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1. INTRODUCTION 

 
The Clean Air Act, which was last amended in 1990, requires EPA to set National 

Ambient Air Quality Standards (NAAQS) for widespread pollutants from numerous and diverse 
sources considered harmful to public health and the environment.  EPA has set NAAQS for the 
following pollutants, which are called “criteria” pollutants: ozone, particulate matter, carbon 
monoxide, sulfur dioxide, nitrogen oxides, and lead.  The Clean Air Act requires periodic review 
of the science upon which the standards are based and the standards themselves to (1) ensure that 
they provide adequate health and environmental protection and (2) update those standards as 
necessary. 

Under the NAAQS review process, EPA's Office of Research and Development (ORD) 
develops an “air quality criteria document” – a compilation and evaluation by EPA scientific 
staff and other expert authors of the latest scientific knowledge useful in assessing the health and 
welfare effects of the air pollutant.  In August 2005, the second external review draft of the Air 
Quality Criteria for Ozone and Related Photochemical Oxidants was released for public 
comment and review by EPA's Clean Air Scientific Advisory Committee (CASAC), and a final 
document was released in 2006 (Ozone Criteria Document, US EPA, 2006a).  The Ozone 
Criteria Document presents the latest available pertinent information on atmospheric science, air 
quality, exposure, dosimetry, health effects, and environmental effects of ozone and other related 
photochemical oxidants. 

This report documents the methodology and input data used in the inhalation exposure 
assessment for ozone conducted in support of the current review of the ozone NAAQS.  
Specifically, this report includes the following: 

• Summary of the overall inhalation exposure assessment methodology; 

• Description of the inhalation exposure model used in this assessment; 

• Description of the input data used for the 12 selected urban areas; 

• Assessment of the quality and limitations of the input data for supporting the goals of 
the ozone NAAQS exposure analysis; and 

• Sensitivity analyses. 

 The results of the exposure modeling are presented and discussed in the Ozone Staff 
Paper (US EPA, 2007); only selected results are presented in this report. 

 An error was found in the exposure model in January 2007.  This error has been corrected 
and the model runs have been redone, except where noted otherwise, generally resulting in small 
increases in the exposure estimates.  The corrected results are presented in this Staff Paper and in 
the Exposure Analysis TSD. 

 



 

 2 

1.1 Selection of Urban Areas 

The selection of urban areas to include in the exposure analysis takes into consideration 
the location of ozone field and epidemiology studies, the availability of ambient monitoring data 
for ozone, and the desire to represent a range of geographic areas, population demographics, and 
ozone climatology.  These selection criteria are discussed further in the Ozone Staff Paper.   
Based on these criteria, EPA selected the 12 urban areas in Table 1 for inclusion in the exposure 
analysis: 

1.2 Exposure Periods 

The exposure periods modeled were the ozone monitoring seasons for three years, 2002, 
2003, and 2004.  The seasons modeled for each area are listed in Table 1-1. 

Table 1-1.  Urban areas and time periods modeled 

Urban Area (CSA) Period modeled 

Atlanta-Sandy Springs-Gainesville, GA-AL March 1 to Oct. 31 
Boston-Worcester-Manchester, MA-NH April 1 to Sept. 30 
Chicago-Naperville-Michigan City, IL-IN-WI April 1 to Sept. 30 
Cleveland-Akron-Elyria, OH April 1 to Oct. 31 
Detroit-Warren-Flint, MI April 1 to Sept. 30 
Houston-Baytown-Huntsville, TX Jan. 1 to Dec. 30 
Los Angeles-Long Beach-Riverside, CA Jan. 1 to Dec. 30 
New York-Newark-Bridgeport, NY-NJ-CT-PA April 1 to Sept. 30 
Philadelphia-Camden-Vineland, PA-NJ-DE-MD April 1 to Oct. 31 
Sacramento--Arden-Arcade--Truckee, CA-NV Jan. 1 to Dec. 30 
St. Louis-St. Charles-Farmington, MO-IL April 1 to Oct. 31 
Washington-Baltimore-N. Virginia, DC-MD-VA-WV April 1 to Oct. 31 
 
 
1.3 Populations Analyzed 

Exposure modeling was conducted for the general population residing in each area 
modeled, as well as for school-age children (ages 5 to 18) and asthmatic school-age children.  
Due to the increased amount of time spent outdoors engaged in relatively high levels of physical 
activity, school-age children as a group are particularly at risk for experiencing ozone-related 
health effects. 
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2. DESCRIPTION OF THE APEX MODEL 

The Air Pollutants Exposure model (APEX) is a personal computer (PC)-based program 
designed to estimate human exposure to criteria and air toxic pollutants at the local, urban, and 
consolidated metropolitan levels.  APEX, also known as TRIM.Expo, is the human inhalation 
exposure module of EPA’s Total Risk Integrated Methodology (TRIM) model framework (EPA, 
1999), a modeling system with multimedia capabilities for assessing human health and 
ecological risks from hazardous and criteria air pollutants.  It is being developed to support 
evaluations with a scientifically sound, flexible, and user-friendly methodology.  Additional 
information on the TRIM modeling system, as well as downloads of the APEX Model, user’s 
guide, and other supporting documentation, can be found on EPA’s Technology Transfer 
Network (TTN) at http://www.epa.gov/ttn/fera. 
 
2.1 History of APEX 

APEX was derived from the National Ambient Air Quality Standards (NAAQS) 
Exposure Model (NEM) series of models.  The NEM series was developed to estimate exposure 
to the criteria pollutants (e.g., CO, ozone).  In 1979, EPA began to develop NEM by assembling 
a database of human activity patterns that could be used to estimate exposures to indoor and 
outdoor pollutants (Roddin et al., 1979).  The data were then combined with measured outdoor 
concentrations in NEM to estimate exposures to CO (Biller et al., 1981; Johnson and Paul, 
1983).  In 1988, OAQPS began to incorporate probabilistic elements into the NEM methodology 
and use activity pattern data based on various human activity diary studies to create an early 
version of probabilistic NEM for ozone (i.e., pNEM/O3).  In 1991, a probabilistic version of 
NEM was developed for CO (pNEM/CO) that included a one-compartment mass-balance model 
to estimate CO concentrations in indoor microenvironments.  The application of this model to 
Denver, Colorado has been documented in Johnson et al. (1992).  Several newer versions of 
pNEM/O3 were developed in the early- to mid-1990’s, including versions developed for 
applications to nine urban areas for the general population, outdoor children, and outdoor 
workers (Johnson et al., 1996a,b,c).  Between 1999 and 2001, updated versions of pNEM/CO 
(versions 2.0 and 2.1) were developed that rely on activity diary data from EPA’s Consolidated 
Human Activities Database (CHAD) and enhanced algorithms for simulating gas stove usage, 
estimating alveolar ventilation rate (a measure of human respiration), and modeling home-to-
work commuting patterns.   

The first version of APEX was essentially identical to pNEM/CO (version 2.0) except 
that it ran on a PC instead of a mainframe.  The next version, APEX2, was substantially 
different, particularly in the use of a personal profile approach rather than a cohort simulation 
approach.  APEX3 introduced a number of new features including automatic site selection from 
national databases, a series of new output tables providing summary exposure and dose statistics, 
and a thoroughly reorganized method of describing microenvironments and their parameters.  
Most of the spatial and temporal constraints of pNEM and APEX1 were removed or relaxed by 
version 3. 
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The version of APEX used in this modeling analysis is APEX4, described in the APEX 
User’s Guide and the APEX Technical Support Document (EPA, 2006c,d), henceforth referred 
to as the APEX User’s Guide and TSD. 

2.2 Theoretical Basis and Limitations of APEX 

APEX estimates human exposure to criteria and toxic air pollutants at the local, urban, or 
consolidated metropolitan area levels using a stochastic, 
“microenvironmental” approach. The model randomly 
selects data for a sample of hypothetical individuals from 
an actual population database and simulates each 
hypothetical individual’s movements through time and 
space (e.g., at home, in vehicles) to estimate their 
exposure to the subject pollutant.  APEX models 
commuting and thus exposures at both home and work 
locations for individuals who work in different areas than 
they live. 

APEX can be conceptualized as a simulated field study that would involve selecting an 
actual sample of specific individuals who live in (or work and live in) a geographic area and then 
continuously monitoring their activities and subsequent inhalation exposure to a specific air 
pollutant during a specific period of time.  

The main differences between APEX and an actual field study are that in APEX: 

• The sample of individuals is a “virtual” sample, created by the model according to 
various demographic variables and census data of relative frequencies, in order to obtain 
a representative sample (to the extent possible) of the actual people in the study area; 

• The activity patterns of the sampled individuals (e.g., the specification of indoor and 
other microenvironments visited and the time spent in each) are assumed by the model to 
be comparable to individuals with similar demographic characteristics, according to 
activity data such as diaries compiled in EPA’s CHAD (EPA, 2002; McCurdy et al., 
2000); 

• The pollutant exposure concentrations are estimated by the model using a set of user-
input ambient outdoor concentrations and information on the behavior of the pollutant in 
various microenvironments;  

• Various reductions in ambient air quality levels can be simulated by either adjusting air 
quality concentrations to attain alternative ambient standards under consideration or by 
reducing source emissions and obtaining resulting air quality modeling outputs that 
reflect these potential emission reductions, and 

• The model attempts to account for the most significant factors contributing to inhalation 
exposure – the temporal and spatial distribution of people and pollutant concentrations 

A microenvironment is a three-
dimensional space in which human 
contact with an environmental 
pollutant takes place and which can 
be treated as a well-characterized, 
relatively homogeneous location with 
respect to pollutant concentrations for 
a specified time period. 
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throughout the study area and among the microenvironments – while also allowing the 
flexibility to adjust some of these factors for regulatory assessment and other reasons. 

All models have limitations that require the use of assumptions.  Limitations of APEX lie 
primarily in the uncertainties associated with data distributions input to the model (e.g., human 
activity patterns).  Primary uncertainties and assumptions associated with these distributions 
include the following: 

• The population activity pattern data supplied with APEX (i.e., CHAD activity data) are 
compiled from a number of studies in different areas, and for different seasons and years.  
Therefore, the combined data set may not constitute a representative sample for a 
particular study scenario.  Nevertheless, a large portion of CHAD is from a study of 
national scope (which could be extracted by the user if desired to create a representative 
sample). 

• Commuting pattern data were derived from the 2000 U.S. Census.  The commuting data 
address only home-to-work travel.  The population not employed outside the home is 
assumed to always remain in the residential census tract.  Furthermore, although several 
of the APEX microenvironments account for time spent in travel, the travel is assumed to 
always occur in basically a composite of the home and work tract.  No other provision is 
made for the possibility of passing through other tracts during travel. 

• APEX creates seasonal or annual sequences of daily activities for a simulated individual 
by sampling human activity data from more than one subject.  Each simulated person 
essentially becomes a composite of several actual people in the underlying activity data. 

• The model currently does not capture certain correlations among human activities that 
can impact microenvironmental concentrations (for example, cigarette smoking leading 
to an individual opening a window, which in turn affects the amount of outdoor air 
penetrating the residence). 

• Certain aspects of the personal profiles are held constant, though in reality they change as 
individuals age.  This is generally only an issue for simulations with long timeframes. 

These and other uncertainties are discussed in section 4. 

2.3 Overview of Model  

APEX is designed to simulate population exposure to criteria and air toxic pollutants at 
local, urban, and regional scales.  The user specifies the geographic area to be modeled and the 
number of individuals to be simulated to represent this population.  APEX then generates a 
personal profile for each simulated person that specifies various parameter values required by the 
model.  The model next uses diary-derived time/activity data matched to each personal profile to 
generate an exposure event sequence (also referred to as “activity pattern” or “composite diary”) 
for the modeled individual that spans a specified time period, such as one year.  Each event in the 
sequence specifies a start time, exposure duration, geographic location, microenvironment, and 
activity.  Probabilistic algorithms are used to estimate the pollutant concentration and ventilation 
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(respiration) rate associated with each exposure event.  The estimated pollutant concentrations 
account for the effects of ambient (outdoor) pollutant concentration, penetration factors, air 
exchange rates, decay/deposition rates, and proximity to emission sources, depending on the 
microenvironment, available data, and estimation method selected by the user.  The ventilation 
rate is derived from an energy expenditure rate estimated for the specified activity.  Because the 
modeled individuals represent a random sample of the population of interest, the distribution of 
modeled individual exposures can be extrapolated to the larger population.  The model 
simulation includes five steps, each of which is described in the sections indicated below: 

1. Characterize the study area.  APEX selects census tracts within a study area – and thus 
identifies the potentially exposed population – based on user-defined criteria and 
availability of air quality and meteorological data for the area.  (Section 2.3.1) 

2. Generate simulated individuals.  APEX stochastically generates a sample of 
hypothetical individuals based on the census data for the study area and human profile 
distribution data (such as age-specific employment probabilities).  The user must specify 
the size of the sample.  The larger the sample, the more representative it is of the 
population in the study area and the more stable the model results are (but also the longer 
the computing time).  (Section 2.3.2) 

3. Construct a sequence of activity events.  APEX constructs an exposure event sequence 
(activity pattern) spanning the period of the simulation for each of the hypothetical 
individuals (based on the supplied CHAD data, although other data could be used).  
(Section 2.3.3) 

4. Calculate hourly concentrations in microenvironments.  APEX users must define 
microenvironments that people in the study area would visit by assigning location codes 
in the supplied CHAD database to the user-specified microenvironments.  The model 
then calculates hourly concentrations of a pollutant in each of these microenvironments 
for the period of simulation, based on the user-provided microenvironment descriptions 
and hourly ambient air quality data.  All the hourly concentrations in the 
microenvironments are re-calculated for each of simulated individuals.  (Section 2.4) 

5. Determine exposures.  APEX assigns a concentration to each exposure event based on 
the microenvironment occupied during the event and the person’s activity.  These values 
are averaged by clock hour to produce a sequence of hourly average exposures spanning 
the specified exposure period (typically one year).  These hourly values may be further 
aggregated to produce daily, monthly, and annual average exposure values.  (Section 2.5) 

 The model simulation continues until exposures are determined for entire modeling 
period for the user-specified number of simulated individuals.  Figure 2-1 presents these steps 
within a schematic of the APEX model design.  Subsections that follow provide addition detail 
on the key algorithms used in Steps 1 through 5. 
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Figure 2-1.  Overview of the APEX Model
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Figure 2-1.  Overview of the APEX Model, continued
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Figure 2-1.  Overview of the APEX Model, concluded
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2.3.1 Characterize the Study Area 

The APEX study area has traditionally been on the scale of a city or slightly larger 
metropolitan area, although it is now possible to model larger areas, depending primarily on 
computing capabilities, available data, and the desired precision of the run. 

In this analysis the study area is defined by a list of counties.  The demographic data used 
by the model to create personal profiles is provided at the tract level.  For each tract the model 
requires demographic information representing the distribution of age, gender, race, and work 
status within the study population.  Each tract has a location specified by latitude and longitude 
for some representative point (e.g., geographic center).  The current release of APEX includes 
input files that already contain this demographic and location data for all census tracts in the 50 
United States, based on the 2000 Census. 

The ambient air quality data are assigned to geographic areas called districts.  The 
districts are used to assign pollutant concentrations to the tracts and microenvironments being 
modeled.  The ambient air quality data are provided by the user as hourly time series for each 
district.  As with tracts, each district has a representative location (latitude and longitude).  
Districts can extend outside of the study area. 

APEX calculates the distance from each tract to each district center, and assigns the tract 
to the nearest district, provided the tract’s representative location point (e.g., geographic center) 
is in the district.  Each tract is assigned to only one district. 

Ambient temperatures are input to APEX for different sites (locations).  As with districts, 
APEX calculates the distance from each tract to each temperature site and assigns each tract to 
the nearest site. 

2.3.2 Generate Simulated Individuals 

APEX stochastically generates a user-specified number of simulated (hypothetical) 
persons to represent the population in the study area.  Each simulated person is represented by a 
“personal profile.”  APEX generates the simulated person or profile by probabilistically selecting 
values for a set of profile variables (Table 2-1).  The profile variables include: 

• Demographic variables, which are generated based on the census data; 
• Residential variables, which are generated based on sets of distribution data; 
• Physiological variables, which are generated based on age- and gender-specific 

distribution data; and 
• Daily varying variables, which are generated based on distribution data that change daily 

during the simulation period. 

APEX first selects and calculates demographic, residential, and physiological variables (except 
for daily values) for all the specified number of simulated individuals, and then follows each 
individual over time and calculates exposures (and optionally doses) for each simulated person.  
The following subsections describe these variables in more detail. 
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Table 2-1.  Profile Variables in APEX 

Variable 
Type Profile Variables Description 

Age Age (years) 

Gender Male or Female 

Race White, Black, Native American, Asian, and Other 

Home tract Tract in which a simulated person lives 

Work tract Tract in which a simulated person works 

Demographic  
variables 

Employment status Indicates employment outside home 

Residential 
variables 

Air conditioner Indicates presence of air conditioning at home 

Daily average car speed Daily average car speed In-vehicle 
variables Car air conditioner Indicates presence of air conditioning in the vehicle 

Height Height of a simulated person (in) 

Weight Body weight of a simulated person (lbs) 

Resting metabolic rate Resting metabolic activity rate (kcal/min) 

Energy conversion factor Oxygen uptake per unit of energy expanded (liters/kcal) 

Physiological 
variables 

Maximum permitted 
metabolic value 

Maximum metabolic activity level that can be sustained for about 
five minutes (dimensionless) 

 

Demographic Variables 

The values of the demographic variables for a simulated profile are selected 
probabilistically according to their joint distribution in the input population files, which are 
derived from the 2000 U.S. Census. 

Residential Variables 

The residential variables are categorical variables that are used to indicate whether a 
residence or a car associated with a simulated person has the specified characteristic.  These are 
randomly selected based on user-specified probabilities.  For example, a user could specify 
probabilities of 0.3 for not having an air conditioner and 0.7 for having an air conditioner in their 
home.  

Physiological Profile Variables  

The physiological variables are used for calculating ventilation rates.  Input data to APEX 
provide gender- and age-specific distributions for these variables. 



 

 12 

2.3.3 Construction of Activity Sequences 

 APEX probabilistically creates a composite diary for each of the simulated persons by 
selecting a 24-hour diary record – or diary day – from an activity database for each day of the 
simulation period.  CHAD data have been supplied with APEX for this purpose.  A composite 
diary is a sequence of events that simulates the movement of a modeled person through 
geographical locations and microenvironments during the simulation period.  Each event is 
defined by geographic location, start time, duration, microenvironment visited, and an activity 
performed.  The activity database input to APEX contains the following information for each 
person for each day in each person’s diary:  age, gender, race, employment status, occupation, 
day of week, daily maximum hourly average temperature, the location, start time, duration, and 
type of each activity during the day. 

APEX develops a composite diary for each of the simulated individuals according to the 
following steps: 

1. Divide diary days in the CHAD database into user-defined activity pools, based on day 
type and temperature. 

2. Assign an activity pool number to each day of the simulation period, based on the user-
provided daily maximum/average temperature data. 

3. Calculate a selection probability for each of the diary days in each of the activity pools, 
based on age/gender/employment similarity of a simulated person to a diary day. 

4. Probabilistically select a diary day from available diary days in the activity pool assigned 
to each day of the simulation period. 

5. Evaluate a metabolic value for each activity performed while in a CHAD location, based 
on the activity-specific metabolic distribution data.  This is used to calculate a ventilation 
rate for the simulated person performing the activity. 

6. Map the CHAD locations in the selected diary to the user-defined modeled 
microenvironments. 

7. Concatenate the selected diary days into a sequential longitudinal diary for a simulated 
individual covering all days in the simulated period. 

The method in APEX for creating longitudinal diaries that reflect the tendency of 
individuals to repeat activities is based on reproducing realistic variation in a user-selected key 
diary variable.  APEX reads the values of the key variable from an external file.  Currently, files 
have been constructed for both outdoor time and vehicle time for all CHAD diaries by summing 
the total time associated with “outdoor” and “vehicle” CHAD location codes for each diary.  The 
actual diary construction method targets two statistics, D and A.  The D statistic reflects the 
relative importance of within-person variance and between-person variance in the key variable. 
The A statistic quantifies the lag-one (day-to-day) variable autocorrelation.  Desired D and A 
values for the key variable are selected by the user and set in the APEX parameters file, and the 
method algorithm constructs a longitudinal diary that preserves these parameters.  Longitudinal 
diary data from a field study in children (Geyh et al., 2000), and subsequent analyses (Xue et al., 
2004) suggest that D and A are stable over time (and perhaps over cohorts as well).  Based on 
these studies, appropriate target values for the two statistics for outdoor time are estimated to be 
D=0.22 and A=0.19.  A value of 0.2 is used for both of these parameters in the ozone exposure 
modeling, since precision beyond 0.1 is not warranted for these statistics.  It turns out that the 
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model results are insensitive to small changes in these values.  The longitudinal diary 
methodology is described further in Appendix C. 
 

2.4 Algorithms for Calculating Microenvironmental Concentrations 

Probabilistic algorithms are used to estimate the pollutant concentration associated with 
each exposure event.  The estimated pollutant concentrations account for the effects of ambient 
(outdoor) pollutant concentration, penetration factor, air exchange rate, decay/deposition rate, 
and proximity to emission sources, depending on the microenvironment, available data, and the 
estimation method selected by the user.   

APEX calculates air concentrations in the various microenvironments visited by the 
simulated person by using the ambient air data for the relevant tracts and the user-specified 
method and parameters that are specific to each microenvironment.  APEX calculates hourly 
concentrations in all the microenvironments at each hour of the simulation for each of the 
simulated individuals, based on the hourly ambient air quality data specific to the geographic 
locations visited by the individual.  APEX provides two methods for calculating 
microenvironmental concentrations: the mass balance method and the transfer factors method 
(described in Sections 2.4.1 and 2.4.2, respectively).  The user is required to specify a calculation 
method for each of the microenvironments; there are no restrictions on the method specified for 
each microenvironment (e.g., some microenvironments can use the transfer factors method while 
the others use the mass balance method). 

2.4.1 Mass Balance Model 

The mass balance method models an enclosed microenvironment as a well-mixed volume 
in which the air concentration is spatially uniform at any specific time.  The concentration of an 
air pollutant in such a microenvironment is estimated using the following four processes: 

• Inflow of air into the microenvironment; 
• Outflow of air from the microenvironment; 
• Removal of a pollutant from the microenvironment due to deposition, filtration, and 

chemical degradation; and  
• Emissions from sources of a pollutant inside the microenvironment. 

Table 2-2 lists the parameters required by the mass balance method to calculate concentrations in 
a microenvironment.  The proximity factor (fproximity) is used to account for differences in 
ambient concentrations between the geographic location represented by the ambient air quality 
data (e.g., a regional fixed-site monitor) and the geographic location of the microenvironment 
(e.g., near a roadway).  This factor could take a value either greater than or less than 1.  
Emission source (ES) represents the emission rate for the emission source and concentration 
source (CS) is the mean air concentration resulting from the source.  Rremoval is defined as the 
removal rate of a pollutant from a microenvironment due to deposition, filtration, and chemical 
reaction.  The air exchange rate (Rair exchange) is expressed in air changes per hour.  This analysis 
of ozone exposures does not consider sources of ozone, and these terms are set to zero. 
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Table 2-2.  Mass Balance Model Parameters 

Variable Definition Units Value Range 

f proximity Proximity factor  unitless f proximity > 0 

CS  Concentration source ppm CS ≥ 0 

ES Emission source µg/hr ES ≥ 0 

R removal Removal rate due to 
deposition, filtration, and 
chemical reaction 

1/hr Rremoval ≥ 0 

R air exchange Air exchange rate 1/hr Rair exchange ≥ 0 

V Volume of 
microenvironment 

m3 V > 0 

 
The mass balance equation for a pollutant in a microenvironment is described by: 

sourceremovaloutin CCCC Δ+Δ−Δ−Δ=
dt

(t)dC ME     (2-1) 

where: 

 dCME(t) = Change in concentration in a microenvironment at time t (ppm), 

 )Cin  = Rate of change in microenvironmental concentration due to influx 
of air (ppm/hour), 

 )Cout  = Rate of change in microenvironmental concentration due to outflux 
of air (ppm/hour), 

 )Cremoval = Rate of change in microenvironmental concentration due to 
removal processes (ppm/hour), and 

 )Csource = Rate of change in microenvironmental concentration due to an 
emission source inside the microenvironment (ppm/hour). 

Within the time period of an hour each of the rates of change, )Cin, )Cout, )Cremoval, and 
)Csourcel, is assumed to be constant. 
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The change in microenvironmental concentration due to influx of air is represented by the 
following equation: 

exchangeairnpenetratioproximityambient
in

in RxfxfxC
dt

tdCC ==Δ
)(     (2-2) 

where: 

 Cambient = Ambient hourly outdoor concentration (ppm) 
 fproximity = Proximity factor (unitless) 
 fpenetration = Penetration factor (unitless) 
 Rair exchange = Air exchange rate (1/hour) 

The change in microenvironmental concentration due to outflux of air is described by: 

)()( tCR
dt

tdCC MEexchangeair
out

out ×==Δ      (2-3) 

The change in concentration due to deposition, filtration, and chemical degradation in a 
microenvironment is simulated based on the first-order equation: 

(t)CxR(t))CRR(R
dt

(t)dCC MEremovalMEchemicalfiltrationdeposition
removal

removal =++==Δ     (2-4) 

where: 

 Rdeposition = Removal rate of a pollutant from a microenvironment due to 
deposition (1/hour) 

 Rfiltration = Removal rate of a pollutant from a microenvironment due to 
filtration (1/hour) 

 Rchemical = Removal rate of a pollutant from a microenvironment due to 
chemical degradation (1/hour) 

 Rremoval = Removal rate of a pollutant from a microenvironment due to 
overall removal (1/hour) 

 
 We are not modeling indoor emissions of ozone, so the optional term )Csource will be 
uniformly equal to 0.0 for this study.  

Equation 2-1 combined with Equations 2-2, 2-3, and 2-4 leads to: 

)()(
dt

(t)dC ME tCRtCRC MEremovalMEexchangeairin −−Δ=     (2-5) 

Solving the differential equation in Equation 2-5 leads to: 
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)exp())0(()( tR
R

CC
R

CtC combined
combined

in
ME

combined

in
ME −

Δ
−+

Δ
=     (2-6) 

where: 

 CME(0)  = Concentration of a pollutant in a microenvironment at the 
beginning of a hour (ppm) 

CME(t)  = Concentration of a pollutant in a microenvironment at time t within 
the time period of a hour (ppm) 

 Rcombined = Rair exchange + Rremoval  (1/hour) 
 

Based on Equation 2-6, the following three hourly concentrations in a microenvironment 
are calculated: 

combined

in
ME

equil
ME R

C
tCC

Δ
=∞→= )(       (2-7) 

)(exp))0(( combined
equil
MEME

equil
ME

endhourly
ME RCCCC −−+=     (2-8) 

combined

combinedequil
MEME

equil
ME

hourlymean
ME R

R
CCC

dt

dttC
C

)(exp1
))0((

)(

1

0

1

0 −−
−+==

∫

∫
   (2-9) 

where: 

 equil
MEC  = Equilibrium concentration in a microenvironment (ppm) 

 CME(0) = Concentration in a microenvironment at the beginning of an hour 
(ppm) 

 endhourly
MEC  = Concentration in a microenvironment at the end of an hour (ppm) 

 hourlymean
MEC  = Hourly mean concentration in a microenvironment (ppm) 

 

At each hour time step of the simulation period, APEX uses Equations 2-7, 2-8, and 2-9 to 
calculate the hourly equilibrium, hourly ending, and hourly mean concentrations.  APEX reports 
hourly mean concentration as hourly concentration for a specific hour.  The calculation continues 
to the next hour by using endhourly

MEC  for the previous hour as CME(0).  

2.4.2 Factors Model 

The factors method is simpler than the mass balance method.  It does not calculate 
concentration in a microenvironment from the concentration in the previous hour and it has 
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fewer parameters.  Table 2-3 lists the parameters required by the factors method to calculate 
concentrations in a microenvironment without emissions sources.   

Table 2-3.  Factors Model Parameters 

Variable Definition Units Value Range 

f proximity Proximity factor  unitless f proximity > 0 

f penetration Penetration factor unitless 0 ≤ f penetration ≤ 1 

 
The factors method uses the following equation to calculate hourly mean concentration in 

a microenvironment from the user-provided hourly air quality data: 

npenetratioproximityambient
hourlymean
ME fxfxCC =     (2-10) 

where: 

 hourlymean
MEC  = Hourly concentration in a microenvironment (ppm) 

 Cambient = Hourly concentration in ambient environment (ppm) 
 fproximity = Proximity factor (unitless) 
 fpenetration = Penetration factor (unitless) 
 

2.4.3 Commuting Outside of the Study Area 

APEX allows for some flexibility in the treatment of persons in the modeled population 
who commute to destinations outside the study area.  By specifying “KeepLeavers = No” in the 
simulation control parameters file (see Section 3.1), people who work inside the study area but 
live outside of it are not modeled, nor are people who live in the study area but work outside of 
it.  By specifying “KeepLeavers = Yes,” these commuters are modeled.  This triggers the use of 
two additional parameters, called LeaverMult and LeaverAdd.  While a commuter is at work, if 
the workplace is outside the study area, then the ambient concentration is assumed to be related 
to the average concentration over all air districts at the same point in time, and is calculated as:  

LeaverAddtavgLeaverMultionConcentratAmbient +×= )(   (2-11) 

where: 

 Ambient Concentration = Calculated ambient air concentrations for locations outside 
of the study area (ppm or ppm) 

 LeaverMult  = Multiplicative factor for city-wide average concentration, 
applied when working outside study area  

 avg(t)  = Average ambient air concentration over all air districts in 
study area, for time t (ppm or ppm) 
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 LeaverAdd  = Additive term applied when working outside study area 

All microenvironmental concentrations for locations outside of the study area are determined 
from this ambient concentration by the same function as applies inside the study area. 

2.5 Algorithms for Calculating Dose 

Probabilistic algorithms are used to estimate the ventilation (respiration) rate associated 
with each exposure event.  Ventilation (as discussed in Section 2.5.1 below) is a measure of 
human respiration, which is activity and physiology dependent.  It is used in APEX to simulate 
human activities in order to estimate, more realistically, inhalation exposure and dose.  The 
ventilation rate is derived from an energy expenditure rate estimated for the specified activity. 

2.5.1 Ventilation 

 Ventilation is a general term for the movement of air into and out of the lungs.  Minute or 
total ventilation is the amount of air moved in or out of the lungs per minute.  Quantitatively, the 
amount of air breathed in per minute (VI) is slightly greater than the amount expired per minute 
(VE).  Clinically, however, this difference is not important, and by convention minute ventilation 
is always measured on an expired sample, VE.  

The oxygen ventilation rate VO2 (l of O2/min) is related to the energy expenditure rate for 
the given event activity and the given profile’s physiology in terms of oxygen ventilation per unit 
energy expenditure, or: 

ECFxEEVO =2    (2-12) 

where: 

 EE  = Energy expenditure (kcal/min) 
 ECF = Energy conversion factor (l of O2/kcal). 

ECF is based on the physiology of the individual being modeled.  EE is related to the activity-
specific energy expenditure rate and the basal or resting energy expenditure (metabolic) rate of 
the given profile, or: 

RMRxMETEE =    (2-13) 

where: 

 MET = Metabolic equivalent of work (the ratio of the rate of energy consumption 
for non-rest activities to the resting rate of energy consumption) (dimensionless) 

 RMR = Resting metabolic rate (kcal/min). 

RMR is based on the physiology of the individual being modeled.  MET is the ratio of the 
activity-specific energy expenditure rate to the basal or resting energy expenditure rate.  While 
different people have very different basal metabolic rates, it is generally found that the metabolic 
ratios do not exhibit as much variability.  Thus, standing still might require two times the basal 
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energy expenditure, or two MET, for most people, with relatively little variation.  Since the basal 
rate is constant for each profile, it only has to be determined once and the activity-specific 
metabolic ratio can be used to determine the absolute energy expenditure rate, EE, for each 
activity.    

Dividing equation 2-12 by body mass (BM) and using equation 2-13, one obtains:  

BMMETxECFxRMRBMVO //2 =     (2-14)   

Graham and McCurdy (2005) describe an approach to estimate VE directly from VO2 
using a series of regression-based equations.  Using data compiled from 32 clinical exercise 
studies collected over a 25-year period by Dr. William C. Adams of the University of California 
at Davis, they developed an algorithm for four age groups and both genders.  The algorithm 
accounts for differences in ventilation rate due to activity level, variability within age groups, 
and variation both between and within individuals.  Their model is implemented in APEX as: 

iiiiiOi ewebgenderbagebBMVbbBMVE ++++++= )*())1ln(*())/ln(*()/ln( 32210  (2-15) 

where: 

the VO2/BM term is given in terms of the APEX variables by equation 2-14,  
age is the age of the individual in years, and 
gender is a flag with value -1 for males and +1 for females. 

Random error (ε) is allocated to two variance components used to estimate the between-person 
(inter-individual variability) residuals distribution (eb) and within-person (intra-individual 
variability) residuals distribution (ew).  The regression parameters b0, b1, b2, b3, and eb are 
assumed to be constant over time for a given simulated person, whereas ew varies from event to 
event.  These parameters are randomly drawn from normal distributions with means and standard 
deviations given in Table 2-4.  eb and ew have mean zero. 

Table 2-4.  Ventilation Regression Parameters 

Age 
range 

mean
b0 

stdev
b0 

mean
b1 

stdev
b1 

mean
b2 

stdev
b2 

mean
b3 

stdev
b3 

stdev
eb 

stdev
ew 

0-19 4.4329 0.0579 1.0864 0.0097 -0.2829 0.0124 0.0513 0.0045 0.0955 0.1117 

20-33 3.5718 0.0792 1.1702 0.0067 0.1138 0.0243 0.045 0.0031 0.1217 0.1296 

34-60 3.1876 0.1271 1.1224 0.012 0.1762 0.0335 0.0415 0.0095 0.126 0.1152 

>60 2.4487 0.3646 1.0437 0.0195 0.2681 0.0834 -0.0298 0.01 0.1064 0.0676 
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2.5.2 Excess Post-Exercise Oxygen Consumption 

 At the beginning of exercise, there is a lag between work expended and oxygen 
consumption.  During this work/ventilation mismatch, an individual’s energy needs are met by 
anaerobic processes.  The magnitude of the mismatch between expenditure and consumption is 
termed the oxygen deficit.  During heavy exercise, further oxygen deficit (in addition to that 
associated with the start of exercise) may be accumulated.  At some point, oxygen deficit reaches 
a maximum value, and performance and energy expenditure deteriorate.  After exercise ceases, 
ventilation and oxygen consumption will remain elevated above baseline levels.  This increased 
oxygen consumption was historically labeled the “oxygen debt” or “recovery oxygen 
consumption.”  However, recently the term “excess post-exercise oxygen consumption” (EPOC) 
has been adopted for the phenomenon.  APEX has an algorithm for adjusting the MET values to 
account for EPOC.  This algorithm is described in Appendix B.  

2.5.3 Body Surface Area 

The algorithm for calculating body surface area (BSA) in APEX was developed by 
Burmaster (1998), and uses a univariate model for total skin area as a function of body weight.  
Through regression analysis, Burmaster determined that weight alone does as well as weight and 
height together in predicting total skin area, with the advantage of requiring only a single 
explanatory variable.  Total skin area was found to follow a lognormal distribution that is a 
function of body weight according to: 

6821.02781.2 BMeBSA −=       (2-16) 

where: 

  BSA = body surface area (m2) 
 BM = body mass (kg). 

 

2.6 Exposure Calculations 

APEX calculates exposure as a time series of exposure concentrations that a simulated 
individual experiences during the simulation period.  APEX determines the exposure using 
hourly ambient air concentrations, calculated concentrations in each microenvironment based on 
these ambient air concentrations, and the minutes spent in a sequence of microenvironments 
visited according to the composite diary.  The hourly exposure concentration at any clock hour 
during the simulation period is determined using the following equation: 

T

tC
C

N

j
j

hourlymean
jME

i

∑
== 1

)()(

     (2-17) 

where: 
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 Ci  =  Hourly exposure concentration at clock hour I of the simulation period 
(ppm) 

 N  =  Number of events (i.e., microenvironments visited) in clock hour I of 
the simulation period. 

 hourlymean
jMEC )(   =  Hourly mean concentration in microenvironment j (ppm) 

 t(j)  =  Time spent in microenvironment j (minutes) 
 T  =  60 minutes 

From the hourly exposures, APEX calculates time series of 8-hour and daily average exposure 
concentrations that a simulated individual would experience during the simulation period.  
APEX then statistically summarizes and tabulates the hourly, 8-hour, and daily exposures. 

2.7 Model Output 

All of the output files written by APEX are ASCII text files.  Table 2-5 lists each of the 
output data files written for these simulations and provides descriptions of their content.  
Additional output files that can produced by APEX are given in Table 5-1 of the APEX User’s 
Guide, and include hourly exposure, ventilation, and energy expenditures, and even detailed 
event-level information, if desired.  The names and locations, as well as the output table levels 
(e.g., output percentiles, cut-points), for these output files are specified by the user in the 
simulation control parameters file.  Specific output generated for the purposes of this document 
are discussed in Section 3.1. 

Table 2-5.  APEX Output Files 

Output File Type Description 

Log The Log file contains the record of the APEX model simulation as it progresses.  
If the simulation completes successfully, the log file indicates the input files and 
parameter settings used for the simulation and reports on a number of different 
factors.  If the simulation ends prematurely, the log file contains error messages 
describing the critical errors that caused the simulation to end. 

Profile Summary The Profile Summary file provides a summary of each individual modeled in the 
simulation. 

Microenvironment 
Summary 

The Microenvironment Summary file provides a summary of the time and 
exposure by microenvironment for each individual modeled in the simulation. 

Sites The Sites file lists the tracts, districts, and zones in the study area, and identifies 
the mapping between them. 

Output Tables The Output Tables file contains a series of tables summarizing the results of the 
simulation.  The percentiles and cut-off points used in these tables are defined in 
the simulation control parameters file. 
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3. PREPARATION OF MODEL INPUTS 

The APEX model inputs require extensive analysis and preparation in order to ensure the 
model run gives valid and relevant results.  This chapter begins with a description of the selected 
model options and discusses their significance.  Following this introduction is a discussion of the 
model input files and other critical parameters.  The chapter goes on to describe the sources of 
data for the APEX input files.  File formats and physical file structures are not discussed in 
detail, as this information is presented in the APEX User’s Guide (EPA, 2006c). 

3.1 Model Options 

Many of the important characteristics of a model run in APEX are set in the simulation 
control parameters file.  In this file the user specifies the input and output files and their 
associated directories, as well as the basic parameters that characterize the run.  The settings used 
for the model runs are described here. 

The number of simulated persons in each model run was set to 60,000, an amount that 
tests indicated would be a large enough sample size to provide stable model results.  The 
parameters controlling the location and size of the simulated area were set to include all counties 
in the study area CSA. 

 The settings that allow for replacement of CHAD data that are missing gender, 
employment or age values were all set to preclude replacing missing data.  The width of the age 
window was set to 20 percent to increase the pool of diaries available for selection.  The variable 
that controls the use of additional ages outside the target age window was set to 0.1 to further 
enhance variability in diary selection.  See the APEX User’s Guide for an explanation of these 
parameters. 

 The diary activity contributing the most to variability in exposure to ozone is the time 
spent outdoors, and we have selected that as the key predictor of exposure for the assembly of 
longitudinal diaries (see Appendix C).  For school-age children, we take the diversity statistic D 
to be 0.2 and the autocorrelation to be 0.2.  These values were derived from the Southern 
California Children's Study.  We do not have data to base estimates of these parameters on for 
younger children and for adults, and we use the school-age children values for all ages. 

Levels of physical activity were categorized by the Physical Activity Index (PAI), which 
is discussed in Appendix B.  Children were characterized as active if their median daily PAI over 
the period modeled is 1.75 or higher, a level characterized by exercise physiologists as being 
“moderately active” or “active” (McCurdy, 2000).  

3.2 Air Quality 

APEX requires hourly ambient ozone concentrations at a set of sites in the study area.  
These data were obtained from the EPA AIRS Air Quality Subsystem for the years 2002, 2003, 
and  2004.  These years were modeled since they are recent years that exhibit the year-to-year 
variability that is characteristic of ozone formation.  All of the sites in AIRS within the 
boundaries of each CSA were used in this analysis.  APEX uses the concentrations from the 
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closest site to represent ambient concentrations at different locations in the study area.  Table 3-1 
lists the number of ozone monitors in each of the modeled CSAs. 

 
Table 3-1.  The Numbers of Ozone Monitors in the Study Areas 

Number of monitors Urban area (CSA) 2002 2003 2004 
Atlanta-Sandy Springs-Gainesville, GA-AL 13 12 12 

Boston-Worcester-Manchester, MA-NH 17 19 15 

Chicago-Naperville-Michigan City, IL-IN-WI 32 30 27 

Cleveland-Akron-Elyria, OH 11 11 11 

Detroit-Warren-Flint, MI 10 10 10 

Houston-Baytown-Huntsville, TX 21 23 21 

Los Angeles-Long Beach-Riverside, CA 45 43 44 

New York-Newark-Bridgeport, NY-NJ-CT-PA 30 30 29 

Philadelphia-Camden-Vineland, PA-NJ-DE-MD 18 17 16 

Sacramento--Arden-Arcade--Truckee, CA-NV 21 22 22 

St. Louis-St. Charles-Farmington, MO-IL 18 18 17 

Washington-Baltimore-N. Virginia, DC-MD-VA-WV 28 28 26 
 

3.2.1 Missing Data Replacement 
 
 Missing air quality data were estimated by the following procedure.  Where there were 
consecutive strings of missing values (data gaps of less than 6 hours, missing values were 
estimated by linear interpolation between the valid values at the ends of the gap.  Remaining 
missing values at a monitor were estimated by fitting linear regression models for each hour of 
the day, with each of the other monitors, and choosing the model which maximizes R2 for each 
hour of the day, subject to the constraints that R2 be greater than 0.5 and the number of 
regression data values is at least 50.  If there were any remaining missing values at this point, for 
gaps of less than 9 hours, missing values were estimated by linear interpolation between the valid 
values at the ends of the gap.  Any remaining missing values were replaced with the regionwide 
mean for that hour. 
 

3.3 Air Quality Projections for Alternative Standards Scenarios 

 In addition to modeling exposures based on historical air quality, an analysis was 
conducted using air quality representative of just meeting the current 8-hour O3 NAAQS of 0.08 
ppm, as well as seven alternative standards.  This was done using a quadratic rollback approach 
to adjust the hourly O3 concentrations observed in 2002-2004 to yield a design value 
corresponding to the standard being modeled.  Design values for the current 8-hour O3 NAAQS 
are calculated as the 3-year averages of the annual 4th daily maximum 8-hr average concentration 
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based on the maximum monitor within an urban area.  The quadratic rollback technique 
combines both linear and quadratic elements to reduce higher concentrations more than lower 
concentrations near ambient background levels.  Table 3-2 shows the alternative standards, their 
corresponding attainment thresholds and the form of the standard used for each scenario.  
Additional details about rollback and the alternative standard scenarios can be found in the 
Ozone Staff Paper.  
 
Table 3-2.  List of the Current and Alternative 8-hour Ozone Standard Scenarios used in 
the Exposure Analysis 

Attainment Threshold Form of Standard Labels for 
graphs 

0.084 ppm 3rd-highest form 
4th-highest form 

85/3 
85/4 

0.080 ppm 4th-highest form 81/4 

0.074 ppm 
3rd-highest form 
4th-highest form 
5th-highest form 

75/3 
75/4 
75/5 

0.070 ppm 4th-highest form 71/4 
0.064 ppm 4th-highest form 65/4 
 
 
3.4 Meteorological Data 

Hourly temperature data are from the National Climatic Data Center Surface Airways 
Hourly TD-3280 dataset (NCDC Surface Weather Observations).  Daily average and 1-hour 
maxima are computed from these hourly data. 

 
There are two files that are used to provide meteorological data to APEX.  One file, the 

meteorological station location file, contains the locations of meteorological data recordings, 
expressed in latitude and longitude coordinates.  This file also contains start and end dates for the 
data recording periods.  The temperature data file contains the data from the locations in the 
temperature zone location file.  This file contains daily maximum and daily average temperature 
readings for the period being modeled for the meteorological stations in and around the study 
area.  Table 3-3 lists the meteorological stations used for each modeled area. 
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Table 3-3    The Meteorological Stations for Each Study Area 

Urban area (CSA) NWS station ID 
(WBAN) 

Atlanta-Sandy Springs-Gainesville, GA-AL 03813, 13873, 13874, 13882, 93842 

Boston-Worcester-Manchester, MA-NH 14739, 14745, 14765, 94746 

Chicago-Naperville-Michigan City, IL-IN-WI 14839, 14848, 94822, 94846 

Cleveland-Akron-Elyria, OH 14820, 14852, 
14860, 14891, 14895 

Detroit-Warren-Flint, MI 14822, 14826, 14836, 94830, 94847 

Houston-Baytown-Huntsville, TX 12912, 12917, 12960, 93987 

Los Angeles-Long Beach-Riverside, CA 23129, 23155, 23161, 23174, 23188, 
23190 

New York-Newark-Bridgeport, NY-NJ-CT-PA 04725, 04781, 13739, 14732, 14734, 
14737, 14740, 14765, 14777, 93730, 
94702, 94728, 94789 

Philadelphia-Camden-Vineland, PA-NJ-DE-MD 13739, 13781, 14737, 93730 

Sacramento--Arden-Arcade--Truckee, CA-NV 23185, 23232, 23237 

St. Louis-St. Charles-Farmington, MO-IL 13994, 93822 

Washington-Baltimore-N. Virginia, DC-MD-VA-WV 13740, 13743, 13781, 14711, 93721, 
93738, 93739 

 

3.5 Population Demographics 

APEX takes population characteristics into account to develop accurate representations of 
study area demographics.  Specifically, population counts by area and employment probability 
estimates are used to develop representative profiles of hypothetical individuals for the 
simulation. 

APEX is very flexible in the resolution of population data provided.  As long as the data 
are available, any resolution can be used (e.g., county, census tract, census block).  For this 
application of the model, we used census tract level data.  

Tract-level population counts come from the 2000 Census of Population and Housing 
Summary File 1.  Summary File 1 (SF 1) contains the 100-percent data, which is the information 
compiled from the questions asked of all people and about every housing unit.  The first level of 
official Census race categories and their abbreviations are: 
 

• White (W) 
• Black or African American (B) 
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• American Indian or Alaska native (N) 
• Asian (A) 
• Native Hawaiian or other Pacific Islander (OH) 
• Other single race (OO) 
• Two or more races combined (O2) 

 
The categories OH, OO, and O2 were combined into a single “Other” class (“O”) for modeling 
purposes.  Hispanics are not separated, as the Census Bureau did not consider Hispanic to be a 
race. 
 

In the 2000 U.S. Census, estimates of employment were developed by census tract.  
Employment data from the 2000 census can be found on the U.S. census web site at the address 
http://www.census.gov/population/www/cen2000/phc-t28.html (Employment Status: 2000- 
Supplemental Tables).  The file input to APEX is broken down by gender and age group, so that 
each gender/age group combination is given an employment probability fraction (ranging from 0 
to 1) within each census tract. The age groupings in this file are: 16-19, 20-21, 22-24, 25-29, 30-
34, 35-44, 45-54, 55-59, 60-61, 62-64, 65-69, 70-74, and >75.  Children under 16 years of age 
are assumed to be not employed. 

3.6 Asthma Prevalence Rates 

One of the important population subgroups for the exposure assessment is asthmatic 
children. Evaluation of the exposure of this group with APEX requires the estimation of 
children’s asthma prevalence rates, detailed in Appendix G. The estimates are based on 
children’s asthma prevalence data from the National Health Interview Survey (NHIS) for 2003. 
Asthma prevalence rates for children aged 0 to 17 years were calculated for each age, gender, 
and region. The regions defined by NHIS are the Census Regions: “Midwest,” “Northeast,” 
“South,” and “West.” The reported survey responses were weighted to take into account the 
complex survey design of the NHIS survey. Standard errors and confidence intervals for the 
prevalence rates were calculated using a logistic model, taking into account the survey design.  
Logistic analysis of the prevalence relationships to age showed statistically significant 
differences between the prevalence functions for the two genders and for the four regions. 
Therefore the relationships of prevalence to age were estimated separately for each gender and 
region. A scatterplot smoothing technique using the LOESS smoother was applied to smooth the 
prevalence curves and compute the standard errors and confidence intervals for the smoothed 
prevalence estimates. 

3.7 Commuting Database 

As part of the population demographics inputs, it is important to integrate working 
patterns into the assessment.  In addition to using estimates of employment by tract, APEX also 
incorporates home-to-work commuting data. 

Commuting data were originally derived from the 2000 Census and were collected as part 
of the Census Transportation Planning Package (CTPP).  These data are available from the U.S. 
DOT Bureau of Transportation Statistics (BTS) at the web site http://transtats.bts.gov/.  The data 
used to generate APEX inputs were taken from the “Part 3-The Journey To Work” files.  These 
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files contain counts of individuals commuting from home to work locations at a number of 
geographic scales.  

These data were processed to calculate fractions for each tract-to-tract flow to create the 
national commuting data distributed with APEX.  This database contains commuting data for 
each of the 50 states and Washington, D.C.  

Commuting within the Home Tract 

The APEX data set does not differentiate people that work at home from those that 
commute within their home tract. 

Commuting Distance Cutoff 

A preliminary data analysis of the home-work counts showed that a graph of log(flows) 
versus log(distance) had a near-constant slope out to a distance of around 120 kilometers.  
Beyond that distance, the relationship also had a fairly constant slope but it was flatter, meaning 
that flows were not as sensitive to distance.  A simple interpretation of this result is that up to 
120 km, the majority of the flow was due to persons traveling back and forth daily, and the 
numbers of such persons decrease fairly rapidly with increasing distance.  Beyond 120 km, the 
majority of the flow is made up of persons who stay at the workplace for extended times, in 
which case the separation distance is not as crucial in determining the flow. 

To apply the home-work data to commuting patterns in APEX, a simple rule was chosen.  
It was assumed that all persons in home-work flows up to 120 km are daily commuters, and no 
persons in more widely separated flows commute daily.  This meant that the list of destinations 
for each home tract was restricted to only those work tracts that are within 120 km of the home 
tract.  When the same cutoff was performed on the 1990 census data, it resulted in 4.75% of the 
home-work pairs in the nationwide database being eliminated, representing 1.3% of the workers.  
The assumption is that this 1.3% of workers do not commute from home to work on a daily 
basis.  It is expected that the cutoff reduced the 2000 data by similar amounts.   

Eliminated Records 

A number of tract-to-tract pairs were eliminated from the database for various reasons. A 
fair number of tract-to-tract pairs represented workers who either worked outside of the U.S. 
(9,631 tract pairs with 107,595 workers) or worked in an unknown location (120,830 tract pairs 
with 8,940,163 workers).  An additional 515 workers in the commuting database whose data 
were missing from the original files, possibly due to privacy concerns or errors, were also 
deleted.   

3.8 Activity Patterns – CHAD 

Exposure models use human activity pattern data to predict and estimate exposure to 
pollutants.  Different human activities, such as outdoor exercise, indoor reading, or driving, have 
different pollutant exposure characteristics.  In addition, different human activities require 
different metabolic rates, and higher rates lead to higher doses.  To accurately model individuals 
and their exposure to pollutants, it is critical to have a firm understanding of their daily activities.  
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The Consolidated Human Activity Database (CHAD) provides data on human activities 
through a database system of collected human diaries, or daily activity logs.  The purpose of 
CHAD is to provide a basis for conducting multi-route, multi-media exposure assessments 
(McCurdy et al., 2000). 

The data contained within CHAD come from multiple surveys with varied structures 
(Table 3-3).  In general, the surveys have a data foundation based on daily diaries of human 
activity.  This is the foundation from which CHAD was created.  Individuals filled out diaries of 
their daily activities and this information was input and stored in CHAD.  Relevant data for these 
individuals, such as age, are included as well.  In addition, CHAD contains activity-specific 
metabolic distributions developed from literature-derived data, which are used to provide an 
estimate of metabolic rates of respondents through their various activities.  

There are four CHAD-related input files used in the APEX system. Two of these files are 
downloaded directly from the “Query Questionnaire” link on the CHADNet 
(http://www.epa.gov/chadnet1) page, and then manipulated to fit into the APEX framework.  
These are the human activity diaries file and the personal data file. 

The third input file contains metabolic information for different activities listed in the diary file.  
These metabolic activity levels are in the form of distributions.  Some activities are specified as a 
single point value (for instance, sleep), while others, such as athletic endeavors or manual labor, 
are normally, lognormally, or otherwise statistically distributed.  APEX samples from these 
distributions and calculates values to simulate the variable nature of activity levels among 
different people. 
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Table 3-3.  Summary of Studies Used in CHAD 
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Baltimore A single 
building in 
Baltimore 

01/1997-02/1997, 
07/1998-08/1998 

72-93 26 391 Diary Williams et al, 2000 

California 
Adolescents and 
Adults (CARB) 

California 10/1987-09/1988 12-17 

18-94 

183 

1,579 

183 

1,579 

Recall; Random Robinson et al. (1989), 
Wiley et al. (1991a) 

California 
Children 
(CARB) 

California 04/1989- 02/1990 0-11 1,200 1,200 Recall; Random Wiley et al. (1991b) 

Cincinnati 
(EPRI) 

Cincinnati 
metropolitan 
area 

03/1985-04/1985, 08/1985 0-86 888 2,614 Diary; Random Johnson (1989) 

Denver (EPA) Denver 
metropolitan 
area 

11/1982- 02/1983 18-70 432 805 Diary; Random Johnson (1984), Akland 
et al. (1985) 

Los Angeles: 
Elementary 
School Children 

Los Angeles 10/1989 10-12 17 51 Diary Spier et al. (1992) 
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Los Angeles: 
High School 
Adolescents 

Los Angeles 09/1990-10/1990 13-17 19 43 Diary Spier et al. (1992) 

National: 
NHAPS-Air 

National 09/1992-10/1994 0-93 4,723 4,723 Recall; Random Klepeis et al. (1995), 
Tsang and Klepeis (1996)

National: 
NHAPS-Water 

National 09/1992-10/1994 0-93 4,663 4,663 Recall; Random Klepeis et al. (1995), 
Tsang and Klepeis (1996)

Washington, 
D.C. (EPA) 

Wash., D.C. 
metropolitan 
area 

11/1982-02/1983 18-98 699 699 Diary; Random Hartwell et al. (1984), 
Akland et al. (1985) 
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The fourth input file maps five-digit location codes used in the diary file to APEX 
microenvironments.  Because each simulation may contain different numbers and types of 
microenvironments, it is important to ensure that the codes map properly to the appropriate 
microenvironment.  If this file does not represent a reasonable mapping, the model will not 
accurately simulate exposure related to daily activities. 

 Personal Information file.  Personal data are contained in the CHAD questionnaire file 
that is distributed with APEX  This file also has information for each day individuals have 
diaries.  The different variables in this file are: 
 

• The study, person, and diary day identifiers 
• Day of week 
• Gender 
• Race 
• Employment status 
• Age in years 
• Maximum temperature in degrees Celsius for this diary day 
• Mean temperature in degrees Celsius for this diary day 
• Occupation code 
• Time, in minutes, during this diary day for which no data are included in the database 

Diary Events file.  The human activity diary data are contained in a file that is distributed 
with APEX.  This is a large file because it contains diaries for about 23,000 people broken out at 
intervals ranging from one minute to one hour.  These diaries vary in length from one to 15 days.  
This file contains the following variables: 

• The study, person, and diary day identifiers 
• Start time of this activity 
• Number of minutes for this activity 
• Activity code 
• Location code 

Activity Specific Metabolic file.  The third CHAD file is also distributed with APEX and 
contains the metabolic parameters for each of the CHAD activities. 

3.9 Physiological Distributions 

APEX requires physiological parameters for subjects in order to accurately model their 
pollutant intake via metabolic processes.  This is because physiological differences may cause 
people with the same exposure and activity scenarios to have different pollutant intake levels.  
The physiological parameters file distributed with APEX is described in the APEX User’s Guide. 
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3.10 Microenvironment Specifications 

 The microenvironments in APEX provide the specific locations within an air quality 
district where modeled individuals are exposed to pollutants.  Microenvironments are used to 
capture the differences between exposure concentrations in different types of environments (e.g., 
indoors, in cars, outdoors) within an area with the same estimated ambient air concentration.  
There are two basic methods for calculating concentrations in microenvironments: the transfer 
factors method and the mass balance method. The parameters for both factors and mass balance 
calculations used in this simulation are listed in Table 3-4. 

 

Table 3-4.  Microenvironment Parameter Information 

Calculation Method 
Parameter 
Type with 

Abbreviation 

Units  Distribution 

Proximity (PR) unitless Normal distribution Transfer Factors 

Penetration (PE) unitless Normal distribution 
Proximity (PR) unitless Normal distribution 
Decay Rate 
(DE) 1/hr  Lognormal distribution 

Mass Balance 

Air exchange 
rate (AER) Air changes/hr  Lognormal distribution 

 
 The factors method is used to model simple environments, like outdoor areas, that do not 
contain pollutant sources.  The ambient ozone concentrations are from the air quality data input 
file.  There are two parameters that affect the pollutant concentration calculation in the factors 
method, the proximity and penetration factors.  The proximity factor is a unitless parameter that 
represents the proximity of the microenvironment to a monitoring station.  The penetration factor 
is a unitless parameter that represents the fraction of pollutant entering a microenvironment from 
outside the microenvironment via air exchange.  The development of the proximity factors and 
penetration factors used in this analysis is discussed in Appendix A.  
 

The mass balance method is more appropriate for complex environments.  In addition to 
proximity factors and penetration factors, this method supports parameters for emissions sources, 
decay rate, air exchange rate, volume, and the average removal rate.  Each of these parameters 
can be modeled within the microenvironment or left out of the simulation.  Both decay rate and 
emissions sources have a default value of zero, which gives them no effect on the simulation.  
The air exchange rate and volume have no default values.  They only effect the 
microenvironment calculation if they are specifically included in the definition of the 
microenvironment.  Several microenvironments using the mass balance method utilize one or 
more of these additional parameters.  See Appendix A for a full description of the values used for 
the development of these parameters.  
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3.10.1 Microenvironments Modeled 

 In APEX, microenvironments provide the exposure locations for modeled individuals.  
For exposures to be estimated accurately, it is important to have realistic microenvironments that 
match closely to the locations where actual people spend time on a daily basis.  

As discussed above, the two methods available in APEX for calculating pollutant levels 
within microenvironments are: 1) factors and 2) mass balance.  A list of microenvironments used 
in this study, the calculation method used, and the parameters used to calculate the 
microenvironment concentrations can be found in Table 3-5. 

Table 3-5.  List of Microenvironments and Calculation Methods Used  

Microenvironment Calculation 
Method 

Parameter Types 
used 1 

Indoors – Residence Mass balance AER and DE 

Indoors – Bars and restaurants Mass balance AER and DE 

Indoors – Schools Mass balance AER and DE 

Indoors – Day-care centers Mass balance AER and DE 

Indoors – Office Mass balance AER and DE 

Indoors – Shopping Mass balance AER and DE 

Indoors – Other Mass balance AER and DE 

Outdoors – Near road Factors PR 

Outdoors – Public garage - parking lot Factors PR 

Outdoors – Other Factors None 

In-vehicle – Cars and Trucks Factors PE and PR 

In-vehicle - Mass Transit (bus, 
subway, train) 

Factors PE and PR 

             1 AER=air exchange rate, DE=decay-deposition rate, PR=proximity factor, PE=penetration factor 

Each of the microenvironments is designed to simulate an environment in which people 
spend time during the day.  CHAD locations are linked to the different microenvironments in the 
Microenvironment Mapping File (see Section 3.8.4).  There are many more CHAD locations 
than microenvironment locations (there are 113 CHAD codes versus 12 microenvironments in 
this assessment) and thus most of the microenvironments have multiple CHAD locations mapped 
to them.   

The mass balance microenvironments have two parameters defined, the air exchange rate 
and the decay rate.  The air exchange rate models the exchange of outside air with the 
microenvironment, while the decay rate models the rate of ozone breakdown or removal within 
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the microenvironment.  The development of air exchange rate values for this analysis is 
discussed in Section 3.9.2 and Appendix A.  The development of the decay rate distribution is 
described in Section 3.9.3.   

 

3.10.2 Microenvironment Descriptions 

Microenvironment #1: Indoors-Residence.  The Indoors-Residence Microenvironment 
accounts for three variables that affect ozone exposure: whether or not air conditioning is 
present, the average outdoor temperature, and the ozone decay rate.  The first two of these 
variables affect the air exchange rate.  An excerpt from the input file describing this 
microenvironment appears after this paragraph.  

The first  section of the excerpt specifies the air exchange rate distributions for the 
microenvironment.  Average temperature and air conditioning presence, which are city-specific, 
were coded into air exchange rate conditional variables C1 and C2, respectively.  Average 
temperatures were broken into five categories: less than 50 degrees F, 50 to 68, 68 to 77, 77 to 
86, and 86 and above.  Using data from several studies, air exchange rate estimates in the form of 

Micro number      = 1         !     Indoors - residence 
Parameter Type    = AER 
Condition # 1     = AvgTempCat 
Condition # 2     = AC_Home 
ResampHours       = NO 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1     1   Lognormal   .1      10      0.956   1.962 
1        1           1          1       2     1     1   Lognormal   .1      10      0.517   2.017 
1        1           1          1       3     1     1   Lognormal   .1      10      0.524   2.189 
1        1           1          1       4     1     1   Lognormal   .1      10      0.392   2.076 
1        1           1          1       5     1     1   Lognormal   .1      10      0.392   2.076 
1        1           1          1       1     2     1   Lognormal   .1      10      0.754   2.317 
1        1           1          1       2     2     1   Lognormal   .1      10      0.698   2.180 
1        1           1          1       3     2     1   Lognormal   .1      10      1.367   2.292 
1        1           1          1       4     2     1   Lognormal   .1      10      1.067   1.989 
1        1           1          1       5     2     1   Lognormal   .1      10      1.067   1.989 
 
Micro number      = 1 
Parameter Type    = DE 
ResampHours       = NO 
ResampDays        = NO 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1          1           1      1      1    1  LogNormal  0.95    8.05    2.51   1.53 
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lognormal distributions were generated.  These functions are specific to the cities in the model 
run.  For cities with similar climatic and other relevant characteristics, the same distributions 
were used (e.g., New York, Philadelphia, and Boston use the same distributions).  The data 
sources used and the development of these distributions are discussed in detail in Appendix A.  
The ozone decay rate is characterized as a lognormal distribution (as shown in the last section of 
the excerpt).  The development of the decay rate is discussed in Section 3.9.3.  

In the input file excerpt, there is a large block of numbers (which totals ten rows) in the 
air exchange rate portion of the file.  In this block, the fifth number across, which falls under 
“C1” in the excerpt, represents the temperature.  The code “C1” represents “Conditional Variable 
1.”  In this range, the numeral one represents temperatures below 50 Fahrenheit, two represents 
temperatures from 50 to 68, three represents 68 to 77, four represents 77 to 86, and five 
represents 86 and above.  The sixth number in this block, which falls under “C2” and ranges 
from one to two, represents air conditioning status, with the numeral one representing having an 
air conditioning, and two not having it.  There are five distributions listed for each value, for a 
total of ten distributions.  In the above example, there are actually four different distributions for 
each air conditioning setting; the last two distributions for each air conditioning setting (which 
represent temperature ranges from 77 to 86, and 86 and above) are the same.   

An example of how this microenvironment would function may help to elucidate the 
code.  For the city of Atlanta, it is estimated that 85 percent of the population has air 
conditioning in the home, and 15 percent does not (see Appendix A for more information on the 
origin of these data).  These percentages are included in the Profile Functions file, which is 
discussed in Section 3.9.  Using these percentages, APEX can stochastically generate air 
conditioning status for a profiled individual.  In addition, APEX takes as input the daily average 
temperature in Atlanta.  Based on the air conditioning status and the temperature, the appropriate 
one of the ten distributions listed is chosen for a particular profile.  For example, if the profile 
had air conditioning and the average temperature was 70, the third row would be chosen to 
characterize the air exchange rate.  If the profile had no air conditioning, and the average 
temperature was 90, the tenth row would be chosen. 

 Microenvironments 2-7: All other indoor microenvironments.  The remaining five 
indoor microenvironments, which represent Bars and Restaurants, Schools, Day Care Centers, 
Office, Shopping, and Other environments, are all modeled using the same data and functions.  
The data and methodology for developing these functions are detailed in Appendix A.  An 
excerpt from the input file describing one of these microenvironments is given on the next page. 

 As with the Indoor-Residence microenvironment, these microenvironments use both air 
exchange rates and decay rates to calculate exposures within the microenvironment.  The air 
exchange rate distribution was developed based on an indoor air quality study (Persily et al, 
2005).  This research indicated that the lognormal distributions should provide effective 
modeling of ozone exposure.   The decay rate is the same as used in the Indoor-Residence 
microenvironment, and is discussed in Section 3.9.3. 
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Microenvironments 8 and 9: Outdoor microenvironments.  Two outdoor 
microenvironments, the Near Road and Public Garage/Parking Lot environments, are different 
from the indoor microenvironments in that they use the factors method to calculate pollutant 
exposure.  Proximity factors were developed to estimate exposures in these microenvironments.  
Penetration factors are not applicable to outdoor environments.  An excerpt from the file 
describing this microenvironment follows this paragraph. 

The distribution for the proximity factor was developed from an ozone study (Johnson et 
al, 1995) conducted in the greater Cincinnati metropolitan area in August and September, 1994 
(see Appendix A for details on this study).  Vehicle tests were conducted according to an 
experimental design specifying the vehicle type, road type, vehicle speed, and ventilation mode. 

Microenvironment 10:  Outdoors-General.  The general outdoor environment 
concentrations should be well represented by the ambient monitors.  Therefore the penetration 
factor and proximity factor for this microenvironment were set to 1. 

 

Micro number      = 8         !     Outdoor near road 
Parameter Type    = PR 
ResampHours       = YES 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1          1           1       1     1     1   Normal     0.422   1.0    0.755  0.203 

Micro number      = 2         !     Bars & restaurants     
Parameter Type    = AER 
ResampHours       = NO 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1    1  LogNormal  0.07   13.8   1.109  3.015 
 
Micro number      = 2 
Parameter Type    = DE 
ResampHours       = NO 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1    1  LogNormal   0.95   8.05   2.51   1.53 



 

 38 

Microenvironments 11 and 12:  In Vehicle- Cars and Trucks, and Mass Transit.  Both 
of these microenvironments were calculated using the same values.  These microenvironments 
use the factors method to calculate pollutant exposure.  Both proximity factors and penetration 
factors were developed to estimate exposures in the microenvironments.  Again, the optional 
concentration source variable is not relevant to ozone studies and was not used.  An excerpt from 
the file describing this microenvironment follows this discussion. 

The penetration factor distribution was developed using the inside-vehicle to outside-
vehicle ratios from the Cincinnati ozone study previously mentioned (Johnson et al, 1995).  
Three proximity factor distributions were developed, one for local roads, one for urban roads, 
and one for interstates.  The proportion of vehicle miles traveled in each city was estimated and 
used to weight the selection of the distributions.  These weightings are included in the Profile 
Functions file, which is discussed in Section 3.11.  Again, these distributions were developed 
based on the Cincinnati ozone study.   

          

3.10.3 Ozone Decay and Deposition Rates  

For this analysis, the same ozone decay rate distribution was used for all 
microenvironments that use the mass balance method.  This distribution is based on data from an 
ozone decay study (Lee et al., 1999).  This study measured decay rates in the living rooms of 43 
residences in Southern California.  Measurements of decay rates in a second room were made in 
24 of these residences.  The 67 decay rates range from 0.95 to 8.05 hour-1.  A lognormal 
distribution was fit to the measurements from this study, yielding a geometric mean of 2.5 and a 
geometric standard deviation of 1.5.  These values are constrained to lie between 0.95 and 8.05 
hour-1. The specification of the decay rate (parameter type = DE) is shown in the file excerpts for 
the residential microenvironment and the other indoor microenvironments above. 
 

Micro number      = 11        !     Cars & trucks  
Parameter Type    = PE 
ResampHours       = YES 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1     1    Normal      0.1     1.0     0.300  0.232 
 
Micro number      = 11         
Parameter Type    = PR 
Condition # 1     = Conditional1 
ResampHours       = YES 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1            1         1       1     1     1    Normal     0.422   1.0    0.755  0.203 
1        1            1         1       2     1     1    Normal     0.355   1.0    0.754  0.243 
1        1            1         1       3     1     1    Normal     0.093   1.0    0.364  0.165 
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3.10.4 Microenvironment Mapping 

The Microenvironment Mapping file matches the APEX Microenvironments to CHAD 
Location codes.  Table 3-6 gives the mapping used for the APEX simulations. 

Table 3-6.  Mapping of CHAD activity locations to APEX microenvironments 
 
CHAD Loc.  Description                            APEX micro 
---------  ------------------------------------------------- 
U          Uncertain of correct code            =   -1  Unknown                        
X          No data                              =   -1  Unknown                        
30000      Residence, general                   =    1  Indoors-Residence              
30010      Your residence                       =    1  Indoors-Residence              
30020      Other residence                      =    1  Indoors-Residence              
30100      Residence, indoor                    =    1  Indoors-Residence              
30120      Your residence, indoor               =    1  Indoors-Residence              
30121      ..., kitchen                         =    1  Indoors-Residence              
30122      ..., living room or family room      =    1  Indoors-Residence              
30123      ..., dining room                     =    1  Indoors-Residence              
30124      ..., bathroom                        =    1  Indoors-Residence              
30125      ..., bedroom                         =    1  Indoors-Residence              
30126      ..., study or office                 =    1  Indoors-Residence              
30127      ..., basement                        =    1  Indoors-Residence              
30128      ..., utility or laundry room         =    1  Indoors-Residence              
30129      ..., other indoor                    =    1  Indoors-Residence              
30130      Other residence, indoor              =    1  Indoors-Residence              
30131      ..., kitchen                         =    1  Indoors-Residence              
30132      ..., living room or family room      =    1  Indoors-Residence              
30133      ..., dining room                     =    1  Indoors-Residence              
30134      ..., bathroom                        =    1  Indoors-Residence              
30135      ..., bedroom                         =    1  Indoors-Residence              
30136      ..., study or office                 =    1  Indoors-Residence              
30137      ..., basement                        =    1  Indoors-Residence              
30138      ..., utility or laundry room         =    1  Indoors-Residence              
30139      ..., other indoor                    =    1  Indoors-Residence              
30200      Residence, outdoor                   =   10  Outdoors-Other                 
30210      Your residence, outdoor              =   10  Outdoors-Other                 
30211      ..., pool or spa                     =   10  Outdoors-Other                 
30219      ..., other outdoor                   =   10  Outdoors-Other                 
30220      Other residence, outdoor             =   10  Outdoors-Other                 
30221      ..., pool or spa                     =   10  Outdoors-Other                 
30229      ..., other outdoor                   =   10  Outdoors-Other                 
30300      Residential garage or carport        =    7  Indoors-Other                  
30310      ..., indoor                          =    7  Indoors-Other                  
30320      ..., outdoor                         =   10  Outdoors-Other                 
30330      Your garage or carport               =    1  Indoors-Residence              
30331      ..., indoor                          =    1  Indoors-Residence              
30332      ..., outdoor                         =   10  Outdoors-Other                 
30340      Other residential garage or carport  =    1  Indoors-Residence              
30341      ..., indoor                          =    1  Indoors-Residence              
30342      ..., outdoor                         =   10  Outdoors-Other                 
30400      Residence, none of the above         =    1  Indoors-Residence              
31000      Travel, general                      =   11  In Vehicle-Cars_and_Trucks     
31100      Motorized travel                     =   11  In Vehicle-Cars_and_Trucks     
31110      Car                                  =   11  In Vehicle-Cars_and_Trucks     
31120      Truck                                =   11  In Vehicle-Cars_and_Trucks     
31121      Truck (pickup or van)                =   11  In Vehicle-Cars_and_Trucks     
31122      Truck (not pickup or van)            =   11  In Vehicle-Cars_and_Trucks     
31130      Motorcycle or moped                  =    8  Outdoors-Near_Road             
31140      Bus                                  =   12  In Vehicle-Mass_Transit        
31150      Train or subway                      =   12  In Vehicle-Mass_Transit        
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31160      Airplane                             =    0  Zero_concentration             
31170      Boat                                 =   10  Outdoors-Other                 
31171      Boat, motorized                      =   10  Outdoors-Other                 
31172      Boat, other                          =   10  Outdoors-Other                 
31200      Non-motorized travel                 =   10  Outdoors-Other                 
31210      Walk                                 =   10  Outdoors-Other                 
31220      Bicycle or inline skates/skateboard  =   10  Outdoors-Other                 
31230      In stroller or carried by adult      =   10  Outdoors-Other                 
31300      Waiting for travel                   =   10  Outdoors-Other                 
31310      ..., bus or train stop               =    8  Outdoors-Near_Road             
31320      ..., indoors                         =    7  Indoors-Other                  
31900      Travel, other                        =   11  In Vehicle-Cars_and_Trucks     
31910      ..., other vehicle                   =   11  In Vehicle-Cars_and_Trucks     
32000      Non-residence indoor, general        =    7  Indoors-Other                  
32100      Office building/ bank/ post office   =    5  Indoors-Office                 
32200      Industrial/ factory/ warehouse       =    5  Indoors-Office                 
32300      Grocery store/ convenience store     =    6  Indoors-Shopping               
32400      Shopping mall/ non-grocery store     =    6  Indoors-Shopping               
32500      Bar/ night club/ bowling alley       =    2  Indoors-Bars_and_Restaurants   
32510      Bar or night club                    =    2  Indoors-Bars_and_Restaurants   
32520      Bowling alley                        =    2  Indoors-Bars_and_Restaurants   
32600      Repair shop                          =    7  Indoors-Other                  
32610      Auto repair shop/ gas station        =    7  Indoors-Other                  
32620      Other repair shop                    =    7  Indoors-Other                  
32700      Indoor gym /health club              =    7  Indoors-Other                  
32800      Childcare facility                   =    4  Indoors-Day_Care_Centers       
32810      ..., house                           =    1  Indoors-Residence              
32820      ..., commercial                      =    4  Indoors-Day_Care_Centers       
32900      Large public building                =    7  Indoors-Other                  
32910      Auditorium/ arena/ concert hall      =    7  Indoors-Other                  
32920      Library/ courtroom/ museum/ theater  =    7  Indoors-Other                  
33100      Laundromat                           =    7  Indoors-Other                  
33200      Hospital/ medical care facility      =    7  Indoors-Other                  
33300      Barber/ hair dresser/ beauty parlor  =    7  Indoors-Other                  
33400      Indoors, moving among locations      =    7  Indoors-Other                  
33500      School                               =    3  Indoors-Schools                
33600      Restaurant                           =    2  Indoors-Bars_and_Restaurants   
33700      Church                               =    7  Indoors-Other                  
33800      Hotel/ motel                         =    7  Indoors-Other                  
33900      Dry cleaners                         =    7  Indoors-Other                  
34100      Indoor parking garage                =    7  Indoors-Other                  
34200      Laboratory                           =    7  Indoors-Other                  
34300      Indoor, none of the above            =    7  Indoors-Other                  
35000      Non-residence outdoor, general       =   10  Outdoors-Other                 
35100      Sidewalk, street                     =    8  Outdoors-Near_Road             
35110      Within 10 yards of street            =    8  Outdoors-Near_Road             
35200      Outdoor public parking lot /garage   =    9  Outdoors-Public_Garage-Parking 
35210      ..., public garage                   =    9  Outdoors-Public_Garage-Parking 
35220      ..., parking lot                     =    9  Outdoors-Public_Garage-Parking 
35300      Service station/ gas station         =   10  Outdoors-Other                 
35400      Construction site                    =   10  Outdoors-Other                 
35500      Amusement park                       =   10  Outdoors-Other                 
35600      Playground                           =   10  Outdoors-Other                 
35610      ..., school grounds                  =   10  Outdoors-Other                 
35620      ..., public or park                  =   10  Outdoors-Other                 
35700      Stadium or amphitheater              =   10  Outdoors-Other                 
35800      Park/ golf course                    =   10  Outdoors-Other                 
35810      Park                                 =   10  Outdoors-Other                 
35820      Golf course                          =   10  Outdoors-Other                 
35900      Pool/ river/ lake                    =   10  Outdoors-Other                 
36100      Outdoor restaurant/ picnic           =   10  Outdoors-Other                 
36200      Farm                                 =   10  Outdoors-Other                 
36300      Outdoor, none of the above           =   10  Outdoors-Other                 
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3.11 Profile Functions 
 
The Profile Functions file contains settings used to generate results for variables related 

to simulated individuals.  While certain settings for individuals are generated automatically by 
APEX based on other input files, including demographic characteristics, others can be specified 
using this file.  For example, the file may contain settings for determining whether the profiled 
individual has a car air conditioner, a gas stove, etc.  The details and mechanics of this process 
are discussed in Section 2.3.2.   

 
As discussed in Section 3.8.2, the Profile Functions file contains fractions indicating the 
prevalence of air conditioning in the cities modeled in this experiment.  APEX uses these 
fractions to stochastically generate air conditioning status for profiled individuals.  The 
derivation of this data is discussed in Appendix A.  An excerpt from the file describing this 
microenvironment follows this paragraph. 

  
 

 
 
 

One user-defined function was included in the Profile Functions file in order to reflect 
regional driving characteristics.  The Conditional1 function is used to simulate In-vehicle 
penetration factors for modeled individuals.  An excerpt from the file describing this 
microenvironment follows this paragraph. 

 
 
 
 
 
 
 
 

 
 

Conditional1 
! Penetration values for vehicles ME 11 and 12 
TABLE 
INPUT1 PROBABILITY 3    
0.14 0.55 0.31 
RESULT INTEGER 3         
1 2 3 
# 

AC_Home 
! Has air conditioning at home 
TABLE 
INPUT1 PROBABILITY 2     “A/C probabilities” 
0.85 0.15 
RESULT INTEGER 2         “Yes/No” 
1 2 
# 
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The function contains different distributions for three road types: urban, local, and 
interstate.  These distributions model how the road type affects pollutant level penetration into 
the microenvironment.  For each of the 12 locations modeled, the percentage of vehicle miles 
traveled on each road type was generated from 2003 Federal Highway Administration data 
(FHWA, 2004).  These percentages are listed as fractions on the fifth line of the above excerpt.  
Using these percentages, the function allowed each of the distributions, which are defined in the 
microenvironment file, to be selected based on the amount of vehicle miles traveled in the area.  
See Appendix A for more information on development of the distributions in the 
microenvironments. 
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4. PRINCIPAL LIMITATIONS AND UNCERTAINTIES OF THE MODELING 

APPROACH 

Inhalation exposure and risk modeling attempts to simulate real world conditions in order 
to accurately estimate exposures to pollutants and their resulting risk.  In general, the methods 
and the model used in this assessment conform to the most contemporary modeling 
methodologies available.  APEX is a powerful, highly customizable modeling system that allows 
for the realistic estimation of air pollutant exposure to individuals.  Since it is based on human 
activity diaries and accounts for all important variables known to affect exposure, it has the 
ability to effectively approximate actual conditions.  In addition, the data used to run the system 
were chosen because they were the best available to ensure realistic and defensible results.  
However, there are constraints and uncertainties with the modeling approach and the input data 
that limit the realism and accuracy of the model results. 

4.1 Methodology 

As described in Appendix A, several ozone and air pollution studies were reviewed, and 
data from these studies were used to develop the parameters and factors that were used to build 
the microenvironments in this assessment.  A constraint on this effort is that there are limited 
ozone exposure studies. In addition, there are geographical limitations of the studies used to 
develop factors for this assessment.  While these studies were generally performed in the 
geographical areas modeled in this assessment or in similar areas, there were differences that 
could lend uncertainty.  For example, the ozone study (Johnson et al, 1995) that was used to 
develop proximity factors for in-vehicle microenvironments for all 12 cities was performed in 
Cincinnati.  In addition, the air exchange rate distributions used for Boston, Chicago, Cleveland, 
and Philadelphia were developed from a study conducted in New York City.  It is possible that 
climatic and other differences among these cities would produce different results.  Scientific 
judgments were made in choosing appropriate data and information sources to best model ozone 
exposures.  However, it is possible that despite best efforts there could be different 
interpretations about which data sources and methodologies are appropriate.  Evaluation of 
several components of uncertainty in specification of CSA-specific air exchange rates are 
discussed below. 

There are other areas of the modeling approach that have either assumptions or estimates 
that could affect results.  For example, the microenvironments that are used in the program are 
matched to CHAD data.  Because there are fewer microenvironments than CHAD locations, 
there is some information lost in this translation.  

4.2 Input Data 

Modeling results are heavily dependent on the quality of the data that are input to the 
system.  The data for this analysis were selected in order to give the best opportunity to simulate 
actual conditions.  One benefit of using well characterized data as inputs to the model is that 
limitations and other problems with the data are well understood.  Still, the limitations and 
uncertainties of each of the data streams affect the overall quality of the model output.  These 



 

 44 

issues and how they specifically affect each data stream are discussed in this section.  The 
highest quality data streams are discussed first.   

4.2.1 Meteorological Data   

The least problematic of the data input to APEX are likely the meteorological data.  
These data are taken directly from monitoring stations in the assessment areas.  One strength of 
these data is that it is relatively easy to see significant errors if they appear in the data.  Because 
general climactic conditions are known for each area simulation, it would have been apparent 
upon review if there were outliers in the dataset.  However, there are limitations in the use of 
these data.  Because APEX only uses one temperature value per day, the model does not 
represent hour-to-hour variations in meteorological conditions throughout the day that may affect 
both ozone formation and exposure estimates within microenvironments. 

4.2.2 Air Quality Data 

The air quality data are taken directly from monitoring sites within each of the study 
areas, and thus the data are reliable and of high quality.  Some data issues specific to air quality 
data result from the nature of pollutant formation and dispersion.  Because many variables affect 
pollutant fate and transport, it is difficult to determine exactly how concentrations in the vicinity 
of a monitoring station may differ from the concentrations at other locations.  Pollutant levels are 
highly dependent on weather and wind, and other unknowns may effect how well the data 
represent pollutant concentrations in the area.  However, because APEX uses hourly average 
ozone concentrations, the model employs a temporally refined pollutant concentration record, 
which increases the accuracy of both ozone concentration and exposure estimates. 

4.2.3 Population and Commuting Data 

The population and commuting data are drawn from U.S. Census data from the year 
2000.  This is a high quality data source for nationwide population data in the U.S.  However, the 
data do have limitations.  The Census used random sampling techniques instead of attempting to 
reach all households in the U.S., as it has in the past.  While the sampling techniques are well 
established and trusted, they introduce some uncertainty to the system.  The Census has a quality 
section (http://www.census.gov/quality/) that discusses these and other issues with Census data.   

In addition to these data quality issues, certain simplifying assumptions were made in 
order to better match reality or to make the data match APEX input specifications.  For example, 
the APEX dataset does not differentiate people that work at home from those that commute 
within their home tract, and individuals that commute over 120 km a day were assumed to not 
commute daily.  In addition to emphasizing some of the limitations of the input data, these 
assumptions introduce some uncertainty to the results.  These issues were discussed in Sections 
3.5 and 3.6.   

4.2.4 Physiological Data 

Because the physiological data were drawn from a sample, it is possible that they do not 
accurately mirror national physiological characteristics.  Furthermore, on a larger scale, it is 
possible that national physiological characteristics have drifted somewhat since the publication 
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of these data.  For example, both the marked rise in obesity and ongoing national demographic 
shifts could result in some inaccuracies.   

4.2.5 Activity Pattern Data   

It is probable that the CHAD data used in the system is the most subject to limitations 
and uncertainty of all the data used in the system.  Much of the data used to generate the daily 
diaries are over 20 years old.  Table 3-3 indicates the ages of the CHAD diaries used in this 
modeling analysis.  While the specifics of people’s daily activities may not have changed much 
over the years, it is certainly possible that some differences do exist.  In addition, the CHAD data 
are taken from numerous surveys that were performed for different purposes.  Some of these 
surveys lasted only a day while others went on for weeks.  Some of the studies were specifically 
designed not to be representative of the population at large in order to fulfill their specific 
mission when they were conducted.  These issues affect the overall quality of the data that now 
resides in CHAD.  An investigation on the sensitivity of the APEX results to the activity pattern 
database is discussed below.  
 

4.2.6 Air Exchange Rates   

 There are several components of uncertainty in the CSA-specific residential air exchange 
rate distributions used for this analysis. Appendix D details an analyses of uncertainty due to 
extrapolation of air exchange rate distributions among CSAs , and of within-CSA uncertainty 
due to sampling variation. In Appendix E we describe an analysis of the uncertainty due to 
estimating daily air exchange rate distributions from air exchange rate measurements with 
varying averaging times. The results of those investigations are summarized here. 
 
 Extrapolation among cities CSA-specific distributions for use with the APEX ozone 
model were developed for 12 target CSAs, as detailed in Appendix A. Because we did not have 
CSA-specific data for all the 12 CSAs targeted in this analysis, for many we used data from 
another CSA or a combinations of other CSAs thought to have similar characteristics with 
respect to factors that might influence air exchange rates (see Table 4-1). Such factors include 
age composition of housing stock, construction methods, and other meteorological variables not 
explicitly treated in the analysis, such as humidity and wind speed patterns. In order to assess the 
uncertainty associated with this extrapolation, we investigated the between-CSA uncertainty by 
examining the variation of the geometric means and standard deviations across cities and studies.  
 
 The analysis showed a relatively wide variation across different cities in the air exchange 
rate geometric mean and standard deviation, stratified by air-conditioning status and temperature 
range. This implies that the air exchange rate modeling results would be very different if the 
matching of modeled CSAs to study CSAs was changed, although a sensitivity study using the 
APEX model would be needed to assess the impact on the ozone exposure estimates. For 
example, the ozone exposure estimates may be sensitive to the assumption that the St. Louis air 
exchange rate distributions can be represented by the combined non-California air exchange rate 
data. One way to address this would to perform a Monte Carlo analysis where the first stage is to 
randomly select a CSA outside of California, the second stage picks the air conditioning status, 
and the third stage picks the air exchange rate value from the assigned distribution for the CSA, 
air conditioning status and temperature range. Note that this will result in a very different 



 

 46 

distribution to the current approach for St. Louis that fits a single log-normal distribution to all 
the non-California data for a given temperature range and air conditioning status. The current 
approach weights each data point equally, so that CSAs like New York with most of the data 
values get the greatest statistical weight. The Monte Carlo approach gives the same total 
statistical weight for each CSA and fits a mixture of log-normal distributions rather than a single 
distribution. 
 
 Within CSA uncertainty In general, there is also some variation within studies for the 
same CSA, but this is much smaller than the variation across CSAs. This finding tends to support 
the approach of combining different studies for a CSA. 
 
 In addition, we assessed the within-city uncertainty by using a bootstrap distribution to 
estimate the effects of sampling variation on the fitted geometric means and standard deviations 
for each CSA. The bootstrap distributions assess the uncertainty due to random sampling 
variation but do not address uncertainties due to the lack of representativeness of the available 
study data or the variation in the lengths of the AER monitoring periods. The analysis showed 
that the geometric standard deviation uncertainty for a given CSA/air-conditioning-
status/temperature-range combination tended to have a range of at most from “fitted GSD-1.0 hr-

1” to “fitted GSD+1.0 hr-1”, but the intervals based on larger AER sample sizes were frequently 
much narrower. The ranges for the geometric means tended to be approximately from “fitted 
GM-0.5 hr-1” to “fitted GM+0.5 hr-1”, but in some cases were much smaller. 
 
Table 4-1.  Assignment of residential air exchange rate distributions to modeled CSAs 

Modeled CSA Air exchange rate distribution 

Atlanta, GA, A/C Research Triangle Park, A/C only 

Atlanta, GA, no A/C All non-California, no A/C (“Outside California”) 

Boston, MA New York 

Chicago, IL New York 

Cleveland, OH New York 

Detroit, MI New York 

Houston, TX Houston 

Los Angeles, CA Los Angeles 

New York, NY New York 

Philadelphia, PA New York 

Sacramento Inland parts of Los Angeles (“Inland California”) 

St. Louis All non-California 

Washington, DC, A/C Research Triangle Park, A/C only 

Washington, DC, no A/C All non-California, no A/C 
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 Varying measurement averaging times Although the averaging periods for the air 
exchange rates in the study databases varied from one day to seven days, our analyses did not 
take the measurement duration into account and treated the data as if they were a set of 
statistically independent daily averages. To investigate the uncertainty of this assumption, we 
investigated the correlations between consecutive 24-hour air exchange rates measured at the 
same house from the Research Triangle Park Panel Study. The results showed extremely strong 
correlations, providing support for the simplified approach of treating multi-day averaging 
periods as if they were 24-hour averages.  
 
 However, this finding raises another issue. In the current version of the APEX model, 
there are several options for stratification of time periods with respect to air exchange rates 
distributions, and for when to re-sample from a distribution for a given stratum. The options 
selected for this current set of simulations resulted in a uniform air exchange rates for each 24-
hour period and re-sampling of the 24-hour air exchange rates for each simulated day. This re-
sampling for each simulated day implies that the simulated air exchange rates on consecutive 
days in the same microenvironment are statistically independent. Although we have not 
identified sufficient data to test the assumption of uniform air exchange rates throughout a 24-
hour period, the analyses described in Appendix D suggest that air exchange rates on consecutive 
days are highly correlated. Therefore, we performed sensitivity simulations to assess the impact 
of the assumption of temporally independent air exchange rates, but found little difference 
between APEX predictions for the two scenarios (i.e., temporally independent and autocorrelated 
air exchange rates). 
 

4.2.7 Air Conditioning Prevalence 

 Because the selection of an air exchange rate distribution is conditioned on the presence 
or absence of an air-conditioner, for each modeled CSA, the air conditioning status of the 
residential microenvironments is simulated randomly using the probability that a residence has 
an air conditioner, i.e., the residential air conditioner prevalence rate. For this study we used 
CSA-specific data from the American Housing Survey of 2003. Appendix F details the 
specification of uncertainty estimates in the form of confidence intervals for the air conditioner 
prevalence rate, and compares these with prevalence rates and confidence intervals developed 
from the Energy Information Administration’s Residential Energy Consumption Survey of 2001 
for more aggregate geographic subdivision (e.g., states, multi-state Census regions). 
 
 Air–conditioning prevalence rates for the 12 target CSAs from the American Housing 
Survey ranged from 55% for Los Angeles to 97% for Atlanta. Reported standard errors were 
relatively small, ranging from less than 1% for Houston to 3.4% for Cleveland.  The 
corresponding 95% confidence interval spans range from approximately 4% to 14%. 
 

4.2.8 Evaporative Coolers 

 Some residences use evaporative coolers, also known as “swamp coolers,” for cooling. In 
our estimation of air exchange rate distributions from measurement data, we did not take into 
account the presence or absence of an evaporative cooler.  
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 Although both the housing surveys discussed in section 4.2.7 specifically exclude 
evaporative coolers from their definitions of an air conditioner, it is plausible that the air 
exchange rate distributions might also depend upon the presence of an evaporative cooler. To 
evaluate this issue, Appendix F also details a comparison of the air exchange rate distributions 
estimated with and without accounting for the presence or absence of an evaporative cooler, 
using the available data from three air exchange rate measurement studies. The analysis showed 
no improvement in the statistical air exchange model when the data were also stratified by 
evaporative cooler presence or absence, given that they are already stratified by CSA, air 
conditioner presence or absence, and temperature range. 
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5. RESULTS OF EXPOSURE MODELING 

5.1 Base case 

 In this section we present APEX results for population subgroups of interest in Boston 
and Houston for 2002 and 2004 as examples. Other CSAs show similar results. The population 
subgroups are:  

 
• Children 
• Active children 
• Asthmatic children 

 
 Figures 5-1 and 5-2 show the APEX estimates of the number of person-days of exposure 
to exceedances of various 8-hour average ozone exposure concentrations during moderate 
exertion in Boston for 2002 and 2004 conditions respectively. Comparison of the figures indicate 
generally higher exposure levels in 2002 with a maximum of 0.14 ppm-8hr. The corresponding 
value for 2004 is 0.10 ppm-8hr, respectively. 
 
 Figures 5-3 and 5-4 show the same APEX estimates for Houston, where exposure levels 
for 2002 and 2004 are similar with maxima of 0.14 and 0.13 ppm-8hr, respectively. 
 
 The remainder of the discussion of APEX estimates will be confined to 2002 only. 
 
 Figures 5-5 through 5-7 show the number of persons in Boston exposed to various 
numbers of exceedances of various 8-hour average ozone exposure concentrations during 
moderate exertion for 2002 conditions. Figures 5-8 through 5-10 show the same APEX estimates 
for Houston. 
 
 More than 45% of each child sub-population in Boston (i.e., children, active children, 
asthmatic children) is estimated to be exposed to at least one exceedance of an 8-hour average 
ozone concentration of 0.07 ppm during moderate exertion, and more than 10% are estimated to 
be exposed to at least 3 exceedances during moderate exertion.  
 
 The proportions are somewhat lower in Houston. For the children’s subpopulations the 
proportion with at least one exceedance of 0.07 ppm during moderate exertion is estimated to be 
between 32% and 37%, and with at least 3 exceedances between 3% and 4%.  
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Figure 5-1 

Person-Days of Exposure to  8-Hour Average Concentrations During 
Moderate Exertion

 --Boston 2002--

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

0.0
1

0.0
3

0.0
5

0.0
7

0.0
9

0.1
1

0.1
3

0.1
5

Exposure Concentration (ppm)

Pe
rs

on
-D

ay
s

Children
Active children
Asthmatic children

 
Figure 5-2 

Person-Days of Exposure to  8-Hour Average Concentrations During 
Moderate Exertion

 --Boston 2004--
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Figure 5-3 

Person-Days of Exposure to 8-Hour Average Concentrations During 
Moderate Exertion

--Houston 2002--
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Figure 5-4 
 

Person-Days of Exposure to 8-Hour Average Concentrations During 
Moderate Exertion

--Houston 2004--
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Figure 5-5 

Exceedances of 8-Hour Average Exposure Concentrations 
During Moderate Exertion
 --Children, Boston, 2002--
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Figure 5-6 

Exceedances of 8-Hour Average Exposure Concentrations 
During Moderate Exertion

 --Active Children, Boston, 2002--
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Figure 5-7 

Exceedances of 8-Hour Average Exposure Concentrations 
During Moderate Exertion

 --Asthmatic Children, Boston, 2002--
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Figure 5-8 

Exceedances of 8-Hour Average Exposure Concentrations During 
Moderate Exertion 

 --Children, Houston, 2002--
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Figure 5-9 

Exceedances of 8-Hour Average Exposure Concentrations During 
Moderate Exertion 

 --Active Children, Houston, 2002--

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0
0.0

2
0.0

4
0.0

6
0.0

8 0.1 0.1
2

Exposure Concentration (ppm)

Pe
rs

on
s

1 exceedance
2 exceedances
3 exceedances
4 exceedances
5 exceedances

 
Figure 5-10 

Exceedances of 8-Hour Average Exposure Concentrations During 
Moderate Exertion 

 --Asthmatic Children, Houston, 2002--
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5.2 Attainment scenarios 

 The exposure projections presented in this section are based on the air quality projections 
discussed in section 3.3. Due to the uncertainties in the air quality projections, these exposure 
projections should be viewed as demonstrating the general range of possible changes in 
population exposure due to implementation of alternative NAAQS standards. They should not be 
considered as CSA-specific projections. 
 
 Figure 5-11 presents APEX projections of Boston children exposed to at least 3 
exceedances of various 8-hour average concentration levels, given attainment of various 
alternative NAAQS standards described in Section 3.3 above and 2002 meteorological 
conditions. Figure 5-12 presents the corresponding information for person-days of exceedances. 
Each figure contains a set of curves corresponding to potential air quality standards specified as 
various combinations of concentration thresholds and number of exceedances allowed.  Table 3-
2 explains the meaning of the labels “85/4,” etc. 
 
 Figure 5-11 shows that each of the alternative standards is estimated to reduce the 
proportion of the population subgroup exposed at least 3 times to 8-hour average concentrations 
exceeding 0.07 ppm from about 12% (2002 base case) to between 0% and 2% depending on the 
alternative standard.  
 
 Figure 5-12 indicates that a reduction in exposures under the alternative standards, with 
the 95th percentile 8-hour average exposure concentration decreasing from approximately 0.055 
ppm (2002 base case) to a range of 0.040 to 0.045 ppm, depending on the alternative standard. 
Similarly, the maximum 8-hour average exposure concentration decreases from 0.13 ppm (2002 
base case) to a range of 0.08 to 0.11 ppm. 
 
 Figures 5-13 and 5-14 present the corresponding information for Houston. In this case the 
proportion of children exposed at least 3 times to 8-hour average concentrations exceeding 0.07 
ppm decreased from about 3% (2002 base case) to 0%. And the 95th percentile 8-hour average 
exposure concentration decreases from approximately 0.045 ppm to approximately 0.035 ppm, 
while the maximum exposure concentrations decreases from 0.13 ppm to a range of 0.07 to 0.09 
ppm, depending on the alternative standard.  
 
 Figures 5-15 through 5-18 present the corresponding information for active children, and 
Figures 5-19 through 5-22 for asthmatic children, with similar results. In general the figures 
suggest that changing the threshold concentration would have more influence on this measure of 
population exposure than changing the number of permitted exceedances. 
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Figure 5-11.  Number of persons with at least three 8-hour exposures above different levels, 

for Children at moderate exertion, Boston, 2002. 

 
 

 
Figure 5-12.  Person-days (occurrences) above 8-hour exposure levels for different 

alternative standards, for Children at moderate exertion, Boston, 2002. 
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Figure 5-13.  Number of persons with at least three 8-hour exposures above different levels, 

for Children at moderate exertion, Houston, 2002. 

 
 

 
Figure 5-14.  Person-days (occurrences) above 8-hour exposure levels for different 

alternative standards, for Children at moderate exertion, Houston, 2002. 
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Figure 5-15.  Number of persons with at least three 8-hour exposures above different levels, 

for Active Children at moderate exertion, Boston, 2002. 

 
 

 
Figure 5-16.  Person-days (occurrences) above 8-hour exposure levels for different 

alternative standards, for Active Children at moderate exertion, Boston, 2002. 
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Figure 5-17.  Number of persons with at least three 8-hour exposures above different levels, 

for Active Children at moderate exertion, Houston, 2002. 

 
 

 
Figure 5-18.  Person-days (occurrences) above 8-hour exposure levels for different 

alternative standards, for Active Children at moderate exertion, Houston, 2002. 
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Figure 5-19.  Number of persons with at least three 8-hour exposures above different levels, 

for Asthmatic Children at moderate exertion, Boston, 2002. 

 
 

 
Figure 5-20.  Person-days (occurrences) above 8-hour exposure levels for different 
alternative standards, for Asthmatic Children at moderate exertion, Boston, 2002. 
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Figure 5-21.  Number of persons with at least three 8-hour exposures above different levels, 

for Asthmatic Children at moderate exertion, Houston, 2002. 

 

 
Figure 10.  Person-days (occurrences) above 8-hour exposure levels for different alternative 

standards, for Asthmatic Children at moderate exertion, Houston, 2002. 
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6. SENSITIVITY STUDIES 

 In order to assess the sensitivity of the APEX predictions to some of the uncertain data 
inputs, several additional simulations were conducted for 2002 conditions. The inputs analyzed 
were the activity pattern database, the ozone decay rate, the proximity factor, and the air 
exchange rate. In addition, we evaluated the impact of the new method for constructing long-
term activity patterns from short-term records. 
 
6.1 Activity Pattern Database 

 Because many of the studies included in the CHAD database are not national in scope, 
nor do they necessarily correspond to the CSAs targeted here, it would be useful to know how 
similar the component studies are. Strong similarity would suggest that extrapolation of activity 
data gathered from one sample population to another population is appropriate. 
 
 The most comprehensive individual study is probably the National Human Activity 
Pattern Study (NHAPS), so we compared the base case exposure results with corresponding 
results using only the NHAPS data. The results for all persons at all activity levels in Boston are 
presented in Figure 6-1 and for active persons with moderate activity in Boston are presented in 
Figure 6-2. The figures present several pairs of cumulative distribution functions for the number 
of days/person that a given 8-hour average threshold concentration is exceeded.  The different 
curves represent different thresholds, ranging from 0.01 to 0.05 ppm-8hr, as indicated in the 
figure legends.  Figure 6-1 shows little difference between the base case distributions and those 
for NHAPS activity patterns only, indicating that both the average number of exceedances and 
the variability among individuals are similar. This suggests that the composite database is similar 
to NHAPS.  
 
 However, Figure 6-2 does show moderate differences, with the NHAPS results 
systematically lower than the base case. This suggests that the activity patterns for active people 
in the NHAPS data base may differ somewhat from those in the other component data bases of 
CHAD. 
 
 Tables 6-1 through 6-4 present the results for the number of persons exposed to 8-hour 
average concentrations exceeding 0.07 ppm in the general population and for children, 
respectively, with moderate exertion. Simulations were performed both with the base case air 
quality and with a scenario of attainment of the current NAAQS. 
 
 The results show that, with a few notable exceptions, use of the NHAPS database leads to 
exposure predictions generally lower than use of the complete CHAD database. The percentage 
differences are generally small when there are relatively high numbers of exposures, e.g., for one 
or more exposures with base case air quality.  As the number of exposures decreases the 
percentage differences increase.  
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Table 6-1.  Sensitivity to activity database with base case air quality: 2002 counts of the 
general population with any or three or more 8-hour ozone exposures above 0.07 ppm 
concomitant with moderate or greater exertion. 

 One or more exposures Three or more exposures 

CSA All CHAD NHAPS 
only 

Difference All CHAD NHAPS 
only 

Difference 

Atlanta 985,748 896,458 -9% 173,122 154,779 -11%

Boston 1,386,985 1,222,219 -12% 256,958 202,100 -21%

Chicago 2,260,651 1,895,204 -16% 336,429 260,080 -23%

Cleveland 1,037,486 918,103 -12% 327,470 258,647 -21%

Detroit 1,505,255 1,297,412 -14% 281,767 225,967 -20%

Houston 832,053 732,309 -12% 61,467 62,510 2%

Los Angeles 3,153,096 3,154,187 0% 780,634 854,577 9%

New York 6,200,771 5,443,294 -12% 1,517,089 1,233,391 -19%

Philadelphia 2,008,319 1,745,857 -13% 666,264 512,773 -23%

Sacramento 443,771 393,884 -11% 89,417 82,051 -8%

St. Louis 795,121 675,697 -15% 171,747 143,796 -16%

Washington DC 2,155,893 1,896,060 -12% 531,528 438,397 -18%
 
 
Table 6-2.  Sensitivity to activity database with base case air quality: 2002 counts of 
children (ages 5-18) with any or three or more 8-hour ozone exposures above 0.07 ppm 
concomitant with moderate or greater exertion. 

 One or more exposures Three or more exposures 

CSA All CHAD NHAPS 
only 

Difference All CHAD NHAPS 
only 

Difference

Atlanta 392,859 357,916 -9% 85,954 76,631 -11%

Boston 504,012 447,344 -11% 122,574 100,669 -18%

Chicago 860,159 748,430 -13% 157,197 148,817 -5%

Cleveland 373,613 331,446 -11% 161,845 134,404 -17%

Detroit 571,568 494,252 -14% 142,580 129,455 -9%

Houston 333,174 300,836 -10% 28,567 34,104 19%

Los Angeles 1,302,603 1,219,656 -6% 375,719 380,631 1%

New York 2,251,072 1,994,783 -11% 717,609 621,145 -13%

Philadelphia 716,034 633,894 -11% 320,203 262,267 -18%

Sacramento 158,763 144,514 -9% 38,565 38,887 1%

St. Louis 294,981 248,395 -16% 82,890 79,723 -4%

Washington DC 792,244 706,432 -11% 257,435 224,372 -13%
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Table 6-3.  Sensitivity to activity database with air quality meeting the current standard: 
2002 counts of the general population with any or three or more 8-hour ozone exposures 
above 0.07 ppm concomitant with moderate or greater exertion. 

 One or more exposures Three or more exposures 

CSA All CHAD NHAPS 
only 

Difference All CHAD NHAPS 
only 

Difference 

Atlanta 481,845 445,766 -7% 29,030 26,984 -7%

Boston 820,876 725,445 -12% 68,573 61,144 -11%

Chicago 1,077,875 900,815 -16% 56,020 58,347 4%

Cleveland 575,808 499,918 -13% 71,277 65,435 -8%

Detroit 858,334 758,520 -12% 56,425 57,764 2%

Houston 206,468 199,006 -4% 2,086 2,086 0%

Los Angeles 98,500 126,877 29% 1,637 3,001 83%

New York 1,815,025 1,751,308 -4% 92,905 97,888 5%

Philadelphia 1,131,891 972,469 -14% 155,144 131,911 -15%

Sacramento 102,540 103,955 1% 4,278 4,439 4%

St. Louis 583,581 506,291 -13% 73,344 72,426 -1%

Washington DC 1,139,150 1,001,347 -12% 110,672 96,538 -13%
 
Table 6-4.  Sensitivity to activity database with air quality meeting the current standard: 
2002 counts of children (ages 5-18) with any or three or more 8-hour ozone exposures 
above 0.07 ppm concomitant with moderate or greater exertion. 

 One or more exposures Three or more exposures 

CSA All CHAD NHAPS 
only 

Difference All CHAD NHAPS 
only 

Difference 

Atlanta 193,360 171,303 -11% 13,340 8,868 -34%

Boston 311,531 280,292 -10% 33,048 29,048 -12%

Chicago 389,345 375,068 -4% 23,587 38,640 64%

Cleveland 226,151 196,452 -13% 37,209 36,865 -1%

Detroit 322,299 305,336 -5% 27,320 34,373 26%

Houston 80,004 82,411 3% 1,043 963 -8%

Los Angeles 28,104 43,929 56% 273 1,364 400%

New York 674,539 654,249 -3% 37,731 42,359 12%

Philadelphia 438,894 387,083 -12% 84,279 72,614 -14%

Sacramento 30,170 32,357 7% 1,126 1,576 40%

St. Louis 213,835 189,142 -12% 32,449 41,307 27%

Washington DC 434,737 384,765 -11% 48,585 41,139 -15%
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 An additional set of sensitivity simulations was conducted to test the differences between 
using the complete CHAD database and using a regional-specific subset corresponding to the 
CSA of interest. The Los Angeles and Sacramento CSAs were selected for the test, because of 
the relative abundance of activity pattern data for California (see Table 3-3).  
 
 Tables 6-5 and 6-6 present the results for Los Angeles and Sacramento, respectively, for 
the number of persons exposed to 8-hour average concentrations exceeding 0.07 ppm in the 
general population and for children with moderate exertion. Again, simulations were performed 
both with the base case air quality and with a scenario of attainment of the current NAAQS. 
 
 As explained in Section 2.3.3, the first step in constructing a multi-day activity sequence 
for a simulated individual is the stratification of the activity pattern data by day-type and ambient 
temperature. For the simulations reported here the activity pattern database was stratified into 6 
pools, each defined by a combination of day type (weekday or weekend) and ambient temperature 
(maximum temperature < 55, 55-84, >84 °F). However, the California activity data used alone 
were insufficient for stratification into these 6 pools. Instead, 2 weekend pools (i.e., temperature 
= 55–84 °F, and  >84 °F) were combined. In order to make a fair comparison with the All-
CHAD case, for these simulations we stratified the All CHAD database into the same 5 pools. 
Tables 6-5 and 6-6 show the results for All CHAD using both the 6 pool and the 5 pool 
stratifications for reference. 
 
 As was the case for Tables 6-1 through 6-4, the percentage differences are generally 
small when there are relatively high numbers of exposures, but as the number of exposures 
decreases the percentage differences increase. 
 
Table 6-5.  Sensitivity to activity database: 2002 simulated counts of Los Angeles CMSA 
general population and children (ages 5-18) with any or three or more 8-hour ozone 
exposures above 0.07 ppm concomitant with moderate or greater exertion. 

One or more exposures Three or more exposures 
Population 
Group 

All CHAD 
(6 pools) 

All CHAD 
(5 pools) 

CA only 
(5 pools) 

All CHAD 
(6 pools) 

All CHAD 
(5 pools) 

CA only 
(5 pools) 

Base Case 
General 
Population 

3,153,096 2,905,345 
 

2,693,065 
 (-7%) 

780,634 675,858 
 

713,239 
(+6%) 

Children (5-
18) 

1,302,603 1,239,847 
 

1,208,196 
(-3%) 

375,719 326,606 
 

368,625 
(+13%) 

Current Standard 
General 
Population 

98,500 85,676 
 

50,751 
(-41%) 

1,637 1,364 
 

3,274 
(+140%) 

Children (5-
18) 

28,104 23,465 
 

11,733 
(-50%) 

273 0 0  
(N/A) 
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Table 6-6.  Sensitivity to activity database: 2002 simulated counts of Sacramento CMSA 
general population and children (ages 5-18) with any or three or more 8-hour ozone 
exposures above 0.07 ppm concomitant with moderate or greater exertion. 

One or more exposures Three or more exposures 
Population 
Group 

All CHAD 
(6 pools) 

All CHAD 
(5 pools) 

CA only 
(5 pools) 

All CHAD 
(6 pools) 

All CHAD 
(5 pools) 

CA only 
(5 pools) 

Base Case 
General 
Population 

443,771 442,935 
 

422,704 
(-5%) 

89,417 89,674 
 

113,218 
(+26%) 

Children (5-
18) 

158,763 157,251 
 

153,263 
(-3%) 

38,565 37,922 
 

41,460 
(+9%) 

Current Standard 
General 
Population 

102,540 102,540 
 

99,709 
(-3%) 

4,278 4,567 
 

5,693 
 (+25%) 

Children (5-
18) 

30,170 30,556 
 

24,477 
(-20%) 

1,126 1,319 
 

901 
 (-32%) 

  
 
6.2 Ozone Decay Rate 

 To test the sensitivity of the APEX predictions to the ozone decay rate distribution, we 
compared the base case results with corresponding results with the decay rate set uniformly to its 
10th percentile value and its 90th percentile value. The results are presented in Figures 6-3 and 6-
4 for active persons with moderate activity in Houston and Boston, respectively, for exceedances 
of an 8-hour average 0.05 ppm threshold. The figures show only small changes in the rate of 
exceedances for these rather extreme decay rate scenarios in Houston, and moderate changes for 
the higher decay rate in Boston.  
 
 Tables 6-7 and 6-8 present the results for the number of persons exposed to 8-hour 
average concentrations exceeding 0.07 ppm in the general population and for children, 
respectively, with moderate exertion. These results do show differences among the decay rate 
scenarios for these exposures to elevated concentrations.  
 
Table 6-7.  Sensitivity to ozone decay rate: 2002 counts of general population with any or 
three or more 8-hour ozone exposures above 0.07 ppm concomitant with moderate or 
greater exertion. 

One or more exposures Three or more exposures 
Urban Area 
(CMSA) 

rate=90th 
percentile Base case

Rate=10th

percentile
rate=90th

percentile Base case 
Rate=10th

percentile

Boston 1,089,073 
(-212%) 

1,387,175 1,551,845
(+12%)

134,596
(-48%)

258,577 335,532
(+30%)

Houston 737,926 
(-11%) 

824,590 861,743
(+5%)

48,869
(-22%)

62,751 69,251
(+10%)
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Table 6-8.  Sensitivity to ozone decay rate: 2002 counts of children (ages 5-18) with any or 
three or more 8-hour ozone exposures above 0.07 ppm concomitant with moderate or 
greater exertion. 

One or more exposures Three or more exposures 
Urban Area 
(CMSA) 

rate=90th 
percentile Base case

Rate=10th

percentile
rate=90th

percentile Base case 
Rate=10th

percentile

Boston 409.438 
(-18%) 

499,821 542,870
(+9%)

67,049
(-47%)

126,003 160,289
(+27%)

Houston 295,299 
(-11%) 

331,088 346,334
(+5%)

21,826
(-27%)

30,011 34,184
(+14%)

 

6.3 Proximity Factor 

 To test the sensitivity of the APEX predictions to the proximity factor distribution, we 
compared the base case results with corresponding results with the proximity factor set 
uniformly to its 10th percentile value and its 90th percentile value. The results are presented in 
Figures 6-5 and 6-6 for active persons with moderate activity in Houston and Boston, 
respectively, for exceedances of an 8-hour average 0.05 ppm threshold. The figures shows only 
small changes in the rate of exceedances for these rather extreme proximity factor scenarios.  
 
 Tables 6-9 and 6-10 present the results for the number of persons exposed to 8-hour 
average concentrations exceeding 0.07 ppm in the general population and for children, 
respectively, with moderate exertion. Again, the results show larger differences among the 
proximity factor scenarios for these exposures to elevated concentrations.  
 
Table 6-9.  Sensitivity to proximity factor: 2002 counts of general population with any or 
three or more 8-hour ozone exposures above 0.07 ppm concomitant with moderate or 
greater exertion 

One or more exposures Three or more exposures 
Urban Area 
(CMSA) 

Factor = 90th 
percentile Base case1

Factor = 10th

percentile
Factor = 90th

percentile Base case1 
Factor = 10th

percentile

Boston 1,133,360 
(-4%) 

1,183,742 1,283,268
(+8%)

136,098
(-12%)

154,575 196,671
(+27%)

Houston 662,416 
(-4%) 

691,705 756,944
(+9%)

23,752
(-14%)

27,765 37,795
(+36%)

 

                                                 
1 These base case values are somewhat different than those presented above, because these sensitivity simulations were made 
with an earlier version of APEX. Although the modifications to APEX changed the magnitude of exposures, they did not change 
the relative differences for these sensitivity simulations. 
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Table 6-10.  Sensitivity to proximity factor: 2002 counts of children (ages 5-18) with any or 
three or more 8-hour ozone exposures above 0.07 ppm concomitant with moderate or 
greater exertion 

One or more exposures Three or more exposures 
Urban Area 
(CMSA) 

Factor = 90th 
percentile Base case1

Factor = 10th

percentile
Factor = 90th

percentile Base case1 
Factor = 10th

percentile

Boston 421,724 
(-5%) 

444,963 496,773
(+12%)

61,525
(-17%)

73,811 100,764
(+37%)

Houston 271,547 
(-4%) 

284,225 323,705
(+14%)

10,833
(-20%)

13,561 19,580
(+44%)

 
6.4 Air Exchange Rates 

 To test the sensitivity of the APEX predictions to the air exchange rate distributions, we 
compared the base case results with corresponding results with the air exchange rates set 
uniformly to their 10th percentile values and their 90th percentile values. The results are 
presented in Figure 6-7 for active persons with moderate activity in Houston for exceedances of 
an 8-hour average 0.05 ppm threshold and Figure 6-8 for active persons with moderate activity in 
Boston for exceedances of an 8-hour average 0.05 ppm threshold. The figures show a moderate 
increase in the rate of exceedances in both CMSAs for the extremely high air exchange rate 
scenario.  
 
 Tables 6-11 and 6-12 present the results for the number of persons exposed to 8-hour 
average concentrations exceeding 0.07 ppm in the general population and for children, 
respectively, with moderate exertion. The results show a large increase in the number of people 
exposed to elevated concentrations for the scenario of high air exchange rates, especially for the 
multiple exposure case.  
 
 In contrast with the sensitivity simulation for the ozone decay rate discussed above, this 
increase in the air exchange rates is sufficient to increase concentration exceedances of 0.05 ppm 
in the indoor microenvironments compared to the base case.  
 
Table 6-11.  Sensitivity to air exchange rate: 2002 counts of general population with any or 
three or more 8-hour ozone exposures above 0.07 ppm concomitant with moderate or 
greater exertion 

One or more exposures Three or more exposures 
Urban Area 
(CMSA) 

Rate = 10th 
percentile Base case1

Rate = 90th

percentile
Rate = 10th

percentile Base case1 
Rate = 90th

percentile

Boston 835,924 
(-29%) 

1,183,742 2,403,294
(+103%)

53,239
(-66%)

154,575 1,074,596
(+595%)

Houston 595,894 
(-14%) 

691,705 1,816,088
(+135%)

17,333
(-38%)

27,765 659,527
(+2275%)

                                                 
1 These base case values are somewhat different than those presented above, because these sensitivity simulations were made 
with an earlier version of APEX. Although the modifications to APEX changed the magnitude of exposures, they did not change 
the relative differences for these sensitivity simulations. 
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Table 6-12.  Sensitivity to air exchange rate: 2002 counts of children (ages 5-18) with any or 
three or more 8-hour ozone exposures above 0.07 ppm concomitant with moderate or 
greater exertion 

One or more exposures Three or more exposures 
Urban Area 
(CMSA) 

Rate = 10th 
percentile Base case1

Rate = 90th

percentile
Rate = 10th

percentile Base case1 
Rate = 90th

percentile

Boston 320,293 
(-28%) 

444,963 756,875
(+70%)

24,001
(-67%)

73,811 420,296
(+469%)

Houston 243,060 
(-14%) 

284,225 652,386
(+130%)

7,142
(-47%)

13,561 262,720
(+1837%)

 
 In addition to lack of precision in measurements due to within-residence variations in air 
exchange rates, some recent studies have suggested that the reported rates may be biased upward 
from actual rates by as much as a factor of two (Wallace, L., personal communication). Primary 
reasons for such potential bias include (a) the typical placement of tracer emitters in relatively 
isolated locations, such as bathrooms and bedrooms, so that the tracer gas is constrained from 
reaching the collector, and  (b) the fact that for apartments a substantial portion of air is 
exchanged with indoor common areas, such as hallways, rather than to the outdoors.  
 
 In order to determine the sensitivity of APEX predictions to such bias, if present, a set of 
sensitivity simulations was performed for the New York CMSA, setting the residential air 
exchange rates to half the value selected from the air exchange rate distribution. The New York 
CMSA was selected because it is known to contain a high density of apartment buildings. 
 
 Table 6-13 presents the results for the number of persons exposed to 8-hour average 
concentrations exceeding 0.07 ppm in the general population and for children, respectively, with 
moderate exertion. The results suggest that the results are not sensitive to a potential 
overestimate of air exchange rates by a factor of two. 
 
Table 6-13.  Sensitivity to air exchange rate: 2002 simulated counts of New York CMSA 
general population and children (ages 5-18) with any or three or more 8-hour ozone 
exposures above 0.07 ppm concomitant with moderate or greater exertion. 

One or more exposures Three or more exposures 
Population 
Group Base case 

Residential 
AER=1/2 Base case

Residential 
AER=1/2

General 
Population 

5,439,379 5,420,869 
(-0.3%) 

958,948 953,253 
(-0.6%) 

Children (5-18) 2,033,582 2,030,023 
(-0.2%) 

494,780 495,136 
(+0.1%) 

 

                                                 
1 These base case values are somewhat different than those presented above, because these sensitivity simulations were made 
with an earlier version of APEX. Although the modifications to APEX changed the magnitude of exposures, they did not change 
the relative differences for these sensitivity simulations. 
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6.5 Long-term activity patterns 

 The version of APEX used for this analysis includes a new treatment of activity patterns 
to construct long-term individual activity patterns, as described in section 2.3.3 and Appendix C. 
To test the sensitivity of the APEX results to this new treatment we compared the base case 
exposure results with corresponding results where (a) the new treatment was not implemented, 
and (b) the D statistic was set to 0.75 instead of 0.2. The comparisons of the days/person with 
exceedances of 8-hour average concentrations for active persons on Boston during moderate 
exertion (Figure 6-9) shows little difference between APEX estimates for the base case and for 
the simulation that did not incorporate the new long-term activity pattern treatment. The 
comparison between the base case and the sensitivity simulation with the diversity statistic, D, 
set to 0.75 (Figure 6-10) shows a slight elevation of the exposure rate for the highest 5% to 10% 
or the exposed population compared to the base case for this rather extreme scenario. 
 
 Table 6-14 presents the results for the number of persons in Boston population groups 
with moderate exertion exposed to 8-hour average concentrations exceeding 0.07 ppm. Again, 
the results show very small differences among the scenarios for these exposures to elevated 
concentrations.   
 
Table 6-14.  Sensitivity to longitudinal activity pattern algorithm: 2002 counts of Boston 
population groups with any or three or more 8-hour ozone exposures above 0.07 ppm 
concomitant with moderate or greater exertion. 

One or more exposures Three or more exposures 
Population 
group Base case1 

Simple re-
sampling Div=0.75 Base case1

Simple re-
sampling Div=0.75

General 
population 

1,183,742 1,212,409 
(-2%) 

1,101,740 
(+6%) 

154,575 140,765 
(-9%) 

169,718 
(+10%) 

Children (ages 
5-18) 

444,963 458,773 
(-3%) 

408,962 
(+8%) 

73,811 70,478 
(-5%) 

80,097 
(+9%) 

 
 An alternative algorithm for constructing longitudinal diaries was recently developed for 
another population exposure model, the Hazardous Air Pollutant Exposure Model (HAPEM). 
This approach, described in Appendix H, is designed to better represent the variability among 
individuals by limiting the number of selected activity diaries used to represent an individual. 
 
 This approach was adapted to use in APEX as follows. For each simulated 
individual/diary pool combination, cluster analysis is used to group the corresponding diaries 
into three clusters of similar patterns. (There are 18 clusters for each selected individual: 3 
temperature categories × 2 day-of-week types × 3 clusters = 18.) A single activity pattern is 
selected from each cluster to represent the set of behaviors of the simulated individual. Next, 
cluster-to-cluster transition probabilities are defined both within diary pools and across diary 
pools, and used in a Markov process to select a cluster for each day of the modeling period.  
 

                                                 
1 These base case values are somewhat different than those presented above, because these sensitivity simulations were made 
with an earlier version of APEX. Although the modifications to APEX changed the magnitude of exposures, they did not change 
the relative differences for these sensitivity simulations 
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 A special version of APEX was developed that incorporated this approach for testing the 
sensitivity of the model. A set of sensitivity simulations was performed for the Atlanta CMSA 
using (a) the alternative algorithm, and (b) simple re-sampling.  
 
 Table 6-15 presents the results for the number of persons in Atlanta population groups 
with moderate exertion exposed to 8-hour average concentrations exceeding 0.07 ppm. The 
results show that the predictions made with alternative algorithm (“cluster”) are substantially 
different from those made with simple re-sampling or with the new APEX algorithm (“base 
case”). Note that for the cluster algorithm approximately 30% of the individuals with 1 or more 
exposure have 3 or more exposures. The corresponding values for the other algorithms range 
from about 13% to 21%. 
 
Table 6-15.  Sensitivity to longitudinal diary algorithm: 2002 simulated counts of Atlanta 
general population and children (ages 5-18) with any or three or more 8-hour ozone 
exposures above 0.07 ppm concomitant with moderate or greater exertion. 

One or more exposures Three or more exposures 
Population 
Group 

Simple re-
sampling Base case1 Cluster

Simple re-
sampling Base case1 Cluster

General 
Population 

979,533 939,663 
(-4%) 

668,004 
(-32%) 

124,687 144,470 
(+16%) 

188,509 
(+51%) 

Children (5-18) 411,429 389,372 
(-5%) 

295,004 
(-28%) 

71,174 83,377 
(+17%) 

94,216 
(+32%) 

 
 Table 6-16 presents the results for the mean and standard deviation of number of 
days/person with 8-hour average exposures exceeding 0.07 ppm with moderate or greater 
exertion. The results show that although the mean for the cluster algorithm is very similar to the 
other approaches, the standard deviation is substantially higher, i.e., the cluster algorithm results 
in substantially higher inter-individual variability. As described in Appendix H, limited 
evaluation of the cluster algorithm by comparison to measurement data shows reasonably good 
agreement. 
 
Table 6-16.  Sensitivity to longitudinal diary algorithm: 2002 days per person with 8-hour 
ozone exposures above 0.07 ppm concomitant with moderate or greater exertion for 
Atlanta general population and children (ages 5-18). 

Mean Days/Person Standard Deviation 
Population 
Group 

Simple re-
sampling Base case Cluster

Simple re-
sampling Base case Cluster

General 
Population 

0.332 0.335
(+1%)

0.342
(+3%)

0.757 0.802 
(+6%) 

1.197
(+58%)

Children (5-18) 0.746 0.755
(+1%)

0.758
(+2%)

1.077 1.171 
(+9%) 

1.652
(+53%)

                                                 
1 These base case values are somewhat different than those presented above, because these sensitivity simulations were made 
with an earlier version of APEX. Although the modifications to APEX changed the magnitude of exposures, they did not change 
the relative differences for these sensitivity simulations. 
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6.6 Near roadway locations 

 Although APEX accounts for depressed ozone concentrations near roadways for 
activities that occur outdoors, including in vehicles, it does not account for depressed ozone 
concentrations in indoor microenvironments that are near major roadways. This issue was 
recently addressed in the HAPEM model by developing a national data base of estimates of the 
fraction of the population of each census tract that resides in the vicinity of a major roadway, 
either 0 – 75m or 75m-200m. Although the data specify only the fraction of the residential 
population of each tract that live in the vicinity of the roadway, it was assumed that the same 
proportion of non-residential indoor venues are in the vicinity of major roadways for each tract. 
The development of the data base is described in Appendix I.  
 
 In order to test the sensitivity of APEX to the potential overestimate of concentrations in 
indoor microenvironments near roadways, we used the roadway proximity data developed for 
HAPEM to estimate the probability of a randomly selected individual living in proximity to 
either an interstate or a major urban road, as described below. Based on these estimated 
probabilities, a simulated individual’s residence (and other frequented indoor 
microenvironments) were assigned roadway-category-specific proximity factor distributions as 
previously described for in-vehicle microenvironments. 
 

6.6.1 Proximity Probabilities 

 Given the specifications of the near roadway proximity factors, described in Appendix A, 
for this application we defined near-roadway proximity as being located within 75 meters of a 
major roadway, i.e., the first category in the HAPEM database. The probabilities for Boston and 
Houston were estimated by averaging the HAPEM data across the tracts in the respective 
modeling domains, and are as follows. 
 
Boston: 27% 
Houston: 20% 
 
 Next, we allocated these fractions between the categories used to develop the near-
roadway proximity factors (i.e., interstate and other major urban road) according to the 
proportions of roadway miles in the respective categories as specified by the Federal Highway 
Administration (FHWA 2004) for the urban areas. These proportions were as follows: 
 
Boston: 
 
 Interstate  0.05 
 Other major urban: 0.95  
 
Houston: 
 
 Interstate  0.03 
 Other major urban: 0.97 
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 Combining these data resulted in the following probabilities for residing within 75 meters 
of an interstate or another major urban road. 
 
 
Boston: 
 

Interstate      1% 
 Other major urban:    26% 
 Not within 75 meters of a major roadway: 73% 
 
Houston: 
 

Interstate      1% 
 Other major urban:    19% 
 Not within 75 meters of a major roadway: 80% 
 
 Although the HAPEM data specify only the fraction of the residential population that live 
in the vicinity of the roadway, for this application the same probabilities were applied to non-
residential indoor microenvironments as well.  
 

6.6.2 Results 

 Table 6-17 presents the results for the number of children (5-18) exposed to 8-hour 
average concentrations exceeding 0.07 ppm with moderate or greater exertion. The results show 
little difference in the predictions compared to the base case. 
 
Table 6-17. Sensitivity to near roadway proximity for indoor sources: 2002 counts of 
children (ages 5-18) with any or three or more 8-hour ozone exposures above 0.07 ppm 
concomitant with moderate or greater exertion. 
 

One or more exposures Three or more exposures 
Urban Area 
(CMSA) Base case1 

Near 
roadway Base case1

Near 
roadway

Boston 444,963 432,772
(-3%)

73,811 64,859
(-12%)

Houston 284,225 281,256
(-1%)

13,561 12,358
(-9%)

 
 
6.7 Sensitivity summary 

 Of the data, parameters, and algorithms tested for this sensitivity analysis, the model 
results were most sensitive to increases in the air exchange rates. The results were also sensitive 
to the longitudinal activity algorithm, the activity pattern data base, the decay rate, and decreases 
in the proximity factors. 
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Figure 6-1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-2 
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Figure 6-3 

Decay Rate Sensitivity:
Days/Person with Exceedances of 0.05 ppm

 8-Hour Average Exposure Concentration During Moderate Exertion
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Figure 6-4 

Decay Rate Sensitivity:
Days/Person with Exceedances of 0.05 ppm

 8-Hour Average Exposure Concentration During Moderate Exertion
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Figure 6-5 

Proximity Factor Sensitivity:
Days/Person with Exceedances of 0.05 ppm

 8-Hour Average Exposure Concentration During Moderate Exertion
--Active Persons, Houston, 2002--
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Figure 6-6 

Proximity Factor Sensitivity:
Days/Person with Exceedances of 0.05 ppm

 8-Hour Average Exposure Concentration During Moderate Exertion
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Figure 6-7 

Air Exchange Rate Sensitivity:
Days/Person with Exceedances of 0.05 ppm

 8-Hour Average Exposure Concentration During Moderate Exertion
--Active Persons, Houston, 2002--
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Figure 6-8 

Air Exchange Rate Sensitivity:
Days/Person with Exceedances of 0.05 ppm
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Figure 6-9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-10 
 

Diversity Statistic Sensitivity:
Days/Person with Exceedances of 
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Days/Person with Exceedances of 
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7. MODEL EVALUATION 

 In order to evaluate the performance of APEX we compared APEX simulation results to 
personal ozone concentration measurements taken from the Harvard Southern California Chronic 
Ozone Exposure Study (Xue et al. 2005, Geyh et al. 2000). In this study, 224 children in ages 
between 7 and 12 yr were followed for 1 year from June 1995 to May 1996. Passive ozone 
samplers were used to measure ozone personal ozone concentrations, as well as indoor and 
outdoor concentrations at participants homes for 6 consecutive days each month. The subjects 
resided in two separate areas of San Bernardino County: urban Upland CA, and the small 
mountain towns of Lake Arrowhead, Crestline, and Running Springs, CA.  
 
 From the original dataset (Geyh et al. 2000), Xue et al. (2005) identified 160 subjects on 
which longitudinal ozone concentrations have been made at least in 6 of the 12 months of study 
period. This dataset was used for the APEX model evaluation. The number of 6-day average 
measured personal exposure concentrations in each data set varies from 7 to 31. In the Upland 
area, where more than 95% of the subjects had air-conditioning in their homes, the maximum 6-
day average exposure concentration was 0.029 ppm, and all other 6-day averages were less than 
0.025 ppm. In the Lake Arrowhead area, where none of the subjects’ homes were air-
conditioned, the maximum exposure concentration was 0.034 ppm with five 6-day periods that 
had at least one subject with an exposure concentration greater than 0.025 ppm. 
 
 For the APEX simulations we used hourly outdoor concentrations from fixed site 
monitors located in Upland and Crestline as inputs. The outdoor concentration values are 
assumed y the model to be spatially uniform throughout each respective modeling domain. The 
air exchange rates used were those developed for Sacramento from measurements taken in the 
inland portions of the Los Angeles area: Sacramento, Riverside, and San Bernardino Counties. 
For each 6-day period for which personal measurements were available we simulated 10,000 
subjects in the 7 – 12 age range in each of the two study areas. For each case the distribution of 
simulated 6-day average exposure concentrations was compared to the corresponding 
distribution of measured values.  
 
 Example comparisons of weekly (i.e., 6-day) distributions for Upland and Lake 
Arrowhead are presented in Figures 7-1 and 7-2 respectively. (See Appendix J for a full set of 
weekly comparison figures for all weeks in each location when at least one personal exposure 
concentration exceeding 30 ppb was measured.).  
 
 In Figure 7-1 the distribution of APEX predictions of personal exposure concentrations in 
Upland matches the distribution of measured values closely for the lower half of the distribution, 
but underestimates the upper end of the distribution by up to 17 ppb. The coefficient of variation 
(CV = standard_deviation ÷ mean) for the APEX distribution is 20% compared to 41% for the 
measured values. 
 
 To provide some insight into the factors driving these comparisons, the figure also 
presents comparisons between the measurements made inside the subjects’ homes and the APEX 
indoor residential concentration predictions. In addition, comparisons are also shown between 
the ozone concentrations measured outside the homes of the study subjects and those measured 
at the nearby fixed site monitors that are used as spatially uniform APEX inputs.  
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 In Figure 7-1, these comparisons show that the model-to-monitor discrepancy in the 
upper end of the personal exposure distributions is similar to the discrepancy between the APEX 
(spatially uniform) outdoor concentration input and the upper end of the measured values outside 
the subjects homes, with a median difference of about 7 ppb and a maximum difference of about 
19 ppb. The CV for the APEX outdoor inputs is 0% compared to 12% for the measured values. 
 
 The model-to-monitor comparison of the indoor residential distributions shows that 
APEX estimates the average concentration well for this data set, but shows a smaller CV (34% 
compared to 78%) with a small overestimate of the lower concentrations (about 5 ppb) and 
underestimates up to about 10 ppb for the higher measured concentrations. 
 
 In Figure 7-2 for the same week in Lake Arrowhead, the distribution of APEX 
predictions of personal exposure concentrations matches the distribution of measured values 
closely throughout, although with a somewhat lower CV (21% compared to 45%) , i.e., 
overestimates of about 5 ppb at the lower end and underestimates of about 5 ppb at the upper 
end.  
 
 The APEX (spatially uniform) outdoor concentration input matches the median measured 
outdoor concentration well, but overestimates the minimum by about 15 ppb and underestimates 
the maximum by about the same amount (i.e., APEX CV of 0% compared to a measured CV of 
11%).  
 
 The distribution of APEX indoor residential predictions matches the median and upper 
end measurements well but overestimates the lower values by up to 10 ppb (i.e., APEX CV of 
33% compared to a measured CV of 70%) . 
 
 Figures 7-3 and 7-4 show the full sets of Upland and Lake Arrowhead weekly average 
personal exposure concentration comparisons, respectively, along with similar comparisons for 
outdoor and indoor concentrations.  
 
 Figure 7-3 shows that for the Upland area the APEX mean and lower bound of the 
personal exposure concentration for each 6-day period generally match the mean and lower 
bound of the measurements closely. The average discrepancy between the weekly means is less 
than 1 ppb, with a range of -11 ppb to 8 ppb. However, the predicted upper bounds for the weeks 
with higher concentrations are somewhat underpredicted, with discrepancies up to 24 ppb.  The 
average weekly CV for the APEX predictions is 19% compared to 53% for the weekly measured 
values. 
 
 The APEX (spatially uniform) outdoor concentration input underestimates the mean 
measured values outside the subjects homes, especially for the weeks with higher measured 
concentrations, with discrepancies ranging up to 20 ppb, and an average discrepancy of 6 ppb. 
The discrepancies between the APEX outdoor concentration input and the upper bounds of the 
measured concentrations range up to 43 ppb with and average of 17 ppb. The average of the 
weekly CVs of the measured values is 22%. 
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 APEX shows some underestimation of the weekly average indoor residential 
concentrations and CV’s for the weeks with higher measured concentration. The discrepancies  
 
 
between the weekly means averages less than 2 ppb, and ranges from -6 ppb to 11 ppb. The 
average CV for the APEX predictions is 23% compared to 73% measured values. 
 
 Figure 7-4 shows that for the Lake Arrowhead area the APEX predictions overestimate 
the weekly average personal concentrations and CV for the weeks with lower concentrations and 
underestimate them for weeks with higher concentrations. The average discrepancy for the 
means is 3 ppb with a range of -4 ppb to 16 ppb. The average weekly CV of the APEX 
predictions is 21% compared to 56% for the measured values. 
 
 The APEX (spatially uniform) outdoor concentration input appears to match the mean 
measured values outside the subjects homes reasonably well, with an average discrepancy of 1 
ppb and a range of -12 ppb to 23 ppb. The discrepancies between the APEX outdoor 
concentration input and the upper bounds of the measured concentrations range up to 95 ppb 
with and average of 16 ppb. The average of the weekly CVs of the measured values is 17%. 
 
 Like the personal exposure concentrations, the APEX predictions overestimate the 
weekly average indoor concentrations and CVs for the weeks with lower concentrations and 
underestimate them for weeks with higher concentrations. The discrepancies between the weekly 
means averages less than 1 ppb, and ranges from -9 ppb to 14 ppb. The average CV for the 
APEX predictions is 25% compared to 83% measured values. 
 
 In summary, APEX predicts the average personal exposure concentration reasonably 
well, but underestimates the variability. Similarly, the average prediction for the indoor 
residential microenvironment matches the measured value reasonably well, but underestimates 
the variability. Since the study subjects spent 67% of their sampling time on average inside their 
residences, the  discrepancies for the indoor residential microenvironment are likely the main 
contributors to the discrepancies for the personal exposure concentrations. 
 
 A contributing factor to this underestimation of the variability in the indoor residential 
concentrations is likely to be an underestimation of the spatial variability of the outdoor 
concentrations. It is also possible the variability of residential air exchange rates is 
underestimated.   
 
 The underestimation of the outdoor concentration variability likely exacerbates the 
underestimation of the upper end of the personal exposure concentration distribution. 
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Figure 7-1 

 
 

 

 

 

 

 

 

 

 

 

Figure 7-2 
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Figure 7-2 
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Figure 7-3 
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Figure 7-4 
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DRAFT MEMORANDUM 

 
To: John Langstaff 

From: Jonathan Cohen, Hemant Mallya, Arlene Rosenbaum 

Date: September 30, 2005 

Re: EPA 68D01052, Work Assignment 3-08. Analysis of Air Exchange Rate Data 
  
 
EPA is planning to use the APEX exposure model to estimate ozone exposure in 12 cities / 
metropolitan areas:  Atlanta, GA; Boston, MA; Chicago, IL; Cleveland, OH; Detroit, MI; 
Houston, TX; Los Angeles, CA; New York, NY; Philadelphia, PA; Sacramento, CA; St. Louis, 
MO-IL; Washington, DC. As part of this effort, ICF Consulting has developed distributions of 
residential and non-residential air exchange rates (AER) for use as APEX inputs for the cities to 
be modeled. This memorandum describes the analysis of the AER data and the proposed APEX 
input distributions. Also included in this memorandum are proposed APEX inputs for 
penetration and proximity factors for selected microenvironments. 
 
Residential Air Exchange Rates 
 
Studies.  Residential air exchange rate (AER) data were obtained from the following seven 
studies: 
 

Avol:  Avol et al, 1998. In this study, ozone concentrations and AERs were measured at 
126 residences in the greater Los Angeles metropolitan area between February and 
December, 1994. Measurements were taken in four communities:  Lancaster, Lake 
Gregory, Riverside, and San Dimas. Data included the daily average outdoor 
temperature, the presence or absence of an air conditioner (either central or room), and 
the presence or absence of a swamp (evaporative) cooler. Air exchange rates were 
computed based on the total house volume and based on the total house volume corrected 
for the furniture. These data analyses used the corrected AERs. 
 
RTP Panel:  Williams et al, 2003a, 2003b. In this study particulate matter concentrations 
and daily average AERs were measured at 37 residences in central North Carolina during 
2000 and 2001 (averaging about 23 AER measurements per residence). The residences 
belong to two specific cohorts: a mostly Caucasian, non-smoking group aged at least 50 
years having cardiac defibrillators living in Chapel Hill; a group of non-smoking, African 
Americans aged at least 50 years with controlled hypertension living in a low-to-
moderate SES neighborhood in Raleigh. Data included the daily average outdoor 
temperature, and the number of air conditioner units (either central or room).  Every 
residence had at least one air conditioner unit. 
 
RIOPA:  Meng et al, 2004, Weisel et al, 2004. The Relationship of Indoor, Outdoor, and 
Personal Air (RIOPA) study was undertaken to estimate the impact of outdoor sources of 
air toxics to indoor concentrations and personal exposures. Volatile organic compounds, 
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carbonyls, fine particles and AERs were measured once or twice at 310 non-smoking 
residences from summer 1999 to spring 2001. Measurements were made at residences in 
Elizabeth, NJ, Houston TX, and Los Angeles CA. Residences in California were 
randomly selected. Residences in New Jersey and Texas were preferentially selected to 
be close (< 0.5 km) to sources of air toxics. The AER measurements (generally over 48 
hours) used a PMCH tracer. Data included the daily average outdoor temperature, and the 
presence or absence of central air conditioning, room air conditioning, or a swamp 
(evaporative) cooler. 
 
TEACH:  Chillrud at al, 2004, Kinney et al, 2002, Sax et al, 2004.  The Toxic Exposure 
Assessment, a Columbia/Harvard (TEACH) study was designed to characterize levels of 
and factors influencing exposures to air toxics among high school students living in 
inner-city neighborhoods of New York City and Los Angeles, CA. Volatile organic 
compounds, aldehydes, fine particles, selected trace elements, and AER were measured at 
87 high school student’s residences in New York City and Los Angeles in 1999 and 
2000. Data included the presence or absence of an air conditioner (central or room) and 
hourly outdoor temperatures (which were converted to daily averages for these analyses).  
 
Wilson 1984: Wilson et al, 1986, 1996. In this 1984 study, AER and other data were 
collected at about 600 southern California homes with three seven-day tests (in March 
and July 1984, and January, 1985) for each home. We obtained the data directly from Mr. 
Wilson. The available data consisted of the three seven-day averages, the month, the 
residence zip code, the presence or absence of a central air conditioner, and the presence 
or absence of a window air conditioner. We matched these data by month and zip code to 
the corresponding monthly average temperatures obtained from EPA’s SCRAM website 
as well as from the archives in www.wunderground.com (personal and airport 
meteorological stations).  Residences more than 25 miles away from the nearest available 
meteorological station were excluded from the analysis. For our analyses, the 
city/location was defined by the meteorological station, since grouping the data by zip 
code would not have produced sufficient data for most of the zip codes.  
 
Wilson 1991: Wilson et al, 1996. Colome et al, 1993, 1994. In this 1991 study, AER and 
other data were collected at about 300 California homes with one two-day test in the 
winter for each home. We obtained the data directly from Mr. Wilson. The available data 
consisted of the two-day averages, the date, city name, the residence zip code, the 
presence or absence of a central air conditioner, the presence or absence of a swamp 
(evaporative) cooler, and the presence or absence of a window air conditioner . We 
matched these data by date, city, and zip code to the corresponding daily average 
temperatures obtained from EPA’s SCRAM website as well as from the archives in 
www.wunderground.com (personal and airport meteorological stations).  Residences 
more than 25 miles away from the nearest available meteorological station were excluded 
from the analysis. For our analyses, the city/location was defined by the meteorological 
station, since grouping the data by zip code would not have produced sufficient data for 
most of the zip codes. 
  
Murray and Burmaster: Murray and Burmaster (1995). For this article, Murray and 
Burmaster corrected and compiled nationwide residential AER data from several studies 
conducted between 1982 and 1987. These data were originally compiled by the Lawrence 
Berkeley National Laboratory. We acknowledge Mr. Murray’s assistance in obtaining 
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these data for us. The available data consisted of AER measurements, dates, cities, and 
degree-days. Information on air conditioner presence or absence was not available. 

 
Table A-1 summarizes these studies. 
 
For each of the studies, air conditioner usage, window status (open or closed), and fan status (on 
or off) was not part of the experimental design, although some of these studies included 
information on whether air conditioners or fans were used (and for how long) and whether 
windows were closed during the AER measurements (and for how long). 
 
As described above, in the following studies the homes were deliberately sampled from specific 
subsets of the population at a given location rather than the entire population: The RTP Panel 
study selected two specific cohorts of older subjects with specific diseases. The RIOPA study 
was biased towards residences near air toxics sources. The TEACH study focused on inner-city 
neighborhoods. Nevertheless, we included all these studies because we determined that any 
potential bias would be likely to be small and we preferred to keep as much data as possible. 



 

  

Table A-1.  Summary of Studies of Residential Air Exchange Rates 
 

 Avol RTP Panel RIOPA TEACH Wilson 1984 Wilson 1991 
Murray 
and 
Burmaster 

Locations 

Lancaster, Lake 
Gregory, 
Riverside, San 
Dimas. All in 
Southern CA 

Research Triangle 
Park, NC CA; NJ; TX 

Los Angeles, CA; 
New York City, NY Southern CA Southern CA 

AZ, CA, CO, 
CT, FL, ID, 
MD, MN, MT, 
NJ 

Years 1994 2000; 2001 1999; 2000; 2001 1999; 2000 1984, 1985 1984 1982 – 1987 

Months/Seasons  
Feb; Mar; Apr; 
May; Jun; Jul; 
Aug; Sep; Oct; 
Nov 

2000 (Jun; Jul; 
Aug; Sep; Oct; 
Nov), 2001 (Jan; 
Feb; Apr; May)  

1999 (July to 
Dec); 2000 (all 
months); 2001 
(Jan and Feb) 

1999 (Feb; Mar; Apr; 
Jul; Aug);   2000 (Jan; 
Feb; Mar; Sep; Oct) 

Mar 1984, Jul 1984, Jan 
1985 Jan, Mar, Jul Various 

Number of 
Homes  86 37 284 85 581 288 1,884 

Total AER 
Measurements 161 854 524 151 1,362 316 2,844 

Average 
Number of 
Measurements 
per Home 1.87 23.08 1.85 1.78 2.34 1.10 1.51 

Measurement 
Duration 

Not Available 24 hour 24 to 96 hours 

Sample time (hours) 
reported.  Ranges 
from about 1 to 7 
days. 7 days 7 days Not available 

Measurement 
Technique Not Available 

Perflourocarbon 
tracer. PMCH tracer 

Perflourocarbon 
tracer. Perflourocarbon tracer. Perflourocarbon tracer. Not available 

Min AER Value 0.01 0.02 0.08 0.12 0.03 0.01 0.01 

Max AER Value 2.70 21.44 87.50 8.87 11.77 2.91 11.77 

Mean AER 
Value 0.80 0.72 1.41 1.71 1.05 0.57 0.76 

Min 
Temperature 
(C) -0.04 -2.18 -6.82 -1.36 11.00 3.00 Not available 
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 Avol RTP Panel RIOPA TEACH Wilson 1984 Wilson 1991 
Murray 
and 
Burmaster 

Max 
Temperature 
(C) 36.25 30.81 32.50 32.00 28.00 25.00 Not available 

Air Conditioner 
Categories 

No A/C; Central 
or Room A/C; 
Swamp Cooler 
only; Swamp + 
[Central or Room] 

Central or Room 
A/C (Y/N) 

Window A/C 
(Y/N); Evap 
Coolers (Y/N)  

Central or Room A/C 
(Y/N) 

Central A/C (Y/N); 
Room A/C (Y/N);  

Central A/C (Y/N); 
Room A/C (Y/N); 
Swamp Cooler(Y/N) Not available 

Air Conditioner 
Measurements A/C use in 

minutes Not Available 

Duration 
measurements in 
Hrs and Mins Not Available Not Available Not Available Not available 

Fan Categories Not available Fan (Y/N)  Fan (Y/N)  Not Available Not Available Not Available Not available 

Fan 
Measurements 

Time on or off for 
various fan types 
during sampling 
was recorded, but 
not included in 
database provided. Not Available 

Duration 
measurements in 
Hrs and Mins Not Available Not Available Not Available Not available 

Window Open/ 
Closed Data 

Duration open 
between times 
6am-12 pm; 12pm 
- 6 pm; and 6pm - 
6am 

Windows (open / 
closed along with 
duration open in 
inch-hours units 

Windows (Open / 
Closed) along with 
window open 
duration 
measurements Not Available Not Available Not Available Not available 

Comments 

  

CA sample was a 
random sample of 
homes. NJ and TX 
homes were 
deliberately 
chosen to be near 
to ambient 
sources. 

Restricted to inner-
city homes with high 
school students. 

Contemporaneous 
temperature data 
obtained for these 
analyses from SCRAM 
and 
www.wunderground.com 
meteorological data. 

Contemporaneous 
temperature data 
obtained for these 
analyses from SCRAM 
and 
www.wunderground.com 
meteorological data.  
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We compiled the data from these seven studies to create the following variables, of which some 
had missing values: 
 

• Study 
• Date  
• Time – Time of the day that the AER measurement was made 
• House_ID – Residence identifier 
• Measurement_ID – Uniquely identifies each AER measurement for a given study 
• AER – Air Exchange Rate (per hour)  
• AER_Duration – Length of AER measurement period 
• Have_AC – Indicates if the residence has any type of air conditioner (A/C), either a room 

A/C or central A/C or swamp cooler or any of them in combination. “Y” = “Yes.” “N” = 
“No.” 

• Type_of_AC1 – Indicates the types of A/C or swamp cooler available in each house 
measured. Possible values:  “Central A/C” “Central and Room A/C” “Central or Room 
A/C” “No A/C” “Swamp + (Central or Room)” “Swamp Cooler only” “Window A/C” 
“Window and Evap” 

• Type_of_AC2 – Indicates if a house measured has either no A/C or some A/C. Possible 
values are “No A/C” and “Central or Room A/C.”  

• Have_Fan – Indicates if the house studied has any fans 
• Mean_Temp – Daily average outside temperature 
• Min_Temp – Minimum hourly outside temperature 
• Max_Temp – Maximum hourly outside temperature 
• State 
• City 
• Location – Two character abbreviation 
• Flag – Data status. Murray and Burmaster study:  “Used” or “Not Used.”  Other studies: 

“Used”; “Missing” (missing values for AER, Type_of_AC2, and/or Mean_Temp); 
“Outlier”. 

 
 

The main data analysis was based on the first six studies. The Murray and Burmaster data were 
excluded because of the absence of information on air conditioner presence. (However, a subset 
of these data was used for a supplementary analysis described below.) .  
 
Based on our review of the AER data we excluded seven outlying high AER values – above 10 
per hour.  The main data analysis used all the remaining data that had non-missing values for 
AER, Type_of_AC2, and Mean_Temp. We decided to base the A/C type variable on the broad 
characterization “No A/C” versus “Central or Room A/C” since this variable could be calculated 
from all of the studies (excluding Murray and Burmaster). Information on the presence or 
absence of swamp coolers was not available from all the studies, and, also importantly, the 
corresponding information on swamp cooler prevalence for the subsequent ozone modeling cities 
was not available from the American Housing Survey. It is plausible that AER distributions 
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depend upon the presence or absence of a swamp cooler. It is also plausible that AER 
distributions also depend upon whether the residence specifically has a central A/C, room or 
window A/C, or both. However we determined to use the broader A/C type definition, which in 
effect assumes that the exact A/C type and the presence of a swamp cooler are approximately 
proportionately represented in the surveyed residences. 
 
Most of the studies had more than one AER measurement for the same house. It is reasonable to 
assume that the AER varies with the house as well as other factors such as the temperature. (The 
A/C type can be assumed to be the same for each measurement of the same house). We expected 
the temperature to be an important factor since the AER will be affected by the use of the 
available ventilation (air conditioners, windows, fans), which in turn will depend upon the 
outside meteorology. Therefore it is not appropriate to average data for the same house under 
different conditions, which might have been one way to account for dependence between 
multiple measurements on the same house. To simplify the data analysis, we chose to ignore 
possible dependence between measurements on the same house on different days and treat all the 
AER values as if they were statistically independent. 
 
Summary Statistics. We computed summary statistics for AER and its natural logarithm 
LOG_AER on selected strata defined from the study, city, A/C type, and mean temperature. 
Cities were defined as in the original databases, except that for Los Angeles we combined all the 
data in the Los Angeles ozone modeling region, i.e. the counties of Los Angeles, Orange, 
Ventura, Riverside, and San Bernardino. A/C type was defined from the Type_of_AC2 variable, 
which we abbreviated as “NA” = “No A/C” and “AC” = “Central or Room A/C.”  The mean 
temperature was grouped into the following temperature bins: -10 to 0 ºC, 0 to 10 ºC, 10 to 20 
ºC, 20 to 25 ºC, 25 to 30 ºC, 30 to 40 ºC.(Values equal to the lower bounds are excluded from 
each interval.)  Also included were strata defined by study = “All” and/or city = “All,” and/or 
A/C type = “All” and/or temperature bin = “All.”  The following summary statistics for AER and 
LOG_AER were computed: 
 

• Number of values 
• Arithmetic Mean 
• Arithmetic Standard Deviation 
• Arithmetic Variance 
• Deciles (Min, 10th, 20th … 90th percentiles, Max) 

 
These calculations exclude all seven outliers and results are not used for strata with 10 or fewer 
values, since those summary statistics are extremely unreliable. 
 
Examination of these summary tables clearly demonstrates that the AER distributions vary 
greatly across cities and A/C types and temperatures, so that the selected AER distributions for 
the modeled cities should also depend upon the city, A/C type and temperature. For example, the 
mean AER for residences with A/C ranges from 0.39 for Los Angeles between 30 and 40 ºC to 
1.73 for New York between 20 and 25 ºC. The mean AER for residences without A/C ranges 
from 0.46 for San Francisco between 10 and 20 ºC to 2.29 for New York between 20 and 25 ºC. 
The need to account for the city as well as the A/C type and temperature is illustrated by the 
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result that for residences with A/C and between 20 and 25 ºC, the mean AER ranges from 0.52 
for Research Triangle Park to 1.73 for New York. Statistical comparisons are described below. 
 
Statistical Comparisons.  Various statistical comparisons were carried out between the different 
strata, for the AER and its logarithm. The various strata are defined as in the Summary Statistics 
section, excluding the “All” cases. For each analysis, we fixed one or two of the variables Study, 
City, A/C type, temperature, and tested for statistically significant differences among other 
variables. The comparisons are listed in Table A-2. 
 
Table A-2.  Summary of Comparisons of Means 
 

Cases with significantly 
different means (5 % 
level) 

Comparison 
Analysis 
Number. 

Comparison 
Variable(s) 
“Groups 
Compared”  

Stratification 
Variable(s) 
(not missing in 
worksheet) 

Total 
Comparisons

AER Log AER 
1. City Type of A/C AND 

Temp. Range 
12 8 8 

2. Temp. Range Study AND City 12 5 5 
3. Type of A/C Study AND City 15 5 5 
4. City Type of A/C 2 2 2 
5. City Temp. Range 6 5 6 
6. Type of A/C 

AND Temp. 
Range 

Study AND City 17 6 6 

 
For example, the first set of comparisons fix the Type of A/C and the temperature range; there 
are twelve such combinations. For each of these twelve combinations, we compare the AER 
distributions across different cities. This analysis determines whether the AER distribution is 
appropriately defined by the A/C type and temperature range, without specifying the city. 
Similarly, for the sixth set of comparisons, the study and city are held fixed (17 combinations) 
and in each case we compare AER distributions across groups defined by the combination of the 
A/C type and the temperature range. 
 
The F Statistic comparisons compare the mean values between groups using a one way analysis 
of variance (ANOVA). This test assumes that the AER or log(AER) values are normally 
distributed with a mean that may vary with the comparison variable(s) and a constant variance. 
We calculated the F Statistic and its P-value. P-values above 0.05 indicate cases where all the 
group means are not statistically significantly different at the 5 percent level. Those results are 
summarized in the last two columns of the above table “Summary of Comparisons of Means” 
which gives the number of cases where the means are significantly different. Comparison 
analyses 2, 3, and 6 show that for a given study and city, slightly less than half of the 
comparisons show significant differences in the means across temperature ranges, A/C types, or 
both. Comparison analyses 1, 4, and 5 show that for the majority of cases, means vary 
significantly across cities, whether you first stratify by temperature range, A/C type, or both. 
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The Kruskal-Wallis Statistic comparisons are non-parametric tests that are extensions of the 
more familiar Wilcoxon tests to two or more groups. The analysis is valid if the AER minus the 
group median has the same distribution for each group, and tests whether the group medians are 
equal. (The test is also consistent under weaker assumptions against more general alternatives) 
The P-values show similar patterns to the parametric F test comparisons of the means. Since the 
logarithm is a strictly increasing function and the test is non-parametric, the Kruskal-Wallis tests 
give identical results for AER and Log (AER). 
 
The Mood Statistic comparisons are non-parametric tests that compare the scale statistics for two 
or more groups. The scale statistic measures variation about the central value, which is a non-
parametric generalization of the standard deviation. Specifically, suppose there is a total of N 
AER or log(AER) values, summing across all the groups. These N values are ranked from 1 to 
N, and the j’th highest value is given a score of  {j - (N+1)/2}2.  The Mood statistic uses a one 
way ANOVA statistic to compare the total scores for each group. Generally, the Mood statistics 
show that in most cases the scale statistics are not statistically significantly different. Since the 
logarithm is a strictly increasing function and the test is non-parametric, the Mood tests give 
identical results for AER and Log (AER). 
 
Fitting Distributions.  Based on the summary statistics and the statistical comparisons, the need 
to fit different AER distributions to each combination of A/C type, city, and temperature is 
apparent. For each combination with a minimum of 11 AER values, we fitted and compared 
exponential, log-normal, normal, and Weibull distributions to the AER values. 
 
The first analysis used the same stratifications as in the above “Summary Statistics” and 
“Statistical Comparisons” sections. Results are not reported for all strata because of the 
minimum data requirement of 11 values. Results for each combination of A/C type, city, and 
temperature (i.e., A, C, and T) were analyzed. Each combination has four rows, one for each 
fitted distribution. For each distribution we report the fitted parameters (mean, standard 
deviation, scale, shape) and the p-value for three standard goodness-of-fit tests: Kolmogorov-
Smirnov (K-S), Cramer-Von-Mises (C-M), Anderson-Darling (A-D). Each goodness-of-fit test 
compares the empirical distribution of the AER values to the fitted distribution. The K-S and C-
M tests are different tests examining the overall fit, while the Anderson-Darling test gives more 
weight to the fit in the tails of the distribution. For each combination, the best-fitting of the four 
distributions has the highest p-value and is marked by an x in the final three columns. The mean 
and standard deviation (Std_Dev) are the values for the fitted distribution. The scale and shape 
parameters are defined by: 
   

• Exponential: density = σ-1 exp(-x/σ), where shape = mean = σ 
• Log-normal: density = {σx√(2π)}-1 exp{ -(log x - ζ)2 / (2σ2)}, where shape = σ and 

scale = ζ. Thus the geometric mean and geometric standard deviation are given by 
exp(ζ) and exp(σ), respectively. 

• Normal: density = {σ√(2π)}-1 exp{ -(x - μ)2 / (2σ2)}, where mean = μ and standard 
deviation = σ 

• Weibull: density = (c/σ) (x/σ)c-1 exp{-(x/σ)c}, where shape = c and scale = σ 
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Generally, the log-normal distribution was the best-fitting of the four distributions, and so, for 
consistency, we recommend using the fitted log-normal distributions for all the cases. 
 
One limitation of the initial analysis was that distributions were available only for selected cities, 
and yet the summary statistics and comparisons demonstrate that the AER distributions depend 
upon the city as well as the temperature range and A/C type. As one option to address this issue, 
we considered modeling cities for which distributions were not available by using the AER 
distributions across all cities and dates for a given temperature range and A/C type. 
 
Another important limitation of the initial analysis was that distributions were not fitted to all of 
the temperature ranges due to inadequate data. There are missing values between temperature 
ranges, and the temperature ranges are all bounded. To address this issue, the temperature ranges 
were regrouped to cover the entire range of temperatures from minus to plus infinity, although 
obviously the available data to fit these ranges have finite temperatures. Stratifying by A/C type, 
city, and the new temperature ranges produces results for four cities: Houston (AC and NA); Los 
Angeles (AC and NA); New York (AC and NA); Research Triangle Park (AC). For each of the 
fitted distributions we created histograms to compare the fitted distributions with the empirical 
distributions. 
 
 
AER Distributions for The First Nine Cities.  Based upon the results for the above four cities 
and the corresponding graphs, we propose using those fitted distributions for the three cities 
Houston, Los Angeles, and New York. For another 6 of the cities to be modeled, we propose 
using the distribution for one of the four cities thought to have similar characteristics to the city 
to be modeled with respect to factors that might influence AERs. These factors include the age 
composition of housing stock, construction methods, and other meteorological variables not 
explicitly treated in the analysis, such as humidity and wind speed patterns. The distributions 
proposed for these cities are as follows: 
 

• Atlanta, GA, A/C: Use log-normal distributions for Research Triangle Park. Residences 
with A/C only. 

• Boston, MA: Use log-normal distributions for New York 
• Chicago, IL: Use log-normal distributions for New York 
• Cleveland, OH: Use log-normal distributions for New York 
• Detroit, MI: Use log-normal distributions for New York 
• Houston, TX: Use log-normal distributions for Houston 
• Los Angeles, CA: Use log-normal distributions for Los Angeles 
• New York, NY: Use log-normal distributions for New York 
• Philadelphia, PA: Use log-normal distributions for New York 

 
Since the AER data for Research Triangle Park was only available for residences with air 
conditioning, AER distributions for Atlanta residences without air conditioning are discussed 
below.  
 
To avoid unusually extreme simulated AER values, we propose to set a minimum AER value of 
0.01 and a maximum AER value of 10. 
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Obviously, we would be prefer to model each city using data from the same city, but this 
approach was chosen as a reasonable alternative, given the available AER data.  
 
AER Distributions for Sacramento and St. Louis. For these two cities, a direct mapping to one 
of the four cities Houston, Los Angeles, New York, and Research Triangle Park is not 
recommended because the cities are likely to be too dissimilar. Instead, we decided to use the 
distribution for the inland parts of Los Angeles to represent Sacramento and to use the aggregate 
distributions for all cities outside of California to represent St. Louis. The results for the city 
Sacramento were obtained by combining all the available AER data for Sacramento, Riverside, 
and San Bernardino counties. The results for the city St. Louis were obtained by combining all 
non-California AER data. 
 
AER Distributions for Washington DC. Washington DC was judged likely to have similar 
characteristics both to Research Triangle Park and to New York City. To choose between these 
two cities, we compared the Murray and Burmaster AER data for Maryland with AER data from 
each of those cities. The Murray and Burmaster study included AER data for Baltimore and for 
Gaithersburg and Rockville, primarily collected in March. April, and May 1987, although there 
is no information on mean daily temperatures or A/C type. We collected all the March, April, 
and May AER data for Research Triangle Park and for New York City, and compared those 
distributions with the Murray and Burmaster Maryland data for the same three months. 
     
The results for the means and central values show significant differences at the 5 percent level 
between the New York and Maryland distributions. Between Research Triangle Park and 
Maryland, the central values and the mean AER values are not statistically significantly 
different, and the differences in the mean log (AER) values are much less statistically significant 
than between New York and Maryland. The scale statistic comparisons are not statistically 
significantly different between New York and Maryland, but were statistically significantly 
different between Research Triangle Park and Maryland. Since matching central and mean 
values is generally more important than matching the scales, we propose to model Washington 
DC residences with air conditioning using the Research Triangle Park distributions, stratified by 
temperature: 
 

• Washington DC, A/C: Use log-normal distributions for Research Triangle Park. 
Residences with A/C only. 

 
Since the AER data for Research Triangle Park was only available for residences with air 
conditioning, the estimated AER distributions for Washington DC residences without air 
conditioning are discussed below. 
 
AER Distributions for Washington DC and Atlanta GA Residences With No A/C. For 
Atlanta and Washington DC we have proposed to use the AER distributions for Research 
Triangle Park. However, all the Research Triangle Park data (from the RTP Panel study) were 
from houses with air conditioning, so there are no available distributions for the “No A/C” cases.  
For these two cities, one option is to use AER distributions fitted to all the study data for 
residences without A/C, stratified by temperature. We propose applying the “No A/C” 



 

  A-12

distributions for modeling these two cities for residences without A/C. However, since Atlanta 
and Washington DC residences are expected to be better represented by residences outside of 
California, we instead propose to use the “No A/C” AER distributions aggregated across cities 
outside of California, which is the same as the recommended choice for the St. Louis “No A/C” 
AER distributions. 
 
A/C Type and Temperature Distributions. Since the proposed AER distribution is conditional 
on the A/C type and temperature range, these values also need to be simulated using APEX in 
order to select the appropriate AER distribution. Mean daily temperatures are one of the 
available APEX inputs for each modeled city, so that the temperature range can be determined 
for each modeled day according to the mean daily temperature. To simulate the A/C type, we 
obtained estimates of A/C prevalence from the American Housing Survey. Thus for each 
city/metropolitan area, we obtained the estimated fraction of residences with Central or Room 
A/C (see Table A-3), which gives the probability p for selecting the A/C type “Central or Room 
A/C.”  Obviously, 1-p is the probability for “No A/C.” For comparison with Washington DC and 
Atlanta, we have included the A/C type percentage for Charlotte, NC (representing Research 
Triangle Park, NC). As discussed above, we propose modeling the 96-97 % of Washington DC 
and Atlanta residences with A/C using the Research Triangle Park AER distributions, and 
modeling the 3-4 % of Washington DC and Atlanta residences without A/C using the combined 
study No A/C AER distributions. 
 
Table A-3. Fraction of residences with central or room A/C (from American Housing 
Survey) 
  

CITY SURVEY AREA & YEAR PERCENTAGE 
Atlanta Atlanta, 2003 97.01 
Boston Boston, 2003 85.23 
Chicago Chicago, 2003 87.09 
Cleveland Cleveland, 2003 74.64 
Detroit Detroit, 2003 81.41 
Houston Houston, 2003 98.70 
Los Angeles Los Angeles, 2003 55.05 
New York New York, 2003 81.57 
Philadelphia Philadelphia, 2003 90.61 
Sacramento Sacramento, 2003 94.63 
St. Louis St. Louis, 2003 95.53 
Washington DC Washington DC, 2003 96.47 
Research Triangle Park Charlotte, 2002 96.56 
 
 
Other AER Studies 
 
We recently became aware of some additional residential and non-residential AER studies that 
might provide additional information or data. Indoor / outdoor ozone and PAN distributions were 
studied by Jakobi and Fabian (1997). Liu et al (1995) studied residential ozone and AER 
distributions in Toronto, Canada. Weschler and Shields (2000) describes a modeling study of 
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ventilation and air exchange rates. Weschler (2000) includes a useful overview of residential and 
non-residential AER studies. 
 
AER Distributions for Other Indoor Environments 
 
To estimate AER distributions for non-residential, indoor environments (e.g., offices and 
schools), we obtained and analyzed two AER data sets: “Turk” (Turk et al, 1989); and “Persily” 
(Persily and Gorfain 2004; Persily et al. 2005).   
 
The earlier “Turk” data set (Turk et al, 1989) includes 40 AER measurements from offices (25 
values), schools (7 values), libraries (3 values), and multi-purpose (5 values), each measured 
using an SF6 tracer over two- or four-hours in different seasons of the year.  
 
The more recent  “Persily” data (Persily and Gorfain 2004; Persily et al. 2005) were derived 
from the U.S. EPA Building Assessment Survey and Evaluation (BASE) study, which was 
conducted to assess indoor air quality, including ventilation, in a large number of randomly 
selected office buildings throughout the U.S. The data base consists of a total of 390 AER 
measurements in 96 large, mechanically ventilated offices; each office was measured up to four 
times over two days, Wednesday and Thursday AM and PM. The office spaces were relatively 
large, with at least 25 occupants, and preferably 50 to 60 occupants. AERs were measured both 
by a volumetric method and by a CO2 ratio method, and included their uncertainty estimates. For 
these analyses, we used the recommended “Best Estimates” defined by the values with the lower 
estimated uncertainty; in the vast majority of cases the best estimate was from the volumetric 
method. 
 
Another study of non-residential AERs was performed by Lagus Applied Technology (1995) 
using a tracer gas method. That study was a survey of AERs in 16 small office buildings, 6 large 
office buildings, 13 retail establishments, and 14 schools. We plan to obtain and analyze these 
data and compare those results with the Turk and Persily studies. 
 
Due to the small sample size of the Turk data, the data were analyzed without stratification by 
building type and/or season. For the Persily data, the AER values for each office space were 
averaged, rather using the individual measurements, to account for the strong dependence of the 
AER measurements for the same office space over a relatively short period.   
 
Summary statistics of AER and log (AER) for the two studies are presented in Table A-4. 
 
Table A-4.  AER summary statistics for offices and other non-residential buildings 
 
Study Variable N Mean Std Dev Min 25th %ile Median 75th %ile Max 
Persily AER 96 1.9616 2.3252 0.0712 0.5009 1.0795 2.7557 13.8237 
Turk AER 40 1.5400 0.8808 0.3000 0.8500 1.5000 2.0500 4.1000 
Persily Log(AER) 96 0.1038 1.1036 -2.6417 -0.6936 0.0765 1.0121 2.6264 
Turk Log(AER) 40 0.2544 0.6390 -1.2040 -0.1643 0.4055 0.7152 1.4110 

   



 

  A-14

The mean values are similar for the two studies, but the standard deviations are about twice as 
high for the Persily data. The proposed AER distributions were derived from the more recent 
Persily data only. 
 
Similarly to the analyses of the residential AER distributions, we fitted exponential, log-normal, 
normal, and Weibull distributions to the 96 office space average AER values. The results are 
shown in Table A-5. 
 
Table A-5. Best fitting office AER distributions from the Persily et al. (2004, 2005)   
 

Scale Shape Mean Std_Dev Distribution
P-Value 

Kolmogorov-
Smirnov 

P-Value 
Cramer-

von 
Mises 

P-Value 
Anderson-

Darling 

1.9616  1.9616 1.9616 Exponential 0.13 0.04 0.05 
0.1038 1.1036 2.0397 3.1469 Lognormal 0.15 0.46 0.47 

  1.9616 2.3252 Normal 0.01 0.01 0.01 
1.9197 0.9579 1.9568 2.0433 Weibull  0.01 0.01 

 
(For an explanation of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling P-
values see the discussion residential AER distributions above.) According to all three goodness-
of-fit measures the best-fitting distribution is the log-normal. Reasonable choices for the lower 
and upper bounds are the observed minimum and maximum AER values. 
 
We therefore propose the following indoor, non-residential AER distributions. 
 

• AER distribution for indoor, non-residential microenvironments: Lognormal, with scale 
and shape parameters 0.1038 and 1.1036, i.e., geometric mean = 1.1094, geometric 
standard deviation = 3.0150. Lower Bound = 0.07. Upper bound = 13.8.  

 
Proximity and Penetration Factors For Outdoors, In-vehicle, and Mass Transit 
 
For the APEX modeling of the outdoor, in-vehicle, and mass transit micro-environments, an 
approach using proximity and penetration factors is proposed, as follows. 
 
Outdoors Near Road 
 
Penetration factor = 1. 
 
For the Proximity factor, we propose using ratio distributions developed from the Cincinnati 
Ozone Study (American Petroleum Institute, 1997, Appendix B; Johnson et al. 1995). The field 
study was conducted in the greater Cincinnati metropolitan area in August and September, 1994. 
Vehicle tests were conducted according to an experimental design specifying the vehicle type, 
road type, vehicle speed, and ventilation mode. Vehicle types were defined by the three study 
vehicles: a minivan, a full-size car, and a compact car. Road types were interstate highways 
(interstate), principal urban arterial roads (urban), and local roads (local). Nominal vehicle 
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speeds (typically met over one minute intervals within 5 mph) were at 35 mph, 45 mph, or 55 
mph. Ventilation modes were as follows: 
 

• Vent Open:  Air conditioner off. Ventilation fan at medium. Driver’s window half open. 
Other windows closed. 

• Normal A/C. Air conditioner at normal. All windows closed. 
• Max A/C: Air conditioner at maximum. All windows closed. 

 
Ozone concentrations were measured inside the vehicle, outside the vehicle, and at six fixed site 
monitors in the Cincinnati area. 
 
The proximity factor can be estimated from the distributions of the ratios of the outside-vehicle 
ozone concentrations to the fixed-site ozone concentrations, reported in Table 8 of Johnson et al. 
(1995). Ratio distributions were computed by road type (local, urban, interstate, all) and by the 
fixed-site monitor (each of the six sites, as well as the nearest monitor to the test location). For 
this analysis we propose to use the ratios of outside-vehicle concentrations to the concentrations 
at the nearest fixed site monitor, as shown in Table A-6. 
 
Table A-6. Ratio of outside-vehicle ozone to ozone at nearest fixed site1 
 
 
Road 
Type1 

Number 
of cases1 

Mean1 Standard 
Deviation1

25th 
Percentile1

50th 
Percentile1

75th 
Percentile1 

Estimated 
5th 
Percentile2

Local 191 0.755 0.203 0.645 0.742 0.911 0.422 
Urban 299 0.754 0.243 0.585 0.722 0.896 0.355 
Interstate 241 0.364 0.165 0.232 0.369 0.484 0.093 
All 731 0.626 0.278 0.417 0.623 0.808 0.170 
  

1. From Table 8 of Johnson et al. (1995). Data excluded if fixed-site concentration  < 40 
ppb. 

2. Estimated using a normal approximation as Mean – 1.64 × Standard Deviation 
 
For the outdoors-near- road microenvironment, we recommend using the distribution for local 
roads, since most of the outdoors-near-road ozone exposure will occur on local roads. The 
summary data from the Cincinnati Ozone Study are too limited to allow fitting of distributions, 
but the 25th and 75th percentiles appear to be approximately equidistant from the median (50th 
percentile). Therefore we propose using a normal distribution with the observed mean and 
standard deviation. A plausible upper bound for the proximity factor equals 1. Although the 
normal distribution allows small positive values and can even produce impossible, negative 
values (with a very low probability), the titration of ozone concentrations near a road is limited. 
Therefore, as an empirical approach, we recommend  a lower bound of the estimated 5th 
percentile, as shown in the final column of the above table. Therefore in summary we propose: 
 

• Penetration factor for outdoors, near road: 1. 
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• Proximity factor for outdoors, near road: Normal distribution. Mean = 0.755. Standard 
Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 

 
Outdoors, Public Garage / Parking Lot 
 
This micro-environment is similar to the outdoors-near-road microenvironment. We therefore 
recommend the same distributions as for outdoors-near-road: 
 

• Penetration factor for outdoors, public garage / parking lot: 1. 
• Proximity factor for outdoors, public garage / parking lot: Normal distribution. Mean = 

0.755. Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 
 
Outdoors, Other 
 
The outdoors, other ozone concentrations should be well represented by the ambient monitors. 
Therefore we propose: 
 

• Penetration factor for outdoors, other: 1. 
• Proximity factor for outdoors, other: 1. 

 
In-Vehicle 
 
For the proximity factor for in-vehicle, we also recommend using the results of the Cincinnati 
Ozone Study presented in Table A-6. For this microenvironment, the ratios depend upon the road 
type, and the relative prevalences of the road types can be estimated by the proportions of 
vehicle miles traveled in each city. The proximity factors are assumed, as before, to be normally 
distributed, the upper bound to be 1, and the lower bound to be the estimated 5th percentile. 
 

• Proximity factor for in-vehicle, local roads: Normal distribution. Mean = 0.755. Standard 
Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 

• Proximity factor for in-vehicle, urban roads: Normal distribution. Mean = 0.754. 
Standard Deviation = 0.243. Lower Bound = 0.355. Upper Bound = 1. 

• Proximity factor for in-vehicle, interstates: Normal distribution. Mean = 0.364. Standard 
Deviation = 0.165. Lower Bound = 0.093. Upper Bound = 1. 

 
To complete the specification, the distribution of road type needs to be estimated for each city to 
be modeled. Vehicle miles traveled (VMT) in 2003 by city (defined by the Federal-Aid 
urbanized area) and road type were obtained from the Federal Highway Administration. 
(http://www.fhwa.dot.gov/policy/ohim/hs03/htm/hm71.htm). For  local and interstate road types, 
the VMT for the same DOT categories were used. For urban roads, the VMT for all other road 
types was summed (Other freeways/expressways, Other principal arterial, Minor arterial, 
Collector). The computed VMT ratios for each city are shown in Table A-7. 
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Table A-7. Vehicle Miles Traveled by City and Road Type in 2003 (FHWA, October 2004) 
 

FRACTION VMT BY ROAD TYPE  
FEDERAL-AID URBANIZED 

AREA INTERSTATE URBAN LOCAL 

Atlanta 0.38 0.45 0.18 
Boston 0.31 0.55 0.14 
Chicago 0.30 0.59 0.12 
Cleveland 0.39 0.45 0.16 
Detroit 0.26 0.63 0.11 
Houston 0.24 0.72 0.04 
Los Angeles 0.29 0.65 0.06 
New York 0.18 0.67 0.15 
Philadelphia 0.23 0.65 0.11 
Sacramento 0.21 0.69 0.09 
St. Louis 0.36 0.45 0.19 
Washington 0.31 0.61 0.08 

Note that a “Federal-Aid Urbanized Area" is an area with 50,000 or more persons that at a 
minimum encompasses the land area delineated as the urbanized area by the Bureau of the 
Census. Urbanized areas that have been combined with others for reporting purposes are not 
shown separately. The Illinois portion of Round Lake Beach-McHenry-Grayslake has been 
reported with Chicago. 
  
Thus to simulate the proximity factor in APEX, we propose to first select the road type according 
to the above probability table of road types, then select the AER distribution (normal) for that 
road type as defined in the last set of bullets. 
 
For the penetration factor for in-vehicle, we recommend using the inside-vehicle to outside-
vehicle ratios from the Cincinnati Ozone Study. The ratio distributions were summarized for all 
the data and for stratifications by vehicle type, vehicle speed, road type, traffic (light, moderate, 
or heavy), and ventilation. The overall results and results by ventilation type are shown in Table 
A-8. 
 
Table A-8. Ratio of inside-vehicle ozone to outside-vehicle ozone1 
 
 

Ventilation1 
Number 
of 
cases1 

Mean1 Standard 
Deviation1

25th 
Percentile1

50th 
Percentile1

75th 
Percentile1 

Estimated 
5th 
Percentile2

Vent Open 226 0.361 0.217 0.199 0.307 0.519 0.005 
Normal 
A/C 332 0.417 0.211 0.236 0.408 0.585 0.071 

Maximum 
A/C 254 0.093 0.088 0.016 0.071 0.149 0.0003 

All 812 0.300 0.232 0.117 0.251 0.463 0.0003 
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1. From Table 7 of Johnson et al.(1995). Data excluded if outside-vehicle concentration  < 

20 ppb. 
2. Estimated using a normal approximation as Mean – 1.64 × Standard Deviation 
3. Negative estimate (impossible value) replaced by zero. 
 

Although the data in Table A-8 indicate that the inside-to-outside ozone ratios  strongly depend 
upon the ventilation type, it would be very difficult to find suitable data to estimate the 
ventilation type distributions for each modeled city. Furthermore, since the Cincinnati Ozone 
Study was scripted, the ventilation conditions may not represent real-world vehicle ventilation 
scenarios. Therefore, we propose to use the overall average distributions. 
 

• Penetration factor for in-vehicle: Normal distribution. Mean = 0.300. Standard Deviation 
= 0.232. Lower Bound = 0.000. Upper Bound = 1. 

 
Mass Transit 
 
The mass transit microenvironment is expected to be similar to the in-vehicle microenvironment. 
Therefore we recommend using the same APEX modeling approach: 
 

• Proximity factor for mass transit, local roads: Normal distribution. Mean = 0.755. 
Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 

• Proximity factor for mass transit, urban roads: Normal distribution. Mean = 0.754. 
Standard Deviation = 0.243. Lower Bound = 0.355. Upper Bound = 1. 

• Proximity factor for mass transit, interstates: Normal distribution. Mean = 0.364. 
Standard Deviation = 0.165. Lower Bound = 0.093. Upper Bound = 1. 

• Road type distributions for mass transit: See Table A-6 
• Penetration factor for mass transit: Normal distribution. Mean = 0.300. Standard 

Deviation = 0.232. Lower Bound = 0.000. Upper Bound = 1. 
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APPENDIX B.  THEORETICAL DEVELOPMENT OF A UNIFIED ALGORITHM 
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FATIGUE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION (EPOC) 
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TECHNICAL MEMORANDUM 
 
 
TO:  Tom McCurdy, U.S. EPA, WA Manager, NERL WA 131 

FROM:   Kristin Isaacs, Graham Glen, and Luther Smith, Alion Science and Technology Inc. 

DATE:  June 16, 2005 

SUBJECT:  Theoretical Development of a Unified Algorithm for Adjusting MET Values 
 in Human Exposure Modeling for Fatigue and EPOC 

 
I.  INTRODUCTION 
 
The CHAD activity database assigns distributions for energy expenditure to each diary event, 
based on the reported event activity.  This is done using the MET paradigm, which uses ratios of 
activity-specific to basal energy expenditure.  However, the basic or “raw” MET distributions do 
not consider sequences of events.  It is well known that a person’s capacity for work will 
diminish as they get tired, and in practice, this means that the upper bound on MET is lowered if 
events in the recent past have been at unusually high MET levels.  Furthermore, once high 
activity levels have ended, people tend to breathe heavily even while resting, as they recover 
their accumulated oxygen deficit.   This effect is called excess post-exercise oxygen consumption 
(EPOC), and results in raising the MET levels above the ‘raw’ values pulled from the activity-
based distributions.  
 
Historically, the logic for the downward adjustments (downward limitations on the maximum 
MET with increasing fatigue) was developed before the EPOC adjustments.  The pNEM model 
included downward adjustments, both for single events and averages over many diary events.  
The rules for these adjustments are given in a report1 by Ted Johnson describing the pNEM 
algorithms.  These rules were incorporated into CHAD and APEX without alteration.  The rules 
for the EPOC adjustments were developed later by G. Glen and added to CHAD.   They were not 
included in APEX or any of the SHEDS models. 
 
Rather than separately accounting for these effects, it is more logical to make both adjustments 
simultaneously.  This would prevent the possibility of making a downward adjustment so that the  
MET average conforms to a given limit, but then have the EPOC adjustment boost the average 
back above that limit. Also, the current method of making the adjustments is computationally 
burdensome.  For these reasons, we have developed a new approach. 
 
The proposed adjustment algorithm imposes limits on MET via the value of an oxygen deficit an 
individual has incurred.  The method is more computationally efficient than previous MET-
adjustment algorithms, and eliminates some of the problematic features of the current methods.   
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II.  THEORETICAL DEVELOPMENT OF THE METHOD 
 
Background: Oxygen Deficit, Physiological Limits on MET, and EPOC 

At the beginning of exercise, there is a lag between work expended and oxygen consumption.2  
During this work/ventilation mismatch, an individual’s energy needs are met by anaerobic 
processes.  The magnitude of the mismatch between expenditure and consumption is termed the 
oxygen deficit.  During heavy exercise, further oxygen deficit (in addition to that associated with 
the start of exercise) may be accumulated.  At some point, oxygen deficit reaches a maximum 
value, and performance and energy expenditure deteriorate. 
 
After exercise ceases, ventilation and oxygen consumption will remain elevated above baseline 
levels.  This increased oxygen consumption was historically labeled the “oxygen debt” or 
“recovery oxygen consumption.”  However, recently the term “excess post-exercise oxygen 
consumption” (EPOC) has been adopted for the phenomenon. 
 
The new method for adjusting the MET values is based on keeping a running total of the oxygen 
deficit as one proceeds chronologically through an activity diary.  The oxygen deficit 
calculations were derived from numerous published studies.  Oxygen deficit is measured as a 
percentage of the maximum oxygen deficit an individual can attain prior to deterioration of 
performance.  Limitations on MET levels corresponding to post-exercise diary events were based 
on maintaining an oxygen deficit below this maximum value.  In addition, adjustments to MET 
were simultaneously made for EPOC.  The EPOC adjustments are based in part on the modeled 
oxygen deficit and in part on data from published studies on EPOC, oxygen deficit, and oxygen 
consumption. 
 
As instructed by the EPA WAM, the methods were constructed in terms of reserve MET rather 
than total MET.  The reserve is the amount over the basal rate (MET=1).  Furthermore, we 
defined M as the normalized reserve, so that M=0 at MET=1, and M=1 at maximum MET: 
 

1METS
1METSM

max −
−

=                                                           (1) 

 
Using a normalized reserve assures that the method can be applied identically to a population of 
individuals having widely different METmax values. 
 

Nomenclature 

MET   Metabolic equivalent (unitless) 
METmax  Maximum achievable metabolic equivalent for an individual (unitless) 
M   Normalized MET reserve (unitless, M, bounded between 0 and 1) 
ΔM   Change in M from one diary event to the next (M) 
Dmax   Absolute maximum oxygen deficit that can be obtained (M-hr) 
F   Fractional oxygen deficit (percent of individual maximum, unitless) 
te   Duration of activity diary event (hours) 
tr  Time required to recover from an F of 1 to an F of 0 at rest (recovery time, hours) 
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dFinc  Rate of change of F due to deficit increase (F/hr, will have a positive value) 
dFrec   Rate of change of F due to deficit recovery (F/hr, will have a negative value) 
dFtot   Total rate of change of F, dFinc+ dFrec (F/hr) 
ΔFinc   Increase in F due to anaerobic energy expenditure (F) 

ΔFrec  Decrease in F due to recovery of oxygen deficit (F) 

ΔFtot   Change in F due to simultaneous anaerobic work and oxygen recovery, 
ΔFinc+ΔFrec (F) 

ΔFfast    Total change in F during the fast recovery phase (F) 
Sfast    Magnitude of the rate of change in M during fast component (M/hr) 
EPOC fast   Change in M due to fast-component EPOC (M) 
EPOCslow   Change in M due to slow-component EPOC (M) 
PAI  Physical activity index (median of daily average MET, dimensionless) 
 
Simulation of Oxygen Deficit 

This section presents the theoretical development of the equations describing the accumulation of 
oxygen deficit.  We developed the method using a large number of studies on oxygen 
consumption, oxygen deficit, and EPOC.  Individual studies will be referenced below.  The first 
two sections below describe the equations themselves, while the last section describes the 
determination of appropriate values for the model parameters. 
 
Fast Processes.  There exists a component of the accumulated oxygen deficit that is due to 
transition from one M level to another.2  This component derives from the anaerobic work that is 
required by sudden muscular motion.  There is also a corresponding fast component of oxygen 
recovery which occurs very quickly after a change from a high M level to a lower one.  In the 
absence of any data to the contrary, it is assumed that these fast deficit accumulation and fast 
recovery processes occur at the same rate.  These processes are illustrated in the Figure 1.  The 
adjustment to F is equal to the area of the triangle associated with either a positive or negative 
change in M, normalized by the maximum obtainable accumulated oxygen deficit (Dmax). The 
normalized area can thus be calculated as: 
 

maxfast
fast DS

ΔMΔM
0.5ΔF =                                                                 (2) 

 
where ΔM = Mi-Mi-1 and Sfast is the slope of the change in M (in M/hr). Note that this change in F 
will be positive if ΔM is positive, and negative otherwise. 
 
Slow Processes.  The slow component of the increase in oxygen deficit corresponds to the 
accumulation of deficit over a period of heavier exercise (rather than that associated with an 
increase in activity level). The starting point for the analyses is the table of data3-15 assembled by 
T. McCurdy for the 1998 and 1999 EPOC work.   Data from a selection of these studies in which 
persons exercised to exhaustion are given in Table 1.  The table includes the time it took for 
subjects to reach exhaustion, their accumulated oxygen deficit, their METmax, the MET value at 
which they exercised, and the corresponding normalized reserve MET (M). (Note that the MET 
and METmax quantities in this table were derived from VO2 and VO2max measurements.) A plot of 
M versus duration is shown in Figure 2.  There is one data point having M > 1, for one subject 
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who exercised briefly at a level above his/her METmax.  The data indicate that oxygen deficit 
accumulates at a much faster rate when M is high.  For example, an M value near 0.5 requires 
about 5 times longer to reach exhaustion than an M value near 0.75 (on average), indicating that 
F is nonlinear in M.  
 
Let the rate of increase in F be given by incdF .  Based upon the relationship depicted in Fig. 2, we 
postulate a simple nonlinear relationship between incdF  and M as a power law: 
 

b
inc aMdF =                                                                    (3) 

 
However, before estimating a and b, one must account for slow recovery of oxygen debt, as it 
occurs simultaneously with debt accumulation. We assume a slow, but continual, process for 
recovering oxygen deficit that is independent of the MET level.  For modeling purposes, time-
varying processes are very difficult to handle, especially when using finite time-step models.  In 
our exposure models, the time step may be as large as one hour.  To avoid problems, we model 
the slow EPOC recovery as constant over time, until the oxygen deficit is erased.  Assuming this 
takes tr hours,  the slow recovery of oxygen deficit occurs at a rate  
 

r
rec t

1dF −=                                                                     (4) 

 
The total net rate of change in F from slow processes during an event i with duration te is given 
by 

 
recincslow dFdFdF +=                                                               (5) 

 
and the associated change in F is  
 

e
r

b
islow t

t
1aMΔF ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                                                              (6) 

 
For an individual starting with an F of 0 and exercising to exhaustion (neglecting the transitory 
effects), the change in ΔF is 1.0. In this case, rearranging and taking the logarithm gives 
 

( ) log(M)balog
t
1

t
1log

r

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+                                                    (7) 

 
This equation can be used to fit data to estimate the parameters a and b (this will be discussed in 
the next section).   
 
The starting normalized oxygen deficit for the next event (i +1), taking into account both the fast 
and slow changes in F, is then 
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Fastslowi1i ΔFΔFFF ++=+                                                      (8) 
 
Appropriate values for tr , a, and b. These parameters were derived from summaries of  
published data that were supplied by EPA (i.e., the data in Table 1).  It should be noted that these 
data were collected and analyzed some years ago and should be updated to include any recent 
additions to the literature. As additional data become available, the parameter values estimated 
here may be adjusted without changing the structure of the algorithm.   
 
Several of the studies in Table 1 reported tr values.  However, due to variability in measurement 
and protocol differences, these recovery times varied from 0.5 hours to 24 hours.  From a 
modeling viewpoint, it would be unacceptable to allow recovery to significantly carry over from 
one day to the next. To do so could lead to a perpetual delay in recovering an oxygen deficit, for 
example, by repeatedly encountering new exercise events before recovery is complete.  For the 
results section, we chose tr from a uniform distribution having a minimum of 8 and a maximum 
of 16 hours.  (In practice, the values selected for tr do not affect the result significantly.)  The 
user could replace this distribution, if desired.  
 
Eq. 7  was fit to the data (Table 1) using different values of tr to obtain estimates of a and b.  The 
results are shown in Table 2.  The results were summarized to obtain the following expressions 
for a and b: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

rr t
3.92

t
1.545.20a ,                                                            (9) 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

rr t
3.66

t
3.573.93b .                                                          (10) 

 
Values for Dmax. Appropriate distributions for maximum oxygen debt (MOD) in ml/kg were 
derived from data from a number of studies in adults,16-29 adolescents,30 and children.31-32  The 
studies covered multiple types of exercise protocols, some having more than one protocol per 
study. We chose to define normal distributions for MOD in all three age groups, based on 
average mean and standard deviation values from the studies: 
  

 adults:  54.95±14.46 (ml/kg) 
 adolescents: 63.95±21.12 (ml/kg) 
 children:  34.74±13.10 (ml/kg) 
 
Values were selected from normal distributions with these characteristics. The bounds of these 
distributions were selected as two standard deviations from the mean; these ranges were found to 
be reasonable when compared to reported ranges.29  The means for each exercise protocol from 
the studies for all three age groups are shown in the plots in Fig. 3, and the data for all the studies 
are given in Table 5.  For use in Eq. 2, we transformed these values to Dmax,  via a units 
conversion factor and the normalization needed for use with reserve MET:  
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maxD (M-hr) = ( ) 1
max

2

1METS
METStoO60

MOD −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
                                 (12) 

 
where METtoO2 is the conversion factor2 for mlO2 to MET-min, 3.5 [(mlO2/min)/kg]/MET.  
Note that the variability in this factor is not addressed here. 
 
Values for Sfast. A number of studies on EPOC33-42 were used to derive Sfast.  These were all 
studies in which oxygen consumption was measured relatively soon (within a few minutes) after 
the end of exercise and at a frequency high enough to capture the kinetics of the change in 
oxygen consumption.  The data were found to be relatively uniform from the minimum (0.6 
MET/min) to the maximum (3.7 MET/min) slope values, and so values were selected from a 
uniform distribution having these bounds.  Converting units and normalizing to M, one obtains: 

 

fastS   (M/hr)  =  ( )1METS
3.7)(0.6,Uniform60

max −
                                           (13) 

 

The data for all studies are given in Table 6. 

 

Adjustments to M for Fatigue 

The equations provided in the previous section describe a method for keeping a running total of 
the fractional oxygen deficit (F) for each diary event for an individual.  We used these event F 
values to limit M for each event to appropriate values.  Basically, the maximum M value that can 
be maintained for an entire event is the value that would result in an Fi+1 (eq. 8) equal to 1 (i.e., 
the maximum value) at the end of the diary event.  Ideally, one would wish to solve Eqs. 2, 6, 
and 8 explicitly for Mi for a value of Fi+1 =1.  However, the equations are non-linear in Mi.  The 
approach used here is to set M for each event equal to the raw MET value, and test if Fi+1>1.  If it 
is, then the Mi value is reduced by a predetermined amount (currently 0.01) and Fi+1 is 
recalculated.  The process continues until an appropriate value of Mi, called Mmax,i, is found.  As 
the exposure model marches through the events of the activity diary, the M values associated 
with each event are adjusted if necessary: 
 

Mi=min(Mi, Mmax, i)                                                            (14) 
 
Adjustments to M for EPOC 
As noted above, it has been observed in many studies that EPOC is characterized by both slow 
and fast components.  The fast component occurs within minutes of exercise, while the slow 
component may persist for many hours.  Both fast and slow EPOC components were modeled. 
 
Fast Processes.  The fast EPOC component, which takes place in the first few minutes after 
exercise, is also characterized by the slope Sfast.   The energy recovered during those first few 
minutes corresponds to the recovery triangle in Fig. 1, and this increase in the rate of energy 
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expenditure for a post-exercise event is modeled as the area of the triangle divided by the event 
duration: 
 

                                                 ( )
efast

2

fast tS
M5.0EPOC Δ

=                                                         (15) 

 
EPOCfast will thus have units of M (normalized reserve MET).  The M level for the post-exercise 
events will be incremented by EPOCfast. 
 
Slow Processes.  We estimate the increase in M associated with the slow EPOC component as 
the amount required to maintain the slow recovery of F.  Since a deficit Dmax is recovered in full 
in the recovery time tr, the time-averaged adjustment to MET for the slow recovery process must 
be 
 

EPOCslow=
r

max

t
D

                                                           (16) 

 
Every diary event with the full rate of slow recovery will have its M value adjusted upward by 
EPOCslow.  An appropriate fraction of EPOC slow is used if only partial recovery is needed to 
eliminate the deficit (i.e., return F to 0).  The final adjusted M value for the diary event is thus 
 

slowfastadj EPOCEPOCMM ++=                                          (17) 
 
and the new MET value for the event is  
 

11)(METSMMETS maxadjadj +−=                                          (18) 
 
II. DISCUSSION 
 
Note:  As the main focus of this document was the presentation of the method, only a general 
summary of the modeling results are presented here.  An in-depth analysis of PAI, dose, and 
ventilation modeling results for children within 36 age and gender cohorts were presented in the 
report Analysis of Data Relating to EPOC and Duration-Dependent Limits on MET ( Kristin 
Isaacs and Graham Glen, February 5, 2005).  Though that report utilized an earlier version of 
MET-adjustment, it is likely that the results presented there would not vary greatly from those 
obtained using the method discussed here. The PAI results presented herein demonstrate that the 
new method decreases MET (and thus PAI) a bit more than the earlier method.  However, it is 
expected that this decrease will be fairly uniform across cohorts.  
 
MET Limits for Fatigue 
For periods of constant exercise, Eq. 7 results in a function having a horizontal asymptote.  This 
asymptote is the M level that the individual can sustain indefinitely, and above which oxygen 
deficit accumulates.  At this M, the net change in F is zero because recovery exactly balances the 
increase in F.  A plot of Mmax assuming constant exercise at Mmax and a tr of 12 hours is given in 
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Fig. 4 These results are very close to those predicted by the Bink43 equation (as modified by 
Erb44), which was used in the previous method to limit MET.  This demonstrates that for 
continuous exercise, the limits on intensity predicted by the unified method decline appropriately 
with time. 
 
Existing methods have a tendency to overcorrect MET values for relatively low-activity events 
to fulfill limits on subsequent high-MET events.  By imposing limits on MET via the current 
value of the oxygen deficit, the unified method avoids overcorrection and implements more 
localized adjustments in MET.  For example, consider the case of the 3 year-old whose one, four, 
and nine-hour running MET averages are shown in Fig. 5.  The flat dotted lines represent the 
MET limits predicted by Bink43 for constant exercise at these time intervals.  In Fig. 5 note that 
the new method allows the MET curve to approach the Bink limit without exceeding it, whereas 
overcorrection in the earlier methods prevents MET from even approaching this limit. 
 
The actual adjustments made to MET time series varied greatly.  Much of this variation was 
dependent on individual differences in METmax.   Three examples for children of different age, 
gender, and METmax are given in Figure 6. 
 
EPOC 
The adjustments to single-event MET for EPOC when the algorithm was applied to CHAD were 
very small compared to the adjustments made for fatigue.  In general, the increases in MET for 
EPOC were small, usually less than one MET.  In a few cases the adjustments were bigger (on 
the order of 4-6 MET), due to the fact that the adjustments were applied to a very short event.  
An example of a MET time series with EPOC adjustments is shown in Fig. 7.  

 
As more conclusive data become available, the slow EPOC processes could be modeled in a 
similar manner to the fast component, (i.e., with a slope term). Currently, data on the duration 
and magnitude of the slow EPOC component are inconclusive and vary greatly from study to 
study. However, the change in M for slow EPOC is extremely small, and thus it would be 
expected that a different modeling method for this component would have a negligible effect on 
M (and thus ventilation and dose). 
 
EFFECT ON PAI IN CHILDREN 
 
Mean values of PAI for age and gender cohorts are given in Tables 3 and 4.   In general, the 
unified algorithm resulted in a decreased PAI.  A frequency distribution for PAI  is given in Fig. 
8.  The algorithm shifted the distribution of PAI to the left, with the higher end of the distribution 
being most affected. That is, the unified algorithm mainly adjusted the highest values of PAI. 
  
III.  SUMMARY AND CONCLUSIONS 
 
We have developed a new method for simultaneously correcting MET values for fatigue and 
excess post-exercise oxygen consumption.  The method is based on the calculation of an 
accumulated oxygen deficit.  The method’s equations were derived from data from a large 
number of studies on oxygen deficit and EPOC.  Furthermore, the model variables can be easily 
updated to incorporate data from future studies as they become available. However, the method 
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as presented here returns qualitatively appropriate results for time-dependent averages of MET 
levels for children, though fine tuning of the results might be obtained by updating the model 
parameter estimates using new data. 
 
The new method is more computationally efficient and theoretically straightforward than the 
previous ones. It requires no maintenance of multiple running averages of MET values (as was 
required by the previous algorithm) or recursive nonlinear adjustment of oxygen deficit (as was 
required by the other methods). 
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Table 1. Data used for estimation of oxygen deficit.  Table gives data for 22 subjects exercising 
to exhaustion.  Oxygen deficit was assumed to be 0 at the start of exercise.   
 
 
 

Observation Oxygen Deficit
Time to 

Reach Exhaustion METSMax METS M
(ml/kg) (Hours)

1 153.52 1.00 13.3 9.31 0.67561
2 109.95 1.17 13.8 10.35 0.730469
3 106.43 1.33 13.46 9.57 0.687801
4 93.92 1.27 16.11 11.43 0.690271
5 68.23 0.75 13.3 9.31 0.67561
6 57.86 1.33 19.18 13.426 0.683498
7 57.14 1.33 17.8 12.46 0.682143
8 55.13 0.10 15.51 16.7508 1.085513
9 44.42 0.67 15.86 10.9434 0.669139

10 39.76 0.83 17.8 12.46 0.682143
11 37.08 3.00 19.86 10.30734 0.493496
12 32.88 3.00 17.8 8.9 0.470238
13 31.09 0.58 11.3 9.2773 0.803621
14 29.16 0.40 15.4 12.32 0.786111
15 29 0.50 13.3 9.31 0.67561
16 27.88 0.50 20.95 14.665 0.684962
17 24.87 0.33 17.94 13.1859 0.719357
18 24.27 0.33 15.8 11.85 0.733108
19 21.08 0.75 11.3 7.458 0.62699
20 19.57 0.33 13.8 11.04 0.784375
21 18.32 0.17 18.87 15.30357 0.800424
22 13.72 0.83 7.79 5.53869 0.668437
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Table 2.  Values of a and b for different recovery times. 
 
 

 
 

  d   (hours)   r   a   b   R 2   
8       5.08538   3.54442   0.79008   
9       5.09260   3.58195   0.79121   
10       5.09932   3.61289   0.79216   
11       5.10550   3.63885   0.73296   
12       5.11114   3.66094   0.79364   
13       5.11627   3.67997   0.79423   
14       5.12095   3.69653   0.79475   
15       5.12522   3.71109   0.79520   
16       5.12912   3.72398   0.79561   
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Table 3. Mean PAI Values (Males). Unified algorithm values are for a 50000-person simulation 
(~1400 persons per cohort). 
 

Age CHAD (UNCORRECTED) UNIFIED 
ALGORITHM 

LITERATURE 
VALUE* 

0 1.84 1.59 - 
0.33 - - 1.15 
0.50 - - 1.23 
0.75 - - 1.34 

1 1.83 1.58 1.32 
2 1.89 1.59 1.38 
3 1.88 1.62 - 
4 1.86 1.65 - 
5 1.91 1.71 1.36 
6 1.91 1.75 1.39 
7 1.93 1.77 1.33 
8 1.91 1.79 1.39 
9 1.90 1.79 1.41 
10 1.90 1.81 1.59 
11 1.86 1.74 1.65 
12 1.85 1.78 1.74 
13 1.84 1.78 1.46 
14 1.86 1.81 1.73 
15 1.85 1.81 1.89 
16 1.94 1.90 - 
17 1.93 1.89 - 

* Provided by EPA 
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Table 4. Mean PAI Values (Females). Values are for a 50000-person simulation (~1400 persons 
per cohort). 
 

Age CHAD (UNCORRECTED) UNIFIED 
ALGORITHM 

LITERATURE 
VALUE* 

0 1.85 1.57 - 
0.33 - - 1.2 
0.50 - - 1.31 
0.75 - - 1.29 

1 1.86 1.56 1.3 
2 1.88 1.57 1.36 
3 1.86 1.59 - 
4 1.87 1.66 - 
5 1.85 1.69 1.33 
6 1.86 1.73 1.35 
7 1.84 1.75 1.41 
8 1.85 1.76 1.47 
9 1.85 1.77 1.6 
10 1.83 1.76 1.55 
11 1.83 1.78 1.59 
12 1.80 1.77 - 
13 1.79 1.76 1.60 
14 1.79 1.76 1.66 
15 1.77 1.75 1.74 
16 1.94 1.90 - 
17 1.83 1.81 - 

*Provided by EPA 
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Figure 1.  Fast  components of oxygen deficit and recovery.
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Figure 2. Exercise level in normalized reserve METS (M) versus time 
to reach exhaustion. Note nonlinear relationship.



 

B-20 



 

B-21 

Figure 4. Maximum M (METS reserve) value that can be sustained during constant–intensity 
exercise of duration T.

T (hours)
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Figure 6.  Three examples of original and corrected METS event time series.  In the 
example in the top panel, the METS values pulled from the CHAD diary required no 
adjustment.  The METS series for the individuals represented in the bottom two 
panels were adjusted for fatigue.   
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Figure 7.  Event series for a 13-year-old female (METSmax=14), showing small upwards
adjustments in METS for EPOC.
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Table 5.  Data for Calculation of Maximum Accumulated Oxygen Deficit, Dmax 

 
Study VO2Max SD SE Dmax SD SE age gender

(ml/kg-min) (ml/kg)
Berthoin et al. 2003 43.3 5.3 34.3 11.8 c f
Berthoin et al. 2003 48.7 8.1 33.6 13.6 c m
Bickham et al. 2002 64.4 6.1 43.3 a b
Billat et al. 1996 63.2 4.2 40.1 14.9 a f
Billat et al. 1996 77 6.4 48.9 21.3 a m
Buck and McNaughton 1999 57.5 2.4 53.4 a m
Carlson and Naughton 1993 43.3 1 41 14.4 2.4 c f
Carlson and Naughton 1993 43.3 1 35 13.2 2.2 c f
Carlson and Naughton 1993 43.3 1 32 13.8 2.3 c f
Carlson and Naughton 1993 53.9 2.3 33 25.8 4.3 c m
Carlson and Naughton 1993 53.9 2.3 35 22.2 3.7 c m
Carlson and Naughton 1993 53.9 2.3 34 19.2 3.2 c m
Doherty et al. 2000 58 4.6 69 a m
Doherty et al. 2000 58 4.6 70.4 a m
Doherty et al. 2000 58 4.6 71.4 a m
Faina et al. 1997 72 4 45.9 19 a m
Gastin  et al. 1995 57 3 42 a b
Gastin  et al. 1995 57 3 43.9 a b
Gastin  et al. 1995 57 3 44.1 a b
Gastin  et al. 1995 55 3 51.2 a b
Gastin  et al. 1995 55 3 52.1 a b
Gastin and Lawson  1994 53.1 2.1 47.6 a m
Gastin and Lawson  1994 53.1 2.1 49 a m
Gastin and Lawson  1994 53.1 2.1 49.6 a m
Hill  et al.1998 48.2 9.1 42 22 a b
Maxwell and Nimmo 1996 112.2 5.2 74.6 a m
Naughton et al. 1997 49.6 3.5 58.6 22.2 3.7 ad f
Naughton et al. 1997 49.6 3.5 58.1 28.2 4.7 ad f
Naughton et al. 1997 61.7 2.2 71.5 35.4 5.9 ad m
Naughton et al. 1997 61.7 2.2 67.6 38.4 6.4 ad m
Olesen 1992 53.5 40 11 a b
Olesen 1992 62.5 57 8 a b
Olesen 1992 53.5 69 8 a b
Olesen 1992 53.5 72 20 a b
Roberts et al. 2003 62.3 9 49.1 13 a b
Roberts et al. 2003 62.3 9 50.5 14.1 a b
Weber and Schneider 2000 38.5 1.8 38.2 15.6 2.6 a f
Weber and Schneider 2000 43.4 1.5 46.3 14.4 2.4 a m
Woolford et al. 1999 74.2 2.3 38.7 5.4 ad b
Woolford et al. 1999 74.4 3.5 54.4 9.7 ad b
Woolford et al. 1999 76.2 2.9 56.8 9.1 ad b  

Abbreviations 
SD = Standard deviation 
SE = Standard error 
c = Children 
ad = Adolescents 
a = Adults 
m = Males 
f = Females 
b = Both 
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Table 6.  Data for Calculation of the Slope of the Fast EPOC Component 
 

Study Peak VO2 Baseline VO2 post-EPOCfast Duration of EPOCfast Slope Slope
(ml/min) (ml/min) ml/min min ml/min/min METS/min

Dawson et al. 1996 1900 250 450 2.5 580.00 2.320
Almuzaini et al. 1998 2500 250 425 2.75 754.55 3.018

Knuttgen 1970 2500 250 400 2.5 840.00 3.360
Short and Sedlock 1997 1800 250 575 2 612.50 2.450
Short and Sedlock 1997 1500 250 400 2 550.00 2.200

Harms et al. 1995 2976 300 399 7 368.14 1.227
Harms et al. 1995 2688 300 420 7 324.00 1.080
Trost et al. 1997 1900 250 550 4 337.50 1.350

Pivarnik and Wilkerson 1988 3300 250 900 5 480.00 1.920
Pivarnik and Wilkerson 1988 2600 250 650 5 390.00 1.560
Pivarnik and Wilkerson 1988 1650 250 520 5 226.00 0.904

Frey et al. 1993 2610 350 725 5 377.00 1.077
Frey et al. 1993 2003 350 580 5 284.60 0.813
Frey et al. 1993 1688 300 609 5 215.80 0.719
Frey et al. 1993 1373 300 493 5 176.00 0.587

Kaminsky et al. 1990 2100 220 475 2 812.50 3.693
Maresh et al.  1992 2262 312 624 5 327.60 1.050
Maresh et al.  1992 2340 312 702 5 327.60 1.050

MEAN 4.263888889 443.54 1.688
Std dev 1.605304219 204.55 0.949
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Introduction

Exposure models like APEX and SHEDS are microenvironmental personal simulation models.  
The determination of exposure requires time series for both (a) microenvironmental pollutant
concentrations and (b) personal time-activity patterns.    To estimate longitudinal exposure
patterns, it is necessary to produce a longitudinal time-activity diary for each simulated person
which covers the entire simulation period.   The human time-activity databases used by exposure
models contain no longitudinal diaries of sufficient length.  (Models are typically run for a year
or more.)    Various methods of assembling single-day diaries into a longitudinal pattern are
currently implemented in EPA exposure models.  This report describes a new method that
correctly meets user-defined targets for both variance and autocorrelation.

The output from an exposure model like APEX or SHEDS consists of a set of exposure time
series, one for each simulated individual.  Of course, the mean exposure is important, both within
an individual (the mean over time) and across individuals (the population mean).   The existing
diary assembly methods are good at determining these means.   However, there is a growing
recognition that variation in exposure is also important.  One such aspect is within-person
variation, which is useful for determining the frequency and intensity of high-exposure events,
even for persons whose mean exposure is low. Another aspect is the between-person variance,
especially in some long-term measure of exposure.  For example, to assess the carcinogenic risk
from pollutants that slowly accumulate in the body, the average daily dose (ADD) over a period
of several years may be a useful measure of exposure.  Then the distribution of risk across the
population depends on the distribution of ADD.  A large part of the variance in this distribution
may be due to persistent differences in activities among individuals.  To characterize this
distribution correctly, it is necessary to have longitudinal activity diaries with persistent
differences in activities between individuals, even for persons in the same age-gender cohort.
  
Another aspect of longitudinal diary assembly is similarity in diaries from day to day, reflecting
the degree of repetitiveness in human behavior.  Statistically, this can be measured by
autocorrelation.  The proposed method uses a one day lag.  Longer lag times could be
considered, but the strength of the correlation decreases rapidly with elapsed time (Xue et al.,
2004; MacIntosh, 2001).  

Cohorts and Diary Pools

Nearly all diary assembly methods depend on some method of cohort specification.  Diaries are
drawn from cohorts,  which are population subgroups whose members have certain common
characteristics.  It is reasonable to expect that at least on average, people who are closely
matched in age and gender (and possibly other properties such as employment status) would
have activity patterns that are more similar than people of widely differing demographic status. 
Hence, if one were attempting to construct a longitudinal activity diary for a 30 year old working
female, it is reasonable to use a set of single-day diaries belonging to (say) the cohort of working
females ages 25-44.   Note that the cohort cannot be defined too narrowly, or there might not be
enough single-day diaries in the database to allow the proper variation in activities.  This is the
main reason why cohorts often consist of a range of ages, rather than a single year of age.  
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The creation of cohorts involves a trade-off between two factors.  A narrower or smaller age
range for each cohort increases the similarity between the people supplying the diaries and the
target individual for whom the diary is assembled (Graham and McCurdy, 2004).   However, for
statistical stability it is necessary that the pool of available diaries from which the selections are
made does not get too small.   

Within cohorts, additional criteria for diary selection may be imposed.   For example, it is often
the case that diaries are matched by day of week and season, and sometimes by temperature
and/or rainfall as well.   The set of diaries available for possible selection on a given simulation
day is called a diary pool or subgroup.   In short, the term ‘cohort’ refers to restrictions on the
universe of available diaries that apply to a given person throughout the entire simulation,
whereas ‘pool’ refers to restrictions that apply on a particular simulation day, but may change on
subsequent days.   Each simulated person belongs to only one cohort, but may move through
several diary pools as the simulation progresses.  It is permissible for the diaries in the diary pool
to have unequal selection probabilities.  For example, perhaps a diary that is an exact match in
age to the simulated individual is given a higher a priori selection probability than a diary from a
person of slightly different age. 

This appendix does not address the questions of cohort or pool definition.  Once these definitions
are given, the next step is to specify the method of selecting one-day diaries from each pool for
assembly into a single longitudinal diary.   This selection process should result in a ‘realistic’
distribution of the dominant exposure-related variable on the diaries.  One of the strengths of the
proposed diary assembly method is that it does not directly depend on the cohort or pool
definitions; the same method (and computer code) is applicable in all cases. 

Indexing the diary database by scores for a key variable

For this discussion, it is assumed that there is some measurable property of the diaries that has a
dominant influence on exposure.  To obtain credible exposure estimates, it is necessary to
assemble longitudinal diaries that have a realistic distribution for this key property.  A specific
example of this key property could be the total time spent outdoors, which is currently used by
the SHEDS-Wood model for assembling longitudinal activity diaries.  For other pollutants the
key variable might be travel time or time performing a particular activity, for example.  The key
or index variable could also be a composite formed from several different variables, for example,
a sum or perhaps a weighted average of other variables.  The necessary condition for
implementing the method is that every single-day diary be assigned a numeric value for this key
variable.  This allows the set of available diaries in every diary pool to be ranked in terms of this
key variable, from lowest to highest.  While the diary assembly method does not depend on how
this key variable is defined,  in examples given below it is assumed (for specificity) that the key
variable is outdoor time.

An important aspect of this approach is that all references to the key variable are in terms of
scores.   This means that within every pool of diaries, the individual diaries are ranked from
lowest to highest in terms of the key variable and assigned a score which indicates their place in
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the list.  This score is bounded between zero and one.  If there are K diaries in a pool, and each
diary has equal statistical weight, then the score for the diary at rank R is

score = ( R - 1/2 ) / K    (1)

Similarly, when individuals are being ranked within a group of P persons,  then the score for the
person at rank R in the group is 

score = ( R-1/2 ) / P. (2)

The scores are useful for several reasons.  First, the distributional properties are known, whereas
the distributional properties of the key variable itself would depend on its definition and,
furthermore, might well vary from cohort to cohort and from pool to pool.  Knowing the
distributional properties allows the specification of methods that target certain statistics.  Second,
the score  reflects the behavior of an individual relative to their peer group (for example, a score
of 0.75 means that the person ranks above 75% of the people in the same cohort and pool, in
terms of the key variable).   Third, scores can be moved across diary pools, whereas absolute
values for the key variable might not.  For example, there might be a diary with six hours of
outdoor time in the Sunday pool, but no such diary in the Monday pool.  But a score of 0.75 has
meaning on all days and can be mapped to a specific diary.  The ability to move scores across
day types is important in the autocorrelation matching, as described below.   Fourth, the use of
scores helps in ensuring that all the available diaries are collectively sampled with the correct
frequency.  
Note that the use of ranks or scores does not preclude the ability to return to the original key
variable.  In terms of diary assembly, it is necessary to specify which diary should be used on a
given simulation day.  For this purpose, requesting the available diary nearest to score 0.38 is no
different than requesting the available diary nearest to (say) 73 minutes of outdoor time.  Once
the diary is chosen, the exact value of the key variable on that diary can be recovered. 

The statistics D and A

For this assessment, two statistics are used.  The first is called ‘D’, which measures long-term
differences between persons in the same cohort.  The second is called ‘A’; it is the mean across
persons of the daily autocorrelation coefficient of the scores.  Detailed mathematical properties
of D and A are given in the appendix.  Both D and A are collective properties of a group of
persons.  To calculate them, a time series for the key variable is needed for each person.  There
may be some gaps or missing values in the time series, but to calculate D it is necessary that
there is substantial temporal overlap between persons, as each person is ranked relative to the
others on each day.

The following discussion of how D and A are calculated assumes that a longitudinal diary is
available for each individual.  The discussion of how one constructs longitudinal diaries that
collectively have desired values of D and A for model simulation runs comes later.  

D is calculated as follows.  For each day,  rank each person relative to their cohort and use
equation (2) to generate a score.   Here P may possibly vary from day to day; it is the number of
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persons with non-missing values on each day.   The underlying assumption is that the sample on
any given day is representative, so that a score of 0.38 would mean that the person ranks above
about 38% of all the other persons in the cohort, even if only part of the cohort was sampled on
that particular day.  Days with a very small diary pool should therefore be excluded from the
analysis.

This yields a time series of daily scores for each person.   Find the mean and variance of the
scores for each person over their time series.  The overall within-person variance  Fw

2 in the
group is the mean of these individual time variances.   The between-person variance Fb

2 is the
variance across persons in the mean scores for each time series.  The statistic D is then given by

D  =  Fb
2 / (Fb

2 + Fw
2 ). (3)

Since both variances must be non-negative, it is clear that D is a proper fraction, bounded
between zero and one.  D=0 means that Fb

2 is zero, or that each person has the same mean score. 
A small D means that Fb

2 is substantially smaller than Fw
2.   A D near one means that Fb

2 is much
larger than Fw

2, or that each person shows little variation over time relative to the variability
between persons. 

The criteria for defining cohorts and diary pools are determined by the user, and the proposed
method places no restrictions on these criteria.  However, the calculation of D can provide a
useful indicator of whether cohorts have been reasonably defined.  A large value for D indicates
large variability in long-term behavior between the individuals, and this is contradictory to the
concept of cohorts.

The autocorrelation A is even simpler to calculate than D, because each time series can be
examined independently.  The first step is to determine the score for each day, relative to the
entire time series.  If there are J days in the time series, and a given day is at rank R in terms of
the rank for the key variable among the J days, then the score for that day is  ( R-1/2 ) / J.  The
overall mean and variance in these scores for the time series is then calculated.   However, due to
the properties of the discrete uniform distribution of the scores (neglecting tied scores), the mean
must be 1/2 and the variance is (1/12) (1-1/J2 ), which is very close to 1/12 for J large.  The lag-
one covariance is also determined; it is (1/J) times the sum of the paired products 
(score(j)-1/2)*(score(j+1)-1/2),  where score(j) is the score on day ‘j’ (see, for example, Box et
al., 1994).   The lag-one autocorrelation for the time series is given by the ratio of the covariance
to the variance.   This calculation is repeated for each time series, and the statistic A is the mean
of these individual autocorrelations.   The statistic A has a range from -1 to +1, with positive
values indicating that each day has a tendency to resemble the day before.  Random selection of
diaries from day to day produces A values near zero.  Negative A values imply dissimilarity
between consecutive days.  

A study of children conducted in Southern California (see Xue et al. 2004) provides about 60
days of data on each of 163 children.  The time series are not continuous, as the monitoring
consisted of twelve six-day periods, one per month over a year.   Furthermore, only about 40
children were measured simultaneously, as the other children were sampled in different weeks. 
However, a sample size of 40 is sufficient to calculate reliable rankings across persons.  The
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number of consecutive day pairs was substantially less than the number of days, due to the gaps
in the time series.  However, D and A statistics were calculated for three variables directly
recorded on the activity diaries (outdoor time, travel time, and indoor time), and also for a fourth
variable, the physical activity index or PAI (McCurdy et al., 2000).  The analyses were
performed for all children together and for two gender cohorts.  The separation into two cohorts
reduces the number of children measured simultaneously to fewer than 20.  Further division into
more cohorts is therefore not practical, as the reliability of the scores would decrease. The results
for these analyses are given in Table 1.
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Table 1:  D and A statistics derived from the Southern California study data

Variable Group D A
outdoor time all 0.19 0.22
outdoor time boys 0.21 0.21
outdoor time girls 0.15 0.24
travel time all 0.18 0.07
travel time boys 0.18 0.05
travel time girls 0.18 0.08
indoor time all 0.17 0.22
indoor time boys 0.21 0.20
indoor time girls 0.17 0.24
physical activity all 0.16 0.23
physical activity boys 0.16 0.20
physical activity girls 0.16 0.25

Here ‘physical activity’ is measured by PAI, which is the ratio of total energy expenditure per
day to the basal metabolic energy expenditure per day, estimated from the diary times.  For all
variables and each group, the standard deviation between persons for autocorrelation was about
0.20, and the standard error in the mean A was about 0.02.    Table 1 indicates that gender
differences for both D and A are small, if present at all.  

It should be noted that the variables in Table 1 are not really independent.  The sum of the three
time variables equals 24 hours in all cases.  Furthermore, PAI is derived from the same three
times, so part of the similarity across variables is due to these relationships.

Generating longitudinal diaries

Exposure models like APEX and SHEDS construct a number of ‘simulated individuals’, whose
demographic characteristics are intended to be representative of the target population.  A
longitudinal activity diary is constructed for each such person; it is to be hoped that the
collective properties of these diaries are also representative of the target population, or at least
the distribution of the key variable affecting exposure.  As mentioned earlier, the new diary
assembly method  does not impose any constraints on the methods of constructing cohorts and
diary pools, so it is up to the modeler to ensure that these are defined appropriately.  The new
method just ensures that the selections from these pools match the requested targets for D
(variance ratio) and A (autocorrelation).  The target values for D and A are supplied by the
modeler.

First, construct a beta distribution (with parameters as specified in the Supplement) for the
distribution of personal mean scores.   For each simulated person, first select a mean target score
T at random from this beta distribution.   Then, for each individual, construct another beta
distribution with mean equal to T.  From this second beta distribution, pick a set of independent
random values containing approximately 3% more numbers than there are days in the simulation
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period. Call this the set of X-scores and let K be the number of scores selected.   At this point,
one has P sets of X-scores, each containing K values.   

The second part of the process is to generate the requested autocorrelation by reordering the
collection of selected values.  First, choose a target autocorrelation for each individual.  This is
selected from a beta distribution with a mean of A.  For each individual, the set of X-scores are
ranked from lowest to highest.  For the first simulation day, choose any X-score at random.  For
each subsequent day, construct a new beta distribution (the parameters of the beta depend on A
and the selected value for the prior day, as detailed in the Supplement), and pick one value Y
from it.   Find the nearest X-score (in rank) to K*Y that has not already been assigned to a prior
day in the time series.  Continue this process until all simulation days are assigned values.  The
reason for the extra values is that without them, the last few days of the simulation would have
very few choices left, and this lack of freedom would inhibit meeting the requested
autocorrelation.

The result of these steps is a vector of X-scores, one value per simulation day, for each person. 
It remains to now associate a diary with each X-score.  Recall that the user has specified the
appropriate diary pool for each simulation day.   The diaries in the pool are assigned a
cumulative probability distribution as follows.  First, they are sorted by the key variable.  Then  a
selection probability is assigned to each diary as determined by the diary pool structure (for
many models, equal probabilities are used).  

The following example illustrates how a diary is assigned to an X-score.  Suppose the pool for a
particular day had only four diaries, with probabilities in sorted order of 12%, 33%, 41%, and
14% of being used.  The cumulative probability vector is then (0.12, 0.45,0.86,1.00).  The X-
score assigned to this day is then used to determine which diary is selected.  If the X-score is
lower than 0.12 then the diary ranked lowest on the key variable is chosen.  If X is between 0.12
and 0.45 the second lowest diary is picked.  For X between 0.45 and 0.86 the next highest diary
is used.   Finally, if X is greater than 0.86 then the diary ranked highest on the key variable is
selected.  This process is repeated for each day of the simulation period.

Results

The following tables present some results obtained using the new method.   Tables 2 and 3
present comparisons of D and A statistics, respectively, calculated both from ranks and from key
variable values, for both the Southern California data and simulations using the new method.  
Table 4 displays the performance of the new method over the full range of both D and A.   Table
5 shows the performance of the proposed method for different simulation lengths, for a variety of
D and A values.
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Table 2. Computation of the D statistic calculated from ranks and key variable values, both
directly from the southern California study and from simulations using the proposed method.
Simulations constructed 20,000 longitudinal diaries for periods of forty-eight days.

Key
variable

Group Ranks Values

Study Simulation Study Simulation

outdoor time all .19 .19 .12 .14

outdoor time girls .15 .15 .11 .11

outdoor time boys .21 .21 .17 .18

travel time all .18 .18 .10 .13

travel time girls .18 .18 .10 .13

travel time boys .18 .18 .12 .14

indoor time all .17 .17 .12 .14

indoor time girls .17 .17 .11 .13

indoor time boys .21 .21 .16 .17

PAI all .16 .16 .12 .13

PAI girls .16 .16 .13 .12

PAI boys .16 .16 .13 .14
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Table 3. Computation of the A statistic calculated from ranks and key variable values, both
directly from the southern California study and from simulations using the proposed method.
Simulations constructed 20,000 longitudinal diaries for periods of forty-eight days.

Key
variable

Group Ranks Values

Study Simulation Study Simulation

outdoor time all .22 .21 .24 .19

outdoor time girls .24 .23 .26 .20

outdoor time boys .21 .20 .21 .19

travel time all .07 .07 .06 .06

travel time girls .08 .08 .07 .06

travel time boys .05 .06 .04 .05

indoor time all .22 .21 .23 .19

indoor time girls .24 .23 .26 .20

indoor time boys .20 .19 .19 .18

PAI all .23 .22 .26 .19

PAI girls .25 .24 .29 .21

PAI boys .20 .20 .23 .17
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Table 4. Performance of proposed method in hitting targeted values at selected points across the
ranges of the D and A statistics.

Requested Obtained

D A D A

0 0 .00 .00

0 .50 .01 .50

0 .99 .03 .99

0 -.50 .00 -.49

0 -.99 .00 -.99

.50 0 .51 .01

.50 .50 .51 .50

.50 .99 .53 .99

.50 -.50 .50 -.49

.50 -.99 .51 -.99

.99 0 .99 .01

.99 .50 .99 .50

.99 .99 .99 .99

.99 -.50 .99 -.49

.99 -.99 .99 -.99
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Table 5.  Performance of proposed method in hitting targeted values of the D and A statistics
over different lengths of the simulation period. The values of D=.19 and A=.22 are the values for
outdoor time obtained from the southern California study.

Simulation
period length

Requested Obtained

D A D A

30 days .19 .22 .20 .24

90 days .19 .22 .20 .24

1 year .19 .22 .20 .22

30 days .10 .40 .11 .40

90 days .10 .40 .10 .41

1 year .10 .40 .10 .40

30 days .40 .10 .41 .13

90 days .40 .10 .41 .12

1 year .40 .10 .41 .10

30 days .81 -.22 .81 -.17

90 days .81 -.22 .81 -.20

1 year .81 -.22 .82 -.21
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Discussion

1) Use of ranks rather than the original key variable
2) Use of beta distributions rather than other forms
3) Ensuring no sampling bias within diary pools 
4) Performance over full range of D and A values
5) Performance of simulations of various lengths
6) Varying targets for D and/or A within a simulation
7) Movement of X-scores across day-types
8) The frequency distribution for relatively rare diary events
9) Ease of use 

1) Use of ranks rather than the original key variable
The new method makes use of rankings of the key variable in computing D and A statistics and
in the generation of X-scores, rather than using the original values of the key variable.   This
provides both a modeling advantage and a mathematical advantage.   The modeling advantage is
that it permits the maintenance of persistent differences while allowing a natural transition across
diary pools.  A person with a mean or target X-score of T has a tendency for a higher value for
the key variable than a fraction T of his/her peer group.  In the absence of information to the
contrary, it is reasonable to suppose that this tendency would persist.  If the key variable is
outdoor time, on cold and rainy days the entire group may spend less time outdoors, but this does
not suggest that the relative position of individuals within the group would change.   Once the
diaries are assembled, most persons will show drops in outdoor time on such days due to the
change in the diary pool, even though the X-scores themselves do not drop on such days.  This
combination of maintaining persistent differences between individuals while allowing the diary
pools to define the distribution of the key variable would be very difficult to attain using the
original (non-ranked) variable.

The mathematical argument for using ranks is that the method becomes much more general,
since the distribution of ranks does not depend on the choice of the key variable, or on the
definition of cohorts, diary pools, or day-types.  By contrast, the development of a parametric
method that tried to match statistics on the original values of the key variable would have to
depend on characterizing the distribution of that variable for the specific application of the
model.  For some variables like outdoor time, the distribution has a relatively low mean and
positive skewness (a long tail to the right), but for indoor time the mean is high and the
distribution is negatively skewed.   Furthermore, the distribution would depend on the specific
definition of the cohort, and would change as well with day-type and season.  It would also be
likely to change when going from one geographic region to another.   Every time the distribution
changes, the mathematical algorithms would have to change to reproduce the given distribution
while simultaneously meeting targets for both variability (here represented by D) and episodic
behavioral tendencies (here represented by A).  The complexity of such approaches would add
both a computational burden and a quality assurance burden to the exposure model.

The performance of the proposed method was numerically evaluated against measured key
variable values using data from the southern California study (see Tables 2 and 3).  Note that the
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protocol for this study did not match the assumptions used in developing this method; in
particular, different children reported diaries on different days, and each child had breaks in their
time series.  The new method was applied to three different key variables (outdoor time, travel
time, and indoor time), each with two cohort groupings (all children together, and separated by
gender).   Synthetic longitudinal diaries were constructed from the single-day diaries reported
during this study.  Both D and A statistics were calculated for the study and for the synthetic
diaries, using both the ranks and the key variable values.   

The D statistics on rankings were essentially the same for the original diaries and the synthetic
diaries.   The D statistics on ranks were consistently higher than those on key variable values
(average D on ranks ~ 0.18, average D on key variable ~ 0.12).   This is consistent with the
observation in the physical activity literature that people have more fixed tendencies in terms of
rankings than in the original variable (Anderssen et al., 1996; Kelder et al.,1994; Schwab et al.,
1992).  However, this may not apply universally to all variables (DeBourdeauhuij et al.,2002).  

More within-person consistency translates to less within-person variance for the rankings than
for the original variable.  By the form of the definition of D, this implies higher values for D for
the rankings.   This effect is evident in Table 2 for the four variables considered there.  For D
calculated on key variable values, the synthetic diaries (average D ~ 0.14) tended to exceed the
study (average D ~ 0.12) by only a small amount. 

Autocorrelations in the key variable values proved to be close to the autocorrelations in ranks,
for both the study and for the simulated diaries.   The simulated diaries were consistently close in
A to the study when measured using ranks.  Using the key variable values to calculate A, the
synthetic diaries tended to be lower  than the study (differences ranging from 0.01 to 0.07),
except when the key variable was time spent in travel.

2) Use of  beta distributions
All of the random number generation in the new method involves drawing numbers from beta
distributions.   This is convenient though not strictly necessary.  All of the random number
distributions are bounded both above and below, which is a natural property of the beta
distribution.  For instance, it would be quite feasible to select personal targets for autocorrelation
that were normally distributed about the overall population mean A, but since autocorrelation is
bounded between -1 and +1, it would then be necessary to truncate the normal on both ends. 
Most programming languages have built-in beta distribution functions, and for the ones that do
not (like Fortran), there are a number of well-tested algorithms developed for this purpose. 
Alternate distributions for generating the X-scores have been tested, for example a two-level
uniform (one probability inside a given sub-interval and a different probability elsewhere) has
been successfully used for this purpose. 

Given fixed end points, the beta distribution has two shape parameters which allow a great
variety of forms.  Both shape parameters must be positive.  If both parameters exceed one, then
the distribution has the ‘usual’ form of a central peak, monotonically decreasing on either side
until reaching the bounds.  The location and width of this peak can be targeted separately, which
is convenient for targeting both a mean and a variance.   If the parameters fall on different sides
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of unity, then the distribution is monotonic over its entire range (either increasing or decreasing),
often called a J-shaped beta.  If both parameters are less than one, a U-shaped distribution
results, with peak probability at each end.  Such U-shaped distributions are never used for X-
scores or diary reordering, but may be used to assign individual targets T.  A beta distribution
with both shape parameters equal to one is a uniform distribution.  In fact, if D=0 is requested,
then all the X-scores are chosen from such uniform beta distributions, and all persons have a
common target mean of T=0.5.  If D is set to one, then the targets T have a uniform distribution,
but the X-scores all become equal to T since the beta for them narrows to zero variance.  In
practice this would lead to numerical difficulties, so in implementation the code would usually
contain a restriction that D<0.99 (or some similar bound).   If a simulated person is given a target
autocorrelation of zero, then the beta distributions used to order the X-scores all reduce to
uniform distributions.

3) Ensuring no sampling bias within dairy pools
If a given pool of one-day diaries is believed to be representative for a given cohort on a given
day,  then to avoid any bias it is necessary that over a large population of simulated individuals,
all the diaries in the pool be used about equally often.  That is, the mean and variance of any
variable on that day for the group of simulated individuals should match the mean and variance
seen in the diary pool itself, since the pool is supposed to be representative of the real
population.  This is most easily achieved by the simple expedient of uniformly sampling from
the diary pool.

In the new method, the selection probabilities from the diary pool are not uniform for one
individual; they tend to be higher for diaries near to the target score T  than for ones further
away. To avoid overall biases, it is necessary that the mixture of all the personal betas over a
large group of persons be very close to uniform. So that, for example, a person who
preferentially samples diaries at the low end of the rankings should be balanced by a person who
preferentially samples the upper end.  An important constraint on the beta distributions used for
the T scores and the X-scores, is that the overall distribution of X-scores over a large simulated
population should be close to  uniform.   In general, exact uniformity cannot be achieved by
mixing betas; some particular X-scores may remain oversampled or undersampled by about 2%
relative to others.   However, it is possible to arrange these effects so that both the mean and
variance of the beta mixture match the mean and variance of a uniform distribution, which
ensures that the mean and variance of the key variable on the diaries is the same for the group of
simulated individuals as for the diary pool itself (in the limit of a very large number of
individuals), on each simulation day.  See the Supplement for details.

4) Performance over the full range of D and A
The D statistic is bounded between zero and one, and A is bounded between minus one and one.
There are no restrictions on D and A together; any A may be used with any D.  The limiting
values on both parameters imply total order, which is incompatible with the concept of a 
stochastic simulation.  Furthermore, there is a minimum possible value for D that depends on the
simulation length; for a simulation of J days, D cannot be below 1/J.

Table 4 presents results at selected points over the full range of both D and A, using the new
method.  The values of D and A achieved with this new method agree with the target values
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within 0.02 in nearly all cases, and within 0.01 much of the time.  Thus, if D is requested to be
0.25, it will nearly always fall between 0.23 and 0.27 for any sizeable simulation.  The same
holds for A, at least for A values greater than -0.5.  Large negative A targets do not match quite
as well, unless a correction factor is included in the algorithm.  Such a correction can be
implemented fairly easily, but in practice should not be necessary since such large negative A
values are not normally seen in human behavior patterns.  

Some other small but reproducible effects may be seen.  For example, if a very large and positive
autocorrelation is requested, it is achieved but the target D statistic becomes slightly larger than
requested (by about 0.02 for A=1). This effect is negligible for A<0.5, which means it is unlikely
to be an issue for human behavior simulations.  If it were deemed to be important, one could
compensate for it by suppressing the target D value in such cases.

5) Performance over various simulation lengths
The method has been tested successfully over a wide range of simulation lengths, ranging from a
few days up to six years.   Table 5 presents some results from these simulations. For all lengths
over 30 days, the match for both D and A is very good.  For very short simulations, it is difficult
to precisely target these statistics.  For one thing, the sample mean of the X-scores for any
individual does not necessarily come close to the target mean score T, when only a few scores
are drawn.   For another, it is very difficult to target particular autocorrelations merely by
rearranging the order of the values.  In fact, for three data points the autocorrelation cannot be
positive, no matter what their values or how they are rearranged.  For any simulation below one
week in length, the autocorrelation step is nearly irrelevant, although there is no harm in
allowing it to rearrange the scores.  For long simulations the performance is always good, with D
and A extremely close to the target values for simulations of six years in length. 

6) Varying targets for D and/or A within a simulation 
In certain applications the user might wish to vary D or A over time.  For example, different day-
types might each have their own targets, or perhaps D or A might change with seasons or with
age over a long simulation period.   The new method is easily extended to such a situation.   
Basically, the method would be applied separately to each set of days with a distinct D.   For
each set, define a distribution of target T scores, pick one for each person (keeping the percentile
the same for all sets), and pick enough X-scores for the given set of days.  The reordering would
be done within each distinct set of days, to prevent mixing X-scores from different distributions. 
The final time series would then merge the vectors for the various sets of days, according to the
calendar sequence.  

The implementation of multiple targets for A is extremely easy.  A new beta distribution is
required every day since its parameters depend on both the target autocorrelation and on the rank
of the X-score assigned to the prior day, and this latter quantity changes every day.   Instead of
supplying the target autocorrelation as a scalar, use a vector indexed by the day number, and use
A(j) everywhere that A is currently used.

While it is not difficult to vary D and/or A by day-type, there is no evidence in the southern
California study data that this effect is significant.   Therefore, for simplicity, the basic
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explanation of the new method does not include this possibility directly.  However, nothing is
fundamentally different if these extensions are used.

7) Movement of X-scores across day-types
The basic method does not distinguish differing D and A targets for differing day-types, as
discussed in the previous subsection.   But even if A depended on day-type, the X-scores could
be moved freely across day-types during the reordering step, as long as D and T did not change. 
This is because the X-scores are independently randomly sampled, and as long as the distribution
remains the same, the scores can be interchanged. 

As discussed in subsection (1) above, this is one of the advantages in using X-scores that are
based on relative rankings rather than employing the original variable.   The same distribution of
rankings exists on all day-types, although the distribution of the original key variable will differ
across day-types (if it did not, there is no reason to separate the day-types).  The proposed
method recognizes this difference through the differing diary pools.   For example, an X score of
0.25 may correspond to 40 minutes of outdoor time on a weekday, but correspond to 70 minutes
of outdoor time on a weekend.  The reason why the reordering has an overall null effect on the
mean and variance of the key variable is that it is just as likely for an X score of 0.25 to be
shifted from a weekday to a weekend as vice versa.   Therefore, over a large enough sample of
persons, the distribution of X-scores before reordering and after reordering are indistinguishable.

8) The frequency distribution for relatively rare diary events
One concern with many of the existing longitudinal diary assembly methods currently used in
exposure models is that they limit the within-person variance (and thereby induce behavioral
habits) by selecting relatively few different one-day diaries for each simulated individual.  This
leads to the forced re-use of each of the selected diaries many times.  Thus, a model that selects
only eight diaries to represent one year must use each diary an average of 45 times.  For such 
methods, each particular kind of diary event will occur with the correct overall frequency in the
population as a whole, but the frequency within individuals is highly distorted.

As an example, suppose the pollutant of concern is ozone.   The combination of high breathing
ventilation rate, outdoor activity, and warm daytime conditions will lead to high ozone exposure. 
Then a relatively rare event like a long distance run (for example, a marathon) is significant to
the exposure model.  Under the model where only eight diaries are used, if a long distance run
occurs at all (which is not likely), it occurs every time the diary is reused.   This leads to a
situation where the vast majority of the population have no such events, and a small number have
(say) 45 such events packed into one year (or even one season), with no one having only a few
such events.

With the new method,  if the diary pool contains one diary with a long distance run (and hence
much outdoor time on that day), this diary might be selected not at all or perhaps once, for a
person whose target T has little outdoor time.  For persons with larger T , this diary might be
chosen a handful of times in a year.  For a person whose target T matches this diary closely, it
might be picked a couple of dozen times.  The point is that the population has a quasi-continuous
frequency distribution for this event, rather than a discontinuous one (having it occur either
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never or at least 45 times).   Thus, the proposed method better reproduces the variance in
exposure across the population.

9) Ease of use
The proposed method places a minimal burden on the user in terms of required input.   Beyond
the definitions of cohorts and diary pools, which are always required (either as user input or
hard-coded into the model), the new method only requires the designation of the key variable
and the targets for D and A.   The various beta distributions are constructed by the model code
from these inputs without further user intervention.  

Summary

The new method is very flexible and succeeds in reproducing target D and A values over the
entire possible range, for any choice of key variable.  The D statistic of diaries assembled by the
new method is independent of the length of the simulation, unlike most existing diary assembly
methods.  The new method avoids forced repetitions of the same activity diary from one day to
another, and therefore allows for some events to occur uniquely or rarely on a given longitudinal
diary.   It imposes as much habitual behavior as is requested through the D and A statistics, no
more and no less.  The method is relatively simple to implement in computer models, requiring
the ability to sort lists and to draw random numbers from beta distributions.  A great advantage
over many other methods is that the computer code for generating the vectors of X-scores does
not depend on the choice of cohorts or diary pools.
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SUPPLEMENT

1) Statistical properties of longitudinal diaries

Consider a set of longitudinal diaries for P persons, each diary covering the same J days.  For
this analysis we will assume that there are no time gaps, so that all days are consecutive.  Let ‘j’
be an index that runs over simulation days, and let ‘i’ be an index that runs over persons. 
Consider just one variable and one cohort of persons, so all persons share the same pool of
available diaries on any given day.   Let t i j be the value of the variable of interest on day ‘j’ of
the longitudinal diary for person ‘i’.   Note that in this analysis, variance calculations use
division by the number of data points, without the convention of subtracting one to account for
degrees of freedom (Hogg and Craig (1995), Box et al. (1994) ).  

Let  : i be the average value for the given variable for person ‘i’,  so for i=1,...,P we have
                       J

: i = ( 1/J ) '   t i j  (1-1)
                   j =1

where J is the number of days in the simulation.   There is also an intra-personal (within-person)
variance for ‘t’ which may differ from one person to another:

                     J                                         J
Fi 

2  = ( 1/J ) '  ( t i j - : i ) 2  =  ( 1/J )   '  t i j
2  - : i 2 (1-2)

                      j =1                                      j =1

For convenience, define V 2  as
                                         P      J
V 2  =   1/(JP )  '   '   t i j 2 . (1-3)
                                        i =1   j =1 

The mean for the variable : i  over all persons is given by
                  P                         P     J
:  =  (1/P) '  : i  = 1/(JP)  '   '   t i j (1-4)
                  i =1                                   i =1  j =1

which is also the mean of all the t i j.  The total variance of the t i j  is given by 

                                      P    J                                   P    J
 F 2  =  1/(JP ) '  ' ( t i j - : )2  = 1/(JP ) '  '  t i j

2 - :2  =  V 2 - :2 (1-5)
                      i =1  j =1                                                    i =1  j =1 

The mean of the intra-personal variances across all persons is given by

                      P                        P    J                                                                    P
Fw

2  =  (1/P) '  Fi
2  = 1/(JP) '  '  (t i j - :i) 2  =  V 2 - (1/P) '  :i

2 (1-6)
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                     i =1                     i =1  j =1                                       i =1  

where the subscript ‘w’ stands for ‘within-person’.    There is also an inter-person (between
person) variance, which is the variance in the personal means :i 

                        P                                                        P
Fb

2  =  (1/P)  '  ( :i - : ) 2  =  (1/P)  '  : i
2   -  : 2 (1-7)

                     i =1                                  i =1                                     

where ‘b’ stands for ‘between-persons’.   In brief,  Fw
2 is the mean of the intra-personal

variances, while Fb
2 is the variance of the intra-personal means.   An important result is that 

Fw
2 + Fb

2  =  V 2 - : 2  =  F 2  (1-8)

which follows from the three prior equations.  Thus, for a given set of longitudinal diaries, Fw
2,

Fb
2 and F2 are tied together by equation (1-8).  This has important implications when targeting

variance.  For a given set of diary pools from which the longitudinal dairies are to be
constructed, the total variance F2 can be calculated.  This means that in longitudinal diary
construction there is a direct trade-off between Fw

2  and Fb
2 ; one can only be made larger if the

other is made smaller, given that the diaries are to be sampled in an unbiased manner.   

This is starkly illustrated by considering two extreme approaches to assembling longitudinal
diaries.  If, for each person, one simply chooses a single diary and reuses it each day, then Fw

2 =
0 and  Fb

2 is maximized.   Alternatively, if a new diary is chosen at random every day for each
person, each individual tends to have a similar  Fi 

2, and F 2 is comprised mostly of Fw
2, while Fb

2

tends to zero (particularly for large J).

The population variability in typical measures of long-term exposure like annual average daily
dose (ADD) or lifetime average daily dose (LADD) is proportional to Fb

2.   The mean exposure
will be correct for any unbiased method of longitudinal diary construction.   But for a fixed
mean, a higher variance implies that the high end of the exposure distribution will be at higher
values (and also that the low end is at lower values).   The high-end exposures are often of
interest, and the estimates of these exposures will be sensitive to the method of constructing
longitudinal diaries.   Hence it is important that the method be matched to experimental data as
far as possible.

Define D as 

D  =  Fb
2 / (Fb

2 + Fw
2 )  =  Fb

2 / F 2 (1-9)

This definition is similar to the definition of ICC used by Xue et. al. (2004).  The value of D may
range from zero (when Fb

2 = 0)  up to one (when Fw
2 = 0).   Using equations (1-7) and (1-8), the

expression for D becomes

                               P                                                              
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D   =   1/(P F2)  '  :i
2   -  :2 / F2 (1-10)

                          i =1                               

So this statistic reflects the distribution of the personal means :i.  It does not reflect any patterns
or ordering of the t i j  within a diary.  Note that it is possible to interchange two or more days
(interchange t i j and t i k  for two days ‘j’ and ‘k’), without changing :i or Fi

2  (or  : or F 2).   

Thus, longitudinal diary construction can be separated into two problems, the first being the
selection of the set of t i j values without any particular regard to day order, and the second being
to reorder them to match the patterns expected within individual longitudinal diaries.   These
patterns are summarized by autocorrelation statistics, discussed in section 3 below.

2) Specifying the parameters of the beta distributions for the Ti and X-scores

To complete the description of the proposed method, formulas for the parameters of the beta
distributions are required.  Each person simulated is assigned a personal target score Ti , which is
the mean of the distribution from which their X-scores are drawn.  For this analysis, the t i j are
the X-scores.  There are two constraints to be met.  The set of selected values t i j should produce
a sample D statistic close to the requested value, and the set of t i j  (across all persons) should be
as uniformly distributed between zero and one as is possible. 

A beta distribution with parameters ‘a’ and ‘b’, bounded by zero and one,  has a probability
density function (pdf) given by 

p(x) =   '(a+b)  x a-1 (1- x) b-1 / [ '(a)   '(b) ] (2-1)

which has a mean of

: (a,b)  =  a / (a+b) (2-2)

and a variance

F 2 (a,b)  =  a b / [(a+b)2 (1+a+b)]  (2-3)

(see for example Johnson, Kotz, and Balakrishnan, 1994).  Replacing ‘a’ and ‘b’ by the mean :
and the sum S (where S = a+b) results in 

p(x) =  '(S) x : S - 1 (1- x) S - : S - 1  / [ '(: S)   '(S - : S) ] (2-4)

F 2 (:,S) =  : (1- :) / (1+S) . (2-5)

Except for the beta distribution that is used for selecting the personal targets Ti , all the beta
distributions used in this approach have bounds zero and one, so the above formulas apply.  
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For the Ti, the bounds of the beta distributions are at (1/2-w/2) and (1/2+w/2), where ‘w’ is a
function of ‘D’ and may range from zero to one.  These beta distributions are symmetric about
their midpoint, so ‘a’ = ‘b’ = " .   The pdf in such cases is

p(x) =  '(2") ( 1 - (2x-1) 2 / w 2 ) "-1 / [ w '(") 2 2 2 "-2 ] ,   
                                                                    for (1/2-w/2) < x < (1/2+w/2) (2-6)

and the statistics for this distribution are mean 

 :   = 1/2 (2-7)

which is obvious from the symmetry, and variance

F 2 =  w 2 / (4 + 8 ") . (2-8)

For a particular person with a target score Ti , the beta distribution from which their X-scores are
drawn has a mean Ti and a variance which follows from (2-5):

Fi 
2  =  Ti (1 - Ti ) / (1 + S i ) (2-9)

where S i is the sum of the ‘a’ and ‘b’ parameters for that particular person.  For a sample of size
J drawn from this distribution, the square of the standard error of the mean is Fi 

2 / J.  Also, the
expected value of the sample variance is

 si 
2  =  (J-1) Fi 

2 / J  . (2-10)

The within-person variance Fw
2 is the mean across persons of the si 

2.  In the limit of a large
simulated population, this is the same as the weighted average over Ti . 

Fw
2   =  I p(Ti) si 

2 d Ti 

        =   ((J-1)/J) I p(Ti) Ti (1 - Ti ) / (1 + S i ) d Ti  . (2-11)

This integral has a simple solution if the denominator can be factored out, which is possible
when the sum of the parameters of the beta distribution for the X-scores, which is S i,  is the same
for all persons (or all T i ).  Assume that such a solution exists that also meets all the other
constraints; that is, assume S i is equal to a constant S for all persons.   The remaining terms in
the integral consist of the difference between the first and second moments of Ti about the origin. 
The first moment is the mean (which is 1/2), while the second moment about the origin is the
variance plus the square of the mean.  The variance of the  Ti is given by equation (2-8).  Hence

Fw
2   = [(J-1)/(J + J S)] [ 1/2 -  ( 1/4 + w 2 / (4 + 8 ") ) ]
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        =  [(J-1)/(J + J S)] [1/4 - w 2 / (4 + 8 ") ] . (2-12)

Now consider the between-person variance Fb
2.   It can be interpreted as the second moment

about the overall mean :. (see equation 1-7).  Here the mean of the Ti is 1/2 by equation (2-7).  
For one value of Ti, if several persons share this Ti  then the expected variance in : i for this
subgroup is the square of the standard error of the mean.   Each person is assigned J  X-scores,
one per simulation day.  The standard error of the mean of these scores is given by  Fi  / J1/2, 
hence the expected variance in : i  for persons sharing the same Ti is Fi 

2 / J , which by equation
(2-9) is  Ti (1 - Ti ) / (J + J Si ).   To evaluate Fb

2 , the variance in : i about Ti must be converted
to the second moment of : i about the overall population mean of 1/2.  

Hence, 

(2nd moment of : i about 1/2 for given Ti)  = I p(:i) (:i -1/2) 2  d:i 
       
       = I p(:i) (:i

2 - :i +1/4) d:i 

       = I p(:i) :i
2 d:i   - Ti  +1/4 (2-13)

which follows since  I p(:i) :i d:i = Ti  and also  I p(:i) 1/4 d:i  =  1/4. 

The variance in :i is the second moment about the mean Ti , or 

Fi 
2 / J   =  I p(:i) (:i -Ti )2 d:i 

            = I p(:i) :i
2 d:i  - I p(:i ) 2 :i Ti d:i  + I p(:i ) Ti

2 d:i 

            = I p(:i) :i
2 d:i  - 2 Ti

2 + Ti
2 (2-14)

Substituting this expression into (2-13) gives 
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(2nd moment of :i about 1/2 for given Ti)  =  Fi 
2 / J  + Ti 2 - Ti  +1/4

      =  Fi 
2 / J  + (Ti - 1/2)2 

      =  Ti (1-Ti) / (J +J Si) + (Ti - 1/2)2 . (2-15)

For a large simulated population,  Fb
2  is the mean of this quantity over all Ti, namely

Fb
2  =  I p(Ti) [ Ti (1 - Ti ) / (J + J Si) + (Ti - 1/2)2 ]  d Ti (2-16)

where p(Ti) is given by equation (2-6).   This integral can be split in two; the first part is the
same integral as in (2-11), while the second part is just the variance in Ti, which is given by
equation (2-8).  As for Fw

2, the first integral can be solved by assuming Si is constant for all
persons.  So

Fb
2  =  [1/(J + J S)] [1/4 - w 2 / (4 + 8 ") ]  +  w 2 / (4 + 8 ") . (2-17)

Collectively, the X-scores for all the simulated persons should be as close to uniformly
distributed as possible, to ensure no net bias in the usage of the diaries.  In general this cannot be
achieved exactly, but it is possible to ensure that the X-scores collectively have the same mean
and variance as a uniform distribution, which for a uniform bounded by zero and one is

mean of X-scores = 1/2 , (2-18)

variance of X-scores = 1/12 . (2-19)

The mean will be 1/2 by the symmetry of the Ti distribution about 1/2.  The collective variance
of the X-scores is related to Fb

2 and Fw
2 by equation (1-8).  Hence

Fb
2  + Fw

2  =  1/12 . (2-20)

Substituting in the expressions from (2-12) and (2-17), one obtains

[1/(1+S)] [1/4 - w 2 / (4 + 8 ") ]  +  w 2 / (4 + 8 ") = 1/12 (2-21)

which when solved for S results in

S  =   2 / (1 - 3 w 2 / (1 + 2 ") ) . (2-22)

This result permits the specification of the parameters for the beta distribution for person 'i' from
which all their X-scores are drawn.  This distribution has a mean of  Ti.  Remembering that 
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S = a+b, equation (2-2) can be written as

a = S Ti =   2 Ti  / (1 - 3 w 2 / (1 + 2 ") ) .  (2-23)

Therefore

b = S-a  = 2 ( 1 - Ti  ) / (1 - 3 w 2 / (1 + 2 ") )  . (2-24)

From equation (2-6), the parameters w and " define the beta distribution from which all the
personal target scores Ti  are drawn.  This distribution must match the requirements of the D
statistic.  To simplify the equations, define a new parameter 

D#  =  3 w 2 / (1 + 2 ") (2-25)

and rewrite equation (2-17) in terms of this new parameter:

Fb
2  =  [1/(J + J (2/(1-D#)))] [1/4 - D# /12]  +  D# /12. (2-26)

which can be solved for D#  in terms of Fb
2

D#  =  (12 J Fb
2 -1 ) / ( J - 1) . (2-27)

Also, equation (1-9) together with (2-20) give

 D = Fb
2  / (Fb

2 + Fw
2 )  =  12 Fb

2  . (2-28)

Hence

D#  =  (J D - 1 ) / (J - 1 ) (2-29)

As J becomes large, D#  approaches D.  Therefore, D# may be seen as a modified D statistic that
accounts for the effects of short simulation periods.  Since the user specifies the simulation
length J and the diversity statistic D directly, D# is therefore also specified.  However, equation
(2-25) still contains two unknowns (w and ").  Thus, there is no unique solution.  

Let  R be the square root of D#

R  =  (D# ) 1/2 . (2-30)

It is found empirically that the following relationship between " and R gives a nearly uniform
distribution of X-scores:

" = 1 - (4/5) [4 R (1 - R)] 3 (2-31)
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In practice, the above formulas give a nearly uniform collective distribution of X-scores, and
hence a nearly uniform usage of the available diaries.  For example, suppose one year time series
are generated for a large number of simulated persons, using a pool of 100 diaries.  (For this
purpose, neglect the effects of altering diary pools throughout the year.)  Strict uniformity would
result in each diary being assigned an average of 3.65 times per person (365 days divided by 100
diaries).  The above formulae using beta distributions result in each diary being used between
3.50 and 4.0 times per person.  Furthermore, both the mean and variance of the key variable on
the assembled time series match the mean and variance seen in the diary pool.  If even better
uniformity in diary usage is desired, it is possible to use a smoothing function on the X-scores, at
a slight cost in departing from strict beta distributions.  This is usually not necessary and is not
detailed here. 

Unlike the other equations in this derivation, there is no necessity to use equation (2-31) when
implementing this method.  Any functions for " and ‘w’ that produce valid beta distributions and
satisfy equation (2-25) may be used.  Another choice which is simpler than (2-31) is 

" = 1 (2-32)

whereupon equation (2-25) reduces to 

w2 = D# . (2-33)

This choice results in a uniform distribution of the targets Ti  between the limits (1/2-D#/2) and
(1/2+D# /2).  However, while the D statistic is matched, and the mean and variance of the X-
scores match those of a uniform distribution, overall the X-scores are slightly less uniformly
distributed than is obtained by using equation (2-31).   The choice of functions for " and ‘w’
could be based on preferences for statistics other than D;  for example, one might wish to match
statistics on the distribution of the Ti  targets themselves.

3)  Method of reordering the diaries to match a target value of  A

The second step in the proposed method for constructing longitudinal activity diaries is the
reordering of the selected X-scores to match a target value for ‘A’.    It should be noted that
autocorrelation is hard to measure on short time series.  Box, Jenkins and Reinsel (1994)
recommend a minimum of 50 data points to adequately characterize the autocorrelation of a time
series.  The method described below does a reasonable job for 30 days or more.  The method can
be applied to shorter time series, but the results will not match the target autocorrelation as
closely as for longer simulations.  
  
For purposes of autocorrelation, the ranks that matter are the ranks relative to the other days in
the same time series.   These ranks may differ substantially from the original X-scores.  Note that
the X-scores are uniformly distributed across persons and hence the mean (across persons) is 1/2,
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but the mean within a time series for a given person is :i .  Hence the ranking of X-scores across
persons may differ substantially from the ranking within persons. 

To start the process of targeting the desired overall autocorrelation A, assign a target
autocorrelation ai to each simulated individual.  These targets can be drawn from any distribution
that has a mean of A, provided that all ai are between -1 and 1.  

Sort the X-scores within each simulated individual’s time series and rank them from smallest to
largest.  Suppose there are J days in the simulation period.  Recall that some extra X-scores
(approximately 3%)  should be selected for each person.  The extra ones are needed to prevent a
severe loss of degrees of freedom towards the end of each individual’s reordering.   Let K be the
number of X-scores selected per person, including the extras.  When sorted and ranked, the set of
available ranks will be the integers from 1 to K.   For example, rank 1 will correspond to the
lowest of the X-scores assigned to this person, rank 2 is the second lowest X-score, and so on.  
Ties will not generally occur, as the X-scores are real numbers selected from continuous
distributions; ties are ignored in practice.  The goal is to reorder these ranks in a stochastic
manner that will (on average) reproduce the requested autocorrelation.  The reordering process
will stop once J values are selected, any extras are discarded.

Let Rj be the rank assigned to day ‘j’ by this reordering process.  The lag-one autocorrelation ‘a i’
of the time series for person ‘i’ is the ratio of the lag-one covariance to the variance, or

a i   =   E [ (R j - D) ( Rj+1 - D) ]  /  E [ (R j - D)2 ] (3-1)

where D is the mean of the ranks.  Here E [arg] means the expected value of  the argument ‘arg’. 
There is a slight difference in the autocorrelation of the entire set of K ranks as compared to the
autocorrelation of the J ranks of the selected subset, although this difference is quite small for J
close to K.  One difficulty is that while the latter is a measurable output from the diary assembly
process, it is the former that is accessible during the reordering process.   Thus, the ranks, means,
and variances in equation (3-1) and subsequent equations apply to the full list of K values.

The denominator in equation (3-1) is the variance of the set of integers from 1 to K, which is 
(K2-1)/12.   Hence

a i   = (12 / (K2 -1))  E [(R j - D) ( Rj+1 - D) ]. (3-2)

The expectation value in equation (3-2) can be evaluated if we have the conditional probability
p(Rj+1 | R j ); that is,  the probability for each rank being chosen on day ‘j+1', given the rank R j
chosen on day ‘j’.

The conditional probability distribution p(Rj+1 | R j ) is a discrete distribution, since the set of
ranks is discrete.  However, the number of ranks is often in the hundreds, and it is more
convenient to use a continuous probability distribution.   Thus, a beta distribution for p(y|x) is
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developed,  where ‘x’ and ‘y’ are continuous variables ranging from zero to one that are mapped
onto the ranks:

 R j = ceil(K x),    and  Rj+1  = ceil(K y) (3-3)

where ‘ceil’ is the ceiling or least integer function that rounds up to the next integer.  To invert
these relationships, note that on average the ceiling function adds 1/2 to the argument, so the
mean values of x and y that correspond to given ranks are

x = (R j -1/2) / K,   and   y = (Rj+1 -1/2) / K (3-4)

We wish to select the parameters for a beta distribution that give the selection probabilities for
Rj+1 , based on the value of R j  and the other constants in equation (3-2).  The expected value
appearing in equation (3-2) is given by weighting the sum over all outcomes by the probability
of occurrence:

E [(R j - D) ( Rj+1 - D) ] =  '  '  (R j - D) ( Rj+1 - D) p(R j) p(Rj+1 | R j) (3-5)

where one sum is over all R j from 1 to K and the other is over all Rj+1  from 1 to K.  All values
for R j should be equally likely, that is, p(R j) =1/K for all cases.  Replace the sum over all Rj+1  by
an integral over all y, with Rj+1  replaced by (Ky+1/2):

E [(R j - D) ( Rj+1 - D) ] =  (1/K)  ' (R j - D)  Ip(y|x) (Ky+1/2- D) dy (3-6)

The integral over ‘y’ consists of two parts.  Factoring out the K, the first part is the mean value
of ‘y’ for the given ‘x’, which can be symbolized as E(y|x).   The second part equals (1/2-D),
since the integrand is independent of y, and Ip(y|x) dy = 1.  Also note that for the integers from 1
to K, the mean is D = (K+1)/2, so (1/2-D) = -K/2.  Thus,

E [(R j - D) ( Rj+1 - D) ]  =  ' (R j - D) ( E(y|x) - 1/2) (3-7)

The value of E(y|x) will depend on the parameters of the beta distribution.  As in section  2, let
‘a’ and ‘b’ be the parameters of the beta distribution and let S = a+b.  Consider the following:

a = S/2 - S w/2 + S w x . (3-8)

Then 

 b = S-a  =  S/2 + S w/2 - S w x. (3-9)

The mean of a beta distribution bounded by zero and one is given by equation (2-2), therefore
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E (y|x) = a / (a+b) = a /S =  1/2 - w/2 + w x . (3-10)

Thus, equation (3-7) becomes 

E [(R j - D) ( Rj+1 - D) ]  =  ' (R j - K/2 - 1/2) w (x-1/2). (3-11)

Replacing x by (R j -1/2)/K and noting that the sums evaluate to 

' R j
2  = K (K+1) (2K+1)/6,    ' R j  =  K (K+1)/2,   ' 1 = K, (3-12)

 then equation (3-11) can be expanded and evaluated to give

E [(R j - D) ( Rj+1 - D) ]  = w (K2 - 1) /12. (3-13)

With this choice of the beta distribution, equation (3-2) reduces to the very simple form

w = ai. (3-14)

To completely specify the parameters of the beta distribution, a form for the sum of parameters 
S = a+b  must be given.   The second requirement is that the distribution of ‘y’ be essentially
uniform, when averaged over all values of ‘x’.   In practice, this condition cannot be met exactly. 
Instead, a reasonable match can be made by matching the first few moments of the distribution
for ‘y’ to the moments of a uniform distribution.

The kth moment about zero of a uniform distribution from zero to one is
    
m k =  I x k  p(x) dx  =  1/ (k+1) (3-15)

since p(x) =1 for a uniform.  The moments of the ‘y’ values are

E(y k) = I I  y k p(y|x) p(x) dy dx

= Ip(x) dx   I y k p(y|x) dy . (3-16)

The second integral is the kth moment of the beta distribution p(y|x).  The first moment is given
by equation (3-10).  The second moment of a beta distribution (Johnson, Kotz, and Balakrishnan,
1994) is

M 2  =  a (a+1) / ( S (S+1) )
         
        = (S/2 - S w /2 + S w x ) (1+S/2 -S w/2 + S w x) / [S (S+1) ]
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        = [ (1-w)(2+S-S w)/4 + (w + S w - s w2 ) x + S w2 x2 ] / (S+1). (3-17)

Hence the first moment of ‘y’ is

E(y ) =  Ip(x) (1/2 - w/2 + w x) dx

         =  1/2 - w/2 + w (1/2)

         =  1/2 (3-18)

which agrees with the first moment m1 of a uniform (0,1) distribution.  For the second moment,
equation (3-17) must be integrated over x from zero to one, giving

E(y 2 )  = [(1-w)(2+S-S w)/4 + (w+S w - S w2)/2 + S w2/3 ] / (S+1)
  
                      = (6 + 3 S + S w 2 ) / (12 + 12 S) (3-19)

Matching E(y2) to the second moment m2 of a uniform (0,1) distribution (which is 1/3) and
solving for S gives

S = 2 / (1- w 2) (3-20)

Matching the third moments m3 = E (y3) results in the same relationship S = 2 / (1- w 2).  
Moments higher than this generally will not match.

To summarize,  the parameter values should be

w = a i 

S = 2 / (1- w 2). (3-21)

The preceding development is in terms of the target autocorrelation ‘a i’ that is specific to one
individual ‘i’.  The population statistic A is the mean of the ai across persons.   An examination
of the data used in Xue et al. (2004) indicates that people within the same cohort may differ
greatly in their personal autocorrelations.  For four different choices of the key variable, the
standard deviation of ai across persons was 0.20.   A symmetric beta distribution centered on A
with a standard deviation of 0.20 was chosen for the results reported here.  The bounds on this
beta are (A-1/2) to (A+1/2), provided these do not extend past 1 or -1.   If A is less than -1/2 or
greater than 1/2, the beta distribution is  “squeezed” symmetrically until the bounds are within
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limits.  Other choices of the key variable or data from other studies may lead to alternative
choices for the distribution of ‘a i’ .

The proposed method could allow differing autocorrelations for different points in the time
series.  For example, suppose that there is one autocorrelation for the case where both days ‘j’
and ‘j+1’ are of the same day-type, and another if the days are of differing day-types.  The
average autocorrelation is the weighted average.  The user would specify the overall target 
autocorrelations Aj for each day-type.  For each individual, a target a i j is required for each Aj.  
Since a new beta distribution is generated every day, one merely replaces a i by a i j in equations
(3-21), so that ‘w’ and ‘s’ become functions of ‘j’.   Note that there are few data sets extensive
enough to determine if this effect is significant.   Furthermore, the stability of each
autocorrelation target will decrease when it is applied to fewer and fewer days.  Hence, the
derivation does not emphasize this possibility.

4) Mapping the X-scores back to activity diaries

For the first day of the simulation, select any of the ranks from 1 to K at random.  For each
subsequent day, a beta distribution with parameters determined by (3-21) and (3-8) is used to
select the next rank.  The beta distribution will return a real number between zero and one; call
this value ‘y’.  Convert this to a rank R from 1 to K by

Rj+1  = ceil(K y) (4-1)

where ‘ceil’ is the ceiling function.   The only complication is if this rank has already been
assigned to a prior day, in which case the nearest rank that has not already been used is assigned
instead.  The X-score corresponding to this rank is recorded (call it xj+1 ), and the assigned rank
is used to adjust the parameters of the beta distribution to be used for the next day.  Continue
until J values have been assigned.   
 
To connect the time series of X-scores with actual diaries, the pool of available diaries for each
day must be identified.  If there are Dj+1 available diaries in the pool for simulation day ‘j+1’, 
then use the diary at position d j+1  in the sorted list of available diaries, where 

d j+1  =   ceil(Dj+1  xj+1 ). (4-2)

5) Possible Modifications

There are several reasons why the derivation of the parameters needed to match a target
autocorrelation yields an approximate, but not analytically exact, solution.  First, and most
importantly for short simulations, the correspondence between the discrete nature of the ranks
and the continuous beta distribution can become a difficulty.  Mathematically, this means that
larger segments of x and y space map onto a single rank.  The implicit assumption in the
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derivation is that ranks can be mapped to the midpoint of these segments, and vice versa.  This is
a good approximation as long as the probability is not rapidly changing within each segment,
which is the case when each segment is small (meaning many days in the simulation).

Secondly, the beta distribution for reordering may select the same rank on two days in a row, in
which case the second rank must be shifted away from the first, which lowers autocorrelation.  In
fact, anytime selected rank Rj+1  has been used before, the result must be shifted to the nearest
unused rank.  However, if this is not the same rank as Rj, then the shift is equally likely to move
the rank closer to Rj as moving it further away, so the net effect on autocorrelation is small.

Additionally, near the end of the simulation, there are relatively few unused ranks, and in
practice these ranks may be near to each other.  So when examined in detail, the time series may
show a tendency for autocorrelation to increase toward the end.

The final point is that within each time series the rankings for the J selected X-scores will differ
from the rankings with respect to all K of the X-scores.  Usually, this is not a problem since the
mean and variance of the subset are close to the mean and variance of the larger set.  In
exceptional cases, the autocorrelation measured on the original rankings (based on K) may differ
from the autocorrelation based on the rankings within the subset; this could happen when the
omitted X-scores are congregated near one end of the ranking scale.

Accounting for the above factors may be possible by modifying the proposed method, though at
a cost of complicating the approach.  However, in total, these effects tend to be small for
simulations over 30 days in length.  Also, some of the potential problems have a tendency to
cancel out.  It is found in simulations that D and A are usually within 0.02 of the requested value,
an excellent agreement. 
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M E M O R A N D U M  

 
To: John Langstaff, EPA OAQPS 

From: Jonathan Cohen, Arlene Rosenbaum, ICF International 

Date: June 5, 2006 

Re: Uncertainty analysis of residential air exchange rate distributions  
  
 
This memorandum describes our assessment of some of the sources of the uncertainty of city-
specific distributions of residential air exchange rates that were fitted to the available study data. 
City-specific distributions for use with the APEX ozone model were developed for 12 modeling 
cities, as detailed in the memorandum by Cohen, Mallya and Rosenbaum, 20057 (Appendix A of 
this report). In the first part of the memorandum, we analyze the between-city uncertainty by 
examining the variation of the geometric means and standard deviations across cities and studies. 
In the second part of the memorandum, we assess the within-city uncertainty by using a 
bootstrap distribution to estimate the effects of sampling variation on the fitted geometric means 
and standard deviations for each city. The bootstrap distributions assess the uncertainty due to 
random sampling variation but do not address uncertainties due to the lack of representativeness 
of the available study data, the matching of the study locations to the modeled cities, and the 
variation in the lengths of the AER monitoring periods. 
 
Variation of geometric means and standard deviations across cities and studies 
 
The memorandum by Cohen, Mallya and Rosenbaum, 20058 (Appendix A of this report) 
describes the analysis of residential air exchange rate (AER) data that were obtained from seven 
studies. The AER data were subset by location, outside temperature range, and the A/C type, as 
defined by the presence or absence of an air conditioner (central or window). In each case we 
chose to fit a log-normal distribution to the AER data, so that the logarithm of the AER for a 
given city, temperature range, and A/C type is assumed to be normally distributed. If the AER 
data has geometric mean GM and geometric standard deviation GSD, then the logarithm of the 
AER is assumed to have a normal distribution with mean log(GM) and standard deviation 
log(GSD). 
 
Table D-1 shows the assignment of the AER data to the 12 modeled cities. Note that for Atlanta, 
GA and Washington DC, the Research Triangle Park, NC data for houses with A/C was used to 
represent the AER distributions for houses with A/C, and the non-California data for houses 

                                                 
7 Cohen, J., H. Mallya, and A. Rosenbaum. 2005. Memorandum to John Langstaff. EPA 68D01052, Work 
Assignment 3-08. Analysis of Air Exchange Rate Data. September 30, 2005. 
8 Op. Cit. 
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without A/C was used to represent the AER distributions for houses without A/C. Sacramento, 
CA AER distributions were estimated using the AER data from the inland California counties of 
Sacramento, Riverside, and San Bernardino; these combined data are referred to by the City 
Name “Inland California.” St Louis, MO AER distributions were estimated using the AER data 
from all states except for California and so are referred to be the City Name “Outside 
California.”  
 
 
Table D-1.  Assignment of Residential AER distributions to modeled cities 

Modeled city AER distribution 

Atlanta, GA, A/C Research Triangle Park, A/C only 

Atlanta, GA, no A/C All non-California, no A/C (“Outside California”) 

Boston, MA New York 

Chicago, IL New York 

Cleveland, OH New York 

Detroit, MI New York 

Houston, TX Houston 

Los Angeles, CA Los Angeles 

New York, NY New York 

Philadelphia, PA New York 

Sacramento Inland parts of Los Angeles (“Inland California”) 

St. Louis All non-California (“Outside California”) 

Washington, DC, A/C Research Triangle Park, A/C only 

Washington, DC, no 
A/C All non-California, no A/C (“Outside California”) 

 
It is evident from Table D-1 that for some of the modeled cities, some potentially large 
uncertainty was introduced because we modeled their AER distributions using available data 
from another city or group of cities thought to be representative of the first city on the basis of 
geography and other characteristics. This was necessary for cities where we did not have any or 
sufficient AER data measured in the same city that also included the necessary temperature and 
A/C type information. One way to assess the impact of these assignments on the uncertainty of 
the AER distributions is to evaluate the variation  of the fitted log-normal distributions across the 
cities with AER data. In this manner we can examine the  effect on the AER distribution if a 
different allocation of study data to the modeled cities had been used. 
 
Even for the cities where we have study AER data, there is uncertainty about the fitted AER 
distributions. First, the studies used different measurement and residence selection methods. In 
some cases the residences were selected by a random sampling method designed to represent the 
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entire population. In other cases the residences were selected to represent sub-populations. For 
example, for the RTP study, the residences belong to two specific cohorts: a mostly Caucasian, 
non-smoking group aged at least 50 years having cardiac defibrillators living in Chapel Hill; a 
group of non-smoking, African Americans aged at least 50 years with controlled hypertension 
living in a low-to-moderate SES neighborhood in Raleigh. The TEACH study was restricted to 
residences of inner-city high school students. The RIOPA study was a random sample for Los 
Angeles, but was designed to preferentially sample locations near major air toxics sources for 
Elizabeth, NJ and Houston TX. Furthermore, some of the studies focused on different towns or 
cities within the larger metropolitan areas, so that, for example, the Los Angeles data from the 
Avol study was only measured in Lancaster, Lake Gregory, Riverside, and San Dimas but the 
Los Angeles data from the Wilson studies were measured in multiple cities in Southern 
California. One way to assess the uncertainty of the AER distributions due to variations of study 
methodologies and study sampling locations is to evaluate the variation  of the fitted log-normal 
distributions within each modeled city across the different studies. 
 
We evaluated the variation between cities, and the variation within cities and between studies, by 
tabulating and plotting the AER distributions for all the study/city combinations. Since the 
original analyses by Cohen, Mallya and Rosenbaum, 2005 clearly showed that the AER 
distribution depends strongly on the outside temperature and the A/C type (whether or not the 
residence has air conditioning), this analysis was stratified by the outside temperature range and 
the A/C type. Otherwise, study or city differences would have been confounded by the 
temperature and A/C type differences and you would not be able to tell how much of the AER 
difference was due to the variation of temperature and A/C type across cities or studies. In order 
to be able to compare cities and studies we could not use different temperature ranges for the 
different modeled cities as we did for the original AER distribution modeling. For these analyses 
we stratified the temperature into the ranges <= 10, 10-20, 20-25, and >25 ºC and categorized the 
A/C type as “Central or Window A/C” versus ‘No A/C,” giving 8 temperature and A/C type 
strata. 
 
Table D-2 shows the geometric means and standard deviations by city and study. These 
geometric mean and standard deviation pairs are plotted in Figure D-1 through D-8. Each figure 
shows the variation across cities and studies for a given temperature range and A/C type. The 
results for a city with only one available study are shown with a blank study name. For cities 
with multiple studies, results are shown for the individual studies and the city overall distribution 
is designated by a blank value for the study name. 
 
Table D-2. Geometric means and standard deviations by city and study. 
A/C Type Temperature City Study* N Geo Mean Geo Std Dev**
Central or Room A/C <= 10 Houston  2 0.32 1.80 
Central or Room A/C <= 10 Los Angeles  5 0.62 1.51 
Central or Room A/C <= 10 Los Angeles Avol 2 0.72 1.22 
Central or Room A/C <= 10 Los Angeles RIOPA 1 0.31  
Central or Room A/C <= 10 Los Angeles Wilson 1991 2 0.77 1.12 
Central or Room A/C <= 10 New York City  20 0.71 2.02 
Central or Room A/C <= 10 Research Triangle Park  157 0.96 1.81 
Central or Room A/C <= 10 Sacramento  3 0.38 1.82 
Central or Room A/C <= 10 San Francisco  2 0.43 1.00 
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Table D-2. Geometric means and standard deviations by city and study. 
A/C Type Temperature City Study* N Geo Mean Geo Std Dev**
Central or Room A/C <= 10 Stockton  7 0.48 1.64 
Central or Room A/C 10-20 Arcata  1 0.17  
Central or Room A/C 10-20 Bakersfield  2 0.36 1.34 
Central or Room A/C 10-20 Fresno  8 0.30 1.62 
Central or Room A/C 10-20 Houston  13 0.42 2.19 
Central or Room A/C 10-20 Los Angeles  716 0.59 1.90 
Central or Room A/C 10-20 Los Angeles Avol 33 0.48 1.87 
Central or Room A/C 10-20 Los Angeles RIOPA 11 0.60 1.87 
Central or Room A/C 10-20 Los Angeles TEACH 1 0.68  
Central or Room A/C 10-20 Los Angeles Wilson 1984 634 0.59 1.89 
Central or Room A/C 10-20 Los Angeles Wilson 1991 37 0.64 2.11 
Central or Room A/C 10-20 New York City  5 1.36 2.34 
Central or Room A/C 10-20 New York City RIOPA 4 1.20 2.53 
Central or Room A/C 10-20 New York City TEACH 1 2.26  
Central or Room A/C 10-20 Redding  1 0.31  
Central or Room A/C 10-20 Research Triangle Park  320 0.56 1.91 
Central or Room A/C 10-20 Sacramento  7 0.26 1.67 
Central or Room A/C 10-20 San Diego  23 0.41 1.55 
Central or Room A/C 10-20 San Francisco  5 0.42 1.25 
Central or Room A/C 10-20 Santa Maria  1 0.23  
Central or Room A/C 10-20 Stockton  4 0.73 1.42 
Central or Room A/C 20-25 Houston  20 0.47 1.94 
Central or Room A/C 20-25 Los Angeles  273 1.10 2.36 
Central or Room A/C 20-25 Los Angeles Avol 32 0.61 1.95 
Central or Room A/C 20-25 Los Angeles RIOPA 26 0.90 2.42 
Central or Room A/C 20-25 Los Angeles Wilson 1984 215 1.23 2.33 
Central or Room A/C 20-25 New York City  37 1.11 2.74 
Central or Room A/C 20-25 New York City RIOPA 20 0.93 2.91 
Central or Room A/C 20-25 New York City TEACH 17 1.37 2.52 
Central or Room A/C 20-25 Red Bluff  2 0.61 3.20 
Central or Room A/C 20-25 Research Triangle Park  196 0.40 1.89 
Central or Room A/C > 25 Houston  79 0.43 2.17 
Central or Room A/C > 25 Los Angeles  114 0.72 2.60 
Central or Room A/C > 25 Los Angeles Avol 25 0.37 3.10 
Central or Room A/C > 25 Los Angeles RIOPA 10 0.94 1.71 
Central or Room A/C > 25 Los Angeles Wilson 1984 79 0.86 2.33 
Central or Room A/C > 25 New York City  19 1.24 2.18 
Central or Room A/C > 25 New York City RIOPA 14 1.23 2.28 
Central or Room A/C > 25 New York City TEACH 5 1.29 2.04 
Central or Room A/C > 25 Research Triangle Park  145 0.38 1.71 
No A/C <= 10 Houston  13 0.66 1.68 
No A/C <= 10 Los Angeles  18 0.54 3.09 
No A/C <= 10 Los Angeles Avol 14 0.51 3.60 
No A/C <= 10 Los Angeles RIOPA 2 0.72 1.11 
No A/C <= 10 Los Angeles Wilson 1991 2 0.60 1.00 
No A/C <= 10 New York City  48 1.02 2.14 
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Table D-2. Geometric means and standard deviations by city and study. 
A/C Type Temperature City Study* N Geo Mean Geo Std Dev**
No A/C <= 10 New York City RIOPA 44 1.04 2.20 
No A/C <= 10 New York City TEACH 4 0.79 1.28 
No A/C <= 10 Sacramento  3 0.58 1.30 
No A/C <= 10 San Francisco  9 0.39 1.42 
No A/C 10-20 Bakersfield  1 0.85  
No A/C 10-20 Fresno  4 0.90 2.42 
No A/C 10-20 Houston  28 0.63 2.92 
No A/C 10-20 Los Angeles  390 0.75 2.09 
No A/C 10-20 Los Angeles Avol 23 0.78 2.55 
No A/C 10-20 Los Angeles RIOPA 87 0.78 1.96 
No A/C 10-20 Los Angeles TEACH 9 2.32 2.05 
No A/C 10-20 Los Angeles Wilson 1984 241 0.70 2.06 
No A/C 10-20 Los Angeles Wilson 1991 30 0.75 1.82 
No A/C 10-20 New York City  59 0.79 2.04 
No A/C 10-20 Sacramento  1 1.09  
No A/C 10-20 San Diego  49 0.47 1.95 
No A/C 10-20 San Francisco  15 0.34 3.05 
No A/C 10-20 Santa Maria  2 0.27 1.23 
No A/C 20-25 Houston  10 0.92 2.41 
No A/C 20-25 Los Angeles  148 1.37 2.28 
No A/C 20-25 Los Angeles Avol 19 0.95 1.87 
No A/C 20-25 Los Angeles RIOPA 38 1.30 2.11 
No A/C 20-25 Los Angeles Wilson 1984 91 1.52 2.40 
No A/C 20-25 New York City  26 1.62 2.24 
No A/C 20-25 New York City RIOPA 19 1.50 2.30 
No A/C 20-25 New York City TEACH 7 1.99 2.11 
No A/C 20-25 Red Bluff  1 0.55  
No A/C > 25 Houston  2 0.92 3.96 
No A/C > 25 Los Angeles  25 0.99 1.97 
No A/C > 25 Los Angeles Avol 6 1.56 1.36 
No A/C > 25 Los Angeles RIOPA 4 1.33 1.37 
No A/C > 25 Los Angeles TEACH 3 0.86 1.02 
No A/C > 25 Los Angeles Wilson 1984 12 0.74 2.29 
No A/C > 25 New York City  6 1.54 1.65 
No A/C > 25 New York City RIOPA 3 1.73 2.00 
No A/C > 25 New York City TEACH 3 1.37 1.38 
* For a given city, if AER data were available from only one study, then the study name is missing. If AER data were available 
for two or more studies, then the overall city distribution is shown in the row where the study name is missing, and the 
distributions by study and city are shown  in the rows with a specific study name.   
** The geometric standard deviation is undefined if the sample size equals 1. 
 
In general, there is a relatively wide variation across different cities. This implies that the AER 
modeling results would be very different if the matching of modeled cities to study cities was 
changed, although a sensitivity study using the APEX model would be needed to assess the 
impact on the ozone exposure estimates. In particular the ozone exposure estimates may be 
sensitive to the assumption that the St. Louis AER distributions can be represented by the 
combined non-California AER data. One way to address this is to perform a Monte Carlo 
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analysis where the first stage is to randomly select a city outside of California, the second stage 
picks the A/C type, and the third stage picks the AER value from the assigned distribution for the 
city, A/C type and temperature range. Note that this will result in a very different distribution to 
the current approach that fits a single log-normal distribution to all the non-California data for a 
given temperature range and A/C type. The current approach weights each data point equally, so 
that cities like New York with most of the data values get the greatest statistical weight. The 
Monte Carlo approach gives the same total statistical weight for each city and fits a mixture of 
log-normal distributions rather than a single distribution. 
 
In general, there is also some variation within studies for the same city, but this is much smaller 
than the variation across cities. This finding tends to support the approach of combining different 
studies. Note that the graphs can be deceptive in this regard because some of the data points are 
based on very small sample sizes (N) ; those data points are less precise and the differences 
would not be statistically significant.  For example, for the No A/C data in the range 10-20 ºC, 
the Los Angeles TEACH study had a geometric mean of 2.32 based on only nine AER values, 
but the overall geometric mean, based on 390 values, was 0.75 and the geometric means for the 
Los Angeles Avol, RIOPA, Wilson 1984, and Wilson 1991 studies were each close to 0.75. One 
noticeable case where the studies show big differences for the same city is for the A/C houses in 
Los Angeles in the range 20-25 ºC where the study geometric means are 0.61 (Avol, N=32), 0.90 
(RIOPA, N=26) and 1.23 (Wilson 1984, N=215). 
 
Bootstrap analyses 
 
The 39 AER subsets defined in the Cohen, Mallya, and Rosenbaum, 2005 memorandum 
(Appendix A of this report) and their allocation to the 12 modeled cities are shown in Table D-3. 
To make the distributions sufficiently precise in each AER subset and still capture the variation 
across temperature and A/C type, different modeled cities were assigned different temperature 
range and A/C type groupings. Therefore these temperature range groupings are sometimes 
different to those used to develop Table D-2 and Figure D-1 through D-8.  
 
 
Table D-3. AER subsets by city, A/C type, and temperature range. 
Subset City 
Name 

Study Cities Represents  
Modeled Cities: 

A/C Type Temperature 
Range (ºC) 

Houston Houston Houston, TX Central or Room A/C <=20 
Houston Houston Houston, TX Central or Room A/C 20-25 
Houston Houston Houston, TX Central or Room A/C 25-30 
Houston Houston Houston, TX Central or Room A/C >30 
Houston Houston Houston, TX No A/C <=10 
Houston Houston Houston, TX No A/C 10-20 
 Houston Houston, TX No A/C >20 
Inland California Sacramento, Riverside, 

and San Bernardino 
counties, CA 

Sacramento, CA Central or Room A/C <=25 

Inland California Sacramento, Riverside, 
and San Bernardino 
counties, CA 

Sacramento, CA Central or Room A/C >25 

Inland California Sacramento, Riverside, 
and San Bernardino 
counties, CA 

Sacramento, CA No A/C <=10 
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Table D-3. AER subsets by city, A/C type, and temperature range. 
Subset City 
Name 

Study Cities Represents  
Modeled Cities: 

A/C Type Temperature 
Range (ºC) 

Inland California Sacramento, Riverside, 
and San Bernardino 
counties, CA 

Sacramento, CA No A/C 10-20 

Inland California Sacramento, Riverside, 
and San Bernardino 
counties, CA 

Sacramento, CA No A/C 20-25 

Inland California Sacramento, Riverside, 
and San Bernardino 
counties, CA 

Sacramento, CA No A/C >25 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA Central or Room A/C <=20 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA Central or Room A/C 20-25 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA Central or Room A/C 25-30 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA Central or Room A/C >30 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA No A/C <=10 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA No A/C 10-20 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA No A/C 20-25 

Los Angeles Los Angeles, Orange, 
Riverside, San 
Bernardino, and 
Ventura counties,  CA 

Los Angeles, CA No A/C >25 

New York City New York, NY Boston, MA, 
Chicago, IL, 
Cleveland, OH, 
Detroit, MI, 
New York, NY, 
Philadelphia, PA 

Central or Room A/C <=10 

New York City New York, NY Boston, MA, 
Chicago, IL, 
Cleveland, OH, 
Detroit, MI, 
New York, NY, 
Philadelphia, PA 

Central or Room A/C 10-25 

New York City New York, NY Boston, MA, 
Chicago, IL, 
Cleveland, OH, 
Detroit, MI, 

Central or Room A/C >25 
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Table D-3. AER subsets by city, A/C type, and temperature range. 
Subset City 
Name 

Study Cities Represents  
Modeled Cities: 

A/C Type Temperature 
Range (ºC) 

New York, NY, 
Philadelphia, PA 

New York City New York, NY Boston, MA, 
Chicago, IL, 
Cleveland, OH, 
Detroit, MI, 
New York, NY, 
Philadelphia, PA 

No A/C <=10 

New York City New York, NY Boston, MA, 
Chicago, IL, 
Cleveland, OH, 
Detroit, MI, 
New York, NY, 
Philadelphia, PA 

No A/C 10-20 

New York City New York, NY Boston, MA, 
Chicago, IL, 
Cleveland, OH, 
Detroit, MI, 
New York, NY, 
Philadelphia, PA 

No A/C >20 

Outside California Cities outside CA St. Louis, MO Central or Room A/C <=10 
Outside California Cities outside CA St. Louis, MO Central or Room A/C 10-20 
Outside California Cities outside CA St. Louis, MO Central or Room A/C 20-25 
Outside California Cities outside CA St. Louis, MO Central or Room A/C 25-30 
Outside California Cities outside CA St. Louis, MO Central or Room A/C >30 
Outside California Cities outside CA St. Louis, MO 

Atlanta, GA 
Washington DC 

No A/C <=10 

Outside California Cities outside CA St. Louis, MO 
Atlanta, GA 
Washington DC 

No A/C 10-20 

Outside California Cities outside CA St. Louis, MO 
Atlanta, GA 
Washington DC 

No A/C >20 

Research Triangle Park Research Triangle 
Park, NC 

Atlanta, GA 
Washington DC 

Central or Room A/C <=10 

Research Triangle Park Research Triangle 
Park, NC 

Atlanta, GA 
Washington DC 

Central or Room A/C 10-20 

Research Triangle Park Research Triangle 
Park, NC 

Atlanta, GA 
Washington DC 

Central or Room A/C 20-25 

Research Triangle Park Research Triangle 
Park, NC 

Atlanta, GA 
Washington DC 

Central or Room A/C >25 

 
The GM and GSD values that define the fitted log-normal distributions for these 39 AER subsets 
are shown in Table D-4. Examples of these pairs are also plotted in Figures D-9 through D-19, to 
be further described below. Each of the example figures D-9 through D-19 corresponds to a 
single GM/GSD “Original Data” pair. The GM and GSD values for the “Original Data” are at 
the intersection of the horizontal and vertical lines that are parallel to the x- and y-axes in the 
figures.   
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Table D-4. Geometric means and standard deviations for AER subsets by city, A/C type, 
and temperature range. 

Subset City 
Name A/C Type Temperature 

Range (ºC) N Geometric 
Mean 

Geometric 
Standard 
Deviation 

Houston Central or Room 
A/C <=20 15 0.4075 2.1135 

Houston Central or Room 
A/C 20-25 20 0.4675 1.9381 

Houston Central or Room 
A/C 25-30 65 0.4221 2.2579 

Houston Central or Room 
A/C >30 14 0.4989 1.7174 

Houston No A/C <=10 13 0.6557 1.6794 
Houston No A/C 10-20 28 0.6254 2.9162 
 No A/C >20 12 0.9161 2.4512 
Inland California Central or Room 

A/C <=25 226 0.5033 1.9210 
Inland California Central or Room 

A/C >25 83 0.8299 2.3534 
Inland California No A/C <=10 17 0.5256 3.1920 
Inland California No A/C 10-20 52 0.6649 2.1743 
Inland California No A/C 20-25 13 1.0536 1.7110 
Inland California No A/C >25 14 0.8271 2.2646 
Los Angeles Central or Room 

A/C <=20 721 0.5894 1.8948 
Los Angeles Central or Room 

A/C 20-25 273 1.1003 2.3648 
Los Angeles Central or Room 

A/C 25-30 102 0.8128 2.4151 
Los Angeles Central or Room 

A/C >30 12 0.2664 2.7899 
Los Angeles No A/C <=10 18 0.5427 3.0872 
Los Angeles No A/C 10-20 390 0.7470 2.0852 
Los Angeles No A/C 20-25 148 1.3718 2.2828 
Los Angeles No A/C >25 25 0.9884 1.9666 
New York City Central or Room 

A/C <=10 20 0.7108 2.0184 
New York City Central or Room 

A/C 10-25 42 1.1392 2.6773 
New York City Central or Room 

A/C >25 19 1.2435 2.1768 
New York City No A/C <=10 48 1.0165 2.1382 
New York City No A/C 10-20 59 0.7909 2.0417 
New York City No A/C >20 32 1.6062 2.1189 
Outside California Central or Room 

A/C <=10 179 0.9185 1.8589 
Outside California Central or Room 

A/C 10-20 338 0.5636 1.9396 
Outside California Central or Room 

A/C 20-25 253 0.4676 2.2011 
Outside California Central or Room 

A/C 25-30 219 0.4235 2.0373 
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Table D-4. Geometric means and standard deviations for AER subsets by city, A/C type, 
and temperature range. 

Subset City 
Name A/C Type Temperature 

Range (ºC) N Geometric 
Mean 

Geometric 
Standard 
Deviation 

Outside California Central or Room 
A/C >30 24 0.5667 1.9447 

Outside California No A/C <=10 61 0.9258 2.0836 
Outside California No A/C 10-20 87 0.7333 2.3299 
Outside California No A/C >20 44 1.3782 2.2757 
Research Triangle 
Park 

Central or Room 
A/C <=10 157 0.9617 1.8094 

Research Triangle 
Park 

Central or Room 
A/C 10-20 320 0.5624 1.9058 

Research Triangle 
Park 

Central or Room 
A/C 20-25 196 0.3970 1.8887 

Research Triangle 
Park 

Central or Room 
A/C >25 145 0.3803 1.7092 

 
To evaluate the uncertainty of the GM and GSD values, a bootstrap simulation was performed, 
as follows. Suppose that a given AER subset has N values. A bootstrap sample is obtained by 
sampling N times at random with replacement from the N AER values. The first AER value in 
the bootstrap sample is selected randomly from the N values, so that each of the N values is 
equally likely. The second, third, …, N’th values in the bootstrap sample are also selected 
randomly from the N values, so that for each selection, each of the N values is equally likely. 
The same value can be selected more than once. Using this bootstrap sample, the geometric 
mean and geometric standard deviation of the N values in the bootstrap sample was calculated. 
This pair of values is plotted as one of the points in a figure for that AER subset. 1,000 bootstrap 
samples were randomly generated for each AER subset, producing a set of 1,000 geometric mean 
and geometric standard deviation pairs, which were plotted in example Figures D-9 through D-
19. 
 
The bootstrap distributions display the part of the uncertainty of the GM and GSD that is entirely 
due to random sampling variation. The analysis is based on the assumption that the study AER 
data are a random sample from the population distribution of AER values for the given city, 
temperature range, and A/C type. On that basis, the 1,000 bootstrap GM and GSD pairs estimate 
the variation of the GM and GSD across all possible samples of N values from the population. 
Since each GM, GSD pair uniquely defines a fitted log-normal distribution, the pairs also 
estimate the uncertainty of the fitted log-normal distribution. The choice of 1,000 was made as a 
compromise between having enough pairs to accurately estimate the GM, GSD distribution and 
not having too many pairs so that the graph appears as a smudge of overlapped points. Note that 
even if there were infinitely many bootstrap pairs, the uncertainty distribution would still be an 
estimate of the true uncertainty because the N is finite, so that the empirical distribution of the N 
measured AER values does not equal the unknown population distribution. 
 
In most cases the uncertainty distribution appears to be a roughly circular or elliptical geometric 
mean and standard deviation region. The size of the region depends upon the sample size and on 
the variability of the AER values; the region will be smallest when the sample size N is large 
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and/or the variability is small, so that there are a large number of values that are all close 
together.  
 
The bootstrap analyses show that the geometric standard deviation uncertainty for a given 
CSA/air-conditioning-status/temperature-range combination tends to have a range of at most 
from “fitted GSD-1.0 hr-1” to “fitted GSD+1.0 hr-1”, but the intervals based on larger AER 
sample sizes are frequently much narrower. The ranges for the geometric means tend to be 
approximately from “fitted GM-0.5 hr-1” to “fitted GM+0.5 hr-1”, but in some cases were much 
smaller. 
 
The bootstrap analysis only evaluates the uncertainty due to the random sampling. It does not 
account for the uncertainty due to the lack of representativeness, which in turn is due to the fact 
that the samples were not always random samples from the entire population of residences in a 
city, and were sometimes used to represent different cities. Since only the GM and GSD were 
used, the bootstrap analyses does not account for uncertainties about the true distributional 
shape, which may not necessarily be log-normal. Furthermore, the bootstrap uncertainty does not 
account for the effect of the calendar year (possible trends in AER values) or of the uncertainty 
due to the AER measurement period; the distributions were intended to represent distributions of 
24 hour average AER values although the study AER data were measured over a variety of 
measurement periods. 
 
To use the bootstrap distributions to estimate the impact of sample size on the fitted distributions, 
a Monte Carlo approach could be used with the APEX model. Instead of using the Original Data 
distributions, a bootstrap GM, GSD pair could be selected at random and the AER value could be 
selected randomly from the log-normal distribution with the bootstrap GM and GSD. 

 
 
 
 
 
 
 
 



 

  

Figure D-1 
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Figure D-2 
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Figure D-3 
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Figure D-4 
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Figure D-5 
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Figure D-6 
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Figure D-7 
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Figure D-8 
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Figure D-9 
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Figure D-10 
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Figure D-11 
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Figure D-12 
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Figure D-13 

 



 

D-26 

 
Figure D-14 
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Figure D-15 
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Figure D-16 
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Figure D-17 
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Figure D-18 
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Figure D-19 
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M E M O R A N D U M  

 
To: John Langstaff, EPA OAQPS 
From: Jonathan Cohen, Arlene Rosenbaum, ICF International 
Date: June 8, 2006 
Re: Distributions of air exchange rate averages over multiple days  
  
 
As detailed in the memorandum by Cohen, Mallya and Rosenbaum, 20059 (Appendix A of this 
report) we have proposed to use the APEX model to simulate the residential air exchange rate 
(AER) using different log-normal distributions for each combination of outside temperature 
range and the air conditioner type, defined as the presence or absence of an air conditioner 
(central or room).  
 
Although the averaging periods for the air exchange rates in the study databases varied from one 
day to seven days, our analyses did not take the measurement duration into account and treated 
the data as if they were a set of statistically independent daily averages. In this memorandum we 
present some analyses of the Research Triangle Park Panel Study that show extremely strong 
correlations between consecutive 24-hour air exchange rates measured at the same house. This 
provides support for the simplified approach of treating all averaging periods as if they were 24-
hour averages.  
 
In the current version of the APEX model, there are several options for stratification of time 
periods with respect to AER distributions, and for when to re-sample from a distribution for a 
given stratum. The options selected for this current set of simulations resulted in a uniform AER 
for each 24-hour period and re-sampling of the 24-hour AER for each simulated day. This re-
sampling for each simulated day implies that the simulated AERs on consecutive days in the 
same microenvironment are statistically independent. Although we have not identified sufficient 
data to test the assumption of uniform AERs throughout a 24-hour period, the analyses described 
in this memorandum suggest that AERs on consecutive days are highly correlated. Therefore, we 
performed sensitivity simulations to assess the impact of the assumption of temporally 
independent air exchange rates, but found little difference between APEX predictions for the two 
scenarios (i.e., temporally independent and autocorrelated air exchange rates). 
 

                                                 
9 Cohen, J., H. Mallya, and A. Rosenbaum. 2005. Memorandum to John Langstaff. EPA 68D01052, Work 
Assignment 3-08. Analysis of Air Exchange Rate Data. September 30, 2005. 
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Distributions of multi-day averages from the RTP Panel Study 
 
The RTP Panel study included measurements of 24-hour averages at 38 residences for up to four 
periods of at least seven days. These periods were in different seasons and/or calendar years. 
Daily outside temperatures were also provided. All the residences had either window or room air 
conditioners or both. We used these data to compare the distributions of daily averages taken 
over 1, 2, 3, .. 7 days. 
 
The analysis is made more complicated because the previous analyses showed the dependence of 
the air exchange rate on the outside temperature, and the daily temperatures often varied 
considerably. Two alternative approaches were employed to group consecutive days. For the first 
approach, A, we sorted the data by the HOUSE_ID number and date and began a new group of 
days for each new HOUSE_ID and whenever the sorted measurement days on the same 
HOUSE_ID were 30 days or more apart. In most cases, a home was measured over four different 
seasons for seven days, potentially giving 38 × 4 = 152 groups; the actual number of groups was 
124. For the second approach, B, we again sorted the data by the HOUSE_ID number and date, 
but this time we began a new group of days for each new HOUSE_ID and whenever the sorted 
measurement days on the same HOUSE_ID were 30 days or more apart or were for different 
temperature ranges. We used the same four temperature ranges chosen for the analysis in the 
Cohen, Mallya, and Rosenbaum, 2005, memorandum (Appendix A): <= 10, 10-20, 20-25, and > 
25 ºC. For example, if the first week of measurements on a given HOUSE_ID had the first three 
days in the <= 10 ºC range, the next day in the  10-20 ºC range, and the last three days in the <= 
10 ºC range, then the first approach would treat this as a single group of days. The second 
approach would treat this as three groups of days, i.e., the first three days, the fourth day, and the 
last three days. Using the first approach, the days in each group can be in different temperature 
ranges. Using the second approach, every day in a group is in the same temperature range. Using 
the first approach we treat groups of days as being independent following a transition to a 
different house or season. Using the second approach we treat groups of days as being 
independent following a transition to a different house or season or temperature range. 
 
To evaluate the distributions of multi-day air exchange rate (AER) averages, we averaged the 
AERs over consecutive days in each group. To obtain a set of one-day averages, we took the 
AERs for the first day of each group. To obtain a set of two-day averages, we took the average 
AER over the first two days from each group. We continued this process to obtain three-, four-, 
five-, six-, and seven-day averages.  There were insufficiently representative data for averaging 
periods longer then seven days. Averages over non-consecutive days were excluded. Each 
averaging period was assigned the temperature range using the average of the daily temperatures 
for the averaging period. Using Approach A, some or all of the days in the averaging period 
might be in different temperature ranges than the overall average. . Using Approach B, every day 
is in the same temperature range as the overall average. For each averaging period and 
temperature range, we calculated the mean, standard deviation, and variance of the period 
average AER and of its natural logarithm. Note than the geometric mean equals e raised to the 
power Mean log (AER) and the geometric standard deviation equals e raised to the power Std 
Dev log (AER). The results are shown in Tables E-1 (Approach  A) and E-2 (Approach B). 
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Table E-1. Distribution of AER averaged over K days and its logarithm. Groups defined by Approach A. 

Temperature 
(ºC) K Groups 

Mean 
AER 

Mean 
log(AER) 

Std 
Dev 
AER 

Std Dev 
log(AER) 

Variance 
AER 

Variance 
log(AER) 

<= 10 1 35 1.109 -0.066 0.741 0.568 0.549 0.322 
<= 10 2 30 1.149 -0.009 0.689 0.542 0.474 0.294 
<= 10 3 28 1.065 -0.088 0.663 0.546 0.440 0.298 
<= 10 4 28 1.081 -0.090 0.690 0.584 0.476 0.341 
<= 10 5 24 1.103 -0.082 0.754 0.598 0.568 0.358 
<= 10 6 24 1.098 -0.083 0.753 0.589 0.567 0.347 
<= 10 7 29 1.054 -0.109 0.704 0.556 0.496 0.309 
10-20 1 48 0.652 -0.659 0.417 0.791 0.174 0.625 
10-20 2 55 0.654 -0.598 0.411 0.607 0.169 0.368 
10-20 3 51 0.641 -0.622 0.416 0.603 0.173 0.363 
10-20 4 50 0.683 -0.564 0.440 0.619 0.194 0.384 
10-20 5 53 0.686 -0.546 0.419 0.596 0.175 0.355 
10-20 6 49 0.677 -0.533 0.379 0.544 0.144 0.296 
10-20 7 34 0.638 -0.593 0.343 0.555 0.118 0.308 
20-25 1 32 0.500 -1.005 0.528 0.760 0.279 0.577 
20-25 2 28 0.484 -0.972 0.509 0.623 0.259 0.388 
20-25 3 27 0.495 -0.933 0.491 0.604 0.241 0.365 
20-25 4 17 0.536 -0.905 0.623 0.652 0.389 0.425 
20-25 5 17 0.543 -0.905 0.672 0.649 0.452 0.421 
20-25 6 17 0.529 -0.899 0.608 0.617 0.370 0.381 
20-25 7 14 0.571 -0.889 0.745 0.683 0.555 0.466 
> 25 1 9 0.470 -1.058 0.423 0.857 0.179 0.734 
> 25 2 11 0.412 -1.123 0.314 0.742 0.098 0.551 
> 25 3 12 0.411 -1.036 0.243 0.582 0.059 0.339 
> 25 4 23 0.385 -1.044 0.176 0.429 0.031 0.184 
> 25 5 23 0.390 -1.028 0.175 0.425 0.031 0.181 
> 25 6 23 0.399 -1.010 0.193 0.435 0.037 0.189 
> 25 7 17 0.438 -0.950 0.248 0.506 0.061 0.256 

 
Using both approaches, Tables E-1 and E-2 show that the mean values for the AER and its 
logarithm are approximately constant for the same temperature range but different averaging 
periods. This is expected if the daily AER values all have the same statistical distribution, 
regardless of whether or not they are independent. More interesting is the observation that the 
standard deviations and variances are also approximately constant for the same temperature 
range but different averaging periods, except for the data at > 25 ºC where the standard 
deviations and variances tend to decrease as the length of the averaging period increases. If the 
daily AER values were statistically independent, then the variance of an average over K days is 
given by Var / K, where Var is the variance of a single daily AER value. Clearly this formula 
does not apply. Since the variance is approximately constant for different values of K in the same 
temperature range (except for the relatively limited data at > 25 ºC), this shows that the daily 
AER values are strongly correlated.  Of course the correlation is not perfect, since otherwise the 
AER for a given day would be identical to the AER for the next day, if the temperature range 
were the same, which did not occur.  
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Table E-2. Distribution of AER averaged over K days and its logarithm. Groups defined by Approach B. 

Temperature 
(ºC) K Groups 

Mean 
AER 

Mean 
log(AER) 

Std 
Dev 
AER 

Std Dev 
log(AER) 

Variance 
AER 

Variance 
log(AER) 

<= 10 1 62 1.125 -0.081 0.832 0.610 0.692 0.372 
<= 10 2 41 1.059 -0.063 0.595 0.481 0.355 0.231 
<= 10 3 32 1.104 -0.040 0.643 0.530 0.413 0.281 
<= 10 4 17 1.292 0.115 0.768 0.531 0.590 0.282 
<= 10 5 5 1.534 0.264 1.087 0.608 1.182 0.370 
10-20 1 109 0.778 -0.482 0.579 0.721 0.336 0.520 
10-20 2 81 0.702 -0.532 0.451 0.603 0.204 0.363 
10-20 3 63 0.684 -0.540 0.409 0.580 0.167 0.336 
10-20 4 27 0.650 -0.626 0.414 0.663 0.171 0.440 
10-20 5 22 0.629 -0.660 0.417 0.654 0.174 0.428 
10-20 6 12 0.614 -0.679 0.418 0.638 0.175 0.407 
10-20 7 6 0.720 -0.587 0.529 0.816 0.280 0.667 
20-25 1 107 0.514 -0.915 0.518 0.639 0.269 0.409 
20-25 2 63 0.511 -0.930 0.584 0.603 0.341 0.364 
20-25 3 23 0.577 -0.837 0.641 0.659 0.411 0.434 
20-25 4 3 1.308 -0.484 1.810 1.479 3.277 2.187 
> 25 1 54 0.488 -0.949 0.448 0.626 0.201 0.392 
> 25 2 32 0.486 -0.900 0.351 0.595 0.123 0.354 
> 25 3 23 0.427 -0.970 0.218 0.506 0.048 0.256 
> 25 4 12 0.401 -1.029 0.207 0.509 0.043 0.259 
> 25 5 12 0.410 -1.003 0.207 0.507 0.043 0.257 
> 25 6 6 0.341 -1.164 0.129 0.510 0.017 0.261 
> 25 7 6 0.346 -1.144 0.125 0.494 0.016 0.244 

 
 
These arguments suggest that, based on the RTP Panel study data, to a reasonable 
approximation, the distribution of an AER measurement does not depend upon the length of the 
averaging period for the measurement, although it does depend upon the average temperature. 
This supports the methodology used in the Cohen, Mallya, and Rosenbaum, 2005, analyses that 
did not take into account the length of the averaging period. 
 
The above argument suggests that the assumption that daily AER values are statistically 
independent is not justified. Statistical modeling of the correlation structure between consecutive 
daily AER values is not easy because of the problem of accounting for temperature effects, since 
temperatures vary from day to day. In the next section we present some statistical models of the 
daily AER values from the RTP Panel Study.  
 
Statistical models of AER auto-correlations from the RTP Panel Study 
     
We used the MIXED procedure from SAS to fit several mixed models with fixed effects and 
random effects to the daily values of AER and log(AER). The fixed effects are the population 
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average values of AER or log(AER), and are assumed to depend upon the temperature range. 
The random effects have expected values of zero and define the correlations between pairs of 
measurements from the same Group, where the Groups are defined either using Approach A or 
Approach B above. As described above, a Group is a period of up to 14 consecutive days of 
measurements at the same house. For these mixed model analyses we included periods with one 
or more missing days. For all the statistical models, we assume that AER values  in different 
Groups are statistically independent, which implies that data from different houses or in different 
seasons are independent. 
 
The main statistical model for AER was defined as follows: 
 

AER =  Mean(Temp Range)  + A(Group, Temp Range) 
  + B(Group, Day Number) + Error(Group, Day Number) 

 
Mean(Temp Range) is the fixed effects term. There is a different overall mean value for each of 
the four temperature ranges. 
 
A(Group, Temp Range) is the random effect of temperature. For each Group, four error terms are 
independently drawn from four different normal distributions, one for each temperature range. 
These normal distributions all have mean zero, but may have different variances. Because of this 
term, there is a correlation between AER values measured in the same Group of days for a pair 
of days in the same temperature range. 
 
B(Group, Day Number) is the repeated effects term. The day number is defined so that the first 
day of a Group has day number 1, the next calendar day has day number 2, and so on. In some 
cases AER’s were missing for some of the day numbers.  B(Group, Day Number) is a normally 
distributed  error term for each AER measurement. The expected value (i.e., the mean) is zero. 
The variance is V. The covariance between B(Group g, day i) and B(Group h, day j) is zero for 
days in different Groups g and h, and equals V × exp(d × |i-j|) for days in the same Group. V and 
d are fitted parameters. This is a first order auto-regressive model. Because of this term, there is a 
correlation between AER values measured in the same Group of days, and the correlation 
decreases if the days are further apart.  
 
Finally, Error(Group, Day Number) is the Residual Error term. There is one such error term for 
every AER measurement, and all these terms are independently drawn from the same normal 
distribution, with mean 0 and variance W. 
 
We can summarize this rather complicated model as follows. The AER measurements are 
uncorrelated if they are from different Groups. If they are in the same Group, they have a 
correlation that decreases with the day difference, and they have an additional correlation if they 
are in the same temperature range. 
 
Probably the most interesting parameter for these models is the parameter d, which defines the 
strength of the auto-correlation between pairs of days. This parameter d lies between -1 (perfect 
negative correlation) and +1 (perfect positive correlation) although values exactly equal to +1 or 
-1 are impossible for a stationary model. Negative values of d would be unusual since they 
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would imply a tendency for a high AER day to be followed by a low AER day, and vice versa. 
The case d=0 is for no auto-correlation. 
 
Table E-3 gives the fitted values of d for various versions of the model. The variants considered 
were: 
 

• model AER or log(AER)  
• include or exclude the term A(Group, Temp Range) (the “random” statement in the SAS 

code) 
• use Approach A or Approach B to define the Groups 

 
Since Approach B forces the temperature ranges to be the same for very day in a Group, the  
random temperature effect term is difficult to distinguish from the other terms. Therefore  this 
term was not fitted using Approach B. 
 
Table E-3. Autoregressive parameter d for various statistical models for the RTP Panel 
Study AERs. 

Dependent variable Include A(Group, 
Temp Range)? Approach d 

AER Yes A 0.80 
AER No A 0.82 
AER No B 0.80 
Log(AER) Yes A 0.87 
Log(AER) No A 0.87 
Log(AER) No B 0.85 
      
In all cases, the parameter d is 0.8 or above, showing the very strong correlations between AER 
measurements on consecutive or almost consecutive days.  
 
Impact of accounting for daily average AER auto-correlation 
 
In the current version of the APEX model, there are several options for stratification of time 
periods with respect to AER distributions, and for when to re-sample from a distribution for a 
given stratum. The options selected for this current set of simulations resulted in a uniform AER 
for each 24-hour period and re-sampling of the 24-hour AER for each simulated day. This re-
sampling for each simulated day implies that the simulated AERs on consecutive days in the 
same microenvironment are statistically independent. Although we have not identified sufficient 
data to test the assumption of uniform AERs throughout a 24-hour period, the analyses described 
in this memorandum suggest that AERs on consecutive days are highly correlated.  
 
Therefore, in order to determine if bias was introduced into the APEX estimates with respect to 
either the magnitudes or variability of exposure concentrations by implicitly assuming 
uncorrelated air exchange rates, we re-ran the 2002 base case simulations using the option to not 
re-sample the AERs. For this option APEX selects a single AER for each 
microenvironment/stratum combination and uses it throughout the simulation. 
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The comparison of the two scenarios indicates little difference in APEX predictions, probably 
because the AERs pertain only to indoor microenvironments and for the base cases most 
exposure to elevated concentrations occurs in the “other outdoors” microenvironment. Figures E-
1 and E-2 below present the comparison for exceedances of 8-hour average concentration during 
moderate exertion for active person in Boston and Houston, respectively. 

 
Figure E-1 

Air Exchange Rate Resampling Sensitivity:
Days/Person with Exceedances of 

 8-Hour Average Exposure Concentration During Moderate Exertion
--Active Persons, Boston, 2002--

0

50

100

150

200

0 20 40 60 80 100

Cumulative Percentile

D
ay

s/
Pe

rs
on

base-.01
rsoff - .01
base - .02
rsoff - .02
base -.03
rsoff - .03
base - .04
rsoff - .04
base - .05
rsoff - .05

 
Figure E-2 

Air Exchange Rate Resampling Sensitivity:
Days/Person with Exceedances of 

 8-Hour Average Exposure Concentration During Moderate Exertion
--Active Persons, Houston, 2002--
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M E M O R A N D U M  

 
To: John Langstaff, EPA OAQPS 
From: Jonathan Cohen, Arlene Rosenbaum, ICF International 
Date: June 6, 2006 
Re: Prevalence of residential air conditioners and the effects of swamp coolers  
  
 
This memorandum describes our analysis of the prevalence of air conditioners in the 12 cities 
being modeled using the APEX. As detailed in the memorandum by Cohen, Mallya and 
Rosenbaum, 200510 (Appendix A of this report) we have proposed to use the APEX model to 
simulate the residential air exchange rate (AER) using different log-normal distributions for each 
combination of outside temperature range and the air conditioner type, defined as the presence or 
absence of an air conditioner (central or room). For each modeled city, the presence or absence 
of an air conditioner is simulated randomly using the probability that a residence has an air 
conditioner, which is the air conditioner prevalence. Our proposed approach used city-specific 
data from the American Housing Survey of 2003. In this memorandum we present uncertainty 
estimates in the form of confidence intervals for the air conditioner prevalence. We compare 
these with confidence intervals developed from the Energy Information Administration’s 
Residential Energy Consumption Survey of 2001. 
 
Some residences use evaporative coolers, also known as “swamp” coolers, for cooling. Although 
both the housing surveys specifically exclude swamp coolers from their definitions of an air 
conditioner, it is plausible that the AER distributions might also depend upon the presence of a 
swamp cooler. To evaluate this issue, we also present a comparison of the AER distributions 
with and without swamp coolers using the available data from three of the AER studies.   
 
American Housing Survey air conditioner prevalence 
 
Data from the American Housing Survey for 2003, a continuous Census Bureau survey of 
selected cities,  (http://www.census.gov/hhes/www/housing/ahs/ahs.html) was used to estimate 
the air conditioner prevalence in the memorandum by Cohen, Mallya, and Rosenbaum, 2005 
(Appendix A of this report). The survey questions ask whether the housing unit has central and 
room air conditioners, central air conditioners only, room air conditioners only, or no air 
conditioners. The following definition was used to define air conditioning. Note that evaporative 
or “swamp” coolers are specifically excluded.  
 
                                                 
10 Cohen, J., H. Mallya, and A. Rosenbaum. 2005. Memorandum to John Langstaff. EPA 68D01052, 
Work Assignment 3-08. Analysis of Air Exchange Rate Data. September 30, 2005. 
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“Air conditioning. Air conditioning is defined as the cooling of air by a refrigeration unit; 
excluded are evaporative coolers, fans, or blowers that are not connected to a 
refrigeration unit. A room air-conditioning unit is an individual air conditioner that is 
installed in a window or an outside wall and generally intended to cool one room, 
although it may sometimes be used to cool several rooms. A central system is a central 
installation that air conditions the entire housing unit or major portions of it. In an 
apartment building, a central system may cool all apartments in the building; each 
apartment may have its own central system; or there may be several systems, each 
providing central air conditioning for a group of apartments. A central installation with 
individual room controls is a central air-conditioning system.11”  

Table F-1 shows the prevalence estimates calculated using the data and survey weights from 
the American Housing Survey, together with 95 % confidence intervals. The confidence 
intervals were computed using the formulas provided in the “Source and Accuracy Statement 
for the 2003 AHS-N Data Chart” 
(http://www.census.gov/hhes/www/housing/ahs/03dtchrt/source.html):     
 

)(Error  Standard96.1  )( Interval Confidence

,13850  )(Error  Standard

PPP
N

P) P (P

×±=

−
=  

where P is the estimated percentage and N is the estimated total number of housing units. 

Table F-1. Prevalence estimates from the American Housing Survey with 95 % Confidence 
Intervals. 

AHS Survey Percentage 
(A/Cs) 

Housing Units Std 
Error 

Lower 
Bound 

Upper 
Bound 

Atlanta, 2003 97.01 797,687 1.18 94.69 99.33 

Boston, 2003 85.23 1,056,874 2.14 81.03 89.43 

Chicago, 2003 87.09 2,253,540 1.39 84.37 89.81 

Cleveland, 2003 74.64 637,081 3.38 68.01 81.27 

Detroit, 2003 81.41 1,877,178 1.76 77.96 84.86 

Houston, 2003 98.7 1,106,268 0.67 97.39 100.01 

Los Angeles, 2003 55.05 3,296,819 1.70 51.72 58.38 

New York, 2003 81.57 3,575,019 1.27 79.08 84.06 

Philadelphia, 2003 90.61 1,943,492 1.30 88.07 93.15 

Sacramento, 2003 94.63 524,252 1.93 90.84 98.42 

St. Louis, 2003 95.53 592,086 1.67 92.26 98.80 

Washington DC, 2003 96.47 1,305,811 1.00 94.51 98.43 

 

                                                 
11 Codebook for the American Housing Survey, Public Use File: 1997 and later. Version 1.77. December 
2004. 
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Residential Energy Consumption Survey air conditioner prevalence 

The Energy Information Administration’s Residential Energy Consumption Survey of 2001 
provides estimates of air conditioner prevalence for four states, nine Census Divisions and four 
Census Regions. Summary data were obtained from the website 
http://www.eia.doe.gov/emeu/recs/recs2001_hc/2001tblhp.html using the “Appliances” tables 
HC5-7b,  HC5-9b, HC5-10b, HC5-11b, and HC5-12b. This survey uses the following definition 
of air conditioning (see http://www.eia.doe.gov/glossary/glossary_a.htm):   

“Air conditioning: Cooling and dehumidifying the air in an enclosed space by use of a 
refrigeration unit powered by electricity or natural gas. Note: Fans, blowers, and evaporative 
cooling systems ("swamp coolers") that are not connected to a refrigeration unit are excluded.”  

Note again that evaporative or “swamp” coolers are specifically excluded. 

The relevant data extracted from the “Appliances” tables are presented in Table F-2. The RECS 
summary tables provide separate prevalence estimates for the households that have air 
conditioners and for the households that use their air conditioners. The estimates include the 
small number of households where the fuel for central air-conditioning equipment was 
something other than electricity.  

 

Table F-2. Prevalence estimates from RECS 2001. 

Has A/C Uses A/C Area (US, State, 
Census Division, 
or Census 
Region) 

Prevalence 
(%)  

Row RSE Factor 
(Has) 

Column RSE Factor 
(Has or Uses) 

Prevalence 
(%) 

Row RSE 
Factor (Uses) 

US 77.5 2.4 0.4 75.5 2.6 
NY 68.6 2.4 1.2 66.5 2.6 
CA 48.3 2.4 1.1 41.8 2.6 
TX 96.7 2.4 1.4 95.9 2.6 
FL 98.0 2.4 1.3 95.7 2.6 
North East 71.6 3.3 1.0 70.2 3.4 
Middle Atlantic 76.4 3.3 1.3 74.5 3.4 
New England 58.4 3.3 1.6 58.4 3.4 
Mid West 83.6 2.2 1.0 82.3 2.3 
East North Central 79.8 2.2 1.2 78.5 2.3 

West North 
Central 

92.4 2.2 1.5 91.1 2.3 

South 95.7 1.4 0.8 94.6 1.6 
South Atlantic 95.0 1.4 1.1 93.7 1.6 
East South Central 94.3 1.4 1.4 93.5 1.6 

West South 
Central 

97.5 1.4 1.5 97.0 1.6 

West 45.7 7.1 1.0 41.0 7.2 
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Table F-2. Prevalence estimates from RECS 2001. 

Has A/C Uses A/C Area (US, State, 
Census Division, 
or Census 
Region) 

Prevalence 
(%)  

Row RSE Factor 
(Has) 

Column RSE Factor 
(Has or Uses) 

Prevalence 
(%) 

Row RSE 
Factor (Uses) 

Mountain 50.9 7.1 1.7 47.7 7.2 
Pacific 43.6 7.1 1.2 38.3 7.2 

 

The row and column RSE factors are used to calculate 95 % confidence intervals, as follows: 

 

)(Error  Standard96.1  )( Interval Confidence
,100/  RSE  )(Error  Standard

Factor RSEColumn  Factor  RSE Row  (%)Error  Standard Relative  RSE

PPP
PP

×±=
×=

×==
 

To apply these results, Table F-3 gives the Census Divisions and Regions for the 12 modeled 
cities. These Census groupings are defined as groups of States, together with Washington DC 
included in the South Atlantic Division. 

 

 

Table F-3. Census Divisions and Regions for 12 cities. 
City Census Division Census 

Region 
Atlanta South Atlantic South 

Boston New England Northeast 

Chicago East North Central Midwest 

Cleveland East North Central Midwest 

Detroit East North Central Midwest 

Houston West South Central South 

Los Angeles Pacific West 

New York Middle Atlantic Northeast 

Philadelphia Middle Atlantic Northeast 

Sacramento Pacific West 

St. Louis West North Central Midwest 

Washington 
DC 

South Atlantic South 
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The RECS prevalence estimates and confidence intervals are presented along with the AHS 
estimates in Tables F-4 and F-5. Table F-4 uses the RECS estimates of households owning air 
conditioners. Table F-5 uses the slightly lower RECS estimates of households using air 
conditioners. The agreement depends upon the city. For Boston and Sacramento, the two 
surveys give extremely different results, the AHS estimates being much higher. Good 
agreements between the AHS and RECS confidence intervals  is found for Atlanta, Cleveland, 
Detroit, Houston, and Washington DC. Poor agreement (but not as bad as for Boston and 
Sacramento) with the AHS for either the Census Region or Census Division estimates is found 
for Chicago, Los Angeles, New York, Philadelphia, and St. Louis. 

Since the AHS survey results are city-specific and were based on a more recent survey, we 
recommend using the AHS prevalence estimates for the APEX modeling. 

Air conditioner prevalence versus use. 

The approach taken in the Cohen, Mallya, and Rosenbaum, 2005, memorandum (Appendix A of 
this report) was to stratify the data based on the ownership of an air conditioner. It is very 
plausible that the AER is more directly related to the actual use of an air conditioner. The Avol 
and RIOPA studies provided data on the duration of air conditioner use during the AER 
measurement. However, in order to directly include air conditioner usage in the AER 
distributions for the APEX model, it would be necessary to know the residential probability of 
AER usage for each city. The AHS survey did not ask about air conditioner use. The RECS 
survey asked the following question about central air conditioner usage and also asked the 
same question about room or wall air conditioner usage:  

“USECENAC Please look at Exhibit F-6. Which of the statements shown best describes the way your 
household (if before July 1, insert will use; if between July 1 and August 30, insert uses; if after 
August 30, insert used) the central air-conditioning system during the summer of 2001? 
 
Not used at all ....................................................................... 0 
Turned on only a few days or nights when really needed ..... 1 
Turned on quite a bit ............................................................. 2 
Turned on just about all summer .......................................... 3 
Other ..................................................................................... 5” 

It is not clear exactly how these answers was used to define “Air Conditioner Not Used” for the 
summary tables. Furthermore, the RECS data was not city-specific and was an older survey 
than the AHS. 

We do not recommend directly modeling the AER data as a function of air conditioner use 
instead of air conditioner ownership in view of the limited data on the prevalence of air 
conditioner use and the limited AER data where air conditioner use is also recorded. 



 

  

Table F-4. AHS and RECS air conditioner prevalence estimates. RECS prevalence for households owning air conditioners.*  
City AHS % AHS Lower AHS Upper Division % Division Lower Division Upper Region % Region Lower Region Upper 

Atlanta 97.01 94.69 99.33 95.00 92.13 97.87 95.70 93.60 97.80 

Boston 85.23 81.03 89.43 58.40 52.36 64.44 71.60 66.97 76.23 

Chicago 87.09 84.37 89.81 79.80 75.67 83.93 83.60 80.00 87.20 

Cleveland 74.64 68.01 81.27 79.80 75.67 83.93 83.60 80.00 87.20 

Detroit 81.41 77.96 84.86 79.80 75.67 83.93 83.60 80.00 87.20 

Houston 98.70 97.39 100.01 97.50 93.49 101.51 95.70 93.60 97.80 

Los 
Angeles 55.05 51.72 58.38 43.60 36.32 50.88 45.70 39.34 

52.06 

New York 81.57 79.08 84.06 76.40 69.98 82.82 71.60 66.97 76.23 

Philadelphia 90.61 88.07 93.15 76.40 69.98 82.82 71.60 66.97 76.23 

Sacramento 94.63 90.84 98.42 43.60 36.32 50.88 45.70 39.34 52.06 

St. Louis 95.53 92.26 98.80 92.40 86.42 98.38 83.60 80.00 87.20 

Washington 
DC 96.47 94.51 98.43 95.00 92.13 97.87 95.70 93.60 

97.80 

*AHS % = AHS estimated prevalence. [AHS Lower, AHS Upper] = 95 % confidence interval for AHS prevalence. Division % = RECS estimated 
prevalence based on the Census Division. [Division Lower, Division Upper] = 95 % confidence interval for RECS prevalence based on Census 
Division. Region % = RECS estimated prevalence based on the Census Region. [Region Lower, Region Upper] = 95 % confidence interval for 
RECS prevalence based on Census Region. 

Table F-5. AHS and RECS air conditioner prevalence estimates. RECS prevalence for households using air conditioners.*  
City AHS % AHS Lower AHS Upper Division % Division Lower Division Upper Region % Region Lower Region Upper 

Atlanta 97.01 94.69 99.33 93.70 90.47 96.93 94.60 92.23 96.97 
Boston 85.23 81.03 89.43 58.40 52.17 64.63 70.20 65.52 74.88 
Chicago 87.09 84.37 89.81 78.50 74.25 82.75 82.30 78.59 86.01 
Cleveland 74.64 68.01 81.27 78.50 74.25 82.75 82.30 78.59 86.01 
Detroit 81.41 77.96 84.86 78.50 74.25 82.75 82.30 78.59 86.01 
Houston 98.70 97.39 100.01 97.00 92.44 101.56 94.60 92.23 96.97 
Los 
Angeles 55.05 51.72 58.38 38.30 31.81 44.79 41.00 35.21 46.79 
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Table F-5. AHS and RECS air conditioner prevalence estimates. RECS prevalence for households using air conditioners.*  
City AHS % AHS Lower AHS Upper Division % Division Lower Division Upper Region % Region Lower Region Upper 

New York 81.57 79.08 84.06 74.50 68.05 80.95 70.20 65.52 74.88 
Philadelphia 90.61 88.07 93.15 74.50 68.05 80.95 70.20 65.52 74.88 
Sacramento 94.63 90.84 98.42 38.30 31.81 44.79 41.00 35.21 46.79 
St. Louis 95.53 92.26 98.80 91.10 84.94 97.26 82.30 78.59 86.01 
Washington 
DC 96.47 94.51 98.43 93.70 90.47 96.93 94.60 92.23 96.97 

*AHS % = AHS estimated prevalence. [AHS Lower, AHS Upper] = 95 % confidence interval for AHS prevalence. Division % = RECS estimated 
prevalence based on the Census Division. [Division Lower, Division Upper] = 95 % confidence interval for RECS prevalence based on Census 
Division. Region % = RECS estimated prevalence based on the Census Region. [Region Lower, Region Upper] = 95 % confidence interval for 
RECS prevalence based on Census Region.
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Evaporative or “Swamp” Coolers 

As discussed above, neither the AHS not the RECS provide estimates of the prevalence of 
swamp coolers, which were specifically excluded from the definition of air conditioning. This 
means that an AER model stratified by the presence or absence of swamp coolers is not 
feasible, unless another survey with swamp cooler prevalence estimates becomes available. 
Nevertheless, we used the data from the RIOPA (CA, NJ, and TX), Avol (Southern CA), and 
Wilson 1991 (CA)  studies to evaluate the effects of swamp coolers on the AER. The results 
generally showed no statistically significant differences between the AER distributions for 
residences with or without swamp coolers, after stratifying by state, city, study, air conditioner 
type (presence or absence), and temperature range. 

First we calculated summary statistics for the AERs for each combination of State (including 
All), city (including All), study (including All), A/C ownership (presence or absence of a central or 
room air conditioner), temperature range (<= 10. 10-20, 20-30, > 30 ºC), and swamp cooler 
ownership. The summary statistics included the average, standard deviation, variance, 
minimum, maximum, and various percentile values. Summary statistics of the natural logarithms 
of the AERs were also calculated.  

Then we compared the distributions with and without swamp coolers. For each stratum, defined 
by a combination of State, city, study, A/C ownership, and temperature range, an F-Statistic was 
calculated to compare the mean values between groups using a one way analysis of variance 
(ANOVA). This test assumes that the AER or log(AER) values are normally distributed with a 
mean that may depend upon swamp cooler ownership and a constant variance.. 

The Kruskal-Wallis Statistics were also computed as a non-parametric test for equal group 
medians. It is equivalent to the more familiar Wilcoxon test, since there are only two groups 
compared (presence or absence of swamp coolers). The analysis is valid if the AER minus the 
group median has the same distribution for each group. (The test is also consistent under 
weaker assumptions against more general alternatives). Since the logarithm is a strictly 
increasing function and the test is non-parametric, the Kruskal-Wallis tests give identical results 
for AER and Log (AER).  

In addition the Mood Statistics were computed as a non-parametric test to the scale statistics for 
each pair of groups. The scale statistic measures variation about the central value, which is a 
non-parametric generalization of the standard deviation. Specifically, suppose there is a total of 
N AER or log(AER) values, summing across both groups. These N values are ranked from 1 to 
N, and the j’th highest value is given a score of  {j - (N+1)/2}2.  The Mood statistic uses a one 
way ANOVA statistic to compare the total scores for each group. Since the logarithm is a strictly 
increasing function and the test is non-parametric, the Mood tests give identical results for AER 
and Log (AER). 

For each statistic (i.e., F, Kruskal-Wallis, Mood) a P-value was determined. P-values above 0.05 
indicate cases where  the two group means are not statistically significantly different at the 5 
percent level. Most of the p-values were above 0.05, indicating no significant differences. (There 
are a few  anomalous significant differences for very small sample sizes when the estimated 
variances are zero). This appears to justify treating a residence with a swamp cooler but no A/C 
the same as a residence without a swamp cooler and no A/C; and  treating a residence with a 
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swamp cooler and with A/C the same as a residence without a swamp cooler but with A/C. In 
other words, this analysis shows that there is no improvement in the statistical AER model if we 
also stratify by swamp cooler presence or absence, given that we already stratify by city, air 
conditioner presence or absence, and temperature range.  
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DRAFT MEMORANDUM 

 
To: John Langstaff 
From: Jonathan Cohen, Arlene Rosenbaum 
Date: September 30, 2005 

Re: EPA 68D01052, Work Assignment 3-08. Analysis of NHIS Asthma Prevalence 
Data 

  
 
 
 
This memorandum describes our analysis of children’s asthma prevalence data from the National 
Health Interview Survey (NHIS) for 2003. Asthma prevalence rates for children aged 0 to 17 
years were calculated for each age, gender, and region. The regions defined by NHIS are 
“Midwest,” “Northeast,” “South,” and “West.” For this project, asthma prevalence was defined 
as the probability of a Yes response to the question CASHMEV: “Ever been told that … had 
asthma?” among those that responded Yes or No to this question. The responses were weighted 
to take into account the complex survey design of the NHIS survey. Standard errors and 
confidence intervals for the prevalence were calculated using a logistic model, taking into 
account the survey design.  Prevalence curves showing the variation of asthma prevalence 
against age for a given gender and region were plotted. A scatterplot smoothing technique using 
the LOESS smoother was applied to smooth the prevalence curves and compute the standard 
errors and confidence intervals for the smoothed prevalence estimates. Logistic analysis of the 
prevalence curves shows statistically significant differences in prevalence by gender and by 
region. Therefore we did not combine the prevalence rates for different genders or regions. 
 
Logistic Models 
 
NHIS survey data for 2003 were provided by EPA. One obvious approach to calculate 
prevalence rates and their uncertainties for a given gender, region, and age is to calculate the 
proportion of Yes responses among the Yes and No responses for that demographic group, 
weighting each response by the survey weight. Although that approach was initially used, two 
problems are that the distributions of the estimated prevalence rates are not well approximated by 
normal distributions, and that the estimated confidence intervals based on the normal 
approximation often extend outside the [0, 1] interval. A better approach is to use a logistic 
transformation and fit a model of the form: 
 

Prob (asthma) = exp(beta) / (1 + exp(beta) ), 
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where beta may depend on the explanatory variables for age, gender, or region. This is 
equivalent to the model: 
 
 Beta = logit {prob (asthma) } = log { prob (asthma) / [1 – prob (asthma)] }. 
 
The distribution of the estimated values of beta is more closely approximated by a normal 
distribution than the distribution of the corresponding estimates of prob (asthma).  By applying a 
logit transformation to the confidence intervals for beta, the corresponding confidence intervals 
for prob (asthma) will always be inside [0, 1].  Another advantage of the logistic modeling is that 
it can be used to compare alternative statistical models, such as models where the prevalence 
probability depends upon age, region, and gender, or on age and region but not gender. 
 
A variety of logistic models for asthma prevalence were fit and compared, where the transformed 
probability variable beta is a given function of age, gender, and region. SAS’s 
SURVEYLOGISTIC procedure was used to fit the logistic models, taking into account the NHIS 
survey weights and survey design (stratification and clustering). 
 
The following Table G-1 lists the models fitted and their log-likelihood goodness-of-fit 
measures. 16 models were fitted. The Strata column lists the four possible stratifications: no 
stratification, by gender, by region, by region and gender. For example, “4. region, gender” 
means that separate prevalence estimates were made for each combination of region and gender. 
As another example, “2. gender” means that separate prevalence estimates were made for each 
gender, so that for each gender, the prevalence is assumed to be the same for each region. The 
prevalence estimates are independently calculated for each stratum. 
 
Table G-1. Alternative logistic models for asthma prevalence. 
 

Model Description Strata - 2 Log Likelihood DF

1 1. logit(prob) = linear in age 1. none 54168194.62 2

2 1. logit(prob) = linear in age 2. gender 53974657.17 4

3 1. logit(prob) = linear in age 3. region 54048602.57 8

4 1. logit(prob) = linear in age 4. region, gender 53837594.97 16

5 2. logit(prob) = quadratic in age 1. none 53958021.20 3

6 2. logit(prob) = quadratic in age 2. gender 53758240.99 6

7 2. logit(prob) = quadratic in age 3. region 53818198.13 12

8 2. logit(prob) = quadratic in age 4. region, gender 53593569.84 24

9 3. logit(prob) = cubic in age 1. none 53849072.76 4

10 3. logit(prob) = cubic in age 2. gender 53639181.24 8

11 3. logit(prob) = cubic in age 3. region 53694710.66 16

12 3. logit(prob) = cubic in age 4. region, gender 53441122.98 32
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Model Description Strata - 2 Log Likelihood DF

13 4. logit(prob) = f(age) 1. none 53610093.48 18

14 4. logit(prob) = f(age) 2. gender 53226610.02 36

15 4. logit(prob) = f(age) 3. region 53099749.33 72

16 4. logit(prob) = f(age) 4. region, gender 52380000.19 144
 
The Description column describes how beta depends upon the age: 
 
 Linear in age:  Beta = α + β × age, where α and β vary with the strata. 

Quadratic in age:   Beta = α + β × age + γ × age2  where α β and γ vary with the 
strata. 

Cubic in age:   Beta = α + β × age + γ × age2 + δ × age3 where α β, γ, and δ vary 
with the strata. 

f(age) Beta = arbitrary function of age, with different functions for 
different strata 

 
The category f(age) is equivalent to making age one of the stratification variables, and is also 
equivalent to making beta a polynomial of degree 16 in age (since the maximum age for children 
is 17), with coefficients that may vary with the strata. 
 
The fitted models are listed in order of complexity, where the simplest model (1) is an 
unstratified linear model in age and the most complex model (16) has a prevalence that is an 
arbitrary function of age, gender, and region. Model 16 is equivalent to calculating independent 
prevalence estimates for each of the 144 combinations of age, gender, and region.     
 
Table G-1 also includes the -2 Log Likelihood, a goodness-of-fit measure, and the degrees of 
freedom, DF, which is the total number of estimated parameters. Two models can be compared 
using their -2 Log Likelihood values; lower values are preferred. If the first model is a special 
case of the second model, then the approximate statistical significance of the first model is 
estimated by comparing the difference in the -2 Log Likelihood values with a chi-squared 
random variable with r degrees of freedom, where r is the difference in the DF. This is a 
likelihood ratio test. For all pairs of models from Table G-1, all the differences are at least 
70,000 and the likelihood ratios are all extremely statistically significant at levels well below 5 
percent. Therefore the model 16 is clearly preferred and was used to model the prevalences. 
 
The SURVEYLOGISTIC model predictions are tabulated in Table G-2 below and plotted in 
Figures 1 and 3 below. Also shown in Table G-2 and in Figures 2 and 4 are results for smoothed 
curves calculated using a LOESS scatterplot smoother, as discussed below.  
 
The SURVEYLOGISTIC procedure produces estimates of the beta values and their 95 % 
confidence intervals for each combination of age, region, and gender. Applying the inverse logit 
transformation, 
 

Prob (asthma) = exp( beta) / (1 + exp(beta) ), 
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converted the beta values and 95 % confidence intervals into predictions and 95 % confidence 
intervals for the prevalence, as shown in Table G-2 and Figures 1 and 3. The standard error for 
the prevalence was estimated as 
 

Std Error {Prob (asthma)} = Std Error (beta) × exp(- beta) / (1 + exp(beta) )2, 
 
which follows from the delta method (a first order Taylor series approximation). 
 
Loess Smoother 
 
The estimated prevalence curves shows that the prevalence is not a smooth function of age. The 
linear, quadratic, and cubic functions of age modeled by SURVEYLOGISTIC were one strategy 
for smoothing the curves, but they did not provide a good fit to the data. One reason for this 
might be due to the attempt to fit a global regression curve to all the age groups, which means 
that the predictions for age A are affected by data for very different ages. We instead chose to 
use a local regression approach that separately fits a regression curve to each age A and its 
neighboring ages, giving a regression weight of 1 to the age A, and lower weights to the 
neighboring ages using a tri-weight function: 
 
 Weight = {1 – [ |age – A| / q ] 3},  where | age – A| <= q. 
 
The parameter q defines the number of points in the neighborhood of the age a. Instead of calling 
q the smoothing parameter, SAS defines the smoothing parameter as the proportion of points in 
each neighborhood. We fitted a quadratic function of age to each age neighborhood, separately 
for each gender and region combination. We fitted these local regression curves to the beta 
values, the logits of the asthma prevalence estimates, and then converted them back to estimated 
prevalence rates by applying the inverse logit function exp(beta) / (1 + exp(beta) ). In addition to 
the tri-weight variable, each beta value was assigned a weight of  
1 / [std error (beta)]2, to account for their uncertainties. 
 
The SAS LOESS procedure was applied to estimate smoothed curves for beta, the logit of the 
prevalence, as a function of age, separately for each region and gender. We fitted curves using 
the choices 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 for the smoothing parameter in an effort to 
determine the optimum choice based on various regression diagnostics.12,13  

                                                 
12 Two outlier cases were adjusted to avoid wild variations in the “smoothed” curves: For the West region, males, 
age 0, there were 97 children surveyed that all gave No answers to the asthma question, leading to an estimated 
value of -15.2029 for beta with a standard error of 0.14. For the Northeast region, females, age 0, there were 29 
children surveyed that all gave No answers to the asthma question, leading to an estimated value of -15.2029 for 
beta with a standard error of 0.19. In both cases the raw probability of asthma equals zero, so the corresponding 
estimated beta would be negative infinity, but SAS’s software gives -15.2029 instead. To reduce the impact of these 
outlier cases, we replaced their estimated standard errors by 4, which is approximately four times the maximum 
standard error for all other region, gender, and age combinations. 
 
13 With only 18 points, a smoothing parameter of 0.2 cannot be used because the weight function assigns zero 
weights to all ages except age A, and a quadratic model cannot be uniquely fitted to a single value. A smoothing 
parameter of 0.3 also cannot be used because that choice assigns a neighborhood of 5 points only (0.3 × 18 = 5, 
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Quantities predicted in these smoothing parameter tests were the predicted value, standard error, 
confidence interval lower bound and confidence interval upper bound for the betas, and the 
corresponding values for the prevalence rates. 
 
The polygonal curves joining values for different ages show the predicted values with vertical 
lines indicating the confidence intervals in Figures 3 and 4 for smoothing parameters 0 (i.e., no 
smoothing) and 0.5, respectively. Note that the confidence intervals are not symmetric about the 
predicted values because of the inverse logit transformation.    
 
Note that in our application of LOESS, we used weights of 1 / [std error (beta)] 2, so that σ2 = 1 
for this application. The LOESS procedure estimates σ2 from the weighted sum of squares. Since 
in our application we assume σ2 = 1, we multiplied the estimated standard errors by 1 /  
estimated σ, and adjusted the widths of the confidence intervals by the same factor. 
 
Additionally, because the true value of σ equals 1, the best choices of smoothing parameter 
should give residual standard errors close to one. Using this criterion the best choice varies with 
gender and region between smoothing parameters 0.4 (3 cases), 0.5 (2 cases), 0.6 (1 case), and 
0.7 (1 case). 
 
 As a further regression diagnostic the residual errors from the LOESS model were divided by 
std error (beta) to make their variances approximately constant. These approximately studentized 
residuals, ‘student,’ should be approximately normally distributed with a mean of zero and a 
variance of σ2 = 1. To test this assumption,  normal probability plots of the residuals were 
created for each smoothing parameter, combining all the studentized residuals across genders, 
regions, and ages.  The plots for smoothing parameters seem to be equally straight for each 
smoothing parameter. 
 
The final regression diagnostic is a plot of the studentized residuals against the smoothed beta 
values.  Ideally there should be no obvious pattern and an average studentized residual close to 
zero. The plots indeed showed no unusual patterns, and the results for smoothing parameters 0.5 
and 0.6 seem to showed a fitted LOESS close to the studentized residual equals zero line.     
 
The regression diagnostics suggested the choice of smoothing parameter as 0.4 or 0.5. Normal 
probability plots did not suggest any preferred choices. The plots of residuals against smoothed 
predictions suggest the choices of 0.5 or 0.6. We therefore chose the final value of 0.5. These 
predictions, standard errors, and confidence intervals are presented in tabular form below as 
Table G-2.  
 
 

                                                                                                                                                             
rounded down), of which the two outside ages have assigned weight zero, making the local quadratic model fit 
exactly at every point except for the end points (ages 0, 1, 16 and 17). Usually one uses a smoothing parameter 
below one so that not all the data are used for the local regression at a given x value.  
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region=Midwest

gender Female Male

prev

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=Northeast

gender Female Male

prev

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 



 

G-7 

region=South

gender Female Male

prev

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=West

gender Female Male

prev

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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region=Midwest

gender Female Male

predprob

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=Northeast

gender Female Male

predprob

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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region=South

gender Female Male

predprob

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=West

gender Female Male

predprob

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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region=Midwest

gender Female Male

prev

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=Northeast

gender Female Male

prev

0.0

0.1

0.2

0.3

0.4

0.5

0.6

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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region=South

gender Female Male

prev

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=West

gender Female Male

prev

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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region=Midwest

gender Female Male

prev

0.00

0.05

0.10

0.15

0.20

0.25
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0.35

0.40

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=Northeast

gender Female Male

prev

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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region=South

gender Female Male

prev

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

age

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 
 
 

region=West

gender Female Male

prev

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

age
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Table G-2. Raw and smoothed prevalence rates, with confidence intervals, by region, 
gender, and age.  

 
 

Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

1 Midwest Female 0 No 0.04161 0.02965 0.01001 0.15717

2 Midwest Female 0 Yes 0.06956 0.03574 0.02143 0.20330

3 Midwest Female 1 No 0.10790 0.04254 0.04840 0.22336

4 Midwest Female 1 Yes 0.07078 0.01995 0.03736 0.13008

5 Midwest Female 2 No 0.05469 0.02578 0.02131 0.13325

6 Midwest Female 2 Yes 0.07324 0.01778 0.04228 0.12395

7 Midwest Female 3 No 0.06094 0.03474 0.01936 0.17579

8 Midwest Female 3 Yes 0.07542 0.01944 0.04205 0.13163

9 Midwest Female 4 No 0.09049 0.03407 0.04233 0.18298

10 Midwest Female 4 Yes 0.08100 0.02163 0.04417 0.14393

11 Midwest Female 5 No 0.08463 0.03917 0.03317 0.19942

12 Midwest Female 5 Yes 0.09540 0.02613 0.05106 0.17131

13 Midwest Female 6 No 0.14869 0.08250 0.04643 0.38520

14 Midwest Female 6 Yes 0.09210 0.02854 0.04534 0.17808

15 Midwest Female 7 No 0.04757 0.02927 0.01389 0.15051

16 Midwest Female 7 Yes 0.09032 0.02563 0.04728 0.16571

17 Midwest Female 8 No 0.10444 0.03638 0.05160 0.19997

18 Midwest Female 8 Yes 0.08612 0.02181 0.04842 0.14857

19 Midwest Female 9 No 0.09836 0.04283 0.04062 0.21943

20 Midwest Female 9 Yes 0.11040 0.02709 0.06298 0.18643

21 Midwest Female 10 No 0.10916 0.04859 0.04400 0.24600

22 Midwest Female 10 Yes 0.16190 0.03486 0.09838 0.25484

23 Midwest Female 11 No 0.27341 0.06817 0.16112 0.42437

24 Midwest Female 11 Yes 0.19597 0.03920 0.12296 0.29763

25 Midwest Female 12 No 0.10055 0.04780 0.03816 0.23952

26 Midwest Female 12 Yes 0.21214 0.03957 0.13724 0.31309
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

27 Midwest Female 13 No 0.22388 0.05905 0.12907 0.35959

28 Midwest Female 13 Yes 0.16966 0.03371 0.10716 0.25807

29 Midwest Female 14 No 0.10511 0.04233 0.04637 0.22104

30 Midwest Female 14 Yes 0.14020 0.02603 0.09164 0.20857

31 Midwest Female 15 No 0.12026 0.03805 0.06327 0.21670

32 Midwest Female 15 Yes 0.13341 0.02266 0.09056 0.19226

33 Midwest Female 16 No 0.13299 0.03933 0.07288 0.23037

34 Midwest Female 16 Yes 0.14040 0.02235 0.09764 0.19777

35 Midwest Female 17 No 0.17497 0.04786 0.09970 0.28884

36 Midwest Female 17 Yes 0.16478 0.04037 0.09320 0.27468

37 Midwest Male 0 No 0.06419 0.03612 0.02068 0.18227

38 Midwest Male 0 Yes 0.03134 0.01537 0.01042 0.09046

39 Midwest Male 1 No 0.02824 0.01694 0.00859 0.08879

40 Midwest Male 1 Yes 0.06250 0.01751 0.03321 0.11457

41 Midwest Male 2 No 0.05102 0.02343 0.02040 0.12189

42 Midwest Male 2 Yes 0.10780 0.02078 0.06960 0.16328

43 Midwest Male 3 No 0.18650 0.04864 0.10898 0.30057

44 Midwest Male 3 Yes 0.15821 0.02705 0.10696 0.22775

45 Midwest Male 4 No 0.24649 0.05823 0.15035 0.37686

46 Midwest Male 4 Yes 0.21572 0.03661 0.14543 0.30774

47 Midwest Male 5 No 0.11609 0.04818 0.04973 0.24793

48 Midwest Male 5 Yes 0.17822 0.03525 0.11280 0.27003

49 Midwest Male 6 No 0.14158 0.05280 0.06576 0.27873

50 Midwest Male 6 Yes 0.12788 0.02799 0.07751 0.20375

51 Midwest Male 7 No 0.09726 0.03614 0.04588 0.19448

52 Midwest Male 7 Yes 0.12145 0.02642 0.07391 0.19317

53 Midwest Male 8 No 0.16718 0.05814 0.08134 0.31276

54 Midwest Male 8 Yes 0.12757 0.02700 0.07864 0.20031

55 Midwest Male 9 No 0.13406 0.04783 0.06458 0.25769
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

56 Midwest Male 9 Yes 0.14718 0.02976 0.09254 0.22603

57 Midwest Male 10 No 0.13986 0.04422 0.07331 0.25050

58 Midwest Male 10 Yes 0.17728 0.02996 0.12020 0.25366

59 Midwest Male 11 No 0.23907 0.05031 0.15449 0.35075

60 Midwest Male 11 Yes 0.18961 0.03044 0.13100 0.26639

61 Midwest Male 12 No 0.13660 0.04784 0.06668 0.25946

62 Midwest Male 12 Yes 0.19487 0.03078 0.13541 0.27221

63 Midwest Male 13 No 0.18501 0.04498 0.11230 0.28945

64 Midwest Male 13 Yes 0.16939 0.02841 0.11528 0.24195

65 Midwest Male 14 No 0.16673 0.05094 0.08886 0.29104

66 Midwest Male 14 Yes 0.16795 0.02631 0.11734 0.23459

67 Midwest Male 15 No 0.14583 0.04241 0.08054 0.24967

68 Midwest Male 15 Yes 0.17953 0.02561 0.12951 0.24347

69 Midwest Male 16 No 0.24965 0.06037 0.15033 0.38489

70 Midwest Male 16 Yes 0.20116 0.03048 0.14187 0.27721

71 Midwest Male 17 No 0.21152 0.06481 0.11131 0.36490

72 Midwest Male 17 Yes 0.23741 0.05816 0.13243 0.38835

73 Northeast Female 0 No 0.00000 0.00000 0.00000 0.00000

74 Northeast Female 0 Yes 0.06807 0.06565 0.00670 0.44174

75 Northeast Female 1 No 0.12262 0.07443 0.03476 0.35164

76 Northeast Female 1 Yes 0.07219 0.03765 0.02088 0.22109

77 Northeast Female 2 No 0.07217 0.03707 0.02561 0.18713

78 Northeast Female 2 Yes 0.07522 0.02212 0.03764 0.14468

79 Northeast Female 3 No 0.08550 0.03991 0.03324 0.20269

80 Northeast Female 3 Yes 0.07709 0.02021 0.04162 0.13840

81 Northeast Female 4 No 0.08704 0.03804 0.03596 0.19592

82 Northeast Female 4 Yes 0.08171 0.02252 0.04269 0.15080

83 Northeast Female 5 No 0.07597 0.03754 0.02801 0.18998

84 Northeast Female 5 Yes 0.11603 0.03012 0.06258 0.20515
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

85 Northeast Female 6 No 0.19149 0.06960 0.08937 0.36372

86 Northeast Female 6 Yes 0.16106 0.03737 0.09219 0.26629

87 Northeast Female 7 No 0.22034 0.07076 0.11195 0.38783

88 Northeast Female 7 Yes 0.18503 0.04087 0.10844 0.29764

89 Northeast Female 8 No 0.11002 0.05128 0.04241 0.25654

90 Northeast Female 8 Yes 0.17054 0.04039 0.09628 0.28407

91 Northeast Female 9 No 0.17541 0.07488 0.07159 0.36981

92 Northeast Female 9 Yes 0.14457 0.03538 0.08042 0.24618

93 Northeast Female 10 No 0.12980 0.04964 0.05930 0.26087

94 Northeast Female 10 Yes 0.13487 0.03098 0.07799 0.22319

95 Northeast Female 11 No 0.15128 0.05287 0.07366 0.28547

96 Northeast Female 11 Yes 0.14072 0.03068 0.08367 0.22704

97 Northeast Female 12 No 0.11890 0.04426 0.05568 0.23597

98 Northeast Female 12 Yes 0.16615 0.03375 0.10211 0.25877

99 Northeast Female 13 No 0.22638 0.06285 0.12650 0.37158

100 Northeast Female 13 Yes 0.17374 0.03402 0.10861 0.26626

101 Northeast Female 14 No 0.15807 0.05513 0.07694 0.29719

102 Northeast Female 14 Yes 0.15137 0.02946 0.09519 0.23220

103 Northeast Female 15 No 0.07460 0.03409 0.02971 0.17506

104 Northeast Female 15 Yes 0.14564 0.02761 0.09279 0.22127

105 Northeast Female 16 No 0.13603 0.05328 0.06081 0.27686

106 Northeast Female 16 Yes 0.14601 0.03095 0.08805 0.23241

107 Northeast Female 17 No 0.19074 0.07382 0.08451 0.37568

108 Northeast Female 17 Yes 0.15662 0.05374 0.06784 0.32151

109 Northeast Male 0 No 0.03904 0.03829 0.00547 0.23095

110 Northeast Male 0 Yes 0.04768 0.03299 0.00991 0.20023

111 Northeast Male 1 No 0.05533 0.03425 0.01596 0.17461

112 Northeast Male 1 Yes 0.04564 0.01831 0.01850 0.10821

113 Northeast Male 2 No 0.05525 0.03119 0.01781 0.15872
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

114 Northeast Male 2 Yes 0.05161 0.01505 0.02680 0.09709

115 Northeast Male 3 No 0.03842 0.02923 0.00840 0.15853

116 Northeast Male 3 Yes 0.06766 0.01784 0.03734 0.11955

117 Northeast Male 4 No 0.07436 0.02906 0.03393 0.15522

118 Northeast Male 4 Yes 0.09964 0.02330 0.05859 0.16441

119 Northeast Male 5 No 0.17601 0.04519 0.10393 0.28234

120 Northeast Male 5 Yes 0.14854 0.02948 0.09428 0.22623

121 Northeast Male 6 No 0.23271 0.09319 0.09832 0.45756

122 Northeast Male 6 Yes 0.20731 0.04235 0.12875 0.31640

123 Northeast Male 7 No 0.13074 0.05195 0.05785 0.26922

124 Northeast Male 7 Yes 0.22820 0.04524 0.14338 0.34311

125 Northeast Male 8 No 0.33970 0.08456 0.19726 0.51855

126 Northeast Male 8 Yes 0.22240 0.04298 0.14157 0.33157

127 Northeast Male 9 No 0.13761 0.05024 0.06507 0.26785

128 Northeast Male 9 Yes 0.21238 0.04071 0.13589 0.31617

129 Northeast Male 10 No 0.21785 0.06659 0.11464 0.37465

130 Northeast Male 10 Yes 0.17652 0.03731 0.10824 0.27460

131 Northeast Male 11 No 0.11448 0.05849 0.04005 0.28601

132 Northeast Male 11 Yes 0.16617 0.03516 0.10200 0.25907

133 Northeast Male 12 No 0.17736 0.05489 0.09349 0.31067

134 Northeast Male 12 Yes 0.18279 0.03589 0.11611 0.27581

135 Northeast Male 13 No 0.19837 0.05450 0.11222 0.32635

136 Northeast Male 13 Yes 0.17078 0.03078 0.11288 0.25000

137 Northeast Male 14 No 0.16201 0.04973 0.08618 0.28386

138 Northeast Male 14 Yes 0.17033 0.02889 0.11547 0.24408

139 Northeast Male 15 No 0.11894 0.04584 0.05417 0.24139

140 Northeast Male 15 Yes 0.18246 0.02858 0.12740 0.25438

141 Northeast Male 16 No 0.24306 0.05798 0.14759 0.37326

142 Northeast Male 16 Yes 0.20406 0.03216 0.14187 0.28447
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

143 Northeast Male 17 No 0.22559 0.06980 0.11748 0.38930

144 Northeast Male 17 Yes 0.24185 0.06066 0.13291 0.39898

145 South Female 0 No 0.02459 0.01116 0.01002 0.05906

146 South Female 0 Yes 0.03407 0.01282 0.01465 0.07723

147 South Female 1 No 0.08869 0.03373 0.04118 0.18067

148 South Female 1 Yes 0.05182 0.01167 0.03127 0.08472

149 South Female 2 No 0.05097 0.02373 0.02012 0.12319

150 South Female 2 Yes 0.07110 0.01386 0.04584 0.10869

151 South Female 3 No 0.08717 0.03240 0.04122 0.17500

152 South Female 3 Yes 0.08759 0.01718 0.05624 0.13394

153 South Female 4 No 0.11010 0.03209 0.06113 0.19035

154 South Female 4 Yes 0.09897 0.01914 0.06387 0.15025

155 South Female 5 No 0.09409 0.02943 0.05015 0.16968

156 South Female 5 Yes 0.11870 0.02157 0.07855 0.17548

157 South Female 6 No 0.15318 0.04317 0.08611 0.25777

158 South Female 6 Yes 0.12150 0.02282 0.07925 0.18182

159 South Female 7 No 0.09608 0.03538 0.04565 0.19105

160 South Female 7 Yes 0.11192 0.02171 0.07204 0.16985

161 South Female 8 No 0.09955 0.03288 0.05111 0.18493

162 South Female 8 Yes 0.09287 0.01897 0.05850 0.14436

163 South Female 9 No 0.07477 0.02719 0.03606 0.14864

164 South Female 9 Yes 0.09117 0.01786 0.05855 0.13929

165 South Female 10 No 0.10602 0.03214 0.05750 0.18732

166 South Female 10 Yes 0.10821 0.02026 0.07077 0.16201

167 South Female 11 No 0.14411 0.04267 0.07875 0.24907

168 South Female 11 Yes 0.13237 0.02251 0.08989 0.19071

169 South Female 12 No 0.12646 0.02981 0.07860 0.19723

170 South Female 12 Yes 0.12346 0.02004 0.08543 0.17519

171 South Female 13 No 0.11376 0.03270 0.06365 0.19510
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

172 South Female 13 Yes 0.09653 0.01717 0.06458 0.14190

173 South Female 14 No 0.02915 0.01339 0.01174 0.07054

174 South Female 14 Yes 0.09469 0.01619 0.06436 0.13721

175 South Female 15 No 0.11985 0.03357 0.06801 0.20259

176 South Female 15 Yes 0.09988 0.01586 0.06978 0.14099

177 South Female 16 No 0.14183 0.03685 0.08366 0.23028

178 South Female 16 Yes 0.11501 0.01620 0.08365 0.15612

179 South Female 17 No 0.13141 0.03007 0.08280 0.20226

180 South Female 17 Yes 0.14466 0.02946 0.09067 0.22291

181 South Male 0 No 0.01164 0.00852 0.00275 0.04790

182 South Male 0 Yes 0.04132 0.01867 0.01487 0.10956

183 South Male 1 No 0.10465 0.03216 0.05629 0.18635

184 South Male 1 Yes 0.06981 0.01623 0.04125 0.11576

185 South Male 2 No 0.11644 0.03486 0.06353 0.20382

186 South Male 2 Yes 0.10189 0.01672 0.07024 0.14557

187 South Male 3 No 0.10794 0.03253 0.05874 0.19005

188 South Male 3 Yes 0.12852 0.02139 0.08793 0.18405

189 South Male 4 No 0.08480 0.02973 0.04190 0.16410

190 South Male 4 Yes 0.14393 0.02379 0.09861 0.20534

191 South Male 5 No 0.22243 0.04227 0.15052 0.31592

192 South Male 5 Yes 0.16450 0.02373 0.11821 0.22430

193 South Male 6 No 0.13908 0.03392 0.08485 0.21964

194 South Male 6 Yes 0.16386 0.02460 0.11613 0.22617

195 South Male 7 No 0.10695 0.04272 0.04747 0.22347

196 South Male 7 Yes 0.13329 0.02322 0.08951 0.19392

197 South Male 8 No 0.13660 0.03841 0.07712 0.23049

198 South Male 8 Yes 0.13818 0.02276 0.09484 0.19702

199 South Male 9 No 0.15978 0.03742 0.09920 0.24720

200 South Male 9 Yes 0.16839 0.02450 0.12062 0.23012
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

201 South Male 10 No 0.21482 0.04702 0.13676 0.32086

202 South Male 10 Yes 0.17848 0.02453 0.13021 0.23972

203 South Male 11 No 0.15078 0.03440 0.09492 0.23112

204 South Male 11 Yes 0.16247 0.02224 0.11881 0.21820

205 South Male 12 No 0.13727 0.03260 0.08489 0.21438

206 South Male 12 Yes 0.14480 0.01976 0.10610 0.19453

207 South Male 13 No 0.14136 0.03119 0.09049 0.21409

208 South Male 13 Yes 0.14318 0.01928 0.10537 0.19165

209 South Male 14 No 0.16110 0.03444 0.10438 0.24037

210 South Male 14 Yes 0.15339 0.01875 0.11612 0.19992

211 South Male 15 No 0.16172 0.03519 0.10394 0.24291

212 South Male 15 Yes 0.15088 0.01746 0.11598 0.19398

213 South Male 16 No 0.15836 0.03879 0.09614 0.24974

214 South Male 16 Yes 0.14038 0.01773 0.10533 0.18467

215 South Male 17 No 0.11156 0.02737 0.06810 0.17746

216 South Male 17 Yes 0.12247 0.02596 0.07537 0.19286

217 West Female 0 No 0.00983 0.00990 0.00135 0.06802

218 West Female 0 Yes 0.01318 0.00987 0.00248 0.06700

219 West Female 1 No 0.02367 0.01862 0.00497 0.10522

220 West Female 1 Yes 0.03105 0.01312 0.01204 0.07769

221 West Female 2 No 0.08097 0.03759 0.03170 0.19166

222 West Female 2 Yes 0.05440 0.01482 0.02948 0.09825

223 West Female 3 No 0.07528 0.03851 0.02679 0.19404

224 West Female 3 Yes 0.07444 0.01842 0.04257 0.12701

225 West Female 4 No 0.09263 0.03196 0.04621 0.17703

226 West Female 4 Yes 0.07696 0.02064 0.04194 0.13701

227 West Female 5 No 0.01976 0.01347 0.00513 0.07302

228 West Female 5 Yes 0.07737 0.02123 0.04157 0.13949

229 West Female 6 No 0.15792 0.07301 0.06009 0.35487
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

230 West Female 6 Yes 0.07298 0.01985 0.03947 0.13107

231 West Female 7 No 0.06955 0.02567 0.03321 0.13989

232 West Female 7 Yes 0.08146 0.01987 0.04691 0.13776

233 West Female 8 No 0.07753 0.02825 0.03731 0.15417

234 West Female 8 Yes 0.09062 0.01994 0.05507 0.14558

235 West Female 9 No 0.13440 0.04481 0.06802 0.24832

236 West Female 9 Yes 0.10215 0.02347 0.06061 0.16709

237 West Female 10 No 0.06573 0.03719 0.02102 0.18736

238 West Female 10 Yes 0.12152 0.02660 0.07376 0.19374

239 West Female 11 No 0.15354 0.04584 0.08329 0.26584

240 West Female 11 Yes 0.12719 0.02688 0.07852 0.19950

241 West Female 12 No 0.10120 0.03594 0.04934 0.19631

242 West Female 12 Yes 0.13054 0.02498 0.08440 0.19650

243 West Female 13 No 0.14759 0.04125 0.08346 0.24769

244 West Female 13 Yes 0.11968 0.02369 0.07629 0.18284

245 West Female 14 No 0.08748 0.03284 0.04105 0.17675

246 West Female 14 Yes 0.11063 0.02132 0.07145 0.16744

247 West Female 15 No 0.10099 0.03841 0.04674 0.20471

248 West Female 15 Yes 0.11236 0.02051 0.07428 0.16645

249 West Female 16 No 0.12538 0.04343 0.06188 0.23755

250 West Female 16 Yes 0.12224 0.02210 0.08108 0.18021

251 West Female 17 No 0.14672 0.04582 0.07743 0.26052

252 West Female 17 Yes 0.14371 0.03992 0.07558 0.25621

253 West Male 0 No 0.00000 0.00000 0.00000 0.00000

254 West Male 0 Yes 0.03075 0.02534 0.00437 0.18642

255 West Male 1 No 0.05457 0.02662 0.02056 0.13695

256 West Male 1 Yes 0.04584 0.01889 0.01729 0.11595

257 West Male 2 No 0.07833 0.02789 0.03833 0.15342

258 West Male 2 Yes 0.06254 0.01442 0.03627 0.10573
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

259 West Male 3 No 0.05897 0.02530 0.02500 0.13281

260 West Male 3 Yes 0.07844 0.01913 0.04398 0.13607

261 West Male 4 No 0.07267 0.03354 0.02870 0.17208

262 West Male 4 Yes 0.09122 0.02482 0.04765 0.16763

263 West Male 5 No 0.19732 0.10033 0.06632 0.45969

264 West Male 5 Yes 0.11262 0.02937 0.06021 0.20092

265 West Male 6 No 0.13335 0.04859 0.06322 0.25970

266 West Male 6 Yes 0.12119 0.02916 0.06799 0.20680

267 West Male 7 No 0.08881 0.03493 0.04015 0.18508

268 West Male 7 Yes 0.12691 0.02806 0.07464 0.20758

269 West Male 8 No 0.15183 0.05484 0.07210 0.29200

270 West Male 8 Yes 0.13161 0.02705 0.08037 0.20811

271 West Male 9 No 0.17199 0.05164 0.09260 0.29715

272 West Male 9 Yes 0.15079 0.02837 0.09590 0.22915

273 West Male 10 No 0.12897 0.03747 0.07151 0.22159

274 West Male 10 Yes 0.16356 0.02584 0.11192 0.23279

275 West Male 11 No 0.19469 0.04002 0.12785 0.28505

276 West Male 11 Yes 0.16965 0.02623 0.11699 0.23956

277 West Male 12 No 0.13214 0.04542 0.06547 0.24865

278 West Male 12 Yes 0.17494 0.02738 0.12002 0.24792

279 West Male 13 No 0.19947 0.04814 0.12127 0.31029

280 West Male 13 Yes 0.16217 0.02773 0.10747 0.23732

281 West Male 14 No 0.10759 0.03838 0.05220 0.20880

282 West Male 14 Yes 0.16487 0.02644 0.11214 0.23582

283 West Male 15 No 0.18459 0.05348 0.10138 0.31235

284 West Male 15 Yes 0.17018 0.02480 0.11996 0.23578

285 West Male 16 No 0.19757 0.04862 0.11892 0.30993

286 West Male 16 Yes 0.17888 0.02540 0.12718 0.24569
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Obs Region Gender Age Smoothed Prevalence 
Std 

Error 

95 % Conf 
Interval – 

Lower 
Bound 

95 % Conf 
Interval – 

Upper 
Bound 

287 West Male 17 No 0.18078 0.04735 0.10548 0.29227

288 West Male 17 Yes 0.19218 0.04291 0.11118 0.31153
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TECHNICAL MEMORANDUM 
 
 
To: Ted Palma, US EPA 

From: Arlene Rosenbaum and Jonathan Cohen 

Date: November 4, 2004 

Re: Evaluation of a multi-day activity pattern algorithm for creating longitudinal activity 
patterns. 

  
 

BACKGROUND 
 
In previous work ICF reviewed the HAPEM4 modeling approach for developing annual average 
activity patterns from the CHAD database and recommended an approach to improve the 
model’s pattern selection process to better represent the variability among individuals. This 
section summarizes the recommended approach. (For details see the memorandum of July 23, 
2002 from ICF Consulting to Ted Palma.) 
 
Using cluster analysis, first the CHAD daily activity patterns are grouped into either two or three 
categories of similar patterns for each of the 30 combinations of day type (summer weekday, 
non-summer weekday, and weekend) and demographic group (males or females; age groups: 0-
4, 5-11, 12-17, 18-64, 65+). Next, for each combination of day type and demographic group, 
category-to-category transition probabilities are defined by the relative frequencies of each 
second-day category associated with each given first-day category, where the same individual 
was observed for two consecutive days. (Consecutive day activity pattern records for a single 
individual constitute a small subset of the CHAD data.) 
 
To implement the proposed algorithm, for each day type and demographic group, one daily 
activity pattern per category is randomly selected from the corresponding CHAD data to 
represent that category. That is, if there are 3 cluster categories for each of 3 day types, 9 unique 
activity patterns are selected to be averaged together to create an annual average activity pattern 
to represent an individual in a given demographic group and census tract.  
 
The weighting for each of the 9 activity patterns used in the averaging process is determined by 
the product of two factors. The first is the relative frequency of its day type, i.e., 0.18 for summer 
weekdays, 0.54 for non-summer weekdays, and 0.28 for weekends.  
 
The second factor in the weighting for the selected activity pattern is determined by simulating a 
sequence of category-types as a one-stage Markov chain process using the transition 
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probabilities. The category for the first day is selected according to the relative frequencies of 
each category. The category for the second day is selected according to the category-to-category 
transition probabilities for the category selected for the first day. The category for the third day is 
selected according to the transition probabilities for the category selected for the second day. 
This is repeated for all days in the day type (65 for summer weekdays, 195 for non-summer 
weekdays, 104 for weekends), producing a sequence of daily categories. The relative frequency 
of the category-type in the sequence associated with the selected activity pattern is the second 
factor in the weighting. 
 

PROPOSED ALGORITHM STEPS 
 
The proposed algorithm is summarized in Figure 1. Each step is explained in this section. 
 
Data Preparation 

 
Step 1: Each daily activity pattern in the CHAD data base is summarized by the total minutes in 
each of five micro-environments: indoors – residence; indoors – other building; outdoors – near 
road; outdoors – away from road; in vehicle. These five numbers are assumed to represent the 
most important features of the activity pattern for their exposure impact. 
 
Step 2: All CHAD activity patterns for a given day-type and demographic group are subjected to 
cluster analysis, resulting in 2 or 3 cluster categories. Each daily activity pattern is tagged with a 
cluster category. 
 
Step 3: For each day-type and demographic group, the relative frequency of each day-type in the 
CHAD data base is determined. 
 
Step 4: All CHAD activity patterns for a given day-type and demographic group that are 
consecutive days for a single individual, are analyzed to determine the category-to-category 
transition frequencies in the CHAD data base. These transition frequencies are used to calculate 
category-to-category transition probabilities. 
 
For example, if there are 2 categories, A and B, then 
 
PAA = the probability that a type A pattern is followed by a type A pattern, 
PAB = the probability that a type A pattern is followed by a type B pattern (PAB = 1 – PAA), 
PBB = the probability that a type B pattern is followed by a type B pattern, and 
PBA = the probability that a type B pattern is followed by a type A pattern (PBA = 1 – PBB). 
 
Activity Pattern Selection 

For each day-type and demographic group in each census tract 
 
Step 5: One activity pattern is randomly selected from each cluster category group (i.e., 2 to 3 
activity patterns) 
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Creating Weights for Day-type Averaging 

For each day-type and demographic group in each census tract 
 
Step 6: A cluster category is selected for the first day of the day-type sequence, according to the 
relative frequency of the cluster category days in the CHAD data set. 
 
Step 7: A cluster category is selected for each subsequent day in the day-type sequence day by 
day using the category-to-category transition probabilities. 
 
Step 8: The relative frequency of each cluster category in the day-type sequence is determined. 
 
Step 9: The activity patterns selected for each cluster category (Step 5) are averaged together 
using the cluster category frequencies (Step 8) as weights, to create a day-type average activity 
pattern.  

 
Creating Annual Average Activity Patterns 

For each demographic group in each census tract 
 
Step 10: The day-type average activity patterns are averaged together using the relative 
frequency of day-types as weights, to create an annual average activity pattern. 
 
Creating Replicates 

For each demographic group in each census tract 
 
Step 11: Steps 5 through 10 are repeated 29 times to create 30 annual average activity patterns. 
 
 
EVALUATING THE ALGORITHM 

 
The purpose of this study is to evaluate how well the proposed one-stage Markov chain 
algorithm can reproduce observed multi-day activity patterns with respect to demographic group 
means and inter-individual variability, while using one-day selection.  
 
In order to accomplish this we propose to apply the algorithm to observed multi-day activity 
patterns provided by the WAM, and compare the means and variances of the predicted multi-day 
patterns with the observed patterns.  
 
Current APEX Algorithm 

Because the algorithm is being considered for incorporation into APEX, we would like the 
evaluation to be consistent with the approach taken in APEX for selection of activity patterns for 
creating multi-day sequences. The APEX approach for creating multi-day activity sequences is 
as follows. 
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Step1: A profile for a simulated individual is generated by selection of gender, race (not 
implemented?), age group, and home sector from a given set of distributions consistent with the 
population of the study area.  
 
Step 2: A specific age within the age group is selected from a uniform distribution.  
 
Step 3: The employment status is simulated as a function of the age.  
 
Step 4:  For each simulated day, the user defines an initial pool of possible diary days based on a 
user-specified function of the day type (e.g., weekday/weekend) and temperature.  
 
Step 5: The pool is further restricted to match the target gender and employment status exactly 
and the age within 2A years for some parameter A. The diary days within the pool are assigned a 
weight of 1 if the age is within A years of the target age and a weight of w (user-defined 
parameter) if the age difference is between A and 2A years. For each simulated day, the 
probability of selecting a given diary day is equal to the age weight divided by the total of the 
age weights for all diary days in the pool for that day.   
 
Approach to Incorporation of Day-to-Day Dependence into APEX Algorithm 

If we were going to incorporate day-to-day dependence of activity patterns into the APEX 
model, we would propose preparing the data with cluster analysis and transition probabilities as 
described in Steps 1-4 for the proposed HAPEM 5 algorithm, with the following modifications. 
 
• For Step 2 the activity patterns would be divided into groups based on day-type (weekday, 

weekend), temperature, gender, employment status, and age, with cluster analysis applied to 
each group. However, because the day-to-day transitions in the APEX activity selection 
algorithm can cross temperature bins, we would propose to use broad temperature bins for 
the clustering and transition probability calculations so that the cluster definitions would be 
fairly uniform across temperature bins. Thus we would probably define the bins according 
to season (e.g., summer, non-summer).  

 
 
• In contrast to HAPEM, the sequence of activity patterns may be important in APEX. 

Therefore, for Step 4 transition probabilities would be specified for transitions between 
days with the same day-type and season, as in HAPEM, and also between days with 
different day-types and/or seasons. For example, transition probabilities would be specified 
for transitions between summer weekdays of each category and summer weekends of each 
category. 

 
Another issue for dividing the CHAD activity records for the purposes of clustering and 
calculating transition probabilities is that the diary pools specified for the APEX activity 
selection algorithm use varying and overlapping age ranges. One way to address this problem 
would be to simply not include consideration of age in the clustering process, under the 
assumption that cluster categories are similar across age groups, even if the frequency of each 
cluster category varies by age group. This assumption could be tested by examination of the 
cluster categories stratified by age group that were developed for HAPEM5. If the assumption is 
found to be valid, then the cluster categories could be pre-determined for input to APEX, while 
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the transition probabilities could be calculated within APEX during the simulation for each age 
range specified for dairy pools. 
 
If the assumption is found to be invalid, then an alternative approach could be implemented that 
would create overlapping age groups for purposes of clustering as follows. APEX age group 
ranges and age window percentages would be constrained to some maximum values. Then a set 
of overlapping age ranges that would be at least as large as the largest possible dairy pool age 
ranges would be defined for the purposes of cluster analysis and transition probability 
calculation. The resulting sets of cluster categories and transition probabilities would be pre-
determined for input into APEX and the appropriate set used by APEX for each diary pool used 
during the simulation.  
 
The actual activity pattern sequence selection would be implemented as follows. The activity 
pattern for first day in the year would be selected exactly as is currently done in APEX, as 
described above. For the selecting the second day’s activity pattern, each age weight would be 
multiplied by the transition probability PAB where A is the cluster for the first day’s activity 
pattern and B is the cluster for a given activity pattern in the available pool of diary days for day 
2. (Note that day 2 may be a different day-type and/or season than day 1.) The probability of 
selecting a given diary day on day 2 is equal to the age weight times PAB divided by the total of 
the products of age weight and PAB for all diary days in the pool for day 2. Similarly, for the 
transitions from day 2 to day 3, day 3 to day 4, etc. 
  
Testing the Approach with the Multi-day Data set 

We tested this approach using the available multi-day data set. For purposes of clustering we 
characterized the activity pattern records according to time spent in each of 5 
microenvironments: indoors-home, indoors-school, indoors-other, outdoors (aggregate of the 3 
outdoor microenvironments), and in-transit. 
 
For purposes of defining diary pools and for clustering and calculating transition probabilities we 
divided the activity pattern records by day type (i.e., weekday, weekend), season (i.e., summer or 
ozone season, non-summer or non-ozone season), age (6-10 and 11-12), and gender. Since all the 
subjects are 6-12  years of age and all are presumably unemployed, we need not account for 
differences in employment status. For each day type, season, age, and gender, we found that the 
activity patterns appeared to group in three clusters.  
 
In this case, we simulated week-long sequences (Wednesday through Tuesday) for each of 100 
people in each age/gender group for each season, using the transition probabilities. To evaluate 
the algorithm we calculated the following statistics for the predicted multi-day activity patterns 
for comparison with the actual multi-day diary data. 
 
• For each age/gender group for each season, the average time in each microenvironment 

 
• For each age/gender group, season, and  microenvironment, the average of the within-

person variance across all simulated persons (We defined the within-person variance as the 
variance of the total time per day spent in the microenvironment across the week.) 

 
• For each age/gender group, season, and microenvironment, the variance across persons of 

the mean time spent in that microenvironment   
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In each case we compared the predicted statistic for the stratum to the statistic for the 
corresponding stratum in the actual diary data.14  
 
We also calculated the mean normalized bias for the statistic, which is a common performance 
measure used in dispersion model performance and  which is calculated as follows. 
 

∑ −
=

N

observed
observedpredicted

N
NBIAS

1

)(100   % 

 
RESULTS 

Comparisons of simulated and observed data for time in each of the 5 microenvironments are 
presented in Tables 1 – 3 and Figures 2-5. 
 
Average Time in Microenvironment 

 
Table 1 and Figure 2 show the comparisons for the average time spent in each of the 5 
microenvironments for each age/gender group and season. Figure 3 shows the comparison for all 
the microenvironments except indoor, home in order to highlight the lower values. 
 
Table 1 and the figures show that the predicted time-in-microenvironment averages match well 
with the observed values. For combinations of microenvironment/age/gender/season the 
normalized bias ranges from –35% to +41%. Sixty percent of the predicted averages have bias 
between –9% and +9%, and the mean bias across any microenvironment ranges from -9% to 
+4%. Fourteen predictions have positive bias and 23 have negative bias. A Wilcoxon signed rank 
test that the median bias across the 40 combinations = 0 % was not significant (p-value = 0.40) 
supporting the conclusion of no overall bias. 
 
Variance Across Persons 

Table 2 and Figure 4 show the comparisons for the variance across persons for the average time 
spent in each microenvironment.  In this case the bias ranges from –40% to +120% for any 
microenvironment/age/gender/season. Sixty-five percent of the predicted variances have bias 
between –22% and +24%.  The mean normalized bias across any microenvironment ranges from 
–10% to +28%. Eighteen predictions have positive bias and 20 have negative bias. Figure 4 
suggests a reasonably good match of predicted to observed variance in spite of 2 or 3 outliers. A 
Wilcoxon signed rank test that the median bias across the 40 combinations = 0 % was not 
significant (p-value = 0.93) supporting the conclusion of no overall bias. 
 
Within-Person Variance for Persons 
 
Table 3 and Figure 5 show the comparisons for the within-person variance for time spent in each 
microenvironment.  In this case the bias ranges from –47% to +150% for any 

                                                 
14 For the diary data, because the number of days per person varies, the average of the within-person 
variances was calculated as a weighted average, where the weight is the degrees of freedom, i.e., one 
less than the number of days simulated. Similarly, the variance across persons of the mean time was 
appropriately adjusted for the different degrees of freedom using analysis of variance. 
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microenvironment/age/gender/season. Seventy percent of the predicted variances have bias 
between –25% and +30%. The mean normalized bias across any microenvironment ranges from 
–11% to +47%. Twenty-eight predictions have positive bias and 12 have negative bias, 
suggesting some tendency for overprediction of this variance measure.  And indeed a Wilcoxon 
signed rank test that the median bias across the 40 combinations = 0 % was very significant (p-
value = 0.01) showing that the within-person variance was significantly overpredicted. Still, 
Figure 4 suggests a reasonably good match of predicted to observed variance in most cases, with 
a few overpredicting outliers at the higher end of the distribution. So although the positive bias is 
significant in a statistical sense (i.e., the variance is more likely to be overpredicted than 
underpredicted), it is not clear whether the bias is large enough to be important. 
 
CONCLUSIONS 

 
The proposed algorithm appears to be able to replicate the observed data reasonably well, 
although the within-person variance is somewhat overpredicted. 
 
It would be informative to compare this algorithm with the earlier alternative approaches in order 
to gain perspective on the degree of improvement, if any, afforded by this approach. Two earlier 
approaches were: 
 

1. Select a single activity pattern for each day-type/season combination from the 
appropriate set, and use that pattern for every day in the multi-day sequence that 
corresponds to that day-type and season. 

2. Re-select an activity pattern for each day in the multi-day sequence from the 
appropriate set for the corresponding day-type and season. 

 
Goodness-of-fit statistics could be developed to compare the three approaches and find which 
model best fits the data for a given stratum.
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Table 1.  Average time spent in each microenvironment: comparison of predicted and observed. 
Microenvironment Demographic 

Group 
Season Observed 

(hours/day) Predicted 
(hours/day) 

Normalized 
Bias 

Indoor, home Girls, 6-10 Summer 
15.5 16.5 6% 

  Not Summer 15.8 15.5 -2% 
 Boys, 6-10 Summer 15.7 15.2 -3% 
  Not Summer 15.8 16.4 4% 
 Girls, 11-12 Summer 16.2 15.3 -5% 
  Not Summer 16.5 16.5 0% 
 Boys, 11-12 Summer 16.0 15.6 -3% 
  Not Summer 16.2 16.1 -1% 
 MEAN  

  -1% 

Indoor, school 
Girls, 6-10 Summer 

0.7 0.7 -9% 
  Not Summer 2.3 2.5 7% 
 Boys, 6-10 Summer 0.8 0.5 -34% 
  Not Summer 2.2 2.2 0% 
 Girls, 11-12 Summer 0.7 0.7 6% 
  Not Summer 2.1 2.4 13% 
 Boys, 11-12 Summer 0.6 0.9 38% 
  Not Summer 2.4 2.7 11% 
 MEAN  

  4% 

Indoor, other 
Girls, 6-10 Summer 

2.9 2.4 -14% 
  Not Summer 2.4 2.7 13% 
 Boys, 6-10 Summer 2.2 2.7 21% 
  Not Summer 1.9 1.8 -3% 
 Girls, 11-12 Summer 2.2 1.6 -25% 
  Not Summer 2.2 2.1 -2% 
 Boys, 11-12 Summer 2.3 2.2 -5% 
  Not Summer 1.9 2.0 4% 
 MEAN  

  -2% 

Outdoors 
Girls, 6-10 Summer 

3.7 3.5 -6% 
  Not Summer 2.5 2.5 0% 
 Boys, 6-10 Summer 4.1 4.3 4% 
  Not Summer 3.1 2.7 -12% 
 Girls, 11-12 Summer 3.7 5.2 41% 
  Not Summer 2.3 2.1 -5% 
 Boys, 11-12 Summer 3.9 4.3 9% 
  Not Summer 2.6 2.4 -7% 
 MEAN  

  3% 
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In-vehicle 
Girls, 6-10 Summer 

1.1 0.9 -20% 
  Not Summer 1.0 0.9 -13% 
 Boys, 6-10 Summer 1.1 1.3 13% 
  Not Summer 1.0 0.9 -16% 
 Girls, 11-12 Summer 1.2 1.1 -12% 
  Not Summer 0.9 0.8 -15% 
 Boys, 11-12 Summer 1.1 1.0 -5% 
  Not Summer 0.9 0.8 -7% 
 MEAN  

  -9% 
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Table 2.  Variance across persons for time spent in each microenvironment: comparison of 
predicted and observed. 
Microenvironment Demographic 

Group 
Season Observed 

(hours/day)2 Predicted 
(hours/day)2 

Normalized 
Bias 

Indoor, home Girls, 6-10 Summer 
70 42 -40% 

  Not Summer 67 60 -9% 
 Boys, 6-10 Summer 54 49 -9% 
  Not Summer 35 30  -12% 
 Girls, 11-12 Summer 56 47 -17% 
  Not Summer 42 38  -10% 
 Boys, 11-12 Summer 57 63  12% 
  Not Summer 39 42  8% 
 MEAN  

  -10% 

Indoor, school 
Girls, 6-10 Summer 

6.0 5.2 -13% 
  Not Summer 9.5 5.9 -38% 
 Boys, 6-10 Summer 5.6 3.8 -32% 
  Not Summer 5.3 8.2 53% 
 Girls, 11-12 Summer 4.9 5.5 11% 
  Not Summer 5.4 5.3 -1% 
 Boys, 11-12 Summer 5.6 6.0 6% 
  Not Summer 9.2 11  23% 
 MEAN  

  1% 

Indoor, other 
Girls, 6-10 Summer 

46 32  -30% 
  Not Summer 44 46.  6% 
 Boys, 6-10 Summer 34  33 -4% 
  Not Summer 23 16  -27% 
 Girls, 11-12 Summer 21  18 -15% 
  Not Summer 28 22 -22% 
 Boys, 11-12 Summer 33 31 -6% 
  Not Summer 30  30  0% 
 MEAN  

  -12% 

Outdoors 
Girls, 6-10 Summer 

17  23  37% 
  Not Summer 9.3 6.8 -27% 
 Boys, 6-10 Summer 17  18 3% 
  Not Summer 8.3 7.6 -8% 
 Girls, 11-12 Summer 22  22  0% 
  Not Summer 9.0 9.1 1% 
 Boys, 11-12 Summer 13  29 120% 
  Not Summer 10  11  8% 
 MEAN  

  17% 
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In-vehicle 
Girls, 6-10 Summer 

1.9 2.3 24% 
  Not Summer 1.8 1.6 -11% 
 Boys, 6-10 Summer 2.5 4.7 93% 
  Not Summer 1.5 1.6 9% 
 Girls, 11-12 Summer 3.5 4.7 34% 
  Not Summer 2.8 2.0 -28% 
 Boys, 11-12 Summer 3.2 5.4 69% 
  Not Summer 1.3 1.7 35% 
 MEAN  

  28% 
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Table 3.  Average within person variance for time spent in each microenvironment: comparison of 
predicted and observed. 
Microenvironment Demographic 

Group 
Season Observed  

(hours/day)2 Predicted 
(hours/day)2 

Normalized 
Bias 

Indoor, home Girls, 6-10 Summer 
20 29 49% 

  Not Summer 18 23 25% 
 Boys, 6-10 Summer 17 30 75% 
  Not Summer 15 24 64% 
 Girls, 11-12 Summer 22 42 93% 
  Not Summer 22 25 13% 
 Boys, 11-12 Summer 21 24 16% 
  Not Summer 17 24 38% 
 MEAN  

  47% 

Indoor, school 
Girls, 6-10 Summer 

2.3 2.4 5% 
  Not Summer 7.3 6.4 -12% 
 Boys, 6-10 Summer 2.0 1.5 -25% 
  Not Summer 6.7 5.8 -14% 
 Girls, 11-12 Summer 1.7 2.1 29% 
  Not Summer 7.4 7.6 3% 
 Boys, 11-12 Summer 1.4 2.9 101% 
  Not Summer 7.3 7.8 6% 
 MEAN  

  12% 

Indoor, other 
Girls, 6-10 Summer 

14 14 -4% 
  Not Summer 14 18 30% 
 Boys, 6-10 Summer 12 17 42% 
  Not Summer 10 13 26% 
 Girls, 11-12 Summer 10 10 1% 
  Not Summer 14 15 7% 
 Boys, 11-12 Summer 11 14 26% 
  Not Summer 12 13 7% 
 MEAN  

  17% 

Outdoors 
Girls, 6-10 Summer 

8.4 9.5 13% 
  Not Summer 3.4 3.2 -3% 
 Boys, 8-10 Summer 6.7 9.5 42% 
  Not Summer 3.4 4.4 28% 
 Girls, 11-12 Summer 10 25 150% 
  Not Summer 4.0 4.5 11% 
 Boys, 11-12 Summer 9.2 7.4 -20% 
  Not Summer 4.3 3.7 -15% 
 MEAN  

  26% 
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In-vehicle 
Girls, 6-10 Summer 

1.0 0.90 -13% 
  Not Summer 0.90 0.48 -47% 
 Boys, 6-10 Summer 1.1 1.4 31% 
  Not Summer 0.81 0.71 -12% 
 Girls, 11-12 Summer 1.3 1.3 4% 
  Not Summer 1.3 1.1 -16% 
 Boys, 11-12 Summer 2.4 1.6 -34% 
  Not Summer 0.85 0.85 1% 
 MEAN  

  -11% 
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Figure 1. Flow diagram of proposed algorithm for creating annual average activity patterns for HAPEM5. 
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Figure 2. Comparison of predicted and observed average time in each of 5 microenvironments for age/gender groups and 
seasons. 
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Figure 4. Comparison of predicted and observed variance across persons for time spent in each of 5 microenvironments for 
age/gender groups and seasons. 

Figure 5. Comparison of predicted and observed the average within-person variance for time spent in each of 5 
microenvironments by age/gender groups and seasons.
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MEMORANDUM 

 
To: Chad Bailey 
From: Arlene Rosenbaum and Kevin Wright 
Date: December 28, 2005 
Re: Estimating near roadway populations and areas for HAPEM6 
  
 
PURPOSE AND BACKGROUND 
 
In its 2001 regulation of mobile source air toxics (the “MSAT Rule”) EPA’s Office of 
Transportation and Air Quality (OTAQ) committed to further study of the range of 
concentrations to which people are exposed for consideration in future rulemaking. As part of the 
Technical Analysis Plan outlined in that research, OTAQ undertook research activity looking at 
the air quality in immediate proximity of busy roadways and highways. Concentrations of 
pollutants directly emitted by motor vehicles show statistically significant elevation in 
concentrations with increased proximity to busy roadways. 
 
The Hazardous Air Pollutant Exposure Model (HAPEM) is a screening-level exposure model 
appropriate for assessing average long-term inhalation exposures of the general population, or a 
specific sub-population, over spatial scales ranging from urban to national. HAPEM uses the 
general approach of tracking representatives of specified demographic groups as they move 
among indoor and outdoor microenvironments and among geographic locations. The estimated 
pollutant concentrations in each microenvironment visited are combined into a time-weighted 
average concentration, which is assigned to members of the demographic group. 
  
Indoor microenvironment concentrations are estimated by applying scalar factors to outdoor tract 
concentrations, which are some of the required inputs. These scalar factors are derived from 
published studies of concurrent concentration measurements indoors and outdoors. 

In the previous version, HAPEM5, if only a single outdoor concentration is provided for each 
Census tract, as is typical, this concentration is assumed to uniformly apply to the entire Census 
tract. For this version, HAPEM6, we refined the model to account for the spatial variability of 
outdoor concentrations within a tract due to enhanced outdoor concentrations of onroad mobile 
source pollutants at locations near major roadways. The term “major roadway” is used to 
describe a “Limited Access Highway”, “Highway”, “Major Road” or “Ramp”, as defined by the 
Census Feature Class Codes (CFCC).  The new version of HAPEM more accurately reflects the 
average and variability of exposure concentrations within each Census tract by accounting for 
some of the spatial variability in the outdoor concentrations within the tract, and by extension 
some of the spatial variability in indoor concentrations within the tract. 

Accomplishing this refinement to HAPEM required several activities, including the development 
and implementation of an approach for creating a database of the fraction of people within each 
US Census tract living near major roadways. This memorandum describes that activity. 
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OVERVIEW AND SPECIFICATIONS 

 
The objective of this task was to estimate the fraction of people in each of 6 demographic groups 
in each US Census tract living near major roadways.  
 
The basic analysis was conducted at the US Census block level for populations stratified by age, 
gender, and race/ethnicity. The block level data was then aggregated up to the tract level for 
populations stratified by age only for use in HAPEM6. 
 
The data bases used for this task were: 
 
• The Environmental Sciences Research Center (ESRI) StreetMap US roadway geographic 

database (which includes NavTech, GDT and TeleAtlas rectified street data) 
• A geographic database of US Census block boundaries, extracted using the PCensus 2000 

Census data extraction tool for Census file SF1 
• A geographic data for US Census block boundaries in Puerto Rico and the US Virgin Islands 

obtained from Proximity 
 
Although the block file is an intermediate product for this project, it will be retained to facilitate 
the re-specification of demographic groups for possible future analyses. Therefore, this file 
contains the most resolved age-gender groups available at the block level from the US Census 
STF1. The age groups for the block level data are as follows: 
 
• 19 single-year age groups from 0-19 (P14) 
• 2 single-year age groups 20-21 (P12) 
• 16 age groups (P12) 

o 22 to 24 years 
o 25 to 29 years 
o 30 to 34 years 
o 35 to 39 years 
o 40 to 44 years 
o 45 to 49 years 
o 50 to 54 years 
o 55 to 59 years 
o 60 and 61 years 
o 62 to 64 years 
o 65 and 66 years 
o 67 to 69 years 
o 70 to 74 years 
o 75 to 79 years 
o 80 to 84 years 
o 85 years and over. 
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The aggregated age groups for the tract level data are: 
 
• 0-1 
• 2-4 
• 5-15 
• 16-17 
• 18-64 
• 65+ 
 
The race/ethnic groups (block level only) are: 
 
• non-Hispanic White (alone or in combination - P010003) 
• non-Hispanic Black (alone or in combination - P010004) 
• non-Hispanic American Indian /Alaskan Native (alone or in combination - P010005) 
• non-Hispanic Asian (alone or in combination - P010006) 
• non-Hispanic Native Hawaiian/ Pacific Isalander (P010007) 
• non-Hispanic other (alone or in combination - P010008) 
• Hispanic (alone or in combination - P010009) 
 
The spatial stratifications of the populations (block and tract level) are: 
 
• Those residing within 75 meters of a major roadway 
• Those residing from 75 to 200 meters from a major roadway 
• Those residing at greater than 200 meters from a roadway. 
 
In addition, the fraction of the area of each Census block and tract that is located within the same 
distance ranges from a major roadway was determined. 
 
PROCEDURES 

 
For all the spatial modeling and geoprocessing operations in this study ICF utilized ArcInfo 
software. ArcInfo is the most extensive version of ArcGIS 9.1, the industry’s standard for 
Geographic Information Systems, produced by ESRI of Redlands, CA.   
 
Due to the size of the roadway and block geography files, most of the processing was conducted 
on a county-by-county basis. The files for some counties, however, still exceeded ArcInfo’s 
capacity and were processed tract-by-tract. A few counties in Arizona needed special handling 
because even at the tract level they exceeded ArcInfo’s capacity and were disaggregated into 
smaller pieces for processing. 
 

1. Because populations are not generally evenly distributed within blocks, it was 
assumed that the block populations all reside within 150 meters of any road within the 
block of designation “local” or greater as defined by the Census Feature Class Codes 
(CFCC).  Thus, the first step was to create a 150-meter buffer around all roadways 
within the block. This buffer served as a “clipped” block boundary defining the 
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portion of the block containing residential populations. The block population was 
assumed to be uniformly distributed within the “clipped” block boundary. 

 
2. Next a 75-meter buffer and a 200-meter buffer were created around all major 

roadways within the block. These buffers were overlaid on the “clipped” block 
boundary, and the fraction of the “clipped” block area that that fell within each buffer 
was calculated. This area fraction was assumed to equal the population fraction that 
fell within each buffer, and the fractions were applied to each population 
stratification. 

 
3. The 75-meter buffer and the 200-meter buffer were also overlaid on the unclipped 

block boundary to determine the fraction of the total block area that fell with each of 
the buffers. 

 
4. The block level fractions for area and populations were then aggregated up to the tract 

level, and the population stratifications were aggregated up to the 6 tract age groups 
only. 

 
RESULTS 

 
The resulting database consists of 2 files types: (1) a block file for each state, and (2) a nation-
wide tract file. 
 
The block files contains the following 249 fields for each block: 
 
• block FIPS code 
• total population 
• total area 
• area  within 75 meters of a major roadway 
• area from 75 to 200 meters from a major roadway 
• for each of 74 age-gender groups: 

o population  residing within 75 meters of a major roadway 
o population residing between 75 and 200 meters from a major roadway 
o population residing more than 200 meters from a major roadway 

• sum of race/ethnic populations (note; this may differ slightly from the total population due to 
some double-counting of persons with more than 1 race/ethnicity) 

• for each of 7 race/ethnic groups: 
o population  residing within 75 meters of a major roadway 
o population residing between 75 and 200 meters from a major roadway 
o population residing more than 200 meters from a major roadway 

 
 
Note that because of the limitations of the US Census data the block level populations 
could not be stratified by age, gender, and race together, 
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The tract file contains the following 22 fields for each tract 
 
• tract FIPS code 
• fraction of area within 75 meters of a major roadway 
• fraction of area  between 75 and 200 meters from a major roadway 
• fraction of area more than 200 meters from a major roadway 
• for each of 6 age groups: 

o fraction of population  residing within 75 meters of a major roadway 
o fraction of  population residing between 75 and 200 meters from a major roadway 
o fraction of  population residing more than 200 meters from a major roadway 

 
 
To date only a subset of states have been completely processed. For this subset state 
summaries of the fraction of population living within various distances of major 
roadways are presented in Table 1. 
 
 
Table 1. Fraction of population residing at various distances from major roadways for 
selected states. 

Distance from major roadways STATE 
< 75 meters 75 – 200 meters > 200 meters 

Colorado 0.22 0.33 0.45 
Georgia 0.17 0.24 0.59 
New York 0.31 0.36 0.33 
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