Geodesic Normal Coordinates

For any reaction hypersurface $\$$ a coordinate system may be defined for which $g_{r i}$ vanishes for $i \neq r$ and for which $g_{r r}$ is a constant: : 22 coordinate system $q^{1}(i=1$ to $n, i \neq r$) is first defined on the surface in mass-weighted space. The coordinates of any point off this surface are then defined by drawing the geodesic through the point, such that the geodesic cuts the hypersurface orthogonally. The q^{i} for $i \neq r$ are then assigned the same values as those occurring at the intersection of the geodesic and the hypersurface. The value for q^{r} is set equal to the arc length along this geodesic from the hypersurface to the point. Hence, $d s^{2}=g_{r r}\left(d q^{r}\right)^{2}=\left(d q^{r}\right)^{2}$ along this geodesic in mass-weighted space. The line element in this space is:

$$
\begin{equation*}
d s^{2}=\sum_{i, j \neq \underline{r}} g_{j, j} d q^{i} d q q^{j}+(d q)^{T} \tag{57}
\end{equation*}
$$

Correspondingly, it can be shown, $\mathrm{g}^{\mathbf{r i}}$ vanishes for $i \neq \mathrm{r}$, and $\mathrm{gr}^{r r}$ equals unity. The kinetic energy then has the following simple form.

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i, j \neq r} g^{i j} p_{i} p_{j}+\frac{p_{r}^{2}}{2} \tag{58}
\end{equation*}
$$

(p_{i} equals $\partial\left[(d s / d t)^{2} / 2\right] / \partial \dot{q}^{i}$). If the definition of q^{r} is modified so that $d s^{2}$ equals $\mu\left(\mathrm{dq}^{r}\right)^{2}$ along the geodesic, where μ is some constant then the coefficient of p_{r}^{2} would be $1 / 2 \mu$ instead.

