
User’s Manual for elegant

Program Version 15.2

Advanced Photon Source

Michael Borland

December 9, 2004

1 Highlights of What’s New in Version 15.2

Here is a summary of what’s changed since release 15.1.1. For details and references, see the specific
entries in the manual.

1.1 Known Bugs and Problems

• Twiss output contains entries for the higher-order dispersion, tune shifts with amplitude,
higher-order chromaticity, and tune spreads due to chromaticity and amplitude even when
these are not calculated, which is potentially misleading. The values are zero when the calcu-
lation is not requested.

1.2 Bug Fixes for Elements

• Fixed some problems with radiation integral calculations for dipoles under some conditions:

– If a dipole was split into several pieces, edge contributions to the radiation integrals were
inappropriately added at the interior “edges.” This might happen if element division
was used, or if the lattice definition contained a series of adjacent dipole elements with
the same name.

– In dipoles with gradients, if kl =
√

|K1 + 1/ρ2|l ≪ 1, the radiation integral calculations
were unreliable. Fixing this necessitated using a power series expansion for kl < 0.01,
which may result in some very small changes in radiation integrals (relative to the
previous version) for weak dipoles, even if there is no gradient.

• Made a correction to the expression for I5 radiation integral for the WIGGLER element, having
to do with propagation of the beta function.

• Fixed problem with ZTRANSVERSE, which used the wrong value for Z(0) for a broad-band
impedance.

• Fixed bugs in RFDF implementation for N KICKS> 1 and LENGTH> 0.

1

1.3 Bug Fixes for Commands

• Fixed bug with fiducialization during matrix computations, which impacted the final out-
put from the run setup command and the output from the matrix output command. For
simulations with acceleration, this would have shown up as incorrect matrix results in the
final output file and the output from the matrix output command. Twiss parameters and
tracking were not affected. This bug was found by Philippe Piot.

• Fixed bug in matrix output, which resulted in incorrect results when there was acceleration
and the starting point for the matrix was not the start of the beamline. This bug was found
by Philippe Piot.

• Fixed a bug in orbit correction (correct command): when prezero correctors was set (the
default), elegant was prezeroing the quadrupole steering parameters HKICK and VKICK even
if they were not selected as steering elements. This wouldn’t cause any problem unless the
HKICK or VKICK parameters of QUAD or KQUAD elements where given non-zero values. This is
unrelated to quadrupole misalignment.

• Fixed a bug that resulted in no calculations when a load parameters file had no rows in
change defined values mode.

1.4 Modified Elements

• The WIGGLER element was upgraded:

– Includes vertical focusing effects.

– Now allows even or odd number of poles.

– Wiggler strength can be specified via the K parameter, instead of the radius.

• The SCRIPT element now allows creation of particles by the script. Previously, the number
of particles returned by the script had to be equal to or less than the original number. This
is useful, for example, in simulating shower creation and transport in a beamline using the
shower program. Also added the START PASS and ON PASS parameters

• Added the ON PASS parameter to the CENTER element, so that the centering can be applied
only on the specified pass through the system.

• For particle output via WATCH elements, the LABEL input is now put in a parameter (“Description”)
in the output file.

• The BMAPXY eleement will now use Bx and By columns (field in Tesla) if Fx and Fy (normalized
field) are not provided.

• Upgraded the ZTRANSVERSE element. These improvements were suggested by Yong-Chul
Chae:

– Added WAKES and WAKE INTERVAL parameters to allow getting wake data in an SDDS
file.

– Added FACTOR, XFACTOR, and YFACTOR parameters, which allow multiplying the impedance
by factors.

2

1.5 Modified Commands

• Frequency map analysis now outputs tunes on range from [0, 1], instead of [0, 0.5]. Louis
Emery assisted with this improvement and provided ideas for the algorithm.

• One can now use differential and multiplicative mode simultaneously for alter elements.

• Added minimumn and maximumn columns to the sigma output file from run setup, where n
is 1 to 6. These columns give the minimum and maximum amplitude of the corresponding
phase-space coordinate. Fixed problem with units for sij output. Fixed a bug that resulted
in wrong sigma values in the output file for single-particle beam.

• The transmute elements command can now transmute an element that has the LENGTH

parameter into an element that doesn’t have LENGTH, as long as the length is zero.

1.6 New Elements

• Added the CWIGGLER element, which uses a canonically-integrated wiggler code for general
wiggler fields. This code was provided by Ying Wu of Duke University.

• Added the RFTM110 element, which provides simulation of a TM110 deflecting cavity, using
a sixth-order expansion in kρ, where k is the radial wavenumber and ρ is the radius.

1.7 Changes and Additions to Related Programs

• beamLifetimeCalc now optionally uses the haissinski program to compute bunch length-
ening. One can now vary additional quantities (beam energy, energy spread, and rf voltage)
using values from an SDDS file.

• elegantRingAnalysis improvements:

– Added collective effects tab with Haissinski equation, IBS, and space-charge tune shift.

– Added floor coordinate computation to basic ring analysis.

– Added printout of radiation integrals for basic ring analysis.

– Added optional auto-creation of PNG files for each plot.

• haissinski improvements:

– Added -harmonicCavity option, allowing inclusion of a second rf cavity with a higher
harmonic.

– Added -superPeriod option.

– Modified iteration algorithm to actually honor the convergence criterion, resulting in
more reliable convergence.

• ibsEmittance improvements:

– Reduced the default target to 10−6, and made the tolerance 1/100 of the target, to get
better convergence when IBS is weak.

– Added the rf voltage to the output file.

• sddsbrightness improvements:

3

– The default method is now actually Dejus’ method, consistent with the usage message.
Previously, default method was Borland’s method.

– Fixed bug in Dejus method implementation: the value of γ was not being used consis-
tently. Rather, in some places, a fixed energy value of 7 GeV was used.

– Fixed a bug that led to multiplication of the current by 1000 for each pass through the
main loop. This would affect calculations with multipage input files. Roger Dejus helped
in finding this bug.

– Added feature whereby the parameter ey0 from the twiss file is accepted for the vertical
emittance, if it exists.

2 Introduction

elegant stands for “ELEctron Generation ANd Tracking,” a somewhat out-of-date description
of a fully 6D accelerator program that now does much more than generate particle distributions
and track them. elegant, written entirely in the C programming language[1], uses a variant of
the MAD[2] input format to describe accelerators, which may be either transport lines, circular
machines, or a combination thereof. Program execution is driven by commands in a namelist
format.

This document describes the features available in elegant, listing the commands and their
arguments. The differences between elegant and MAD formats for describing accelerators are
listed. A series of examples of elegant input and output are given. Finally, appendices are
included describing the post-processing programs.

2.1 Program Philosophy

For all its complexity, elegant is not a stand-alone program. For example, most of the output is
not human-readable, and elegant itself has no graphics capabilities. These tasks are handled by a
suite of post-processing programs that serve both elegant and other physics programs. These pro-
grams, collectively known as the SDDS Toolkit[8, 9], provide sophisticated data analysis and display
capabilities. They also serve to prepare input for elegant, supporting multi-stage simulation.

Setting up for an elegant run thus involves more than creating input files for elegant per se.
A complicated run will typically involve creation of a post-processing command file that processes
elegant output and puts it in the most useful form, typically a series of graphs. Users thus have the
full power of the SDDS Toolkit, the resident command interpreter (e.g., the UNIX shell), and their
favorite scripting language (e.g., Tcl/Tk) at their disposal. The idea is that instead of continually
rewriting the physics code to, for example, make another type of graph or squeeze another item
into a crowded table, one should allow the user to tailor the output to his specific needs using a
set of generic post-processing programs. This approach has been quite successful, and is believed
particularly suited to the constantly changing needs of research.

Unlike many other programs, elegant allows one to make a single run simulating an arbitrary
number of randomizations or variations of an accelerator. By using the SDDS toolkit to postprocess
the data, the user’s postprocessing time and effort do not depend on how many random seeds or
situations are chosen. Hence, instead of doing a few simulations with a few seed numbers or values,
the user can simulate hundreds or even thousands of instances of one accelerator to get an accurate
representation of the statistics or dependence on parameters, with no more work invested than in
doing a few simulations.

4

In addition, complex simulations such as start-to-end jitter simulations[11] and top-up tracking[12]
can be performed involving hundreds or thousands of runs, with input created by scripts depending
on the SDDS toolkit. These simulations make use of concurrent computing on about 20 worksta-
tion using the Distributed Queueing System[10]. Clearly, use of automated postprocessing tools
greatly increases the scale and sophistication of simulations possible. This stands in stark contrast
to the current trend toward graphical user interfaces, which virtually force an inefficient one-job,
one-computer, manual postprocessing way of working.

2.2 Capabilities of elegant

elegant started as a tracking code, and it is still well-suited to this task. elegant tracks in
the 6-dimensional phase space (x, x′, y, y′, s, δ), where x (y) is the horizontal (vertical) transverse
coordinate, primed quantities are slopes, s is the total distance traveled, and δ is the fractional
momentum deviation[3]. Note that these quantities are commonly referred to as (x, xp, y, yp,
s, dp) in the namelists, accelerator element parameters, and output files. (“dp” is admittedly
confusing—it is supposed to remind the user of ∆P/Po. Sometimes this quantity is referred to as
“delta.”)

Tracking may be performed using matrices (of selectable order), canonical kick elements, numer-
ically integrated elements, or any combination thereof. For most elements, second-order matrices
are available; matrix concatenation can be done to any order up to third. Canonical kick ele-
ments are available for bending magnets, quadrupoles, sextupoles, and higher-order multipoles; all
of these elements also support optional classical synchrotron radiation losses. Among the numer-
ically integrated elements available are extended-fringe-field bending magnets and traveling-wave
accelerators. A number of hybrid elements exist that have first-order transport with exact time
dependence, e.g., RF cavities. Several elements support simulation of collective effects, such as
wakefields, resonator impedances, intra-beam scattering, coherent synchrotron radiation, and the
longitudinal space charge impedance. Some of the more unusual elements available are third-order
alpha-magnets[4, 5], time-dependent kicker magnets, voltage-ramped RF cavities, beam scrapers,
and beam-analysis “screens.”

A wide variety of output is available from tracking, including centroid and sigma-matrix output
along the accelerator. In addition to tracking internally generated particle distributions, elegant
can track distributions stored in external files, which can either be generated by other programs
or by previous elegant runs. Because elegant uses SDDS format for reading in and writing out
particle coordinates, it is relatively easy to interface elegant to other programs using files that can
also be used with SDDS to do post-processing for the programs.

elegant allows the addition of random errors to virtually any parameter of any accelerator
element. One can correct the orbit (or trajectory), tunes, and chromaticity after adding errors,
then compute Twiss parameters, track, or perform a number of other operations.

In addition to randomly perturbing accelerator elements, elegant allows one to systematically
vary any number of elements in a multi-dimensional grid. As before, one can track or do other
computations for each point on the grid. This is a very useful feature for the simulation of experi-
ments, e.g., emittance measurements involving beam-size measurements during variation of one or
more quadrupoles[6].

Like many accelerator codes, elegant does accelerator optimization. It will fit the first- and
second-order matrix, beta functions, tunes, chromaticities, natural emittance, etc. It also has the
ability to optimize results of tracking using a user-supplied function of the final beam and transport
parameters. This permits solution of a wide variety of problems, from matching a kicker bump in
the presence of nonlinearities to optimizing dynamic aperture by adjusting sextupoles.

5

elegant provides several methods for determining accelerator aperture, whether dynamic or
physical. One may do straightforward tracking of an ensemble of particles that occupies at uniform
grid in (x, y) space. A more efficient variant of this procedure involves tracking a series of constant-
x lines of particles with fixed y values, with elimination of any given y value whenever a stable
particle is found. Finally, one may use a single-particle search method that can locate the aperture
for a series of y values, to a predefined resolution in x.

In addition to using analytical expressions for the transport matrices, elegant supports compu-
tation of the first-order matrix and linear optics properties of a circular machine based on tracking.
A common application of this is to compute the tune and beta-function variation with momentum
offset by single-turn tracking of a series of particles. This is much more efficient than, for example,
tracking and performing FFTs (though elegant will do this also). This both tests analytical ex-
pressions for the chromaticity and allows computations using accelerator elements for which such
expressions do not exist (e.g., a numerically integrated bending magnet with extended fringe fields).

A common application of random error simulations is to set tolerances on magnet strength
and alignment relative to the correctability of the closed orbit. A more efficient way to do these
calculations is to use correct-orbit amplification factors[6]. elegant the computes amplification
factors and functions for corrected and uncorrected orbits and trajectories pertaining to any element
that produces an orbit or trajectory distortion. It simultaneously computes the amplification
functions for the steering magnets, in order to determine how strong the steering magnets will need
to be.

3 Fiducialization in elegant

In some tracking codes, there is a “fiducial particle” that is assumed to travel along the ideal tra-
jectory or orbit, with the ideal momentum, and at the ideal phase. There is no fiducial particle
in elegant. Instead, elements are fiducialized in elegant. Fiducializing an element means deter-
mining the momentum and arrival time (or phase) of the reference particle. This is particularly
important in simulations of linacs.

If the reference momentum does not change and no time-dependent elements are involved,
then fiducialization is irrelevant. All elements are fiducialized at the central momentum defined in
run_setup.

A number of commands have parameters for controlling fiducialization:

• The always_change_p0 parameter of run_setup causes elegant to re-establish the central
momentum after each element when fiducializing. This may be more convenient than setting
the CHANGE_P0 parameter on the elements themselves. However, it can have unexpected
consequences, such as changing the central momentum to match changes in beam momentum
due to synchrotron radiation.

• run_control has three parameters that affect fiducialization, which come into play when
multi-step runs are made. Typically, these are runs that involve variation of elements, addition
of errors, or loading of multiple sets of parameters.

– reset_rf_for_each_step — If nonzero, the rf phases are re-established for each beam
tracked. If this is 1 (the default), the time reference is discarded after each bunch is
tracked. This means that bunch-to-bunch phasing errors due to time-of-flight differences
would be lost.

– first_is_fiducial — The first bunch seen is taken to establish the fiducial phases
and momentum profile. If one is simulating, for example, successive beams in a fixed

6

accelerator, this should be set to 1. Otherwise, the momentum reference is discarded
after each bunch is tracked.

– restrict_fiducialization — If nonzero, then momentum profile fiducialization oc-
curs only after elements that are known to possibily change the momentum. It would
not occur, for example, after a scraper that changes the average beam momentum by
removing a low-momentum tail.

• The bunched_beam command has a first_is_fiducial parameter that is convenient for use
with the first_is_fiducial mode established by run_control. If nonzero, this parameter
causes elegant to generate a first bunch with only one particle. This is very useful if one
wants to track with many particles but doesn’t want to waste time fidicializing with a many-
particle bunch.

4 Namelist Command Dictionary

The main input file for an elegant run consists of a series of namelists, which function as commands.
Most of the namelists direct elegant to set up to run in a certain way. A few are “action” commands
that begin the actual simulation. FORTRAN programmers should note that, unlike FORTRAN
namelists, these namelists need not come in a predefined order; elegant is able to detect which
namelist is next in the file and react appropriately.

Each namelist has a number of variables associated with it, which are used to control details
of the run. These variables come in three data types: (1) long, for the C long integer type. (2)
double, for the C double-precision floating point type. (3) STRING, for a character string enclosed
in double quotation marks. All variables have default values, which are listed on the following
pages. STRING variables often have a default value listed as NULL, which means no data; this is
quite different from the value “”, which is a zero-length character string. long variables are often
used as logical flags, with a zero value indicating false and a non-zero value indicating true.

On the following pages the reader will find individual descriptions of each of the namelist
commands and their variables. Each description contains a sequence of the form

&<namelist-name>

<variable-type> <variable-name> = <default-value>;

.

.

.

&end

This summarizes the parameters of the namelist. Note, however, that the namelists are invoked in
the form

&<namelist-name>

[<variable-name> = <value> ,]

[<array-name>[<index>] = <value> [,<value> ...] ,]

.

.

.

&end

7

The square-brackets enclose an optional component. Not all namelists require variables to be given–
the defaults may be sufficient. However, if a variable name is given, it must have a value. Values
for STRING variables must be enclosed in double quotation marks. Values for double variables may
be in floating-point, exponential, or integer format (exponential format uses the ‘e’ character to
introduce the exponent).

Array variables take a list of values, with the first value being placed in the slot indicated by
the subscript. As in C, the first slot of the array has subscript 0, not 1. The namelist processor
does not check to ensure that one does not put elements into nonexistent slots beyond the end of
the array; doing so may cause the processor to hang up or crash.

Wildcards are allowed in a number of places in elegant and the SDDS Toolkit. The wildcard
format is very similar to that used in UNIX:

• * — stands for any number of characters, including none.

• ? — stands for any single character.

• [<list-of-characters>] — stands for any single character from the list. The list may
include ranges, such as a-z, which includes all characters between and including ‘a’ and ‘z’
in the ASCII character table.

The special characters *, ?, [, and] are entered literally by preceeding the character by a backslash
(e.g., *).

In many places where a filename is required in an elegant namelist, the user may supply a
so-called “incomplete” filename. An incomplete filename has the sequence “%s” imbedded in it, for
which is substituted the “rootname.” The rootname is by default the filename (less the extension)
of the lattice file. The most common use of this feature is to cause elegant to create names for
all output files that share a common filename but differ in their extensions. Post-processing can
be greatly simplified by adopting this naming convention, particularly if one consistently uses the
same extension for the same type of output. Recommended filename extensions are given in the
lists below.

When elegant reads a namelist command, one of its first actions is to print the namelist back
to the standard output. This printout includes all the variables in the namelist and their values.
Occasionally, the user may see a variable listed in the printout that is not in this manual. These are
often obsolete and are retained only for backward compatibility, or else associated with a feature
that is not fully supported. Use of such “undocumented features” is discouraged.

elegant supports substitution of fields in namelists using the commandline macro option. This
permits making runs with altered parameters without editing the input file. Macros inside the
input file have one of two forms: <tag> or $tag. To perform substitution, use the syntax

elegant inputfile -macro=tag1=value1[,tag2=value2...]

When using this feature, it is important to substitute the value of rootname (in run setup) so that
one can get a new set of output files (assuming use of the suggested “%s” field in all the output
file names). One may give the macro option any number of times, or combine all substitutions in
one option.

8

alter_elements

4.1 alter elements

• type: action command.

• function: modify the value of a parameter for one or more elements

&alter_elements

STRING name = NULL;

STRING item = NULL;

STRING type = NULL;

STRING exclude = NULL;

double value = 0;

STRING string_value = NULL;

long differential = 0;

long multiplicative = 0;

long verbose = 0;

long allow_missing_parameters = 0;

&end

• name — A possibly-wildcard-containing string giving the names of the elements to alter. If
not specified, then one must specify type.

• item — The name of the parameter to alter.

• type — A possibly-wildcard-containing string giving the names of element types to alter.
May be specified with name or by itself.

• exclude — A possibly-wildcard-containing string giving the names of elements to excluded
from alteration.

• value, string_value — The new value for the parameter. Use string_value only if the
parameter takes a character string as its value.

• differential — If nonzero, the new value is the predefined value of the parameter plus the
quantity given with value.

• multiplicative — If nonozero, the new given value is the predefined value of the parameter
times the quantity given with value.

• verbose — If nonzero, information is printed to the standard output describing what elements
are changed.

• allow_missing_parameters— If nonzero, then it is not an error if an element does not have
the parameter named with item. Normally, such an occurence is an error and terminates the
program.

9

amplification_factors

4.2 amplification factors

• type: action command.

• function: compute corrected and uncorrected orbit amplification factors and functions.

&lification_factors

STRING output = NULL;

STRING uncorrected_orbit_function = NULL;

STRING corrected_orbit_function = NULL;

STRING kick_function = NULL;

STRING name = NULL;

STRING type = NULL;

STRING item = NULL;

STRING plane = NULL;

double change = 1e-3;

long number_to_do = -1;

double maximum_z = 0;

&end

• output — The (incomplete) name of a file for text output. Recommended value: “%s.af”.

• uncorrected_orbit_function— The (incomplete) name of a file for an SDDS-format output
of the uncorrected-orbit amplification function. Recommended value: “%s.uof”.

• corrected_orbit_function — The (incomplete) name of a file for an SDDS-format output
of the corrected-orbit amplification function. Recommended value: “%s.cof”.

• kick_function — The (incomplete) name of a file for an SDDS-format output of the kick
amplification function. Recommended value: “%s.kaf”.

• name — The optionally wildcarded name of the orbit-perturbing elements.

• type — The optional type name of the the orbit-perturbing elements.

• item — The parameter of the elements producing the orbit.

• plane — The plane (“h” or “v”) to examine.

• change — The parameter change to use in computing the amplification.

• number_to_do — The number of elements to perturb.

• maximum_z — The maximum z coordinate of the elements to perturb.

10

analyze_map

4.3 analyze map

• type: action command.

• function: find the approximate first-order matrix and related quantities for an accelerator by
tracking.

&analyze_map

STRING output = NULL;

double delta_x = 1e-6;

double delta_xp = 1e-6;

double delta_y = 1e-6;

double delta_yp = 1e-6;

double delta_s = 1e-6;

double delta_dp = 1e-6;

long center_on_orbit = 0;

long verbosity = 0;

&end

• output — The (incomplete) name of a file for SDDS output.

– Recommended value: “%s.ana”.

– File contents: A series of dumps, each consisting of a single data point containing the
centroid offsets for a single turn, the single-turn R matrix, the matched Twiss parameters,
tunes, and dispersion functions.

• delta_X — The amount by which to change the quantity X in computing the derivatives that
give the matrix elements.

• center_on_orbit — A flag directing the expansion to be made about the closed orbit instead
of the design orbit.

• verbosity — The larger this value, the more output is printed during computations.

11

bunched_beam

4.4 bunched beam

• type: setup command.

• function: set up for tracking of particle coordinates with various distributions.

&bunched_beam

STRING bunch = NULL;

long n_particles_per_bunch = 1;

double time_start = 0;

STRING matched_to_cell = NULL;

double emit_x = 0;

double emit_nx = 0;

double beta_x = 1.0;

double alpha_x = 0.0;

double eta_x = 0.0;

double etap_x = 0.0;

double emit_y = 0;

double emit_ny = 0;

double beta_y = 1.0;

double alpha_y = 0.0;

double eta_y = 0.0;

double etap_y = 0.0;

long use_twiss_command_values = 0;

double Po = 0.0;

double sigma_dp = 0.0;

double sigma_s = 0.0;

double dp_s_coupling = 0;

double emit_z = 0;

double beta_z = 0;

double alpha_z = 0;

double momentum_chirp = 0;

long one_random_bunch = 1;

long symmetrize = 0;

long halton_sequence[3] = {0, 0, 0};

long halton_radix[6] = {0, 0, 0, 0, 0, 0};

long randomize_order[3] = {0, 0, 0};

long limit_invariants = 0;

long limit_in_4d = 0;

long enforce_rms_values[3] = {0, 0, 0};

double distribution_cutoff[3] = {2, 2, 2};

STRING distribution_type[3] = {"gaussian","gaussian","gaussian"};

double centroid[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

long first_is_fiducial = 0;

long save_initial_coordinates = 1;

&end

12

• bunch — The (incomplete) name of an SDDS file to which the phase-space coordinates of the
bunches are to be written. Recommended value: “%s.bun”.

• n_particles_per_bunch — Number of particles in each bunch.

• time_start — The central value of the time coordinate for the bunch.

• matched_to_cell — The name of a beamline from which the Twiss parameters of the bunch
are to be computed.

• emit_X — RMS emittance for the X plane.

• emit_nX — RMS normalized emittance for the X plane. Ignored if emit_X is nonzero.

• beta_X, alpha_X, eta_X, etap_X — Twiss parameters for the X plane.

• use_twiss_command_values — If nonzero, then the values for β, α, η, and η′ are taken from
the twiss_output command. It is an error if no twiss_output command has been given.

• Po — Central momentum of the bunch.

• sigma_dp, sigma_s — Fractional momentum spread, δ, and bunch length. Note that sigma_s
is actually the length in βz ∗ c ∗ t, so that for βz << 1 the length of the bunch in time will be
greater than one might expect.

• dp_s_coupling — Specifies the coupling between s and δ, defined as 〈sδ〉/(σsσδ).

• emit_z, beta_z, alpha_z — Provide another way to specify the longitudinal phase space,
either separately from or in combination with sigma_dp, sigma_s, and dp_s_coupling.

Basically, which values elegant uses depends on what one sets to nonzero values. If one sets
emit z, then sigma dp, sigma s, and dp s coupling are ignored. If one doesn’t set emit z, then
elegant uses sigma dp and sigma s; it additionally uses alpha z if it is nonzero, otherwise it
uses dp s coupling. For reference, the relationship between them is C = Σ56√

Σ55Σ66

= − α√
1+α2

.

Note that to impart a chirp that results in compression for R56 < 0 (e.g., a normal four-dipole
chicane), one must have αz < 0 or C > 0.

• momentum_chirp — Permits imparting an additional momentum chirp to the beam, in units
of 1/m. E.g., a value of 1 indicates that a 1mm long bunch has a linear variation in momentum
of 0.1% from end-to-end. A positive chirp is needed to provide compression of a bunch with
an ordinary R56 < 0 four-dipole chicane.

• one_random_bunch — If non-zero, then only one random particle distribution is generated.
Otherwise, a new distribution will be generated for every simulation step.

• enforce_rms_values[3] — Flags, one for each plane, indicating whether to force the distri-
bution to have the specified RMS properties.

• distribution_cutoff[3] — Distribution cutoff parameters for each plane. For gaussian
distributions, this is the number of sigmas to use. For other distributions, this number
simply multiplies the sizes. This is potentially confusing and hence it is suggested that the
distribution cutoff be set to 1 for nongaussian beams.

13

• distribution_type[3]— Distribution type for each plane. May be “gaussian”, “hard-edge”,
“uniform-ellipse”, “shell”, “dynamic-aperture”, “line”, “halo(gaussian)”.

For the transverse plane, the interpretation of the emittance is different for the different beam
types. For gaussian beams, the emittances are rms values. For all other types,

√
ǫ ∗ β times

the distribution cutoff defines the edge of the beam in position space, while
√

ǫ ∗ (1 + α2)/β
times the distribution cutoff defines the edge of the beam in slope space.

A hard-edge beam is a uniformly-filled parallelogram in phase space. A uniform-ellipse beam
is a uniformly-filled ellipse in phase space. A shell beam is a hollow ellipse in phase space. A
dynamic aperture beam has zero slope and uniform spacing in position coordinates. A line
beam is a line in phase space. A “halo(gaussian)” beam is the part of the gaussian distribution
beyond the distribution cutoff.

• limit_invariants— If non-zero, the distribution cutoffs are applied to the invariants, rather
than to the coordinates. This is useful for gaussian beams when the distribution cutoff is small.

• limit_in_4d — If non-zero, then the transverse distribution is taken to be a 4-d gaussian or
uniform distribution. One of these must be chosen using the distribution_type control. It
must be the same for x and y. This is useful, for example, if you want to make a cylindrically
symmetric beam.

• symmetrize — If non-zero, the distribution is symmetric under changes of sign in the coor-
dinates. Automatically results in a zero centroid for all coordinates.

• halton_sequence[3] and halton_radix[6] — This provides a “quiet-start” feature by
choosing Halton sequences in place of random number generation. There are three new
variables that control this feature. halton_sequence is an array of three flags that permit
turning on Halton sequence generation for the horizontal, vertical, or longitudinal planes.
For example, halton_sequence[0] = 3*1 will turn on Halton sequences for all three planes,
while halton_sequence[2] = 1, will turn it on for the longitudinal plane only.

halton_radix is an array of six integers that permit giving the radix for each sequence (i.e.,
x, x’, y, y’, t, p). Each radix must be a prime number. One should never use the same prime
for two sequences, unless one randomizes the order of the sequences relative to each other (see
the next item). If these are left at zero, then elegant chooses values that eliminate phase-space
banding to some extent. The user is cautioned to plot all coordinate combinations for the
initial phase space to ensure that no unacceptable banding is present.

A suggested way to use Halton sequences is to set halton_radix[0] = 2, 3, 2, 3, 2, 3

and to set randomize_order[0] = 2, 2, 2,. This avoids banding that may result from
choosing larger radix values.

• randomize_order[3] — Allows randomizing the order of assigned coordinates for the pairs
(x, x’), (y, y’), and (t,p). 0 means no randomization; 1 means randomize (x, x’, y, y’, t, p)
values independently, which destroys any x-x’, y-y’, and t-p correlations; 2 means randomize
(x, x’), (y, y’), and (t, p) in pair-wise fashion. This is used with Halton sequences to remove
banding. It is suggested that that the user employ sddsanalyzebeam to verify that the beam
properties when randomization is used.

• centroid[6] — Centroid offsets for each of the six coordinates.

14

• first_is_fiducial— Specifies that the first beam generated shall be a single particle beam,
which is suitable for fiducialization. See the section on “Fiducialization in elegant” for more
discussion.

• save_initial_coordinates — A flag that, if set, results in saving initial coordinates of
tracked particles in memory. This is the default behavior. If unset, the initial coordinates
are not saved, but are regenerated each time they are needed. This is more memory efficient
and is useful for tracking very large numbers of particles.

15

chromaticity

4.5 chromaticity

• type: setup command.

• function: set up for chromaticity correction.

&chromaticity

STRING sextupoles = NULL;

double dnux_dp = 0;

double dnuy_dp = 0;

double sextupole_tweek = 1e-3;

double correction_fraction = 0.9;

long n_iterations = 5;

double tolerance = 0;

STRING strength_log = NULL;

long change_defined_values = 0;

double strength_limit = 0;

long use_perturbed_matrix = 0;

&end

• sextupoles — List of names of elements to use to correct the chromaticities.

• dnux_dp, dnuy_dp — Desired chromaticity values.

• sextupole_tweek — Amount by which to tweak the sextupoles to compute derivatives of
chromaticities with respect to sextupole strength. [The word “tweak” is misspelled “tweek”
in the code.]

• correction_fraction— Fraction of the correction to apply at each iteration. In some cases,
correction is unstable at this number should be reduced.

• n_iterations — Number of iterations of the correction to perform.

• tolerance — Stop iterating when chromaticities are within this value of the desired values.

• strength_log — The (incomplete) name of an SDDS file to which the sextupole strengths
will be written. Recommended value: “%s.ssl”.

• change_defined_values — Changes the defined values of the sextupole strengths. This
means that when the lattice is saved (using save_lattice), the sextupoles will have the
corrected values. This would be used for correcting the chromaticity of a design lattice, for
example, but not for correcting chromaticity of a perturbed lattice.

• strength_limit — Limit on the absolute value of sextupole strength (K2). ‘

• use_perturbed_matrix — If nonzero, requests use of the perturbed correction matrix in
performing correction. For difficult lattices with large errors, this may be necessary to obtain
correction. In general, it is not necessary and only slows the simulation.

16

closed_orbit

4.6 closed orbit

• type: setup command.

• function: set up for computation of the closed orbit.

&closed_orbit

STRING output = NULL;

long output_monitors_only = 0;

long start_from_centroid = 1;

long start_from_dp_centroid = 1;

double closed_orbit_accuracy = 1e-12;

long closed_orbit_iterations = 10;

double iteration_fraction = 1;

long fixed_length = 0;

long start_from_recirc = 0;

long verbosity = 0;

&end

• output — The (incomplete) name of an SDDS file to which the closed orbits will be written.
Recommended value: “%s.clo”.

• output_monitors_only — If non-zero, indicates that the closed orbit output should include
only the data at the locations of the beam-position monitors.

• start_from_centroid — A flag indicating whether to force the computation to start from
the centroids of the beam distribution.

• start_from_dp_centroid — A flag indicating whether to force the computation to use
the momentum centroid of the beam for the closed orbit. This can allow computing the
closed orbit for an off-momentum beam, then starting the beam on that orbit using the
offset_by_orbit or center_on_orbit parameters of the track command. In contrast to
the start_from_centroid, this command doesn’t force the algorithm to start from the beam
transverse centroids.

• closed_orbit_accuracy— The desired accuracy of the closed orbit, in terms of the difference
between the start and end coordinates, in meters.

• closed_orbit_iterations — The number of iterations to take in finding the closed orbit.

• iteration_fraction— Fraction of computed change that is used each iteration. For lattices
that are very nonlinear or close to unstable, a number less than 1 can be helpful. Otherwise,
it only slows the simulation.

• fixed_length — A flag indicating whether to find a closed orbit with the same length as the
design orbit by changing the momentum offset.

• start_from_recirc — A flag indicating whether to compute the closed orbit from the re-
circulation (recirc) element in the beamline. In general, if one has a recirculation element,
one should give this flag.

17

• verbosity — A larger value results in more printouts during the computations.

18

correct

4.7 correct

• type: setup command.

• function: set up for correction of the trajectory or closed orbit.

&correct

STRING mode = "trajectory";

STRING method = "global";

STRING trajectory_output = NULL;

STRING corrector_output = NULL;

STRING statistics = NULL;

double corrector_tweek[2] = {1e-3, 1e-3};

double corrector_limit[2] = {0, 0};

double correction_fraction[2] = {1, 1};

double correction_accuracy[2] = {1e-6, 1e-6};

double bpm_noise[2] = {0, 0};

double bpm_noise_cutoff[2] = {1.0, 1.0};

STRING bpm_noise_distribution[2] = {"uniform", "uniform"};

long verbose = 1;

long fixed_length = 0;

long fixed_length_matrix = 0;

long n_xy_cycles = 1;

long n_iterations = 1;

long prezero_correctors = 1;

long track_before_and_after = 0;

long start_from_centroid = 1;

long use_actual_beam = 0;

double closed_orbit_accuracy = 1e-12;

long closed_orbit_iterations = 10;

double closed_orbit_iteration_fraction = 1;

long use_perturbed_matrix = 0;

&end

• mode — Either “trajectory” or “orbit”, indicating correction of a trajectory or a closed orbit.

• method — For trajectories, may be “one-to-one” or “global”. For closed orbit, must be
“global”.

• trajectory_output — The (incomplete) name of an SDDS file to which the trajectories or
orbits will be written. Recommended value: “%s.traj” or “%s.orb”.

• corrector_output — The (incomplete) name of an SDDS file to which information about
the final corrector strengths will be written. Recommended value: “%s.cor”.

• statistics — The (incomplete) name of an SDDS file to which statistical information about
the trajectories (or orbits) and corrector strengths will be written. Recommended value:
“%s.scor”.

19

• corrector_tweek[2] — The amount by which to change the correctors in order to compute
correction coefficients. [The word “tweak” is misspelled “tweek” in the code.]

• corrector_limit[2] — The maximum strength allowed for a corrector.

• correction_fraction[2] — The fraction of the computed correction strength to actually
use for any one iteration.

• correction_accuracy[2] — The desired accuracy of the correction in terms of the RMS
BPM values.

• bpm_noise[2] — The BPM noise level.

• bpm_noise_cutoff[2] — Cutoff values for the random distributions of BPM noise.

• bpm_noise_distribution[2] — May be either “gaussian”, “uniform”, or “plus or minus”.

• verbose — If non-zero, information about the correction is printed during computations.

• fixed_length — Indicates that the closed orbit length should be kept the same as the design
orbit length by changing the momentum offset of the beam.

• fixed_length_matrix — Indicates that for fixed-length orbit correction, the fixed-length
matrix should be computed and used. This will improve convergence but isn’t always needed.

• n_xy_cycles — Number of times to alternate between correcting the x and y planes.

• n_iterations — Number of iterations of the correction for each x/y cycle.

• prezero_correctors — Flag indicating whether to set the correctors to zero before starting.

• track_before_and_after — Flag indicating whether tracking should be done both before
and after correction.

• start_from_centroid— Flag indicating that correction should start from the beam centroid.
For orbit correction, only the beam momentum centroid is relevant.

• use_actual_beam — Flag indicating that correction should employ tracking of the beam
distribution rather than a single particle. This is valid for trajectory correction only.

• closed_orbit_accuracy — Accuracy of closed orbit computation.

• closed_orbit_iterations — Number of iterations of closed orbit computation.

• closed_orbit_iteration_fraction — Fraction of change in closed orbit to use at each
iteration.

• use_perturbed_matrix — If nonzero, specifies that prior to each correction elegant shall
recompute the response matrix. This is useful if the lattice is changing significantly between
corrections.

20

correction_matrix_output

4.8 correction matrix output

• type: setup/action command.

• function: provide output of the orbit/trajectory correction matrix.

&correction_matrix_output

STRING response[2] = NULL, NULL;

STRING inverse[2] = NULL, NULL;

long KnL_units = 0;

long BnL_units = 0;

long output_at_each_step = 0;

long output_before_tune_correction = 0;

long fixed_length = 0;

&end

• response — Array of (incomplete) filenames for SDDS output of the x and y response
matrices. Recommnended values: “

• inverse — Array of (incomplete) filenames for SDDS output of the x and y inverse response
matrices. Recommnended values: “

• KnL_units — Flag that, if set, indicates use of “units” of m/K0L rather than m/rad. This
results in a sign change for the horizontal data.

• BnL_units — Flag that, if set, indicates use of “units” of m/(T*m) rather than m/rad. This
is useful for linac work in that the responses are automatically scaled with beam momentum.

• output_at_each_step — Flag that, if set, specifies output of the data at each simulation
step. By default, the data is output immediately for the defined lattice.

• output_before_tune_correction— Flag that, if set, specifies that when output_at_each_step

is set, that output shall occur prior to correcting the tunes.

• fixed_length — Flag that, if set, specifies output of the fixed-path-length matrix.

21

correct_tunes

4.9 correct tunes

• type: setup command.

• function: set up for correction of the tunes.

&correct_tunes

STRING quadrupoles = NULL;

double tune_x = 0;

double tune_y = 0;

long n_iterations = 5;

double correction_fraction = 0.9;

double tolerance = 0;

long step_up_interval = 0;

double max_correction_fraction = 0.9;

double delta_correction_fraction = 0.1;

STRING strength_log = NULL;

long change_defined_values = 0;

long use_perturbed_matrix = 0;

&end

• quadrupoles — List of names of quadrupoles to be used. Only two may be given.

• tune_x, tune_y — Desired x and y tune values. If not given, the desired values are assumed
to be the unperturbed tunes.

• n_iterations — The number of iterations of the correction to perform.

• correction_fraction — The fraction of the correction to apply at each iteration.

• tolerance — When both tunes are within this value of the desired tunes, the iteration is
stopped.

• step_up_interval — Interval between increases in the correction fraction.

• max_correction_fraction — Maximum correction fraction to allow.

• delta_correction_fraction— Change in correction fraction after each step_up_interval

steps.

• strength_log — The (incomplete) name of a SDDS file to which the quadrupole strengths
will be written as correction proceeds. Recommended value: “%s.qst”.

• change_defined_values — Changes the defined values of the quadrupole strengths. This
means that when the lattice is saved (using save_lattice), the quadrupoles will have the
corrected values. This would be used for correcting the tunes of a design lattice, for example,
but not for correcting tunes of a perturbed lattice.

• use_perturbed_matrix — If nonzero, requests use of the perturbed correction matrix in
performing correction. For difficult lattices with large errors, this may be necessary to obtain
correction. In general, it is not necessary and only slows the simulation.

22

divide_elements

4.10 divide elements

• type: setup command.

• function: define how to subdivide certain beamline elements.

• notes:

– Any number of these commands may be given.

– Not effective unless given prior to run_setup.

– The element_divisions field in run_setup provides a simpler, but less flexible, method
of performing element division. At present, these element types may be divided: QUAD,
SBEN, RBEN, DRIF, SEXT.

– Only effective if given prior to the run_setup command.

• warnings:

– Using save_lattice and element divisions together will produce an incorrect lattice file.

– Element subdivision may produce unexpected results when used with load_parameters

or parameters saved via the parameter entry of the run_setup command. If you wish to
load parameters while doing element divisions or if you wish to load parameters from a
run that had element divisions in effect, you should not load length data for any elements
that are (or were) split. The name and item pattern features of load_parameters are
helpful in restricting what is loaded.

÷_elements

STRING name = NULL;

STRING type = NULL;

STRING exclude = NULL;

long divisions = 0;

double maximum_length = 0;

long clear = 0;

&end

• name — A possibly wildcard-containing string specifying the elements to which this specifi-
cation applies.

• type — A possibly wildcard-containing string specifying the element types to which this
specification applies.

• exclude — A possibily wildcard-containing string specifying elements to be excluded from
the specification.

• divisions — The number of times to subdivide the specified elements. If zero, then
maximum_length should be nonzero.

• maximum_length — The maximum length of a slice. This is usually preferrable to specifying
the number of divisions, particularly when the elements divided may be of different lengths.
If zero, then divisions should be nonzero.

• clear — If nonzero, all prior division specifications are deleted.

23

error_element

4.11 error element

• type: setup command.

• function: assert a random error defintion for the accelerator.

&error_element

STRING name = NULL;

STRING element_type = NULL;

STRING item = NULL;

STRING type = "gaussian";

double amplitude = 0.0;

double cutoff = 3.0;

long bind = 1;

long bind_number = 0;

longn bind_across_names = 0;

long post_correction = 0;

long fractional = 0;

long additive = 1;

STRING after = NULL;

STRING before = NULL;

&end

• name — The possibly wildcarded name of the elements for which errors are being specified.

• element_type — An optional, possibly wildcarded string giving the type of elements to which
the errors should be applied. E.g., element_type=*MON* would match all beam position
monitors. If this item is given, then name may be left blank.

• item — The parameter of the elements to which the error pertains.

• type — The type of random distribution to use. May be one of “uniform”, “gaussian”, or
“plus or minus”. A “plus or minus” error is equal in magnitude to the amplitude given, with
the sign randomly chosen.

• amplitude — The amplitude of the errors.

• cutoff — The cutoff for the random distribution.

• bind, bind_number, bind_across_names — These parameters control “binding” of errors
among elements, which means assigning the same error contribution to several elements.
This occurs if bind is nonzero; if bind is negative, then the sign of the error will alternate
between successive elements. bind_number can be used to limit the number of elements bound
together. In particular, if bind_number is positive, then a positive value of bind indicates
that bind_number successive elements having the same name will have the same error value.
Finally, by default, elegant only binds the errors of objects having the same name, even
if they are assigned errors by the same error_element command (i.e., through a wildcard
name). If bind_across_names is nonzero, then binding is done even for elements with different
names.

24

• post_correction — A flag indicating whether the errors should be added after orbit, tune,
and chromaticity correction.

• fractional — A flag indicating whether the errors are fractional, in which case the amplitude
refers to the amplitude of the fractional error.

• additive — A flag indicating that the errors should be added to the prior value of the
parameter. If zero, then the errors replace the prior value of the parameter.

• after — The name of an element. If given, the error is applied only to elements that follow
the named element in the beamline.

• before — The name of an element. If given, the error is applied only to elements that precede
the named element in the beamline.

25

error_control

4.12 error control

• type: setup command

• function: overall control of random errors.

&error_control

long clear_error_settings = 1;

long summarize_error_settings = 0;

STRING error_log = NULL;

&end

• clear_error_settings — Clear all previous error settings.

• summarize_error_settings — Summarize current error settings.

• error_log — The (incomplete) name of a SDDS file to which error values will be written.
Recommended value: “%s.erl”.

26

find_aperture

4.13 find aperture

• type: action command.

• function: find the aperture in (x, y) space for an accelerator.

&find_aperture

STRING output = NULL;

STRING search_output = NULL;

STRING boundary = NULL;

STRING mode = "many-particle";

double xmin = -0.1;

double xmax = 0.1;

double ymin = 0.0;

double ymax = 0.1;

long nx = 21;

long ny = 11;

long n_splits = 0;

double split_fraction = 0.5;

double desired_resolution = 0.01;

long verbosity = 0;

long assume_nonincreasing = 0;

&end

• output — The (incomplete) name of an SDDS file to send output to. Recommended value:
“%s.aper”.

• search_output — The (incomplete) name of an SDDS file for output of detailed information
on each tracked particle (single-particle mode only). Recommended value: “%s.apso”.

• boundary — The (incomplete) name of an SDDS file for the boundary points of the aperture
search. Recommended value: “%s.bnd”.

• xmin, xmax, ymin, ymax — Region of the aperture search.

• mode — May be “many-particle” or “single-particle”. Many-particle searching is much faster,
but does not allow interval splitting to search for the aperture boundary.

• nx — Number of x values to take in initial search.

• ny — Number of y values to take in search.

• n_splits — If positive, the number of times to do interval splitting. Interval splitting refers
to searching between the original grid points in order to refine the results.

• split_fraction — If interval splitting is done, how the interval is split.

• desired_resolution— If interval splitting is done, fraction of xmax-xmin to which to resolve
the aperture.

27

• assume_nonincreasing — If this variable is non-zero, the search assumes that the aperture
at y + sign(y) ∗ ∆y is no larger than that at y. This results in tracking of fewer particles but
may give a pessimistic result.

• verbosity — A larger value results in more printouts during computations.

28

floor_coordinates

4.14 floor coordinates

• type: action command.

• function: compute floor coordinates for an accelerator.

&floor_coordinates

STRING filename = NULL;

double X0 = 0.0;

double Z0 = 0.0;

double theta0 = 0.0;

long include_vertices = 0;

long vertices_only = 0;

long magnet_centers = 0;

&end

• filename — The (incomplete) name of an SDDS file to send output to. Recommended value:
“%s.flr”.

• X0, Z0, theta0 — Initial X, Z, and angle coordinate of the

• include_vertices — Flag that, if set, specifies including in the output the coordinates of
the vertices of bending magnets.

• vertices_only — Flag that, if set, specifies that output will contain only the coordinates of
the vertices of bending magnets.

• magnet_centers — Flag that, if set, specifies that output will contain the coordinates of the
centers of all magnets. By default, the coordinates of the downstream end are given.

29

frequency_map

4.15 frequency map

• type: action command. The number of turns tracked is set by the run_control command.

• function: compute frequency map from tracking

&frequency_map

STRING output = NULL;

double xmin = 1e-6;

double xmax = 0.1;

double ymin = 1e-6;

double ymax = 0.1;

long nx = 21;

long ny = 21;

long verbosity = 1;

long include_changes = 0;

&end

• output — The (incomplete) name of an SDDS file to send output to. Recommended value:
“%s.fma”.

• xmin, xmax — Limits of grid of initial x coordinates for tracking. xmin should typically be a
small, positive value so that there is some betatron oscillation from which to get the tune.

• ymin, ymax — Limits of grid of initial y coordinates for tracking. ymin should typically be a
small, positive value so that there is some betatron oscillation from which to get the tune.

• nx — Number of values of x coordinate in the grid.

• ny — Number of values of y coordinate in the grid.

• verbosity — If nonzero, prints possibly useful information while running.

• include_changes — If nonozero, then computes not only the tunes, but also the changes in
the tunes. It is recommended to leave this at the default value of 0, since the resolution of
the tunes is higher then.

30

link_control

4.16 link control

• type: setup command.

• function: overall control of element parameter links.

&link_control

long clear_links = 1;

long summarize_links = 0;

long verbosity = 0;

&end

• clear_links — Clear all previously set links.

• summarize_links — Summarize all current set links.

• verbosity — A larger value results in more output during computations.

31

link_elements

4.17 link elements

• type: setup command.

• function: assert a link between parameters of accelerator elements.

&link_elements

STRING target = NULL;

STRING exclude = NULL;

STRING item = NULL;

STRING source = NULL;

STRING source_position = "before";

STRING mode = "dynamic";

STRING equation = NULL;

&end

• target — The name of the elements to be modified by the link. May contain wild-cards.

• exclude — Wildcard sequence to match to element names. If a match is found, the element
is excluded from the link.

• item — The parameter that will be modified.

• source — The name of the elements to be linked to.

• source_position — May be one of “before”, “after”, “adjacent”, “nearest”, or “same-
occurrence”.

• mode — May be either “dynamic” or “static”. A dynamic link is asserted whenever the source
is changed (during correction, for example). A static link is asserted only when an error or
variation is imparted to the source, and at the end of correction.

• equation — An rpn equation for the new item value in terms of the item values for the source.
The prior value of the item is on the top of the stack. To refer to the source parameter values,
use the name of the parameters. These names must appear in capital letters.

32

load_parameters

4.18 load parameters

• type: setup command.

• function: load parameters for elements from an SDDS file.

&load_parameters

STRING filename = NULL;

STRING filename_list = NULL;

STRING include_name_pattern = NULL;

STRING exclude_name_pattern = NULL;

STRING include_item_pattern = NULL;

STRING exclude_item_pattern = NULL;

STRING include_type_pattern = NULL;

STRING exclude_type_pattern = NULL;

long change_defined_values = 0;

long clear_settings = 0;

long allow_missing_elements = 0;

long allow_missing_parameters = 0;

long force_occurence_data = 0;

long verbose = 0;

&end

• filename — Name (possibly containing the “of SDDS file from which to take data. The file
must contain some of the following columns:

– ElementName — Required string column. The name of the element to change.

– ElementParameter — Required string column. The name of the parameter of the element
to change.

– ParameterValue — Optional double column. If given, gives value of the parameter
named in ElementParameter for element named in ElementName.

– ParameterValueString — Optional string column. If ParameterValue is not present, then
this column must be present. The string data will be scanned, if necessary, to obtain a
value for the parameter.

– ParameterMode — Optional string column. If given, for each row the value must be
one of “absolute”, “differential”, “ignore”, or “fractional”. The meaning of these modes
is as follows: absolute mode means the given value is used as the new value for the
parameter; differential mode means the given value is added to the existing value for the
parameter; ignore mode means the value is ignored; fractional mode means the existing
value is increased by the product of the given value and the existing value (i.e., the given
value is a fractional change).

Unless change_defined_values is set, successive pages of the file are used for successive steps
of the simulation. Several elegant commands generate output that may be used (on a sub-
sequent run) with load_parameters; among these are the tune and chromaticity correction
commands and the run_setup command (parameters output).

33

• filename_list — A list of filenames, which may be given in place of filename. If used, each
file in the list is treated as if it was separately supplied with an individual load_parameters
command.

• include_name_pattern, exclude_name_pattern — Wildcard patterns to be used in select-
ing, respectively, which elements to include and which to exclude from loading.

• include_item_pattern, exclude_item_pattern — Wildcard patterns to be used in select-
ing, respectively, which items (i.e., which element parameters) to include and which to exclude
from loading.

• include_type_pattern, exclude_type_pattern — Wildcard patterns to be used in select-
ing, respectively, which element types (e.g., QUAD, DRIFT) to include and which to exclude
from loading.

• change_defined_values — Changes the defined values of the parameters. This means that
when the lattice is saved (using save_lattice), the parameters will have the altered values.
Also, if one wants to alter the values for all steps of the simulation, one must set this flag.

Note that the ElementOccurence data is normally ignored if change_defined_values is
nonzero. This is because there is only one definition of each element, even if it is used
multiple times. This behavior can be altered with the next control.

• force_occurence_data— If set, then occurence data is used even in change_defined_values

mode.

• clear_settings — If set, clear all settings and files being used for loading parameters.

• allow_missing_elements — If set, allow elements in the file that are not in the lattice. In
this case, the nonapplicable data is simply ignored.

• allow_missing_parameters — If set, it is not an error if any element in the lattice lacks a
parameter that exists in the file.

• verbose — If set, provide informational printouts about changes to parameters.

34

matrix_output

4.19 matrix output

• type: setup/action command.

• function: generate matrix output, or set up to do so later.

&matrix_output

STRING printout = NULL;

long printout_order = 1;

long full_matrix_only = 0;

STRING SDDS_output = NULL;

long SDDS_output_order = 1;

STRING SDDS_output_match = NULL;

long output_at_each_step = 0;

STRING start_from = NULL;

long start_from_occurrence = 1;

&end

• printout — The (incomplete) name of a file to which the matrix output will be printed (as
text). Recommended value: “%s.mpr”.

• printout_order — The order to which the matrix is printed.

• full_matrix_only — A flag indicating that only the matrix of the entire accelerator is to
be output.

• SDDS_output — The (incomplete) name of an SDDS file to which the matrix will be written.
Recommended value: “%s.mat”.

• SDDS_output_order — The order to which the matrix is output in SDDS format.

• SDDS_output_match — A wildcard string which element names must match in order for data
to appear in the SDDS output file.

• output_at_each_step — A flag indicating whether matrix output is desired at every simu-
lation step.

• start_from — The optional name of the accelerator element from which to begin concate-
nation and output.

• start_from_occurrence — If start_from is not NULL, the number of the occurrence of
the named element from which to start.

35

optimize

4.20 optimize

• type: action command.

• function: perform optimization.

• note: on UNIX systems, the user may press Control-C to force elegant to terminate op-
timization and proceed as if optimization had converged. (To genuinely terminate the run
during optimization press Control-C twice.) This is very useful if one wants to get a look at
the partially optimized result. If one uses parameter saving (run_setup) or save_lattice

one can make a new run that starts from the optimized result.

&optimize

long summarize_setup = 0;

&end

• summarize_setup — A flag indicating, if set, that a summary of the optimization parameters
should be printed.

36

optimization_constraint

4.21 optimization constraint

• type: setup command.

• function: define a constraint for optimization.

• note: This command is not recommended. It is better to put constraints into the optimization
equation (via the equation parameter of optimization_setup or via optimization_term).
The reason is that the hard constraints imposed by optimization_constraint may make it
more difficult for the optimizer to converge.

&optimization_constraint

STRING quantity = NULL;

double lower = 0;

double upper = 0;

&end

• quantity — The quantity to be constrained, given as an rpn expression in terms of the
optimization variables, the optimization covariables, and and the “final” parameters (see the
entry for run_setup for the last of these). The optimization (co)variables are referred to as
<element-name>.<parameter-name>, in all capital letters.

• lower, upper — The lower and upper limits allowed for the expression.

37

optimization_covariable

4.22 optimization covariable

• type: setup command.

• function: define an element parameter to be varied as a function of optimization parameters.

&optimization_covariable

STRING name = NULL;

STRING item = NULL;

STRING equation = NULL;

long disable = 0;

&end

• name — The name of the element.

• item — The parameter of the element to be changed.

• equation — An rpn equation for the value of the parameter in terms of the values of any
parameters of any optimization variable. These latter appear in the equation in the form
<element-name>.<parameter-name>, in all capital letters.

• disable — If nonzero, the covariable is ignored.

38

optimization_setup

4.23 optimization setup

• type: setup command.

• function: define overall optimization parameters and methods.

&optimization_setup

STRING equation = NULL;

STRING mode = "minimize";

STRING method = "simplex";

double tolerance = -0.01;

double target = 0;

long soft_failure = 1;

long n_passes = 2;

long n_evaluations = 500;

long n_restarts = 0;

long matrix_order = 1;

STRING log_file = NULL;

long output_sparsing_factor = 0;

long balance_terms = 0;

double restart_worst_term_factor = 1;

long restart_worst_terms = 1;

&end

• equation — An rpn equation for the optimization function, expressed in terms of any param-
eters of any optimization variables and the “final” parameters of the beam (as recorded in the
final output file available in the run_setup namelist). The optimization variables or covari-
ables may appear in the equation in the form <element-name>.<parameter-name>, all in cap-
ital letters. Data from MARK elements with FITPOINT=1 may be used via symbols of the
form <element-name>#<occurrence-number>.<parameter-name>, where <parameter-name>
can be a Twiss parameter name (if the twiss command was given), a floor coordinate name
(if the floor command was given, or a beam-size or centroid name. The parameter names are
the same as those used in the corresponding output files. Beam sizes and centroids are from
tracking the particle distribution.

If the twiss command was given, one may also refer to statistics of Twiss parameters in the
form <statistic>.<parameter-name>, where <statistic> is either min or max. One may
also use the symbols nux, dnux/dp, (and corresponding symbols for y), alphac, and alphac2.
These are the tune, chromaticity, and first- and second- order momentum compaction factors.
The final values of the Twiss parameters are referred to simply as betax, etax, etc.

If the twiss command was given and radiation integral computation was requested, one may
use ex0 and Sdelta0 for the equilibrium emittance and momentum spread, plus J<plane>

and tau<plane> for the damping partition and damping time, where <plane> is x, y, or
delta.

If the floor_coordinates command was given, one may use X, Z, and theta to refer to the
final values of the floor coordinates.

39

If the sasefel command was given, one may use variables of the form SASE.<property>,
where <property> is one of gainLength, saturationLength, saturationPower, or lightWavelength.

Finally, one may use any of the names from the “final” output file (see run_setup), e.g., Sx
(x beamsize) or eny (y normalized emittance). These refer to tracked properties of the beam.

The equation may be left blank, in which case the user must give one or more optimization_term
commands. These use the same symbols, of course.

There are several rpn functions that are useful in constructing a good optimization equation.
These are “soft-edge” greater-than, less-than, and not-equal functions, which have the names
segt, selt, and sene, respectively. The usage is as follows:

– V1 V2 T segt. Returns a nonzero value if and only if value V2 is greater than V1.
The returned value is ((V1 − V2)/T)2. Typically used to constraint a quantity from
above. E.g., to limit the maximum horizontal beta function to 10m with a tolerance of
T = 0.1m, one would use max.betax 10 .1 segt.

– V1 V2 T selt. Returns a nonzero value if and only if value V2 is less than value V1.
The returned value is ((V1 − V2)/T)2.

– V1 V2 T sene. Returns a nonzero value if and only if V1 and V2 differ by more than
tol. If V1 > V2, returns ((V1 − (V2 + T))/T)2. If V2 > V1, returns ((V2 − (V1 + T))/T)2.

• mode — May be either “minimize” or “maximize”.

• method — May be one of “simplex”, “grid”, “powell”, “randomwalk”, “randomsample”, or
“sample”. Recommended methods are “simplex” and “randomwalk”. The latter is very useful
when the lattice is unstable or nearly so.

• tolerance — The convergence criterion for the optimization, with a negative value indicating
a fractional criterion.

• target — The value which, if reached, results in immediate termination of the optimization,
whether it has converged or not.

• soft_failure — A flag indicating, if set, that failure of an optimization pass should not
result in termination of the optimization.

• n_evaluations— The number of allowed evaluations of the optimization function. If simplex
optimization is used, this is the number of allowed evaluations per pass.

• n_passes — The number of optimization passes made to achieve convergence (“simplex”
only). A pass ends (roughly) when the number of evaluations is completed or the function
doesn’t change within the tolerance. A new pass involves starting the optimization again using
step sizes determined from the range of the simplex and the factor simplex_pass_factor.

• n_restarts — The number of complete restarts of the optimization (simplex only). This is
an additional loop around the n_passes loop. The difference is that a restart involves using
the optimized result but the original step sizes. It is highly recommended that this feature
be used if convergence problems are seen.

• restart_worst_term_factor, restart_worst_terms — Often when there are convergence
problems, it is because a few terms are causing difficulty. Convergence can often be obtained
by increasing the weighting of these terms. If restart_worst_term_factor is positive, then

40

elegant will multiply the weight of the restart_worst_terms largest terms by this factor
at the beginning of a restart.

• matrix_order — Specifies the highest order of matrix elements that should be available for
fitting. Elements up to third order are available for the terminal point of the beamline, and
up to secod order for interior fit points. Names for first-, second-, and third-order elements
are of the form Rij, Tijk, and Uijkl.

• log_file — A file to which progress reports will be written as optimization proceeds. For
SDDS data, use the final output file from the run_setup namelist.

• output_sparsing_factor — If set to a value larger than 0, results in sparsing of output to
the “final” file (see run_setup). This can make a significant difference in the optimization
speed.

41

optimization_term

4.24 optimization term

• type: setup command.

• function: define optimization equation via individual terms

&optimization_term

STRING term = NULL;

double weight = 1.0;

&end

• term— An rpn expression giving one term to be optimized. If more than one optimization_term
command is given, then the terms are added. The advantage of using this command over
giving an equation via optimization_setup is that elegant will report the value of each
term as it performs the optimization (if a log_file is given to optimization_setup). This
permits determination of which terms are causing problems for the optimization.

Please see the entry for equation under optimization setup for details on designing opti-
mization terms.

• weight — The weight to assign to this term. If zero, the term is ignored.

42

optimization_variable

4.25 optimization variable

• type: setup command.

• function: defines a parameter of an element to be used in optimization.

&optimization_variable

STRING name = NULL;

STRING item = NULL;

double lower_limit = 0;

double upper_limit = 0;

double step_size = 1;

long disable = 0;

&end

• name — The name of the element.

• item — The parameter of the element to be varied.

• lower_limit, upper_limit — The lower and upper limits allowed for the parameter. If these
are equal, the range of the parameter is unlimited.

• step_size — The initial step size (“simplex” optimization) or the grid size in this dimension
(“grid” or “sample” optimization).

• disable — If nonzero, the covariable is ignored.

43

print_dictionary

4.26 print dictionary

• type: action command.

• function: print dictionary of supported accelerator elements.

&print_dictionary

STRING filename = NULL;

&end

• filename — The name of a text file to which the dictionary will be printed.

44

rpn_expression

4.27 rpn expression

• type: action/setup command.

• function: pass an expression directly to the rpn submodule for execution.

&rpn_expression

STRING expression = NULL;

&end

• expression — An rpn expression. This expression is executed immediately and can be used,
for example, to read in rpn commands from a file or store values in rpn memories.

45

run_control

4.28 run control

• type: setup command.

• function: set up the number of simulation steps and passes.

&run_control

long n_steps = 1;

double bunch_frequency = 0;

long n_indices = 0;

long n_passes = 1;

long reset_rf_for_each_step = 1;

long first_is_fiducial = 0;

long restrict_fiducialization = 0;

&end

• n_steps — The number of separate repetitions of the action implied by the next action
command. If random errors are defined, this is also the number of separate error ensembles.

• bunch_frequency — The frequency to use in calculating the time delay between repetitions.

• n_indices — The number of looping indices for which to expect definitions in subsequent
vary_element commands. If nonzero, then n_steps is ignored.

• n_passes — The number of passes to make through the beamline per repetition.

• reset_rf_for_each_step — If nonzero, the rf phases are established anew for each bunch
tracked. Should be zero to simulate phase and timing jitter.

• first_is_fiducial — If nonzero, the first bunch seen is taken to establish the reference
phases and momentum profile. If zero, each bunch is treated as a new fiducializing bunch.

• restrict_fiducialization— If nonzero, then momentum profile fiducialization occurs only
after elements that are intended change the momentum, such as rf cavities. If zero, then each
element is fiducialized to the average momentum of the beam.

46

run_setup

4.29 run setup

• type: setup command.

• function: set global parameters of the simulation and define primary input and output files.

&run_setup

STRING lattice = NULL;

STRING use_beamline = NULL;

STRING rootname = NULL;

STRING output = NULL;

STRING centroid = NULL;

STRING sigma = NULL;

STRING final = NULL;

STRING acceptance = NULL;

STRING losses = NULL;

STRING magnets = NULL;

STRING semaphore_file = NULL;

STRING parameters = NULL;

long combine_bunch_statistics = 0;

long wrap_around = 1;

long default_order = 2;

long concat_order = 0;

long print_statistics = 0;

long random_number_seed = 987654321;

long correction_iterations = 1;

double p_central = 0.0;

double p_central_mev = 0.0;

STRING expand_for = NULL;

long tracking_updates = 1;

long echo_lattice = 0;

STRING search_path = NULL;

long element_divisions = 0;

&end

• lattice — Name of the lattice definition file.

• echo_lattice — If nonzero, the lattice input is echoed to the standard output as the lattice
is parsed. This can help detect certain problems with the lattice that cause elegant to crash.

• use_beamline — Name of the beamline to use.

• rootname — Filename fragment used in forming complete names from incomplete filenames.
By default, the filename minus extension of the input file is used.

• output — The (incomplete) name of an SDDS file into which final phase-space coordinates
will be written. Recommended value: “%s.out”.

47

• centroid — The (incomplete) name of an SDDS file into which beam centroids as a function
of s will be written. Recommended value: “%s.cen”.

• sigma — The (incomplete) name of an SDDS file into which the beam sigma matrix as a
function of z will be written. Recommended value: “%s.sig”.

• final — The (incomplete) name of an SDDS file into which final beam and transport pa-
rameters will be written. Recommended value: “%s.fin”.

• acceptance — The (incomplete) name of an SDDS file into which the initial coordinates of
transmitted particles will be written. Recommended value: “%s.acc”.

• losses — The (incomplete) name of an SDDS file into which information on lost particles
will be written. Recommended value: “%s.lost”.

• magnets — The (incomplete) name of an SDDS file into which a magnet layout representation
will be written. Recommended value: “%s.mag”.

• semaphore_file — The (incomplete) name of file that will be created just before exit from
the program, but only if no errors occured. If the file exists, it is deleted. This file can be
used to record the fact that the run completed without error.

• parameters — The (incomplete) name of an SDDS file into which parameters of accelerator
elements are written.

• combine_bunch_statistics — A flag indicating whether to combine statistical information
for all simulation steps. If non-zero, then the sigma and centroid data will be combined
over all simulation steps.

• wrap_around — A flag indicating whether the z coordinate should wrap-around or increase
monotonically in multipass simulations.

• default_order — The default order of transfer matrices used for elements having matrices.

• concat_order — If non-zero, the order of matrix concatenation used.

• print_statistics — A flag indicating whether to print information as each element is
tracked.

• random_number_seed — A seed for the random number generators. If zero, a seed will be
generated from the system clock.

• correction_iterations — Number of iterations of tune and chromaticity correction.

• p_central — Central momentum of the beamline, about which expansions are done. This is
βγ.

• p_central_mev — Central momentum of the beamline in MeV/c, about which expansions
are done. Ignored if p_central is nonzero.

• expand_for — Name of an SDDS file containing particle information, from which the central
momentum will be set. The file contents are the same as required for elegant input with the
sdds_beam namelist.

48

• tracking_updates — A flag indicating whether to print summary information about track-
ing.

• search_path — Specify a list of pathnames in which to look for input files, including lat-
tice files, wakefield input, particle input, etc. This allows storing common input files in a
convenient location without having to put the location into every filename.

• element_divisions— Specify how many pieces to split elements into. Only certain elements
(basically, those with a matrix) are split. Results in creation of element_divisions new
elements having the same name as each split element.

49

sasefel

4.30 sasefel

• type: setup/action command.

• function: set parameters for computation of SASE FEL gain and other properties.

&sasefel

STRING output = NULL;

STRING model = "Ming Xie";

double beta = 0;

double undulator_K = 3.1;

double undulator_period = 0.033;

double slice_fraction = 0.0;

long n_slices = 0;

&end

• output — The (incomplete) filename of an SDDS file to which output will be written.

• model — The name of the FEL model used. At present, only one model is supported; the
“Ming-Xie” model is based on the simple parametrization M. Xie[13].

• beta — The value of the beta function, in meters.

• undulator_K — The K parameter of the undulator.

• undulator_period — The undulator period, in meters.

• slice_fraction, n_slices— The fraction of beam beam contained by each analysis slice and
the number of such slices. By default, no slice analysis is done. Instead, the beam is analyzed
only as a whole. If slice_fraction*n_slices is less than 1, then the slice analysis is centered
on the median of the time distribution. E.g., if n_slices=1 and slice_fraction=0.1, then
the central 10% of the beam would be analyzed. More typically, one gives values such that
slice_fraction*n_slices is equal to 1, so that every part of the beam is analyzed. There
are separate values in the output file for each slice, plus the whole-beam and slice-averaged
results.

50

save_lattice

4.31 save lattice

• type: action command.

• function: save the current accelerator element and beamline definitions.

&save_lattice

STRING filename = NULL;

&end

• filename — The (incomplete) name of a file to which the element and beamline definitions
will be written. Recommended value: “%s.new”.

51

sdds_beam

4.32 sdds beam

• type: setup command.

• function: set up for tracking of particle coordinates stored in an SDDS file.

&sdds_beam

STRING input = NULL;

STRING iput_list = NULL;

STRING input_type = "elegant";

long n_particles_per_ring = 0;

STRING selection_parameter = NULL;

STRING selection_string = NULL;

long one_random_bunch = 0;

long reuse_bunch = 0;

long prebunched = 0;

long sample_interval = 1;

long n_tables_to_skip = 0;

long center_transversely = 0;

long center_arrival_time = 0;

double sample_fraction = 1;

double p_lower = 0.0;

double p_upper = 0.0;

long save_initial_coordinates = 1;

long reverse_t_sign = 0;

&end

• input — Name of an SDDS file containing coordinates of input particles.

• input_type — May be “elegant” or “spiffe”, indicating the name of the program that wrote
the input file. The expected data quantities for the different types are:

– elegant: (x, xp, y, yp, t,p), where x and y are in meters, xp = x′ and xp = y′ are dimen-
sionless, t is in seconds, and p = βγ is the dimensionless momentum.

– spiffe: (r, z,pr,pz,pphi, t), where r and z are in meters, pr = βrγ, pz = βzγ, pφ = ωrγ/c,
and t is in seconds.

• n_particles_per_ring — For spiffe data, gives the number of particles to generate for
each ring of charge.

• selection_parameter — The name of a parameter in the SDDS file to be used for selection
of pages of data.

• selection_string — The value of the selection_parameter selection parameter required
for a page to be used. E.g., if one has a file from the shower program containing positrons,
electrons, and photons, one might want to select only the positrons.

• one_random_bunch — A flag indicating whether, for spiffe data, a new random distribution
should be calculated for each step of the simulation.

52

• prebunched — A flag indicating, if zero, that the entire file is one “bunch,” and otherwise
that each page in the file is a different bunch.

• sample_interval — If non-zero, only every sample_intervalth particle is used.

• n_tables_to_skip — Number of SDDS pages to skip at the beginning of the file.

• center_transversely — If non-zero, the transverse centroids of the distribution are made
to be zero.

• center_arrival_time — If non-zero, the mean arrival time of particles at the start of the
accelerator is set to zero.

• sample_fraction — If non-unity, the randomly selected fraction of the distribution to use.

• p_lower, p_upper — If different, the lower and upper limit on βγ of particles to use.

• save_initial_coordinates — A flag that, if set, results in saving initial coordinates of
tracked particles in memory. This is the default behavior. If unset, the initial coordinates are
not saved, but are reread from disk each time they are needed. This is more memory efficient
and is useful for tracking very large numbers of particles.

53

semaphores

4.33 semaphores

• type: setup command.

• function: set up names for semaphore files, which are used to mark the start and end of
program execution.

&semaphores

STRING started = ‘‘%s.started’’;

STRING done = ‘‘%s.done’’;

&end

• started — Gives the (incomplete) filename of a file to create when a valid run setup com-
mand is given.

• done — Gives the (incomplete) filename of a file to create when the program exits without
error. If the file exists, it is deleted when a valid run setup command is given.

54

slice_analysis

4.34 slice analysis

• type: setup command.

• function: set parameters for slice analysis of the beam along a beamline. Also, results in
placing the final slice analysis (at the end of the beamline) in symbols for use in optimization
equations. The names of the symbols are the same as the names of the columns in the output
file.

&slice_analysis

STRING output = NULL;

long n_slices = 0;

double s_start = 0;

double s_end = 1e300;

long final_values_only = 0;

&end

• output — The (incomplete) filename of the output file. Recommended value is “

• n_slices — Number of slices to use.

• s_start, s_end — Position in beamline at which to start and stop performing slice analysis.

• final_values_only — If nonzero, then slice quantities are computed only at the end of the
beamline.

55

subprocess

4.35 subprocess

• type: action command.

• function: execute a system command in a shell.

&subprocess

STRING command = NULL;

&end

• command — The text of the command to execute. The command may use the sequence “A
literal “

56

steering_element

4.36 steering element

• type: setup command.

• function: setup for use of a given parameter of a given element as a steering corrector.

• N.B.: any use of this command disables the built-in definition of HKICK, VKICK, and
HVKICK elements as steering elements. For trajectory correction, this facility works without
any effort by the user. It will not work for orbit correction unless the user does two things:
First, all correction elements for each plane must be the same. Second, the gain must be less
than the ratio of the angle kick to unit parameter change for the element.

&steering_element

STRING name = NULL;

STRING element_type = NULL;

STRING item = NULL;

STRING plane = "h";

double tweek = 1e-3;

double limit = 0;

&end

• name — Optional: the (possibly wild-carded) name of the element to add to the steering list.
If not given, then element_type must be given.

• element_type — Optional: the (possibly wild-carded) name of the element type to add to
the steering list. If not given, then name must be given.

• item — The parameter of the element to be varied.

• plane — May be either “h” or “v”, for horizontal or vertical correction.

• tweek — The amount by which to change the item to compute the steering strength.

• limit — The maximum allowed absolute value of the item.

57

transmute_elements

4.37 transmute elements

• type: setup command.

• function: Changes the type of selected elements, which may be used to turn off unneeded
diagnostics and speed up tracking when concatenation is being used.

• notes:

– Any number of these commands may be given.

– Not effective unless given prior to run_setup.

– The only property of the original element that is preserved is the length. For example,
transmuting a SBEN into a CSBEN will not have the expected result.

&transmute_elements

STRING name = NULL,

STRING type = NULL,

STRING exclude = NULL,

STRING new_type = "DRIF",

long disable = 0;

long clear = 0;

&end

• name — Possibily wild-card containing string specifying the elements to which the transmu-
tation specification is to be applied.

• type — Possibily wild-card containing string specifying the element types to which the trans-
mutation specification is to be applied.

• exclude — Possibily wild-card containing string specifying elements to be excluded from the
specified transmutation. Does not affect elements transmuted due to other specifications.

• new_type — Type into which specified elements will be transmuted.

• disable — If nonzero, the command is ignored.

• clear — If nonzero, all prior transmutation specifications are deleted.

58

twiss_analysis

4.38 twiss analysis

• type: setup command.

• function: analyze Twiss parameters within a user-defined region for purposes of optimization.

&twiss_analysis

STRING start_name = NULL;

STRING end_name = NULL;

double s_start = -1;

double s_end = -1;

STRING tag = NULL;

long clear = 0;

&end

• start_name — Name of the element at which to start analysis. If the element occurs more
than once, the first occurrence is used.

• end_name — Name of the element at which to end analysis. If the element occurs more than
once, the first occurrence is used.

• s_start — Position (in meters) at which to start analysis.

• s_end — Position (in meters) at which to end analysis.

• tag — Name prefix for quantities computed by the analysis. The quantity names will have
the form tag.statistic.quantity, where statistic is one of min, max, and ave, and quantity is one
of betax, betay, etax, and etay. E.g., if tag is region1, then one could use expressions like
region1.max.betax in optimization.

• clear — If nonzero, all previously defined analysis regions are deleted.

59

twiss_output

4.39 twiss output

• type: action/setup command.

• function: compute and output uncoupled Twiss parameters, or set up to do so.

&twiss_output

STRING filename = NULL;

long matched = 1;

long output_at_each_step = 0;

long output_before_tune_correction = 0;

long final_values_only = 0;

long statistics = 0;

long radiation_integrals = 0;

long concat_order = 3;

long higher_order_chromaticity = 0;

long higher_order_chromaticity_points = 5;

double higher_order_chromaticity_range = 4e-4;

double chromatic_tune_spread_half_range = 0;

double beta_x = 1;

double alpha_x = 0;

double eta_x = 0;

double etap_x = 0;

double beta_y = 1;

double alpha_y = 0;

double eta_y = 0;

double etap_y = 0;

STRING reference_file = NULL;

STRING reference_element = NULL;

long reference_element_occurrence = 0;

&end

• filename — The (incomplete) name of an SDDS file to which the Twiss parameters will be
written. Recommended value: “%s.twi”.

• matched — A flag indicating, if set, that the periodic or matched Twiss parameters should
be found.

• output_at_each_step — A flag indicating, if set, that output is desired at each step of the
simulation.

• output_before_tune_correction — A flag indicating, if set, that output is desired both
before and after tune correction.

• final_values_only — A flag indicating, if set, that only the final values of the Twiss pa-
rameters should be output, and not the parameters as a function of s.

• statistics — A flag indicating, if set, that minimum, maximum, and average values of
Twiss parameters should be computed and included in output.

60

• radiation_integrals— A flag indicating, if set, that radiation integrals should be computed
and included in output. N.B.: Radiation integral computation is not correct for systems with
vertical bending, nor does it take into account coupling.

• beta_X, alpha_X, eta_X, etap_X — If matched is zero, the initial values for the X plane.

• concat_order — Order of matrix concatenation to use for determining matrix for computa-
tion of Twiss parameters. Using a lower order will result in inaccuracy for nonlinear lattices
with orbits and/or momentum errors. However, for on-momentum conditions with zero orbit,
it is much faster to use concat_order=1.

• higher_order_chromaticity — If nonzero, requests computation of the second- and third-
order chromaticity. To obtain reliable values, the user should use concat_order=3 in this
namelist and the highest available order for all beamline elements. elegant computes the
higher-order chromaticity by finding the trace of off-momentum matrices obtained by con-
cantenation of the matrix for higher_order_chromaticity_points values of δ over the full
range higher_order_chromaticity_range.

• chromatic_tune_spread_half_range— Half range of δ for which the chromatic tune spread
is computed. The results are available in for optimization and in the twiss output file under
the names nuxChromUpper, nuxChromLower, and similarly for the y plane. This computation
uses the chromaticities.

• reference_file — If given, the name of a file from which twiss parameter data will be taken
to give the starting values. Ignored if matched is nonzero. The file should have the beta and
alpha functions with the same names as the file created by this command.

• reference_element — Element in reference_file at which to take the twiss parameter
values. If not given, the values at the last element in reference_file are used.

• reference_element_occurrence — Ignored if reference_element is not given. Otherwise,
the occurence number of reference_element to use. If 0, the last occurence is used.

The output file from this command contains the following columns, giving values of quantities
at the exit of each element, unless otherwise noted.

• s — The arc length.

• ElementName — The name of the element.

• ElementType — The type name of the element.

• betax and betay — The horizontal and vertical beta functions.

• alphax and alphay — The horizontal and vertical alpha functions, where α = − dβ
2ds .

• psix and psiy — The horizontal and vertical betatron phase advance in radians.

• etax and etay — The horizontal and vertical dispersion functions.

• etaxp and etayp — The slopes of the horizontal and vertical dispersion functions.

• xAperture and yAperture — The horizontal and vertical apertures. If undefined, will have
a value of 0.

61

• pCentral0 — The central momentum (βγ) at the entrance to the element.

• dIn — Contribution to radiation integral In. Radiation integrals take account of horizontal
bending only.

The output file contains the following parameters. Note that chromatic quantities depend on the
order settings of the individual elements, the default order (in run_setup), and the concatenation
order given in the twiss_output command. These quantities pertain to the end of the lattice or
to the lattice as a whole.

• nux and nuy — The horizontal and vertical tunes.

• dnux/dp and dnuy/dp — The horizontal and vertical chromaticities, defined as dν/dδ.

• dnux/dp2 and dnuy/dp2 — The horizontal and vertical 2nd-order chromaticities, defined as
d2ν/dδ2. Will be zero if higher_order_chromaticity is zero.

• dnux/dp3 and dnuy/dp3 — The horizontal and vertical 3rd-order chromaticities, defined as
d3ν/dδ3. Will be zero if higher_order_chromaticity is zero.

• Ax and Ay — The horizontal and vertical acceptance. These will be zero if no apertures are
defined.

• dbetax/dp and dbetay/dp — Chromatic derivatives of the horizontal and vertical beta func-
tions, defined as dβ

dδ .

• etax2, etax3, etay2, etay3 — Higher order dispersion in the horizontal and vertical planes.
For example, for the horizontal plane, the closed orbit at the end of the lattice depends on δ
according to x = ηxδ + ηx2δ

2 + ηx3δ
3. This differs from the chromaticity expansion, which is

given in terms of successive derivatives of ν(δ).

• dnux/dAx, dnux/dAy, dnuy/dAx, dnuy/dAy — Tune shifts with amplitude. These will be zero
unless the tune_shift_with_amplitude command is given.

• alphac, alphac2 — First- and second-order momentum compaction. The path length is
s = so + αcδ + αc2δ

2.

• In — The nth radiation integral.

• taux, tauy, taudelta — Radiation damping times for x, y, and δ.

• Jx, Jy, Jdelta — Damping partition factors for x, y, and δ.

• ex0, enx0 — Horizontal equilibrium geometric and normalized emittances.

• Sdelta0 — Equilibrium fractional rms energy spread.

• U0 — Energy loss per turn.

N.B.: the higher-order dispersion and higher-order chromaticity are computed using the con-
catenated third-order matrix. However, elegant only has third-order matrices for three elements:
alpha magnets, quadrupoles, and sextupoles. This may be acceptable if any dipoles (for example)
have large bending radius. Users who are concerned about these effects should perform off-energy

62

tracking using canonical elements (i.e., CSBEND, KQUAD, KSEXT, and MULT), which include
energy dependence to all orders.

Also, note that by default all elements are computed to second order only. You must change
the default_order parameter on run_setup to 3 in order to use the third-order matrices for
alpha magnets, quadrupoles, and sextupoles. You may also use the ORDER parameter on individual
element definitions.

63

track

4.40 track

• type: action command.

• function: track particles.

&track

long center_on_orbit = 0;

long center_momentum_also = 1;

long offset_by_orbit = 0;

long offset_momentum_also = 1;

long soft_failure = 1;

long use_linear_chromatic_matrix = 0;

long longitudinal_ring_only = 0;

&end

• center_on_orbit — A flag indicating whether to center the beam transverse coordinates on
the closed orbit before tracking.

• center_momentum_also — A flag indicating whether to center the momentum coordinate
also.

• offset_by_orbit — A flag indicating whether to offset the transverse beam coordinates by
the closed orbit before tracking. Similar to center_on_orbit, but the initial centroids of
the beam are preserved. The beam is simply displaced by the closed orbit rather than being
centered on it.

• offset_momentum_also— A flag indicating whether to also offset the beam momentum to the
momentum of the closed orbit. If the start_from_centroid or start_from_dp_centroid

parameters are used on the closed_orbit command, this flag should be set to 0; otherwise,
one will offset the beam central momentum by its own value.

• soft_failure — If there is an error during tracking (e.g., a failure of orbit correction),
continue to produce file output. This creates essentially empty slots in the files corresponding
to the failed steps.

• use_linear_chromatic_matrix— For each particle, a first-order matrix is computed for the
particular momentum offset of the particle using the linear chromaticity and linear dependence
of the beta functions on momentum.

• longitudinal_ring_only — Tracks longitudinal coordinates only for a ring.

64

tune_shift_with_amplitude

4.41 tune shift with amplitude

• type: setup command.

• function: prepare for computation of tune shifts with amplitude.

• note: must be given prior to the twiss_output command.

• method: tune shifts with amplitude are computed via tracking a series of particles at different
amplitudes or by a matrix method. NAFF is used to determine the tunes from the tracking
data. It is the user’s responsbility to optimize the parameters to ensure that results are
reasonable. Using tracking to determine tune shifts is more accurate than analytical methods
as it includes multi-turn effects that are important in some rings (e.g., the APS).

&tune_shift_with_amplitude

long turns = 2048;

double x0 = 1e-6;

double y0 = 1e-6;

double x1 = 3e-4;

double y1 = 3e-4;

long grid_size = 6;

long sparse_grid = 0;

long spread_only = 0;

double nux_roi_width = 0.02;

double nuy_roi_width = 0.02;

double scale_down_factor = 2;

double scale_up_factor = 1.05;

double scale_down_limit = 0.01;

double scale_up_limit = 1e-4;

long scaling_iterations = 10;

long use_concatenation = 0;

long verbose = 0;

long order = 2;

STRING tune_output = NULL;

&end

• turns — The number of turns to track. If zero, then the concatenated matrix is used instead
of tracking, and all other parameters of this command are irrelevant. The matrix method
doesn’t work well with all lattices. The order of the concatenated matrix is given by the
concat_order control in twiss_output.

• x0, y0 — The initial x and y amplitudes to use for determining the small-amplitude tunes.

• x1, y1 — The initial x and y amplitudes to user for determining the tune shifts. These values
should be small enough to ensure linearity in the tune shift.

• grid_size — Size of the grid of points in x and y.

• sparse_grid — If nonzero, then instead of a full set of grid_size2 particles, a sparse grid
of particles is tracked. Will save time at some expense in accuracy.

65

• spread_only — Compute the tune spread only and don’t bother with the tune shift coeffi-
cients. These tune spreads can be optimized and appear in the twiss output file under the
names nuxTswaLower, nuxTswaUpper, and similarly for the y plane. This is the recommended
way to reduce tune shift with amplitude, as the tune spread is more reliable than the coef-
ficients of the expansion. (Particles that get lost are automatically ignored in both types of
computations.)

• nux_roi_width, nuy_roi_width — Widths of the region of interest for x and y tunes. As
the grid is filled in, elegant finds the tune for each tracked particle on the grid. Successive
tune values are looked for in the region of the given width around the previous tune value.
This prevents jumping from the main tune peak to another peak, which can happen when
the tune spectrum has many lines.

• scale_down_factor, scale_up_factor, scale_down_limit, scale_up_limit, scaling_iterations
— These control automatic scaling of the amplitudes. If elegant sees a tune shift larger than
scale_down_limit it will decrease x0 (or y0) by the factor scale_down_factor. If elegant
sees a tune shift smaller than scale_up_limit it will increase x0 (or y0) by the factor
scale_up_factor. Suggestion: if you find yourself playing with these values and the initial
amplitudes in order to get reliable TSWA coefficients, try just using the tune spread.

• verbose — If nonzero, information about the progress of the algorithm is printed to the
screen.

• use_concatenation — If nonzero, then tracks with the concatenated matrix instead of
element-by-element. The order of the concatenated matrix is given by the concat_order

control in twiss_output. The user should experiment with this option to see if the results
are reliable for a particular lattice.

66

vary_element

4.42 vary element

• type: setup command.

• function: define an index and/or tie a parameter of an element to it.

&vary_element

long index_number = 0;

long index_limit = 0;

STRING name = NULL;

STRING item = NULL;

double initial = 0;

double final = 0;

long differential = 0;

long multiplicative = 0;

long geometric = 0;

STRING enumeration_file = NULL;

STRING enumeration_column = NULL;

&end

• index_number — A non-negative integer giving the number of the index.

• index_limit — A positive integer giving the number of values the index will take. Must be
given if this index_number has not been listed in a previous vary_element command, unless
enumeration_file is given.

• name — The name of an element.

• item — The parameter of the element to vary.

• initial, final — The initial and final values of the parameter.

• enumeration_file — Name of an SDDS file giving values for the item.

• enumeration_column — Column of the SDDS file giving the values.

• differential— If nonzero, the initial and final values are taken as offsets from the predefined
value of the parameter.

• multiplicative — If nonzero, the initial and final values are taken as multipliers to be
applied to the predefined value of the parameter in order to obtain the actual initial and final
values.

• geometric — If nonzero, then variation is geometric rather than arithmetic.

67

5 Specialized Tools for Use with elegant

A number of specialized programs are available that work with elegant. Most are SDDS-compliant,
so they will also work with any program that reads or writes appropriate SDDS data. These
programs will be made available in Version 14.3Beta. The following is a brief description of each
program. Full descriptions are available on subsequent pages.

• elegant2genesis — This program performs slice analysis of particle output files, which are
suitable for use with the SDDS-compliant APS version of GENESIS[14]. This program is
part of the SDDS toolkit. See the SDDS toolkit manual for documentation.

• haissinski — Computes the steady-state longitudinal distribution in an electron storage
ring. Requires as input a file containing the Twiss parameters around the ring, such as that
provided by the twiss_output command. (Program by L. Emery)

• ibsEmittance — Computes the transverse and longitudinal emittances of a beam in an
electron storage ring, resulting from the combination of quantum excitation, damping, and
intra-beam scattering. Requires as input a file containing the Twiss parameters, such as that
provided by the twiss_output command. (Program by L. Emery)

• madto — Translates an elegant-style lattice file (or a MAD file, with some restrictions)
into formats accepted by other programs, such as COSY, PARMELA, PATPET, PATRICIA,
TRANSPORT, and XORBIT. Will also generate an SDDS file containing lattice data.

• sddsanalyzebeam — Analyzes a beam of macro-particles and produces an SDDS file con-
taining beam moments, emittances, equivalent beta functions, etc. The beam file is of the
type written by elegant using the output field of the run setup command, or the WATCH
element.

• sddsemitmeas — Analyzes quadrupole scan emittance measurement data. Accepts a file
containing the transport matrix for each point and measured beam sizes. The file may, for
example, be the file produced by the final field of the run setup command. The quadrupole
scan can be executed inside of elegant using vary elements.

• sddsmatchtwiss — Transforms a beam of macro-particles to match to given beta functions
and dispersion. The beam file is of the type written by elegant using the output field of the
run setup command, or the WATCH element.

• sddsrandmult — Simulates the effect of random mechanical errors in a quadrupole or sex-
tupole, generating multipole error data that can be used with elegant’s KQUAD and KSEXT

elements.

• sddssampledist — This program allows creating particle distributions from user-designed
distribution functions. It is thus a more flexible alternative to bunched_beam. This program
is part of the SDDS toolkit. See the SDDS toolkit manual for documentation.

68

haissinski

5.1 haissinski

• description:

• examples:

• synopsis:

• files:

• switches:

• author: L. Emery, ANL/APS.

69

ibsEmittance

5.2 ibsEmittance

• description: ibsEmittance computes growth rates and equilibrium emittances for electron
rings due to intrabeam scattering (IBS). It will also integrate the growth rates to show the
time evolution of the emittances. The IBS algorithm is based on an extension of the ZIBS
routine in the program ZAP (Zisman, et al.).

• examples: This example computes the IBS equilibrium parameters and the contributions to
the growth rates vs position in the APS lattice.

ibsEmittance aps.twi aps.ibs -charge=5 -coupling=0.02

-rf=voltage=9,harmonic=1296

• synopsis:

ibsEmittance twissFile resultsFile -charge=nC|-particles=value -coupling=value
[-emitxInput=value] [-deltaInput=value] [-growthRatesOnly]

[-superperiods=value] -RF=Voltage=MV,harmonic=value|-length=mm
[-energy=MeV] [-integrate=turns=number[,stepSize=number]]

• files: twissFile is a twiss parameter file from the twiss_output command of elegant. You
must use the radiation_integrals flag in twiss_output.

• switches:

– -charge, -particles — Give the charge (in nanocoulombs) or the number of electrons.

– -coupling — Give the emittance coupling ratio, ǫy/ǫx.

– -emitxInput — Give the initial x emittance in meters. If not specified, the value from
the parameter ex0 in twissFile is used.

– -deltaInput — Give the initial rms fractional momentum spread. If not specified, the
value from the parameter Sdelta0 in twissFile is used.

– -growthRatesOnly — If given, only the growth rates are computed. Equilibrium
values are not computed.

– -superperiods=value — If given, the number of superperiods in the lattice. twissFile
is taken to pertain to a single sector.

– -RF=Voltage=MV,harmonic=value — Specify rf voltage and harmonic number.

– -length=mm — Specify the rms bunch length.

– -energy=MeV — Specify the beam energy. By default, this is taken from the pCentral
parameter in twissFile.

– -integrate=turns=number[,stepSize=number] — If given, then resultsFile contains the
result of integrating the differential equations for the emittances for the given number
of turns. The step size is the number of turns for each integration step, and can be
adjusted to get faster results.

• author: L. Emery, M. Borland, ANL/APS.

70

madto

5.3 madto

• description: madto translates an elegant-style (or a MAD file, with some restrictions)
into formats accepted by other programs, such as COSY, PARMELA, PATPET, PATRICIA,
TRANSPORT, and XORBIT. Will also generate an SDDS file containing lattice data.

• examples: The following command would translate the elegant lattice file lattice.lte into
a TRANSPORT lattice file with 10mm quadrupole aperture and 5mm sextupole aperture, at
an energy of 1.5 GeV.

madto lattice.lte lattice.trin -transport=10,5,1.5

• synopsis:

madto inputfile outputfile {-patricia | -patpet |

-transport[=quadAper(mm),sextAper(mm),p(GeV/c)] |

-parmela[=quadAper(mm),sextAper(mm),p(GeV/c)] | -sdds[=p(GeV/c)] |

-cosy=quadAper(mm),sextAper(mm),p(MeV/c) | -xorbit} [-angle tolerance=value]
[-flip k signs] [-magnets=filename] [-header=filename] [-ender=filename]

• files:

– inputfile — An elegant-style lattice file.

– outputfile — A file containing lattice data in the chosen format.

• switches:

– -cosy — Provide data for the program COSY INFINITY. This can take a little while
as the program must figure out the Enge coefficients that correspond to the FINT and
HGAP values for all the dipoles. The user should test the output carefully.

– -patricia — Provide data for the program PATRICIA.

– -patpet — Provide data for the program PATPET, a merging of the programs PATRI-
CIA and PETROS.

– -transport[=quadAper(mm),sextAper(mm),p(GeV/c)] — Provide data for the pro-
gram TRANSPORT (original style). One may give apertures for the quadrupoles and
sextupoles, as well as the beam momentum in GeV/c.

– -parmela[=quadAper(mm),sextAper(mm),p(GeV/c)] — Provide data for the program
PARMELA. One may give apertures for the quadrupoles and sextupoles, as well as the
beam momentum in GeV/c.

– -sdds[=p(GeV/c)] — Provide data in SDDS form. One may give the beam momentum
in GeV/c.

– -angle tolerance=value — PATPET and PATRICIA only allow sector and rectangular
bends. This tolerance, in radians, determines how far from sector or rectangular a bend
definition may be and still get processed.

– -flip k signs — Changes the signs of all quadrupoles.

71

– -magnets=filename — Results in output of an additional SDDS file with the magnet
layout. This is the same file that would be generated by the magnets field of the
run setup command in elegant.

– -header=filename, -ender=filename — Allow specification of files to be prepended
and appended to the lattice output. For example, if additional commands are required
prior to the lattice definition to set up the run, they would be put in the header file. If
additional commands are needed after the lattice definition to initiate processing, they
would be put in the ender file.

• author: M. Borland, ANL/APS.

72

sddsanalyzebeam

5.4 sddsanalyzebeam

• description: sddsanalyzebeam analyzes a beam of macro-particles and produces an SDDS
file containing beam moments, emittances, equivalent beta functions, etc. The beam file is
of the type written by elegant using the output field of the run setup command, or the
WATCH element.

• examples:

sddsanalyzebeam run.out run.analysis

• synopsis:

sddsanalyzebeam [-pipe=[input][,output]] [inputfile] [outputfile] [-nowarnings]

[-correctedOnly]

• files:

– inputfile — An SDDS file containing the columns x, xp, y, yp, t, and p, giving the
six phase-space coordinates for a set of macroparticles. This file can be produced from
elegant, for example, using the output field of the run setup command, the bunch

field of the bunched beam command, or the WATCH element in coordinate mode.

– outputfile — An SDDS file containing columns giving moments, emittances, equivalent
Twiss parameters, and so on, for the macro-particles. Each row of this file corresponds
to a page of the input file. The names and meanings of the columns are identical to
what is used for elegant’s final output file from the run setup command. The file
from elegant, however, stores the results as parameters instead of columns; to convert
outputfile to that convention, use the SDDS toolkit program sddsexpand.

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– nowarnings — Suppressses warning messages.

– correctedOnly — If given, only the corrected twiss parameters are computed and out-
put. These parameters are the correct ones to match a beamline to, since they have the
dispersive and mono-energetic terms properly separated.

• author: M. Borland, ANL/APS.

73

sddsemitmeas

5.5 sddsemitmeas

• description:

sddsemitmeas analyzes quadrupole scan emittance measurement data. It accepts a file
containing the transport matrix for each data point and measured beam sizes. Because
sddsemitmeas uses the matrix rather than a thin-lens model, it can analyze data from arbi-
trarily complex scans, involving, for example, multiple thick-lens quadrupoles.

The matrix data can be prepared using elegant. For example, the vary element command
can be used to vary one or more quadrupoles. In addition, the beam size data may be prepared
using elegant, to allow simulation of emittance measurements.

sddsemitmeas will perform error analysis using a Monte Carlo technique. A user-specified
number of random error sets are generated and added to all measurements. Analysis is
performed for each error set. Statistics over all the error sets provide most likely values and
error bars.

• examples:

elegant quadScan.ele sddscollapse quadScan.fin -pipe=out

| sddsxref -pipe=in quadScan.data -take=SigmaX,SigmaY

| sddsemitmeas -pipe=in emitResults.sdds

• synopsis:

sddsemitmeas [inputfile] [outputfile] [-pipe=[input][,output]]

[-sigmaData=xName,yName] [-energySpread=fractionalRMSValue]
[-errorLevel=valueInm,[{gaussian,nSigmas | uniform}]] [-nErrorSets=number]
[-seed=integer] [-limitMode=resolution | zero[,reject]

[-deviationLimit=xLevelm,yLevelm] [-resolution=xResolutionm,yResolutionm]

[-uncertaintyFraction=xValue,yValue] [-fixedUncertainty=xValuem,yValuem]

[-findUncertainties] [-minimumUncertainty=xValuem,yValuem]

[-constantWeighting] [-verbosity=level]

• files:

– inputfile — An SDDS file containing one or more pages with columns named Rij, where ij
is 11, 12, 33, and 34. These give elements of the horizontal and vertical transport matrices
from the beginning of a system to the observation point. The sigma matrix inferred will
be that for the beginning of the system. Typically, one starts with the final file from
the run setup command in elegant, and collapses it using sddscollapse. Each page
of inputfile corresponds to a different emittance measurement.

If energy spread is included (-energySpread option), the file must also contain columns
named etax and etay, giving the horizontal and vertical dispersion at the observation
point. These may be added to the final file using sddsprocess (to get the final values
as parameters) and sddsxref (to transfer the parameters), prior to using sddscollapse.

In addition to this data, inputfile must also contain columns giving the rms beam sizes
in x and y. The user supplies the names of the columns using the -sigmaData option.

74

These columns may be from elegant (e.g., Sx and Sy), if one wants to simulate an
emittance measurement. Note that the theory behind the emittance measurement is
strictly correct only for true RMS beamsize measurements. Use of FWHM or some
other measure will give unreliable results.

– outputfile — A file containing one page for each page of inputfile. The parameters of
outputfile give the measured geometric rms emittance, sigma matrix, and Twiss parame-
ters of the beam in the horizontal and vertical planes. If error sets were requested (using
-nErrorSets), then there are also parameters giving the error bars (“sigma’s”) of the
measured values.

The columns of outputfile contain various quantities depending on the mode. For files
generated with elegant and no error sets, it contains the measured and fit beam size
data, along with the strength of one of the varied quadrupoles. In other cases, less data
may be present.

• switches:

– -sigmaData=xName,yName — Supplies the names of the columns in inputfile from which
the x and y rms beam sizes are to be taken. Default values are Sx and Sy, which are the
data provided by elegant.

– -energySpread=fractionalRMSValue — Supplies the fractional rms energy spread of the
beam. If given, the inputfile must contain dispersion data, as described above.

– -errorLevel=valueInm,[gaussian,nSigmas | uniform] — Supplies the standard de-
viation of random errors to be added to the measured beam sizes for Monte Carlo error
analysis. This control should not be confused with the controls over the individual data
point uncertainties; the latter are used for purposes of weighting the fits only. Suppos-
edly, the error levels and the uncertainties would be the same, however.

– -nErrorSets=number — The number of sets of random errors to generate and add to
the measurements. Each error set is used to perturb the original measurement data.
The results are analyzed separately for each error set, then combined to give means and
error bars.

– -seed=integer— Seed for the random number generator. Recommend a large, positive,
odd integer less than 231. If no seed is given or if the given seed is negative, then a seed
is generated from the system clock.

– -resolution=xResolutionm,yResolutionm — The resolution of the beam size measure-
ments, in meters. These values are subtracted in quadrature from the measured beam
sizes to obtain the true beam sizes.

– -limitMode=resolution | zero[,reject] — If measured or perturbed beam sizes are
less than the resolution or less than zero, then errors will result. One can use this option
to limit minimum beam size values or reject points. In general, if one has to do this the
measurement is probably bad.

– -deviationLimit=xLevelm,yLevelm — Specifies the maximum deviation, in meters,
from the fit that data points may have and still be included. An initial fit is performed
for each randomized set or the raw data, as appropriate. Outliers are then removed and
the fit is repeated.

– -uncertaintyFraction=xValue,yValue— Specifies that uncertainties in individual mea-
surements should determined as the given fractions of the measured values. Generally
not realistic.

75

– -fixedUncertainty=xValuem,yValuem— Specifies that uncertainties in individual mea-
surements should be identical, at the values given (in meters).

– -findUncertainties — Specifies that uncertainties in individual measurements should
be deduced from an initial unweighted fit.

– -minimumUncertainty=xValuem,yValuem — Specifies that uncertainties may not be
smaller than the given values, in meters.

– -constantWeighting — Specifies uncertainties such that all points are given equal
weight in the fit.

– -verbosity=level — Higher values of level result in more informational printouts as the
program runs.

• author: M. Borland, ANL/APS.

76

sddsmatchtwiss

5.6 sddsmatchtwiss

• description: sddsmatchtwiss transforms a beam of macro-particles to match to given beta
functions and dispersion. This can be useful in taking macro-particle data from one simulation
and using it in another. For example, a beam file from PARMELA could be given the
right beta functions for use with a specific lattice in an elegant run, saving the trouble of
rematching to join the two simulations. Similarly, a beam from elegant could be matched
into an FEL simulation.

• examples:

sddsmatchtwiss elegantBeam.out FELBeam.in -xPlane=beta=1.0,alpha=-0.2

-yPlane=beta=0.5,alpha=0.2

• synopsis:

sddsmatchtwiss [-pipe=[input][,output]] inputfile outputfile
[-xPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]]
[-yPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]]
[-nowarnings]

• files:

inputfile is an SDDS file containing one or more pages of data giving the phase-space coordi-
nates of macro particles. The macro particle data is stored in columns named x, xp, y, yp,
and p. The units are those used by elegant for the output file from run setup, the bunch file
from bunched beam, and the coordinate-mode output from the WATCH element. The data from
these columns is used together with the commandline arguments to produce new values for
these columns; the new values are delivered to outputfile. Other columns may be present
in inputfile; if so, they are passed to outputfile unchanged.

• switches:

– -xPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]— Spec-
ifies the desired parameters for the beam in the horizontal plane. beta and alpha give
β and α = −1

2
∂β
∂s ; they must both be given or both be omitted. etaValue and etaSlope

give the dispersion, η, and its slope, ∂η
∂s .

– -yPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]— Same
as -xPlane, except for the vertical plane.

– -nowarnings — Suppresses warning messages.

• author: M. Borland, ANL/APS.

77

sddsrandmult

5.7 sddsrandmult

• description: sddsrandmult computes the multipole errors in a quadrupole or sextupole due
to various construction errors. The program is based on the analysis of Halbach[15], with
which I’ll assume the reader is familiar. Instead of separately evaluating the effect of certain
types of mechanical errors, it allows one to simulate several types of errors in order to get
statistical distributions for the multipole perturbations.

• examples:

sddsrandmult quadpert.in

• synopsis:

sddsrandmult inputFile

• usage:

inputFile is a text file containing a series of namelist commands specifying the parameters of
a quadrupole or sextupole, the type and amplitude of the errors to include, and the filenames
for output. Each namelist command results in a complete computation and generation of
output files.

The namelist command is perturbations. It has the following fields:

– type — A string value, either “quadrupole” (default) or “sextupole”.

– name — An optional string value giving the name of the element. This is used in
preparing data for elegant.

– SDDS output — An required string value giving the name of an SDDS file to which data
for each seed will be written. This file can be used to compute statistics or perform
histograms.

– elegant output — An optional string value giving the name of a text file to which
elegant commands and element definitions will be written. Note that this file is a
mixture of commands and element definitions. As such, the user must manually edit the
file and place the appropriate parts in the lattice file and the command file.

– kmult output — An optional string value giving the name of an SDDS file to which
data will be written in the format accepted by the RANDOM MULTIPOLES feature of the
KQUAD and KSEXT elements. This is the recommended data to use with elegant.

– effective length — The effective length of the magnet, in meters.

– bore radius — The bore radius of the magnet, in meters.

– dx pole — The rms error, in meters, to be imparted to the horizontal position of each
pole.

– dy pole — The rms error, in meters, to be imparted to the vertical position of each
pole.

– dradius — The rms error, in meters, in the bore radius.

78

– dx split — The rms error, in meters, to be imparted to the horizontal distance between
the left and right sides of the magnet.

– dy split — The rms error, in meters, to be imparted to the vertical distance between
the top and bottom halves of the magnet.

– dphi halves — The rms error, in radians, to be imparted to the relative rotation of the
top and bottom halves of the magnet.

– n cases — The number of cases to simulate (default is 1000).

– n harm — The number of harmonics to simulate. The default is 0, which results in
computing all the harmonics for which Halbach indicates his treatment applies.

– random number seed — The initial seed for the random number generator. Should be
a large integer.

• author: M. Borland, ANL/APS.

79

6 Accelerator and Element Description

As mentioned in the introduction, elegant uses a variant of the MAD input format for describing
accelerators. With some exceptions, the accelerator description for one program can be read by
the other with no modification. Among the differences:

• elegant does not support the use of MAD-style equations to compute the value of a quantity.
The link_element namelist command can be used for this purpose, and is actually more
flexible than the method used by MAD. Also, rpn-style equations may be given in double-
quotes; these are evaluated once only when the lattice is parsed.

• elegant does not support substitution of parameters in beamline definitions.

• elegant contains many elements that MAD does not have, such as kick elements, wake fields,
and numerically integrated elements.

• The length of an input line is not limited to 80 characters in elegant, as it is in MAD.
However, for compatibility, any lattice created by elegant will conform to this limit.

elegant’s print_dictionary command allows the user to obtain a list of names and short
descriptions of all accelerator elements recognized by the program, along with the names, units,
types, and default values of all parameters of each element. The present output of this command
is listed in the next section. The reader is referred to the MAD manual[2] for details on sign
conventions for angles, focusing strength, and so forth.

80

7 Element Dictionary

81

ALPH

7.1 ALPH

An alpha magnet implemented as a matrix, up to 3rd order. PART is used to split the magnet into
halves. XS<n> and DP<n> allow momentum filtration at the midpoint.
Parameter Name Units Type Default Description

XMAX M double 0.0 size of alpha

XS1 M double 0.0 inner scraper position

XS2 M double 0.0 outer scraper position

DP1 double -1 inner scraper momentum
deviation

DP2 double 1 outer scraper momentum
deviation

XPUCK M double -1 position of scraper puck

WIDTHPUCK M double 0.0 size of scraper puck

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT double 0.0 rotation about incoming longi-
tudinal axis

PART long 0 0=full, 1=first half, 2=second
half

ORDER long 0 matrix order [1,3]

82

BMAPXY

7.2 BMAPXY

A map of Bx and By vs x and y.
Parameter Name Units Type Default Description

L M double 0.0 length

STRENGTH NULL double 0.0 factor by which to multiply
field

ACCURACY NULL double 0.0 integration accuracy

METHOD NULL STRING NULL integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta

FILENAME NULL STRING NULL name
of file containing columns (x,
y, Fx, Fy) giving normalized
field (Fx, Fy) vs (x, y)

This element simulates transport through a transverse magnetic field specified as a field map.
It does this by simply integrating the Lorentz force equation in cartesian coordinates. It does not
incorporate changes in the design trajectory resulting from the fields. I.e., if you input a dipole
field, it is interpreted as a steering element.

The field map file is an SDDS file with the following columns:

• x, y — Transverse coordinates in meters (units should be “m”).

• Fx, Fy — Normalized field values (no units). The field is multiplied by the value of the
STRENGTH parameter to convert it to a local bending radius. For example, if Fx=y and
Fy=x, then STRENGTH is the K1 quadrupole parameter.

• Bx, By — Field values in Tesla (units should be “T”). The field is still multiplied by the
value of the STRENGTH parameter, which is dimensionless. Note: the default value of
STRENGTH is 0, so if you don’t set it to something, you’ll get no effect!

The field map file must contain a rectangular grid of points, equispaced (separately) in x and
y. There should be no missing values in the grid (this is not checked by elegant). In addition, the
x values must vary fastest as the values are accessed in row order. To ensure that this is the case,
use the following command on the field file:

sddssort fieldFile -column=y,incr -column=x,incr

83

BUMPER

7.3 BUMPER

A time-dependent uniform-field rectangular kicker magnet with no fringe effects. The waveform is
in SDDS format, with time in seconds and amplitude normalized to 1.
Parameter Name Units Type Default Description

L M double 0.0 length

ANGLE RAD double 0.0 kick angle

TILT RAD double 0.0 rotation about longitudinal
axis

B2 1/M2 double 0.0 Sextupole term:
By=Bo*(1+b2*x2̂)

TIME OFFSET S double 0.0 time offset of waveform

PERIODIC long 0 is waveform periodic?

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

FIRE ON PASS long 0 pass number to fire on

N KICKS long 0 Number of kicks to use for sim-
ulation. 0 uses an exact result
but ignores b2.

WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing kick factor vs time

84

CENTER

7.4 CENTER

An element that centers the beam transversely on the ideal trajectory.
Parameter Name Units Type Default Description

X long 1 center x coordinates?

XP long 1 center x’ coordinates?

Y long 1 center y coordinates?

YP long 1 center y’ coordinates?

ONCE ONLY long 0 compute centering offsets for
first beam only, apply to all?

ON PASS long -1 If nonnegative, do centering on
the nth pass only.

85

CEPL

7.5 CEPL

A numerically-integrated linearly-ramped electric field deflector.
Parameter Name Units Type Default Description

L M double 0.0 length

RAMP TIME S double 1e-09 time to ramp to full strenth

TIME OFFSET S double 0.0 offset of ramp-start time

VOLTAGE V double 0.0 maximum voltage between
plates due to ramp

GAP M double 0.01 gap between plates

STATIC VOLTAGE V double 0.0 static component of voltage

TILT RAD double 0.0 rotation about longitudinal
axis

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

86

CHARGE

7.6 CHARGE

An element to establish the total charge of a beam. Active on first pass only. If given, overrides all
charge specifications on other elements.
Parameter Name Units Type Default Description

TOTAL C double 0.0 total charge in beam

PER PARTICLE C double 0.0 charge per macroparticle

87

CLEAN

7.7 CLEAN

Cleans the beam by removing outlier particles.
Parameter Name Units Type Default Description

MODE STRING stdeviation stdeviation, absdeviation, or
absvalue

XLIMIT double 0.0 Limit for x

XPLIMIT double 0.0 Limit for x’

YLIMIT double 0.0 Limit for y

YPLIMIT double 0.0 Limit for y’

TLIMIT double 0.0 Limit for t

DELTALIMIT double 0.0 Limit for (p-p0)/p0

88

CSBEND

7.8 CSBEND

A canonical kick sector dipole magnet.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric quadrupole strength

K2 1/M3 double 0.0 geometric sextupole strength

K3 1/M4 double 0.0 geometric octupole strength

K4 1/M5 double 0.0 geometric decapole strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

H1 1/M double 0.0 entrance pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

ETILT double 0.0 error rotation about incoming
longitudinal axis

N KICKS long 4 number of kicks

NONLINEAR long 1 include nonlinear field
components?

SYNCH RAD long 0 include classical synchrotron
radiation?

EDGE1 EFFECTS long 1 include entrace edge effects?

EDGE2 EFFECTS long 1 include exit edge effects?

EDGE ORDER long 1 order to which to include edge
effects

INTEGRATION ORDER long 2 integration order (2 or 4)

EDGE1 KICK LIMIT double -1 maximum kick entrance edge
can deliver

89

CSBEND continued

A canonical kick sector dipole magnet.
Parameter Name Units Type Default Description

EDGE2 KICK LIMIT double -1 maximum kick exit edge can
deliver

KICK LIMIT SCALING long 0 scale maximum edge kick with
FSE?

USE BN long 0 use b<n> instead of K<n>?

B1 1/M double 0.0 K1 = b1*rho, where rho is
bend radius

B2 1/M2 double 0.0 K2 = b2*rho

B3 1/M3 double 0.0 K3 = b3*rho

B4 1/M4 double 0.0 K4 = b4*rho

ISR long 0 include
incoherent synchrotron radia-
tion (scattering)?

SQRT ORDER long 0 Order of expansion of square-
root in Hamiltonian. 0 means
no expansion.

This element provides a symplectic bending magnet with the exact Hamiltonian. For example,
it retains all orders in the momentum offset and curvature. The field expansion is available to
fourth order.

One pitfall of symplectic integration is the possibility of orbit and path-length errors for the
reference orbit if too few kicks are used. This may be an issue for rings. Hence, one must verify that
a sufficient number of kicks are being used by looking at the trajectory closure and length of an
on-axis particle by tracking. Using INTEGRATION ORDER=4 is recommended to reduce the number
of required kicks.

Normally, one specifies the higher-order components of the field with the K1, K2, K3, and K4

parameters. The field expansion in the midplane is By(x) = Bo ∗ (1 +
∑4

n=1
Knρo

n! xn). By setting
the USE bN flag to a nonzero value, one may instead specify the b1 through b4 parameters, which
are defined by the expansion By(x) = Bo ∗ (1 +

∑4
n=1

bn

n! x
n). This is convenient if one is varying

the dipole radius but wants to work in terms of constant field quality.
Setting NONLINEAR=0 turns off all the terms above K 1 (or b 1) and also turns off effects due to

curvature that would normally result in a gradient producing terms of higher order.
Edge effects are included using a first- or second-order matrix. The order is controlled using

the EDGE ORDER parameter, which has a default value of 1. N.B.: if you choose the second-order
matrix, it is not symplectic.

Note about split dipoles: elegant can internally split dipoles into several pieces, which the
user can control using the element divisions parameter of the run setup namelist, or using the
divide elements command. In splitting dipoles, elegant simply substitutes a series of dipoles
with the length and angle divided by the appropriate factor. “Interior” edge effects (i.e., between
split pieces) are automatically turned off.

The user may also split dipoles into pieces in the lattice definition. E.g., suppose one wanted
to split the following dipole:

90

B1: SBEN,L=0.5,ANGLE=0.5,E1=0.5,E2=0.5

One could do this easily using

B1PART: SBEN,L=0.1,ANGLE=0.1,E1=0.5,E2=0.5

B1: line=(5*B1PART)

The edge effects are turned off for the edges between successive B1PART elements. This is done only
for successive dipoles with the same name and when there are no intervening elements.

91

CSRCSBEND

7.9 CSRCSBEND

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric quadrupole strength

K2 1/M3 double 0.0 geometric sextupole strength

K3 1/M4 double 0.0 geometric octupole strength

K4 1/M5 double 0.0 geometric decapole strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

H1 1/M double 0.0 entrance pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

ETILT double 0.0 error rotation about incoming
longitudinal axis

N KICKS long 4 number of kicks

NONLINEAR long 1 include nonlinear field
components?

LINEARIZE long 0 use linear matrix instead of
symplectic integrator?

SYNCH RAD long 0 include classical synchrotron
radiation?

EDGE1 EFFECTS long 1 include entrace edge effects?

EDGE2 EFFECTS long 1 include exit edge effects?

EDGE ORDER long 1 order to which to include edge
effects

INTEGRATION ORDER long 2 integration order (2 or 4)

92

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
Parameter Name Units Type Default Description

BINS long 0 number of bins for CSR wake

BIN ONCE long 0 bin only at the start of the
dipole?

BIN RANGE FACTOR double 1.2 Factor by which to increase
the range of histogram com-
pared to total bunch length.
Large value eliminates binning
problems in CSRDRIFTs.

SG HALFWIDTH long 0 Savitzky-Golay filter
half-width for smoothing cur-
rent histogram

SG ORDER long 1 Savitzky-Golay filter order for
smoothing current histogram

SGDERIV HALFWIDTH long 0 Savitzky-Golay filter half-
width for taking derivative of
current histogram

SGDERIV ORDER long 1 Savitzky-Golay filter order for
taking derivative of current
histogram

TRAPAZOID INTEGRATION long 1 Select whether to
use trapazoid-rule integration
(default) or a simple sum.

OUTPUT FILE STRING NULL output file for CSR wakes

OUTPUT INTERVAL long 1 interval (in kicks) of output to
OUTPUT FILE

OUTPUT LAST WAKE ONLY long 0 output final wake only?

STEADY STATE long 0 use steady-state wake
equations?

USE BN long 0 use b<n> instead of K<n>?

B1 1/M double 0.0 K1 = b1*rho, where rho is
bend radius

B2 1/M2 double 0.0 b2 = B2*rho

B3 1/M3 double 0.0 b3 = B3*rho

B4 1/M4 double 0.0 b4 = B4*rho

ISR long 0 include
incoherent synchrotron radia-
tion (scattering)?

93

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
Parameter Name Units Type Default Description

CSR long 1 enable CSR computations?

BLOCK CSR long 0 block CSR from entering
CSRDRIFT?

DERBENEV CRITERION MODE STRING disable disable, evaluate, or enforce

PARTICLE OUTPUT FILE STRING NULL name of file for phase-space
output

PARTICLE OUTPUT INTERVAL long 0 interval (in kicks) of output to
PARTICLE OUTPUT FILE

SLICE ANALYSIS INTERVAL long 0 interval (in kicks) of output
to slice analysis file (from
slice analysis command)

HIGH FREQUENCY CUTOFF0 double -1 Spatial frequency at which
smoothing filter begins. If
not positive, no frequency fil-
ter smoothing is done. Fre-
quency is in units of Nyquist
(0.5/binsize).

HIGH FREQUENCY CUTOFF1 double -1 Spatial frequency
at which smoothing filter is
0. If not given, defaults to
HIGH FREQUENCY CUTOFF0.

WAKE FILTER FILE STRING NULL Name of file supplying wake-
field filtering data.

WFF FREQ COLUMN STRING NULL Name of column supplying fre-
quency values for wakefield fil-
tering data.

WFF REAL COLUMN STRING NULL Name of column supplying
real values for wakefield filter-
ing data.

WFF IMAG COLUMN STRING NULL Name of column supplying
imaginary values for wakefield
filtering data.

For a discussion of the method behind this element, see M. Borland, “Simple method for particle
tracking with coherent synchrotron radiation,” Phys. Rev. ST Accel. Beams 4, 070701 (2001).

Recommendations for using this element. The default values for this element are not
the best ones to use. They are retained only for consistency through upgrades. In using this
element, it is recommended to have 50 to 100 k particle in the simulation. Setting BINS=600

and SG HALFWIDTH=1 is also recommended to allow resolution of fine structure in the beam and
to avoid excessive smoothing. It is strongly suggested that the user vary these parameters and
view the histogram output to verify that the longitudinal distribution is well represented by the
histograms (use OUTPUT FILE to obtain the histograms). For LCLS simulations, we find that the

94

above parameters give essentially the same results as obtained with 500 k particles and up to 3000
bins.

In order to verify that the 1D approximation is valid, the user should also set DERBENEV CRITERION MODE

= ‘‘evaluate’’ and view the data in OUTPUT FILE. Generally, the criterion should be much less
than 1.

In order respects, this element is just like the CSBEND element, which provides a symplectic
bending magnet that is accurate to all orders in momentum offset. The field expansion is available
to fourth order.

One pitfall of symplectic integration is the possibility of orbit and path-length errors for the
reference orbit if too few kicks are used. This may be an issue for rings. Hence, one must verify that
a sufficient number of kicks are being used by looking at the trajectory closure and length of an
on-axis particle by tracking. Using INTEGRATION ORDER=4 is recommended to reduce the number
of required kicks.

Normally, one specifies the higher-order components of the field with the K1, K2, K3, and K4

parameters. The field expansion in the midplane is By(x) = Bo ∗ (1 +
∑4

n=1
Knρo

n! xn). By setting
the USE bN flag to a nonzero value, one may instead specify the b1 through b4 parameters, which
are defined by the expansion By(x) = Bo ∗ (1 +

∑4
n=1

bn

n! x
n). This is convenient if one is varying

the dipole radius but wants to work in terms of constant field quality.
Setting NONLINEAR=0 turns off all the terms above K 1 (or b 1) and also turns off effects due to

curvature that would normally result in a gradient producing terms of higher order.
Edge effects are included using a first- or second-order matrix. The order is controlled using

the EDGE ORDER parameter, which has a default value of 1. N.B.: if you choose the second-order
matrix, it is not symplectic.

95

CSRDRIFT

7.10 CSRDRIFT

A follow-on element for CSRCSBEND that applies the CSR wake over a drift.
Parameter Name Units Type Default Description

L M double 0.0 length

ATTENUATION LENGTH M double 0.0 exponential attenuation
length for wake

DZ double 0.0 interval between kicks

N KICKS long 1 number of kicks (if DZ is zero)

SPREAD long 0 use spreading function?

USE OVERTAKING LENGTH long 0 use overtaking length for AT-
TENUATION LENGTH?

OL MULTIPLIER double 1 factor by which to multiply the
overtaking length to get the
attenuation length

USE SALDIN54 long 0 Use Saldin et al eq. 54 (NIM
A 398 (1997) 373-394 for decay
vs z?

SALDIN54POINTS long 1000 Number of values of position
inside bunch to average for
Saldin eq 54.

CSR long 1 do CSR calcuations

SALDIN54NORM MODE STRING peak peak or first

SPREAD MODE STRING full full, simple, or radiation-only

WAVELENGTH MODE STRING sigmaz sigmaz or peak-to-peak

BUNCHLENGTH MODE STRING 68-percentile rms, 68-percentile, or 90-
percentile

SALDIN54 OUTPUT STRING NULL Filename for output of CSR
intensity vs. z as computed us-
ing Saldin eq 54.

USE STUPAKOV long 0 Use treatment from G. Stu-
pakov’s note of 9/12/2001?

STUPAKOV OUTPUT STRING NULL Filename for output of CSR
wake vs. s as computed using
Stupakov’s equations.

STUPAKOV OUTPUT INTERVAL long 1 Interval (in kicks) between
output of Stupakov wakes.

SLICE ANALYSIS INTERVAL long 0 interval (in kicks) of output
to slice analysis file (from
slice analysis command)

96

CSRDRIFT continued

A follow-on element for CSRCSBEND that applies the CSR wake over a drift.
Parameter Name Units Type Default Description

LINEARIZE long 0 use linear optics for drift
pieces?

This element has a number of models for simulation of CSR in drift spaces following CSRCS-
BEND elements. Note that all models allow support splitting the drift into multiple CSRDRIFT
elements. One can also have intervening elements like quadrupoles, as often happens in chicanes.
The CSR effects inside such intervening elements are applied in the CSRDRIFT downstream of the
element.

For a discussion of some of the methods behind this element, see M. Borland, “Simple method
for particle tracking with coherent synchrotron radiation,” Phys. Rev. ST Accel. Beams 4, 070701
(2001).

N.B.: by default, this element uses 1 CSR kick (N KICKS=1) at the center of the drift. This
is usually not a good choice. I usually use the DZ parameter instead of N KICKS, and set it to
something like 0.01 (meters). The user should vary this parameter to assess how small it needs to
be.

The models are as following, in order of decreasing sophistication and accuracy:

• G. Stupakov’s extension of Saldin et al. Set USE STUPAKOV=1. The most advanced model
at present is based on a private communication from G. Stupakov (SLAC), which extends
equation 87 of the one-dimensional treatment of Saldin et al. (NIM A 398 (1997) 373-394) to
include the post-dipole region. This model includes not only the attenuation of the CSR as
one proceeds along the drift, but also the change in the shape of the “wake.”

This model has the most sophisticated treatment for intervening elements of any of the
models. For example, if you have a sequence CSRCSBEND-CSRDRIFT-CSRDRIFT and compare
it with the sequence CSRCSBEND-CSRDRIFT-DRIFT -CSRDRIFT, keeping the total drift length
constant, you’ll find no change in the CSR-induced energy modulation. The model back-
propagates to the beginning of the intervening element and performs the CSR computations
starting from there.

This is the slowest model to run. It uses the same binning and smoothing parameters as the
upstream CSRCSBEND. If run time is a problem, compare it to the other models and use
only if you get different answers.

• M. Borland’s model based on Saldin et al. equations 53 and 54. Set USE SALDIN54=1.
This model computes the fall-off of the CSR wake from the work of Saldin and coworkers, as
described in the reference above. It does not compute the change in the shape of the wake.
The fall-off is computed approximately as well, based on the fall-off for a rectangular current
distribution. The length of this rectangular bunch is taken to be twice the bunch length
computed according to the BUNCHLENGTH MODE parameter (see below). If your bunch
is nearly rectangular, then you probably want BUNCHLENGTH MODE of “90-percentile”.

• Exponential attenuation of a CSR wake with unchanging shape. There are two options here.
First, you can provide the attenuation length yourself, using the ATTENUATION LENGTH
parameter. Second, you can set USE OVERTAKING LENGTH=1 and let elegant compute

97

the overtaking length for use as the attenuation length. In addition, you can multiply this
result by a factor if you wish, using the OL MULTIPLIER parameter.

• Beam-spreading model. This model is not recommended. It is based on the seemingly plau-
sible idea that CSR spreads out just like any synchrotron radiation, thus decreasing the
intensity. The model doesn’t reproduce experiments.

The “Saldin 54” and “overtaking-length” models rely on computation of the bunch length, which
is controlled with the BUNCHLENGTH MODE parameter. Nominally, one should use the true
RMS, but when the beam has temporal spikes, it isn’t always clear that this is the best choice. The
choices are “rms”, “68-percentile”, and “90-percentile”. The last two imply using half the length
determined from the given percentile in place of the rms bunch length. I usually use 68-percentile,
which is the default.

98

CWIGGLER

7.11 CWIGGLER

Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University).
Parameter Name Units Type Default Description

L M double 0.0 Total length

BMAX double 0.0 Maximum magnetic field.

DX double 0.0 Misaligment.

DY double 0.0 Misaligment.

DZ double 0.0 Misaligment.

TILT double 0.0 Rotation about beam axis.

PERIODS long 0 Number of wiggler periods.

STEPS PER PERIOD long 10 Integration steps per period.

INTEGRATION ORDER long 4 Integration order (2 or 4).

BY FILE STRING NULL Name of SDDS file with By
harmonic data.

BX FILE STRING NULL Name of SDDS file with Bx
harmonic data.

This element simulates a wiggler or undulator using Ying Wu’s canonical integration code for
wigglers. To use the element, one must supply an SDDS file giving harmonic analysis of the wiggler
field. The field expansion used by the code for a horizontally-deflecting wiggler is (Y. Wu, Duke
University, private communication).

By = − |B0|
∑

m,n

Cmn cos(kxlx) cosh(kymy) cos(kznz + θzn), (1)

where |B0| is the peak value of the on-axis magnetic field, the Cmn give the relative amplitudes of
the harmonics, the wavenumbers statisfy k2

ym = k2
xl + k2

zn, and θzn is the phase.
The file must contain the following columns:

• The harmonic amplitude, Cmn, in column Cmn.

• The phase, in radians, in column Phase. The phase of the first harmonic should be 0 or π in
order to have matched dispersion.

• The three wave numbers, normalized to kw = 2π/λw, where λw is the wiggler period. These
are given in columns KxOverKw, KyOverKw, and KzOverKw.

For matrix and radiation integral computations, elegant uses a WIGGLER element when it
encounters a CWIGGLER. The effective bending radius is Bρ/B0/

√

∑

C2
mn (L. Emery, private

communication). Tests show that this gives good agreement in the tunes from tracking and Twiss
parameter calculations.

99

DRIF

7.12 DRIF

A drift space implemented as a matrix, up to 2nd order
Parameter Name Units Type Default Description

L M double 0.0 length

ORDER long 0 matrix order

100

DSCATTER

7.13 DSCATTER

A scattering element to add random changes to particle coordinates according to a user-supplied
distribution function
Parameter Name Units Type Default Description

PLANE STRING NULL Plane to scatter: xp, yp, dp
(dp is deltaP/P)

FILENAME STRING NULL Name of SDDS file containing
distribution function.

VALUENAME STRING NULL Name of column containing
the independent variable for
the distribution function data.

CDFNAME STRING NULL Name of column containing
the cumulative distribution
function data.

PDFNAME STRING NULL Name of column containing
the probability distribution
function data.

ONCEPERPARTICLE long 0 If nonzero, each particle can
only get scattered once by this
element.

FACTOR double 1 Factor by which to multi-
ply the independent variable
values.

PROBABILITY double 1 Probability that any particle
will be selected for scattering.

GROUPID long -1 Group ID number (nonnega-
tive integer) for linking once-
per-particle behavior of multi-
ple elements.

RANDOMSIGN long 0 If non-zero, then the scatter is
given a random sign. Useful if
distribution data is one-sided.

LIMITPERPASS long -1 Maximum number of particles
that will be scattered on each
pass.

LIMITTOTAL long -1 Maximum number of particles
that will be scatter for each
step.

101

DSCATTER continued

A scattering element to add random changes to particle coordinates according to a user-supplied
distribution function
Parameter Name Units Type Default Description

STARTONPASS long 0 Pass number to start on.

102

ECOL

7.14 ECOL

An elliptical collimator.
Parameter Name Units Type Default Description

L M double 0.0 length

X MAX M double 0.0 half-axis in x

Y MAX M double 0.0 half-axis in y

DX M double 0.0 misalignment

DY M double 0.0 misalignment

OPEN SIDE STRING NULL which side, if any, is open (+x,
-x, +y, -y)

EXPONENT long 2 Exponent for boundary equa-
tion. 2 is ellipse.

103

ELSE

7.15 ELSE

Not implemented.
Parameter Name Units Type Default Description

104

EMATRIX

7.16 EMATRIX

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

ORDER long 0

C1 M double 0.0

C2 double 0.0

C3 M double 0.0

C4 double 0.0

C5 M double 0.0

C6 double 0.0

R11 double 0.0

R12 M double 0.0

R13 double 0.0

R14 M double 0.0

R15 double 0.0

R16 M double 0.0

R21 1/M double 0.0

R22 double 0.0

R23 1/M double 0.0

R24 double 0.0

R25 1/M double 0.0

R26 double 0.0

R31 double 0.0

R32 M double 0.0

R33 double 0.0

R34 M double 0.0

R35 double 0.0

R36 M double 0.0

R41 1/M double 0.0

R42 double 0.0

R43 1/M double 0.0

R44 double 0.0

R45 1/M double 0.0

R46 double 0.0

R51 double 0.0

R52 M double 0.0

R53 double 0.0

R54 M double 0.0

R55 double 0.0

105

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

R56 M double 0.0

R61 1/M double 0.0

R62 double 0.0

R63 1/M double 0.0

R64 double 0.0

R65 1/M double 0.0

R66 double 0.0

T111 1/M double 0.0

T121 double 0.0

T122 M double 0.0

T131 1/M double 0.0

T132 double 0.0

T133 1/M double 0.0

T141 double 0.0

T142 M double 0.0

T143 double 0.0

T144 M double 0.0

T151 1/M double 0.0

T152 double 0.0

T153 1/M double 0.0

T154 double 0.0

T155 1/M double 0.0

T161 double 0.0

T162 M double 0.0

T163 double 0.0

T164 M double 0.0

T165 double 0.0

T166 M double 0.0

T211 1/M2 double 0.0

T221 1/M double 0.0

T222 double 0.0

T231 1/M2 double 0.0

T232 1/M double 0.0

T233 1/M2 double 0.0

T241 1/M double 0.0

T242 double 0.0

106

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

T243 1/M double 0.0

T244 double 0.0

T251 1/M2 double 0.0

T252 1/M double 0.0

T253 1/M2 double 0.0

T254 1/M double 0.0

T255 1/M2 double 0.0

T261 1/M double 0.0

T262 double 0.0

T263 1/M double 0.0

T264 1 double 0.0

T265 1/M double 0.0

T266 double 0.0

T311 1/M double 0.0

T321 double 0.0

T322 M double 0.0

T331 1/M double 0.0

T332 double 0.0

T333 1/M double 0.0

T341 double 0.0

T342 M double 0.0

T343 double 0.0

T344 M double 0.0

T351 1/M double 0.0

T352 double 0.0

T353 1/M double 0.0

T354 double 0.0

T355 1/M double 0.0

T361 double 0.0

T362 M double 0.0

T363 double 0.0

T364 M double 0.0

T365 double 0.0

T366 M double 0.0

T411 1/M2 double 0.0

T421 1/M double 0.0

107

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

T422 double 0.0

T431 1/M2 double 0.0

T432 1/M double 0.0

T433 1/M2 double 0.0

T441 1/M double 0.0

T442 double 0.0

T443 1/M double 0.0

T444 double 0.0

T451 1/M2 double 0.0

T452 1/M double 0.0

T453 1/M2 double 0.0

T454 1/M double 0.0

T455 1/M2 double 0.0

T461 1/M double 0.0

T462 double 0.0

T463 1/M double 0.0

T464 1 double 0.0

T465 1/M double 0.0

T466 double 0.0

T511 1/M double 0.0

T521 double 0.0

T522 M double 0.0

T531 1/M double 0.0

T532 double 0.0

T533 1/M double 0.0

T541 double 0.0

T542 M double 0.0

T543 double 0.0

T544 M double 0.0

T551 1/M double 0.0

T552 double 0.0

T553 1/M double 0.0

T554 double 0.0

T555 1/M double 0.0

T561 double 0.0

T562 M double 0.0

108

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

T563 double 0.0

T564 M double 0.0

T565 double 0.0

T566 M double 0.0

T611 1/M2 double 0.0

T621 1/M double 0.0

T622 double 0.0

T631 1/M2 double 0.0

T632 1/M double 0.0

T633 1/M2 double 0.0

T641 1/M double 0.0

T642 double 0.0

T643 1/M double 0.0

T644 double 0.0

T651 1/M2 double 0.0

T652 1/M double 0.0

T653 1/M2 double 0.0

T654 1/M double 0.0

T655 1/M2 double 0.0

T661 1/M double 0.0

T662 double 0.0

T663 1/M double 0.0

T664 1 double 0.0

T665 1/M double 0.0

T666 double 0.0

109

ENERGY

7.17 ENERGY

An element that matches the central momentum to the beam momentum, or changes the central
momentum or energy to a specified value.
Parameter Name Units Type Default Description

CENTRAL ENERGY MC2 double 0.0 desired central gamma

CENTRAL MOMENTUM MC double 0.0 desired central beta*gamma

MATCH BEAMLINE long 0 if nonzero, beamline reference
momentum is set to beam av-
erage momentum

MATCH PARTICLES long 0 if nonzero, beam average mo-
mentum is set to beamline ref-
erence momentum

110

FLOOR

7.18 FLOOR

Sets floor coordinates
Parameter Name Units Type Default Description

X double 0.0 X coordinate

Y double 0.0 Y coordinate

Z double 0.0 Z coordinate

THETA double 0.0 theta value

PHI double 0.0 phi value

PSI double 0.0 psi value

111

FMULT

7.19 FMULT

Multipole kick element with coefficient input from an SDDS file.
Parameter Name Units Type Default Description

L M double 0.0 length

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

N KICKS long 1 number of kicks

SYNCH RAD long 0 include classical synchrotron
radiation?

FILENAME STRING NULL name of file containing multi-
pole data

SQRT ORDER long 0 Order of expansion of square-
root in Hamiltonian. 0 means
no expansion.

This element simulates a multipole element using a 4th-order sympletic integration. Specification
of the multipole strength is through an SDDS file. The file is expected to contain a single page of
data with the following elements:

1. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2, so a quadrupole has order 1, a sextupole has order 2, and so on.

2. A floating point column named KnL giving the integrated strength of the multipole, KnL,
where n is the order. The units are 1/mn.

3. A floating point column named JnL giving the integrated strength of the skew multipole, JnL,
where n is the order. The units are 1/mn.

The MULT element is also available, which allows the same functionality without an external
file.

112

FRFMODE

7.20 FRFMODE

One or more beam-driven TM monopole modes of an RF cavity, with data from a file.
Parameter Name Units Type Default Description

FILENAME STRING NULL input file

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current
histogram

RIGID UNTIL PASS long 0 don’t affect the beam until this
pass

USE SYMM DATA long 0 use ”Symm” columns from
URMEL output file?

FACTOR double 1 factor by which to multiply
shunt impedances

CUTOFF HZ double 0.0 If >0, cutoff
frequency. Modes above this
frequency are ignored.

OUTPUT FILE STRING NULL Output file for voltage in each
mode.

FLUSH INTERVAL long 1 Interval in passes at which to
flush output data.

This element is similar to RFMODE, but it allows faster simulation of more than one mode. Also,
the mode data is specified in an SDDS file. This file can be generated using the APS version of
URMEL, or by hand. It must have the following columns and units:

1. Frequency — The frequency of the mode in Hz. Floating point.

2. Q — The quality factor. Floating point.

3. ShuntImpedance or ShuntImpedanceSymm — The shunt impedance in Ohms, defined as
V 2/(2 ∗ P). Floating point. By default, ShuntImpedance is used. However, if the parameter
USE_SYMM_DATA is non-zero, then ShuntImpedanceSymm is used. The latter is the full-cavity
shunt impedance that URMEL computes by assuming that the input cavity used is one half
of a symmetric cavity.

The file may also have the following column:

1. beta — Normalized load impedance (dimensionless). Floating point. If not given, the β = 0
is assumed for all modes.

113

FTRFMODE

7.21 FTRFMODE

One or more beam-driven TM dipole modes of an RF cavity, with data from a file.
Parameter Name Units Type Default Description

FILENAME STRING NULL input file

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current
histogram

RIGID UNTIL PASS long 0 don’t affect the beam until this
pass

USE SYMM DATA long 0 use ”Symm” columns from
URMEL output file?

DX M double 0.0 misalignment

DY M double 0.0 misalignment

XFACTOR double 1 factor by which to multiply
shunt impedances

YFACTOR double 1 factor by which to multiply
shunt impedances

CUTOFF HZ double 0.0 If >0, cutoff
frequency. Modes above this
frequency are ignored.

OUTPUT FILE STRING NULL Output file for voltage in each
mode.

FLUSH INTERVAL long 1 Interval in passes at which to
flush output data.

This element is similar to TRFMODE, but it allows faster simulation of more than one mode. Also,
the mode data is specified in an SDDS file. This file can be generated using the APS version of
URMEL, or by hand. It must have the following columns and units:

1. Frequency — The frequency of the mode in Hz. Floating point.

2. Q — The quality factor. Floating point.

3. ShuntImpedance or ShuntImpedanceSymm — The shunt impedance in Ohms/m, defined as
V 2/(2∗P)/x or V 2/(2∗P)/y. Floating point. By default, ShuntImpedance is used. However,
if the parameter USE_SYMM_DATA is non-zero, then ShuntImpedanceSymm is used. The latter
is the full-cavity shunt impedance that URMEL computes by assuming that the input cavity
used is one half of a symmetric cavity.

The file may also have the following columns:

1. beta — Normalized load impedance (dimensionless). Floating point. If not given, the β = 0
is assumed for all modes.

114

2. xMode — If given, then only modes for which the value is nonzero will produce an x-plane
kick. Integer. If not given, all modes affect the x plane.

3. yMode — If given, then only modes for which the value is nonzero will produce an y-plane
kick. Integer. If not given, all modes affect the y plane.

115

HISTOGRAM

7.22 HISTOGRAM

Request for histograms of particle coordinates to be output to SDDS file.
Parameter Name Units Type Default Description

FILENAME STRING filename for histogram output

INTERVAL long 1 interval in passes between
output

START PASS long 0 starting pass for output

BINS long 50 number of bins

FIXED BIN SIZE long 0 if nonzero, bin size is fixed af-
ter the first histogram is made

X DATA long 1 histogram x and x’?

Y DATA long 1 histogram y and y’?

LONGIT DATA long 1 histogram t and p?

BIN SIZE FACTOR double 1 multiply computed
bin size by this factor before
histogramming

NORMALIZE long 1 normalize histogram with bin
size and number of particles?

116

HKICK

7.23 HKICK

A horizontal steering dipole implemented as a matrix, up to 2nd order.
Parameter Name Units Type Default Description

L M double 0.0 length

KICK RAD double 0.0 kick strength

TILT RAD double 0.0 rotation about longitudinal
axis

B2 1/M2 double 0.0 normalized sextupole strength
(kick = KICK*(1+B2*x2̂)
when y=0)

CALIBRATION double 1 strength multiplier

EDGE EFFECTS long 0 include edge effects?

ORDER long 0 matrix order

STEERING long 1 use for steering?

117

HMON

7.24 HMON

A horizontal position monitor, accepting a rpn equation for the readout as a function of the actual
position (x).
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

WEIGHT double 1 weight in correction

TILT double 0.0 rotation about longitudinal
axis

CALIBRATION double 1 calibration factor for readout

ORDER long 0 matrix order

READOUT STRING NULL rpn expression for readout (ac-
tual position supplied in vari-
able x)

118

IBSCATTER

7.25 IBSCATTER

A simulation of intra-beam scattering.
Parameter Name Units Type Default Description

COUPLING double 1 x-y coupling

FACTOR double 1 factor by which to multiply
growth rates before using

CHARGE C double 0.0 beam charge (or use CHARGE
element)

DO X long 1 do x-plane scattering?

DO Y long 1 do y-plane scattering?

DO Z long 1 do z-plane scattering?

SMOOTH long 0 Use smooth method instead of
random numbers?

VERBOSITY long 0 Set verbosity level

FORCE MATCHED TWISS long 0 Force computations to be done
with twiss parameters of the
beamline, not the beam.

119

KICKER

7.26 KICKER

A combined horizontal-vertical steering magnet implemented as a matrix, up to 2nd order.
Parameter Name Units Type Default Description

L M double 0.0 length

HKICK RAD double 0.0 x kick angle

VKICK RAD double 0.0 y kick angle

TILT RAD double 0.0 rotation about longitudinal
axis

B2 1/M2 double 0.0 normalized sextupole strength
(e.g., kick =
KICK*(1+B2*x2̂))

HCALIBRATION double 1 factor applied to obtain x kick

VCALIBRATION double 1 factor applied to obtain y kick

EDGE EFFECTS long 0 include edge effects?

ORDER long 0 matrix order

STEERING long 1 use for steering?

120

KPOLY

7.27 KPOLY

A thin kick element with polynomial dependence on the coordinates in one plane.
Parameter Name Units Type Default Description

COEFFICIENT M−ORDER double 0.0 coefficient of polynomial

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FACTOR double 1 additional factor to apply

ORDER long 0 order of polynomial

PLANE STRING x plane to kick (x, y)

121

KQUAD

7.28 KQUAD

A canonical kick quadrupole, which differs from the MULT element with ORDER=1 in that it can
be used for tune correction.
Parameter Name Units Type Default Description

L M double 0.0 length

K1 1/M2 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

BORE M double 0.0 bore radius

B T double 0.0 pole tip field (used if bore
nonzero)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE M double 0.0 fractional strength error

HKICK RAD double 0.0 horizontal correction kick

VKICK RAD double 0.0 vertical correction kick

HSTEERING long 0 use for horizontal correction?

VSTEERING long 0 use for vertical correction?

N KICKS long 4 number of kicks

SYNCH RAD long 0 include classical synchrotron
radiation?

SYSTEMATIC MULTIPOLES STRING NULL input file for systematic
multipoles

RANDOM MULTIPOLES STRING NULL input file for random
multipoles

STEERING MULTIPOLES STRING NULL input file for multipole content
of steering kicks

INTEGRATION ORDER long 4 integration order (2 or 4)

SQRT ORDER long 0 Order of expansion of square-
root in Hamiltonian. 0 means
no expansion.

This element simulates a quadrupole using a kick method based on symplectic integration.
The user specifies the number of kicks and the order of the integration. For computation of twiss
parameters and response matrices, this element is treated like a standard thick-lens quadrupole;
i.e., the number of kicks and the integration order become irrelevant.
Specification of systematic and random multipole errors is supported through the SYSTEMATIC_MULTIPOLES
and RANDOM_MULTIPOLES fields. These fields give the names of SDDS files that supply the multipole
data. The files are expected to contain a single page of data with the following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

2. An integer column named order giving the order of the multipole. The order is defined as

122

(Npoles − 2)/2, so a quadrupole has order 1, a sextupole has order 2, and so on.

3. Floating point columns an and bn giving the values for the normal and skew multipole
strengths, respectively. These are defined as a fraction of the main field strength measured
at the reference radius, R: an = Knrn/n!

Kmrm/m! , where m = 1 is the order of the main field and n
is the order of the error multipole. A similar relationship holds for the skew multipoles. For
random multipoles, the values are interpreted as rms values for the distribution.

Specification of systematic higher multipoles due to steering fields is supported through the
STEERING_MULTIPOLES field. This field gives the name of an SDDS file that supplies the multipole
data. The file is expected to contain a single page of data with the following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

2. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2. The order must be an even number because of the quadrupole symmetry.

3. Floating point column an giving the values for the normal multipole strengths, which are
driven by the horizontal steering field. an is specifies the multipole strength as a fraction of
the steering field strength measured at the reference radius, R: an = Knrn/n!

Kmrm/m! , where m = 0
is the order of the steering field and n is the order of the error multipole. The bn values are
deduced from the an values, specifically, bn = an ∗ (−1)n/2.

The dominant systematic multipole term in the steering field is a sextupole. Note that elegant
presently does not include such sextupole contributions in the computation of the chromaticity via
the twiss output command. However, these chromatic effects will be seen in tracking.

123

KSBEND

7.29 KSBEND

A kick bending magnet which is NOT canonical, but is better than a 2nd order matrix implemen-
tation. Recommend using CSBEND instead.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric quadrupole strength

K2 1/M3 double 0.0 geometric sextupole strength

K3 1/M4 double 0.0 geometric octupole strength

K4 1/M5 double 0.0 geometric decapole strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

H1 1/M double 0.0 entrance pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

ETILT double 0.0 error rotation about incoming
longitudinal axis

N KICKS long 4 number of kicks

NONLINEAR long 1 include nonlinear field
components?

SYNCH RAD long 0 include classical synchrotron
radiation?

EDGE1 EFFECTS long 1 include entrace edge effects?

EDGE2 EFFECTS long 1 include exit edge effects?

EDGE ORDER long 1 edge matrix order

PARAXIAL long 0 use paraxial approximation?

TRANSPORT long 0 use (incorrect) TRANSPORT
equations for T436 of edge?

METHOD STRING modified-midpoint integration method (modified-
midpoint, leap-frog

124

KSEXT

7.30 KSEXT

A canonical kick sextupole, which differs from the MULT element with ORDER=2 in that it can
be used for chromaticity correction.
Parameter Name Units Type Default Description

L M double 0.0 length

K2 1/M3 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

BORE M double 0.0 bore radius

B T double 0.0 field at pole tip (used if bore
nonzero)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE M double 0.0 fractional strength error

N KICKS long 4 number of kicks

SYNCH RAD long 0 include classical synchrotron
radiation?

SYSTEMATIC MULTIPOLES STRING NULL input file for systematic
multipoles

RANDOM MULTIPOLES STRING NULL input file for random
multipoles

INTEGRATION ORDER long 4 integration order (2 or 4)

SQRT ORDER long 0 Order of expansion of square-
root in Hamiltonian. 0 means
no expansion.

This element simulates a sextupole using a kick method based on symplectic integration. The
user specifies the number of kicks and the order of the integration. For computation of twiss
parameters, chromaticities, and response matrices, this element is treated like a standard thick-
lens sextuupole; i.e., the number of kicks and the integration order become irrelevant.
Specification of systematic and random multipole errors is supported through the SYSTEMATIC_MULTIPOLES
and RANDOM_MULTIPOLES fields. These fields give the names of SDDS files that supply the multipole
data. The files are expected to contain a single page of data with the following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

2. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2, so a quadrupole has order 1, a sextupole has order 2, and so on.

3. Floating point columns an and bn giving the values for the normal and skew multipole
strengths, respectively. These are defined as a fraction of the main field strength measured
at the reference radius, R: an = Knrn/n!

Kmrm/m! , where m = 2 is the order of the main field and n
is the order of the error multipole. A similar relationship holds for the skew multipoles. For
random multipoles, the values are interpreted as rms values for the distribution.

125

LMIRROR

7.31 LMIRROR

A mirror for light optics
Parameter Name Units Type Default Description

RX M double 0.0 radius in horizontal plane

RY M double 0.0 radius in vertical plane

THETA RAD double 0.0 angle of incidence (in horizon-
tal plane)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT RAD double 0.0 misalignment rotation about
longitudinal axis

YAW RAD double 0.0 misalignment rotation about
vertical axis

PITCH RAD double 0.0 misalignment rotation about
transverse horizontal axis

126

LSCDRIFT

7.32 LSCDRIFT

Longitudinal space charge impedance
Parameter Name Units Type Default Description

L M double 0.0 length

BINS long 0 number of bins for current
histogram

SMOOTHING long 0 smooth current histogram?

SG HALFWIDTH long 1 Savitzky-Golay filter
half-width for smoothing cur-
rent histogram

SG ORDER long 1 Savitzky-Golay filter order for
smoothing current histogram

INTERPOLATE long 1 Interpolate wake?

HIGH FREQUENCY CUTOFF0 double -1 Spatial frequency at which
smoothing filter begins. If
not positive, no frequency fil-
ter smoothing is done. Fre-
quency is in units of Nyquist
(0.5/binsize).

HIGH FREQUENCY CUTOFF1 double -1 Spatial frequency
at which smoothing filter is
0. If not given, defaults to
HIGH FREQUENCY CUTOFF0.

RADIUS FACTOR double 1.7 LSC radius is
(Sx+Sy)/2*RADIUS FACTOR

127

LSRMDLTR

7.33 LSRMDLTR

A non-symplectic numerically integrated planar undulator including optional co-propagating laser
beam for laser modulation of the electron beam.
Parameter Name Units Type Default Description

L M double 0.0 length

BU T double 0.0 Undulator peak field

PERIODS long 0 Number of undulator periods.

METHOD NULL STRING non-adaptive runge-kutta integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta)

FIELD EXPANSION NULL STRING ideal ideal, exact, or ”leading
terms”

ACCURACY NULL double 0.0 Integration accu-
racy for adaptive integration.
(Not recommended)

N STEPS long 0 Number of integration steps
for non-adaptive integration.

POLE FACTOR1 double 0.155717533964439 Strength factor for the first
and last pole.

POLE FACTOR2 double 0.380687615192693 Strength factor for the second
and second-to-last pole.

POLE FACTOR3 double 0.80282999969846 Strength factor for the third
and third-to-last pole.

LASER WAVELENGTH M double 0.0 Laser wavelength. If zero, the
wavelength is calculated from
the resonance condition.

LASER PEAK POWER W double 0.0 laser peak power

LASER W0 M double 1 laser spot size at waist

LASER PHASE RAD double 0.0 laser phase

This element simulates a planar undulator, together with an optional co-propagating laser beam
that can be used as a beam heater or modulator. The simulation is done by numerical integration
of the Lorentz equation. It is not symplectic, and hence this element is not recommended for
long-term tracking simulation of undulators in storage rings.

The fields in the undulator can be expressed in one of three ways. The FIELD EXPANSION
parameter is used to control which method is used.

• The exact field, given by (see section 3.1.5 of the Handbook of Accelerator Physics and Engi-
neering)

Bx = 0, (2)

By = B0 cosh kuy cos kuz, (3)

128

and
Bz = B0 sinh kuy cos kuz, (4)

where ku = 2π/λu and λu is the undulator period. This is the most precise method, but also
the slowest.

• The field expanded to leading order in y:

By = B0(1 +
1

2
(kuy)2) cos kuz, (5)

and
Bz = B0kuy cos kuz. (6)

In most cases, this gives results that are very close to the exact fields, at a savings of 10% in
computation time.

• The “ideal” field:
By = B0 cos kuz, (7)

Bz = 0. (8)

This is about 10% faster than the leading-order mode, but less precise. Small differences from
results with the exact field may be seen. Generally, these are too small to be a concern. As
a result, this is the default mode.

By default, if the laser wavelength is not given, it is computed from the resonance condition:

λl =
λu

2γ2

(

1 +
1

2
K2
)

, (9)

where γ is the relativistic factor for the beam and K is the undulator parameter.
The adaptive integrator doesn’t work well for this element, probably due to sudden changes in

field derivatives in the first and last three poles (a result of the implementation of the undulator
terminations). Hence, the default integrator is non-adaptive Runge-Kutta. The integration accu-
racy is controlled via the N STEPS parameter. N STEPS should be about 100 times the number
of undulator periods.

The expressions for the laser field used by this element were provided by P. Emma (SLAC).

129

LTHINLENS

7.34 LTHINLENS

A thin lens for light optics
Parameter Name Units Type Default Description

FX M double 0.0 focal length in horizontal plane

FY M double 0.0 focal length in vertical plane

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT RAD double 0.0 misalignment rotation about
longitudinal axis

YAW RAD double 0.0 misalignment rotation about
vertical axis

PITCH RAD double 0.0 misalignment rotation about
transverse horizontal axis

130

MAGNIFY

7.35 MAGNIFY

An element that allows multiplication of phase-space coordinates of all particles by constants.
Parameter Name Units Type Default Description

MX double 1 factor for x coordinates

MXP double 1 factor for x’ coordinates

MY double 1 factor for y coordinates

MYP double 1 factor for y’ coordinates

MS double 1 factor for s coordinates

MDP double 1 factor for
(p-pCentral)/pCentral

131

MALIGN

7.36 MALIGN

A misalignment of the beam, implemented as a zero-order matrix.
Parameter Name Units Type Default Description

DXP double 0.0 delta x’

DYP double 0.0 delta y’

DX M double 0.0 delta x

DY M double 0.0 delta y

DZ M double 0.0 delta z

DT S double 0.0 delta t

DP double 0.0 delta p/pCentral

DE double 0.0 delta gamma/gammaCentral

ON PASS long -1 pass on which to apply

FORCE MODIFY MATRIX long 0 modify the matrix even if
on pass>=0

132

MAPSOLENOID

7.37 MAPSOLENOID

A numerically-integrated solenoid specified as a map of (Bz, Br) vs (z, r).
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

ETILT RAD double 0.0 misalignment

EYAW RAD double 0.0 misalignment

EPITCH RAD double 0.0 misalignment

N STEPS long 100 number of steps (for nonadap-
tive integration)

INPUTFILE STRING NULL SDDS file containing (Br, Bz)
vs (r, z). Each page should
have values for a fixed r.

RCOLUMN STRING NULL column containing r values

ZCOLUMN STRING NULL column containing z values

BRCOLUMN STRING NULL column containing Br values

BZCOLUMN STRING NULL column containing Bz values

FACTOR double 0.0001 factor by which to multiply
fields in file

BXUNIFORM double 0.0 uniform horizontal field to su-
perimpose on solenoid field

BYUNIFORM double 0.0 uniform vertical field to super-
impose on solenoid field

LUNIFORM double 0.0 length of uniform field super-
imposed on solenoid field

ACCURACY double 0.0001 integration accuracy

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

133

MARK

7.38 MARK

A marker, equivalent to a zero-length drift space.
Parameter Name Units Type Default Description

FITPOINT long 0 supply Twiss parameters, mo-
ments, floor coordinates for
optimization?

134

MATR

7.39 MATR

Explicit matrix input from a text file, in the format written by the print matrix command.
Parameter Name Units Type Default Description

L M double 0.0 length

FILENAME STRING input file

ORDER long 1 matrix order

The input file for this element uses a simple text format. It is identical to the output in the
printout file generated by the tt matrix output command. For example, for a 1st-order matrix,
the file would have the following appearance:
description: C1 C2 C3 C4 C5 C6
R1: R11 R12 R13 R14 R15 R16
R2: R21 R22 R23 R24 R25 R26
R3: R31 R32 R33 R34 R35 R36
R4: R41 R42 R43 R44 R45 R46
R5: R51 R52 R53 R54 R55 R56
R6: R61 R62 R63 R64 R65 R66

Items in normal type must be entered exactly as shown, whereas those in italics must be provided
by the user. The colons are important! For this particular example, one would set ORDER=1 in the
MATR definition. In general, the Ci are zero, except for C5, which is usually equal to the length of
the element (which must be specified with the L parameter in the MATR definition).

135

MATTER

7.40 MATTER

A Coulomb-scattering and energy-absorbing element simulating material in the beam path.
Parameter Name Units Type Default Description

L M double 0.0 length

XO M double 0.0 radiation length

ELASTIC long 0 elastic scattering? If zero,
then particles will lose energy
due to material.

ENERGY STRAGGLE long 0 Use simple-minded energy
straggling model? Ignored for
ELASTIC scattering.

Z long 0 Atomic number

A AMU double 0.0 Atomic mass

RHO KG/M3 double 0.0 Density

PLIMIT double 0.05 Probability cutoff for each
slice

This element is based on section 3.3.1 of the Handbook of Accelerator Physics and Engineer-
ing, specifically, the subsections Single Coulomb scattering of spin-1

2 particles, Multiple
Coulomb scattering through small angles, and Radiation length. There are two aspects to
this element: scattering and energy loss.

Scattering. The multiple Coulomb scattering formula is used whenever the thickness of the
material is greater than 0.001Xo, where Xo is the radiation length. (Note that this is inaccurate for
materials thicker than 100Xo.) For this regime, the user need only specify the material thickness
(L) and the radiation length (XO).

For materials thinner than 0.001Xo, the user must specify additional parameters, namely, the
atomic number (Z), atomic mass (A), and mass density (RHO) of the material. Note that the
density is given in units of kg/m3. (Multiply by 103 to convert g/cm3 to kg/m3.) In addition, the
simulation parameter PLIMIT may be modified.

To understand this parameter, one must understand how elegant simulates the thin materials.
First, it computes the expected number of scattering events per particle, E = σT nL = K1π3nL

K2

2
+K2∗π2

,

where n is the number density of the material, L is the thickness of the material, K1 = (2Zre

β2γ)2, and

K2 = α2Z
2

3

βγ , with re the classical electron radius and α the fine structure constant. The material
is then broken into N slices, where N = E/Plimit. For each slice, each simulation particle has a
probability E/N of scattering. If scattering occurs, the location within the slice is computed using
a uniform distribution over the slice thickness.

For each scatter that occurs, the scattering angle, θ is computed using the cumulative probability

distribution F (θ > θo) = K2(π2−θ2
o
)

π2(K2+θ2
o
) . This can be solved for θo, giving θo =

√

(1−F)K2π2

K2+Fπ2 . For each

scatter, F is chosen from a uniform random distribution on [0, 1].
Energy loss. Energy loss simulation is very simple. The energy loss per unit distance traveled,

x, is dE
dx = −E/Xo. Hence, in traveling through a material of thickness L, the energy of each particle

is transformed from E to Ee−L/Xo .

136

Energy straggling. This refers to variation in the energy lost by particles. The model used
by elegant is very, very crude. It assumes that the standard deviation of the energy loss is equal
to half the mean energy loss. This is an overestimate, we think, and is provided to give an upper
bound on the effects of energy straggling until a real model can be developed. Note one obvious
problem with this: if you split a MATTER element of length L into two pieces of length L/2, the
total energy loss will not not change, but the induced energy spread will be about 30% lower, due
to addition in quadrature.

137

MAXAMP

7.41 MAXAMP

A collimating element that sets the maximum transmitted particle amplitudes for all following
elements, until the next MAXAMP.
Parameter Name Units Type Default Description

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

ELLIPTICAL long 0 is aperture elliptical?

EXPONENT long 2 exponent for boundary equa-
tion in elliptical mode. 2 is a
true ellipse.

OPEN SIDE STRING NULL which side, if any, is open (+x,
-x, +y, -y)

138

MODRF

7.42 MODRF

A first-order matrix RF cavity with exact phase dependence, plus optional amplitude and phase
modulation.
Parameter Name Units Type Default Description

L M double 0.0 length

VOLT V double 0.0 nominal voltage

PHASE DEG double 0.0 nominal phase

FREQ Hz double 500000000 nominal frequency

Q double 0.0 cavity Q

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

AMMAG double 0.0 magnitude of amplitude
modulation

AMPHASE DEG double 0.0 phase of amplitude
modulation

AMFREQ Hz double 0.0 frequency of amplitude
modulation

AMDECAY 1/s double 0.0 exponetial decay rate of ampli-
tude modulation

PMMAG DEG double 0.0 magnitude of phase
modulation

PMPHASE DEG double 0.0 phase of phase modulation

PMFREQ Hz double 0.0 frequency of phase modulation

PMDECAY 1/s double 0.0 exponetial decay rate of phase
modulation

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

139

MONI

7.43 MONI

A two-plane position monitor, accepting two rpn equations for the readouts as a function of the
actual positions (x and y).
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

WEIGHT double 1 weight in correction

TILT double 0.0 rotation about longitudinal
axis

XCALIBRATION double 1 calibration factor for x readout

YCALIBRATION double 1 calibration factor for y readout

ORDER long 0 matrix order

XREADOUT STRING NULL rpn expression for x readout
(actual position supplied in
variables x, y

YREADOUT STRING NULL rpn expression for y readout
(actual position supplied in
variables x, y

140

MULT

7.44 MULT

A canonical kick multipole.
Parameter Name Units Type Default Description

L M double 0.0 length

KNL M−ORDER double 0.0 integrated geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

BORE M double 0.0 bore radius

BTIPL TM double 0.0 integrated field at pole tip,
used if BORE nonzero

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FACTOR double 1 factor by which to multiply
strength

ORDER long 1 multipole order

N KICKS long 4 number of kicks

SYNCH RAD long 0 include classical synchrotron
radiation?

This element simulates a multipole element using 4th-order sympletic integration. A single
multipole order, n, is given. The multipole strength is specified by giving

KnL =

(

∂nBy

∂xn

)

x=y=0

L

Bρ
, (10)

where Bρ is the beam rigidity. A quadrupole is n = 1, a sextupole is n = 2, and so on.
The relationship between the pole tip field and KnL is

KnL =
n!BtipL

rn(Bρ)
, (11)

where r is the bore radius.

141

NIBEND

7.45 NIBEND

A numerically-integrated dipole magnet with various extended-fringe-field models.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bending angle

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT double 0.0 rotation about incoming longi-
tudinal axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FINT double 0.5 edge-field integral

HGAP M double 0.0 half-gap between poles

FP1 M double 10 fringe parameter (tanh model)

FP2 M double 0.0 not used

FP3 M double 0.0 not used

FP4 M double 0.0 not used

FSE double 0.0 fractional strength error

ETILT double 0.0 error rotation about incoming
longitudinal axis

ACCURACY double 0.0001 integration accuracy (for non-
adaptive integration, used as
the step-size)

MODEL STRING linear fringe model (hard-edge, lin-
ear, cubic-spline, tanh, quin-
tic, enge1, enge3, enge5)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta)

SYNCH RAD long 0 include classical synchrotron
radiation?

ADJUST BOUNDARY long 1 adjust fringe boundary posi-
tion to make symmetric tra-
jectory? (Not done if AD-
JUST FIELD is nonzero.)

142

NIBEND continued

A numerically-integrated dipole magnet with various extended-fringe-field models.
Parameter Name Units Type Default Description

ADJUST FIELD long 0 adjust central field strength to
make symmetric trajectory?

143

NISEPT

7.46 NISEPT

A numerically-integrated dipole magnet with a Cartesian gradient.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

E1 RAD double 0.0 entrance edge angle

B1 1/M double 0.0 normalized gradient
(K1=B1*L/ANGLE)

Q1REF M double 0.0 distance from septum at which
bending radius is L/ANGLE

FLEN M double 0.0 fringe field length

ACCURACY double 0.0001 integration accuracy

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta

MODEL STRING linear fringe model (hard-edge, lin-
ear, cubic-spline, tanh, quintic

144

OCTU

7.47 OCTU

Not implemented–use the MULT element.
Parameter Name Units Type Default Description

145

PEPPOT

7.48 PEPPOT

A pepper-pot plate.
Parameter Name Units Type Default Description

L M double 0.0 length

RADII M double 0.0 hole radius

TRANSMISSION double 0.0 transmission of material

TILT RAD double 0.0 rotation about longitudinal
axis

THETA RMS RAD double 0.0 rms scattering from material

N HOLES long 0 number of holes

146

PFILTER

7.49 PFILTER

An element for energy and momentum filtration.
Parameter Name Units Type Default Description

DELTALIMIT double -1 maximum fractional momen-
tum deviation

LOWERFRACTION double 0.0 fraction of lowest-momentum
particles to remove

UPPERFRACTION double 0.0 fraction of highest-momentum
particles to remove

FIXPLIMITS long 0 fix the limits in p from LOW-
ERFRACTION and UPPER-
FRACTION applied to first
beam

BEAMCENTERED long 0 if nonzero,
center for DELTALIMIT is av-
erage beam momentum

147

QUAD

7.50 QUAD

A quadrupole implemented as a matrix, up to 3rd order.
Parameter Name Units Type Default Description

L M double 0.0 length

K1 1/M2 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

FFRINGE double 0.0 fraction of length occupied by
linear fringe region

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE M double 0.0 fractional strength error

HKICK RAD double 0.0 horizontal correction kick

VKICK RAD double 0.0 vertical correction kick

HSTEERING long 0 use for horizontal steering?

VSTEERING long 0 use for vertical steering?

ORDER long 0 matrix order

FRINGE TYPE STRING inset type of fringe: ”inset” or
”fixed-strength”

This element simulates a quadrupole using a matrix of first, second, or third order.
By default, the element has hard edges and constant field within the defined length, L. However,

soft-edge effects (up to second order) may be added using the FFRINGE and FRINGE TYPE parameters.
If FFRINGE is zero (the default), then the magnet is hard-edged. If FFRINGE is positive, then the
magnet has linear fringe fields of length FFRINGE*L/2 at each end. That is, the total length of
fringe field from both ends combined is FFRINGE*L.

Depending on the value of FRINGE TYPE, the fringe fields are modeled as contained within the
length L (“inset” type) or extending symmetrically outside the length L (“fixed-strength” type).

For “inset” type fringe fields, the length of the “hard core” part of the quadrupole is L*(1-FFRINGE).
For “fixed-strength” type fringe fields, the length of the hard core is L*(1-FFRINGE/2). In the lat-
ter case, the fringe gradient reaches 50% of the hard core value at the nominal boundaries of the
magnet. This means that the integrated strength of the magnet does not change as the FFRINGE

parameter is varied. This is not the case with “inset” type fringe fields.

148

QUFRINGE

7.51 QUFRINGE

An element consisting of a linearly increasing or decreasing quadrupole field.
Parameter Name Units Type Default Description

L M double 0.0 length

K1 1/M2 double 0.0 peak geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE M double 0.0 fractional strength error

DIRECTION long 0 1=entrance, -1=exit

ORDER long 0 matrix order

149

RAMPP

7.52 RAMPP

A momentum-ramping element that changes the central momentum according to an SDDS- format
file of the momentum factor vs time in seconds.
Parameter Name Units Type Default Description

WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing momentum factor vs time

150

RAMPRF

7.53 RAMPRF

A voltage-ramped RF cavity, implemented like RFCA. The voltage ramp pattern is given by an
SDDS-format file of the voltage factor vs time in seconds.
Parameter Name Units Type Default Description

L M double 0.0 length

VOLT V double 0.0 nominal voltage

PHASE DEG double 0.0 nominal phase

FREQ Hz double 500000000 nominal frequency

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

VOLT WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing voltage waveform factor vs
time

PHASE WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing phase offset vs time (re-
quires FREQ WAVEFORM)

FREQ WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing fre-
quency factor vs time (requires
PHASE WAVEFORM)

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

151

RBEN

7.54 RBEN

A rectangular dipole, implemented as a SBEND with edge angles, up to 2nd order.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric focusing strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

K2 1/M3 double 0.0 geometric sextupole strength

H1 1/M double 0.0 entrace pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misaligment of entrance

DY M double 0.0 misalignment of entrace

DZ M double 0.0 misalignment of entrance

FSE double 0.0 fractional strength error

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

EDGE1 EFFECTS long 1 include entrace edge effects?

EDGE2 EFFECTS long 1 include exit edge effects?

ORDER long 0 matrix order

EDGE ORDER long 0 edge matrix order

TRANSPORT long 0 use (incorrect) TRANSPORT
equations for T436 of edge?

USE BN long 0 use B1 and B2 instead of K1
and K2 values?

B1 1/M double 0.0 K1 = B1*rho, where rho is
bend radius

B2 1/M2 double 0.0 K2 = B2*rho

152

RCOL

7.55 RCOL

A rectangular collimator.
Parameter Name Units Type Default Description

L M double 0.0 length

X MAX M double 0.0 half-width in x

Y MAX M double 0.0 half-width in y

DX M double 0.0 misalignment

DY M double 0.0 misalignment

OPEN SIDE STRING NULL which side, if any, is open (+x,
-x, +y, -y)

153

RECIRC

7.56 RECIRC

An element that defines the point to which particles recirculate in multi-pass tracking
Parameter Name Units Type Default Description

I RECIRC ELEMENT long 0

154

REFLECT

7.57 REFLECT

Reflects the beam back on itself, which is useful for multiple beamline matching.
Parameter Name Units Type Default Description

DUMMY long 0

155

REMCOR

7.58 REMCOR

An element to remove correlations from the tracked beam to simulate certain types of correction.
Parameter Name Units Type Default Description

X long 1 remove correlations in x?

XP long 1 remove correlations in x’?

Y long 1 remove correlations in y?

YP long 1 remove correlations in y’?

WITH long 6 coordinate to remove correla-
tions with
(1,2,3,4,5,6)=(x,x’,y,y’,s,dP/Po)

ONCE ONLY long 0 compute correction only for
first beam, apply to all?

156

RFCA

7.59 RFCA

A first-order matrix RF cavity with exact phase dependence.
Parameter Name Units Type Default Description

L M double 0.0 length

VOLT V double 0.0 peak voltage

PHASE DEG double 0.0 phase

FREQ Hz double 500000000 frequency

Q double 0.0 cavity Q (for cavity that
charges up to given voltage
from 0)

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

CHANGE P0 long 0 does cavity change central
momentum?

CHANGE T long 0 set to 1 for long runs to avoid
rounding error in phase

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

END1 FOCUS long 0 include focusing at entrance?

END2 FOCUS long 0 include focusing at exit?

BODY FOCUS MODEL STRING NULL None (default) or SRS (sim-
plified Rosenzweig/Serafini for
standing wave)

N KICKS long 1 number of kicks to use. Set to
zero for matrix method.

DX M double 0.0 misalignment

DY M double 0.0 misalignment

T REFERENCE S double -1 arrival time of reference
particle

LINEARIZE long 0 Linearize phase dependence?

The body-focusing model is based on Rosenzweig and Serafini, Phys. Rev. E 49 (2), 1599. As
suggested by N. Towne (NSLS), I simplified this to assume a pure pi-mode standing wave.

The CHANGE_T parameter may be needed for reasons that stem from elegant’s internal use of
the total time-of-flight as the longitudinal coordinate. If the accelerator is very long or a large
number of turns are being tracked, rounding error may affect the simulation, introducing spurious
phase jumps. By setting CHANGE_T=1, you can force elegant to modify the time coordinates of
the particles to subtract off NTrf , where Ttf is the rf period and N = ⌊t/Ttf + 0.5⌋. If you are
tracking a ring with rf at some harmonic h of the revolution frequency, this will result in the time
coordinates being relative to the ideal revolution period, Trf/h. If you have multiple rf cavities in
a ring, you need only use this feature on one of them. Also, you can use CHANGE_T=1 if you simply

157

prefer to have the offset time coordinates in output files and analysis.

158

RFCW

7.60 RFCW

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.
Parameter Name Units Type Default Description

L M double 0.0 length

CELL LENGTH M double 0.0 cell length (used to scale
wakes, which are assumed to
be given for a cell)

VOLT V double 0.0 voltage

PHASE DEG double 0.0 phase

FREQ Hz double 500000000 frequency

Q double 0.0 cavity Q (for cavity that
charges up to voltage from 0)

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

CHANGE P0 long 0 does element change central
momentum?

CHANGE T long 0 see RFCA documentation

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

END1 FOCUS long 0 include focusing at entrance?

END2 FOCUS long 0 include focusing at exit?

BODY FOCUS MODEL STRING NULL None (default) or SRS (sim-
plified Rosenzweig/Serafini for
standing wave)

N KICKS long 1 number of kicks to use. Set to
zero for matrix method.

WAKEFILE STRING NULL name of file containing Green
functions

ZWAKEFILE STRING NULL if WAKEFILE=NULL, op-
tional name of file containing
longitudinal Green function

TRWAKEFILE STRING NULL if WAKEFILE=NULL, op-
tional name of file containing
transverse Green functions

TCOLUMN STRING NULL column containing time data

WXCOLUMN STRING NULL column containing x Green
function

159

RFCW continued

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.
Parameter Name Units Type Default Description

WYCOLUMN STRING NULL column containing y Green
function

WZCOLUMN STRING NULL column containing longitudi-
nal Green function

N BINS long 0 number of bins for current
histogram

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 smooth current histogram?

SG HALFWIDTH long 4 Savitzky-Golay filter
half-width for smoothing

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

DX M double 0.0 misalignment

DY M double 0.0 misalignment

LINEARIZE long 0 Linearize phase dependence?

LSC long 0 Include longitudinal space-
charge impedance?

LSC BINS long 1025 Number of bins for LSC
calculations

LSC INTERPOLATE long 1 Interpolate computed LSC
wake?

LSC HIGH FREQUENCY CUTOFF0 double -1 Spatial frequency at which
smoothing filter begins for
LSC. If not positive, no fre-
quency filter smoothing is
done. Frequency is in units of
Nyquist (0.5/binsize).

LSC HIGH FREQUENCY CUTOFF1 double -1 Spatial frequency at which
smoothing filter is 0 for LSC.
If not given, defaults to
HIGH FREQUENCY CUTOFF0.

LSC RADIUS FACTOR double 1.7 LSC radius is
(Sx+Sy)/2*RADIUS FACTOR

WAKES AT END long 0 Do
wake kicks at end of segment
(for backward compatibility)?

This element is a combination of the RFCA, WAKE, and TRWAKE elements. As such, it provides
combined simulation of an rf cavity with longitudinal and transverse wakes.

For the wakes, the input files and their interpretation are identical to WAKE and TRWAKE, except
that the transverse and longitudinal wakes are interpreted as the wakes for a single cell of length
given by the CELL LENGTH parameter.

160

Users should read the entries for WAKE, TRWAKE, and RFCA for more details on this element.

161

RFDF

7.61 RFDF

A simple traveling wave deflecting RF cavity. See also RFTM110.
Parameter Name Units Type Default Description

L M double 0.0 length

PHASE DEG double 0.0 phase

TILT RAD double 0.0 rotation about longitudinal
axis

FREQUENCY HZ double 2856000000 frequency

VOLTAGE V double 0.0 voltage

TIME OFFSET S double 0.0 time offset (adds to phase)

N KICKS long 1 number of kicks (odd integer)

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

162

RFMODE

7.62 RFMODE

A simulation of a beam-driven TM monopole mode of an RF cavity.
Parameter Name Units Type Default Description

RA Ohm double 0.0 shunt impedance

RS Ohm double 0.0 shunt impedance (Ra=2*Rs)

Q double 0.0 cavity Q

FREQ Hz double 0.0 frequency

CHARGE C double 0.0 beam charge (or use CHARGE
element)

INITIAL V V double 0.0 initial voltage

INITIAL PHASE RAD double 0.0 initial phase

INITIAL T S double 0.0 time at which INITIAL V and
INITIAL PHASE held

BETA double 0.0 normalized load impedance

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current
histogram

PRELOAD long 0 preload cavity with steady-
state field

PRELOAD FACTOR double 1 multiply preloaded field by
this value

RIGID UNTIL PASS long 0 don’t affect the beam until this
pass

DETUNED UNTIL PASS long 0 cavity is completely detuned
until this pass

SAMPLE INTERVAL long 1 passes between output to
RECORD file

RECORD STRING NULL output file for cavity fields

SINGLE PASS long 0 if nonzero, don’t accumulate
field from pass to pass

PASS INTERVAL long 1 interval in passes at which to
apply PASS INTERVAL times
the field (may increase speed)

FREQ WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing
frequency/f0 vs time, where f0
is the frequency given with the
FREQ parameter

163

RFMODE continued

A simulation of a beam-driven TM monopole mode of an RF cavity.
Parameter Name Units Type Default Description

Q WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing qualityFactor/Q0 vs time,
where Q0 is the quality factor
given the the Q parameter.

164

RFTM110

7.63 RFTM110

Tracks through a TM110-mode (deflecting) rf cavity with all magnetic and electric field components.
Parameter Name Units Type Default Description

PHASE DEG double 0.0 phase

TILT RAD double 0.0 rotation about longitudinal
axis

FREQUENCY HZ double 2856000000 frequency

VOLTAGE V double 0.0 voltage

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

To derive the field expansion, we start with some results from Jackson[16], section 8.7. The
longitudinal electric field for a TM mode is just

Ez = −iE0Ψ(ρ, φ) cos

(

pπz

d

)

e−iωt, (12)

where p is an integer, d is the length of the cavity, and we use cylindrical coordinates (ρ, φ, z). The
factor of −i represents a choice of sign and phase convention. We are interested in the TM110
mode, so we set p = 0. In this case, we have

Ex = Ey = 0 (13)

and (using CGS units)

~H = −iE0
iǫω

ck2
ẑ ×∇Ψe−iωt. (14)

For a cylindrical cavity, the function Ψ for the m = 1 aximuthal mode is

Ψ(ρ, φ) = J1(kρ) cos φ, (15)

where k = x11/R, x11 is the first zero of J1(x), and R is the cavity radius. We don’t need to know
the cavity radius, since k = ω/c, where ω is the resonant frequency. By choosing cos φ for the
aximuthal dependence, we’ll get a magnetic field primarily in the vertical direction.

In MKS units, the magnetic field is

~B =
E0

kc
e−iωt

(

ρ̂
J1(kρ)

ρ
sin φ + φ̂ cos φ

∂J1(kρ)

∂ρ

)

. (16)

Using mathematica, we expanded these expressions to sixth order in k ∗ ρ. Here, we present
only the expressions to second order. Taking the real parts only, we now have

Ez ≈ −1

2
E0kρ cos φ sin ωt (17)

cBρ ≈ E0

(

1

2
− k2ρ2

16

)

sin φ cos ωt (18)

cBφ ≈ E0

(

1

2
− 3k2ρ2

16

)

cos φ cos ωt (19)

165

The Cartesian components of ~B can be computed easily

cBx = cBρ cos φ − cBφ sinφ (20)

=
E0

8
ρ2k2 cos φ sin φ cos ωt (21)

cBy = cBρ sin φ + cBφ cos φ (22)

= E0

(

1

2
− k2ρ2(2 cos2 φ + 1)

16

)

cos ωt (23)

The Lorentz force on an electron is F = −eEz ẑ − ec~β × ~B, giving

Fx/e = βzcBy (24)

Fy/e = −βzcBx (25)

Fz/e = −Ez − βxcBy + βycBx (26)

We see that for ρ → 0, we have Ez = 0, Bx = 0, and

cBy =
E0

2
cos ωt. (27)

Hence, for ωt = 0 and E0 > 0 we have Fx > 0. This explains our choice of sign and phase convention
above.

166

RFTMEZ0

7.64 RFTMEZ0

A TM-mode RF cavity specified by the on-axis Ez field.
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE RAD double 0.0 phase

EZ PEAK V double 0.0 Peak on-axis longitudinal elec-
tric field

TIME OFFSET S double 0.0 time offset (adds to phase)

PHASE REFERENCE long 0 phase reference number (to
link to other time-dependent
elements)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

ETILT RAD double 0.0 misalignment

EYAW RAD double 0.0 misalignment

EPITCH RAD double 0.0 misalignment

N STEPS long 100 number of steps (for nonadap-
tive integration)

RADIAL ORDER long 1 highest order in off-axis
expansion

CHANGE P0 long 0 does element change central
momentum?

INPUTFILE STRING NULL file containing Ez vs z at r=0

ZCOLUMN STRING NULL column containing z values

EZCOLUMN STRING NULL column containing Ez values

SOLENOID FILE STRING NULL file containing map of Bz and
Br vs z and r. Each page con-
tains values for a single r.

SOLENOID ZCOLUMN STRING NULL column containing z values for
solenoid map.

SOLENOID RCOLUMN STRING NULL column containing r values for
solenoid map. If omitted,
data is assumed to be for r=0
and an on-axis expansion is
performed.

167

RFTMEZ0 continued

A TM-mode RF cavity specified by the on-axis Ez field.
Parameter Name Units Type Default Description

SOLENOID BZCOLUMN STRING NULL column containing Bz values
for solenoid map.

SOLENOID BRCOLUMN STRING NULL column containing Br values
for solenoid map. If omitted,
data is assumed to be for r=0
and an on-axis expansion is
performed.

SOLENOID FACTOR double 1 factor by which to multiply
solenoid fields.

SOLENOID DX M double 0.0 misalignment

SOLENOID DY M double 0.0 misalignment

SOLENOID DZ M double 0.0 misalignment

SOLENOID ETILT RAD double 0.0 misalignment

SOLENOID EYAW RAD double 0.0 misalignment

SOLENOID EPITCH RAD double 0.0 misalignment

BX STRAY double 0.0 Uniform stray horizontal field

BY STRAY double 0.0 Uniform stray vertical field

ACCURACY double 0.0001 integration accuracy

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

FIELD TEST FILE STRING NULL filename for output of test
fields (r=0)

168

RMDF

7.65 RMDF

A linearly-ramped electric field deflector, using an approximate analytical solution FOR LOW
ENERGY PARTICLES.
Parameter Name Units Type Default Description

L M double 0.0 length

TILT RAD double 0.0 rotation about longitudinal
axis

RAMP TIME S double 1e-09 length of ramp

VOLTAGE V double 0.0 full voltage

GAP M double 0.01 gap between plates

TIME OFFSET S double 0.0 time offset of ramp start

N SECTIONS long 10 number of sections

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

169

ROTATE

7.66 ROTATE

An element that rotates the beam coordinates about the longitudinal axis.
Parameter Name Units Type Default Description

TILT RAD double 0.0 rotation about longitudinal
axis

170

SAMPLE

7.67 SAMPLE

An element that reduces the number of particles in the beam by interval-based or random sampling.
Parameter Name Units Type Default Description

FRACTION double 1 fraction to keep

INTERVAL long 1 interval between sampled
particles

171

SBEN

7.68 SBEN

A sector dipole implemented as a matrix, up to 2nd order.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric focusing strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

K2 1/M3 double 0.0 geometric sextupole strength

H1 1/M double 0.0 entrace pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misaligment of entrance

DY M double 0.0 misalignment of entrace

DZ M double 0.0 misalignment of entrance

FSE double 0.0 fractional strength error

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

EDGE1 EFFECTS long 1 include entrace edge effects?

EDGE2 EFFECTS long 1 include exit edge effects?

ORDER long 0 matrix order

EDGE ORDER long 0 edge matrix order

TRANSPORT long 0 use (incorrect) TRANSPORT
equations for T436 of edge?

USE BN long 0 use B1 and B2 instead of K1
and K2 values?

B1 1/M double 0.0 K1 = B1*rho, where rho is
bend radius

B2 1/M2 double 0.0 K2 = B2*rho

172

SCATTER

7.69 SCATTER

A scattering element to add gaussian random numbers to particle coordinates.
Parameter Name Units Type Default Description

X M double 0.0 rms scattering level for x

XP M double 0.0 rms scattering level for x’

Y M double 0.0 rms scattering level for y

YP M double 0.0 rms scattering level for y’

DP M double 0.0 rms scattering level for (p-
pCentral)/pCentral

PROBABILITY double 1 Probability that any particle
will be selected for scattering.

173

SCRAPER

7.70 SCRAPER

A collimating element that sticks into the beam from one side only. The directions 0, 1, 2, and 3
are from +x, +y, -x, and -y, respectively.
Parameter Name Units Type Default Description

L M double 0.0 length

XO M double 0.0 radiation length

ELASTIC long 0 elastic scattering? If zero,
then particles will lose energy
due to material.

ENERGY STRAGGLE long 0 Use simple-minded energy
straggling model? Ignored for
ELASTIC scattering.

Z long 0 Atomic number

A AMU double 0.0 Atomic mass

RHO KG/M3 double 0.0 Density

PLIMIT double 0.05 Probability cutoff for each
slice

POSITION M double 0.0 position of edge

DX M double 0.0 misalignment

DY M double 0.0 misalignment

INSERT FROM STRING NULL direction from which inserted
(+x, -x, +y, -y)

DIRECTION long -1 obsolete, use insert from
instead

174

SCRIPT

7.71 SCRIPT

An element that allows transforming the beam using an external script.
Parameter Name Units Type Default Description

L M double 0.0 Length to be used for matrix-
based operations such as twiss
parameter computation.

COMMAND STRING NULL SDDS-compliant command to
apply to the beam. Use the se-
quence %i to represent the in-
put filename and %o to repre-
sent the output filename.

USE CSH long 1 Use C-shell for execution (may
be slower)?

VERBOSITY long 0 Set the verbosity level.

START PASS long -1 Start script action on this
pass. Before that, behaves like
a drift space.

ON PASS long -1 Perform script action only on
this pass. Other than that, be-
haveslike a drift space.

ROOTNAME STRING NULL Rootname for use in naming
input and output files. %s may
be used to represent the run
rootname.

INPUT EXTENSION STRING in Extension for the script input
file.

OUTPUT EXTENSION STRING out Extension for the script output
file.

KEEP FILES long 0 If nonzero, then script in-
put and output files are not
deleted after use. By default,
they are deleted.

NP0 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np0

NP1 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np1

175

SCRIPT continued

An element that allows transforming the beam using an external script.
Parameter Name Units Type Default Description

NP2 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np2

NP3 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np3

NP4 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np4

NP5 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np5

NP6 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np6

NP7 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np7

NP8 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np8

NP9 double 0.0 User-defined numerical
parameter for command sub-
stitution for sequence %np9

SP0 STRING NULL User-defined string parameter
for command substitution for
sequence %sp0

SP1 STRING NULL User-defined string parameter
for command substitution for
sequence %sp1

SP2 STRING NULL User-defined string parameter
for command substitution for
sequence %sp2

SP3 STRING NULL User-defined string parameter
for command substitution for
sequence %sp3

176

SCRIPT continued

An element that allows transforming the beam using an external script.
Parameter Name Units Type Default Description

SP4 STRING NULL User-defined string parameter
for command substitution for
sequence %sp4

SP5 STRING NULL User-defined string parameter
for command substitution for
sequence %sp5

SP6 STRING NULL User-defined string parameter
for command substitution for
sequence %sp6

SP7 STRING NULL User-defined string parameter
for command substitution for
sequence %sp7

SP8 STRING NULL User-defined string parameter
for command substitution for
sequence %sp8

SP9 STRING NULL User-defined string parameter
for command substitution for
sequence %sp9

This element allows expanding elegant by using external scripts (or programs) as elements in
a beamline. Here are requirements for the script:

• It must be executable from the commandline.

• It must read the initial particle distribution from an SDDS file. This file will have the usual
columns that an elegant phase-space output file has, along with the parameter Charge giving
the beam charge in Coulombs. The file will contain a single data page.

• It must write the final particle distribution to an SDDS file. This file should have all of the
columns and parameters that appear in the initial distribution file. Additional columns and
parameters will be ignored, as will all pages but the first.

The SCRIPT element works best if the script accepts commandline arguments. In this case, the
COMMAND parameter is used to provide a template for creating a command to run the script. The
COMMAND string may contain the following substitutable fields:

1. %i — Will be replaced by the name of the input file to the script. (elegant writes the initial
particle distribution to this file.)

2. %o — Will be replaced by the name of the output file from the script. (elegant expects the
script to write the final particle distribution to this file.)

3. %np0, %np1, ..., %np9 — Will be replaced by the value of Numerical Parameter 0, 1, ..., 9.
This can be used to pass to the script values that are parameters of the element definition.
For example, if one wanted to vary parameters or add errors to the parameter, one would use
this facility.

177

4. %sp0, %sp1, ..., %sp9 — Will be replaced by the value of String Parameter 0, 1, ..., 9. This
can be used to pass to the script values that are parameters of the element definition.

Here’s an example of a SCRIPT COMMAND:

myScript -input %i -output %o -accuracy %np0 -type %sp0

In this example, the script myScript takes four commandline arguments, giving the names of the
input and output files, an accuracy requirement, and a type specifier. By default, elegant will
choose unique, temporary filenames to use in communicating with the script. The actual command
when executed might be something like

myScript -input tmp391929.1 -output tmp391929.2 -accuracy 1.5e-6 -type scraper

where for this example I’ve assumed NP0=1.5e-6 and SP0=’’scraper’’.
If you have a program (e.g., a FORTRAN program) that does not accept commandline argu-

ments, you can easily wrap it in a Tcl/Tk simple script to handle this. Alternatively, you can
force elegant to use specified files for communicating with the script. This is done using the
ROOTNAME, INPUT EXTENSION, and OUTPUT EXTENSION parameters. So if your program was crass

and it expected its input (output) in files crass.in (crass.out), then you’d use

S1: script,command=’’crass’’,rootname=’’crass’’,input_extension=’’in’’,&

output_extension=’’out’’

178

SEXT

7.72 SEXT

A sextupole implemented as a matrix, up to 3rd order
Parameter Name Units Type Default Description

L M double 0.0 length

K2 1/M3 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE M double 0.0 fractional strength error

ORDER long 0 matrix order

179

SOLE

7.73 SOLE

A solenoid implemented as a matrix, up to 2nd order.
Parameter Name Units Type Default Description

L M double 0.0 length

KS RAD/M double 0.0 geometric strength,
-Bs/(B*Rho)

B T double 0.0 field strength (used if KS is
zero)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

ORDER long 0 matrix order

180

SREFFECTS

7.74 SREFFECTS

Simulation of synchrotron radiation effects (damping and quantum excitation).
Parameter Name Units Type Default Description

JX double 1 x damping partition number

JY double 1 y damping partition number

JDELTA double 2 momentum damping partition
number

EXREF m double 0.0 reference equilibrium x
emittance

EYREF m double 0.0 reference equilibrium y
emittance

SDELTAREF m double 0.0 reference equilibrium
fractional momentum spread

DDELTAREF double 0.0 reference fractional momen-
tum loss (per turn)

PREF mec double 0.0 reference momen-
tum (to which other reference
values pertain)

COUPLING double 0.0 x-y coupling

FRACTION double 1 fraction of implied SR effect to
simulate with each instance

DAMPING long 1 include damping, less rf
effects?

QEXCITATION long 1 include quantum excitation?

LOSSES long 1 include average losses?

This element allows simulation of synchrotron radiation effects in a lumped fashion for quick,
approximate results. There are two ways to set up the element: explicit initialization or automatic
initialization.

In explicit initialization, the user supplies the quantities EXREF, EYREF, SDELTAREF, DDELTAPREF,
and PREF. These are, respectively, the reference values for the x-plane emittance, y-plane emittance,
fractional momentum spread, energy loss per turn, and momentum. The first four values pertain
to the reference momentum. JX, JY, and JDELTA may also be given, although the defaults work for
typical lattices.

In automatic initialization, the user turns on the radiation integral feature in twiss output,
causing elegant to automatically compute the above quantities. The COUPLING parameter can be
used to change the partitioning of quantum excitation between the horizontal and vertical planes.

181

STRAY

7.75 STRAY

A stray field element with local and global components. Global components are defined relative to
the initial beamline direction.
Parameter Name Units Type Default Description

L M double 0.0 length

LBX T double 0.0 local Bx

LBY T double 0.0 local By

GBX T double 0.0 global Bx

GBY T double 0.0 global By

GBZ T double 0.0 global Bz

ORDER long 0 matrix order

This element simulates stray fields. These fields are considered perturbations, in that they
change the trajectory (or orbit), but not the floor coordinates. Local stray fields (LBX and LBY) are
referenced to the local coordinate system. Global stray fields (GBX, GBY, GBZ) are referenced to the
global coordinate system, which coincides with the local coordinate system only at the start of the
beamline (unless there is no bending, in which case the two systems are identical).

182

TFBDRIVER

7.76 TFBDRIVER

Driver for a transverse feedback loop
Parameter Name Units Type Default Description

ID STRING NULL System identifier

STRENGTH double 0.0 Strength factor

KICK LIMIT RAD double 0.0 Limit on applied kick

DELAY long 0 Delay (in turns)

OUTPUT FILE STRING NULL File for logging filter output
and driver output

A0 double 1 Filter coefficient

A1 double 0.0 Filter coefficient

A2 double 0.0 Filter coefficient

A3 double 0.0 Filter coefficient

A4 double 0.0 Filter coefficient

A5 double 0.0 Filter coefficient

A6 double 0.0 Filter coefficient

A7 double 0.0 Filter coefficient

A8 double 0.0 Filter coefficient

A9 double 0.0 Filter coefficient

A10 double 0.0 Filter coefficient

A11 double 0.0 Filter coefficient

A12 double 0.0 Filter coefficient

A13 double 0.0 Filter coefficient

A14 double 0.0 Filter coefficient

This element is used together with the TFBPICKUP element to simulate a digital transverse
feedback system. Each TFBDRIVER element must have a unique identification string assigned to it
using the ID parameter. The same identifier must be used on a TFBPICKUP element. This is the
pickup from which the driver gets its signal. Each pickup may feed more than one driver, but a
driver can use only one pickup.

A 15-term FIR filter can be defined using the A0 through A14 parameters. The output of the
filter is simply

∑14
i=0 aiPi, where Pi is the pickup filter output from i turns ago. The output of the

filter is optionally delayed by the number of turns given by the DELAY parameter.
To some extent, the DELAY is redundant. For example, the filter a0 = 0, a1 = 1 with a delay of

0 is equivalent to a0 = 1, a1 = 0 with a delay of 1. However, for long delays or delays combined
with many-term filters, the DELAY feature must be used.

The output of the filter is multiplied by the STRENGTH parameter to get the kick to apply to the
beam. The KICK LIMIT parameter provides a very basic way to simulate saturation of the kicker
output.

See Section 7.2.14 of Handbook of Accelerator Physics and Engineering (Chao and Tigner, eds.)
for a discussion of feedback systems.

183

TFBPICKUP

7.77 TFBPICKUP

Pickup for a transverse feedback loop
Parameter Name Units Type Default Description

ID STRING NULL System identifier

PLANE STRING x ”x” or ”y”

RMS NOISE M double 0.0 RMS noise to add to position
readings.

A0 double 0.0 Filter coefficient

A1 double 0.0 Filter coefficient

A2 double 0.0 Filter coefficient

A3 double 0.0 Filter coefficient

A4 double 0.0 Filter coefficient

A5 double 0.0 Filter coefficient

A6 double 0.0 Filter coefficient

A7 double 0.0 Filter coefficient

A8 double 0.0 Filter coefficient

A9 double 0.0 Filter coefficient

A10 double 0.0 Filter coefficient

A11 double 0.0 Filter coefficient

A12 double 0.0 Filter coefficient

A13 double 0.0 Filter coefficient

A14 double 0.0 Filter coefficient

This element is used together with the TFBDRIVER element to simulate a digital transverse
feedback system. Each TFBPICKUP element must have a unique identification string assigned to it
using the ID parameter. This is used to identify which drivers get signals from the pickup.

A 15-term FIR filter can be defined using the A0 through A14 parameters. The input to the
filter is the turn-by-turn beam centroid at the pickup location. The output of the filter is simply
∑14

i=0 aiCi, where Ci is the position from i turns ago. Note that
∑14

i=0 ai must be zero. Otherwise,
the system will attempt to correct the DC orbit. The output of the filter is the input to the driver
element(s).

See Section 7.2.14 of Handbook of Accelerator Physics and Engineering (Chao and Tigner, eds.)
for a discussion of feedback systems.

184

TMCF

7.78 TMCF

A numerically-integrated accelerating TM RF cavity with spatially-constant fields.
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE S double 0.0 phase

TIME OFFSET S double 0.0 time offset (adds to phase)

RADIAL OFFSET M double 1 not recommended

TILT RAD double 0.0 rotation about longitudinal
axis

ER V double 0.0 radial electric field

BPHI T double 0.0 azimuthal magnetic field

EZ V double 0.0 longitudinal electric field

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

185

TRCOUNT

7.79 TRCOUNT

An element that defines the point from which transmission calculations are made.
Parameter Name Units Type Default Description

DUMMY long 0

186

TRFMODE

7.80 TRFMODE

A simulation of a beam-driven TM dipole mode of an RF cavity.
Parameter Name Units Type Default Description

RA Ohm/m double 0.0 shunt impedance

RS Ohm/m double 0.0 shunt impedance (Ra=2*Rs)

Q double 0.0 cavity Q

FREQ Hz double 0.0 frequency

CHARGE C double 0.0 beam charge (or use CHARGE
element)

BETA double 0.0 normalized load impedance

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current
histogram

PLANE STRING both x, y, or both

SINGLE PASS long 0 if nonzero, don’t accumulate
field from pass to pass

DX M double 0.0 misalignment

DY M double 0.0 misalignment

XFACTOR double 1 factor by which to multiply
shunt impedances

YFACTOR double 1 factor by which to multiply
shunt impedances

187

TRWAKE

7.81 TRWAKE

Transverse wake specified as a function of time lag behind the particle.
Parameter Name Units Type Default Description

INPUTFILE STRING NULL name of file giving Green
functions

TCOLUMN STRING NULL column in INPUTFILE con-
taining time data

WXCOLUMN STRING NULL column in INPUTFILE con-
taining x Green function

WYCOLUMN STRING NULL column in INPUTFILE con-
taining y Green function

CHARGE C double 0.0 beam charge (or use CHARGE
element)

FACTOR double 1 factor by which to multiply
both wakes

XFACTOR double 1 factor by which to multiply x
wake

YFACTOR double 1 factor by which to multiply y
wake

N BINS long 128 number of bins for current
histogram

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 smooth current histogram?

SG HALFWIDTH long 4 Savitzky-Golay filter
half-width for smoothing

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

DX M double 0.0 misalignment

DY M double 0.0 misalignment

TILT RAD double 0.0 rotation about longitudinal
axis

XPOWER long 1 Power of x that x kick depends
on.

YPOWER long 1 Power of y that y kick depends
on.

The input file for this element gives the transverse-wake Green functions, Wx(t) and Wy(t),
versus time behind the particle. The units of the wakes are V/C/m, so this element simulates the
integrated wake of some structure (e.g., a cell or series of cells). If you have, for example, the wake
for a cell and you need the wake for N cells, then you may use the FACTOR parameter to make the
appropriate multiplication. The values of the time coordinate should begin at 0 and be equi-spaced.
A positive value of time represents the distance behind the exciting particle. Time values must be
equally spaced.

188

The sign convention for Wq (q being x or y) is as follows: a particle with q > 0 will impart a
positive kick (∆q′ > 0) to a trailing particle following t seconds behind if Wq(t) > 0. A physical
wake function should be zero at t = 0 and also be initially positive as t increases from 0.

Use of the CHARGE parameter on the TRWAKE element is disparaged. It is preferred to use the
CHARGE element as part of your beamline to define the charge.

Setting the N BINS paramater to 0 is recommended. This results in auto-scaling of the number
of bins to accomodate the beam. The bin size is fixed by the spacing of the time points in the wake.

The default degree of smoothing (SG HALFWIDTH=4) may be excessive. It is suggested that users
vary this parameter to verify that results are reliable if smoothing is employed (SMOOTHING=1).

The XFACTOR and YFACTOR parameters can be used to adjust the strength of the wakes if the
location at which you place the TRWAKE element has different beta functions than the location at
which the object that causes the wake actually resides.

The XPOWER and YPOWER parameters can be used to change the dependence of the wake on the
x and y coordinates, respectively, of the particles. Normally, XPOWER=1 and YPOWER=1. This is an
ordinary dipole wake in a (supposedly) symmetric chamber.

If you have an asymmetric chamber, then you will have a transverse wake kick even if the beam
is centered. (Of course, you’ll need a 3-D wake code like GdfidL or MAFIA to compute this wake.)
This part of the transverse wake is described with XPOWER=0 and YPOWER=0. It will result in an
orbit distortion, but conceivably could have other effects, such as emittance dilution. If XPOWER=0
or YPOWER=0, the units for the x or y wake (respectively) must be V/C. A negative value of the
wake corresponds to a kick toward negative x (or y).

189

TUBEND

7.82 TUBEND

A special rectangular bend element for top-up backtracking.
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

FSE double 0.0 fractional strength error

OFFSET double 0.0 horizontal offset of magnet
center from arc center

MAGNET WIDTH double 0.0 horizontal width of the magnet
pole

MAGNET ANGLE double 0.0 angle that the magnet was de-
signed for

190

TWISS

7.83 TWISS

Sets Twiss parameter values.
Parameter Name Units Type Default Description

BETAX M double 1 horizontal beta function

BETAY M double 1 vertical beta function

ALPHAX double 0.0 horizontal alpha function

ALPHAY double 0.0 vertical alpha function

FROM BEAM long 0 compute correction
from tracked beam properties
instead of Twiss parameters?

ONCE ONLY long 0 compute correction only for
first beam or input twiss pa-
rameters, apply to all?

191

TWLA

7.84 TWLA

A numerically-integrated first-space-harmonic traveling-wave linear accelerator.
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE RAD double 0.0 phase

TIME OFFSET S double 0.0 time offset (adds to phase)

EZ V/M double 0.0 electric field

B SOLENOID T double 0.0 solenoid field

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

BETA WAVE double 1 (phase velocity)/c

ALPHA 1/M double 0.0 field attenuation factor

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

FOCUSSING long 1 include focusing effects?

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

CHANGE P0 long 0 does element change central
momentum?

192

TWMTA

7.85 TWMTA

A numerically-integrated traveling-wave muffin-tin accelerator.
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE RAD double 0.0 phase

EZ V/M double 0.0 electric field

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

KX 1/M double 0.0 horizontal wave number

BETA WAVE double 1 (phase velocity)/c

BSOL double 0.0 solenoid field

ALPHA 1/M double 0.0 field attenuation factor

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

N STEPS long 100 number of kicks

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

193

TWPL

7.86 TWPL

A numerically-integrated traveling-wave stripline deflector.
Parameter Name Units Type Default Description

L M double 0.0 length

RAMP TIME S double 1e-09 time to ramp to full strenth

TIME OFFSET S double 0.0 offset of ramp-start time

VOLTAGE V double 0.0 maximum voltage between
plates due to ramp

GAP M double 0.01 gap between plates

STATIC VOLTAGE V double 0.0 static component of voltage

TILT RAD double 0.0 rotation about longitudinal
axis

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

PHASE REFERENCE long 0 phase reference num-
ber (to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

194

VKICK

7.87 VKICK

A vertical steering dipole implemented as a matrix, up to 2nd order.
Parameter Name Units Type Default Description

L M double 0.0 length

KICK RAD double 0.0 kick strength

TILT RAD double 0.0 rotation about longitudinal
axis

B2 1/M2 double 0.0 normalized sextupole strength
(kick = KICK*(1+B2*y2̂))

CALIBRATION double 1 strength multiplier

EDGE EFFECTS long 0 include edge effects?

ORDER long 0 matrix order

STEERING long 1 use for steering?

195

VMON

7.88 VMON

A vertical position monitor, accepting a rpn equation for the readout as a function of the actual
position (y).
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

WEIGHT double 1 weight in correction

TILT double 0.0 rotation about longitudinal
axis

CALIBRATION double 1 calibration factor for readout

ORDER long 0 matrix order

READOUT STRING NULL rpn expression for readout (ac-
tual position supplied in vari-
able y)

196

WAKE

7.89 WAKE

Longitudinal wake specified as a function of time lag behind the particle.
Parameter Name Units Type Default Description

INPUTFILE STRING NULL name of file giving Green
function

TCOLUMN STRING NULL column in INPUTFILE con-
taining time data

WCOLUMN STRING NULL column in INPUTFILE con-
taining Green function

CHARGE C double 0.0 beam charge (or use CHARGE
element)

FACTOR C double 1 factor to multiply wake by

N BINS long 128 number of bins for current
histogram

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 smooth current histogram?

SG HALFWIDTH long 4 Savitzky-Golay filter
half-width for smoothing

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

CHANGE P0 long 0 change central momentum?

ALLOW LONG BEAM long 0 allow beam longer than wake
data?

The input file for this element gives the longitudinal Green function, W (t) versus time behind
the particle. The units of the wake are V/C, so this element simulates the integrated wake of
some structure (e.g., a cell or series of cells). If you have, for example, the wake for a cell and
you need the wake for N cells, then you may use the FACTOR parameter to make the appropriate
multiplication. The values of the time coordinate should begin at 0 and be equi-spaced. A positive
value of time represents the distance behind the exciting particle.

A positive value of W (t) results in energy loss. A physical wake function should be positive at
t = 0.

Use of the CHARGE parameter on the WAKE element is disparaged. It is preferred to use the
CHARGE element as part of your beamline to define the charge.

Setting the N BINS paramater to 0 is recommended. This results in auto-scaling of the number
of bins to accomodate the beam. The bin size is fixed by the spacing of the time points in the wake.

The default degree of smoothing (SG HALFWIDTH=4) may be excessive. It is suggested that users
vary this parameter to verify that results are reliable if smoothing is employed (SMOOTHING=1).

The algorithm for the wake element is as follows:

1. Compute the arrival time of each particle at the wake element. This is necessary because
elegant uses the longitudinal coordinate s = βct.

2. Find the mean, minimum, and maximum arrival times (tmean, tmin, and tmax, respectively).

197

If tmax − tmin is greater than the duration of the wakefield data, then elegant either exits
(default) or issues a warning (if ALLOW_LONG_BEAM is nonzero). In the latter case, that part
of the beam that is furthest from tmean is ignored for computation of the wake.

3. If the user has specified a fixed number of bins (not recommended), then elegant centers
those bins on tmean. Otherwise, the binning range encompasses tmin−∆t to tmax +∆t, where
∆t is the spacing of data in the wake file.

4. Create the arrival time histogram. If any particles are outside the histogram range, issue a
warning.

5. If SMOOTHING is nonzero, smooth the arrival time histogram.

6. Convolve the arrival time histogram with the wake function.

7. Multiply the resultant wake by the charge and any user-defined factor.

8. Apply the energy changes for each particle. This is done in such a way that the transverse
momentum are conserved.

9. If CHANGE_P0 is nonzero, change the reference momentum of the beamline to match the
average momentum of the beam.

198

WATCH

7.90 WATCH

A beam property/motion monitor–allowed modes are centroid, parameter, coordinate, and fft.
Parameter Name Units Type Default Description

FRACTION double 1 fraction of particles to dump
(coordinate mode)

INTERVAL long 1 interval for data output (in
turns)

START PASS long 0 pass on which to start

FILENAME STRING output filename

LABEL STRING output label

MODE STRING coordinates coordinate, parameter, cen-
troid, or fft

X DATA long 1 include x data in coordinate
mode?

Y DATA long 1 include y data in coordinate
mode?

LONGIT DATA long 1 include longitudinal data in
coordinate mode?

EXCLUDE SLOPES long 0 exclude slopes in coordinate
mode?

FLUSH INTERVAL long 0 file flushing interval (parame-
ter or centroid mode)

199

WIGGLER

7.91 WIGGLER

A wiggler or undulator for damping or excitation of the beam.
Parameter Name Units Type Default Description

L M double 0.0 length

RADIUS M double 0.0 peak bending radius

K double 0.0 Dimensionless strength pa-
rameter. Ignored if radius is
nonzero.

DX double 0.0 Misaligment.

DY double 0.0 Misaligment.

DZ double 0.0 Misaligment.

TILT double 0.0 Rotation about beam axis.

POLES long 0 number of wiggler poles

This element simulates a wiggler or undulator. There are two aspects to the simulation: the
effect on radiation integrals and the vertical focusing. Both are included as of release 15.2 of elegant.

If the number of poles should be an odd integer, we include half-strength end poles to match
the dispersion, but only for the radiation integral calculation. For the focusing, we assume all the
poles are full strength. If the number of poles is an even integer, no special end poles are required,
but we make the unphysical assumption that the field at the entrance (exit) of the device jumps
instantaneously from 0 (full field) to full field (0).

The radiation integrals are computed by summing the contributions for a series of half-poles.
The integrals for a single half-pole were computed analytically using Mathematica, using a sinu-
soidal field variation. The horizontal beta function and dispersion are propogated correctly for
these computations. Of course, the beta function propagates as in a drift space.

The vertical focusing is implemented as a distributed quadrupole-like term (affecting ony the
vertical, unlike a true quadrupole). The strength of the quadrupole is (see Wiedemann, Particle
Accelerator Physics II, section 2.3.2)

K1 =
1

2ρ2
, (28)

where ρ is the bending radius at the center of a pole. The undulator is focusing in the vertical
plane.

The wiggler field strength may be specified either as a peak bending radius ρ (RADIUS param-
eter) or using the dimensionless strength parameter K (K parameter). These are related by

K =
γλu

2πρ
, (29)

where γ is the relativistic factor for the beam and λu is the period length.

200

ZLONGIT

7.92 ZLONGIT

A simulation of a single-pass broad-band or functionally specified longitudinal impedance.
Parameter Name Units Type Default Description

CHARGE C double 0.0 beam charge (or use CHARGE
element)

BROAD BAND long 0 broad-band impedance?

RA Ohm double 0.0 shunt impedance

RS Ohm double 0.0 shunt impedance (Ra=2*Rs)

Q double 0.0 cavity Q

FREQ Hz double 0.0 frequency
(BROAD BAND=1)

ZREAL STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing real part of impedance vs f
(BROAD BAND=0)

ZIMAG STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing imag-
inary part of impedance vs f
(BROAD BAND=0)

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 128 number of bins for current
histogram

WAKES STRING NULL filename for output of wake

WAKE INTERVAL long 1 interval in passes at which to
output wake

AREA WEIGHT long 0 use area-weighting in assigning
charge to histogram?

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 smooth current histogram?

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

SG HALFWIDTH long 4 Savitzky-Golay filter
halfwidth for smoothing

REVERSE TIME ORDER long 0 Reverse time-order of particles
for wake computation?

FACTOR double 1 Factor by which to multiply
impedance.

This element allows simulation of a longitudinal impedance using a “broad-band” resonator or
an impedance function specified in a file. The impedance is defined as the Fourier transform of the

201

wake function

Z(ω) =

∫ +∞

−∞
e−iωtW (t)dt (30)

where i =
√
−1, W (t) = 0fort < 0, and W (t) has units of V/C.

For a resonator impedance, the functional form is

Z(ω) =
Rs

1 + iQ(ω
ωr

− ωr

ω)
, (31)

where Rs is the shunt impedance in Ohms, Q is the quality factor, and ωr is the resonant frequency.
When providing an impedance in a file, the user must be careful to conform to these conventions.
Other notes:

1. The frequency data required from the input file is not ω, but rather f = ω/(2π).

2. The default smoothing setting (SG HALFWIDTH=4), may apply too much smoothing. It is
recommended that the user vary this parameter if smoothing is employed.

202

ZTRANSVERSE

7.93 ZTRANSVERSE

A simulation of a single-pass broad-band or functionally-specified transverse dipole impedance.
Parameter Name Units Type Default Description

CHARGE C double 0.0 beam charge (or use CHARGE
element)

BROAD BAND long 0 broad-band impedance?

RS Ohm double 0.0 shunt impedance (Ra=2*Rs)

Q double 0.0 cavity Q

FREQ Hz double 0.0 frequency
(BROAD BAND=1)

INPUTFILE STRING NULL name of file giving impedance
(BROAD BAND=0)

FREQCOLUMN STRING NULL column in INPUTFILE con-
taining frequency

ZXREAL STRING NULL column in INPUTFILE con-
taining real impedance for x
plane

ZXIMAG STRING NULL column in INPUTFILE con-
taining imaginary impedance
for x plane

ZYREAL STRING NULL column in INPUTFILE con-
taining real impedance for y
plane

ZYIMAG STRING NULL column in INPUTFILE con-
taining imaginary impedance
for y plane

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

INTERPOLATE long 0 interpolate wake?

N BINS long 128 number of bins for current
histogram

SMOOTHING long 0 smooth current histogram?

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

SG HALFWIDTH long 4 Savitzky-Golay filter
halfwidth for smoothing

DX M double 0.0 misalignment

DY M double 0.0 misalignment

FACTOR double 1 Factor by which to multiply x
and y impedances.

203

ZTRANSVERSE continued

A simulation of a single-pass broad-band or functionally-specified transverse dipole impedance.
Parameter Name Units Type Default Description

XFACTOR double 1 Factor by which to multiply x
impedance.

YFACTOR double 1 Factor by which to multiply y
impedance.

WAKES STRING NULL filename for output of wake

WAKE INTERVAL long 1 interval in passes at which to
output wake

This element allows simulation of a transverse impedance using a “broad-band” resonator or
an impedance function specified in a file. The impedance is defined as the Fourier transform of the
wake function

Z(ω) =

∫ +∞

−∞
e−iωtW (t)dt (32)

where i =
√
−1, W (t) = 0fort < 0, and W (t) has units of V/C/m. Note that there is no factor of

i in front of the integral.
For a resonator impedance, the functional form is

Z(ω) =
1

ω

Rs

1 + iQ(ω
ωr

− ωr

ω)
, (33)

where Rs is the shunt impedance in Ohms/m, Q is the quality factor, and ωr is the resonant
frequency.

When providing an impedance in a file, the user must be careful to conform to these conventions.
Other notes:

1. The frequency data required from the input file is not ω, but rather f = ω/(2π).

2. The default smoothing setting (SG HALFWIDTH=4), may apply too much smoothing. It is
recommended that the user vary this parameter if smoothing is employed.

204

8 Examples

Example runs and post-processing files are included along with the distribution of elegant. These
are drawn from the author’s research and all concern various aspects of the Argonne Positron
Accumulator Ring (PAR) and its injection and ejection lines (LTP and PTB, respectively).

The examples are intended to demonstrate program capabilities with minimal work on the
user’s part. Each demo is invoked using a command (a C-shell script) that can both run elegant

and post-process the output. After running the demo, the output can be viewed again without
rerunning elegant by invoking the command with the word review added to the command line.
Including the word hardcopy on the command line results in the graphs being sent to the default
printer, which is assumed to accept Postscript.

The post-processing is typically handled by a lower-level script that is called from the demo
script. These lower-level scripts are good models for the creation of customized scripts for user
applications.

1. par10h* — These files provide a demonstration of Twiss parameter computation, tracking,
element variation, and map analysis. The lattice is defined with kick elements, which are
used for all tracking. After computation of the Twiss parameters for the PAR[6], a series
of particles are tracked with different initial x coordinates. Finally, the tunes and Twiss
parameters are computed by tracking; they are very close to the analytical values. The post-
processing commands make phase-space plots and plots of FFTs of the motion, showing that
the motion becomes chaotic at the stability limit. To execute this demo, type the command
par10h.

2. par_sympl* — These files provide a demonstration of the symplecticity of tracking with
elegant kick elements. A single large-amplitude particle is tracked for 214 turns. The invari-
ant Jx is then computed and plotted as a function of turn number. To execute this demo,
type the command par_sympl. The post-processing takes quite some time because of the
very large number of points.

3. par_chrom* — These files provide a demonstration of computing chromaticity and other
parameters as a function of momentum offset using map analysis. The lattice is the same as
par10h.lte, except all of the elements are implemented using second-order matrices. Hence,
the chromaticity from tracking should be nearly identical to the analytical results computed
by the twiss_output command, which it is. To run this demonstration, enter par_chrom.
The reader may wish to try this demo again using ksbend, csbend, or nibend elements in
place of the sbend elements, and kquad (ksext) elements in place of the quad (sext) elements.

4. par_damp* — These files provide a demonstration of damping partition calculation using
single turn tracking with synchrotron radiation. The expected value of the longitudinal
damping partition for PAR is Jδ = 1.758. The user may edit the lattice file, par_damp.lte,
to invoke a different element for the dipole magnet. In particular, definitions for numerically
integrated dipoles with extended fringe-fields are present. To execute this demo, type the
command par_damp.

5. par_dynap* — These files provide a demonstration of dynamic aperture runs for a series of
randomized machines. Also exhibited here are orbit, tune, and chromaticity correction. The
post-processing commands make a plot of the dynamic apertures with the physical aperture
superimposed. (The orbcorr_plots script can also be used to plot orbit correction informa-
tion.) To execute this demo, type the command par_dynap. The lattice has been stripped

205

down so that only a few of the more significant multipoles are present. Also, fictitious extra
sextupoles have been added to compensate the lack of second-order edge terms in the bending
magnets (these would result in nonsymplectic tracking if included). Still, the running time is
many hours.

6. ejoptk* — These files provide a demonstration of the optimization of a multi-turn ejection
bump for PAR, using a time-dependent kicker waveform (formed from two cubic splines).
After optimization, the lattice is tracked with a realistic beam distribution to verify good
transmission and show the centroid position vs z over three turns. To execute this demo,
type the command ejoptk.

7. ltp_te* — These files provide a demonstration of transport line simulation. The Linac-to-
PAR transport line is simulated with errors and trajectory correction to predict the trans-
mission losses and the steering error at the exit of the septum. The trajectory correction
uses tracking of a beam distribution, which is slower than tracking the centroid, but which
produces better results in the presence of the large momentum spread. The reader may wish
to verify this by turning off this feature and running the simulation again. To execute this
demo, type the command ltp_te. The running time for this demo is quite long.

206

9 The rpn Calculator

The program rpn is a Reverse Polish Notation programmable scientific calculator written in C. It
is incorporated as a subprogram into elegant, and a number of the SDDS programs. It also exists
as a command-line program, rpnl, which executes its command-line arguments as rpn operations
and prints the result before exiting. Use of rpn in any of these modes is extremely straightforward.
Use of the program in its stand-alone form is the best way to gain familiarity with it. Once one has
entered rpn, entering “help” will produce a list of the available operators with brief summaries of
their function. Also, the rpn definitions file rpn.defns, distributed with elegant, gives examples
of most rpn operation types.

Like all RPN calculators, rpn uses stacks. In particular, it has a numeric stack, a logical stack,
and a string stack. Items are pushed onto the numeric stack whenever a number-token is entered, or
whenever an operation concludes that has a number as its result; items are popped from this stack
by operations that require numeric arguments. Items are pushed onto the logical stack whenever
a logical expression is evaluated; they are popped from this stack by use of logical operations
that require logical arguments (e.g., logical ANDing), or by conditional branch instructions. Items
enclosed in double quotes are pushed onto the string stack; items are popped from this stack by
use of operations that require string arguments (e.g., formatted printing).

rpn supports user-defined memories and functions. To create a user-defined memory, one simply
stores a value into the name, as in “1 sto unity”; the memory is created automatically when rpn

detects that it does not already exist. To create a user-defined function, enter the “udf” command;
rpn will prompt for the function name and the text that forms the function body. To invoke a
UDF, simply type the name.

A file containing rpn commands can be executed by pushing the filename onto the string stack
and invoking the “@” operator. rpn supports more general file I/O through the use of functions
that mimic the standard C I/O routines. Files are identified by integer unit numbers, with units 0
and 1 being permanently assigned to the terminal input and terminal output, respectively.

207

References

[1] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, N.J., second edition, 1988.

[2] H. Grote, F. C. Iselin, “The MAD Program–Version 8.1,” CERN/SL/90-13(AP), June 1991.

[3] K. L. Brown, R. V. Servranckx, “First- and Second-Order Charged Particle Optics,” SLAC-
PUB-3381, July 1984.

[4] M. Borland, “A High-Brightness Thermionic Microwave Electron Gun,” SLAC-Report-402,
February 1991, Stanford University Ph.D. Thesis.

[5] H. A. Enge, “Achromatic Mirror for Ion Beams,” Rev. Sci. Inst., 34(4), 1963.

[6] M. Borland, private communication.

[7] W. H. Press, et al, Numerical Recipes in C, Cambridge University Press, Cambridge, 1988.

[8] M. Borland, “A Self-Describing File Protocol for Simulation Integration and Shared Postpro-
cessors,” Proc. 1995 PAC, May 1-5, 1995, Dallas, Texas, pp. 2184-2186 (1996).

[9] M. Borland, “A Universal Postprocessing Toolkit for Accelerator Simulation and Data Analy-
sis,” Proc. 1998 ICAP Conference, Sept. 14-18, 1998, Monterey, California, to be published.

[10] T. P. Green, “Research Toward a Heterogeneous Networked Computer Cluster: The Dis-
tributed Queuing System Version 3.0,” SCRI Technical Publication, 1994.

[11] M. Borland et al, “Start-to-End Jitter Simulation of the LCLS,” Proceedings of the 2001
Particle Accelerator Conference, Chicago, 2001.

[12] M. Borland and L. Emery, “Tracking Studies of Top-Up Safety for the Advanced Photon
Source,”, Proceedings of the 1999 Particle Accelerator Conference, New York, 1999, pg 2319-
2321.

[13] M. Xie, “Free Electron Laser Driven by SLAC LINAC”.

[14] S. Reiche, NIM A 429 (1999) 242.

[15] K. Halbach, “First Order Perturbation Effects in Iron-Dominated Two-Dimensional Symme-
trial Multipoles”, NIM 74-1, 1969, 147-164.

[16] J. D. Jackson, Clasical Electrodynamics, second edition.

208

