Geodesic Normal Coordinates

For any reaction hypersurface S = coordinate system maybe defined for which g_{ri} vanishes for $i \ddagger r$ and for which g_{rr} is a con z^2 stant: A coordinate system q^i (i=1 to n, $i \ddagger r$) is first defined on the surface in mass-weighted space. The coordinates of any point off this surface are then defined by drawing the geodesic through the point, such that the geodesic cuts the hypersurface orthogonally. The q^i for $i \ddagger r$ are then assigned the same values as those occurring at the intersection of the geodesic and the hypersurface. The value for q^r is set equal to the arc length along this geodesic from the hypersurface to the point. Hence, $ds^2 = g_{rr}(dq^r)^2 = (dq^r)^2$ along this geodesic in mass-weighted space. The line element in this space is:

$$ds^{2} = \sum_{i,j\neq r}^{\Sigma} g_{ij} dq^{i} dq^{j} + (dq^{r})^{2}$$
(57)

Correspondingly, it can be shown, g^{ri} vanishes for $i \ddagger r$, and g^{rr} equals unity. The kinetic energy then has the following simple form.

$$\mathbf{T} = \frac{1}{2} \sum_{\mathbf{i},\mathbf{j}\neq\mathbf{r}} g^{\mathbf{i}\mathbf{j}} p_{\mathbf{i}} p_{\mathbf{j}} + \frac{p_{\mathbf{r}}^2}{2}$$
(58)

 $(p_i \text{ equals } \partial[(ds/dt)^2/2] / \partial \dot{q}^i)$. If the definition of q^r is modified so that ds^2 equals $\mu (dq^r)^2$ along the geodesic, where μ is some constant then the coefficient of p_r^2 would be $1/2 \mu$ instead.

-28-