec with no battery voltage output. You can
create a presentation group for this purpose as follows:

• Create a new Presentation Group called “SensorFilter”.
• In the “Inherits From” field, type in SHEF-English.
• Click the “Add” button. For data type, specify SHEF-PE with a value of “VB”.
• In the Units field, type “omit”.

Now, open your routing spec and select SensorFilter for presentation group.

DECODES User Guide 44

5.7 The Data Source Edit Panel
Figure 5-12 shows a data source that pulls data from the DROT machine operated by
NESDIS at Wallops, VA. Note the properties that are appropriate for LRGS data sources:

• host: host name or IP address of the LRGS or DRS
• username
• port

Note that in this figure the Group Members list is disabled. LRGS data sources are not
groups.

Figure 5-12: Data Source Edit Panel showing LRGS Data Source.

DECODES User Guide 45

Figure 5-13 shows an edit panel for a hot-backup group. In the example shown, the
source will try to pull data first from Wallops-DROT. If unsuccessful, or if it fails in mid-
stream, it will automatically switch to another member of the group.

When making a connection, group members are always tried in the order they are
specified in the list.

Figure 5-13: Data Source Edit Panel showing Hot Backup Group.

DECODES User Guide 46

5.8 The Network List Edit Panel
Figure 5-14 shows the StPaul Network List being edited.

A network list is a collection of identifiers for a particular transport medium type. If the
transport medium type is “GOES”, then the TransportID is a DCP address (as shown).
Currently this is the only type of network list in use.

You can add or remove sites from the list using the buttons to the right of the list.

You can click in the headers of the list to cause the list to be sorted by Transport ID, Site
Name, or Description.

Figure 5-14: Network List Edit Panel.

DECODES User Guide 47

5.9 The Routing Specification Edit Panel
We saved Routing Specification until last because they tie together all of the other entity
types. Figure 5-15 shows a sample routing specification being edited.

The semantics of each field are covered at length in section 6. For now the example
shows the following:

• A Routing Spec called “Atlanta-lrgs-input”
• It will read data from the data source called “LrgsGroup” that we saw in Figure 5-13.
• It will send data (consumer) to a pipe to the standard output (stdout).
• It will format data compatible with the EMIT ASCII output format.
• Sample times will be converted to EST
• Data will be presented according to the “local-presentation” group that we saw in

Figure 5-11.
• Every time the routing-spec is run, data will be pulled from a time range of “now – 1

day” until “now”.
• There is a property defined called “OldChannelRanges” set to true. This causes the

old rule to be in effect that GOES channels less than 100 are self-timed and over 100
are random.

• Only data from platforms referenced in the “Atlanta” Network List will be processed.

Figure 5-15: Routing Specification Edit Panel.

DECODES User Guide 48

5.10 Import XML Files
Select File – Import. You will see the dialog shown in Figure 5-16. This dialog will allow
you to open an XML file, scan its records, select which records to import, and finally,
import them into your editable database.

Figure 5-16: Import XML Files Dialog.

Press the ‘Browse’ button or type in the file name in the area provided. After selecting a
file, press the ‘Scan File’ button. Figure 5-17 shows the dialog after a file has been
opened and scanned. The user has selected two platforms for import.

Figure 5-17: Import Dialog showing successful scan.

The ‘All’ button will select all records. The ‘None’ button will de-select all records. Once
you have the desired records selected, press the ‘Import’ button at the bottom.

The imported records will be opened in editor tabs. You should then go to each tab and
verify the information. Finally press the ‘Commit’ and ‘Close’ buttons on each tab.

If you are sure that all information is correct in all tabs, you can select ‘File – Commit
All’ and ‘File – Close All’ as a short cut.

DECODES User Guide 49

5.11 Export Records to an XML File
Press ‘File – Export’ to view the dialog shown in Figure 5-18. You have four choices as
to what to export:

• Entire Database –Create an XML file containing all of your database records. This is
the equivalent of the ‘dbexport’ command.

• All Platforms – Create an XML file containing all of your platform records. This is
equivalent to the ‘pxport –a’ command.

• Platforms in network list - Create an XML file containing platform records for
platforms in the specified network list. This is equivalent to the ‘pxport –n’
command.

• Platforms by Name – Create an XML file containing named-platform records only.

After selecting what to export, specify an output file by either typing the name in the area
provided or by pressing the ‘Choose’ button. Finally press the ‘Export’ button. As data is
exported, a message will be added to the ‘Results’ area at the bottom.

Figure 5-18: The Export Dialog.

DECODES User Guide 50

5.12 Install Records to Your Production Database
The latest release of DECODES contains features for making the maintenance of a
‘production’ database easier.

If you do not want to use a production database, edit your “decodes.properties” file and
comment-out the settings for “DatabaseType” and “DatabaseLocation” by placing a
pound sign at the start of the line:

#DatabaseType=XML
#DatabaseLocation=C:/DECODES/installed-db

This tells DECODES that you do not plan to use a production database and it will disable
the features discussed in this chapter.

5.12.1 Automatic Installation when You Change Records
If you modify any records that are marked ‘production’, when you hit the ‘Commit’
button, you will be shown the auto-install dialog (See Figure 5-19). In this particular
instance, we modified a configuration that was used by three different platforms, each of
which was marked ‘Production’. You may select which platform to install and press the
‘Install’ button to copy them to the production database.

Figure 5-19: The Auto-Install Dialog.

DECODES User Guide 51

5.12.2 Manual Installation to the Production Database.
Press ‘File – Install’ to display the dialog shown in Figure 5-20. Here you can select
which records to install in a variety of ways and then press the ‘Install’ button.

Figure 5-20: Manual Install Dialog.

DECODES User Guide 52

6. The DECODES Format Language
DECODES uses Fortran-like format statements to interpret data received from a
recording device. A Decoding Script is made up of one or more format statements. These
format statements consist of two parts:

1. a label to identify the format, and
2. a statement containing a sequence of format operations.

Within a statement, the format operations are separated from each other by commas. You
enter format statements within the Decoding Script Edit Dialog, described in section
5.4.1.

6.1 Execution of Format Statements by a Routing Spec
This is what happens when a routing spec decodes a message:

1. Use the DCP Address and channel number within the message to find a matching
transport medium.

2. Get the platform record associated with that transport medium. The platform
record is associated with a platform-config record, which in turn contains sensor
records and one or more Decoding Scripts.

3. Retrieve the Decoding Script associated with this transport medium. For example,
the message came in on channel 31, so use the ‘ST’ (self-timed) script.

4. Parse the script into a hierarchy of executable operations.
5. Starting with the first format statement in the script, execute the operations

against the message data.

Step 4 (parsing the script) is only done once. If a second message is received for the same
platform, the already-prepared scripts are reused.

Step 5 (executing the script against the message data) is the subject of this chapter.

6.2 Stepping through the Script and the Data
As it is executing, the script keeps track of three things:

• The currently executing format statement
• The current operation within the format statement
• The current position within the message data

The message header (e.g. 37-byte DOMSAT header) is not processed by the script. The
data pointer is initialized to the first actual message byte.

The script starts with the first format statement, so position is important. This differs from
previous versions of DECODES and EMIT.

Each format statement has a label. Several operations can cause decoding to jump to a
new statement, identified by its label. Labels may only contain letters and digits.

DECODES User Guide 53

Older versions of DECODES and EMIT had fixed rules about the labels for self-timed
and random messages. Self-timed formats started with the label ‘ST’, and random
message formats started with the label ‘RD’. This is no longer required, but it is a useful
convention to continue.

Adjacent format statements with the exact same label are joined into a single long
statement before parsing and executing.

The various operations in the format statements step through the message data from
beginning to end. There are operations for skipping characters and lines, and for
positioning the data pointer within the message data.

6.3 Format Operation Overview
A quick reference of DECODES format operations is presented in Table 6-1. The
subsections that follow provide more detail on each one.

Several of the operators are identified by a letter. The parser is not case-sensitive, so ‘X’
and ‘x’ can both be used for skipping characters.

DECODES User Guide 54

Format
Command

Description Examples

nX Skip n data characters 2X - skip 2 characters (bytes).

nP Position to the nth character in the current line. 2P - Position to 2nd character in current line.

n/ Skip n data lines 3/ - skip 3 lines

n\ Skip backward n data lines.

>label Jump to the format with the specified label >ST3 -switch to format with label ST3

n(operations...) Repeat operations enclosed in parenthesis n times 10(F(S,A,6,1)) – repeat “F(s,A,6,1)” 10 times.

C(nN, label) Check the next 'n' characters for number characters
(digits, decimal point or sign). If all are number-
characters, continue to the next format operation. If at
least one is not, switch to format with specified label. Do
not change the current data pointer.

C(3N, ERROR) - checks the next three characters
for digits, decimal point, or sign. If at least one of
the three is not, switch to format ERROR

C(S, label) Check the next character for a sign ('+' or '-'). If it is a
sign, continue to the next operation within this format
statement; otherwise, switch to the format with specified
label. Do not change the current data pointer.

C(S, ERROR) - checks the next character for a
sign, switch to format ERROR

C('str', label) Compare the string of characters 'str' with the next length-
of-string characters in the device data. If there is a match,
continue to the next operation in the current format.
Otherwise, switch to the format with the specified label.
Do not change the current data pointer.

C('001',NXT) - checks the next three characters
for a match with '001'. If there is no match, change
to format labeled NXT.

S(n, N, label)

S(n, S, label)

S(n, A, label)

S(n, 'str', label)

The second argument defines what to scan for:

 N = scan for any number character (digits or
sign)

 S = scan for any sign character ('+' or '-')
 A = scan for any alphabetic character
 'str' = Scan for specified string

Starting at the current byte, scan at most n data bytes until
either the target of the scan is found or an end-of-line (LF)
is found.

If the target of the scan is found, continue with the next
operation in the current format. Otherwise switch to the
format statement with the specified label. After the
operation is completed the current data pointer points to
where the scan halted, i.e. if target character(s) is found,
it points to that character. Otherwise, it is moved 'n'
characters form the previous position.

A special case of the S operation results when n is 0. In
this case the current data pointer remains unchanged. If
the target of the scan is found, continue with the next
operation. Otherwise switch to specified format. This
feature allows multiple tests on the same data character.

S(6,N,ERROR) - scan at most the next 6 characters
searching for a number or a sign; and if found, set
the data pointer to the matching character and
continue to the next format operation; if not found,
set the data pointer plus 6 and change to the format
with the label ERROR

S(0,'A',NXT) - check the current data character to
see if it matches 'A'; if it does, continue to the next
format operation; if not found, change to format
with format label NXT; in either case the data
pointer is not changed.

S(10,'01+',ERROR)- scan the next 10 characters
for the string '01+'. If not found, change to format
with label ERROR.

nF(FT, DT, L, S, E) Field Descriptions. Many varieties.

W Skip any number of white space characters, including
space, tab, carriage return, and linefeed.

Table 6-1: Format Operations at a Glance.

DECODES User Guide 55

6.4 Skipping and Positioning Operations
To skip a single character:

x

To skip a specified number of characters, place a number before the ‘X’:
5x

To skip to the end of the current line and continue processing data at the beginning of the
next line, use a forward slash:

/

To skip to the end of more than one line, place a number before the slash:
2/

To position the data-pointer to a particular character position on the line, put a number
followed by the letter ‘p’. The following positions the pointer to the 5th character of the
line. Note: byte position 1 is the start of the line.

5p

To skip backward a number of lines, use a backslash preceded by a number.
2\

6.5 The Check Operation
Check commands are used to check the current location in the data for a specified
condition. If the condition is true, the data pointer is not altered. If the condition is false,
you specify an alternate format statement to jump to.

To check to make sure the next n characters are numbers (digits), and jump to the
statement labeled ‘NAN’ if any are not, do the following. Note that if the check is true,
we proceed with the next operation, which assigns the numbers to a sensor value.

c(5N, NAN), f(s,a,5,1)

To check if the next character is a sign (either ‘+’ or ‘-‘), and jump to the statement
NOSIGN if not:

c(S, NOSIGN), ...

To check to see if the data matches the string ‘AA’ and skip to the format labeled ‘BB’ if
it does not:

c('AA', BB), ...

DECODES User Guide 56

In this usage of the check command, the string must match exactly. The check is case
sensitive and the entire string must match the current data position. Otherwise the check
is false and control jumps to the named format statement.

6.6 The Scan Operation
Scan commands are used to scan forward from the current location in the data until a
specified condition has occurred. These commands are used to position to a particular
location based upon a specified condition.

Scan operations have the following syntax:
S(n, condition, label)

…where n is the number of characters to scan (or to the end of the current line),
condition specifies what we are scanning for (see below), and label specifies the format
that we jump to if the condition is not met.

The condition can be one of the following:
N Scan for any digit
S Scan for any letter, either upper or lower case
Xnn Scan for a character with the hex value nn
'str' Scan for the exact string ‘str’

If the condition is true (i.e. the requested pattern was found), processing continues to the
next operation in the current format statement. The data pointer is left at the first
character that matched the scan. For strings, the data pointer is left at the first character of
the string.

6.7 The Jump Operation
The Jump operation causes an unconditional jump to a specified format statement. The
data pointer remains unaffected. The jump operation has the following syntax:

>label

6.7.1 The Repeat Operation
Any group of operations can be performed repeatedly. Operations enclosed in
parentheses and preceded by a number will be performed the specified number of times.
For example,

8(x,F(S,B,3,1))

causes the operations within the parentheses (the x operation and the F operation) to be
performed 8 times.

DECODES User Guide 57

6.8 Field Operations
Field operations are used to extract time and sensor values from the message. The general
form of a field description is:

 nF(ft, dt, length ,sensor # or fld-ID, E)
where:

• n is a repetition factor
• ft defines the type of field
• dt defines the type of data
• length defines the field length with optional delimiters.
• sensor # the sensor number associated with this sensor-value field
• fld-id is used with DATE and TIME fields to specify different representations
• E is used with TIME fields to indicate that the recording of time should be viewed as

an event

The field type can be one of the following:

D Date Field (see 6.8.2 for Date and Date Components)
D+ Date of period just now ending
YR Year
MN Month
DY Day of Month
JDY Julian Day of Year
JDY+ Julian Day of Year just now ending

T Time Field (see 6.8.3 for Time and Time Components)
HR Hour
MIN Minutes
SEC Seconds
A AM or PM

TI Time Interval Field (see 6.8.4)
MINT Minute Interval Field (see 6.8.4)
F Format Label Field (see 0)
S Sensor Value Field (see6.8.7)

The data type can be one of the following:

A ASCII
B Binary (unsigned)
I Integer (signed binary)
L Labarge pseudo-ASCII
X Hexadecimal
S String
BC Campbell Scientific Binary Format
C Campbell Scientific Binary Format (first byte defines sign and magnitude)
BD Design Analysis binary Format (Integer value made negative by sign bit)
BT Telonics Binary Format (Integer value made negative by sign bit)

DECODES User Guide 58

6.8.1 Field Length and Delimiters:
Length can be optionally followed by the character D and a one or more delimiter
characters. For example:

6D’,’

This indicates that the field has a length of 6 characters or can be delimited by a comma.
8D’ ,:’

This indicates that the field has a maximum length of 8 characters and can be delimited
either by a space, comma, or colon.

The delimiter can be simply asserted, enclosed in single quotes, or represented as xnn
where nn is the hexadecimal representation. If the delimiter is a comma, it must be
enclosed in single quotes.

For example:

6D’,’ The field is delimited by a comma

6Dx1E The field is delimited by a period (the hexadecimal representation
of a period is 1E).

6D' ' The field is delimited by a space

6DS The field is delimited by a sign (+ or -) character.

If the character after the 'D' is 'S', it means that the data is delimited by a sign (+ or -).

Care must be taken in positioning your data pointer after a delimited field. The pointer
will be left at the delimiter. Hence you will probably want to use a skip operation to skip
the delimiter after parsing the field.

If the delimiter is not found, the pointer is advanced by length characters.

DECODES User Guide 59

6.8.2 Date Fields
Date field descriptions have a field type of 'D'. Date fields are used in EDL files to extract
time from the message data. The times are then subsequently used to time-tag data
samples.

The form of a date field description is

 F(D, data type, length<Dc>, fld-id)
The 'fld id' parameter is used to define four different date formats. Possible formats are as
follows:

 F(D, type, length<Dc>,1)
Fld-id 1 indicates the date is basically in the format year, month, day. The format differs
slightly for different field lengths. For length 8, fields have the format YY/MM/DD, YY-
MM-DD, and YY MM DD; for length 6, fields have the format YYMMDD.

 F(D, type, length<Dc>,2)
Fld-id 2 indicates a Julian day is used. For length 8, fields have the format YYYY-DDD,
YYYY/DDD; for length 7, YYYYDDD; for length 6, YY-DDD, YY/DDD; for length 5,
YYDDD; for length 3, DDD; for length 2, DD. For cases where the year is not in the
date field, the year will default to the current year unless the user specifies a year during
the data conversion process. If the user lets the year default and a Julian day is found that
exceeds the current Julian day, it will be assumed that the data belongs to the previous
year and so the year will be decremented.)

 F(D, type, length<Dc>,3)
Fld-id 3 indicates only the month and day are recorded. For length 5, fields with format
MM/DD, MM-DD, AND MM DD; for length 4, MMDD. The same rules about the
missing year apply to the field descriptions for dates with fld id of 3 as the ones for the
dates with fld id of 2.

 F(D, type, length<Dc>,4)
Fld-id 4 indicates the same type of format as fld-id 1 but in a different order-month, day,
year. For length 8, fields with format MM/DD/YY, MM-DD-YY, and MM DD YY; for
length 6 MMDDYY.

You can also parse the date components individually:
F(YR, type, length) Parse a year field. Length can be 2 or 4.

F(MN, type, length) Parse a month field. If length is 2, expect a number

from 1 to 12. If length is 3, expect a 3-character
month abbreviation like jan, feb, etc.

F(DY, type, length) Parse day of month.
.
F(JDY, type, length) Parse julian day-of-year.
F(JDY+, type, length) Parse julian day-of-year just ending.

DECODES User Guide 60

The ‘Increment-Day’ Feature:
The ‘D’ and ‘JDY’ field-types may optionally have a plus sign after them. This feature
allows us to handle EDL data that gives complete date information only at the end of a
day. For example, suppose a file started like this:

001 20:00 22.1 12.5
001 21:00 22.2 12.5
001 22:00 22.1 12.5
001 23:00 22.3 12.4
004 2003 335 24:00 22.2 12.5
001 01:00 22.3 12.5
...

Notice that the line with the label “004” contains the year and the Julian day (335) that
has just ended. Data prior to this line is day 335, data after this line is day 336. Hence we
want to increment the day after parsing it. So use the JDY+ operator.

6.8.3 Time Fields
Field descriptions for times have a field type of 'T' and a data type of 'A' (ASCII). Thus,
the form of a field description for a time is

 F(T, A, length<Dc><, sensor #, E>)
The optional 'sensor #' and 'E' parameters signify that the time recorded is an event. This
is used for recorders that record only the time whenever an event occurs e.g. the time is
recorded whenever a tipping bucket tips. In this case, the recorded time is considered to
be the data. When DECODES encounters a field description for a time and it has a
sensor number and the 'E' parameter, DECODES will use the value 1 as the data value
associated with that time.

The raw value of 1 can be converted to the desired units via an EU conversion in the
script. For example, if a tipping bucket rain gage records the time whenever .01 inches of
rain falls, convert the raw value of 1 to .01 with a linear EU conversion.

For length 8, times are expected with format HH-MM-SS or HH:MM:SS; for length 6,
HHMMSS; for length 5, HH:MM, HH-MM; for length 4, HHMM; for length 3, HMM;
and for length 2, MM.

You can also parse the time components individually:
F(HR, type, length<Dc>)
F(MIN, type, length<Dc>)
F(SEC, type, length<Dc>)

DECODES User Guide 61

6.8.4 Time Interval Fields
Time interval fields have a field type of TI and a data type of 'A' (ASCII). The time
interval field describes a field that contains a new time interval for recording data. This
field description is useful for recorders that can adjust the recording interval from that set
in the SENSORS entity to a new one when certain conditions occur. The form of a field
description for a time interval is as follows. The data field format is the same as those for
the time field description.

F(TI, A, length<Dc>, sensorNum)

6.8.5 Minute Interval and Offset Fields
Minute interval fields have a field type of MINT. The data type can be ASCII or any of
the binary types. It is useful for parsing data where the time interval is given in a number
of minutes.

F(MINT, A, length<Dc>, sensorNum)

Many GOES DCP messages contain a minute offset to the first sample. You can process
these with field type ‘MOFF’:

F(MOFF, A, length<Dc>)

The offset sets the ‘current time’ to the message time, minus the parsed number of
minutes. It also has the effect of truncating the seconds. So if message time is 14:22:39
and the minute offset in the message is 22, then the current time is set to 14:00:00.

You can use MOFF multiple times in the same message. Each time it sets current time
relative to the unchanging message time.

Negative intervals can be specified by adding a minus sign after MINT:
F(MINT-, A, length<Dc>, sensorNum)

Use the negative interval only when the data is descending (i.e. most recent samples first)
AND you are time-tagging based on times or time offsets found IN THE MESSAGE (not
including the GOES header).

For example, look at the following GOES DCP message:
4804F5C804011203139G31-5HN060W0000177:HG
31#30+3.95500e+00+3.95700e+00+3.95700e+00+3.95700e+00+3.95700e+00+3.957
00e+00:HG 196#180+3.94900e+00:HG 206#180+3.96100e+00:VB
31#60+1.18576e+01+1.18620e+01+1.18509e+01:ZL$

After the initial :HG, we have 31 (minute offset to first sample) followed by #30 (minute
interval of sample values – negative), followed by 6 sample values in exponential
notation. Ignore the remainder of the message starting with the second ‘:HG’.

We can process this message with the following format statement:
4x,f(moff,a,3d’#’),x,f(mint-,a,2,1),6(f(s,a,12,1))

DECODES User Guide 62

6.8.6 Format Label Fields
Format-label fields describe a data field that contains a code that is to be used as a format
label to select a new format. DECODES extracts a label from the message data and
jumps to a matching format statement.

The data pointer will remain at the character immediately following the extracted format-
label.

Format-label fields allow DECODES to switch formats based upon a code found in the
device data. For example, if a device records the data in different formats and also
records a code that identifies the each format, a statement can be written for each code,
using the code itself as a format label.

If DECODES cannot find a match for the label extracted from the data, it will attempt to
switch to a format statement with the label ‘ERROR’. If none exists, decoding of this
message will be aborted.

The format of a field description for format labels is

 F(F, A, length<Dc>)
Examples:

F(F, A, 4) - Format label field is 4 characters long.

F(F, A, 8D’,’) - Format label field is delimited by a comma and has at most 8
characters.

DECODES User Guide 63

6.8.7 Sensor Value Fields
Sensor field descriptions have a field type of 'S'. They are used to extract data samples
from the message. The format of a sensor field description is

nF(S, data type, length<Dc>, sensor #)
“Data type” can be any valid type listed above in section Field Operations

Examples:

F(S, A, 6, 1) The Data will contain one 6-character ASCII sample for sensor
number 1.

F(S, A, 5D’,’, 2) The data is delimited by a comma and has at most 4 ASCII
characters; the value was produced by sensor 2.

3F(S, B, 3, 1) 3 signed-binary samples for sensor number 1. Each sample is 3
characters long.

6.9 Special Decoding Features

6.9.1 How to Omit Specific Sensor Values
To omit all sensor values of a given data type, create a presentation group. Set the
engineering units for the data time to the string “omit”.

To omit specific sensors from a configuration, add a config-sensor property called “omit”
with a value of “true”.

To omit specific sensors from a specific platform, add a platform-sensor property called
“omit” with a value of “true”.

6.9.2 Data Delimited by either a Plus or Minus Sign
Some platforms send data in a string of values that are delimited only by a sign. For
example:

HG: +13.2+10.1+8.4+5.1+2.5+0.1-1.5-4.2

Notice that the length of the sample changes with the magnitude of the number. Above
10, we have 5 characters “+13.2”. Below 10 we have 4 characters “+8.4”. Also note that
the sign can change.

To handle this, if the delimiter in your field operator is a sign (either ‘+’ or ‘-‘), then
either sign will work as a delimiter when parsing the message. Thus, we could parse the
above line as follows:

4x, 8(F(S,A,6d’+’,1))

DECODES User Guide 64

7. DECODES Routing Specifications
Figure 7-1 shows the data flow for a routing specification. Take a moment to study the
components involved. This section will discuss how to run a routing specification and
how to control each of the components shown in the figure.

DataSource

LRGS,
DRS,

GOES DRGS,
File,

Directory,
LOS Radio,

etc.

Decode &
Convertraw data

Equation
Processor

Extract samples,
time-tag,

convert to EU

Stage-to-flow,
other algorithms,

table-lookup,
USGS Rating Tables,

etc.

extracted
samples

Presentation
extracted
& derived
samples

Formatting

Converted to desired EUs,
rounding rules applied

Consumer

SHEF, SHEFIT,
Human Readable,

STDMSG, EUMSG,
DUMP Debug, etc.

Complete,
formatted data

File, Directory, Pipe,
Program, Socket, GUI,

etc.

Convert to desired
engineering units, apply

rounding rules, etc.

Figure 7-1: Data Flow for Routing Specifications.

DECODES User Guide 65

7.1 How to Run a Routing Specification
Synopsis:

rs <options> spec-name

Options:
-e Run from the editable database (default is installed database)
-s script Script name to be executed. This option may appear multiple

times. This can also be accomplished with the “scriptname”
property.

-m Do NOT apply sensor min/max limits (default is to do so).
-n netlist Add the named network list to the routing spec before executing

it.
-S since Override “since-time” specified in database routing spec record.
-U until Override “until-time” specified in database routing spec record.
-o filename Set the status monitor output properties file. See below.
-R Remove redundant DCP data from output.
-E DatabaseLoc Specify an Explicit XML database location. This allows you to

run a routing spec in a database other than your editable or
installed database.

-c Enable computations (e.g. USGS RDB File Rating).
-C CompConfigFile Specifies computation configuration file (default is

$DECODES_INSTALL_DIR/computations.conf)
-k lockFile Use specified lock file to ensure only one instance runs and to

provide a mechanism to kill the routing spec (by removing the
lock file).

-p name=value Adds (or overrides) a routing-spec property.
-L connectSpec Specify LRGS data source on command line, overriding data

source specified in database routing spec definition. The
‘connectSpec’ is in the form host:port:user[:password]

Description:
This script starts a Java Virtual Machine running the specified routing spec. All of the
parameters that control the action of the routing spec are specified in the database or the
DECODES properties file. Hence there are no options to this command.

Routing Spec Properties can be used to control the execution of the spec, or to control the
actions of various component objects. The properties which apply at the top level are:

• scriptname: This is a blank-separated list of script names to be executed. The default
action is to execute any script. This property is equivalent to the -s command line
argument.

• nolimits: Value is either true or false (default = false). This property is equivalent to
the -m command line argument. It tells the spec to NOT apply sensor min/max limits,
even if they are defined.

Examples:
rs Atlanta-lrgs-input Execute routing spec “Atlanta-lrgs-input”

from the installed database.

DECODES User Guide 66

rs -e test Execute routing spec “test” from the
editable database.

rs -e -s ST test Execute routing spec “test” from the

editable database, but only process
messages for ST (self-timed) scripts.

Each routing spec writes trouble-shooting information to a separate log file. The file has
the name of the routing spec with a “.log” extension. These files will be placed in the
directory specified by the ‘RoutingStatusDir’ value in decodes.properties. If none is
defined, the default of $DECODES_INSTALL_DIR/routstat will be used.

Thus look for the log file for routing spec ‘test’ in the file:

$DECODES_INSTALL_DIR/routstat/test.log.

7.1.1 Routing Spec Properties
In the database editor you can enter properties that affect various aspects of a routing
spec. Currently, none of these properties are used by the routing spec itself. Rather they
are passed to the components of the routing spec like Data Source, Consumer, Output
Formatter, etc. The properties used by components are described in the sub-sections that
follow.

7.1.2 Adding Network List Names from the Command Line
Use the -n argument to add additional network lists to the routing spec from the
command line. This makes the routing spec more flexible. You could define a routing
spec in the database with no network lists and supply them on the command line to
process different data sets.

7.1.3 Overriding Time Range from the Command Line
The -S and -U arguments (note, must be capital letters) can be used to override the time
range specified in the database. For example, the following runs ‘myspec’ but the since
time is replaced by “now - 1 day”:

rs -e -S 'now - 1 day' myspec

Note that the string must be enclosed in single quotes so that it is passed as a single
argument. Also note that it must be separated from the -S by at least one space.

DECODES User Guide 67

7.1.4 Status Output File
The routing spec will write its status periodically to a file. This allows you to check on
the status of the specs running in the background.

By default, the output file will be called “name.status”, where name is the name of the
routing spec. The file will be placed in the directory specified in the decodes.properties
file. (Refer back to Table 3-1).

You can specify a particular file with the –o command line argument. For example, to
have the status written to “/tmp/mystat.status”, use the following command line
argument:

rs –o /tmp/mystat.status … (other args here) …

If you do not want the spec to write status, include the argument with a value of “-“. As
follows:

rs –o - … (other args here) …

7.1.5 Optional Lock File
The –k argument allows you to specify a lock file for this instance of the routing spec.
Lock files do two things:

1. Ensure only one instance with a given lock file can run: If the lock is busy, the
routing spec will fail to start.

2. Provide an easy way to terminate a background routing spec: Simply delete the
lock file.

While running, the process will ‘touch’ the lock file every 10 seconds. If the file was
deleted, the process will terminate. So allow about 10 seconds after deleting a lock file
before starting a new instance.

A lock file is “busy” if it exists and has been touched within the last 20 seconds.

7.2 Time Tagging Data Samples
The “DataOrder” property can be set to ‘A’ (for Ascending) or ‘D’ for Descending.

• Ascending means that the oldest samples are first in the message. Successive samples
for the same sensor have an ascending time.

• Descending means that the newest samples are first in the message. Successive
samples for the same sensor have a descending time.

The DataOrder property can appear in several entities. This is how DECODES
determines the order for a given sensor:

• If there is a “DataOrder” property in the Equipment Model associated with the
Platform Config. Set this as the default for all sensors. In most cases, this is all that is
necessary.

DECODES User Guide 68

• If there is a “DataOrder” property in the Equipment Model associated with the
transport medium, this overrides the previous value. An example for using this would
be a random message that reports time in a different order than self-timed messages.

• If the DataOrder value in the decoding script is not “undefined”, this value will be
used.

• If there is a “DataOrder” property in the ConfigSensor, use it as the value for that
particular sensor. Use this if sensors report data in different orders.

• If there is a DataOrder property in the PlatformSensor entity, use it as the value for
that particular sensor.

So, in rising order of precedence, data order (Ascending or Descending) is determined
by:

1. Platform Config’s EquipmentModel ‘DataOrder’ Property
2. Transport Medium’s EquipmentModel ‘DataOrder’ Property
3. DecodingScript value
4. ConfigSensor ‘DataOrder’ property
5. PlatformSensor ‘DataOrder’ property

DECODES User Guide 69

7.3 Expanding Environment Variables
Several of the properties listed in the following sections allow embedded environment
variables. This is particularly true for file and directory names. The following table list
the substitutions that are done:

String Replaced with …

~ Current user’s home directory.

$HOME Current user’s home directory.

$DATE Current Date/Time in default format.

$DATE(format) Current Date/Time in user specified format (see
below).

$DECODES_INSTALL_DIR The location where DECODES was installed.

$user.dir The current working directory.

The Date/Time format is specified with a string passed to the Java “SimpleDateFormat”
class. See Sun’s documentation at the following URL for a description of format options.

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

DECODES User Guide 70

8. Data Sources
The following sections describe the semantics of data sources. See section 5.7 for
instructions on how to modify a data source’s parameters.

8.1 LRGS Data Source
LRGS Data Sources are used to connect to LRGS or DRS systems over the network. The
LDDS Server must be running on the LRGS you want to connect to.

Properties for the LRGS Data Source may be placed in the Data Source record or the
Routing Spec Record in your DECODES database. Properties defined in the Routing
Spec record will override those of the same name defined in the Data Source record.

So, for example, if the Data Source record contains “username=joe”, but the Routing
Spec record contains “username=ted”, THEN “ted” will be the username passed to the
LRGS server.

Accepted properties are as follows:

• host: The host name or IP Address of the LRGS system to connect to. (Optional, If
missing, the name of the data source object is used.)

• port: Port number for this LRGS’s server. (Optional, default = 16003)
• username: registered user on the LRGS server (required)
• password: Some LRGS servers are configured to require passwords. If this is the

case, you will need to enter the password here. Warning! The password will be
stored in clear text in the SQL database and XML files.

• single: (Default=false) The newer LRGS servers have a new feature whereby many
DCP messages can be returned for a single request. By default, DECODES will use
this feature if the server supports it. To force the old (single message per request)
behavior, add a property “single” with a value of either “on”, “true”, or “yes”.

• sendnl: (Default=true) – Old DRS servers do not support network list transfers. Set
this to false when connecting to such servers. The data source will then assume that
the network lists are already loaded on the DRS. You must then transfer the list using
some other mechanism (e.g. FTP) prior to running the routing spec.

• response.timeout: (Default=60 seconds) This is the number of seconds to wait for a
response from this server. See discussion of timeouts below.

• searchcrit: If supplied, this should be the full path-name to a search criteria file to be
passed to the server. See below on how searchcrit information is processed.

Each time an LRGS is initialized, it is passed the new search criteria from the routing
specification. This information includes the “since” and “until” times, network lists, and
the routing spec properties.

The Routing Spec may contain a property called “lrgs.timeout”, set to a number of
seconds. If so, this value will be used by the LRGS data source. The default timeout is 60
seconds.

DECODES User Guide 71

The routing spec will exit with the LRGS Data Source determines that the specified “until
time” has been reached. If no until time is specified, the routing spec will continue
running indefinitely.

The “searchcrit” Property
If you supply a “searchcrit” property in either the routing spec or data source record, it
will be the full path-name to a search criteria file. This allows you to use the full range of
search-criteria in a routing spec.

The information in the file will be somewhat modified before being passed to the server.
If the routing spec contains a “since” or “until” time, these will override the values in the
search criteria.

If the searchcrit names a network list, with or without the “.nl” extension, then:

• IF the list is contained in your DECODES database, it will be sent to the server.
• ELSE IF the list is found on your hard disk in either the current directory or a

subdirectory called “netlist” (i.e. in “.” or “./netlist”), then it will be sent to the server.
• ELSE, assume that the list already resides on the server.

Also, any network lists specified directly in the routing spec will be sent to the server.

DECODES User Guide 72

8.1.1 Timeouts in LRGS Data Sources
There are two timeout values that effect the operation of an LRGS Data Source:

The “response.timeout” property in the LRGS Data Source object controls how long to
wait for a response from the server after sending a request. The purpose of this timeout is
to catch connections that have failed. For example, the server is no longer responding or a
WAN link has gone done.

The “lrgs.timeout” property in the Routing Spec object, specifies the maximum number
of seconds to wait for the next message to arrive. This means, even if a link is up and the
server is responding to each request in a timely fashion, wait no more than this many
seconds for the next message. The purpose of this timeout is to catch problems upstream
from the server.

The “lrgs.timeout” property is associated with the routing spec (not the Data Source)
because it depends on what data you are retrieving. For example, if I am getting data
from a single DCP that reports hourly, I might set lrgs.timeout to 3660 (1 hour and 1
minute).

In most cases, the “response.timeout” should be fairly low. The default value of 60
seconds should suffice.

When a timeout (of either type) occurs, the LRGS Data Source throws an exception
and…

• If this LRGS is part of a Hot Backup Group, the group will attempt to connect to
another LRGS.

• If this LRGS is the sole data source, the routing spec will terminate.

DECODES User Guide 73

8.2 File Data Source
A File Data Source reads a series of DCP messages from a single file. It processes the file
from beginning to end and returns each message found therein. After reaching the end of
the file, the Data Source causes the routing spec to exit.

Accepted properties for a File Data Source are as follows:

Name Value Type Description
filename path If present, this value will be used as the file name to be

read. It can be a complete path name or a filename
relative to the current working directory. If this
property is absent, the name of the data source will be
assumed to be a file name. The value may also contain
environment variables as described in section 7.3.

before delimiter A special string that delimits the beginning of a new
message in the file. This string may contain binary and
escaped characters such as \n (newline) or \001 (ASCII
STX).

after delimiter special string the delimits the end of a message in the
file.

MediumType name Specifies the type of data stored in the file, such as
“GOES”, or “data-logger”.

MediumId name Specifies the transport medium ID of the platform that
generated the messages in the file. Optional: Only use
this if all the messages in the file came from the same
platform, such as an EDL file. Typically, the MediumId
can be constructed from information in the message
header so specifying a property is not necessary.

LengthAdj number Some header types (like Vitel) report message length
wrong. Use this kludge to adjust the length before
attempting to read the message bodies.

OneMessageFile Boolean Default=false. When set to true, DECODES assumes
that the entire file contains one message.

For added flexibility, the filename property may contain environment variables preceded
with a dollar sign. For example, set the filename property to $FILENAME. Then start
the routing spec with the -D argument defining the filename, as follows:

 rs -e -DFILENAME=/usr/local/mydata/cr10-1.dat specname

8.2.1 Delimiting Messages Within the File
The ‘before’ and ‘after’ strings are optional. Here is how DECODES interprets them:

• If neither ‘before’ or ‘after’ is specified, the entire file is assumed to contain a single
message.

DECODES User Guide 74

• If ‘before’ is specified, but ‘after’ is not. DECODES will scan the file for the ‘before’
string and return data following it, up to, but not including the next ‘before’ string.
The final message terminates at end-of-file. Any data in the file prior to the first
‘before’ string will be ignored.

• If ‘after’ is specified, but ‘before’ is not. The first message starts at the beginning of
the file and continues up to, but not including, the first occurance of the ‘after’ string.
ny data at the end of the file not terminated by the ‘after’ string will be ignored.

• If both ‘before’ and ‘after’ are specified, only completely delimited messages will be
processed from the file.

8.3 Directory Data Source
A “Directory Data Source” allows you to designate one or more directories on your
system into which data files are placed. This is typically used for EDL (Electronic Data
Logger) files.

You use properties to specify the directories and other settings. The routing spec will
continually “watch” the directories for new files to appear. When a file is found it is
decoded.

The following properties are accepted. The property name is not case sensitive, but in
some cases (e.g. a UNIX file name) the property value is case sensitive.

Name Value Type Description
DirectoryName Path The path name to the directory to be watched. The value

may contain environment variables (see below).
FileExt String Only files with this extension will be processed from the

directory. Other files will be ignored.
Recursive Boolean

If true, then DirectoryName is taken as the root of a
hierarchy of directories. All sub-directories (and sub-sub-
directories, etc.) are also watched for files.

NameIsMediumId Boolean Some EDL files do not have a complete medium
identifier in the header. Set this to true if the file-name
itself is to be taken as the medium identifier. Note: If a
FileExt is specified, it is stripped from the name before
using it as a medium ID.

SubdirIsMediumId Boolean Use this with the Recursive flag if the sub-directory name
is to be taken as the medium ID.

DoneDir Path If specified, files that have been successfully processed
will be moved to this directory. One of DoneDir or
DoneExt must be specified.

DoneExt String If specified, files that have been successfully processed
will be renamed with this extension. One of DoneDir or
DoneExt must be specified.

OneMessageFile Boolean Default=true. If true, DECODES assumes that each file in
the directory contains a single message. Turn this feature
off by adding a property explicitly set to false.

MediumType name Specifies the type of data stored in files in this
directory, such as “GOES”, or “data-logger”.

Table 8-1: Properties for Directory Data Source.

DECODES User Guide 75

Setting up a Tree of Directories for EDL Files:
To set up a tree of directories to be watched, set ‘DirectoryName’ to the root of the tree,
and set ‘Recursive’ to true. If you want to devote each sub-directory to a specific
platform, set ‘SubdirIsMediumId’ to true. Then name each subdirectory with the
transport identifier in the platform.

Example: I have two data-loggers. The platform records have medium IDs of “01435532-
cr10-1” and “05523352-cr10-1”. The file headers do not contain the STATION identifier.
The data files will all end in “.dat”. After processing, I want the files renamed with the
extension “.done”.

I can set up a tree as follows:

• Parent Dir: $HOME/edl-data
• Sub Dir: 01435532-cr10-1
• Sub Dir: 05523352-cr10-1

I set up a DirectoryDataSource with the following parameters:

DirectoryName $HOME/edl-data
FileExt .dat
Recursive true
SubdirIsMediumId true
DoneExt .done

I then build a routing spec that uses this data source. When I run the routing spec, it
watches for new files to appear. I place the data files in the appropriate sub-directory and
they are immediately processed.

Files with Errors:
If a file contains un-recoverable errors, we don’t want the routing spec to abort, as it
would if we were only processing a single file. When such an error occurs,
DirectoryDataSource renames the file with the extensions “.err” and leaves it in the input
directory. FAILURE messages will be generated in the log explaining the nature of the
problem.

Only Process Complete Files
We only want to process files that are complete. Consider the following scenario: I am
copying a large EDL file from a floppy disk into the input directory. Before the copy is
complete, the Directory Data Source grabs the (partial) file and processes it. There are
two way to avoid this problem:

• Specify a FileExt property like “.dat”. Copy the file in from the floppy disk without
the extension, and then rename the file with the extension.

• Unix Only: Copy the file to a temporary directory on the same mounted disk
partition. Then use the ‘mv’ command to move it into the input directory.

DECODES User Guide 76

8.4 Hot Backup Group Data Source
A Hot Backup Group Data Source is primarily used for a set of LRGS connections. One
connection may fail, in which case we want our routing spec to try another. This makes
your routing spec more reliable, particularly if this is a real-time routing spec that runs
continuously (i.e. no “Until Time”).

Currently there is only one property that is used by a Hot Backup Group:

• recheck: (default = 900 seconds, or 15 minutes) – If the currently active data source is
not the first one in the list, the Hot Backup Group will attempt to connect to higher
priority data sources at this period.

• fudge: (default = 120 seconds, or 2 minutes) – Amount of time to back-up after
connecting to new data source.

The Hot Backup Group contains an ordered list of LRGS data sources. The group will
prefer the members in the order they are listed.

Upon start-up, the group will attempt to connect to a LRGS, starting with the first one
listed. Once a successful connection is made, this LRGS becomes active. The group then
reads DCP messages from this source until…

• The active source fails (either a timeout or broken connection), or
• The active source is not first in the list and the recheck period expires.

When this happens, the group will try to connect to a source, once again starting from the
first in the list.

When the group changes from one active source to another, it passes the new source the
network lists and search criteria with one modification: The ‘since’ time is adjusted to:

 LastMessageTime – fudge

… where LastMessageTime is the time of the last DCP message I received. The ‘fudge’
factor (default=120 seconds) can be controlled via a property setting.

The purpose of this fudge factor is to account for small variations in the system clocks of
the LRGS members. If you have all your systems synchronized via NTP you can make
the fudge factor very small.

Larger fudge factors may result in duplicate messages: A DCP message received from
one LRGS and then after a switch, the same message received from the new LRGS.

DECODES User Guide 77

8.5 Round Robin Group Data Source
NOT YET IMPLEMENTED!

A round-robin group contains a list of other data sources.

The purpose of a round-robin group is to continually read data from all data sources in
the group. This differs from a hot-backup group, which only uses one data source at a
time

DECODES User Guide 78

8.6 Socket Stream Data Source
A socket stream data source opens a socket and reads a one-way stream of data
containing raw DCP messages. Some DRGS and DOMSAT product provide such a
stream.

Accepted properties for SocketStreamDataSource are:

• host = the host name or IP address of the server
• port = the port number of the socket to be opened
• lengthAdj = a negative or positive number. The default value is -1. (See below)
• delimiter = A string that begins each message, use \r for carriage return and \n for

linefeed. The default delimiter is \r\n. (See below)
• endDelimiter = A string that marks the end of each message. This is required if

header is “noaaport”. The NOAAPORT message format determines the message
length not from the header but from the beginning and end delimiters.

• header = GOES, VITEL, NOAAPORT, Vaisala. The default is GOES (See below)

Delimiters and Length Adjustments
Each message must start with a 37-byte DOMSAT header. The last 5 bytes of the header
is the number of message bytes to follow. Immediately following the message data, a
delimiter is expected. The delimiter is not included in the message length.

The Vitel DRGS reports a message length which is actually 4 more than the number of
bytes actually present in the message data. Each message is terminated by a carriage
return and linefeed. Hence the proper settings for a Vitel DRGS are:
 lengthAdj = -4

 delimiter = \r\n

The DataWise DOMSAT system reports a length that is one greater than the number
actually present. It terminates each message with 3 sets of carriage-return/linefeed. The
proper settings for a DataWise DOMSAT socket stream are:
 lengthAdj = 0

 delimiter = \r\n\r\n\r\n

How messages are parsed
The socket is opened. The input software expects the stream to start with a message
header, followed by the message data, followed by the delimiter. This cycle repeats
indefinitely until the socket is closed.

The input software can get out of sync in one of the following ways:

• Detecting an invalid 37-byte header (no DCP address, channel number, or message
length).

• Failing to find the delimiter string

DECODES User Guide 79

When this happens, the input software goes into “hunt mode”. It will read characters from
the socket looking for the delimiter sequence. Once found it will again attempt to read the
37 byte header.

Look at the debug-log when running the routing spec. If your ‘lengthAdj’ and ‘delimiter’
parameters are correct you will never see the messages saying that the software has
skipped data. If you do see these messages:

• Consult the manual for the server system to determine how messages are formatted.
• Make sure the delimiter string is correct as described above.
• Try adjustin lengthAdj downward, into negative numbers (incrementally).

Network Lists and Time Ranges
Since a socket-stream is assumed to be a real-time data source, the input software will
ignore the ‘since’ and ‘until’ times specified in the routing spec.

Network lists will be used to filter incoming data. Only messages whose DCP address is
contained in one of the routing-specs network lists will be processed. If the routing spec
contains no network lists, all data will be processed.

Header Format
The “header” property should be one of “GOES”, “VITEL”, or “NOAAPORT”. The
default is “GOES” if the property is missing. The Vitel header is slightly different in that
it does not include the failure-code field, causing subsequent fields to be shifted one
character to the left.

DECODES User Guide 80

8.6.1 Using SocketStreamDataSource for NOAAPORT
NOAAPORT messages are received over a socket in the following format:

[SOH]\r\r\nNNN\r\r\nHHH[RS]DDD\r\r\n[ETX]

…where

• [SOH] is an ASCII Start-Of-Header character (octal \001)
• NNN is a NOAAPORT 3 digit sequence number
• HHH is a NOAAPORT Header (ignored)
• [RS] is an ASCII Record-Separator character (octal \036)
• DDD is the DCP message containing time stamp and other header fields before and

after the message proper.
• [ETX] is an ASCII End-of-Text character (octal \003)

The DDD data field contains all the header fields and message-data that we need. We
want to ignore everything else. Consequently use the following Data Source Properties:

• host
• port =
• delimiter = \036
• endDelimiter = \r\r\n\003
• header = NOAAPORT

The Socket Stream will then process only the DDD (data) field between the [RS] and
\r\r\n[ETX], and ignore everything else.

The Data Field itself will have the following format:
AAAAAAAA DDDHHMMSS ddd... SSFFNN CCCs

…where

• AAAAAAAA is the 8-hex-char DCP Address
• DDDHHMMSS is the date/time stamp.
• ddd… is the actual message data
• SS is the signal strength
• FF is the Frequence offset
• NN is a placeholder for IFPD (it is always set to ‘NN’)
• CCC is the GOES Channel number, padded on the left with blanks (3 characters)
• s is the GOES Spacecraft (E or W)

DECODES User Guide 81

9. Output Formatters
DECODES supports a variety of output formats including:

• SHEF – Standard Hydrometeorologic Exchange Format .A lines)
• SHEFIT – Intermediate format defined by the USACE Hydrologic Engineering

Center. Used to input data into the Corp’s CWMS database.
• Human Readable - Simple but compact time-sorted table format
• EMIT-ASCII - Compatible with EMIT when “ASCII” format is selected.
• EMIT-ORACLE - Compatible with EMIT when “ORACLE” format is selected.
• Dump – Used primarily for trouble-shooting, this format dumps all known

information about samples, sensors, & platform.
• STDFMT - Standard format used by USGS for data-ingest into NWIS
• TransmitMonitor - Displays log of transmission quality parameters and battery

voltage.

The following subsections contain more details on individual formats.

DECODES User Guide 82

9.1 SHEF Output Format
The SHEF Output Formatter can produce either the “.A” or “.E” type lines:

• .E is normally used for regular interval data, such as is found in self-timed DCP
messages. Figure 9-1 shows an example of the SHEF .A.

• .A is normally used for irregular interval data, such as is found in random DCP
messages. Figure Figure 9-2 shows an example of SHEF .E.

The SHEF Formatter honors the following routing-spec properties:
Name Value Type Default Description

dotAOnly True/false false If true, force output to be .A lines only, even for self-
timed (regular interval) data.

century True/false false SHEF time stamps allow 4 digit or 2 digit years. The
default is a 2 digit year. To force the century to be
included, add this property set to “true”.

seconds True/false true Likewise, seconds can be omitted in SHEF time
stamps. By default they are included. To force them to
be dropped, add a this property with a value of “false”.

useNesdisId True/false false Normally the default Site Name is used in the SHEF
output. To force the output to use the 8 hex-char
NESDIS ID, set this to true.

fullShefCode True/false false Normally the SHEF output will only include the 2-
character physical element (PE) code entered with
each sensor. If you want a full 7 digit code constructed
by filling out the trailing 5 characters, set this to true.

defaultShefCode 7-char string xxIRZZZ If “fullShefCode” is set to true, you can control the
characters used to fill-out the 7-character code.

DECODES User Guide 83

.A BRFW3 011203 GMT+00:00 DH110000 /DUE /HG 38.36 :ft
.A BRFW3 011203 GMT+00:00 DH100000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH090000 /DUE /HG 38.34 :ft
.A BRFW3 011203 GMT+00:00 DH080000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH070000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH060000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH050000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH040000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH110000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH100000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH090000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH080000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH070000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH060000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH050000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH040000 /DUS /PC 6.26 :INCH

Figure 9-1: Example of SHEF .A Output

.E SSIM5 020212 GMT DH150000 /DUS /VB/ DIH+1 /14.344 :V
.E LFKM5 020212 GMT DH080000 /DUE /HG/ DIH+1 /2.79/2.79/2.79/2.79/2.79/2.79/2.79/2.79 :ft
.E LFKM5 020212 GMT DH150000 /DUE /VB/ DIH+1 /14.344 :VOLT
.E VRNN8 020212 GMT DH150000 /DUE /VB/ DIH+1 /13.876 :VOLT
.E BRFW3 020212 GMT DH080000 /DUE /PC/ DIH+1 /6.26/6.26/6.26/6.26/6.26/6.26/6.26/6.26 :in
.E BRFW3 020212 GMT DH150000 /DUS /VB/ DIH+1 /14.5 :V
.E DURW3 020212 GMT DH080000 /DUE /HG/ DIH+1 /1.75/1.72/1.63/1.6/1.55/1.49/1.49/1.49 :ft
.E DURW3 020212 GMT DH150000 /DUS /VB/ DIH+1 /13.84 :V
.E HOMN8 020212 GMT DH160000 /DUS /VB/ DIH+1 /14.11 :V

Figure 9-2: Example of SHEF .E output

DECODES User Guide 84

9.2 SHEFIT Output Format
Figure 9-3 shows an example of the HEC SHEFIT output format.

CE459D7E20011203110000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203100000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203090000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203080000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203070000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203060000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203050000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203040000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203030000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203020000 0 0 0 0 0 0 HP RZZ 1055.520 Z -1.00 0 0 0
CE459D7E20011203010000 0 0 0 0 0 0 HP RZZ 1055.520 Z -1.00 0 0 0
CE459D7E20011203000000 0 0 0 0 0 0 HP RZZ 1055.520 Z -1.00 0 0 0
CE459D7E20011203110000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203100000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203090000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203080000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203070000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203060000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0

Figure 9-3: Example of SHEFIT Output Format.

DECODES User Guide 85

9.3 Human Readable Output Format
The Human Readable Formatter is designed, well, for humans. It displays the message
data in the simple table format shown in Figure 9-4. It also honors the following
properties:

Name Value Type Default Description
displayEmpty True/false false Normally, empty columns will be omitted. Add this

property and set it to true to cause a column to be
displayed even for sensors that have no data.

Message for Platform NWSHB5-HOMN8
 | elev | PC | battery |
 | HP | PC | VB |
 | ft | in | V |
12/03/2001 00:00:00 | 1055.53 | 0.0 | |
12/03/2001 01:00:00 | 1055.53 | 0.0 | |
12/03/2001 02:00:00 | 1055.53 | 0.0 | |
12/03/2001 03:00:00 | 1055.53 | 0.0 | |
12/03/2001 04:00:00 | 1055.53 | 0.0 | |
12/03/2001 05:00:00 | 1055.53 | 0.0 | |
12/03/2001 06:00:00 | 1055.53 | 0.0 | |
12/03/2001 07:00:00 | 1055.53 | 0.0 | |
12/03/2001 08:00:00 | 1055.53 | 0.0 | |
12/03/2001 09:00:00 | 1055.52 | 0.0 | |
12/03/2001 10:00:00 | 1055.52 | 0.0 | |
12/03/2001 11:00:00 | 1055.52 | 0.0 | 13.876 |

Message for Platform NWSHB5-WTSM5
 | pool | tail | battery |
 | HP | HT | VB |
 | ft | ft | VOLT |
12/03/2001 00:00:00 | 900.0 | 935.5 | |
12/03/2001 01:00:00 | 900.0 | 935.49 | |
12/03/2001 02:00:00 | 900.0 | 935.5 | |
12/03/2001 03:00:00 | 900.0 | 935.51 | |
12/03/2001 04:00:00 | 900.0 | 935.54 | |
12/03/2001 05:00:00 | 900.0 | 935.61 | |
12/03/2001 06:00:00 | 900.0 | 935.65 | |
12/03/2001 07:00:00 | 900.0 | 935.67 | |
12/03/2001 08:00:00 | 900.0 | 935.67 | |
12/03/2001 09:00:00 | 900.0 | 935.65 | |
12/03/2001 10:00:00 | 900.0 | 935.64 | |
12/03/2001 11:00:00 | 900.0 | 935.61 | 12.004 |

Figure 9-4: Example of Human Readable Output Format.

DECODES User Guide 86

9.4 EMIT-ASCII Format
If the routing spec contains a string property called ‘delimiter’, this will be used to
delimit between columns. The default is a single space.

The EMIT-ASCII formatter produces an output that is compatible with the old EMIT
program when “ASCII” was selected as the output format. This format has 12 blank-
delimited fields as follows:

• Hex DCP Address
• EPA Sensor Code (0 if none is assigned)
• Sensor Number
• Time Stamp in the format: YYDDD/HH:MM:SS
• Sample Value (formatted as specified by Presentation Group)
• ‘I’ if this is a self-timed message (meaning interval data); or ‘R’ if this is a random

message.
• DCP Name (the preferred site name as specified by your properties file is used)
• Sensor Name
• SHEF Code (or ‘XX’ if none is specified)
• Recording interval for this sensor (in seconds)
• ‘I’
• Engineering Units

Following all sample data, a single line with ‘ZZZZ’ is printed. Figure 9-5 shows a single
message in EMIT-ASCII format.

If you have used station or sensor names that have embedded spaces, you can use an
additional property ‘useQuotes’ set to TRUE. This will cause the station and sensor
names to be enclosed in single quotes.

CE459D7E 0 1 01337/11:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/10:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/09:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/08:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/07:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/06:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/05:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/04:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/03:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/02:00:00 1055.52 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/01:00:00 1055.52 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/00:00:00 1055.52 I HOMN8 elev HP 3600 I ft
CE459D7E 00045 2 01337/11:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/10:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/09:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/08:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/07:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/06:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/05:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/04:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/03:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/02:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/01:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/00:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 70969 3 01337/11:00:00 13.876 I HOMN8 battery VB 3600 I V
ZZZZ

Figure 9-5: Example of EMIT-ASCII format.

DECODES User Guide 87

9.5 EMIT-Oracle Format
This format is similar to EMIT-ASCII but more compact. It was originally designed to
input data into an Oracle database, hence the name. It is, however, a generally useful
format in its own right, very easy to parse with a computer program.

The ‘delimiter’ property is supported in the same way as for EMIT-ASCII.

The EMIT-ORACLE formatter produces an output that is compatible with the old EMIT
program when “ORACLE” was selected as the output format. This format has 7 blank-
delimited fields as follows:

• Hex DCP Address
• SHEF Code (or ‘XX’ if none is specified)
• Sensor Number
• Time Stamp in the format: YYDDD/HH:MM:SS
• Sample Value (formatted as specified by Presentation Group)
• ‘I’ if this is a self-timed message (meaning interval data); or ‘R’ if this is a random

message.
• Engineering Units

Following all sample data, a single line with ‘ZZZZ’ is printed. Figure 9-6 shows a single
message in EMIT-Oracle format.

CE459D7E HP 1 01337/11:00:00 1055.53 I ft
CE459D7E HP 1 01337/10:00:00 1055.53 I ft
CE459D7E HP 1 01337/09:00:00 1055.53 I ft
CE459D7E HP 1 01337/08:00:00 1055.53 I ft
CE459D7E HP 1 01337/07:00:00 1055.53 I ft
CE459D7E HP 1 01337/06:00:00 1055.53 I ft
CE459D7E HP 1 01337/05:00:00 1055.53 I ft
CE459D7E HP 1 01337/04:00:00 1055.53 I ft
CE459D7E HP 1 01337/03:00:00 1055.53 I ft
CE459D7E HP 1 01337/02:00:00 1055.52 I ft
CE459D7E HP 1 01337/01:00:00 1055.52 I ft
CE459D7E HP 1 01337/00:00:00 1055.52 I ft
CE459D7E PC 2 01337/11:00:00 0.0 I in
CE459D7E PC 2 01337/10:00:00 0.0 I in
CE459D7E PC 2 01337/09:00:00 0.0 I in
CE459D7E PC 2 01337/08:00:00 0.0 I in
CE459D7E PC 2 01337/07:00:00 0.0 I in
CE459D7E PC 2 01337/06:00:00 0.0 I in
CE459D7E PC 2 01337/05:00:00 0.0 I in
CE459D7E PC 2 01337/04:00:00 0.0 I in
CE459D7E PC 2 01337/03:00:00 0.0 I in
CE459D7E PC 2 01337/02:00:00 0.0 I in
CE459D7E PC 2 01337/01:00:00 0.0 I in
CE459D7E PC 2 01337/00:00:00 0.0 I in
CE459D7E VB 3 01337/11:00:00 13.876 I V
ZZZZ

Figure 9-6: Example of Emit-Oracle Output Format.

DECODES User Guide 88

9.6 Dump Formatter
DumpFormatter is useful for testing and trouble-shooting. It dumps the raw message,
performance measurements, and decoded data to an output interface. Figure 9-7 shows an
example of this format.

=================================
Start of message for platform NWSHB5-HOMN8
Time Stamp: 12/02/2001 16:08:11
Raw Data:
CE459D7E01336210811G44-
4NN031E9200077B1HAvq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avp@@@Avp
@@@Avp@@@N

Performance Measurements:
DcpAddress=CE459D7E
Spacecraft=E
UplinkCarrier=92
Channel=31
SignalStrength=44
Length=77
ModulationIndex=N
Quality=N
Time=12/02/2001 21:08:11
FailureCode=G
FrequencyOffset=-4

Decoded Data:

Sensor 1: elev, EU=ft(feet), DataType=SHEF-PE:HP
Begin=12/02/2001 16:53:33, End=12/03/2001 06:00:00
Number of Samples=12
Sample[0]=12/03/2001 06:00:00: 1055.53 ' 1055.53'
Sample[1]=12/03/2001 05:00:00: 1055.53 ' 1055.53'
Sample[2]=12/03/2001 04:00:00: 1055.53 ' 1055.53'
Sample[3]=12/03/2001 03:00:00: 1055.53 ' 1055.53'
Sample[4]=12/03/2001 02:00:00: 1055.53 ' 1055.53'
Sample[5]=12/03/2001 01:00:00: 1055.53 ' 1055.53'
Sample[6]=12/03/2001 00:00:00: 1055.53 ' 1055.53'
Sample[7]=12/02/2001 23:00:00: 1055.53 ' 1055.53'
Sample[8]=12/02/2001 22:00:00: 1055.53 ' 1055.53'
Sample[9]=12/02/2001 21:00:00: 1055.52 ' 1055.52'
Sample[10]=12/02/2001 20:00:00: 1055.52 ' 1055.52'
Sample[11]=12/02/2001 19:00:00: 1055.52 ' 1055.52'
Sensor 2: PC, EU=in(inches), DataType=SHEF-PE:PC
Begin=12/02/2001 16:53:33, End=12/03/2001 06:00:00
Number of Samples=12
Sample[0]=12/03/2001 06:00:00: 0 '0.0 '
Sample[1]=12/03/2001 05:00:00: 0 '0.0 '
Sample[2]=12/03/2001 04:00:00: 0 '0.0 '
Sample[3]=12/03/2001 03:00:00: 0 '0.0 '
Sample[4]=12/03/2001 02:00:00: 0 '0.0 '
Sample[5]=12/03/2001 01:00:00: 0 '0.0 '
Sample[6]=12/03/2001 00:00:00: 0 '0.0 '
Sample[7]=12/02/2001 23:00:00: 0 '0.0 '
Sample[8]=12/02/2001 22:00:00: 0 '0.0 '
Sample[9]=12/02/2001 21:00:00: 0 '0.0 '
Sample[10]=12/02/2001 20:00:00: 0 '0.0 '
Sample[11]=12/02/2001 19:00:00: 0 '0.0 '
Sensor 3: battery, EU=V(volts), DataType=SHEF-PE:VB
Begin=12/02/2001 16:53:33, End=12/03/2001 06:00:00
Number of Samples=1
Sample[0]=12/03/2001 06:00:00: 13.876 ' 13.876

Figure 9-7: Example of Dump Output Format

DECODES User Guide 89

9.7 USGS STDFMT Output Formatter
This formatter is used by USGS for ingesting data into the National Water Information
System (NWIS). For documentation on this format see Appendix E in the NWIS User
Guide, which can be found at:

http://wa.water.usgs.gov/realtime/adaps/adaps.book.html

Figure 9-8 shows an example of STDFMT output. Each DCP message is placed in a
separate STDFMT envelope.

BE STDDCP
DB 1 1
SD USGS 03323500 0N
SE 8 STAGE00065 11 73F010000
TM 20021030130000
UF 8 10.390 10.390 10.390 10.390 10.390 10.390 10.390 10.390
SE 3 H2O T00010 11 73F010000
TM 20021030130000
UF 8 10.600 10.600 10.600 10.700 11.100 11.400 11.600 11.800
SE 9 BATVT70969 11 63F010000
TM 20021030130000
UF 8 3.740 3.740 3.770 3.850 4.210 4.100 4.000 4.110
EE
BE STDDCP
DB 1 1
SD USGS 03324500 0N
SE 2 STAGE200065 11 63F010000
TM 20021030130000
UF 8 4.540 4.540 4.540 4.540 4.540 4.540 4.540 4.540
SE 5 PREC 200045 6 83F010000
TM 20021030130000
UF 8 116.700 116.700 116.700 116.700 116.700 116.700 116.700 116.700
SE 3 H2O T100010 11 73F010000
TM 20021030130000
UF 8 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000
SE 8 BATVTB70969 11 73F010000
TM 20021030130000
UF 8 15.310 15.210 14.910 14.720 14.830 14.710 14.710 14.830
EE

Figure 9-8: Example of USGS STDFMT Output.

DECODES User Guide 90

9.8 Transmit Monitor Formatter
The Transmit Monitor format provides a log of transmission quality measurements in an
easy-to-use row column format. The following columns are used by default:

• Message Time Stamp in the form MM/DD/YYYY-HH:MM:SS
• DCP Address (Transport Medium ID)
• Site Name
• Failure Code
• SignalStrength
• Message Length
• GOES Channel Number
• Frequency Offset
• Modulation Index
• Battery Voltage

An example of the default format is shown in Figure 9-9.
10/30/2002-20:03:33 CE7718EE 03324500 G 50 209 23 -4 N N 14.83
10/30/2002-20:16:50 CE77835E 03360000 G 50 97 23 -5 N N 13.88
10/30/2002-20:29:25 CE777D08 03327500 G 50 161 23 -2 N N 14.37
10/30/2002-21:03:11 CE14B3F8 03324000 G 50 145 17 0 H N 13.70
10/30/2002-21:07:22 CE14C568 03275000 G 50 113 17 -1 N N 13.74
10/30/2002-22:21:29 CE6D361C 03335500 G 49 113 41 -4 N F 14.12
10/31/2002-00:03:33 CE7718EE 03324500 G 49 209 23 -3 N N 14.72
10/31/2002-00:05:30 CE772D74 03375500 G 49 105 23 -3 N N 13.3
10/31/2002-00:06:27 CE7730D0 03276000 G 49 145 23 2 N N 14.8
10/31/2002-00:16:50 CE77835E 03360000 G 49 97 23 -5 N N 14.23
10/31/2002-00:29:25 CE777D08 03327500 G 50 161 23 -2 N N 13.99
10/31/2002-01:03:11 CE14B3F8 03324000 G 50 145 17 0 H N 13.70
10/31/2002-02:21:29 CE6D361C 03335500 G 50 113 41 -4 N N 14.11
10/31/2002-04:16:50 CE77835E 03360000 G 49 97 23 -5 N N 13.88
10/31/2002-04:29:25 CE777D08 03327500 G 49 161 23 -2 N N 13.79
10/31/2002-05:03:11 CE14B3F8 03324000 G 49 145 17 0 H N 13.70
10/31/2002-05:05:41 CE14D61E 03357500 G 50 145 17 -9 N N 14.70
10/31/2002-05:07:22 CE14C568 03275000 G 50 113 17 -1 N N 13.57
10/31/2002-06:21:29 CE6D361C 03335500 G 50 113 41 -4 N N 14.17

Figure 9-9: Example of Transmit Monitor Format.

You can control the contents of the transmit monitor format by adding properties to the
routing specification:

• The string property “delimiter” has a default value of a single space character. This is
used to separate columns in the output. To ingest this data into a SQL database, for
example, you may wish to use a comma as a delimiter.

• The Boolean property “justify” defaults to ‘true’. This causes each column to be
either right or left justified within the column width. The example above shows
justified columns.

The string property “columns” is a blank or comma-separated list of columns that you
wish to see in the output. Table 9-1 shows the column names that can be included in this
string. The default value for the string is:

“time id name FailureCode SignalStrength Length Channel FrequencyOffset
ModulationIndex Quality batt”

DECODES User Guide 91

Column Name Description

time Message time stamp in the format MM/DD/YYYY-HH:MM:SS

id Transport ID (i.e. DCP address for GOES messages)

name Site name

FailureCode 1-character code for GOES messages: ‘G’ means good message, ‘?’
means parity errors.

Length Length of the raw message in bytes

Channel GOES Channel number

FrequencyOffset A sign plus a digit, taken from the DOMSAT message header, this
indicates the frequency offset of the raw message, as reported by
DAPS. The digit indicates the amount of the offset in units of 50Hz.

ModulationIndex ‘N’ for Normal, ‘L’ for Low, ‘H’ for High

Quality ‘N’ (normal) = Error rate betterh than 10-6,
‘F’ (fair) = Error rate between 10-4 and 10-6
’P’ (poor) = Error rate worse than 10-4

SignalStrength in dB.

Spacecraft ‘E’ (East), or ‘W’ (West)

UplinkCarrier Uplink Carrier Status (not implemented in DAPS-I)

batt Battery voltage if available. The most recent sample contained in the
message will be printed. This looks for a sensor with a name that
starts with “batt”. If none found it looks for any sensor with a
datatype equivalent to VB.

Table 9-1: Column Names supported by Transmit Monitor Formatter.

The string property “colwidths” is used to control the width and justification of each
column. It should be a blank or comma-separated list of numbers, one for each column. A
positive number means right-justified. A negative number means left-justified. The
default value of this property is:

19, 8, 10, 1, 5, 3, 2, 2, 2, 5

Example: Cause the formatter to print a comma-separated list of messages. For each
message we only want the time, DCP Address, and battery voltage.

Add the following properties to the routing spec:

• delimiter = , (i.e. a single comma)
• justify = false
• columns = time id batt
• colwidths = 19, 8, 7

DECODES User Guide 92

10. Consumers
Consumers receive the formatted data created by DECODES and send it somewhere.
There are currently 4 types of consumers implemented within DECODES:

• PipeConsumer is used to send data from a DECODES routing spec into some other
program in real time.

• FileConsumer sends all data from a routing spec into a single file. The file is closed
when the routing spec is complete.

• DirectoryConsumer creates separate files for each message in a specified directory.
• StringBufferConsumer is used internally by GUI programs that display decoded data

interactively.

10.1 Pipe Consumer
The Consumer Argument should be one of:

• ‘stdout’ – send data to standard output.
• ‘stderr’ – send data to standard error.
• command - an arbitrary command line. The command will be executed and the data

will be piped to the command’s standard input.

PipeConsumer will use the following routing-spec properties to control its actions:

Property Name Default Description

ConsumerBefore none An encoded string that is written to the file
preceding each message. The string may contain
UNIX-style escape sequences such as \n \r \t, and
octal binary characters encoded as \002, etc.

ConsumerAfter none An encoded string that is written to the file after
each message.

DECODES User Guide 93

10.2 File Consumer
The Consumer Argument should be the file name template. The file will be opened when
the routing spec starts. All data from the routing spec will be placed in the file. The file
will be closed when finished.

The file name template may contain a variable of the form $DATE(format) where format
describes how the date/time stamp is to be formatted in the file name. It can contain any
format handled by the Java class java.text.SimpleDateFormat, although since it is used as
a filename, it should not contain spaces or other illegal characters.

See http://java.sun.com/j2se/1.4.1/docs/api/ for complete docs on SimpleDateFormat.
Click on “java.text” in the upper left frame. Then click on SimpleDateFormat in the
lower left frame.

For example, if Consumer Arg is “data-$DATE(yyyyMMdd-HHmmss)”, this might
result in a filename data-20031213-120000.

This consumer should therefore only be used with routing specs that run for a finite
period of time. That is, the ‘until’ time should be specified if reading from an LRGS.

FileConsumer will use the following routing-spec properties to control its actions:

Property Name Default Description

ConsumerBefore none An encoded string that is written to the file
preceding each message. The string may contain
UNIX-style escape sequences such as \n \r \t, and
octal binary characters encoded as \002, etc.

ConsumerAfter none An encoded string that is written to the file after
each message.

file.overwrite false Set this property to true if you want the consumer to
overwrite files that already exist. The default
behavior is to append to the existing file.

cmdAfterFile none A command that DECODES will execute after each
file is generated and placed in the directory. The
command may contain $FILENAME which will be
replaced with the name of the file just completed.

cmdTimeout Integer Number of seconds for cmdAfterFile to complete.
Default=60 seconds.

DECODES User Guide 94

10.3 Directory Consumer
The Consumer Argument should be a directory name. The routing spec will create a
separate file in this directory to hold the data generated for each message. The file name
will be in the following format:

SiteName-YYYYMMDDHHmmSS

Hence when looking at a sorted directory listing you will see each platform’s files
together in time order.

The Site Name used will be the default site name type defined in your DECODES
properties file.

DirectoryConsumer will use the following routing-spec properties to control its actions:

Property Name Default Description

ConsumerBefore none An encoded string that is written to the file
preceding each message. The string may contain
UNIX-style escape sequences such as \n \r \t, and
octal binary characters encoded as \002, etc.

ConsumerAfter none An encoded string that is written to the file after
each message.

cmdAfterFile none A command that DECODES will execute after each
file is generated and placed in the directory. The
command may contain $FILENAME which will be
replaced with the name of the file just completed.

cmdTimeout Integer Number of seconds for cmdAfterFile to complete.
Default=60 seconds.

filename none A file-name template to override the default
described above. (see below)

Files will be constructed in a temporary location and then moved to the named directory.
Therefore, you can write a program to scan the directory for new files and be assured that
all files in the directory are complete.

If you supply a filename property, it will be used to construct the filename, overriding the
default described above. The template may contain variables of the following form:

• $DATE(format) - See the description of this in section 10.2.
• $TRANSPORTID - will be replaced by the DCP address.
• $SITENAME - will be replaced by the site name.

DECODES User Guide 95

11. Special Considerations for EDL Files
EDL (Electronic Data Logger) files can be processed by DECODES routing specs just as
easily as DCP messages. This section highlights some of the differences that you’ll need
to be aware of in setting up your database.

11.1 How does DECODES find the Platform Record?
If file contains USGS header with a complete values for STATION and DEVICE, then
DECODES can construct a transport medium ID as follows:

station-devname-devnum

Example: Suppose the file header contains:
//STATION 01234567
//DEVICE CR10 1

…then the medium ID would be “01234567-CR10-1”. Your platform record would need
to have a Transport Medium record with this value.

If your files do not contain a complete USGS header, then you can supply it on the
command line with a -D argument. For example:

rs -Dfilename=myfile -DMediumID=01234567-CR10-1 myspecname

 (station number with device number), for example “//STATION cr10

MediumID property set on command line for files that are missing STATION or device
number in the file. Example:

rs -DMediumID=0143563-cr10-3 specname

11.2 Time Zones for Dates & Times in EDL Files
Time zone abbreviations can be one of:

• Standard time zone name like EST or America/Chicago.
• Custom Java time zone in the form “GMT-HH:MM”. For example, Eastern US that

never uses daylight time could be “GMT-05:00”.
• A sign followed by a minute offset, followed by a flag indicating whether or not

daylight time applies: Y, N, or M (see below).

Time zones (as of DECODES 6.1) are stored in the transport medium record (see Figure
5-4). If none is specified here, the time zone specified in the site record is used. If none
there, then “UTC” is assumed.

The daylight time flag can take on three values:

• Y means that daylight time applies according to the normal domestic U.S. rules. That
is, daylight time starts at 2 AM on the first Sunday of April, and ends at 2 AM on the
last Sunday of October.

DECODES User Guide 96

• N means that daylight time never applies.
• M means Manual. That is, the platform is set manually to the new time zone by the

operator when the site is visited to collect the data.

In the case of manual daylight change, there are special rules: The time will be changed
on or after the period starts. That is, the change to daylight time must occur after 2 AM
on the first Sunday of April. The change back to normal time must occur after 2 AM on
the last Sunday of October. Also, the operator must make the change after collecting the
data, so that all data within a single EDL file has the same offset.

Note that the use of daylight time in general, and manual change in particular, is error-
prone. You are strongly discouraged from this practice. The ideal situation is to program
your recorder always in UTC, and to let DECODES make the conversions as needed
when the data is parsed.

DECODES User Guide 97

12. Specific Scenarios

12.1 How To Create a New Platform Specification

Create a Site for the New Platform
First create a Site for this platform. Recall that in DECODES a “Site” refers to the
location. The Platform resides at the Site.

1. Start the Database Editor by typing ‘dbedit’.

2. Press the ‘Sites’ tab.

3. Make sure the site you want to create doesn’t already exist. Press the column
headers to sort by the various name types. If the site already exists, skip ahead to
“Create a Configuration”.

4. Press the ‘New’ button at the bottom of the Site List Panel. This creates a new site
record and opens it. You now see a Site Edit Panel with the newly created site.

5. A site must have at least one valid name. The new panel shows a site with your
default name-type (probably NWSHB5) and the name “NewName”. Change these
to the proper (unique) name for the new site.

6. On the right side of the Site Edit Panel you can enter other descriptive information
about the site, such as Latitude, Longitude, Nearest City, etc. At a minimum you
should enter the correct time zone for this site.

7. At the bottom of the Site Edit Panel, press ‘Commit’ and the ‘Close’. You should
now see your new site in the site list.

Create an Equipment Model Record for the New Platform
Equipment Model records hold information about each vendor’s platform. Your
platform’s configuration will be associated with an Equipment Model.

8. Press the ‘Equipment’ tab at the top of the editor window. You now see the
Equipment Model List Tab.

9. Each equipment model is given a unique abbreviated name. For example
“SU8004D” is the name for a Sutron 8004 DCP. Does the equipment model for
your new platform already exist? If so, make a note of it and skip ahead to
“Create a Configuration”.

10. Press “New” at the bottom of the Equipment Model List Panel. You are prompted
to enter a new name. There should be no spaces in the name and it must be
unique. A new Equipment Model record is created and opened. You now see the
open Equipment Model Edit Panel.

11. In the edit panel type the descriptive information about the equipment. The Type
value must be set to “DCP.

12. Press the “Add” button in the Properties area. Create a property called
“DataOrder” (no spaces). The value should be either A or D. ‘A’ means

DECODES User Guide 98

ascending, meaning that in messages from this platform, the oldest samples are
transmitted first.

13. Press “Commit” and “Close” when you are finished with the Equipment Model.

Create a Configuration for the New Platform

14. Next you need to create a configuration for the new platform. Press the ‘Configs’
tab at the top of the editor. You should now see the Configuration List Panel.

Recall that in DECODES, most of the information about how to decode and time-tag data
is part of the configuration. A configuration can be shared by several platforms. For
example if you installed 8 Sutron 8200 platforms with exactly the same sensors, and they
all are programmed to generate identically-formatted messages; then you only need to
create one configuration that all 8 platforms can share.

Do you already have a configuration for a platform identical to the new platform? If so,
you can use it. Find its name in the list and make a note of it. Then skip ahead to “Create
the Platform Record”.

15. Press the New button at the bottom of the Configuration List Panel. You are
prompted to enter a unique name for the configuration.

DECODES User Guide 99

Rules and Conventions for Configuration Naming
The only hard rules for configuration names are:

The name must be unique. No two configurations can have the same name.
The name cannot contain any spaces. We recommend limiting the name to alphanumeric

and hyphens.

You should establish an agency-wide convention for naming configurations. You want to
be able to exchange configurations with other districts (and other agencies) without fear
of a name clash.

The USGS has a well established naming convention that other agencies are encouraged
to follow:

 EquipmentModelName-Organization-Sequence

…where:

EquipementModelName is the abbreviation of the Equipment Model record associated
with this configuration. Example “SU8004D” for Sutron 8004 DCP.

Organization is an abbreviation that uniquely identifies your organization and district.
For example “ACEMD” might mean the U.S. Army Corps of Engineers Maryland
District.

Sequence is simply a sequence number.

The following are examples of existing configuration names:

SU8200D-ILEX-005
HA555D-ACEAL-017
HA570D-ACETN-015

DECODES User Guide 100

Enter the Sensor and Formatting Information
After creating a new configuration, a Config Edit Panel will be opened. This screen
contains a lot of important information.

16. Press the ‘Select’ button to the right of “Equipment Model”. Select the equipment
model from the pop-up list.

17. In the text area, type a brief description for this configuration. The description
might contain the number of sensors, SHEF codes, etc.

18. Press the ‘Add’ button in the Sensors area of the screen. The “Edit Config Sensor
Dialog” appears. Fill out the form. Enter a name and data-type for the sensor.
Enter the correct sampling time and interval (this is important for correctly time-
tagging samples from each sensor). When finished, press OK.

19. Repeat the previous step for each sensor.

20. Press the ‘Add’ button in the Decoding Scripts area. The “Edit Decoding Script
Dialog” appears. A Decoding Script tells DECODES how to extract samples from
the raw message.

21. Enter a script name in the upper right of the dialog. Commonly used names are
“ST” for self-timed GOES messages and “RD” for random GOES messages.

22. Enter the format statements manually. Order is important. The script will start
with the first statement. Use the “Up” and “Dn” buttons to move format
statements, if necessary.

23. In the “Sensor Unit Conversions” area of the screen, enter the units and
conversions for each sensor. Enter the units abbreviation (see standard EU
abbreviations table below).

24. If no conversion is necessary, leave algorithm set to “None”. This is appropriate if
the DCP reports values that are already in engineering units. For a linear
conversion, select Algorithm=linear. Then enter A and B coefficients for the
equation:

EU = A * RAW + B
25. Test your script. Load a raw DCP message into the “Sample Message” text area.

The “Load” button lets you load from a file. Even more convenient: Open a
LRGS Browser window and cut & paste. The sample area must start with the
DCP address at the beginning of the DOMSAT header in the DCP message. Any
spaces or other characters before the DCP address will cause decoding to fail.

26. Press the “Decode” button. This will apply the format statements and unit
conversions to the raw data in the sample area. See the results in the Decoded
Data area.

27. Tweak the format statements and unit conversions, then press “Decode” again.
Repeat until decoding is correct. Then press OK.

DECODES User Guide 101

28. If your platform sends both self-timed and random messages, you will need to
create a separate Decoding Script for each. We recommend calling the Self-Timed
Script “ST” and the Random Script “RD”.

Create the Platform Record
You are finally ready to create the platform!

29. Press the “Platforms” tab at the top of the editor.

30. Press the “New” button at the bottom of the screen. This creates a new (empty)
platform record and opens it in a Platform Edit Panel.

31. Press the “Choose” button to the right of “Site”. Select the new site that you
created above.

32. Type a brief description for this platform. This will show up in the list of
platforms for your own easy reference.

33. Press the “Choose” button to the right of “Config”. Select the configuration that
you prepared above. Click OK when the pop-up tells you about the dangers of
changing the configuration assignment. You should now see a list of sensors in
the “Platform Sensor Information” area.

34. Press the “Add” button on the right of the Transport Media area. Fill out the
dialog. A Transport Medium is the glue that associates an incoming message
with your platform records and your decoding scripts.

35. Under Medium Type, select “goes-self-timed”.

36. Under Medium Identifier, type the 8-hex-digit DCP address.

37. Under Decoding Script, select the name of the self timed script (e.g. “ST”).

38. Enter the channel numbers, and if this is for a self-timed message, enter the time
and interval values. Then press OK.

39. If this platform also transmits random, press Add again, select “goes-random” for
Medium Type and “RD” for Decoding Script. Re-enter the DCP address.

40. At the bottom of the Platform Edit Panel press “Commit” and then “Close”.

DECODES User Guide 102

Add the new Platform to a Network List
41. Press the “Netlists” tab at the top of the editor.

42. Highlight the list you want to edit and press “Open”.

43. In the Network List Edit panel, press the “Add” button on the right.

44. Select your new site from the pop-up list and press OK.

45. Press “Commit” and “Close” at the bottom of the screen.

Testing the new Platform in a Routing Spec
46. Run a routing spec that uses the network list that you modified.

47. In the output data, you should see data from your new platform.

DECODES User Guide 103

13. Reference List Editor
The DECODES database contains information to populate pull-down lists. You will
probably never need to modify this information.

However, if you need to expand DECODES functionality you will need to use the
Reference List Editor.

To start the program, type ‘rledit’ at the command prompt. The initial screen is shown in
Figure 13-1. Along the top, you see four tabs for the four types of reference lists:

• Enumerations: Used to populate pull-down lists in the database editor, and also to
expand DECODES functionality in some cases.

• Engineering Units: This tab contains the units known to DECODES.
• Engineering Unit Conversions: This tab contains the conversions between units.
• Data Type Equiv: This tab contains the known data types, and assertions as to

equivalence.

Figure 13-1: Reference List Editor Enumerations Tab.

DECODES User Guide 104

13.1 Enumerations
There are several enumeration sets within DECODES. Select one from the pull-down
listed labeled “Enumeration”. Notice that when you select a different enumeration, the
table below is populated with the values in that set.

Each set has a particular purpose:

• Data Consumer – These are shown in the dbedit routing spec panel. This set
associates a name like ‘pipe’ with a Java class that implements the consumer, like
‘decodes.consumer.PipeConsumer’.

• Data Source Type – These values are shown in the dbedit Data Source panel. Each
DECODES data source is associated with a type. This set tells DECODES which Java
class to use for each type.

• Data Type Standard – This set defines the data type coding standards that you use.
Common values are ‘shef-pe’ used by USACE, and ‘epa-code’ used by USGS.

• Measures – This is used for engineering units. Every EU measures some physical
quantity like area, length, flow, volume, etc. This is a list of those physical quantities.

• Output Format - These are shown in the dbedit routing spec panel where you select
the format for output data. This set associates each name with its Java class.

• Script Type – DECODES was designed to support several types of scripts, although
currently only the ‘standard’ script is used.

• Site Name Type – Sites may have many names, but only one of each type. This set
defines the name type columns that appear in dbedit.

• Transport Medium Type – Each TM has a type like GOES-Self-Timed, or “Data-
Logger”. This set determines the values shown in the pull down list in dbedit.

• Unit Conversion Algorithm – currently contains four values for the different
conversion types: none, linear, poly-5, and usgs-standard.

Using the buttons on the right you can add, edit, or delete enumeration values.

The ‘Set Default’ button places an asterisk next to the selected value. In certain cases, the
default value is used in the absence of a user selection.

The order of values in the list determines the order they will appear in a pull-down list.
Hence you can use the Move-Up and Move-Down buttons to change the order shown
here.

DECODES User Guide 105

13.2 Engineering Units
The Engineering Units tab is shown in Figure 13-2. This list defines all of the known EUs
in DECODES.

You can click on the column headers to sort by:

• Abbreviation
• Full Name
• Family (i.e. English, Metric, or Universal)
• Measures (the physical quantity being measured by the EU)

You can use the buttons to the right to add, edit, or delete an EU.

Abbreviations must not contain embedded spaces.

Figure 13-2: Reference List Editor Engineering Units Tab.

DECODES User Guide 106

13.3 Engineering Unit conversions
The EU conversions tab is shown in Figure 13-3.

Figure 13-3: Reference List Editor EU Conversions Tab.

This list shows the standard conversions. Each line specifies how to convert from one EU
abbreviation to another. There are four possibilities for Algorithm:

• none – This means that the two units are to be considered synonyms. Examples: % is
a synonym for pct, and cfs is a synonym for ft^3/s.

• linear – Uses the equation y = Ax + B, where y is the EU we are converting to, and x
is the EU we are converting from.

• usgs – Uses the equation y = A * (B + x)^C + D
• poly-5 – 5th order polynomial: y = Ax^4 + Bx^4 + Cx^3 + Dx^2 + Ex + F

To add, edit, or delete, use the buttons to the right of the table.

DECODES can invert “none” and “linear” algorithms. Hence if we specify how to
convert from “cal” to “j”, we don’t need to specify how to convert from “j” to “cal”.

DECODES can also combine conversions. Suppose you specify:

• in -> ft
• ft -> m
• m -> mm

Then DECODES can combine these if it needs to convert “in” to “mm”.

DECODES User Guide 107

13.4 Data Type Equivalencies
Figure 13-4 shows the tab for Data Type Equivalencies. Recall that DECODES allows
you to specify multiple data type codes for each sensor. So, for a stream stage sensor you
might enter HG. Then, if you select USGS-STDMSG for your output format, DECODES
must convert HG to the equivalent EPA numeric parameter code.

The equivalencies table allows DECODES to do just that.

Figure 13-4: Reference List Editor - Data Type Equivalencies Tab.

DECODES User Guide 108

14. Rating Computation using USGS RDB Files
This feature is new in DECODES 6.2. The USGS publishes rating tables in a format
called “RDB”. USGS distributes these files to other federal agencies. DECODES can use
USGS RDB files to do calculations like:

• Stage to Discharge
• Elevation to Volume

It does the calculation on-the-fly. When a raw message is processed, it produces a time
series containing your independent variable (e.g. STAGE). The RDB Process can then
use these to derive a separate time series containing your dependent variable (discharge).
The output of the routing spec will contain both.

You will need USGS RDB files with the shifts already calculated. An example is shown
in Figure 14-1. Note the inclusion of the SHIFT column in the data. This is necessary.

This example also shows an “expanded” rating, meaning that the table includes the stored
values (marked with an asterisk) and interpolated values at every .01 increment of the
independent variable. DECODES is capable of doing its own logarithmic interpolation
between stored points, so you do not need an expanded rating.

//UNITED STATES GEOLOGICAL SURVEY http://water.usgs.gov/
//NATIONAL WATER INFORMATION SYSTEM http://water.usgs.gov/data.html
//DATA ARE PROVISIONAL AND SUBJECT TO CHANGE UNTIL PUBLISHED BY USGS
//RETRIEVED: 2003-10-31 10:10:47
//FILE TYPE="NWIS RATING"
//DATABASE NUMBER=1 DESCRIPTION=" Standard data base for this site."
//STATION AGENCY="USGS " NUMBER="05495000 " TIME_ZONE="CST" DST_FLAG=Y
//STATION NAME="Fox River at Wayland, MO"
//DD NUMBER=" 7" LABEL="Discharge, in cfs"
//PARAMETER CODE="00060"
//RATING SHIFTED="20031031100000 CST"
//RATING ID="19.0" TYPE="STGQ" NAME="stage-discharge"
//RATING REMARKS=""
//RATING EXPANSION="logarithmic"
//RATING BREAKPOINT1=1.00
//RATING OFFSET1=0.80 OFFSET2=1.00
//RATING_INDEP ROUNDING="2223456782" PARAMETER="Gage height IN feet"
//RATING_DEP ROUNDING="2222233332" PARAMETER="Discharge IN cfs"
//RATING_DATETIME BEGIN=20021001000000 BZONE=CDT END=23821230090000 EZONE=CST
INDEP SHIFT DEP STOR
16N 16N 16N 1S
0.80 0.12 0.12 *
0.81 0.12 0.13
0.82 0.12 0.14
0.83 0.12 0.15
0.84 0.12 0.16
0.85 0.12 0.17
0.86 0.12 0.18
0.87 0.12 0.19
0.88 0.12 0.20
0.99 0.12 0.44
1.00 0.12 0.49 *
1.01 0.12 0.53
1.02 0.12 0.57
1.03 0.12 0.62
1.04 0.12 0.66

. . .

Figure 14-1: USGS RDB Rating File Example

DECODES User Guide 109

14.1 Store the RDB Files in a Known Directory
Set up a directory under the DECODES installation to hold the RDB files. We
recommend making a sub-directory called “rdb-files”.

Place your RDB files in this directory as you get them from the USGS. Many agencies
are using WGET or RSYNC utilities to make sure they have the latest ratings.

The rating files can have any name. Typically, USGS will give them a name that contains
the USGS Station Identifier (a long number from 7 to 15 digits) and the USGS database
descriptor number, which uniquely identifies the sensor on that station. For example, the
above rating file might be called “05495000-7.rdb”.

14.2 Associate RDB Files with Platform Sensors
Next you need to tell DECODES which parameters on which sites are associated with
which RDB files. You do this by setting Platform Sensor Properties.

Open dbedit and click on the Platforms tab. Select the desired platform and open it.
Select the sensor for the independent variable. For example, if this is a stage (HG) to flow
(QR) conversion, the independent variable would be stage (HG). Then press the “Sensor
Properties” button.

Figure 14-2: Select Platform Sensor and press "Sensor Properties".

DECODES User Guide 110

Figure 14-3: Platform Sensor Properties Dialog.

In this dialog create two properties:

• RdbFile is set to the name of the RDB file to do the conversion. You do not need to
specify a complete path name.

• RdbShef is set to the SHEF code for the output (dependent) variable. The example
shows QR for river discharge.

14.3 Configure the Computation Processor
The RDB processor is one part of a general purpose module that in the future will be able
to perform many types of computations on your data. You configure the computation
processor with an XML file that is placed in your DECODES directory. The default name
for the file is “computations.conf”. It is included in the DECODES 6.2 release.

There is an entry in this file for each type of computation you want to support. Currently,
two types supported. Your file should look much like the following:

<ComputationProcessor>
 <CompResolver class="decodes.comp.RdbRatingCompResolver">
 <Property name="dir">$DECODES_INSTALL_DIR/rdb-files</Property>
 </CompResolver>
 <CompResolver class="decodes.comp.TabRatingCompResolver">
 <Property name="dir">$DECODES_INSTALL_DIR/tab-files</Property>
 </CompResolver>
</ComputationProcessor>

Figure 14-4: Example "computations.conf" file.

This file installs two resolvers: one for RDB files and one for simple table files. For each
one you can specify a property called ‘dir’, which is the name of the directory to contain
the RDB or table files. The default is to use a subdirectory under the DECODES
installation. If this is acceptable to you, then do not make any changes.

DECODES User Guide 111

14.4 Simple ASCII Table Files
Rating can also be done with simple ASCII table files. An example would be the
following file, which converts lake elevation into storage in Acre-Feet:
CRVI4 - Elevation vs Storage (Ac-Ft) 28June2004
645, 0
650, 2
660, 100
670, 3120
680, 17720
690, 70730
700, 183710
710, 372680
715, 501670
720, 644470

Figure 14-5: Example of Simple ASCII Table File.

Just as you did for RDB file, you specify linkages by adding Platform Sensor Properties:

• TabFile – The name of the table file to use on this sensor.
• TabShef – The SHEF code for the output value.
• TabName – The name for the output value.
• TabEU – The engineering units for the output value.

14.5 Run Your Routing Spec with Computations Enabled
Simply add the “-c” argument to the command line of your routing spec. For example, if
my routing spec is called mvmDSS in the editable database, use this command:

rs –e –c mvmDSS

DECODES User Guide 112

15. The DECODES Platform Wizard
The Platform Wizard is a Graphical User Interface (GUI) tool for entering or editing your
platform meta-data. It guides you step-by-step through the process of entering site,
equipment, configuration, and platform data.

Everything that the Platform Wizard does can also be accomplished with the DECODES
Database Editor described in Chapter 5, and you may prefer to continue using that tool.
The wizard provides a more directed approach.

The platform wizard has nine panels. Each will be described in the following subsections.

• Start Panel
• Site Panel
• Platform Sensors Panel
• Equipment Model Panel
• Decoding Script Panels for self-timed, random, and EDL
• Platform Specific Information Panel
• “Save Your Work” Panel

DECODES User Guide 113

15.1 Platform Wizard Start Panel
When you start the platform wizard, you see the initial panel shown in Figure 15-1. Here
you specify what types of messages this platform can generate: GOES Self Timed or
Random, or EDL (Electronic Data Logger) files. You also specify the identifying
information for the message. For example, the figure shows that we want to create a
platform record for a GOES Self Timed DCP with address “CE4816DE” that transmits
on channel 73.

If this is a NEW platform, press Next to continue to the next panel.

If this panel already exists in your database, press the “My Editable Database” button to
cause the GUI to be initialized with the information you’ve already entered.

Future versions will allow you to initialize the GUI from remote DECODES databases,
the National Weather Service HADS System, and from your NEWSID PDT (Platform
Description Table) records.

Figure 15-1: Platform Wizard Start Panel.

DECODES User Guide 114

15.2 Platform Wizard Site Panel
The Site Panel is shown in Figure 15-2. Here you enter information about the location.
We have also entered the NWSHB5 (National Weather Service Handbook 5) name
“VNDI2” for this site.

Figure 15-2: Platform Wizard Site Panel.

DECODES User Guide 115

15.3 Platform Wizard Sensors Panel
The next panel, shown in Figure 15-3, allows you to enter information about each sensor
on this platform. This Platform has three sensors: Stage, Precip, and Battery. Each reports
a value every 15 minutes within a message.

Figure 15-3: Platform Wizard Sensors Panel.

DECODES User Guide 116

15.4 Platform Wizard Equipment Model Panel
This panel allows you to enter information for the equipment model.

Figure 15-4: Platform Wizard Equipment Model Panel.

15.5 Platform Wizard Decoding Script Panel
Refer back to the start panel in Figure 15-1. There you specified up to three ways to get
data from this platform: GOES Self-Timed, GOES Random, and EDL. You will be
presented with a separate Decoding Script Panel for each of the three message types. In
Figure 15-5 we see the panel for GOES Self-Timed Messages.

The “Load” button along the right makes it easy to retrieve a message of the specified
type. This is then shown in the “Sample Message” area. Press the “Decode” button to
apply your format statements to the sample message. The results are shown in the
“Decoded Data” area at the bottom.

The figure shows a simple ASCII DCP message with 8 fifteen-minute samples for each
of the three sensors. Notice how the format statement makes use of the ‘w’ operator and
delimited lengths in the ‘F’ field operators. This allows us to correctly handle the 4th data
line, where an extra space appears before the stage value, and the battery value is only 4
characters long.

DECODES User Guide 117

Figure 15-5: Platform Wizard Decoding Script Panel.

DECODES User Guide 118

15.6 Platform Specific Information
The next panel, shown in Figure 15-6 allows you to enter platform-specific information.
Make sure that you have one “Transport Medium” record at the bottom for each of the 3
ways of retrieving data. Our example shows a single record for GOES Self Timed.

Figure 15-6: Platform Wizard "Platform Specific Info" Panel.

DECODES User Guide 119

15.7 Save Your Work
The final panel, shown in Figure 15-7, allows you to save your work to the editable
database, or to a separate XML file.

First press the “Validate Platform” button. If there are any inconsistencies in the data you
entered, this will be explained on the screen. You will be directed back to other panels to
correct the errors. When finished, return to this panel and press the Validate button again.

The example screen shows that our sample platform validated successfully. So we
pressed the “Write to Editable Database” button. This was also successful.

Figure 15-7: Platform Wizard "Save Your Work" Panel.

DECODES User Guide 120

16. The Interactive Decoding Wizard
As of Version 7, DECODES contains a tool for interactive decoding of files. This is most
useful for EDL (Electronic Data Logger) files, but may also be used for files containing
GOES DCP messages.

Start the Decoding Wizard from the shortcut provided or by typing the command
‘decwiz’ at the command prompt.

By default the decoding wizard will use your production database, if one is present. To
force it to use the edit-database, add the –e option to the command line:

decwiz –e

The Decoding Wizard has three panels, shown in the following three figures.

DECODES User Guide 121

16.1 The File Scanning Panel
First select a file to decode by typing the name in the ‘Input File’ area, or by pressing the
‘Browse’ button. Then press the ‘Scan’ button.

The wizard loads the file into the ‘Raw Data’ area at the bottom of the screen. It also
shows the file size in bytes and the last-modify time of the file.

It then scans the header of the file, trying to associate it with a platform in your database.
If successful, it will fill in the ‘Medium Type’, ‘Site’, ‘Platform’, and ‘Decoding Script’
fields. It might not be successful if the header is completely or partially missing, or if it
can not find a matching record in your database. If this happens, you may choose the site,
platform, and script records manually.

You may also select the decoding format you would like to use (e.g. ‘stdmsg’ or ‘Human-
Readable’), and the verbosity level for debugging information.

After you have done this, press the ‘Next >>’ button at the bottom of the screen.

Figure 16-1: Decoding Wizard - File Scanning Panel.

DECODES User Guide 122

16.2 The Decoding and Time Shift Panel
Press the ‘Decode Data’ button at the top. The wizard will use the platform, site, and
script records that you selected to decode the raw data. The results will be shown in the
format that you selected on the previous screen.

After decoding, if the results are not what you expect, press the ‘Trace Log’ button. A
separate dialog is then displayed showing you all of the steps that DECODES went
through to decode the raw data.

The ‘Decoding Summary’ area shows a summary of the decoding information. For each
sensor it shows several statistics including start/end times, number of samples found,
number of various types of errors, etc. A separate line is printed if an ‘excessive’ gap is
found in the data. ‘Excessive’ means more than the maximum number of missing samples
specified at the top of the screen.

In the bottom area, you may specify a time shift if necessary. Specify the beginning and
ending time of the shift in the time-format shown, and the amount of the shift. Then press
the ‘Decode Data’ button again to see the results of the shift.

When you are satisfied with the results, press the ‘Next >>’ button at the bottom of the
screen.

Figure 16-2: Decoding Wizard - Decoding and Time Shift Panel.

DECODES User Guide 123

16.3 The Save-Results Panel
On this panel you may separately save the raw data, decoded data, and summary to
different files. Leave the fields blank if you do not want to save. In the pull-down at the
right, you may choose to overwrite or append-to the selected file.

Figure 16-3: Decoding Wizard - Save Results Panel.

DECODES User Guide 124

17. USGS National Water Information System (NWIS)
Integration
As of version 7, DECODES can be integrated with an NWIS database. This works as
follows:

• You set the Editable database type and location to point to your Ingres NWIS
database.

• All of the DECODES meta-data is stored in tables within NWIS.
• Site records use information from the NWIS “SITEFILE” table.

17.1 Configure DECODES for your NWIS Database
First, you must set the edit database values in your “decodes.properties” file:

EditDatabaseType=NWIS
EditDatabaseLocation=nwis://hostname/dbname#dbnum

• hostname is the IP address or host name of the database server
• dbname is the logical Ingres database name.
• dbnum is the default database number

Then you must create an encrypted file in your home directory containing your NWIS
login name and password. This file should be protected so that only you can access it in
any way. Here is the recommended way to create the file:

cd $HOME
touch .nwis.auth
chmod 600 .nwis.auth

Now edit the file with the DECODES command “setNwisUser”. You will be asked for
username and password. These will be encrypted and stored in the .nwis.auth file.

DECODES User Guide 125

17.2 Initializing NWIS for DECODES
At the time of this writing, the stock NWIS installation needs to have some additions
before it will work with DECODES. These may be corrected in future releases of NWIS.

Add Surrogate Key Rows for DECODES Tables. This is done by executing the
following SQL commands with the appropriate GRANT permissions:

insert into surrogate values('enum_id', -2147483647, '');
insert into surrogate values('equipmentmodel_id', -2147483647, '');
insert into surrogate values('datatype_id', -2147483647, '');
insert into surrogate values('platform_id', -2147483647, '');
insert into surrogate values('platformconfig_id', -2147483647, '');
insert into surrogate values('decodesscript_id', -2147483647, '');
insert into surrogate values('routingspec_id', -2147483647, '');
insert into surrogate values('datasource_id', -2147483647, '');
insert into surrogate values('networklist_id', -2147483647, '');
insert into surrogate values('presentationgroup_id', -2147483647, '');
insert into surrogate values('datapresentation_id', -2147483647, '');
insert into surrogate values('unitconverter_id', -2147483647, '');

Import the standard ‘Reference List’ data into the DECODES tables. In the
DECODES installation directory, you can run the following commands:

bin/dbimport edit-db/enum/EnumList.xml
bin/dbimport edit-db/eu/EngineeringUnitList.xml
bin/dbimport edit-db/datatype/DataTypeEquivalenceList.xml

You can make more customizations to the reference lists with the Reference List Editor,
as described in section 13.

17.3 NWIS Mapping for Sites and Site Names
Most of the DECODES meta-data is simply stored in NWIS as it would be in any other
database. However, ‘Site’ records needed to be modified to conform to the NWIS
implementation.

Most of the Site meta-data is stored in the NWIS SITEFILE_## table. This includes the
latitude, longitude, and other descriptive information.

DECODES ‘SiteName’ records have been enhanced to account for NWIS rules. When
you add or edit a site name record, you now see the dialog shown in Figure 17-1.

Figure 17-1: Site Name Edit Dialog.

DECODES User Guide 126

For SiteName records with type ‘USGS’, the following rules apply:

• The ‘Identifier’ is the USGS Site Number (typically 8 to 15 digits).
• The USGS DBNO is the Database Number containing this site record.
• The Agency code specifies which agency owns this site record.

DECODES User Guide 127

17.4 Additional NWIS Sensor Parameters
NWIS requires you to specify two additional parameters for each sensor:

• Statistics Code
• Database Descriptor Number (DDNO)

Decodes stores the Statistics Code in the Platform Configuration record. Go to the
‘Configs’ tab and open the desired configuration. Select a sensor and press the ‘Edit’
button. You see the dialog as shown in Figure 17-2. Enter the USGS Stat Code here.

Figure 17-2: Edit Config Sensor Dialog.

DECODES User Guide 128

The DDNO is site-specific. We enter this in the Platform Sensor record. Go to the
‘Platforms’ tab and open the desired platform. Select a sensor and press the ‘Edit Sensor
Info’ button. You see the dialog as shown in Figure 17-3. Enter the USGS DDNO for this
sensor here.

If you are connected to an NWIS database, the pull-down list should show you all valid
DDNOs for this sensors parameter code at this site. If you are working from an XML or
non-NWIS database, the pull-down list will be empty and you must type the value
directly.

Figure 17-3: Edit Platform Sensor Dialog.

DECODES User Guide 129

18. USACE CWMS Interface
The USACE (U.S. Army Corps of Engineers) CWMS (Corps Water Management
System) stores uses a time-series database to store water-level and related data. The
DECODES software suite has a module allowing it to place incoming data directly into
the CWMS database. This obviates the need for intermediate flat-files used in the pass.

LRGS

DECODES
Meta-Data

CWMS Oracle
Database

Connection
Control Files

DDS SQL/APIDECODES
Routing Spec

CWMS
Consumer

Figure 18-1: CWMS Interface Data Flow.

The “CWMS Consumer” is selected as the output (consumer) module in the routing spec.
It receives the decoded data from the routing spec and stores it in the CWMS Oracle
Database. The CWMS Consumer uses the new SQL API (Application Program Interface)
published by HEC to write time-series data directly to CWMS.

We have tried to make the CWMS Consumer as automatic as possible. It has hard-coded
defaults for time-series storage parameters that can be used in most cases. For special
cases, the consumer allows you to provide properties in the DECODES database to
override the defaults.

Control files tell DECODES how to connect and authenticate to the CWMS database.

This section will explain how to set up DECODES to store data directly into a CWMS
database.

DECODES User Guide 130

18.1 What You Will Need
In order to use the CWMS consumer, you must have a working CWMS database with the
1.4 HEC CWMS API Installed. You must have a valid CWMS username & password
with permission to write time series data.

The Consumer uses the “STORE_TS” PL/SQL stored procedure to store the data. Refer
to the CWMS Oracle API User’s Manual for more information about the “STORE_TS”
procedure.

Oracle provides a JDBC driver that you will need. At the time of this writing, the latest
version is a file called “ojdbc14.jar”. By default the CWMS Data Consumer uses the
Oracle “thin” driver which does not require additional libraries besides the jar file. We
have tested the consumer and verified that it works with the “thin” driver.

If for special reasons, you are required to use the “OCI” driver, then you will need
additional native library files. You must install these files in the machine where
DECODES will run. The native libraries are required for the Oracle JDBC OCI
driver. Refer to the Oracle web site (http://www.oracle.com) to find the correct “oci”
Driver libraries for your operating system.

You will also need to add this Jar file to your CLASSPATH variable. For example, on a
UNIX system, if you place the file in /usr/local/lib, then in your shell startup file (.profile,
.bash_profile, etc.) place the lines:

CLASSPATH=/usr/local/lib/ojdbc14.jar:$CLASSPATH
export CLASSPATH

On a windows system use the System control panel to set CLASSPATH.

18.2 Set up DECODES for CWMS
CWMS requires some additions to the DECODES Database:

• New “CWMS” Site Name Type
• New “CWMS” Parameter Data Type
• Several Engineering Units (CWMS is very particular about what EUs it will accept).
• Unit Converters to convert from other DECODES units to the ones that CWMS

recognizes.
• A new “CWMS” Data Consumer Type
• A “Null” Output Formatter

We have prepared an XML file containing these items. To import these items into your
DECODES database, open a terminal window. Then CD to the
DECODES_INSTALL_DIR directory. Then:

bin/dbimport –r to_import/cwms-import.xml

(If you are working on a Windows machine, substitute backslash for slash in the above).

DECODES User Guide 131

18.3 CWMS Connection Parameters
Two files are required: A Properties file stores the CWMS connection and default
parameters. An encrypted file stores the username and password to use when connecting
to CWMS.

18.3.1 The CWMS Properties File
Create a text file in the $DECODES_INSTALL_DIR called “decodes-cwms.conf”. This
is a text file containing ‘name=value’ pairs, one per line. Table 18-1 explains the
parameters, whether or not they are required, and what the default value is. The
parameter name is not case sensitive.

Name Default Value Description

TimeZone GMT Optional time zone in which CWMS Database will
represent date/time stamps.

dbUri No default value provided Required parameter in the form:

 host:portnumber:SID

This tells DECODES the location of the CWMS
database. Example: 155.76.210.137:1521:MVRT)

jdbcOracleDriver jdbc:oracle:thin:@ Optional Oracle JDBC Driver String. The default
driver is “thin” but you can change it to “oci”. If
“oci” is used native code will have to be installed.
No need to modify this property.

cwmsVersion Raw Optional: This is used as the default “Version” part
of the time-series descriptor.

cwmsOfficeId No default value provided Required: This is the CWMS office ID passed to the
API “store_ts” procedure. Typically this is your 3-
character district abbreviation. Example: MVR

DbAuthFile $DECODES_INSTALL_DIR/
.cwmsdb.auth

Optional: Set this if you want to stored the database
authentication file in a different location.

shefCwmsParamFile $DECODES_INSTALL_DIR/
shefCwmsParam.prop

Optional: Set this if you want to store the SHEF to
CWMS mapping in a different file.

Table 18-1: CWMS Connection Parameters.

DECODES User Guide 132

18.3.2 Encrypted Username/Password File
The CWMS Consumer will look for a file called “.cwmsdb.auth” in the directory
$DECODES_INSTALL_DIR. This file will contain the needed login information in an
encrypted form.

A script called “setCwmsUser” has been prepared to facilitate creating or modifying the
file. This script must be run in a terminal session:

cd $DECODES_INSTALL_DIR
bin/setCwmsUser

 (enter username & password when prompted).
chmod 600 .cwmsdb.auth

If this is a Windows system, open a DOS (“cmd”) window and type:
cd %DECODES_INSTALL_DIR%
bin\setCwmsUser

The program will ask you for a username and password. These will be encrypted and
stored in the file.

After creating the file for the first time, you should set its permissions so that only you
have access to it:

chmod 600 .cwmsdb.auth

Note: The file should be owned by the user who will run the DECODES routing spec.
The routing-spec will need permission to read this file.

18.3.3 Optional CWMS Parameter Mapping File
DECODES must build a time-series descriptor that contains a valid CWMS “Parameter
Type”. Since most of the Corps is currently using DECODES with SHEF codes, we have
provided a way to automatically map SHEF codes to CMWS Parameter Types.

Note: See section 18.4.1 for a more complete description on how DECODES builds the
descriptor. You can specify CWMS data-types directly in the DECODES database,
bypassing SHEF altogether.

DECODES can do the mappings listed in Table 18-2 automatically. If these are sufficient
for you, then you do not need to create a mapping file.

DECODES User Guide 133

SHEF Code CWMS Param Type

PC Precip
HG Stage
HP Stage-Pool
HT Stage-Tail
VB Volt
BV Volt
HR Elev
LF Stor
QI Flow-In
QR Flow
TA Temp-Air
TW Temp-Water
US Speed-Wind
UP Speed-Wind
UD Dir-Wind

Table 18-2: Built-in SHEF to CWMS Parameter Code Mapping.

If the above defaults are not adequate, you may provide a mapping file to override or
supplement them. Prepare a text file “shefCwmsParam.prop” and place it in
$DECODES_INSTALL_DIR. This is a Java properties file, containing name=value
pairs, one per line. For example, to have SHEF “HP” map to CWMS Param Type
“Stage”, add a line as follows:

HP=Stage

DECODES User Guide 134

18.4 How DECODES Uses the CWMS API
DECODES uses a stored procedure in the API called “STORE_TS”. This procedure
requires several arguments to be passed. This section will explain how DECODES
determines these arguments.

18.4.1 The CWMS Time Series Descriptor
A CWMS Time-Series descriptor has six parts. Each part is separated with a period:

 Location . Param . ParamType . Interval . Duration . Version

We have designed the DECODES CWMS Consumer for convenience and flexibility: For
convenience, DECODES can build the descriptor automatically, using information that it
already has in the DECODES database. For flexibility, you can explicitly set part or all of
the descriptor in special circumstances.

The following subsections describe each part of the descriptor.

18.4.1.1 Location
The Location corresponds to a DECODES site name. DECODES allows each site to have
multiple names of different types (see section 2.2.4). It also allows each site to specify
which name-type to use by default (see the “SiteNameTypePreference” parameter in
Table 3-1).

So, if you have CWMS set up with the same names that you use in DECODES, then you
do not need to do anything else.

The consumer will build the location as follows:

• If a site-name with type “CWMS” exists, use it.
• Otherwise, use the default site name.

See section 18.4.3 below for instructions on creating an explicit CWMS site-name-type.

18.4.1.2 Param
The ‘Param’ part must exactly-match one of the CWMS parameter names given in
section 7 of the CWMS Oracle API Draft.

You can specify an explicit “CWMS” data-type that will be used here. For instructions on
doing this see section 18.4.3 below.

If now CWMS data-type is specified, then the Consumer will attempt to map it from a
SHEF code. The consumer will use the mapping specified in the file described in section
18.3.3, or a default mapping listed in Table 18-2 if the SHEF code is not found in the file.

DECODES User Guide 135

18.4.1.3 ParamType
By default the consumer will set ParamType to “Inst”. You can override this by adding a
sensor property to the DECODES database called “CwmsParamType”.

Set a Config Sensor Property if you want the value to be applied to all platforms using
shared configuration. Use a Platform Sensor Property to apply the value to a single
platform.

Other valid settings for ParamType include: “Ave”, “Max”, “Min”, or “Total”.

18.4.1.4 Interval
The Interval part specifies the period at which this parameter is measured. DECODES
already has this information in each sensor record. It will build the appropriately-
formatted string.

18.4.1.5 Duration
The Duration part should be “0” for data with a ParamType of “Inst”. DECODES will
handle this automatically. For other types (specified by a sensor property), DECODES
will build a duration string matching the sensor period. The user can override this choice
by adding a sensor property called “CwmsDuration”.

18.4.1.6 Version
The Version is usually set to a constant value. Specify this value in the “cwmsVersion”
parameter as described in section 18.3.1, or just use the default of “Raw”.

If you need to override the Version setting for particular parameters, add a sensor
property called “CwmsVersion” containing the desired value.

18.4.2 The CMWS Office ID
The value for the CWMS office ID is set in the CMWS properties file. See Table 18-1.

You can also specify this as a routing-spec property called “CwmsOfficeId”. This gives
you flexibility: The properties file can contain the default. Individual routing specs may
override the default if they process data from another office.

18.4.3 The “Store Rule”
The store rule value it is used by the STORE_TS procedure to control how to handle the
insertion of data samples that already exist in the CWMD database.

By default, the consumer will set the store rule to “Replace All”. You may override this
by adding a routing-spec property with the desired setting. The valid values are:

• Replace All
• Delete Insert
• Replace With Non Missing
• Replace Missing Values Only
• Do Not Replace

Refer to the API User’s Manual for more information on the store rule field.

DECODES User Guide 136

18.4.4 Override Protection
This value determines how CWMS will override existing data in the database. By default,
the consumer sets this to 1 (true). To set it to false (0), add a routing-spec property called
“OverrideProt” set to a value of “0”.

Refer to the API User’s Manual for more information on the override protection field.

18.4.5 Version Date
NOT USED ON CURRENT CWMS DATABASE. Default value is null. Refer to the
CWMS Oracle API User’s Manual for more information on this field

18.5 Create the Routing Spec
Open the DECODES database editor and create a new routing spec in the normal manner.
For Consumer Type, select “cwms”. For Output Format, select “null”.

As stated above, the properties shown in Table 18-3 may be used to override the built-in
defaults. Property names are not case-sensitive.

Name Description

CwmsOfficeId Overrides setting in decodes-cwms.conf file.

StoreRule Overrides built-in default of “Replace All”

OverrideProt Overrides built-in default of 0 (false). Set to 1 for
true.

VersionDate NOT USED ON CURRENT CWMS DATABASE
VERSION. Default value null. Refer to the CWMS
Oracle API User’s Manual for more information.

Table 18-3: CWMS Routing Spec Properties.

We also recommend that you select the “CWMS” presentation group. This will ensure
that your data is converted into EUs that CWMS will accept.

DECODES User Guide 137

18.6 Engineering Units
The sensor engineering-units need to be in compliance with the CWMS Oracle Database,
otherwise the sensor data will not be accepted by CWMS. We have prepared a
presentation group that will automatically convert your data into CWMS EUs. You
simply have to select the presentation group in the routing spec.

Figure 18-2 shows the database editor with the CWMS presentation group open. See how
the presentation group asserts which units should be used for each parameter type. When
you apply the presentation group to a routing spec, DECODES will automatically convert
the data into the correct units.

Figure 18-2: Database Editor Showing the CWMS Presentation Group.

Now, recall from section 5.6.1 that you can also use the presentation group to omit
certain parameter types from the output. For example, if you do not store battery voltage
in the CWMS database, change the units for VB to ‘omit’.

DECODES User Guide 138

18.7 Troubleshooting
The DECODES Routing Spec sends log messages to a file in the “routstat” directory
under $DECODES_INSTALL_DIR. Find the file there with the same name as your
routing spec and an extension “.log”. For example if your Routing Spec is called
“cwms_rs”, the log file name will be: cwms_rs.log.

The remainder of this section will provide examples of possible log messages, explaining
what each means and what to do to correct the situation. A ‘FATAL’ message will result
in the termination of the routing spec.

FATAL 03/06/07 16:56:46 CwmsConsumer Cannot load configuration from
‘$DECODES_INSTALL_DIR/decodes-cwms.conf': java.io.IOException:
CwmsDbConfig Cannot open config file 'C:\DCSTOOL/decodes-cwms.conf':
java.io.FileNotFoundException: C:\DCSTOOL\decodes-cwms.conf (The system
cannot find the file specified)]

This fatal message means that the decodes-cwms.conf file was not found under the
required directory. Make sure that the decodes-cwms.conf file is located under the
DECODES installed directory.

WARNING 03/06/07 16:31:26 CwmsConsumer Cannot read DB auth from file
'C:\DCSTOOL/.cwmsdb.auth': java.io.FileNotFoundException:
C:\DCSTOOL\.cwmsdb.auth (The system cannot find the file specified)

This warning message means that the authentication file, which contains the encryption
of the username and password for the Database connection, is not on the right directory.
Make sure that the .cwmsdb.auth file is located under the DECODES installed directory.

FATAL 03/06/07 16:31:26 CwmsConsumer Error getting JDBC ORACLE
connection using driver 'jdbc:oracle:thin:@' to database at
'155.76.210.137:1521:MVRT' for user '': java.sql.SQLException: invalid
arguments in call

CWMS Data Consumer will log Database connection fatal messages if:

- The wrong username/password was sent to it, which in this case make sure that the
authentication file (.cwmsdb.auth) is on the right directory and contains the right
username and password (this is the sample log shown above)

- The wrong CWMS Database connection information was supplied; in this case make
sure that the DbUri property on the decodes-cwms.conf file contains the right Database
connection information

- The CWMS Database server is down, in this case call the CWMS Database system
administrator

DECODES User Guide 139

WARNING 03/06/07 17:03:17 CwmsConsumer Cannot read properties file
'C:\DCSTOOL/shefCwmsParam.prop': java.io.FileNotFoundException:
C:\DCSTOOL\shefCwmsParam.prop (The system cannot find the file specified)

This warning message means that the shefCwmsParam.prop file was not found under the
DECODES installed directory. However, this file is not required. If the user has decided
not to use this file no action need to be taken. If not, make sure that this file exists under
the DECODES installed directory.

WARNING 03/06/07 15:30:59 CwmsConsumer Platform Site Name nwshb5-
STBI4, Platform Agency MVR, DCP Address CE2DC544, sensor HG Error
while inserting sensor data in cwms_ts.store_ts CWMS procedure
:java.sql.SQLException: ORA-20010: INVALID_OFFICE_ID: "tttMVR" is not a
valid CWMS office id

This warning message means that the office that was set on the decodes-cwms.conf file is
not valid for the CWMS Database. Make sure that the decodes-cwms.conf file contains
the correct office value on the cwmsofficeid property.

WARNING 03/05/07 16:22:40 CwmsConsumer Platform Site Name nwshb5-
STBI4, Platform Agency MVR, DCP Address CE2DC544, sensor VB Error while
inserting sensor data in cwms_ts.store_ts CWMS procedure
:java.sql.SQLException: ORA-20210: WARNING(cwms_loc.get_ts_code):
STBI4.Volt.Inst.1Hour.0.raw FOR OFFICE: MVR NOT FOUND

This warning message means that the time-series descriptor does not exists in the CWMS
Database. Make sure that the CWMS Database contains the time-series descriptors
specified in the warning message. In this case ‘STBI4.Volt.Inst.1Hour.0.raw’ for office
MVR.

FAILURE 02/23/07 15:20:13 RoutingSpec(CWMSTEST) Error on data
consumer 'cwms': decodes.consumer.DataConsumerException: CwmsConsumer
Error while inserting sensor data in cwms_ts.store_ts CWMS procedure
:java.sql.SQLException: ORA-20103: Requested unit conversion is not available

This warning message means that the CWMS Database does not recognize the unit value
that CWMS Data Consumer sent. Make sure that the sensor unit is accepted by the
CWMS Database, you may need to create a DECODES presentation group to convert
units if the CWMS Database does not handle the current senor unit. Refer to the
DECODES Presentation group on the DECODES User Manual for more information.

DECODES User Guide 140

WARNING 03/05/07 16:34:36 CwmsConsumer Platform Site Name nwshb5-
CRVI4, Platform Agency MVR, DCP Address CE637FAC, sensor YA Cannot
find CWMS or SHEF datatype -- skipping.

This warning message means that the time-series descriptor was not created for that
particular sensor. Change the sensor data type to cwms with the correct cwms code (this
is done on the Edit Config Sensor dialog) or add the mapping of that sensor data type
code on the shefCwmsParam.prop file.

DECODES User Guide 141

Appendix A: Engineering Unit List
DECODES is delivered with a fairly complete list of engineering units that are used in
hydrometeorologic applications. You may define additional EUs by editing the XML file.
Please email any proposed changes/additions to the decodes Email forum so that, if
appropriate, they can be included in a subsequent release.

When you enter unit values for sensors, use the abbreviation. Case is ignored so ft, Ft, FT
all refer to feet.

Sorted By Name

Name Abbr Family Measures
acre feet acre*ft English volume
acres acre English area
atmospheres atm Metric pressure
bars bar Metric pressure
british thermal unit btu English energy
Calories cal English energy
centimeters cM Metric length
centimeters per second cM/s Metric speed
counts count univ count
cubic centimeter cc Metric volume
cubic feet ft^3 English volume
cubic feet per second cfs English flow
cubic feet per second ft^3/s English flow
cubic inches in^3 English volume
cubic meter m^3 Metric volume
cubic meters per second m^3/s Metric flow
days day univ time
degrees Celsius degC Metric temperature
degrees Fahrenheit degF English temperature
degrees Kelvin degK Metric temperature
dyn dyn Metric force
ergs erg English energy
feet ft English length
feet per second ft/s English speed
fluid ounce floz English volume

DECODES User Guide 142

foot-pounds per second ft*lbf/s English power
gallon gal English volume
grams G Metric mass
grams per liter g/L Metric concentration
horsepower hp English power
hours hr univ time
inches in English length
inches of mercury inHg English pressure
inches per second in/s English speed
joules j Metric energy
Kilocalories kcal English energy
kilograms kG Metric mass
kilojoules kj Metric energy
kiloliter kL Metric volume
kilometers kM Metric length
kilometers per hour kM/hr Metric speed
kilopascals kpa Metric pressure
kilowatts kW Metric power
liter L Metric volume
meters M Metric length
meters per second M/s Metric speed
Metric ton mt Metric mass
micrograms uG Metric mass
micrograms per liter uG/L Metric concentration
microliter uL Metric volume
micrometers uM Metric length
MicroMHOs per centimeter uMHOs/cm metric conductance
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance
miles mi English length
miles per hour mi/hr English speed
miles per hour mph English speed
millibars mbar Metric pressure
milligrams mG Metric mass
milligrams per liter mG/L Metric concentration
milliliter mL Metric volume

DECODES User Guide 143

millimeters mM Metric length
millimeters of mercury mmHg Metric pressure
millimeters per second mM/s Metric speed
minutes min univ time
nautical miles nmi English length
nautical miles per hour nmi/hr English speed
nautical miles per hour knots Metric speed
newtons N Metric force
ounces oz English mass
parts per million ppm univ ratio
parts per thousand ppt univ ratio
pascals pa Metric pressure
percent pct univ ratio
percent % univ ratio
pH pH univ acidity
pint pt English volume
pound-force lbf English force
pounds lb English mass
pounds per square inch psi English pressure
quart qt English volume
second sec univ time
square centimeters cM^2 Metric area
square feet ft^2 English area
square inches in^2 English area
square kilometers kM^2 Metric area
square meters M^2 Metric area
square miles mi^2 English area
square millimeters mM^2 Metric area
square yards yd^2 English area
tons ton English mass
volts V Metric emf
watts W Metric power
weeks week univ time
yards yd English length
yards per second yd/s English speed

DECODES User Guide 144

Sorted By Abbreviation

Name Abbr Family Measures
percent % univ ratio
acres acre English area
acre feet acre*ft English volume
atmospheres atm Metric pressure
bars bar Metric pressure
british thermal unit btu English energy
Calories cal English energy
cubic centimeter cc Metric volume
cubic feet per second cfs English flow
centimeters cM Metric length
centimeters per second cM/s Metric speed
square centimeters cM^2 Metric area
counts count univ count
days day univ time
degrees Celsius degC Metric temperature
degrees Fahrenheit degF English temperature
degrees Kelvin degK Metric temperature
dyn dyn Metric force
ergs erg English energy
fluid ounce floz English volume
feet ft English length
foot-pounds per second ft*lbf/s English power
feet per second ft/s English speed
square feet ft^2 English area
cubic feet ft^3 English volume
cubic feet per second ft^3/s English flow
grams G Metric mass
grams per liter g/L Metric concentration
gallon gal English volume
horsepower hp English power
hours hr univ time
inches in English length
inches per second in/s English speed

DECODES User Guide 145

square inches in^2 English area
cubic inches in^3 English volume
inches of mercury inHg English pressure
joules j Metric energy
Kilocalories kcal English energy
kilograms kG Metric mass
kilojoules kj Metric energy
kiloliter kL Metric volume
kilometers kM Metric length
kilometers per hour kM/hr Metric speed
square kilometers kM^2 Metric area
nautical miles per hour knots Metric speed
kilopascals kpa Metric pressure
kilowatts kW Metric power
liter L Metric volume
pounds lb English mass
pound-force lbf English force
meters M Metric length
meters per second M/s Metric speed
square meters M^2 Metric area
cubic meter m^3 Metric volume
cubic meters per second m^3/s Metric flow
millibars mbar Metric pressure
milligrams mG Metric mass
milligrams per liter mG/L Metric concentration
miles mi English length
miles per hour mi/hr English speed
square miles mi^2 English area
minutes min univ time
milliliter mL Metric volume
millimeters mM Metric length
millimeters per second mM/s Metric speed
square millimeters mM^2 Metric area
millimeters of mercury mmHg Metric pressure
miles per hour mph English speed

DECODES User Guide 146

Metric ton mt Metric mass
newtons N Metric force
nautical miles nmi English length
nautical miles per hour nmi/hr English speed
ounces oz English mass
pascals pa Metric pressure
percent pct univ ratio
pH pH univ acidity
parts per million ppm univ ratio
parts per thousand ppt univ ratio
pounds per square inch psi English pressure
pint pt English volume
quart qt English volume
second sec univ time
tons ton English mass
micrograms uG Metric mass
micrograms per liter uG/L Metric concentration
microliter uL Metric volume
micrometers uM Metric length
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance
MicroMHOs per centimeter uMHOs/cm metric conductance
volts V Metric emf
watts W Metric power
weeks week univ time
yards yd English length
yards per second yd/s English speed
square yards yd^2 English area

DECODES User Guide 147

Sorted By Family, Name

Name Abbr Family Measures
acre feet acre*ft English volume
acres acre English area
british thermal unit btu English energy
Calories cal English energy
cubic feet ft^3 English volume
cubic feet per second cfs English flow
cubic feet per second ft^3/s English flow
cubic inches in^3 English volume
degrees Fahrenheit degF English temperature
ergs erg English energy
feet ft English length
feet per second ft/s English speed
fluid ounce floz English volume
foot-pounds per second ft*lbf/s English power
gallon gal English volume
horsepower hp English power
inches in English length
inches of mercury inHg English pressure
inches per second in/s English speed
Kilocalories kcal English energy
miles mi English length
miles per hour mi/hr English speed
miles per hour mph English speed
nautical miles nmi English length
nautical miles per hour nmi/hr English speed
ounces oz English mass
pint pt English volume
pound-force lbf English force
pounds lb English mass
pounds per square inch psi English pressure
quart qt English volume
square feet ft^2 English area
square inches in^2 English area

DECODES User Guide 148

square miles mi^2 English area
square yards yd^2 English area
tons ton English mass
yards yd English length
yards per second yd/s English speed
atmospheres atm Metric pressure
bars bar Metric pressure
centimeters cM Metric length
centimeters per second cM/s Metric speed
cubic centimeter cc Metric volume
cubic meter m^3 Metric volume
cubic meters per second m^3/s Metric flow
degrees Celsius degC Metric temperature
degrees Kelvin degK Metric temperature
dyn dyn Metric force
grams G Metric mass
grams per liter g/L Metric concentration
joules j Metric energy
kilograms kG Metric mass
kilojoules kj Metric energy
kiloliter kL Metric volume
kilometers kM Metric length
kilometers per hour kM/hr Metric speed
kilopascals kpa Metric pressure
kilowatts kW Metric power
liter L Metric volume
meters M Metric length
meters per second M/s Metric speed
Metric ton mt Metric mass
micrograms uG Metric mass
micrograms per liter uG/L Metric concentration
microliter uL Metric volume
micrometers uM Metric length
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance

DECODES User Guide 149

MicroMHOs per centimeter uMHOs/cm metric conductance
millibars mbar Metric pressure
milligrams mG Metric mass
milligrams per liter mG/L Metric concentration
milliliter mL Metric volume
millimeters mM Metric length
millimeters of mercury mmHg Metric pressure
millimeters per second mM/s Metric speed
nautical miles per hour knots Metric speed
newtons N Metric force
pascals pa Metric pressure
square centimeters cM^2 Metric area
square kilometers kM^2 Metric area
square meters M^2 Metric area
square millimeters mM^2 Metric area
volts V Metric emf
watts W Metric power
counts count univ count
days day univ time
hours hr univ time
minutes min univ time
parts per million ppm univ ratio
parts per thousand ppt univ ratio
percent % univ ratio
percent pct univ ratio
pH pH univ acidity
second sec univ time
weeks week univ time

DECODES User Guide 150

Sorted By Measured Quantity, Name

Name Abbr Family Measures
pH pH univ acidity
acres acre English area
square centimeters cM^2 Metric area
square feet ft^2 English area
square inches in^2 English area
square kilometers kM^2 Metric area
square meters M^2 Metric area
square miles mi^2 English area
square millimeters mM^2 Metric area
square yards yd^2 English area
grams per liter g/L Metric concentration
micrograms per liter uG/L Metric concentration
milligrams per liter mG/L Metric concentration
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance
MicroMHOs per centimeter uMHOs/cm metric conductance
counts count univ count
volts V Metric emf
british thermal unit btu English energy
Calories cal English energy
ergs erg English energy
joules j Metric energy
Kilocalories kcal English energy
kilojoules kj Metric energy
cubic feet per second cfs English flow
cubic feet per second ft^3/s English flow
cubic meters per second m^3/s Metric flow
dyn dyn Metric force
newtons N Metric force
pound-force lbf English force
centimeters cM Metric length
feet ft English length
inches in English length

DECODES User Guide 151

kilometers kM Metric length
meters M Metric length
micrometers uM Metric length
miles mi English length
millimeters mM Metric length
nautical miles nmi English length
yards yd English length
grams G Metric mass
kilograms kG Metric mass
Metric ton mt Metric mass
micrograms uG Metric mass
milligrams mG Metric mass
ounces oz English mass
pounds lb English mass
tons ton English mass
foot-pounds per second ft*lbf/s English power
horsepower hp English power
kilowatts kW Metric power
watts W Metric power
atmospheres atm Metric pressure
bars bar Metric pressure
inches of mercury inHg English pressure
kilopascals kpa Metric pressure
millibars mbar Metric pressure
millimeters of mercury mmHg Metric pressure
pascals pa Metric pressure
pounds per square inch psi English pressure
parts per million ppm univ ratio
parts per thousand ppt univ ratio
percent % univ ratio
percent pct univ ratio
centimeters per second cM/s Metric speed
feet per second ft/s English speed
inches per second in/s English speed
kilometers per hour kM/hr Metric speed

DECODES User Guide 152

meters per second M/s Metric speed
miles per hour mi/hr English speed
miles per hour mph English speed
millimeters per second mM/s Metric speed
nautical miles per hour nmi/hr English speed
nautical miles per hour knots Metric speed
yards per second yd/s English speed
degrees Celsius degC Metric temperature
degrees Fahrenheit degF English temperature
degrees Kelvin degK Metric temperature
days day univ time
hours hr univ time
minutes min univ time
second sec univ time
weeks week univ time
acre feet acre*ft English volume
cubic centimeter cc Metric volume
cubic feet ft^3 English volume
cubic inches in^3 English volume
cubic meter m^3 Metric volume
fluid ounce floz English volume
gallon gal English volume
kiloliter kL Metric volume
liter L Metric volume
microliter uL Metric volume
milliliter mL Metric volume
pint pt English volume
quart qt English volume

DECODES User Guide 153

