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Introduction 

The question that ultimately motivates most aerosol inhalation research is: for a given 

inhaled atmosphere, what health effects will result in a specified population?  To attempt 

to address this question, quantitative research on inhaled aerosols has been performed for 

at least fifty years (Landahl et al, 1951).  The physical factors that determine particle 

deposition have been determined, lung morphology has been quantified (particularly for 

adults), models of total particle deposition have been created and validated, and a large 

variety of inhalation experiments have been performed.   However many basic questions 

remain, some of which are identified by the U.S. Committee on Research Priorities for 

Airborne Particulate Matter (NRC 1998a) as high-priority research areas.  Among these 

are: What are the quantitative relationships between outdoor concentrations measured at 

stationary monitoring stations, and actual personal exposures? What are the exposures to 

biologically important constituents of particulate matter that cause responses in 

potentially susceptible subpopulations and the general population?  What is the role of 

physicochemical characteristics of particulate matter in causing adverse health effects? 

As these questions show, in spite of significant progress in all areas of aerosol research, 

many of the most important practical questions remain unanswered or inadequately 

answered. 

 

In this chapter, we discuss the sources and magnitudes of error that hinder the ability to 

answer basic questions concerning the health effects of inhaled aerosols. We first 

consider the phenomena that affect the epidemiological studies, starting with studies of 

residential radon and moving on to fine particle air pollution. Next we discuss the major 

uncertainties in physical and physiological modeling of the causal chain that leads from 

inhaled aerosol concentration, to deposition in the airway, to time-dependent dose (that 

is, the concentration of particles at a given point in the lungs as function of time), to 

physiological effects, and finally to health effect.  

 

Figure 1 illustrates, in greatly simplified form, the various factors that affect the 

relationship between exposure and health effects, as well as the measurements of those 



factors.  For instance, the aerosol size and type distribution in the breathing zone is a 

factor that directly influences deposition in the respiratory tract, but parameters can be 

directly observed only at a sampling location, which may or may not sample the 

breathing zone. The network of rectangular boxes in the central column of the figure 

shows the causal chain that controls the relationship between aerosol exposure, dose, and 

ultimately health effects. To first order, all connections move down the chain: size 

distribution, inhalation details, and respiratory tract morphology control deposition, 

which, combined with clearance, affects dose, and so on.  Connections can run the other 

direction too, as shown by the non-bold arrows on the figure:  physiological effects can 

change the clearance rate and the inhalation rate. These effects can be quite important for 

large exposures to irritating compounds. 

 

<INSERT FIGURE 1 ABOUT HERE> 

 

For a given inhaled atmosphere, what health effects will result in a specified population?  

The simplest attempts (at least conceptually) to address this question are epidemiological 

studies.  Epidemiological studies directly investigate the statistical relationship between 

aerosol measurements and health outcomes is investigated directly, without attempting to 

model the causal chain that connects these parameters.  Examples include studies on the 

relationship between radon (and its decay products) and lung cancer, both in miners and 

in the general population, and also studies on the relationship between outdoor aerosols 

and morbidity or mortality in the general population, as determined from hospital records 

or death certificates respectively.   

 

Should we worry about dose or about exposure? 

We will not attempt a technical definition of “dose,” but generally speaking we mean the 

biologically significant quantity of particles delivered to a given part of the respiratory 

tract, so that dose may be a function of location. Determination of dose is very difficult, 

because dose is almost impossible to measure directly (except in the case of some 

radioactive particles).  Most studies, including essentially all epidemiological studies, use 

a surrogate measure, “exposure,” which is the time-integrated concentration of a pollutant 



in the subject’s breathing air.  Individuals with the same exposure might experience a 

very different dose: a large person performing exercise and breathing hard through the 

mouth will receive a different dose from that received by a small resting person breathing 

shallowly through the nose, even if they are breathing the same air.  

 

Many questions in applied aerosol inhalation concern the relationship between exposure 

and health effects: what regulatory limits (if any) should be placed on pollutant 

emissions, what airborne pollutant concentration limits should be set by the Clean Air 

Act, at what indoor radon concentration should remediation be performed, and so on.  

From the point of view of a regulatory agency or an industrial hygienist, the knowledge 

that a particular quantity of a given pollutant, if deposited in the lower respiratory tract, 

will produce a particular health outcome, is almost immaterial.  What they really want to 

know is, what is an acceptable concentration of the pollutant in the air. 

 

Since the relationship between exposure and health effect is often the question of interest, 

it is tempting to think that the difficult issue of true dosimetry (as opposed to exposure 

assessment) can be avoided altogether.  Why not simply perform all experiments, case-

control analyses, etc., in terms of exposure? The answer is that, because biological effects 

are caused by dose and not exposure, knowledge of the dose-response relationship can be 

used to answer questions that knowledge of the exposure-response relationship cannot 

resolve.  

 

One situation in which an understanding of dose rather than merely exposure is required 

is the extrapolation of experimental results to different populations or environmental 

conditions.  For example, data on miners exposed to high levels of radioactive aerosols 

produced by radon decay demonstrates quite convincingly that very high levels of 

exposure cause lung cancer, and that risk increases with exposure (see Lubin et al. 1995 

for an overview, and Kusiak et al. 1993, Howe et al. 1986, Howe et al. 1987, Tomasek et 

al. 1994, and many others for original reports). What relevance, if any, do these results 

have for residential concentrations, which are typically lower by a factor of 100 or more? 

Working miners breathe much harder than most people, are simultaneously exposed to 



large concentrations of other (non-radioactive aerosols), and experience a different 

relationship between radon concentrations (the quantity that is measured) and radon 

decay product concentrations (which actually provide the radioactive dose to the lung).  

Consequently, extrapolation to the general population is quite challenging.  Similar issues 

arise in exposures to industrial compounds, for which extrapolation is usually required in 

order to apply observational results from exposed workers to the general population.  

 

Another situation that requires an understanding of dose is airborne delivery of drugs 

such as asthma medicine:  What particle size will be most efficient, how will the answer 

vary with health status (e.g. ability to take a deep breath), and so forth, are questions that 

require an understanding of the full relationship between exposure, dose, and health 

effect, not just exposure and health effect.  

 

Generally speaking, observational data on the exposure-response relationship for a 

pollutant can be sufficient to roughly characterize the relationship in the regime in which 

health effects are very large, but such data cannot definitively address the relationship for 

much smaller exposures; for that, an understanding of some or all of the causal chain is 

required.  

 

Epidemiological Studies 

Epidemiological approaches to determining the health effects from airborne particles 

attempt to avoid the “how and why”---the network of physical and physiological 

connections shown in Figure 1---and instead directly investigate the matter of ultimate 

interest: what are the adverse outcomes (if any) from human exposure to aerosols?   

 

Epidemiological studies of the health effects of aerosols fall into four categories: 

1. Case-control studies that relate observed health outcomes to past particle 

exposures of cases (people with a particular health problem) and controls (people 

without the problem).  Do sick people have higher exposure than healthy people?  

Or, equivalently as it turns out, are more highly exposed people more likely to 

become sick? 



2. “Ecological” studies that compare long-term aerosol data, and long-term data on 

health outcomes, across cities or regions that have different airborne particulate 

concentration. The essential question here is: Where airborne particle 

concentrations are higher, are people sicker? 

3. Time-series studies that compare time-resolved aerosol data to time-resolved data 

on health outcomes, for a particular location or region.  When airborne particle 

concentrations are higher, are people sicker? 

4. Cohort studies that select a group of subjects and track them (ideally until death), 

and look for a difference in health effects as a function of exposure. Does the 

chance that someone will get sick depend on the particle concentrations to which 

they’re exposed? 

Unfortunately, all of these approaches have serious practical shortcomings.  Case-control 

studies usually require retrospective assessment of exposures, often reaching far into the 

past, a task always subject to large errors.  Ecological studies face an inherent problem 

known as the “ecological fallacy,” which will be discussed below, and which renders 

such studies suitable for hypothesis testing and perhaps consistency testing rather than 

quantitative risk assessment. Time-series studies are probably the best choice for practical 

quantitative risk assessment of acute aerosol exposures, but as discussed below they can 

be subject to confounding variables, they often have low statistical power, and they 

cannot provide risk estimates for chronic exposure.   Cohort studies are subject to 

confounding because highly exposed cohorts often differ from less-exposed cohorts in 

ways other than exposure, not all of which can be controlled.  Also, cohort studies are 

limited in practice because they require a decades-long commitment to track the subjects 

after exposure.  For this reason cohort studies are normally possible only when exposure 

monitoring is performed as a matter of course (as was the case for some miner studies of 

radon), so that monitoring data can later be opportunistically used to perform a 

retrospective study long after the exposures occurred. 

 

Radon epidemiology  

Background: 



Inhalation of radioactive aerosols has been an area of intensive research.  In the past 

twenty years or so, much of this research has been motivated by the study of indoor radon 

and its decay products.  Radon is a naturally occurring radioactive gas whose decay 

products, which are themselves radioactive, provide most of the radiation to which people 

are exposed in their life, and there is considerable interest in quantifying the exposures 

and the dose-response relationship.  The vast majority of research in this area uses radon 

measurements in an attempt to quantify risk, rather than measurements of radon decay 

products themselves, even though it is the decay products rather than radon itself that are 

responsible for the radiation dose.  The ratio of total airborne activity concentration to the 

radon activity concentration is known as the “equilibrium factor,” and varies with time 

and from home to home (e.g. Huet et al. 2001, El-Hussein et al. 1998), increasing along 

with the particle concentration in indoor air.   However, as discussed by James (1988) the 

dose delivered to the lung is controlled by the radon decay products that are “unattached” 

(not stuck to coarse aerosol particles), which varies inversely with equilibrium factor so 

that the dose for a given radon concentration is roughly independent of room conditions, 

for conditions typically found in homes. 

 

Convincing evidence of radon-related lung cancer was found in miners, who were found 

to be at substantial excess risk of lung cancer, and whose risk was found to increase with 

increasing cumulative exposure to radon and thus, presumably, its decay products; 

however, the relationship between airborne concentrations of radon to its inhalable decay 

products is much more complicated in mines than in homes for reasons involving the 

high airborne particle concentrations in mines. Also, estimates of radon concentrations to 

which miners were exposed are very uncertain.  Therefore, although high levels of radon 

were convincingly shown to be associated with increased lung cancer risk, the 

relationship between cumulative exposure and increased risk was (and remains) uncertain 

by at least a factor of three.   See Steinhausler (1988) for a discussion of many of these 

issues, with data. 

 

In the past twenty-five years concern has shifted from miners to the general population.  

Indoor radon concentrations are much lower than those in mines, but are not necessarily 



negligible.  Extrapolation of risk from miner data is problematic, because miners were 

subject to very high radon exposure and were simultaneously exposed to other materials 

(such as dust, engine exhaust, etc.), in addition to having more, and longer, periods of 

deep breathing.  Adjusting for these factors as well as possible, and (importantly) 

assuming a linear dose-response for inhaled radon decay products, led to predictions, 

albeit highly uncertain ones, for risk per unit dose for both smokers and non-smokers in 

residences.  

 

Indoor radon concentrations are highly variable. In the U.S., annual-average living-area 

radon concentrations are approximately lognormally distributed (Marcinowski et al. 

1994) with a geometric mean of about 26 Bq/m^3 and a geometric standard deviation 

(GSD) of about 3.1.  Even small areas are quite variable; for example, living-area average 

radon concentrations within most U.S. counties are approximately lognormally 

distributed with a geometric standard deviation (GSD) near 2.2. 

 

  When applied to the statistical distribution of radon and smoking in the U.S., model 

predictions based on extrapolated miner data suggested that between 10,000 and 20,000 

people die per year due to inhaled radon decay products; most of the predicted deaths are 

among smokers, and these figures are derived from an unrealistic comparison to the 

number of people expected to die of lung cancer if no one were exposed to any radon (or 

radon decay products) whatsoever.  

 

Epidemiological studies have attempted to determine the dose-response relationship (or, 

more correctly, the exposure-response relationship) for the range of radon exposures that 

occurs in residences.  Radon research has included three of the four types of 

epidemiological studies mentioned above: (1) case-control studies, in which the radon 

exposures of individuals with lung cancer are compared with those who do not have lung 

cancer, (2) “ecological” studies that compare average lung cancer risk with average radon 

exposure, typically by county, and (3) cohort studies that attempt to follow until death 

cohorts of miners which were exposed to different radon concentrations, and look for a 

difference in lung cancer rates attributable to exposure.  The challenges of quantifying 



miner exposures (and, even more difficult, doses) are very interesting, but we choose to 

focus here on residential exposures and will not discuss the miner studies. 

 

Case-control studies of residential radon 

Figure 2 shows the estimated odds ratios, with 95% confidence intervals, for different 

exposure bins, found by five case-control studies involving residential exposure to radon. 

Although these are arguably the best studies in terms of estimating exposures and 

avoiding other sources of error, this does not constitute a comprehensive list of studies of 

this type; see Field (2001) and Lubin and Boice (1997), which summarize results of some 

more case-control studies.    The statistical distribution of annual-average living-area 

mean radon concentrations in the U.S. is shown at the bottom of the figure (arbitrary 

vertical scale). 

 

<INSERT FIGURE 2 ABOUT HERE> 

  

Even the seemingly straightforward task of plotting results from different radon case-

control studies on a common scale can be tricky: each study used different exposure bins, 

some used different methods of determining how exposures would be binned (e.g. using 

average exposure over the past 25 years, or over the time period from 5 to 25 years ago), 

each study calculated the odds ratio relative to the lowest exposure bin (rather than to a 

group of people who were exposed to no radon, since such a group does not exist) and the 

exposure range for the lowest bin is different for each study, and so forth.  Figure 2 does 

not attempt to adjust for these issues.  For each study, the overall odds ratio (not separate 

odds for smokers and nonsmokers) is plotted for each bin at the mean radon 

concentration for subjects within that bin.  

 

A line labeled “Theory” and representing approximately the extrapolation from miner 

studies (NRC 1998b), which we will call the “standard model,” is superimposed on the 

plot (actually the theory predicts relative risk, not odds ratio, a technical difference that 

should show a very slight downward curvature to the line, which we have not bothered to 

include). The plot shows the predicted odds ratio as a function of radon exposure for the 



U.S. proportion of smokers and nonsmokers; even if a linear response is assumed the 

slope of this line is uncertain by at least a factor of three.  All of the studies are consistent 

with the prediction from the standard model, but are also consistent, or nearly consistent, 

with radon having no effect on lung cancer (an odds ratio of unity) over the range of 

radon exposures tested. The studies that do find a “statistically significant” (p < 0.05) 

increase in lung cancer for increased radon concentration do so only for the highest 

exposure bin or two, and only by a bare margin.  This does not, of course, indicate that 

there is no effect at lower concentrations --- as the size of the error bars illustrates, each 

individual study has very low statistical power. 

 

Lubin and Boice (1997) performed a meta-analysis of eight epidemiological studies, 

including several not shown on Figure 2, but failing to include recent studies from China 

(Wang et al., 2002)  and Iowa (Field et al., 2000) which were not available at the time 

they wrote their paper.  They concluded that the best-fitting linear dose-response model is 

remarkably close to the best-guess extrapolation from miner data (the “Model” line on 

Figure 2), but that the 95% confidence intervals barely exclude “no effect”; looking at 

categorical rather than continuous effects, the relative risk at 150 Bq/m^3 is estimated to 

be 1.14, but with a 95% confidence interval from 1.01—1.30, thus barely excluding 

unity.  The more recent results from the studies in Iowa and China would narrow the 

error bars slightly without substantially changing the central estimates.   

 

Sources of error in exposure estimates in case-control studies of residential radon 

The following are some of the major sources of error for residential radon case-control 

studies.  

 

1. Population mobility: people change residences, so monitoring in the current 

residence will not generally provide a good estimate of long-term exposure. Each 

study had some method for minimizing the influence of this fact, e.g. by studying 

only subjects who had long lived in the same home for many years (Field et al., 

2000), by monitoring in all past homes (Lagarde et al., 1997), or both (Wang et 



al., 2002).  In all studies (other than Iowa), some homes could not be monitored 

and the missing data were imputed. 

2. Long-term temporal variability in radon concentrations: current monitoring in a 

home does not accurately estimate the past radon concentration in the home.  

Concentrations are known to vary from year to year; Steck (1994) found about 

25% year-to-year variation in a study of 100 homes in Minnesota.  Two studies 

have attempted to avoid this problem: in addition to the conventional use of radon 

detectors to monitor individual homes, both the Iowa study (Field et al., 2000) and 

a Missouri study (Alavanja et al., 1999, not included in Figure 2) used 

conventional radon monitors but also used a novel exposure assessment technique 

based on accumulation of a long-lived radon decay product, Lead-210, in one or 

more glass objects belonging to a home’s residents. These measurements are 

thought to reflect the long-term average radon concentration to which the object 

was exposed, which is assumed to be related to the owner’s radon exposure. (In 

both studies the result was a slight increase in estimated risk).  

3.  Spatial variability of radon concentrations within the home: people spend time in 

different rooms on different floors of their house, so a house-average radon 

concentration will not accurately estimate personal exposure.  The Iowa study 

(Field et al., 2000) attempted to avoid this problem by adjusting for the fraction of 

time subjects spent in each area of their home, at different periods of their lives.  

Most other studies neglect the effect of mobility within the home. 

4. Interviewer bias or respondent bias in questions regarding smoking or other risk 

factors: cases may respond differently from controls.  Questions related to lifetime 

cigarette smoking, or other perceived risk factors such as time spent in the 

basement, may be more likely to draw biased answers from cases than controls, or 

vice versa.  

5. Uncontrolled or inadequately controlled confounding variables: the populations of 

cases and controls can differ in many ways, due to both biases in selection 

procedures and to random chance.  Information on known or suspected 

confounding variables is collected and used to attempt to control for such 



variables, e.g. by adjusting for age, stratifying by smoking status, and so on, but 

may not completely remove the confounding effects. 

Sources of exposure error such as items 1—4 can cause three problems. First is the 

potential for bias: if any of the errors systematically over- or under-estimates radon 

exposure for cases compared to controls, this will bias estimates of risk, a particular 

problem if the risk is small or the bias is large.  Second is the problem of statistical 

power: the more noise, the less ability to distinguish a small signal, and the more cases 

and controls are necessary.  Third, and the most tractable if the magnitudes of the error 

can be estimated, is that random errors in exposure will yield an exposure-risk curve that 

is too flat:  high-estimated-exposure categories will tend to contain subjects whose 

exposure is overestimated, and low-estimated-exposure categories will tend to contain 

subjects whose exposure is underestimated.  If the magnitudes of the errors are known, 

however, the effect can be removed statistically (e.g. Field et al., 1997).  Conceptually, 

the points to the right in Figure 2 need to be shifted slightly to the left, and the points at 

the left need to be shifted slightly to the right; this will yield a higher estimate of the 

slope, but will not improve the statistical power.   

 

Sources of exposure error as discussed above can shift individual or group exposure 

estimates up or down, corresponding to moving to the left or right on Figure 2, usually 

tending to weaken the relationship between exposure and health effects. Confounding 

variables, on the other hand (item 5) can shift estimates up or down, and can thus totally 

change the exposure-response effect.  The possibility of such confounding is ignored in 

the uncertainties quoted for the different studies, since after all the whole point of a case-

control design is to try to eliminate this effect, but in practice this is always a concern and 

the true uncertainty for each bin should be expanded somewhat.  

 

Lubin et al. (1995) used a simulation method to determine the statistical power of case-

control studies in the presence of population mobility and exposure estimate error. They 

concluded that for normal mobility and typical U.S. radon exposures a case-control study 

would require somewhere in the range of 5,000 to 13,000 cases (and about twice as many 

controls) in order to convincingly demonstrate increased radon risk at an exposure of 150 



Bq/m^3, even if the standard model is correct.  That number of cases would be vastly 

more than the number for any single case-control study that has been performed so far.  

Indeed even the total number of cases in all of the case-control studies performed so far 

barely reaches the low end of this range, including 4,236 cases in the eight studies 

examined by Lubin and Boice (1997), 413 in the Iowa study (Field et al., 2000), and 886 

in the China study (Wang et al., 2002).   Note, however, that the Iowa and China studies 

specifically selected low-mobility, highly exposed populations, thus decreasing exposure 

errors and increasing the expected risk, so that fewer cases would be needed to 

demonstrate an effect. 

 

Overall, the case-control studies seem to indicate a slightly elevated risk of lung cancer 

for long-term exposure averaging over 150 Bq/m^3.  The case-control results are 

consistent with the standard model, but they do not have sufficient statistical power to 

rule out a threshold below which there is no effect (or even a small protective effect), and 

are certainly consistent with risks much smaller than predicted by the standard model.  In 

short, although case-control studies of radon can be informative for very high exposures 

and high risks, it seems unlikely that they will ever be able to provide reliable risk 

estimates below several hundred Bq/m^3.  

 

Ecological studies of residential radon 

A series of papers by Cohen (e.g. Cohen and Colditz 1994, Cohen 1995, Cohen 2000) 

examines excess lung cancer mortality (over what is expected from county-wide smoking 

data) as a function of county mean indoor radon concentration, and finds a strong 

negative relationship. This relationship is quite robust, in the sense that it remains even if 

only a selected subset of counties is used: only urban counties, or only counties with 

above-average median family income, or only counties with near-median unemployment, 

or any of dozens of other categorizations.  The nationwide relationship between county 

mean radon concentration and the county’s excess lung cancer death rate is shown with a 

dashed line labeled “Cty-average” on Figure 2, which is based on a smooth curve through 

Cohen’s county-mean data for females, scaled so as to equal unity at a radon 

concentration of 0.  



 

Taken at face value, Cohen’s data suggest a rather strong protective effect from radon at 

residential concentrations.  However, it is well known (e.g. Robinson 1950, Greenland 

and Morgenstern 1989, Greenland and Robins 1994, Gelman et al. 2001) that the 

“ecological fallacy” can lead to a spurious relationship in aggregated data.  To give a 

classic example, Robinson (1950) found a positive correlation between statewide literacy 

(in English) and the fraction of residents who were foreign-born. This would suggest that 

the foreign-born were more likely to be literate, but in fact the reverse was true, and the 

observed effect in the aggregated data is due to the fact that more foreigners lived in 

states where the literacy of non-foreign-born people was high.  

 

Cohen has argued (1995, 2000) that if lung cancer risk is linear in both smoking status 

and radon exposure, the deviation of the county mean curve from the standard model 

cannot, mathematically speaking, be due to correlations between radon and smoking 

unless there an almost perfect negative within-county correlation between these two 

variables.  Lubin (2002) has shown that is not true, and suggests that a within-county 

correlation between smoking and radon is the likely cause of the discrepancy between the 

aggregate data and the standard model. He has demonstrated that if the degree of 

correlation between radon and smoking is itself related to the county mean radon 

concentration (in a very complicated and specific way, but not including extremely high 

negative correlation between radon and smoking status), then the county-aggregate 

results can be explained even if the individual-level risks are correctly predicted by the 

standard model.   

 

Lubin’s example demonstrates that confounding variables, even if not highly correlated 

with radon within counties, can cause effects of the correct magnitude to explain the 

county-aggregate data, even if the standard model is correct.   However, the details of 

Lubin’s example do not offer a plausible explanation, since his explanation requires very 

sharp shifts in the correlation between radon and lung cancer within counties, as a 

function of county mean radon concentration.  Lubin’s example works mathematically, 

but not realistically.  Cohen’s work does seem to invalidate the standard model at some 



level, but this does not mean that it tells us anything about radon risk, since the problem 

may lie (for example) with the standard model’s assumed multiplicative interaction 

between smoking and radon, or with one or more additional within-county confounding 

variables. 

 

Discussion of radon risk estimates 

There is no question that exposure to very high concentrations of radon (and thus its 

decay products) causes cancer: the miner studies are quite convincing.  Linear 

extrapolation to low doses and to residential breathing rates suggests that even radon 

concentrations that are commonly experienced may involve significant increased risk, but 

the expected risk is not high enough to easily test this hypothesis, given the large sources 

of uncertainty inherent in case-control and ecological studies.   

 

Existing case-control studies, including over 5000 cases in all, are consistent with the 

standard model at 150 Bq/m^3, but even taken together are barely convincing (if that) in 

distinguishing the risk from zero, much less accurately quantifying it.  Attempting to 

determine the exposure-risk curve at lower concentrations rapidly becomes even more 

problematic. Unless very significant resources are devoted to performing enormous case-

control studies, epidemiological studies of radon risk will not yield a reliable exposure-

risk curve for typical or even substantially elevated residential exposures, e.g. in the 

range from 100 to 400 Bq/m^3.   There is little chance that a massive case-control study 

will be performed to address this problem. 

 

As for ecological studies such as Cohen’s (2000): mindful of the recognized problems 

with ecological studies, we have previously stated (Price 1995, Gelman et al. 2001) that 

ecological studies such as Cohen’s examination of county-aggregate radon and lung 

cancer data “cannot be more than suggestive.” We still feel that is true but would now 

tack on an important addendum: extrapolations from much higher exposures, and case-

control studies involving a few hundred to a few thousand cases, also can be no more 

than suggestive.   The county-average data do indeed constitute a challenge to the 

standard model, since, as Lubin’s (2002) example illustrates, there appears to be no 



reasonable way to reproduce Cohen’s data using a dose-response model that is linear in 

both smoking and radon.  However, Lubin’s example also confirms that the county-mean 

exposure-response curve can be quite uninformative of the personal exposure-response 

curve.  Given the fact that the case-control studies are incompatible with a strong 

protective effect near 100 Bq/m^3, the county mean data do not seem to be useful for 

determining the risk from radon exposure.  

 

As we’ve said before (Price 1995), life is rarely simple and it seems implausible that the 

exposure-risk curve could be perfectly linear all the way to zero exposure for both 

smoking and radon.  Figure 3 shows several alternative exposure-risk curves, all but one 

of which are more or less consistent with the available case-control data; certainly more 

could be constructed.  We are by no means proposing any of these as alternatives to the 

standard model, but rather wish to illustrate the nearly complete lack of convincing 

evidence about the shape of the curve below 200 Bq/m^3.  

 

<INSERT FIGURE 3 ABOUT HERE> 

 

The distribution of personal exposures within each county is very wide.  In consequence, 

if the exposure-response curve is highly nonlinear, the county mean curve will not track 

the individual exposure-response curve, even in the absence of confounding variables or 

within-county correlation between radon and other variables.  For example, consider the 

lowermost fictional exposure-response curve on Figure 3, which has a strong protective 

effect at low exposures (and is therefore incompatible with the results of case-control 

studies).  To examine what such an exposure-response curve would imply in terms of 

county mean effects, in the absence of confounding, we assumed that (1) each person’s 

exposure is a mixture of indoor exposure from their current residence, exposure from past 

residences, and outdoor exposure; (2) each individual source of exposure is lognormally 

distributed; (3) there is mild correlation between current and past residential exposure, 

because people often move within the same county or region and there is some spaital 

correlation in radon levels.  We used reasonable choices for the distributional parameters 

(which we will not discuss because we are merely trying to illustrate a point); results for 



predicted county mean exposure and response are shown with open circles on Figure 3 

for counties across a range of average concentrations. The county mean results differ 

substantially from the individual exposure-response curve, showing a much smaller 

protective effect and very different behavior as a function of radon concentration.  

 

As was recognized by Bogen (1998) in a cost-benefit analysis that considered a 

biologically plausible model for radon that includes a protective effect of low exposures, 

a protective effect at low concentrations could leave unchanged, or even increase, the 

expected benefit from radon reduction above 150 Bq/m^3.  For instance, if the lowermost 

(protective) curve really did represent reality, then reducing the exposure from a pre-

mitigation value of 200 Bq/m^3 to a post-mitigation value of 70 Bq/m^3 would provide a 

greater benefit than under the standard model.  (If that curve really represented reality it 

would also make sense for more than half the people in the country to try to increase their 

exposure to radioactive gas.) 

 

Given the lack of useful data on the exposure-response relationship below 200 Bq/m^3, it 

seems reasonable that radon policy analyses should at least consider the possibility of a 

nonlinear relationship.  Lin et al. (1999) noted this point in performing a decision analysis 

concerning radon monitoring and mitigation: they first performed an analysis that 

assumed that the standard model holds, then repeated the analysis under the assumption 

that there is a risk threshold so that exposure to concentrations below 150 Bq/m^3 holds 

no risk at all, quantifying the differences in benefits of a nationwide mitigation program 

in both scenarios.  Such exercises can at least highlight what factors in the exposure-risk 

curve are important for making policy decisions. 

 

Implications for other aerosol exposure problems 

Case-control studies of any environmental hazard are subject to uncertainty in both 

exposure and outcome, with the latter uncertainty often being due to small-sample 

variation in the number of cases in each exposure category.  In the presence of such 

uncertainty, there will always be some exposure below which a risk cannot be 

distinguished from zero even if it exists. 



 

Many current problems in the broader field of aerosol exposure share common elements 

with the radon question as outlined above: 

1. There is convincing evidence of adverse health effects at elevated exposures, but 

no certainty about how to extrapolate to lower exposures; 

2. Case-control studies are difficult because estimating past exposures is error-

prone; 

3. Ecological studies are vulnerable to confounding by variables (smoking, in the 

case of radon) that have effects that may be much larger than the effect from the 

exposure at issue. 

 

In spite of sharing these characteristics with the radon problem, some aerosol 

epidemiology studies differ from it in important ways.  Specifically, the only (observed 

or expected) health effects from radon involve lung cancer, which has a long latency 

period.  There is no possibility of detecting immediate health consequences from a short-

term increase in radon exposure.  In contrast, exposure to some aerosols can cause 

immediate observed consequences, a fact that allows time-series analysis to be brought to 

bear, as in studies of the relationship between fine particle concentrations and 

cardiopulmonary mortality (Schwartz 1994, Tsai et al. 2000, Maynard and Maynard 2002 

and a great many others).  We now briefly discuss epidemiological studies of the effects 

of fine aerosols.  

 

Epidemiological studies of the effects of fine particle inhalation 

Time-series studies of the health effects of fine particles 

Time-series studies have the advantage of eliminating or greatly reducing many 

confounding effects found in other epidemiological studies.  They can still be subject to 

confounding---for example, if more people die on days when airborne particle 

concentrations are high, that could be because high particle concentrations are associated 

with temperature, and high temperature is a risk factor for the frail.  However, it is 

relatively easy to collect mortality and pollution data for many weeks, months, or even 



years, in which case confounding effects can be removed by stratifying on temperature, 

day of week, season, and so on.   

 

Many studies have measured particle and gaseous pollutants and looked for a relationship 

with health outcomes such as death or hospital admissions.  These studies usually 

measure particulate concentration parameters such as PM10 and PM2.5, usually along 

with some gaseous pollutants (such as ozone) and sometimes with some ability to resolve 

different types of particles, at one or more outdoor measurement locations.  Summary 

statistics of these concentrations are then compared with health outcomes such as deaths 

due to heart or lung disease, hospital admissions, or other observables.  

 

Particle measurements that are intended to characterize exposure are often subject to the 

major problem that the measurement location is spatially separated from the location(s) at 

which people are exposed.  For example, pollutant measurements are often made 

outdoors at a few places in a city, whereas most people spend most of their time indoors 

(about 90%, in the United States). Thus, both the concentrations and size distributions of 

airborne particles to which people are exposed may be very different from the 

measurements.  Given the reliance on remote (“ambient”) outdoor concentration 

measurements, the relationship between such measurements and actual personal 

exposures is important (Wilson and Suh 1997, Wislon et al 2000).  Table 1 summarizes 

results from several studies that investigated the relationship between ambient 

measurements (performed at one or more fixed monitoring locations in a city) and 

personal exposure measurements.  In these studies, 24- or 48-hour personal exposure 

measurements were compared to 24- or 48-hour ambient monitoring data, and the 

correlation between the two types of measurement was determined. Some of the studies 

focused on populations believed to be at extreme risk, such as patients with chronic 

obstructive pulmonary disease or other cardiovascular disease; many of these are retirees 

and therefore not subject to workday exposures, so it seems plausible that they would 

experience a different relationship between ambient and personal exposures.  Other 

studies examined the relationship for healthy elderly or healthy adults.  All studies found 



very substantial inter-subject variability in the correlation between ambient and personal 

exposure.  

 

< INSERT TABLE 1 ABOUT HERE  > 

 

Several of the studies summarized in Table 1 have made the general claim that the 

correlation between ambient and personal exposures is high enough that ambient 

exposures can be used as a surrogate for personal exposure in epidemiological studies.  

That is false.  If it were possible to control for, or eliminate, all confounding variables, 

then any correlation whatsoever between ambient and personal exposure could be used 

for epidemiology.  But in practice it is impossible to completely eliminate or control all 

confounding variables, and a low correlation greatly diminishes the ability to separate the 

signal due to particle inhalation from the effects of confounders.  Although a few of the 

studies found substantial correlations between ambient and personal exposures to PM2.5, 

several did not.  The low correlations found in Basel and Nashville would prevent 

success of time-series studies there, if these values are correct for the at-risk populations 

in those cities.  The higher, but still low, correlations in Boston and wintertime Baltimore 

would greatly reduce the statistical power of studies in those cities, again assuming those 

results hold for populations at risk from acute exposure to elevated air pollution.  

 

The dismal ambient-personal correlations for some cities suggest that time series analyses 

will not work everywhere.  However, in cities in which the correlation is substantial an 

effect of air-pollution-related mortality could be seen if it is big enough.  An enormous 

number of such studies have been performed (a few recent ones are Moolgavkar et al. 

1995, Samet et al. 2000 (with important corrections in Dominici et al. 2002a), Lee et al. 

2000, Dominici et al. 2002b, Le Tertre et al. 2002) and the evidence for increased risk of 

daily mortality associated with increased particulate air pollution is irrefutable.  Elevated 

mortality is definitely associated with increased PM2.5 levels, but the biologically 

important particle types cannot be conclusively determined because of the correlation 

between pollutants.   

 



The time series studies do not quantify personal exposure, and certainly not dose.  At 

present this is not an important failing, because peak urban air particulate concentrations 

are high enough to demonstrate increased mortality, but regulations are likely to lead to 

reduced peak concentrations, and eventually the discernable health effects may be too 

small to separate from the noise.  Almost certainly, researchers will then attempt to 

reduce uncertainties in exposure, and perhaps dose, in order to extrapolate to lower 

exposures, as was the case with radon.  

 

The time-series studies, although conclusive, have some serious shortcomings. One 

problem is that they cannot be used to estimate chronic effects: the number of pollution-

related deaths is caused by a combination of chronic (long-term) and acute (short-term) 

exposure, and time-series studies are sensitive only to the second of these.  Since elevated 

peak concentrations of particulate air pollution are harmful, it seems likely that chronic 

exposure to somewhat lower concentrations also has an effect, but time series studies 

cannot resolve this issue because they rely on relating the change in daily death rate with 

the change in daily exposure.  If the change in daily exposure is greatly reduced, the 

statistical power of these studies will be too low to allow estimating its effect.   

 

Cohort studies of the health effects of fine particle inhalation 

A cohort study collects data on individuals, following them over a long time period, and 

looks for an association between health outcomes and exposure to putative risk factors.  

Like all epidemiological studies, cohort studies can be subject to confounding because 

exposure is not the only thing that differs between groups.   Cohort studies have several 

advantages over case-control studies: they often include personal exposure measurements 

(not in the case of particle exposure, but in other areas of research), they can include 

information on timing of exposures and other risk factors, and, like case-control studies, 

they can include person-specific information on confounding factors.  This latter 

characteristic makes cohort studies enormously better than ecological studies, because it 

is possible to directly adjust for the effects of confounding variables at the individual 

level, thus avoiding the kinds of issues with the “ecological fallacy” that are discussed 



above for the case of radon.  Of course there can still be confounding by a factor on 

which person-specific data were not collected. 

 

Quite a few cohort studies of the effects of fine particle inhalation have been reported 

(Dockery et al. 1993, Pope et al. 2002, Shannon et al. 2001, for example).  Almost all of 

these compare cohorts across cities---that is, they identify subjects who live in different 

cities, and follow them through time.  These studies attempt to control for known risk 

factors, about which data are collected (examples include smoking, diet, age, obesity, 

fitness, and so on). However, there is still a large potential for error due to unknown 

confounding variables: lots of things vary between cities and it is hard to control for them 

all, or even to know what to control for.  The reason multiple cities must usually be 

included is that individual subject exposure estimates aren’t available: exposures are 

estimated for all subjects within a city, based on citywide monitoring data.  These studies 

thus have one of the same major drawbacks as ecological regression---an inability to 

estimate individual exposures to the pollutant of interest---but with the key difference that 

known confounders can be controlled at the personal rather than group level. 

 

Choosing subjects from within a single city or locale would be very advantageous for 

avoiding or minimizing the effects of confounding variables but would require an ability 

to estimate exposure either for individuals or for highly- and less-exposed groups within 

the city.   

 

Ecological epidemiological studies of the health effects of fine particle inhalation 

Several studies, which we will not bother to cite, have attempted to estimate effects of 

fine particle inhalation through ecological studies, comparing respiratory or cardiac 

mortality for high- and low-concentration cities.  As with the example of ecological 

studies of radon, such results have very little quantitative value.  No further studies of this 

type should be considered. 

 

 



Inhalation modeling and experiments 

Motivation for experiments and modeling related to lung deposition of aerosols 

Any attempt to relate exposure to health effects through epidemiology is bound to fail at 

sufficiently low exposures: eventually the health effects will fall below the level at which 

they can be separated from the effects of confounding variables and statistical noise, even 

though the health effects may still have great practical significance at those levels.  

Moreover, even for health effects that can be convincingly identified or quantified 

through epidemiology, such quantification will often fail to answer important questions.  

For instance, epidemiological studies suggest that diesel engine exhaust may be 

carcinogenic at somewhat elevated exposures (McClellan, 1995). But diesel exhaust is a 

complex mixture of particles of varying chemical composition and epidemiology cannot 

tell us which, or which combination, is responsible for causing cancer, an important 

question for regulators and for engineers attempting to design better engines or exhaust 

filtration systems.  

 

Although epidemiological studies are unable to address many important questions 

concerning aerosol inhalation, there is an alternative: all or part of the causal chain in 

Figure 1 can be modeled or determined experimentally.  The ideal experiment would 

expose a human subject with known nasal, tracheal, and lung morphology, and known 

breathing rate and breathing volume, to a known size distribution of aerosol particles, and 

would measure the deposition as a function of size and precise location in the respiratory 

tract.  In practice, neither lung morphology nor deposition as a function of size and 

location can be precisely determined in a living subject; future improvements in 

radiological methods (Fleming et al. 2000) may help resolve both of these issues. 

 

Gaining a complete understanding of the relevant parameters and phenomena is a rather 

ambitious task because the required experiments are difficult and many important 

physiological processes are not completely understood.  Fortunately “ambitious” is not 

synonymous with “impossible,” and thanks to decades of research, computational models 

of deposition can be used with confidence for certain tasks.  For example, for controlled 

breathing rates and known subject parameters (such as tidal volume), total deposition for 



particles larger than 0.01 micrometers can be predicted rather accurately over a wide 

range of conditions, at least for typical healthy adult subjects.  Figure 4 shows a typical 

example, from Hofmann and Koblinger (1992).  This comparison of predictions from two 

models to experimental data (the mean deposition in three healthy adult subjects) shows 

excellent agreement for the total deposition, and rather good but imperfect agreement for 

bronchial deposition at small particle sizes; unfortunately, experimental values for 

bronchial deposition of particles below 0.05 micrometers were not collected.   

 

Although there are some differences between current deposition models that may have 

practical significance, most models currently in use agree with experiment and with each 

other rather well (e.g. see Bergmann et al. 1997 and Segal et al. 2000) over the size range 

from 0.01—10 micrometers and for typical adult lung parameters, which makes sense 

because any model that does not agree with experiment would be abandoned.  There are 

some differences between the ICRP-66 model (ICRP 1994) and others for particles near 

and below 0.01 micrometers; Bergman et al. (1997) suggest that the ICRP model 

overestimates deposition for those sizes, compared to experimental data (Heyder et al. 

1986) 

 

<INSERT FIGURE 4 ABOUT HERE> 

 

Assessing uncertainties 

There are two main causes of error in modeling aerosol deposition (or modeling anything, 

for that matter).  The first is model misspecification: the model itself may simply be 

incorrect, failing to correctly include the effects of all significant parameters.  The second 

is parameter error: even if the model is correct, predictions will be wrong if the input 

parameters are wrong.  

 

No computational model involving physiological phenomena is perfect.  One can hope, 

however, that the magnitude of model misspecification error is small, at least for the 

range of parameter values over which the model is intended to apply.  Barring that, one at 

least hopes that the approximate magnitude of the error is known.   



 

Unfortunately the magnitude of model misspecification error is notoriously difficult to 

evaluate.  There are three basic approaches.  The first is to compare the output of the 

model to experimental data.  The error will be a combination of parameter error 

(discussed below) and model misspecification error.  In performing this kind of test, it is 

important to compare the model to data that were not used to create it, or to estimate its 

parameters, in the first place; determining parameter values from one set of data and 

comparing the predictions to another set of data is called “cross-validation,” and should 

be a standard procedure.   

 

The second approach is to compare the model’s output to that of another, superior model.  

For example, results from an analytical or semi-analytical deposition model might be 

compared to those from a computational fluid dynamics (CFD) simulation.  The CFD 

simulation will itself be imperfect, but the comparison between the two models will still 

be informative as to roughly the size of the error that can be expected.  One might ask, 

why not simply discard the inferior model, if another is known to be superior.  Reasons 

can include a regulatory requirement to use the inferior model, or computational 

impracticalities of always using the superior one.  

 

Finally, if direct experimental comparison is not possible and a definitely superior model 

does not exist, the last resort is to compare the model’s output to that of other plausible 

models that tackle the same problem in different ways.  Different models are likely to 

share some of the same flaws so that errors estimated this way may be understated.  Still, 

if a researcher has several models at her disposal and they give different answers to the 

same problem, that is at least an indicator of the researcher’s uncertainty, if not a measure 

of the model’s intrinsic error.  

 

As for the errors caused by incorrect input parameter values, the magnitudes of these 

errors are easy to evaluate if the uncertainty in the input parameters themselves is known.  

The most straightforward method, if the model is not too computationally burdensome, is 

to perform Monte Carlo simulation:  run the model repeatedly, using input values drawn 



from distributions around their “best guess” values, and summarize the variation in the 

output.  Latin Hypercube sampling of the parameters is another possibility that provides 

similar results at a lower computational burden.  Sampling approaches such as these are 

routine in many areas of research, and are just beginning to see use in the field of aerosol 

inhalation (Molokanov and Badjin 2000, Hofmann et al. 2002, Harvey and Hamby 2001 

and 2002), where they should become routine.    

 

Although total deposition and even regional deposition (that is, deposition in the trachea, 

bronchi, and alveoli) can be predicted quite well for a healthy subject, other quantities of 

interest cannot be predicted nearly so accurately.  We now discuss the elements of the 

causal chain and the extent to which they are or are not fully understood.  

 

General approach to assessing the effects of interpersonal variability 

For a laboratory subject, it is possible to directly measure some model input parameters 

(such as tidal volume, inspiratory capacity, and so on). Other parameters (such as details 

of lung structure) cannot be measured.  Therefore some parameters are known rather 

accurately and some will be estimated with error.  Even in the absence of model 

misspecification, the error in input parameters will generate error in the model’s 

prediction.   

 

The range of the likely magnitude of the error, which is to say the uncertainty in the 

prediction, can be estimated from the uncertainty in the input parameters if the 

uncertainty is known.  This uncertainty estimate can be made through analytical or semi-

analytical techniques for some analytical deposition models, or through a Monte Carlo or 

Latin Hypercube sampling procedure for more complicated models or when the 

uncertainty is itself a complicated function.  In essence, we create “virtual” people who 

share the same values for measured parameters but have different values for the other 

parameters; our subject is one of these people, but we don’t know which.  

 

Now consider making predictions for a group of people who are not laboratory subjects.  

For each person, now all of the input parameters are uncertain, in contrast to the 



laboratory case in which some parameters are known.  Thus, the same approaches can be 

taken as in the case of estimating the uncertainty for an individual; the only difference is 

in the number of parameters for which statistical sampling is required.  

 

Even though the predicted deposition for an unknown individual will be subject to error 

due to uncertainty in the input parameters, it may be possible to predict the distribution of 

deposition values across a population.  We might know that the tidal volumes in a given 

group of subjects is approximately normally (Gaussian) distributed with a particular 

mean and standard deviation, but not know which individual has which tidal volume.  

Thus, the importance of intrapersonal variability depends on whether we are trying to 

make predictions for a specific individual, in which case our inability to determine the 

individual’s input parameters is a source of error, or trying to make predictions for a 

population, in which case the inability to determine each individual’s input parameters is 

irrelevant as long as we know their distribution across the population. 

 

Respiratory tract morphology and other factors such as medical condition 

There are three main issues concerning the effect of respiratory tract (especially lung) 

morphology on deposition: 

1. Can current models predict important details of deposition for a given parametric 

description of the respiratory tract;  

2. Do we have an acceptable parametric description of the respiratory tract; and 

3. Do we have a parametric description of the intersubject variability of respiratory 

tracts. 

These questions are, of course, interrelated.  If models failed to predict quantities such as 

total and regional deposition, we would not know whether the problem is with (1) or (2), 

and there would be no point in trying to address (3).  In fact, though, as illustrated by 

Figure 4 and as documented in, for example Hofmann (1996a) and Segal et al. (2000), the 

total and regional deposition, averaged over at least a few experimental subjects, can be 

predicted rather well over a wide range of particle sizes.  This fact seems to jointly 

answer the first two questions in the affirmative for total and regional deposition, 



although local deposition (that is, deposition for a given bronchial generation number or a 

particular location in the lung) is another story, as discussed below. 

 

Intersubject morphometric variability 

As for intersubject variability, models of the human respiratory tract are based on 

analysis of a relatively small number of human lung casts such as those summarized by 

Phalen et al. (1974),  Yeh and Schum (1980), and Nikiforov and Schlesinger (1985).  

Available data show that there is significant intersubject variability in airway lengths, 

branching angles, and other relevant parameters (e.g. see Yu and Diu 1982, and 

Nikiforov and Schlesinger 1985).   

 

In order to evaluate the practical significance of morphometric variability, Hofmann et al. 

(2002) evaluated the variation in output from a model that predicts local, regional, and 

total deposition, for ten different realizations of a stochastic lung model (Koblinger and 

Hofmann, 1990), and for particles ranging from 0.01 to 10 micrometers.  (In this context, 

we use “local” to mean the bronchial generation, not the actual spatial location in the 

lung).  The result is not a direct estimate of the effects of morphometric variability in real 

lungs; instead, it is an estimate of the effects of morphometric variability in lungs created 

by the stochastic lung model, given the assumption that the deposition model is correct.  

 

The model predicted rather small intersubject variability in total deposition at all sizes (of 

the order of 15%), and somewhat larger variability in regional deposition (around 5% for 

particles between 0.1 micrometer and 1 micrometer, increasing to about 30% outside that 

range).   However, in spite of the generally low intersubject variability in results for total 

and regional deposition, the variability in predicted local deposition was quite high: 

Figures 5 and 6 show predicted deposition as a function of generation number, for 1 and 

10 micrometer particles, respectively.  As the figure shows, predictions varied by nearly a 

factor of ten for large (10 micrometer) particles and low generation numbers, and by 

more than a factor of two for small (1 micrometer) particles and high generation 

numbers.   

 



< INSERT FIGURE 5 AND 6 ABOUT HERE  > 

 

As Hofmann et al. (2002) report, their estimates of intersubject variability in total 

deposition are well in line with experimental data of Heyder et al. (1982) and Stahlhofen 

et al. (1981), but the estimated variability in regional deposition is somewhat less than 

Stahlhofen et al., a fact with several possible explanations (Hofmann et al., 2002).  Two 

likely candidates are (1) the stochastic lung model (Koblinger and Hofmann 1985) may 

not include the full variation in human lung structures, and (2) the experiments of 

Stahlhofen et al. (1981) may not accurately measure local deposition, which was not 

directly observed but was estimated from particle clearance rates.   

 

Modest intersubject variability in total and regional deposition had long been recognized 

(e.g. Heyder et al. 1982).  It appears that at least some models of the variability of lung 

morphology (Koblinger and Hofmann 1985) can predict this variability in deposition. It 

is much less clear that current morphological models allow correct prediction of the 

variability in local deposition (or, for that matter, predict its mean value).  Satoh et al. 

(1996) have examined a normal human lung and suggest there may be more intra-subject 

variability in the number of bronchial generations than is present in current morphometric 

models.  Further work on this subject is required if either the inter- or intra-subject 

variability in local deposition are to be accurately assessed.  

 

Site-specific deposition (deposition to a particular group of cells) is yet another issue. 

Currently, no single model predicts total, regional, local, and site-specific deposition; 

site-specific models consider only a very small portion of the lung, and often use CFD 

techniques rather than the semi-empirical or scaling-law-based techniques used by whole-

lung models. Gradon and Pogorski (1996) and Hofmann (1996b) discuss the extent to 

which current computational models can predict site-specific deposition, which is 

estimated to be highly variable even within a short section of airway, with at least an 

order of magnitude variation in deposition probability. 

 



Site-specific deposition could ultimately prove important for dosimetry: if cellular 

response is nonlinear with respect to the number of particles absorbed by the cell (or in 

contact with it), the non-uniformity of deposition even in a given lung generation will 

influence the physiological response.   

 

Systematic morphometric variability 

There is evidence of moderate sex differences (on the order of 10 to 30%) in total 

deposition of aerosols in range of 3 to 5 micrometers, even for the same flow rates and 

lung volumes (Kim and Hu 1998).   (In that study, “local” means a particular area of the 

lung, not a particular generation number).  

 

Bennet et al. (1996) found that mean fractional deposition of 2 micrometer particles was 

independent of sex for resting adults over the range from 18 to 80 years, but that because 

males had 45% higher minute ventilation, so the deposition rate (deposition per unit time) 

was 30% greater in males than in females; this implies about the same deposition per unit 

surface area of the lung (on average) in men and women.  Bennet and Zeman (1998) 

extended these experiments to children as young as age 4: the fractional deposition of 2 

micrometer particles was the same for children, adolescents, and adults, but the rate of 

deposition normalized to lung surface area was substantially higher for children.  The 

results suggest that for resting breathing rates, gender- and even age-related differences in 

deposition of 2 micrometer particles are primarily due to breathing rates rather than 

morphological differences, although this may not be true at higher (non-resting) breathing 

rates. Chua et al. (1994) found no effect of age on local deposition in children with mild 

cases of cystic fibrosis, for children over six years old.  Also, Nerbrink et al. (2002) 

report that using a standard lung deposition model predicted total deposition in asthmatic 

children with reasonable accuracy, for 1- to 2-micrometer particles.  

 

Smith et al. (2001) report that the growth model for human lungs proposed by Phalen et 

al. (1985) accurately predicted airway parameters for subjects aged 3, 16, and 23 years 

(measured after autopsy).  It  seems that the characteristics of children’s lungs that are 

important for total and regional deposition can be adequately predicted from the model of 



Phalen et al. or from scaling adult lung properties using the method of Habib et al (1994).  

This would probably not be true of infants, since the structure of the lung, and not just its 

scaling, changes substantially over the first two years of life. 

 

Overall, it seems that current models should be sufficient for predicting deposition in 

healthy or nearly healthy children, but there is even less information about intersubject 

variability for children than for adults, so the distribution of deposition values over a 

group of children probably will not be predicted very well. 

 

For the severely medically challenged, predictions will also be difficult.  Brown et al. 

(2001) compared healthy adult subjects to adults with mild to moderate cystic fibrosis, 

and found substantial differences in regional deposition of 5-micrometer particles.  

Smaldone (2001) points out that patients with chronic obstructive pulmonary disease 

(COPD) have flow-limiting segments in the lung that will produce large local pressure 

drops and induce particle deposition in airways that do not experience deposition in 

healthy people. Kohlhaufl et al. (1999) found a modest (15%) increase in total deposition 

of 0.9 micrometer particles in women with airway hyperresponsiveness, compared to 

healthy women.   

 

On the whole there seems to be a tendency for lung disease to lead to increased 

deposition.  As Smaldone (2001) noted, diseased lungs can be morphologically different 

from healthy lungs (in addition to other, non-morphological differences), and it seems 

likely that accurate modeling of deposition in subjects with lung disease will require 

modifications to the morphometric models, for example to allow for more within-subject 

variability in bronchial diameters in a given generation, due to partially blocked airways.   

 

Breathing rate and inhalation details 

The quantity of aerosol inhaled and deposited is of course strongly dependent on 

breathing rate (volume inhaled per unit time).  Laboratory inhalation experiments often 

involve controlled breathing, and essentially always involve measurements of the 



breathing rate and tidal volume, so in such experiments there is seldom uncertainty in 

these important parameters.   

 

Other inhalation details can also be important.  For example, the short breath-hold time 

between inhalation and exhalation in normal breathing provides time for fine particles to 

settle gravitationally by a distance on the order of the size of an alveolar sac, so the length 

of breath-hold time (or its absence) can be an important parameter in some cases. 

 

James et al. (1994) summarize and tabulate breathing data that were used in creating the 

ICRP-66 model and parameter input values (ICRP 1994).  Inhalation rates vary greatly 

with age and activity:  volume per unit time varies by a factor of 20 from infants to 

adults, and by a factor of 5 to 10 from resting to heavy exercise.  In addition, for a given 

age and activity there is still substantial variation in both inhalation rate and in other 

inhalation-related parameters, such as fraction of air taken in through the mouth as 

opposed to the nose. 

 

On the whole it appears that current parameterizations of inhalation are adequate for 

modeling, and that the main uncertainties with respect to the details of air intake are 

associated with interpersonal variability and activity-dependent breathing.  

 

Clearance of the lung 

Once deposited, particles are removed from the respiratory tract by several mechanisms, 

including coughing and phagocytosis.  The most important mechanism is mucociliary 

transport: a thin film of mucous is continuously created in the bronchioles and, propelled 

by ciliary action, carries deposited particles eventually to the throat, where they are 

swallowed or expectorated.  Because the particles are carried by the mucous layer, 

clearance velocities are nearly independent of particle size and material, with some 

exceptions.   However, clearance times vary substantially with particle size because the 

deposition location varies strongly with size, a fact that can be exploited for estimating 

clearance rates for different parts of the lung.  

 



Most experiments do not directly measure clearance as a function of location (or 

generation number) in the lung, instead measuring parameters such as total clearance as a 

function of time, from which local or regional mucous velocities are derived via a model 

for velocity as a function of location.  As a result, models can predict total clearance quite 

well even if the local mucous velocities are completely wrong. Various quantitative 

clearance models have been proposed, but unlike deposition models the clearance models 

are not in very good agreement with one another as to clearance velocities, particularly 

for high generation numbers.   

 

Figure 7 compares four models for clearance velocity as a function of generation number 

(Lee et al. 1979, Yu and Xu 1987, and Cuddihy and Yeh 1988, Asgharian et al. 2001).  In 

each case, a clearance time was assumed and the model was solved to determine velocity 

in each airway generation. The stochastic lung model (Koblinger and Hofmann 1985) 

used by Asgharian et al. (2001) differs from the other in having a lung morphology that is 

assumed to be more realistic, having pathways that differ in the number of generations.  < 

INSERT FIGURE 7 ABOUT HERE > 

 

The tour du force analysis by Asgharian et al., which produced their results shown in 

Figure 7, used ten stochastic lung models, which produced slightly different velocity 

predictions (which would correspond to an effect of interpersonal differences in lung 

morphology); the standard deviation of the velocity predictions for the ten stochastic 

lungs is plotted in the figure.  The effect on velocities is rather small.  However, because 

different lungs have different distributions of total airway lengths, and because lung 

morphology affects both deposition and clearance, the results on clearance time can be 

rather profound.  Asgharian et al. simulated the deposition and clearance of a distribution 

particles a mass-mean aerodynamic diameter of 1 micrometer, in their ten stochastic 

lungs, as well as in a standard symmetric lung model and in a typical lung path. Results 

are shown in Figure 8.  The differences in mass clearance profiles of the stochastic lungs 

suggest that even if there are no interpersonal differences in clearance physiology other 

than those caused by lung morphology, very large differences in mass removal rates are 

possible.  



 

In addition to the obviously very large uncertainty in both typical clearance velocities and 

the amount of interpersonal variation in clearance velocities and times, other clearance-

related parameters are very uncertain, and some important phenomena are not 

understood.  A significant example is the presumed existence of a “slow clearance” 

mechanism to explain observed long-term (> 24 h) tracheobronchial retention of 1—3 

micrometer particles, which seemed inconsistent with simple clearance models as 

discussed above.  Explaining very slow clearance (>48 h) does require either the 

introduction of a mechanism other than mucosal transport (e.g. macrophage uptake), but, 

as the results of Asgharian et al. show, some long-term retention may be explicable 

purely on morphological grounds, even without a separate long-term clearance 

mechanism. 

 

Another important phenomenon that is poorly understood is “overloading,” or dose-

dependent decline of clearance.  Overloading definitely occurs in rodents, but it is unclear 

whether it occurs in humans.  Kuempel  et al. (2000 and 2001) examined this question by 

fitting a long-term clearance model to data on dust retention in miners, using dust loading 

data at autopsy and using estimated dust inhalation from work histories.  Model fit was 

no better if an overloading mechanism was included. 

 

Overall, quantitative modeling of clearance from the lung is very unreliable, and a great 

deal of progress is needed in order to improve predictions of clearance to the point where 

they can be used with confidence, as total and regional deposition models can, to make 

predictions for cases in which no experimental data are available.  The degree of 

interpersonal variabiliy in the action of clearance mechanisms is even less certain.  Bailey 

and Roy (1994) give a good discussion of these issues in an article in an annex to ICRP-

66 that summarizes a prodigious volume of experimental literature. 

 

Estimating the dose-versus-exposure relationship in a population 

Molokanov and Badjin (2000) performed Monte Carlo simulation to evaluate parameter 

sensitivity of the ICRP-66 model for internal dose due to plutonium inhalation. Harvey 



and Hamby (2001, 2002) examined the same model in considerably more detail.  They 

compiled data from a variety of sources to estimate the mean and standard deviation in 

the general population for all person-specific model parameters, as a function of age. 

Their recommended distributions are shown in Table 2.  They used Latin Hypercube 

sampling to generate parameters for individuals, for whom the regional deposition of a 

specified (1 micrometer AMAD) particle distribution was calculated from the ICRP-66 

model.  By repeating the sampling-and-calculation procedure many times, they created 

predicted distributions of regional deposition across the entire population of a given age 

and “breathing type” (mouth-breather or nose-breather).  Results are shown in Figure 9 

for two regions of the respiratory tract.  Within each age group, distributions are very 

wide; most of the variability within each age group is due to the assumed interpersonal 

variation in breathing rate.  Since the ICRP-66 model does not incorporate some known 

phenomena such as interpersonal morphological variation in the lung, the variability in 

results may be underestimated.  Additionally, the sampling procedure assumes 

independence between the input parameters, whereas in fact they will be correlated (e.g. 

functional residual capacity will be positively correlated with diameter of trachea, since 

they both are correlated with body size); including such correlation could decrease or 

increase the widths of the predicted distributions, depending on details.  

 

< INSERT FIGURE 9 ABOUT HERE > 

 

Figure 9 clearly illustrates the problem of using exposure as a proxy for dose. For 

instance, about 5% of male nose-breathers are predicted to have an alveolar-interstitial 

deposition fraction less than 0.05, whereas about 5% of mouth-breathers are predicted to 

exceed 0.2, a factor of four difference which, as discussed above, is likely to be an 

underestimate.  Of course, the distribution of physiological effects would be wider still, 

due to interpersonal variation in clearance, site-specific dose-response, and so on.   

 

Of course, results such as these are only valuable to the extent that the model and 

assumptions on which they are based are trustworthy. The ICRP-66 model predicts 



regional deposition fairly well for a given set of parameter values, so the major issues in 

this particular case concern the accuracy of the statistical distributions of the input values.  

 

Conclusion 

Epidemiological studies definitively demonstrate increased mortality risk from exposure 

to very high concentrations of radon (several times higher than commonly occur in 

homes) and from surprisingly low concentrations of fine particles that are frequently 

experienced in cities.  However, epidemiological studies based on exposure can only go 

so far in addressing questions related to the health effects of inhaled aerosols, because 

they are subject to substantial uncertainties due to errors in exposure, response recording, 

and to the presence of confounding variables.   

 

A quantitative understanding of the relationship between exposure and dose is required in 

order to interpret epidemiological studies and to extrapolate to conditions or populations 

outside the studies, and for many other purposes such as optimizing aerosolized drug 

delivery, predicting the effects of drugs that affect airway constriction or other 

physiological parameters, and so forth.   

 

Total and regional deposition in typical human subjects can be predicted very well for a 

laboratory subject, as indeed has been the case for many years.  Local deposition 

(deposition at a particular location in the lung, or for a particular branching generation) is 

subject to larger predictive error; it is unclear whether this is due to shortcomings in the 

models or to shortcomings of parametric characterizations of the lung, particularly for 

high branching generation numbers.   

 

Interpersonal variability in morphology and inhalation parameters seems to be reasonably 

well characterized for healthy non-infants, but more work is needed on characterizing 

these factors for infants and for people with lung disease.  Since the latter group is a 

population of particular concern with regard to fine particle air pollution, this issue merits 

more attention. 

 



Ability to predict clearance is still not very good, and predictions certainly cannot be 

trusted for high generation numbers.  Even some basic clearance-related questions are 

unanswered, such as what level of particle loading (if any) induces an  “overload” 

response.  A much better understanding of the distribution of clearance-related 

parameters is needed for the general population and particularly for patients with lung 

disease.  

 

Table 3 shows a qualitative evaluation of the adequacy of models, parameter estimates, 

and estimates of interpersonal variability in parameters, with regard to predicting time-

dependent dose from inhalation of particles in the range of 0.01—10 micrometers.  Of 

course the adequacy of a model ultimately depends on what level of accuracy is required; 

the table should therefore be interpreted as characterizing the relative rather than absolute 

adequacy of the models and parameter estimates.  At least in the size range from 0.01 to 

10 micrometers, the challenges of predicting total and regional deposition have been met, 

and prediction of local dose is not bad.  Clearance, interpersonal variability, and site-

specific deposition constitute the new frontier, in the sense that uncertainties remain very 

high for predictions of those quantities. 

 

< INSERT TABLE 3 ABOUT HERE > 
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Figure 1: Schematic diagram showing the “causal chain” between aerosol inhalation and 
health effects (boxes), and the relationship of measurable parameters to physical or 
physiological quantities (ovals). 



 
 
Figure 2: Estimated odds ratio (with 95% confidence bands) versus mean radon activity 
concentration, showing data from several case-control studies. The odds ratio estimates 
are labeled according to the state or country in which the study was performed: IA=Iowa 
(Field et al., 2000), CHI=China (Wang et al., 2002), FIN=Finland (Auvinen et al., 1996), 
SWE=Sweden (Pershagen et al., 1994), and MO=Missouri (Alavanja et al., 1994).  The 
“Theory” line is an approximation to the prediction based on the  standard model for risk 
due to radon and smoking (NRC 1998b).  The “Cty-average” curve is a smooth fit to 
Cohen’s (2000) data on smoking-adjusted excess of county lung cancer deaths and 
county-mean radon concentrations.    The probability density  at the bottom  shows the 
distribution of residential radon concentrations in the U.S. (arbitrary vertical units). 
 



 
 
 
 

 
 
Figure 3: Lines show estimated odds ratio (with 95% confidence bands) versus mean 
radon activity concentration, showing data from several case-control studies; see Figure 2 
caption. The dashed curve is a smooth fit to Cohen’s (2000) data on smoking-adjusted 
excess of county lung cancer deaths and county-mean radon concentrations.  Curves 
show hypothetical nonlinear individual dose-response functions.  Open circles  show 
county mean values if individual dose-response follows the lowest curve. 
 
 
 



 
 

 
Figure 4: Points show total and bronchial deposition measured experimentally (citation 
needed *); lines are fits from two models.  Both models overpredict bronchial deposition 
in the range 0.05—0.50 micrometers, but otherwise the fit is very good. 
 
 



 
 
 

 
Figure 5: Predicted deposition versus generation number for 1 micrometer particles, 
showing the average and range of values predicted for ten stochastic lung models that 
attempt to capture interpersonal morphometric variability. Moderate interpersonal 
variability is predicted for generation number 18—28.  Figure from Hofmann and 
Koblinger (1992).  
 



 
 
 
Figure 6: Deposition versus generation number for ten micrometer particles, showing the 
average and range of values predicted for ten stochastic lung models that attempt to 
capture interpersonal morphometric variability.  The model suggests very high 
interpersonal variability in deposition as a function of generation number.  Figure from 
Hofmann and Koblinger (1992).  
 
 
 



 
 

 
Figure 7: Predicted clearance velocity versus generation number for four deposition 
models, showing very large disagreement between models for generation numbers higher 
than five.  The results for Asgharian et al. show the mean and standard deviation of 
predictions for ten stochastic lung models.  Figure adapted from Asgharian et al. (2001). 
 
 



 
 
Figure 8: Predicted mass retained in the lung versus time, for four different model lungs. 
Results from two of ten stochastic lungs generated from the same parametric lung 
description are shown; the difference in mass clearance shows the predicted effect of 
interpersonal morphometric variability even for individuals with the same gross lung 
description.  Predictions from a symmetric lung model and a typical particle path can be 
very different from an individual prediction using the stochastic model.  Figure from 
Asgharian et al., 2001.  
 
 
 
 



 
 
 

 
Figure 9: Predicted population distribution of extrathoracic and alveolar-interstitial 
deposition for 1 micrometer AMAD particles, as a function of age and breathing type, 
from Harvey and Hamby (2001) and (2002).  Much of the width of the distribution for 
each group is attributable to the wide distribution of assumed breathing rates.  Separate 
plots are shown for males and females at age 15 and 25 (adult), but are not labeled 
separately. 



 
Table 1: Correlation between one- or two-day ambient outdoor measurements and 
personal exposure measurements for some populations; “patient” refers to treatment for 
chronic obstructive pulmonary disease. 
Study population Time period Median r 

for PM2.5 
Median r 
for SO4 

Elderly patients in Vancouver (a) Late spring through early fall 0.48 0.96 
Elderly patients in Amsterdam (b) Winter and spring 0.79  
Elderly patients in Helsinki (b) Winter and spring 0.76  
Healthy elderly in Baltimore (c) 
 

Summer 
Winter 

0.76 
0.25 

0.88 
0.72 

Healthy adults in Helsinki (d) Workdays (throughout year) 
Leisure time (throughout year) 

0.43 
0.48 

 

Healthy adults in Basel (g) Throughout year 0.07  
Patients in Nashville (e) Summer  0.0  
Patients in Boston (f) Winter and summer 0.3  
(a) Ebelt et al. (2000), (b) Janssen et al. (2000), (c) Sarnat et al. (2000) (d) Kousa et al. (2002), (e) 
Rojas-Bracho et al. (1996), (f) Rojas-Bracho et al. (1998), (g) Oglesby et al (2000).   
 
 
 
 



  
 
 
 
Table 2: Suggested input parameter distributions simulate the general population, from 
Harvey and Hamby (2001) and (2002). Parameters show mean (standard deviation) of 
normal distributions.  A proposed modification of the breathing rate parameterization is 
discussed in the text.  
  
 

 Parameter 
(units) adult 

male 
adult 

female 
15 y 
male 

15 y 
female 

10 y 5 y 1 y 3 mo 

d0 

Diameter of 
trachea (cm) 

1.65 
(0.067) 

1.53 
(0.45) 

1.59  
(0.068) 

1.52  
(0.065) 

1.31  
(0.06) 

1.06  
(0.049) 

0.75  
(0.028) 

0.62  
(0.027) 

d9 

Diameter of 
airway at 
gen. 9 (cm) 

0.165 
(0.067) 

0.159 
(0.006) 

0.161 
(0.007) 

0.156 
(0.007) 

0.143  
(0.007) 

0.127 
(0.006) 

0.107 
(0.004) 

0.099 
(0.004) 

d16 

Diameter of 
airway at 
gen. 16 (cm) 

0.051 
(0.002) 

0.048 
(0.002) 

0.047 
(0.002) 

0.045 
(0.002) 

0.039 
(0.002) 

0.031 
(0.001) 

0.022 
(0.001) 

0.020 
(0.001) 

BR 

Breathing 
rate (m3 h-1) 

1.74 
(0.67) 

1.37 
(0.45) 

1.51  
(0.51) 

1.41 
(0.45) 

1.21 
(0.41) 

0.65 
(0.19) 

0.40 
(0.11) 

0.22 
(0.06) 

Vd 

Anatomic 
dead space 
(mL) 

146 
(25.5) 

124 
(21.0) 

130 
 (22) 

114 
(19) 

78 
(14.9) 

46 
(8.5) 

20 
(3.7) 

14  
(2.6) 

FRC 

Functional 
residual 
capacity 
(mL) 

3301 
(600) 

2681 
(500) 

2677 
(562) 

2325 
(488) 

1484 
(311) 

767 
(161) 

244 
(26) 

148 
(28) 



Table 3: Qualitative view of the ability to predict the effects of morphology, inhalation 
details, and clearance on total and regional dose and time-dependent local dose for 
particles larger than 0.1 micrometer diameter, in an experimental subject (left columns) 
and across the general population (right columns). ++++ = very good, + = very poor. 
 

Ability to model the effects in a 
known individual 

Ability to model the effects in the 
general population 

 

Healthy 
adults 

Children 
and 

elderly 

Diseased Healthy 
adults 

Children 
and 

elderly 

Diseased 

morphology ++++ ++++ +++ +++ +++ ++ 
Inhalation 
details 

++++ +++ +++ +++ +++ ++ 

clearance ++ ++ + + + + 

 
Ability to predict particle 

deposition (dose) 

Ability to predict population 
distribution of deposition, if 

exposure were known 
Total 
deposition 

++++ +++ +++ +++ +++ ++ 

Regional 
deposition 

+++ ++ ++ ++ ++ + 

 Ability to predict time-dependent 
dose, including clearance  

Ability to predict population 
distribution of time-dependent dose 

Total  +++ +++ ++ ++ ++ + 
Regional  ++ ++ + + + + 
Local + + + + + + 
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