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Abstruct- The Tropospheric Emission Spectrometer (TES) 
is a Fourier transform spectrometer slated for launch  in 
December 2002. Its six-year mission to provide a 3- 
dimensional  map of ozone and  its precursors is part of 
NASA’s Earth Observation System (EOS). TES is expected 
to produce approximately 8.4 TB of raw data and  an 
additional 25 TB of processed data each year. The data are 
to  be  archived  and distributed by NASA’s EOS Data and 
Information  System (EOSDIS). Processing this data requires 
the development of a large, robust software system capable 
of automated operations, sufficiently maintainable to support 
ongoing revision of the processing algorithms. The target 
platform for the TES science software provides a rich set of 
job control functions. However, the changeable nature of the 
underlying science algorithms mandates a high degree of 
maintainability in the science software. The long time period 
over  which  the software is developed and  maintained 
suggests a framework-based approach to  system 
development. We describe plans for the development of an 
application framework to support TES, including 
requirements, architecture, technical and  management issues. 
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2. SYSTEM  OVERVIEW 

1 .  INTRODUCTION 

The Tropospheric Emission Spectrometer (TES) is a Fourier 
Transform Spectrometer scheduled to  fly  on the Earth 
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Observing System (EOS) Chemistry spacecraft in December 
2002. The TES project is managed by NASA’s Jet 
Propulsion Laboratory (JPL). In  its six-year mission, the 
TES instrument will provide the world’s first three- 
dimensional global data set of tropospheric ozone and  its 
precursors. Data processing activities are planned to 
continue through December 20 1 1. 

TES is a first-of-a-kind instrument in terms of its  combined 
performance, resolution and operational capabilities. The 
instrument will produce over 8TB of raw data, and an 
additional 25 TB of processed data each year. Evolution of 
the algorithms and the production software that  implements 
them, is expected to continue throughout the  mission. 

Data processing will  be performed by a production facility 
located in Pasadena, CA. The TES Data Processing Facility 
(DPF) will  be designed, built  and operated by Raytheon 
Information Technology and Science Systems under contract 
to JPL. The TES project team is responsible for developing 
and delivering processing software to the production facility, 
and for providing operational support for data quality 
monitoring  and  anomaly investigation. The data products 
produced in the DPF will  be delivered electronically to  the 
NASA Langley Research Center (LaRC) Distributed Active 
Archive Center (DAAC), an element of the EOS  Data and 
Information System (EOSDIS). See Figure 1 for a context 
diagram of the DPF. 

Description of Target  Environment 

The production environment is a highly  automated  batch- 
oriented system  that traces its heritage back to the Goddard 
Space Flight Center (GSFC) Version 0 DAAC. This system 
has  been  ported  to a number of facilities since its original 
development, adding additional functionality in the process. 
More recent instances of the system include the  Vegetation 
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Figure 1. The TES Data Processing Facility Context 

Canopy  LIDAR (VCL) Data Center, and the IceSat data 
processing facility. 

The production environment is a UNIX-based planning and 
scheduling system. This system provides all data 
management,  and job planning, scheduling and execution 
services required to operate the facility. The science 
software, which  is the main subject of this paper, need  only 
be  concerned with the science-driven aspects of the 
processing. The production environment places few code- 
level restrictions on delivered science software. However, 
the  plan  to operate the facility 24x7 with  only prime shift 
staffing  places significant requirements for automation and 
reliability on the science software. This software must fail 
gracefully when fatal conditions are encountered, and 
provide a great deal of automated data quality checking and 
process  information capture. 

Scientific research, software development, and operational 
support activities will  be  based  in the Science Computing 
Facility (SCF) located at JPL. Past experience with remote 
sensing projects suggests that unforeseen events in 
instrument calibration and on-orbit algorithm performance 
will necessitate the rapid development of  many  new 
applications. The ability to respond to these events in a 
timely  manner  and  within budget is a major goal of the 
system design. 

The  SCF represents the second major platform the science 
software is required to run on.  The  SCF is  currently  based 
on the Surdsolaris platform. Although the DPF is also 
planned for this platform, changes in  technology  and  market 
conditions may lead  to the use of another hardware and 
operating system platform. We expect to require the  science 
software to support two separate platforms in the DPF and 
SCF environments. 

As part of the EOS program, TES is required to deliver all 
data products to the EOSDIS. This places additional 
requirements on the system in terms of data formats and 
metadata production. In order to reduce cost, TES is 
considering the use of a number of third  party  software 
packages for inclusion on the delivered system. These 
include NASA-supplied toolkit routines for data format, 
metadata, ephemeris, geolocation and  mapping functions, 
and freely available libraries for numerical processing, linear 
algebra support, and  command line processing. The 
Framework must provide an encapsulation of these  third 
party products. 

Motivation 

With the current negative pressure on budgets  within  the 
federal government expected to continue for the foreseeable 
future, the TES project was  very interested in ways  to  further 
reduce development costs, and to ensure the  ability to 



Production 
Data Sets PGE ’ 
from EDOS 

Processing 

Interferogram 1 

PGE 10 

Processing m Global 

PGE 9 

Reconstruct 
Level 2 

PGE 0 

Retreival 
Profile 

A 

+ Spectral 
Binning 

Data  Management System 
Retrieval 

Cal P G E 3  Engine - Data 

L1A Data - Processing 

PGE 2 

Subset b Calibration - Reconstruct PGE7 
L1 B Data 

Target 
Data b 

PGE 5 
Target 

Processing 
PGE 4 

Figure 2. Data Flow Through TES Science Data Processing System 

provide new functionality to the science team, especially 
later in the project when budget pressures are expected to 
become  more severe. 

Frameworks  have  emerged  in the last fifteen years as a 
means of increasing reuse and productivity. The term 
“framework”  has  many interpretations in the software 
engineering community. We base our use of the term on 
Rogers’ definition [4]: A framework is, “a partially 
completed software application that is intended to  be 
customized to completion.” The scope of what  we consider a 
framework includes reusable design and code components. 

The decision to adopt a framework-based approach was a 
strategic one, intended to fulfill the need for reduced cost, 
and a more robust, maintainable system. Along  with the 
decision to develop a framework, the project adopted an 
object-oriented (00) design approach and selected the C++ 
language. The framework decision was thus part of an 
overall  strategy  to leverage 00 technology and  modern 
approaches to reuse and development. 

The choice of a framework-based approach is consistent 
with the  findings of a 1996 NASA workshop on reuse [5]. 
One of the important conclusions of the NASA group was 
that reuse should focus on domain-specific problems. Our 
effort is  narrower  in scope than the NASA concept (we 
focus our efforts on a single project, rather than  an 
organization- or enterprise-wide product line), though the 
same principles are employed. NASA is currently 
formulating a large-scale Earth System Modeling 
Framework (ESMF) development [6]  as part of the High 
Performance Computing and Communications Program [7]. 

We are considering proposing the framework discussed here 
as a basis for developing the ESMF. 

Considerations 

Developing a framework is considerably harder than 
developing a one-off system. We consider it to  be  equivalent 
to a programming systems product, as defined by Brooks 
[8]. Although it has been around for over a decade, the C++ 
language is still undergoing evolution, especially in  the  area 
of compilers and templates. The framework approach, 
though it has  been around for over a decade, is still not well 
established in the specialized field of science software 
development. The project team was aware of other science 
software projects that had developed common subroutine 
libraries, but we could find no precedent for the magnitude 
of commitment developing a framework represented. 

In  the program management area, there were risks associated 
with recruiting and training staff in the underlying 
technologies. Risks  and uncertainties notwithstanding, 
adopting a framework-based approach appeared to  be  the 
best way to proceed. 

Notation 

The framework design discussed here is based  in part on  the 
design patterns of Gamma, et a1 [3]. Where we refer to a 
design pattern we  will use the name found in  Gamma,  et al, 
with  an initial capital. Likewise, we distinguish between 
discussion of frameworks in general, and the specific 
Framework proposed for the TES project by using an initial 
capital where the latter connotation is implied. The UML  is 
used in class and sequence diagrams. 



2. SYSTEM  OVERVIEW 

The current design concept for the science data processing 
system (SDPS) is shown in Figure 2. Each box  labeled 
“PGE n” represents a product generation executable (PGE). 
A PGE  is  the smallest unit of processing that is 
independently  planned  and scheduled within the production 
system. A PGE may have subunits of execution that include 
staging, processing and destaging steps. The processing flow 
in the SCF (not shown) is more complex, but less 
formalized. It is expected to comprise a few dozen 
applications in the year 2002 time frame. As discussed 
above, the  need  to develop SCF applications rapidly is a 
major driver in our decision to develop a framework. 
However, we will focus much of our discussion on the 
production system, as it is better defined, and highlights the 
major features of the Framework satisfactorily. 

Table 1. Data Product Levels 

Level 1A Raw instrument data in reconstructed 
interferogram format, with instrument state 
data and geolocation data appended. 

Level 1B Calibrated spectra at full spatial and 
spectral resolution. 

Level 2 Vertical temperature and species abundance 
profiles. 

Level 3 Global maps of Level 2 data. One set of 
maps is created for every four-day global 
survey cycle. 

The total  system size is expected to be  roughly 500,000 lines 
of code, including comments. We include comments in 
system sizing, as we have found that they represent a 
significant portion of the development effort, as well as 
comprising one of the most important system documentation 
records. 

The production system design is based on an EOS-mandated 
demarcation of processing into levels. The basic unit  of 
processing is a four-day data set (also known as a global 
survey  cycle (GSC)) received every eight days (the 
remaining  four days are reserved for special science 
observations that  will  not  be discussed here). 

The four levels of data product are shown  in Table 1.  Due to 
the  nature of the Level 1B processing, it is necessary to wait 
until  the entire data set is received before processing begins. 
The data are transferred to the DPF in  two-hour chunks and 
are processed  through the Level 1A PGE upon receipt. Once 
all of the  Level 1A inputs for a survey cycle are ready, a 
subsetting PGE reorganizes the data according to a set of 
predetermined instrument parameters and geographical 
locations. Calibration data are processed into an 
intermediate form and  used as input to a set of parallel target 
processing PGEs, each working on a different subset of the 
survey  cycle data. There is a one-to-one correspondence 

between calibration PGEs and target processing PGEs. In a 
survey cycle, we expect 1,536 instances of each to  be run. 
The calibrated target data are reassembled en masse into 
their final product form by a “reconstruction” PGE. 

Level 2 processing follows a similar pattern, but  instead of 
reorganizing the data as the first step, the initial PGE creates 
an index into the calibrated data. The index data are used  to 
define input lists for instances of the retrieval PGE. As with 
Level lB ,  the main processing PGE at this level  is  designed 
to operate in data parallelism. Due to the much  higher  CPU 
loading at Level 2, the basic unit of input data per  PGE is 
smaller, leading to a total of 4,253 instances of the retrieval 
PGE per survey cycle. Level 2 processing concludes with a 
reconstruction PGE. Unlike Level lB, there is a separate 
instance of this PGE for every retrieval PGE instance. 

A single Level 3 mapping PGE is run after all Level 2 
products have been created. 

At each processing level the granularity of data is different, 
and the load  in terms of  memory, CPU and disk space 
differs. Memory and CPU are particularly important 
commodities in  the  Level 2 processing, which requires more 
than 100 times the processing power of Levels  1A  and 3. 
Level 2 also uses a large (=500GB) database of 
precomputed absorption coefficients to reduce CPU 
requirements. However, the retrieval PGEs consume this 
table data at a rate of roughly 30GB every second, placing a 
severe strain on the I/O capacity of the hardware. To 
mitigate the situation, it is intended that the retrieval PGE 
will employ a tunable size (nominally 30GB) shared 
memory segment. The indexing PGE provides information 
used to order job execution such that turnover of this 
memory segment is minimized, thereby reducing the VO 
requirements on the hardware. 

An important consideration in our Framework design is the 
preliminary nature of the above described system design. 
Changes in the scientific algorithms and knowledge gained 
while  in orbit may necessitate significant modifications of 
this design. The Framework must enable the development 
team  to rapidly reorganize the configuration of functional 
elements. 

The Framework is expected to support development of this 
system by providing the functionality shown in Table 2. One 
of the challenges in framework development is  the  lack of a 
complete set of requirements at the outset. In the sections to 
follow, we discuss our understanding of Framework 
requirements in further detail, as well as an approach to 
development that we believe will mitigate the risks this  lack 
of knowledge implies. 

Expectations for Reuse 

The proposed Framework is intended primarily for reuse 
within the TES project. Although we  will strive to  make  the 
design as generic as possible, the scope of the effort will  be 



Table 2. Summary of Framework Requirements 

PGE Znfrastructure An application skeleton for a PGE 
executable, including: command line parameter, 
environment variable, and  user parameter processing; 
high-level  input  and output collection abstractions; 

File Z/O Support for UO to/from all files in the system. 
Format support for HDF-EOS, HDF, ASCII and  native 
binary file types. VO support in terms of high-level 
data types (also framework supplied). Support for 
specific data product file organizations. 

Metadata Support for EOS standard metadata output 

Math  Library  Support Support for linear algebra, 
mathematical functions, specialized optimization and 
Fourier transforms, other functions. 

Exception  Handling Classes and conventions for 
handling exceptions. 

Constrained by resources and focus on project-specific 
requirements. 

As mentioned in the previous section, we are considering 
proposing our Framework design as a basis for the ESMF. 
We believe our project requirements for file interfaces and 
application design are sufficiently similar to the more 
general ESMF case to make them a reasonable starting 
point for the ESMF design. Our data object model is more 
tightly constrained by the details of the TES instrument,  and 
would  likely require considerable effort to generalize to the 
ESMF or a similarly  scoped system. 

In  our experience, software reuse is most easily achieved 
within  the context of the originating group and their 
immediate colleagues. We would hope to  be able to reuse 
our  Framework  on similar projects undertaken by our group, 
but  as described below, the economic gains expected from 
the TES Framework are sufficient to justify its development 
regardless of reuse outside the project. 

A reusable subroutine library was developed for the 
Atmospheric Emissions Spectrometer (AES), a project 
completed in 1993 as an airborne precursor to the TES 
instrument. The AES software system  was considerably 
smaller and  was  not developed to the same level of standards 
and  automation requirements of TES, but  was nevertheless a 
substantial effort. The total system size was approximately 
150 KLOC. A considerable portion of this code (roughly 
105 KLOC)  was already in existence when AES began, or 
was funded by other sources and  not tracked as part of the 
AES development. Detailed development records were  only 
kept  for  the low-level processing and  utility code (a 26 
KLOC portion consisting of two  main programs and  six 

utility programs). This portion also included the reusable 
library. 

Of this 26 KLOC code development, about half  was  part of 
the library. Roughly three quarters of the entire AES 
development effort (a one work-year effort) went  into 
producing the library and the two  main programs. 

Analysis of the final code sizes indicates that all of the 
library code was  used at least twice, and 55% (comprising 
the data file support, file utilities, and log file code) was 
used in all programs. Our costs and schedule savings 
expectations for the TES Framework development (and 
subsequent rapid application development based  on  the 
Framework) have been extracted from this  AES data. We 
found that if the 55% of code used  in all programs had  been 
developed from scratch for each use, the total  system cost 
could have grown by as much  as 180%. Looking only at the 
two  main programs, we realized that reuse of  the code would 
render cost savings on the order of 32% for that effort alone. 

It is expected that the Framework will facilitate the 
development of test, data quality and other specialized tools 
for TES. An example of the kind of reuse we expect is  the 
AES data extraction tool. This program required only 876 
new lines of code, reusing nearly 7,000 lines of code and 
cutting the development time fifteen weeks to less than  two. 
TES hopes to realize similar cost and schedule savings. If 
we succeed  in encapsulating our higher level algorithms, we 
could realize similar cost savings through reuse of code, 
even for sophisticated applications with  more  complex 
algorithms than a simple extraction tool. 

Based on the AES experience, we anticipate that developing 
reusable code from the outset will  yield substantial 
economic benefits to TES. 

3. DEVELOPMENT APPROACH 

The Framework will support the SDPS development by 
providing a generic application skeleton that  will  include 
classes for parameter handling, message logging, file 
inputJoutput, exception handling and gathering process 
history. Applications will extend the generic program  design 
from the Framework for specific algorithm implementations. 
It is important, therefore, for the Framework design to be 
sufficiently abstract to allow for a wide range of such 
extensions or derivations. Thus, the design of and interface 
to the Framework must be robust and generally agreed  upon 
by all major subsystems, in order to avoid the  unpleasant 
possibility of redesigning the Framework classes at later 
stages of the project. 

Development  Lifecycle 

Framework development will  be iterative and incremental, 
with requirements having the higher development risk  being 
implemented first. There will  be three major deliveries of the 
SDPS to the production facility before launch,  spaced 



approximately  one  year apart. Each external delivery will  be 
built  iteratively from a number of internal deliveries. 

The Framework development must lead the applications 
development in order to allow sufficient time for 
applications developers to integrate the Framework code 
prior to their deliveries. The Framework API has been 
developed in draft form, and  will be finalized within  the  next 
few  months. Science applications developers have been 
heavily  involved  in the API development, and  will  be 
responsible for approving it prior to implementation. 

The fundamental Framework components will  be delivered 
in two  major increments, spaced six  months apart. 
Subsequent deliveries will  add refinements and functionality 
not required early in the process. The incremental approach 
will  allow us to validate requirements, and catch errors in 
design  and  programming earlier in the process than a 
monolithic development lifecycle. A key consideration is the 
choice of priorities for implementation within the 
Framework. This choice must  be carefully made  to ensure 
that deliveries provide functionality on a schedule that  meets 
application developer’s needs, and  which takes into account 
the  need  to prototype the highest risk components as early as 
possible. 

It is likely  that additional requirements will be levied on the 
Framework by the various data processing elements, as 
algorithm development proceeds over a period of several 
years.  Advances in hardware, software, numerical  analysis 
and  data convergence (multi-platform sensor data 
integration) will necessitate more sophisticated Framework 
support during the mission lifecycle. Consequently, 
Framework  must  be able to rapidly integrate new  and  varied 
requirements as they arise. By delivering many complete 
subsystems  over a period of several years,  usually  with a 
very short (3 month development, 3 month integration and 
test) period  between deliveries, the Framework will  be able 
to accommodate most of the new requirements in a very 
rapid  manner. 

The benefits of delivering many complete subsystems extend 
to  other  areas as well. For example, the complex nature of 
the TES SDPS provides fertile ground for subtle errors to 
occur. By making small, incremental changes to Framework 
rather than delivering large, monolithic versions at greater 
intervals, we expect to minimize the number of undetected 
errors which  would  might  remain hidden, and jeopardize 
actual processing where large amounts of data are involved. 
Usually,  these are side effects rather than egregious bugs, 
and  they  normally result from incomplete or inconsistent 
interface specifications. Small, concise changes to the 
subsystem  allow for more robust testing of the subsystem 
and  its interactions with other subsystems specifically with 
regard  to  any  new  or  modified interfaces. This is 
considerably more difficult with larger, less frequent 
deliveries. 

The key features of the design will  be prototyped to  validate 
design feasibility. Multiple prototypes may be developed for 
the same algorithms using different techniques and different 
libraries. Similarly, there may  be different algorithms to 
arrive at the desired result. These prototypes will  be 
evaluated for performance, flexibility, portability etc., and 
the one that optimizes the goal will  be chosen. The 
prototypes will also be  used to derive further requirements 
that may  not be covered under the initial functional or 
performance requirements. 

System Integration  and Testing 

Framework testing will  be driven by the requirements. The 
formal testing methodology for the developers and  test 
group is currently being investigated, but  will  include 
automated tests with  known inputs and outputs, 
demonstration and  manual analysis of the data, and  test 
reports. Because system integration and test will  occur  after 
each component is completed and passed through  peer 
review, the interfaces between the different subsystems, the 
operational facility and other external interfaces will  be 
continually evaluated for problems that may  be  resolved 
early on. In addition, it will enable us to evaluate the design 
and demonstrate to the customer that the system  meets  the 
standards of the required functionality. This allows  the 
customer frequent opportunities to provide iterative 
feedback and redefinition of requirements for the next 
iteration. Besides component testing, each internal and 
external delivery will  be put through a rigorous regression 
test. The results of this integration and testing will  provide 
criteria not just for evaluating the Framework design, but  for 
evaluating the requirements as well. 

Integrated  Team of Framework and Application Developers 

The Framework team will consist of some core Framework 
developers involved in design, coding, testing and 
maintenance. From time to  time some science application 
developers may also be included to  augment  their 
understanding of Framework and encourage their 
commitment  to its use. This close collaboration of 
disciplines will enable Framework designers and developers 
to gain a solid understanding of the science data processing 
theories and algorithms necessary to deal with the changing 
requirements of these applications. 

Development  Tools 

Requisite Pro from Rational Software Corp. is  being  used to 
track requirements. The Unified Modeling Language (UML) 
has  been adopted as the modeling language for design. We 
are using Rational’s Rose CASE tool to develop and 
document the design. In Rose, the subsystems  are 
represented as packages and are broken up into finer level 
subpackages within each subsystem. Class, state and 
sequence diagrams will be used  to define the data types, 
applications and their interaction. The roundtrip engineering 
features of Rose will be used  to  maintain  consistency 



between the design  model  and the developed code. Design 
and interface documents will be generated automatically 
from  the  Rose  model  using Rose scripts to ensure that 
documentation remains up to date. Evaluation of 
commercially available software for test coverage tracking is 
in progress. 

Implementation 

The Framework coding effort will  be undertaken in a 
relatively traditional manner. Aside from the use of code 
skeleton generation from the Rose model, the software will 
be hand-coded. The use of generators (see, for example, [9]) 
to instantiate a program, or suite of programs, from a 
metamodel  is a promising development in software 
engineering, but does not appear to be  warranted  in the 
present situation. The benefits of such an approach would 
include the ability to accommodate changes in the 
fundamental abstractions without labor-intensive manual 
recoding of all dependent classes. However, the basic 
abstractions assumed by the TES Framework are based  on 
over 20 years of science software systems development. For 
purposes of the TES project, they are considered stable 
enough  to  allow the development to proceed  without  undue 

risk. 

4. SOFTWARE DESIGN & h C H m C T L J R E  

The Framework subsystem consists of several major 
components designed to reduce or eliminate the  necessity  for 
the scientific processing algorithms to have information on 
the underlying operating system and environment. These 
components fall into roughly three major categories: 
operating system-processing interfaces, algorithmic 
implementation and instantiation components, and utilities. 
Additionally, the Framework will encapsulate various 
toolkits, 3d-party packages, and commercial off-the-shelf 
software, in  what are called Foundation components. Figure 
3 is an abstract view of the Framework and  its  major 
components, showing their scope and  visibility relationships. 
In fact, many portions of the Framework could be  used  in a 

variety of applications. The domain-specific components 
tend to be focussed around file formats and external 
(project) requirements, such as data archiving and process 
logging. 

Good, clear and developer-friendly documentation will  be a 
key factor in Framework acceptance. The documentation 
will consist of interface definition, sample programs, 
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instructions for building a science application from the 
Framework classes, skeleton program and information on 
the salient features of the Framework. The Framework 
architecture includes a top-level Application  Interface, 
which  is  designed to encapsulate and hide all operating 
system details involved in initiating any specific processing 
algorithm  from the underlying numerical code. This 
component includes objects specifically designed for 
handling parameters from a variety of sources and  making 
them available to the algorithm itself. This top-level 
component provides the primary means for a PGE to 
instantiate and invoke Framework-based objects. 

Within  the Application Interface, the Framework contains an 
object called  simply Algorithm, an abstract class which 
serves  as a base class from which specific processing 
subsystems derive their own Algorithm classes. Primarily 
designed as a kind  of template class for science processing 
teams  to  use for incorporating level-specific processing 
codes within the system, the Algorithm class and its derived 
process-specific objects also provide a high level of service 
to  the algorithm, including instantiation of input and output 
files, error files, process logs, and so forth. 

A large  portion of the Framework is devoted to the notion 
of encapsulating file handling capabilities, in order to 
provide input/output functionality at a very  high level 
abstraction, closely related to the nature of the domain- 
specific data. Due  to the multi-platform nature of the SDPS 
and the requirements of the EOS program, data files are 
normally  stored  in a complex, although rich, format known 
as Hierarchical Data Format (HDF). Additionally, the EOS 
program  has  an extended form of HDF known, logically 
enough, as HDF-EOS. It  is  an express goal of the 
Framework  to isolate entirely the underlying data file format 
from  the  algorithm developers, providing a clean, robust, 
broad interface to the data itself rather than to the underlying 
file structure. Additionally, support for standard binary  and 
ASCII files must  be provided, as well as extensibility to as- 
yet-undetermined additional file formats. 

Clearly, then, the Framework must provide a full 
complement of Logical Data  Objects appropriate to the 
science data processing being developed, including such 
items  as interferograms, spectra, or collections of such 
items. It  is intended that the data object hierarchy shall 
provide a means for the application developer to manipulate 
the data during processing, with  an interface to the above- 
mentioned file handling components. Thus, the data objects 
must  know  how  to read and write themselves via the file 
handling interface, while the developer remains unaware of 
the  mechanics of these operations. 

The Framework  must provide mechanisms for handling 
some additional system-level operations, such as process 
control for  multi-threaded algorithms, as well as future 
extensions for multi-processing. 
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Figure 4. TAI Sequence Diagram 

Finally, the Framework provides exception-handling 
capabilities, error logging facilities, status codes, Metadata 
handling, and other utilities. Many of these will, in fact, be 
utilizing the file handling objects for logging  information 
about the processing status andor errors. Again, it becomes 
clear that the file handling components is one of the most 
critical in the Framework. 

In essence, the TES data processing Framework is a 
collection of Frameworks that interact with each other, the 
algorithm implementation, and the operating system and its 
environment. 

TES Application Interface and Algorithm Classes 

The primary interface between the science algorithm and  the 
SDPS environment is through a set of objects called the TES 
Application Interface (TAI) and the TES Algorithm. The 
purpose of the TAI is to encapsulate and abstract all 
information from the external environment, and  make it 
available to an algorithm in a clean, transportable manner. 
Ideally, this architecture should completely isolate the 
algorithm itself, and consequently the algorithm developers, 
from any system-specific details. Additionally, it provides a 
clean, portable and extensible interface between  the 
algorithm and those items dependent upon the operating 
environment, such as files, logs, process control, etc. 

The TAI executes two major tasks: it parses parameters and 
their definitions from multiple sources, and makes  the 
complete set available to an algorithm; and it then creates an 
instance of a specific science data processing algorithm and 
executes it, providing. all necessary  information  about  the 
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Figure 5. Logical File Hierarchy 

system  and  the  run-time parameters needed by the algorithm. 
A simplified sequence diagram is shown  in Figure 4. 

Instantiated within the TAI is a derived class of type 
TES-Algorithm. This derived class is highly specific and 
usually  extremely computational. The Algorithm component 
is  based  on  the Bridge design pattern. Each level of 
processing (as shown  in Table 1)  will derive its  own 
algorithm object, and  use  this derived class as a template or 
wrapper for including or developing the scientific data 
processing code. The base class itself  will provide access to 
those  common properties and methods that are deemed 
essential to ensure consistent operation of algorithm objects 
throughout  the data processing sequence. This base class 
supports log and error file handling, exception handling, 
process control, etc., via the aggregation of objects of types 
specific to  those items. Access to system- or process-wide 
parameters  is accomplished via the TAI’s aggregated 
parameter instance (itself a singleton object). 

File Handling 

One of the most important areas that the Framework must 
deal  with is that of file handling. The ultimate goal is to 
provide algorithm developers with a file mechanism that is 

completely transparent, incorporating complete 
independence of the underlying operating system. In fact, 
the requirements to support HDF-EOS via a toolkit for file 
access is driving a very complex file handling structure. 
Additionally, the nature of the data to  be stored implies a 
large amount of additional complexity. As an example, it is 
likely that users and/or developers will  wish  to access time- 
dependent, multivariate complex data based on time,  orbit 
number or geographic location or region. They may  wish to 
read or write data items across any  of these possible slices. 

Currently, the design is based on a combination of several 
design patterns. The logical files, which provide the 
interface to all subsystems, have a straightforward 
dependency on a base class called Logical File. Logical 
files correspond to the needs of any given level-specific 
algorithm, such as Interferogram data files, raw data packet 
files, etc. The logical file inheritance tree with  some  sample 
file types is shown in Figure 5. 

Physical files encapsulate environment and  format-specific 
details of actual data storage, isolating these details from the 
application programmer. In  some instances, such  as HDF 
format files, data may span more than one actual disk file. It 
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is  the responsibility of the Physical File hierarchy to handle Logical  Data  Objects 
such matters, perhaps using 31d-party toolkits in  some 
instances. The Physical File hierarchy is based  on the 
Adapter pattern, and is shown  in Figure 6.  

The relationship between these two sub-components is 
maintained  via a set of Bridge patterns, one bridge for each 
derived logical file type, as shown in Figure 7. 

Concurrent with the development of file handling and I/O 
mechanisms, we determined the need  to develop a rich 
hierarchy of Logical Data  Objects. Because these objects 
would  need to interface with the file structure in order to 
read and write themselves, they naturally appear to require 
an internal structure that closely mirrors the internal (logical) 
structures of the HDF files that contain the data. Examples 
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Figure 8. Possible Structure of Data 
of high-level domain-related data types that must  be 
supported are scan, focal plane,  integerogram, and 
spectrum. These may  be singular or combined in various 
ways, including multiple instances of any one type  or 
combinations of types. An interferogram is a large array of 
either real or complex numbers,  usually approximately 
40,000 bytes  in size. Included in  an interferogram are 
various attributes, such as pixel number  and temperature. A 
spectrum is similar to  an interferogram, the two types being 
related  via  Fourier  and Inverse Fourier transforms. A Focal 
Plane  is a collection of 16 interferograms, plus additional 
attributes. Finally, a Scan is a set of 4 focal planes, plus 
spacecraft position  and pointing information, etc. A draft 
class hierarchy  for these objects is shown in figure 8. 

It  is  highly  likely  that additional types will  be required as 

science algorithm development and scientific data analysis 
proceeds during pre-launch and operational phases. 
Therefore, the architecture must provide an easily extensible 
model. Logical data objects are based on the Composite 
design pattern. 

Naturally, there must  be some sort of methodology  for 
reading and  writing data to and from the aforementioned file 
objects. In order to accomplish this, the Framework 
provides that  every logical data object has  an associated 
layout This layout specifies how a data object's readlwrite 
calls are to  be interpreted by the file component, thus  in 
effect providing a map from the logical structure to  physical 
structure. The layout for a specific data object is  provided 
by a Chain of Responsibility pattern-based object, which 
uses a Factory pattern-based object to actually construct the 
layout for a given file type and data object. These 
relationships are shown  in Figure 9. 

Parameter Handling 

The Framework must  be able to handle a virtually  unlimited 
number  of parameters that may  be specified as inputs to any 
given algorithm (See Figure 10 for a simplified diagram of 
the parameter handling model). These parameters are 
defined in a separate parameter definition file for each level, 
as well as in coded default types for some parameters that 
may  used in more  than one algorithm. After  parsing  the 
definitions of all the specified parameters, the  actual  values 
may be declared in  any  number of places. The TAI 
instantiates a singleton object which contains a parameter 
block capable of parsing these values from the  variety of 
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locales in which  they  may  be set. These parameter values 
can  be  in a parameter file, as part of the operating system 
environment, specified on the command line or set as default 
values by the code itself. The parameters may  be  of 
virtually  any type, including compound types. The 
parameter class which provides access to these data based on 
the Singleton pattern. 

The requirement to support future, as-yet-undetermined data 
types  seems  to indicate that templates be  used as a means of 
incorporating these types. One difficulty that arises as a 
result of this decision is the non-standard implementation of 
templates by various compilers. This issue is still under 
consideration by the development team. 

Metadata Support 

There are three types of metadata that must  be supported by 
the  Framework. Two of these types, inventory and archive 
metadata, are supported by the EOSDIS Core System (ECS) 
Product Generation System (PGS) Toolkit, supplied to all 
EOS projects by NASA. The Framework must provide a 
wrapper class for the Toolkit's metadata functions in order 
to simplify  the  task of application developers. 

Inventory  metadata include instrument identification, date 
and  time of data acquisition, geographical location, product 
type  and level, and data quality metrics. These data are 
stored in a relational database within the ECS. and are used 

to support user search and order functions. Archive metadata 
comprise a broader set of attributes that are stored within  the 
data product files. These data are not stored in  the ECS 
database, and thus are not available to search tools. 

The third type of metadata supported by the Framework  is 
instrument team-defined metadata. These data are not 
supported by the PGS Toolkit. Attributes defined by the 
instrument team are considerably more complex in structure 
than inventory and archive metadata. The latter are defined 
using the object description language (ODL), which  is  based 
on a "parameter = value" model. Instrument team  metadata 
include such objects as error covariance matrices, residual 
vectors and references to supporting data or publications. 
These objects may themselves have associated metadata, 
introducing a recursive structure into the data organization. 

Another important distinction between Toolkit-supported 
and instrument team-defined metadata is the level of 
configuration control applied. Toolkit-supported metadata 
are documented in ODL which is included in an interface 
control document between the TES project and the Langley 
DAAC. This is necessary since the ingest functions at  the 
DAAC  must  be tailored to meet the TES metadata structure. 
Unilateral changes to the structure would break the 
automated ingest system, causing a significant disruption in 
the flow of data. Instrument team-defined metadata is not 
subject to these constraints, and thus may be changed more 



freely. Framework components supporting inventory  and 
archive  metadata can be designed and implemented once, 
whereas components supporting instrument team-defined 
metadata are subject to change as science team requirements 
evolve. 

Log  and Error Files 

During  the  normal course of scientific data analysis, an 
investigator may  wish  to evaluate the validity andor 
appropriateness of the sequence of steps that led to a 
particular data item. For this reason, it is necessary  to 
maintain a complete production history of all data 
processing steps in some form of log file or files. These 
files are archived along with the data, and some form of 
linkage  between  the data and the logs must  be maintained. 
These logfiles are a special case of the file-handling model, 
with additional requirements imposed  on  them. They must 
be  nearly  global  in scope to  any algorithm, and  must contain 
sufficient information about the process as to be able to 
recreate the circumstances of the process. This information 
includes  but  is  not  limited to: operating system information, 
processing  times, parameter information, input and output 
data files, return  and status codes, etc. For this reason, the 
Framework  will include a special set of objects devoted to 
handling logfile and error file output information. Again, as 
with the logical data objects, there is slightly more coupling 
between  these objects and the file manipulation objects than 
is  normal for the bulk of the SDPS system, in order to hide 
the  implementation of log file routines from the algorithm 
developers. 

Status and Error Codes 

Of the many items that may  go  into these log and error files, 
one standard type immediately emerges. Status codes are 
being  implemented as an object hierarchy in their own right, 
in order to encapsulate error and return codes, severity 
levels, information output routines, and  even the possibility 
of means of restarting failed processes with different 
parameters or control flow. Status code objects then also 
provide for a uniform  means of dealing with exception 
handling, and a clean interface between the algorithms and 
the  log  or error files. Some possible difficulties, however, 
are the overhead  involved  in  throwing  and catching a 
somewhat  more complex object, throwing such an object out 
of a routine, or returning a status code instead of a simple 
integer  value. Since several data processing algorithms are 
exceptionally CPU-bound, any increase in processing time is 
to  be  stringently avoided. For this reason, we have  no 
requirement on science algorithms that  they  use  such  an 
object within their own routines, but  instead  recommend a 
careful evaluation of the impact on their subsystem. Further, 
in order to  simplify  its  use, we derive status code objects 
that encapsulate the normal process routine value of OK, 
and  allow  for simple tests for equality in  such a case. 

Process Control 

The initial releases of the Framework are required only  to 
support some form of multithreading support. Full 
multiprocessing (such as distributed processing, 
parallelization, etc.) is not initially required of the  system. 
However, it is an express goal of the Framework design to 
be extensible enough to easily incorporate these 
requirements at a later date. For the first several iterations, 
however, all that is required is that the Framework provides 
an encapsulation of environment- and operating system- 
specific multithreading support. To that end, we anticipate a 
separate class hierarchy specifically designed to provide a 
simple interface to the underlying thread control methods. 
The terminal object(s) in  this hierarchy may then  be 
included in either the abstract base class Algorithm or a 
level-specific derived algorithm object thus providing thread 
control support to the derived algorithm objects. 

Memory management 

Due to the extremely complex, CPU-bound character of 
many  of the processing elements, it is vital  that  memory be 
carefully managed. Some processing elements currently 
take tens of hours of CPU time on today’s machines. In 
order to avoid the disastrous consequences of even  the 
smallest memory leak on such highly computation-intensive 
subsystems, memory management is a crucial component. It 
is likely that the Framework will incorporate numerous 
memory  management objects, including so-called “smart” 
pointers, local and remote memory pools, and so forth. The 
exact composition of the memory  management objects is 
under review at this time. 

However, as mentioned earlier, there is at least one concrete 
component that is likely to  fall under the category of 
memory management: the SOOGBs of absorption 
coefficients. This table will require a very sophisticated 
memory/file  mapping scheme, possibly including multi-level 
random access, its  own caching routines, or perhaps  the 
equivalent of a data tiling or mipmap scheme, in order to 
provide extremely fast retrieval of the coefficients. 

Foundation Objects 

Finally, there are several major components of the  data 
processing algorithms that utilize previously developed 
code, either specific to EOS data processing, or  commercial 
off-the-shelf software. For example, there are toolkits for 
dealing with HDF-EOS files that we will incorporate into 
our file-handling objects using wrappers around  those 
portions which the team specifies as required. Also, the  high 
emphasis on mathematical precision in  many of the 
processing steps implies that there will  be  one or more  well- 
developed mathematical and statistical packages that  will 
need  to  be incorporated. Many of these items  fall  into what 
we term the Foundation. This consists of a suite of wrapper 
classes for many  of these libraries, where possible, or  simply 
the interface definitions for the libraries where  it is not.  This 
allows us to hide implementation details and isolate the 
developers from changes in these libraries. Nothing  in  the 



requirements prevents, where appropriate, direct access to 
these libraries by developers; however, such  use is 
discouraged without good reason. Debugging and testing 
support is also planned to  be included in  this category 
(assertions, test scaffolding, 3‘d-party test tools, etc.). 

5. ISSUES 
As mentioned earlier, there are risks, both technical and 
programmatic, which arose as a result of our decision to 
develop a framework. The broader deployment of a 
technique from the academic environment in which it was 
born is a complex process involving cultural, financial, as 
well as technical considerations. We discuss some of these 
issues in the specific context of the TES project below. 

Framework Acceptance 

Framework success will  be determined at least in part on its 
level of acceptance among TES application developers. Not 
only  must  the Framework meet their requirements, its use 
must  be seen as making their jobs easier. There are two  main 
components to our strategy for Framework acceptance: team 
integration  and documentation. As  mentioned  in section 3, 
we plan  to  involve  members  of the applications development 
teams  directly  in the Framework development. This should 
increase the level of “ownership” felt in the applications 
teams,  as  well as their understanding of  what the Framework 
does and  how it should be used. 

The second component is good, clear and developer-friendly 
documentation. The documentation will provide an overview 
of the  Framework design, a detailed description of the API, 
sample programs, and instructions for building a science 
application from  the  Framework classes. 

Pe$ormance and  Reliability 

Since the  Framework  is  to  be  used throughout the TES 
SDPS, there are naturally some rather stringent requirements 
on  it  in  terms  of performance and reliability. In general, the 
system requirements levy a set of requirements on the 
Framework  which mandate error recovery and  logging 
procedures. It  is apparent from the intended use, however, 
that  the Framework’s requirements are considerably more 
strict, in that the Framework itself should rarely, if ever, 
terminate  or abort, but should rather attempt recovery or 
throw  an exception to the calling routine. That is, the 
Framework is not  usually cognizant enough of its intended 
use  to determine if it can fail gracefully. Components of 
Framework  themselves  must be highly reliable and robust. 
In nearly all cases, a Framework-based object or component 
should  never  fail catastrophically, but should raise an 
exception, attempt  to recover, and (failing recovery) pass the 
exception to  the appropriate subsystem for handling. 

At this time, no strict performance requirements have  been 
placed on the Framework. It is not anticipated that the 
Framework  will  be the bottleneck in  most circumstances, 

given  the  high computational aspects of most processing, 
and the fact that the Framework generally deals with  non- 
numerical components. The only items that may impact 
performance, according to initial evaluations, are the  data 
layout objects and the logical data objects. Alternative 
designs are being evaluated for risk mitigation at  this time. 

Stafing 

Our ability to attract and retain qualified staff is the  most 
important non-technical risk factor associated with  the 
Framework development. Staffing the Framework  lead 
position proved to  be particularly problematic, requiring 
over a year’s time  and one false start before a satisfactory 
candidate was put in place. 

The TES Framework development must support a relatively 
large system over a long period of time. Thus, in addition to 
needing strong object-oriented analysis and  design (OOA/D) 
and C++ skills, a successful lead engineer candidate also had 
to have strong system thinking skills as well. 

The pool of potential candidates is not large relative to  the 
demand. Further complicating our search is the presence of 
an increasingly IT-driven entertainment industry, and a 
growing  number of high tech startups in Southern California. 
These competitors can offer earning potential that a 
federally funded research and development center like JPL 
cannot match. 

Training 

Domain experience is a critical element of success on 
science software projects. This kind of experience is  not 
common,  and individuals meeting our domain experience 
requirements typically have a background in C or Fortran 
programming. Training in OOA/D and C++ are therefore 
necessary  to complete the skills base of the workforce. 

We have  found  that finding or developing effective training 
programs is difficult and time-consuming. Additionally, the 
process of knowledge absorption and deployment into day- 
to-day  work processes is a long-term rather than a short turn- 
around process. We have trained all staff in  UML basics, but 
for those unfamiliar  with modeling techniques, there are 
conceptual obstacles to achieving proficiency rapidly. 

Similar problems obtain relative to our efforts to introduce 
OOA/D techniques. Making the transition from procedural 
to object-oriented thinking requires a paradigm shift that 
cannot be taught, but  must instead be acquired over a period 
of time. 

Virtually all  team members have gone through  an  in-house 
three-day OOA/D training course specifically tailored to 
TES. This course was  well received by participants, but was 
costly  in terms of preparation time. It is  not  easily  repeated 
for new  team  members  who arrived after the course was 
taught.  Many  team members have attended a 5-day follow- 



. 

on 00 course that  was also found to be  of value. The fact 
that some team  members have found it necessary to repeat 
this  and  other courses underscores the fact that 00 training 
is not a one-shot affair. 

An additional obstacle to realizing the full benefit from 
training courses is the matter of timeliness. Budget and 
schedule instability, and a lack of control over when courses 
are taught, has made is virtually impossible to provide “just- 
in-time” training. Unfortunately, the longer the delay 
between training and utilization on the job the more likely 
the  material  is  to  be forgotten. 

Resource Limitations 

Ongoing  pressure  on  the Federal government to reduce 
spending has affected the TES project since its inception in 
1988, and  is expected to continue for the foreseeable future. 
Particularly troublesome, given the long baseline for system 
development and operation, are the annual, and sometimes 
semi-annual changes to the current and future year budgets. 
These fluctuations have contributed substantially to a series 
of delays  in staffing the Framework development., which 
have  frustrated the efforts of the development team to 
sustain progress on the Framework task. 

Framework Scope 

Establishing the scope of Framework responsibilities has 
proven  to  be  one of the most important technical challenges. 
Contributing factors are the lack of a pre-existing code base 
for the  Framework, uncertainty in requirements, and  lack of 
familiarity  with the Framework concept on the part of users. 

File  management  and data object support have  proven  to  be 
particularly troublesome. Uncertainty  in  the requirements for 
multi-format support has  at  times driven the design team  to 
solve problems  that  were later determined to be unnecessary. 
At other  times requirements uncertainty has  lead designers 
to  make  simplifying assumptions that were invalid. 

Grappling with a large support system that is available only 
as a set of high-level abstractions has  posed problems to 
users. There have  been several cases where the Framework 
team  and  users proceeded down parallel paths with  very 
different assumptions about what the Framework would 
provide. Budget-related staffing problems exacerbated this 
situation by making  it difficult to support a sustained effort 
to  clearly define the Framework responsibilities. The recent 
publication of a draft Framework API has helped resolve the 
majority of these types of issues. 

Still unresolved  is the issue of how much  wrapping  to 
provide third-party software. Viewpoints range from none to 
comprehensive. The underlying technical questions are 
related to the feasibility and desirability of complete 
isolation  from  these packages. How  much is really needed? 
What  is it worth? Will it be possible to provide a truly 
generic interface, say, to a linear algebra package that  will 

allow the base package to  be replaced at a later date without 
affecting application code? The  data requirements and  API 
structure of libraries are not always commensurate. Unless a 
comprehensive analysis of the APIs of all potential base 
libraries is carried out, there remains a chance that  our 
encapsulation will fail. 

6. SUMMARY 

The TES project is currently at the end of the  analysis and 
architectural design phase of the development of a science 
software applications framework. Detailed design and 
implementation of the first increment are now  underway. 

When the Framework decision was made over a year  ago, 
many  of the obstacles discussed in section 5 above were 
foreseen. While there have been some surprises, we have 
been fortunate that  none have been significant enough to 
cause serious problems with the development process. 

After a longer than expected search for the lead engineer, we 
have  been able to produce a viable Framework architecture 
and  high level design. Initial experience with  the  detailed 
design phase has so far been positive. Some concern about 
budget  and staffing remains, and  will  remain  until the first 
release of the Framework is successfully delivered in 
November of 2000. However, we currently have an adequate 
workforce and skills base to predict that this effort will  be 
successful. 

It will  be a year before we will be able to report on  whether 
the initial strategic decision to build a Framework from the 
ground  up  was the right one. However, presuming a 
successful implementation of release one, we feel confident 
that our architecture will fulfill our expectations for reuse 
and  rapid application development in the future. 
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