
A Framework-Based Approach to
Science Software Development1

Steve Larson
Stephen Watson

Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 9 1 109

Steve.Larson@id.nasa.gov

Kalyani Rengarajan
Raytheon ITSS

299 N. Euclid Avenue
Pasadena, CA 91 101

Krengarajan@sdsio.jpl.nasa.gov

SteDhen.H.Watson@jrd.nasa.gov

Abstruct- The Tropospheric Emission Spectrometer (TES)
is a Fourier transform spectrometer slated for launch in
December 2002. Its six-year mission to provide a 3-
dimensional map of ozone and its precursors is part of
NASA’s Earth Observation System (EOS). TES is expected
to produce approximately 8.4 TB of raw data and an
additional 25 TB of processed data each year. The data are
to be archived and distributed by NASA’s EOS Data and
Information System (EOSDIS). Processing this data requires
the development of a large, robust software system capable
of automated operations, sufficiently maintainable to support
ongoing revision of the processing algorithms. The target
platform for the TES science software provides a rich set of
job control functions. However, the changeable nature of the
underlying science algorithms mandates a high degree of
maintainability in the science software. The long time period
over which the software is developed and maintained
suggests a framework-based approach to system
development. We describe plans for the development of an
application framework to support TES, including
requirements, architecture, technical and management issues.

TABLE OF CONTENTS

1. INTRODUCTION

3. DEVELOPMENT APPROACH
4. SYSTEM DESIGN & ARCHITECTURE
5. ISSUES
6. SUMMARY
7. ACKNOWLEDGEMENTS
8. REFERENCES
9. BIOGRAPHY

2. SYSTEM OVERVIEW

1 . INTRODUCTION

The Tropospheric Emission Spectrometer (TES) is a Fourier
Transform Spectrometer scheduled to fly on the Earth

’ 0-7803-5846-5/00/$10.00 0 2000 IEEE

Observing System (EOS) Chemistry spacecraft in December
2002. The TES project is managed by NASA’s Jet
Propulsion Laboratory (JPL). In its six-year mission, the
TES instrument will provide the world’s first three-
dimensional global data set of tropospheric ozone and its
precursors. Data processing activities are planned to
continue through December 20 1 1.

TES is a first-of-a-kind instrument in terms of its combined
performance, resolution and operational capabilities. The
instrument will produce over 8TB of raw data, and an
additional 25 TB of processed data each year. Evolution of
the algorithms and the production software that implements
them, is expected to continue throughout the mission.

Data processing will be performed by a production facility
located in Pasadena, CA. The TES Data Processing Facility
(DPF) will be designed, built and operated by Raytheon
Information Technology and Science Systems under contract
to JPL. The TES project team is responsible for developing
and delivering processing software to the production facility,
and for providing operational support for data quality
monitoring and anomaly investigation. The data products
produced in the DPF will be delivered electronically to the
NASA Langley Research Center (LaRC) Distributed Active
Archive Center (DAAC), an element of the EOS Data and
Information System (EOSDIS). See Figure 1 for a context
diagram of the DPF.

Description of Target Environment

The production environment is a highly automated batch-
oriented system that traces its heritage back to the Goddard
Space Flight Center (GSFC) Version 0 DAAC. This system
has been ported to a number of facilities since its original
development, adding additional functionality in the process.
More recent instances of the system include the Vegetation

mailto:Steve.Larson@id.nasa.gov
mailto:Krengarajan@sdsio.jpl.nasa.gov
mailto:SteDhen.H.Watson@jrd.nasa.gov

SCF

- All Level 2 Data

Selected LlA, LIB, L3
7
Diagnostic and
Performance Data - - Periodic QA Reports - Production Reports

Process Management
Communication - - QA Product Request

Data Transfer
Supp't Msgs

SIPS Products for
Archive . I DAOMet.

DPF Data

Lac
4 DAAC

Other EDS

Bulk Request for I Reprocessing I

Users
A

Search and
Order Product

Delivery

v
I

4

4

4

-
Expedited Data Sets

DAO Met. Other
External

Sources
Other EDS Data

4 ' I
QA Metadata Update for Data Already Delivered

Figure 1. The TES Data Processing Facility Context

Canopy LIDAR (VCL) Data Center, and the IceSat data
processing facility.

The production environment is a UNIX-based planning and
scheduling system. This system provides all data
management, and job planning, scheduling and execution
services required to operate the facility. The science
software, which is the main subject of this paper, need only
be concerned with the science-driven aspects of the
processing. The production environment places few code-
level restrictions on delivered science software. However,
the plan to operate the facility 24x7 with only prime shift
staffing places significant requirements for automation and
reliability on the science software. This software must fail
gracefully when fatal conditions are encountered, and
provide a great deal of automated data quality checking and
process information capture.

Scientific research, software development, and operational
support activities will be based in the Science Computing
Facility (SCF) located at JPL. Past experience with remote
sensing projects suggests that unforeseen events in
instrument calibration and on-orbit algorithm performance
will necessitate the rapid development of many new
applications. The ability to respond to these events in a
timely manner and within budget is a major goal of the
system design.

The SCF represents the second major platform the science
software is required to run on. The SCF is currently based
on the Surdsolaris platform. Although the DPF is also
planned for this platform, changes in technology and market
conditions may lead to the use of another hardware and
operating system platform. We expect to require the science
software to support two separate platforms in the DPF and
SCF environments.

As part of the EOS program, TES is required to deliver all
data products to the EOSDIS. This places additional
requirements on the system in terms of data formats and
metadata production. In order to reduce cost, TES is
considering the use of a number of third party software
packages for inclusion on the delivered system. These
include NASA-supplied toolkit routines for data format,
metadata, ephemeris, geolocation and mapping functions,
and freely available libraries for numerical processing, linear
algebra support, and command line processing. The
Framework must provide an encapsulation of these third
party products.

Motivation

With the current negative pressure on budgets within the
federal government expected to continue for the foreseeable
future, the TES project was very interested in ways to further
reduce development costs, and to ensure the ability to

Production
Data Sets PGE ’
from EDOS

Processing

Interferogram 1

PGE 10

Processing m Global

PGE 9

Reconstruct
Level 2

PGE 0

Retreival
Profile

A

+ Spectral
Binning

Data Management System
Retrieval

Cal P G E 3 Engine - Data

L1A Data - Processing

PGE 2

Subset b Calibration - Reconstruct PGE7
L1 B Data

Target
Data b

PGE 5
Target

Processing
PGE 4

Figure 2. Data Flow Through TES Science Data Processing System

provide new functionality to the science team, especially
later in the project when budget pressures are expected to
become more severe.

Frameworks have emerged in the last fifteen years as a
means of increasing reuse and productivity. The term
“framework” has many interpretations in the software
engineering community. We base our use of the term on
Rogers’ definition [4]: A framework is, “a partially
completed software application that is intended to be
customized to completion.” The scope of what we consider a
framework includes reusable design and code components.

The decision to adopt a framework-based approach was a
strategic one, intended to fulfill the need for reduced cost,
and a more robust, maintainable system. Along with the
decision to develop a framework, the project adopted an
object-oriented (00) design approach and selected the C++
language. The framework decision was thus part of an
overall strategy to leverage 00 technology and modern
approaches to reuse and development.

The choice of a framework-based approach is consistent
with the findings of a 1996 NASA workshop on reuse [5].
One of the important conclusions of the NASA group was
that reuse should focus on domain-specific problems. Our
effort is narrower in scope than the NASA concept (we
focus our efforts on a single project, rather than an
organization- or enterprise-wide product line), though the
same principles are employed. NASA is currently
formulating a large-scale Earth System Modeling
Framework (ESMF) development [6] as part of the High
Performance Computing and Communications Program [7].

We are considering proposing the framework discussed here
as a basis for developing the ESMF.

Considerations

Developing a framework is considerably harder than
developing a one-off system. We consider it to be equivalent
to a programming systems product, as defined by Brooks
[8]. Although it has been around for over a decade, the C++
language is still undergoing evolution, especially in the area
of compilers and templates. The framework approach,
though it has been around for over a decade, is still not well
established in the specialized field of science software
development. The project team was aware of other science
software projects that had developed common subroutine
libraries, but we could find no precedent for the magnitude
of commitment developing a framework represented.

In the program management area, there were risks associated
with recruiting and training staff in the underlying
technologies. Risks and uncertainties notwithstanding,
adopting a framework-based approach appeared to be the
best way to proceed.

Notation

The framework design discussed here is based in part on the
design patterns of Gamma, et a1 [3]. Where we refer to a
design pattern we will use the name found in Gamma, et al,
with an initial capital. Likewise, we distinguish between
discussion of frameworks in general, and the specific
Framework proposed for the TES project by using an initial
capital where the latter connotation is implied. The UML is
used in class and sequence diagrams.

2. SYSTEM OVERVIEW

The current design concept for the science data processing
system (SDPS) is shown in Figure 2. Each box labeled
“PGE n” represents a product generation executable (PGE).
A PGE is the smallest unit of processing that is
independently planned and scheduled within the production
system. A PGE may have subunits of execution that include
staging, processing and destaging steps. The processing flow
in the SCF (not shown) is more complex, but less
formalized. It is expected to comprise a few dozen
applications in the year 2002 time frame. As discussed
above, the need to develop SCF applications rapidly is a
major driver in our decision to develop a framework.
However, we will focus much of our discussion on the
production system, as it is better defined, and highlights the
major features of the Framework satisfactorily.

Table 1. Data Product Levels

Level 1A Raw instrument data in reconstructed
interferogram format, with instrument state
data and geolocation data appended.

Level 1B Calibrated spectra at full spatial and
spectral resolution.

Level 2 Vertical temperature and species abundance
profiles.

Level 3 Global maps of Level 2 data. One set of
maps is created for every four-day global
survey cycle.

The total system size is expected to be roughly 500,000 lines
of code, including comments. We include comments in
system sizing, as we have found that they represent a
significant portion of the development effort, as well as
comprising one of the most important system documentation
records.

The production system design is based on an EOS-mandated
demarcation of processing into levels. The basic unit of
processing is a four-day data set (also known as a global
survey cycle (GSC)) received every eight days (the
remaining four days are reserved for special science
observations that will not be discussed here).

The four levels of data product are shown in Table 1. Due to
the nature of the Level 1B processing, it is necessary to wait
until the entire data set is received before processing begins.
The data are transferred to the DPF in two-hour chunks and
are processed through the Level 1A PGE upon receipt. Once
all of the Level 1A inputs for a survey cycle are ready, a
subsetting PGE reorganizes the data according to a set of
predetermined instrument parameters and geographical
locations. Calibration data are processed into an
intermediate form and used as input to a set of parallel target
processing PGEs, each working on a different subset of the
survey cycle data. There is a one-to-one correspondence

between calibration PGEs and target processing PGEs. In a
survey cycle, we expect 1,536 instances of each to be run.
The calibrated target data are reassembled en masse into
their final product form by a “reconstruction” PGE.

Level 2 processing follows a similar pattern, but instead of
reorganizing the data as the first step, the initial PGE creates
an index into the calibrated data. The index data are used to
define input lists for instances of the retrieval PGE. As with
Level lB , the main processing PGE at this level is designed
to operate in data parallelism. Due to the much higher CPU
loading at Level 2, the basic unit of input data per PGE is
smaller, leading to a total of 4,253 instances of the retrieval
PGE per survey cycle. Level 2 processing concludes with a
reconstruction PGE. Unlike Level lB, there is a separate
instance of this PGE for every retrieval PGE instance.

A single Level 3 mapping PGE is run after all Level 2
products have been created.

At each processing level the granularity of data is different,
and the load in terms of memory, CPU and disk space
differs. Memory and CPU are particularly important
commodities in the Level 2 processing, which requires more
than 100 times the processing power of Levels 1A and 3.
Level 2 also uses a large (=500GB) database of
precomputed absorption coefficients to reduce CPU
requirements. However, the retrieval PGEs consume this
table data at a rate of roughly 30GB every second, placing a
severe strain on the I/O capacity of the hardware. To
mitigate the situation, it is intended that the retrieval PGE
will employ a tunable size (nominally 30GB) shared
memory segment. The indexing PGE provides information
used to order job execution such that turnover of this
memory segment is minimized, thereby reducing the VO
requirements on the hardware.

An important consideration in our Framework design is the
preliminary nature of the above described system design.
Changes in the scientific algorithms and knowledge gained
while in orbit may necessitate significant modifications of
this design. The Framework must enable the development
team to rapidly reorganize the configuration of functional
elements.

The Framework is expected to support development of this
system by providing the functionality shown in Table 2. One
of the challenges in framework development is the lack of a
complete set of requirements at the outset. In the sections to
follow, we discuss our understanding of Framework
requirements in further detail, as well as an approach to
development that we believe will mitigate the risks this lack
of knowledge implies.

Expectations for Reuse

The proposed Framework is intended primarily for reuse
within the TES project. Although we will strive to make the
design as generic as possible, the scope of the effort will be

Table 2. Summary of Framework Requirements

PGE Znfrastructure An application skeleton for a PGE
executable, including: command line parameter,
environment variable, and user parameter processing;
high-level input and output collection abstractions;

File Z/O Support for UO to/from all files in the system.
Format support for HDF-EOS, HDF, ASCII and native
binary file types. VO support in terms of high-level
data types (also framework supplied). Support for
specific data product file organizations.

Metadata Support for EOS standard metadata output

Math Library Support Support for linear algebra,
mathematical functions, specialized optimization and
Fourier transforms, other functions.

Exception Handling Classes and conventions for
handling exceptions.

Constrained by resources and focus on project-specific
requirements.

As mentioned in the previous section, we are considering
proposing our Framework design as a basis for the ESMF.
We believe our project requirements for file interfaces and
application design are sufficiently similar to the more
general ESMF case to make them a reasonable starting
point for the ESMF design. Our data object model is more
tightly constrained by the details of the TES instrument, and
would likely require considerable effort to generalize to the
ESMF or a similarly scoped system.

In our experience, software reuse is most easily achieved
within the context of the originating group and their
immediate colleagues. We would hope to be able to reuse
our Framework on similar projects undertaken by our group,
but as described below, the economic gains expected from
the TES Framework are sufficient to justify its development
regardless of reuse outside the project.

A reusable subroutine library was developed for the
Atmospheric Emissions Spectrometer (AES), a project
completed in 1993 as an airborne precursor to the TES
instrument. The AES software system was considerably
smaller and was not developed to the same level of standards
and automation requirements of TES, but was nevertheless a
substantial effort. The total system size was approximately
150 KLOC. A considerable portion of this code (roughly
105 KLOC) was already in existence when AES began, or
was funded by other sources and not tracked as part of the
AES development. Detailed development records were only
kept for the low-level processing and utility code (a 26
KLOC portion consisting of two main programs and six

utility programs). This portion also included the reusable
library.

Of this 26 KLOC code development, about half was part of
the library. Roughly three quarters of the entire AES
development effort (a one work-year effort) went into
producing the library and the two main programs.

Analysis of the final code sizes indicates that all of the
library code was used at least twice, and 55% (comprising
the data file support, file utilities, and log file code) was
used in all programs. Our costs and schedule savings
expectations for the TES Framework development (and
subsequent rapid application development based on the
Framework) have been extracted from this AES data. We
found that if the 55% of code used in all programs had been
developed from scratch for each use, the total system cost
could have grown by as much as 180%. Looking only at the
two main programs, we realized that reuse of the code would
render cost savings on the order of 32% for that effort alone.

It is expected that the Framework will facilitate the
development of test, data quality and other specialized tools
for TES. An example of the kind of reuse we expect is the
AES data extraction tool. This program required only 876
new lines of code, reusing nearly 7,000 lines of code and
cutting the development time fifteen weeks to less than two.
TES hopes to realize similar cost and schedule savings. If
we succeed in encapsulating our higher level algorithms, we
could realize similar cost savings through reuse of code,
even for sophisticated applications with more complex
algorithms than a simple extraction tool.

Based on the AES experience, we anticipate that developing
reusable code from the outset will yield substantial
economic benefits to TES.

3. DEVELOPMENT APPROACH

The Framework will support the SDPS development by
providing a generic application skeleton that will include
classes for parameter handling, message logging, file
inputJoutput, exception handling and gathering process
history. Applications will extend the generic program design
from the Framework for specific algorithm implementations.
It is important, therefore, for the Framework design to be
sufficiently abstract to allow for a wide range of such
extensions or derivations. Thus, the design of and interface
to the Framework must be robust and generally agreed upon
by all major subsystems, in order to avoid the unpleasant
possibility of redesigning the Framework classes at later
stages of the project.

Development Lifecycle

Framework development will be iterative and incremental,
with requirements having the higher development risk being
implemented first. There will be three major deliveries of the
SDPS to the production facility before launch, spaced

approximately one year apart. Each external delivery will be
built iteratively from a number of internal deliveries.

The Framework development must lead the applications
development in order to allow sufficient time for
applications developers to integrate the Framework code
prior to their deliveries. The Framework API has been
developed in draft form, and will be finalized within the next
few months. Science applications developers have been
heavily involved in the API development, and will be
responsible for approving it prior to implementation.

The fundamental Framework components will be delivered
in two major increments, spaced six months apart.
Subsequent deliveries will add refinements and functionality
not required early in the process. The incremental approach
will allow us to validate requirements, and catch errors in
design and programming earlier in the process than a
monolithic development lifecycle. A key consideration is the
choice of priorities for implementation within the
Framework. This choice must be carefully made to ensure
that deliveries provide functionality on a schedule that meets
application developer’s needs, and which takes into account
the need to prototype the highest risk components as early as
possible.

It is likely that additional requirements will be levied on the
Framework by the various data processing elements, as
algorithm development proceeds over a period of several
years. Advances in hardware, software, numerical analysis
and data convergence (multi-platform sensor data
integration) will necessitate more sophisticated Framework
support during the mission lifecycle. Consequently,
Framework must be able to rapidly integrate new and varied
requirements as they arise. By delivering many complete
subsystems over a period of several years, usually with a
very short (3 month development, 3 month integration and
test) period between deliveries, the Framework will be able
to accommodate most of the new requirements in a very
rapid manner.

The benefits of delivering many complete subsystems extend
to other areas as well. For example, the complex nature of
the TES SDPS provides fertile ground for subtle errors to
occur. By making small, incremental changes to Framework
rather than delivering large, monolithic versions at greater
intervals, we expect to minimize the number of undetected
errors which would might remain hidden, and jeopardize
actual processing where large amounts of data are involved.
Usually, these are side effects rather than egregious bugs,
and they normally result from incomplete or inconsistent
interface specifications. Small, concise changes to the
subsystem allow for more robust testing of the subsystem
and its interactions with other subsystems specifically with
regard to any new or modified interfaces. This is
considerably more difficult with larger, less frequent
deliveries.

The key features of the design will be prototyped to validate
design feasibility. Multiple prototypes may be developed for
the same algorithms using different techniques and different
libraries. Similarly, there may be different algorithms to
arrive at the desired result. These prototypes will be
evaluated for performance, flexibility, portability etc., and
the one that optimizes the goal will be chosen. The
prototypes will also be used to derive further requirements
that may not be covered under the initial functional or
performance requirements.

System Integration and Testing

Framework testing will be driven by the requirements. The
formal testing methodology for the developers and test
group is currently being investigated, but will include
automated tests with known inputs and outputs,
demonstration and manual analysis of the data, and test
reports. Because system integration and test will occur after
each component is completed and passed through peer
review, the interfaces between the different subsystems, the
operational facility and other external interfaces will be
continually evaluated for problems that may be resolved
early on. In addition, it will enable us to evaluate the design
and demonstrate to the customer that the system meets the
standards of the required functionality. This allows the
customer frequent opportunities to provide iterative
feedback and redefinition of requirements for the next
iteration. Besides component testing, each internal and
external delivery will be put through a rigorous regression
test. The results of this integration and testing will provide
criteria not just for evaluating the Framework design, but for
evaluating the requirements as well.

Integrated Team of Framework and Application Developers

The Framework team will consist of some core Framework
developers involved in design, coding, testing and
maintenance. From time to time some science application
developers may also be included to augment their
understanding of Framework and encourage their
commitment to its use. This close collaboration of
disciplines will enable Framework designers and developers
to gain a solid understanding of the science data processing
theories and algorithms necessary to deal with the changing
requirements of these applications.

Development Tools

Requisite Pro from Rational Software Corp. is being used to
track requirements. The Unified Modeling Language (UML)
has been adopted as the modeling language for design. We
are using Rational’s Rose CASE tool to develop and
document the design. In Rose, the subsystems are
represented as packages and are broken up into finer level
subpackages within each subsystem. Class, state and
sequence diagrams will be used to define the data types,
applications and their interaction. The roundtrip engineering
features of Rose will be used to maintain consistency

between the design model and the developed code. Design
and interface documents will be generated automatically
from the Rose model using Rose scripts to ensure that
documentation remains up to date. Evaluation of
commercially available software for test coverage tracking is
in progress.

Implementation

The Framework coding effort will be undertaken in a
relatively traditional manner. Aside from the use of code
skeleton generation from the Rose model, the software will
be hand-coded. The use of generators (see, for example, [9])
to instantiate a program, or suite of programs, from a
metamodel is a promising development in software
engineering, but does not appear to be warranted in the
present situation. The benefits of such an approach would
include the ability to accommodate changes in the
fundamental abstractions without labor-intensive manual
recoding of all dependent classes. However, the basic
abstractions assumed by the TES Framework are based on
over 20 years of science software systems development. For
purposes of the TES project, they are considered stable
enough to allow the development to proceed without undue

risk.

4. SOFTWARE DESIGN & h C H m C T L J R E

The Framework subsystem consists of several major
components designed to reduce or eliminate the necessity for
the scientific processing algorithms to have information on
the underlying operating system and environment. These
components fall into roughly three major categories:
operating system-processing interfaces, algorithmic
implementation and instantiation components, and utilities.
Additionally, the Framework will encapsulate various
toolkits, 3d-party packages, and commercial off-the-shelf
software, in what are called Foundation components. Figure
3 is an abstract view of the Framework and its major
components, showing their scope and visibility relationships.
In fact, many portions of the Framework could be used in a

variety of applications. The domain-specific components
tend to be focussed around file formats and external
(project) requirements, such as data archiving and process
logging.

Good, clear and developer-friendly documentation will be a
key factor in Framework acceptance. The documentation
will consist of interface definition, sample programs,

Operating System/Scheduler

Main

SDP Environment

~~

Figure 3. Framework Top-Level Diagram

instructions for building a science application from the
Framework classes, skeleton program and information on
the salient features of the Framework. The Framework
architecture includes a top-level Application Interface,
which is designed to encapsulate and hide all operating
system details involved in initiating any specific processing
algorithm from the underlying numerical code. This
component includes objects specifically designed for
handling parameters from a variety of sources and making
them available to the algorithm itself. This top-level
component provides the primary means for a PGE to
instantiate and invoke Framework-based objects.

Within the Application Interface, the Framework contains an
object called simply Algorithm, an abstract class which
serves as a base class from which specific processing
subsystems derive their own Algorithm classes. Primarily
designed as a kind of template class for science processing
teams to use for incorporating level-specific processing
codes within the system, the Algorithm class and its derived
process-specific objects also provide a high level of service
to the algorithm, including instantiation of input and output
files, error files, process logs, and so forth.

A large portion of the Framework is devoted to the notion
of encapsulating file handling capabilities, in order to
provide input/output functionality at a very high level
abstraction, closely related to the nature of the domain-
specific data. Due to the multi-platform nature of the SDPS
and the requirements of the EOS program, data files are
normally stored in a complex, although rich, format known
as Hierarchical Data Format (HDF). Additionally, the EOS
program has an extended form of HDF known, logically
enough, as HDF-EOS. It is an express goal of the
Framework to isolate entirely the underlying data file format
from the algorithm developers, providing a clean, robust,
broad interface to the data itself rather than to the underlying
file structure. Additionally, support for standard binary and
ASCII files must be provided, as well as extensibility to as-
yet-undetermined additional file formats.

Clearly, then, the Framework must provide a full
complement of Logical Data Objects appropriate to the
science data processing being developed, including such
items as interferograms, spectra, or collections of such
items. It is intended that the data object hierarchy shall
provide a means for the application developer to manipulate
the data during processing, with an interface to the above-
mentioned file handling components. Thus, the data objects
must know how to read and write themselves via the file
handling interface, while the developer remains unaware of
the mechanics of these operations.

The Framework must provide mechanisms for handling
some additional system-level operations, such as process
control for multi-threaded algorithms, as well as future
extensions for multi-processing.

............ "

Aloorithm

m Interface(cc
.................. .->

Sel smmandLine(ar c, rgv)

..........

.................
........

reidEnvParams(, ,)
........... ",

"

.......
.......

L . 1
1

Figure 4. TAI Sequence Diagram

Finally, the Framework provides exception-handling
capabilities, error logging facilities, status codes, Metadata
handling, and other utilities. Many of these will, in fact, be
utilizing the file handling objects for logging information
about the processing status andor errors. Again, it becomes
clear that the file handling components is one of the most
critical in the Framework.

In essence, the TES data processing Framework is a
collection of Frameworks that interact with each other, the
algorithm implementation, and the operating system and its
environment.

TES Application Interface and Algorithm Classes

The primary interface between the science algorithm and the
SDPS environment is through a set of objects called the TES
Application Interface (TAI) and the TES Algorithm. The
purpose of the TAI is to encapsulate and abstract all
information from the external environment, and make it
available to an algorithm in a clean, transportable manner.
Ideally, this architecture should completely isolate the
algorithm itself, and consequently the algorithm developers,
from any system-specific details. Additionally, it provides a
clean, portable and extensible interface between the
algorithm and those items dependent upon the operating
environment, such as files, logs, process control, etc.

The TAI executes two major tasks: it parses parameters and
their definitions from multiple sources, and makes the
complete set available to an algorithm; and it then creates an
instance of a specific science data processing algorithm and
executes it, providing. all necessary information about the

1 LogicalFile 1
lose()
ogicalFile()
penstorage()
losestorage()

.

/
I . 1

....................

L1 AFile ~

urrentScan : int I
................................... ~

- , ... I:

L1 BFile j L2File
, ,

- ~

.

Figure 5. Logical File Hierarchy

system and the run-time parameters needed by the algorithm.
A simplified sequence diagram is shown in Figure 4.

Instantiated within the TAI is a derived class of type
TES-Algorithm. This derived class is highly specific and
usually extremely computational. The Algorithm component
is based on the Bridge design pattern. Each level of
processing (as shown in Table 1) will derive its own
algorithm object, and use this derived class as a template or
wrapper for including or developing the scientific data
processing code. The base class itself will provide access to
those common properties and methods that are deemed
essential to ensure consistent operation of algorithm objects
throughout the data processing sequence. This base class
supports log and error file handling, exception handling,
process control, etc., via the aggregation of objects of types
specific to those items. Access to system- or process-wide
parameters is accomplished via the TAI’s aggregated
parameter instance (itself a singleton object).

File Handling

One of the most important areas that the Framework must
deal with is that of file handling. The ultimate goal is to
provide algorithm developers with a file mechanism that is

completely transparent, incorporating complete
independence of the underlying operating system. In fact,
the requirements to support HDF-EOS via a toolkit for file
access is driving a very complex file handling structure.
Additionally, the nature of the data to be stored implies a
large amount of additional complexity. As an example, it is
likely that users and/or developers will wish to access time-
dependent, multivariate complex data based on time, orbit
number or geographic location or region. They may wish to
read or write data items across any of these possible slices.

Currently, the design is based on a combination of several
design patterns. The logical files, which provide the
interface to all subsystems, have a straightforward
dependency on a base class called Logical File. Logical
files correspond to the needs of any given level-specific
algorithm, such as Interferogram data files, raw data packet
files, etc. The logical file inheritance tree with some sample
file types is shown in Figure 5.

Physical files encapsulate environment and format-specific
details of actual data storage, isolating these details from the
application programmer. In some instances, such as HDF
format files, data may span more than one actual disk file. It

ASCII

ile stream :

1

Figure 6. Physical File Hierarchy

is the responsibility of the Physical File hierarchy to handle Logical Data Objects
such matters, perhaps using 31d-party toolkits in some
instances. The Physical File hierarchy is based on the
Adapter pattern, and is shown in Figure 6.

The relationship between these two sub-components is
maintained via a set of Bridge patterns, one bridge for each
derived logical file type, as shown in Figure 7.

Concurrent with the development of file handling and I/O
mechanisms, we determined the need to develop a rich
hierarchy of Logical Data Objects. Because these objects
would need to interface with the file structure in order to
read and write themselves, they naturally appear to require
an internal structure that closely mirrors the internal (logical)
structures of the HDF files that contain the data. Examples

Logical File Hierarchy
.

LogicalFile I
Physical File Hierarchy

Physical File

......................... 1. " :

Parameter File
~

3 1

............................

PararneterFile 1. Physical
..

>... " ~
. " " ^" ^^ " 1-" ____ -._. \\ ~

. 1>,

L1 AFile 1

placed here
........

Figure 7. Use of Bridge Pattern to Link Logical and Physical Hierarchies

I. /r ~ - . -
I . !
, .

.

FW-FocalPlan. I

I

FW.-%a
................................

.

Figure 8. Possible Structure of Data
of high-level domain-related data types that must be
supported are scan, focal plane, integerogram, and
spectrum. These may be singular or combined in various
ways, including multiple instances of any one type or
combinations of types. An interferogram is a large array of
either real or complex numbers, usually approximately
40,000 bytes in size. Included in an interferogram are
various attributes, such as pixel number and temperature. A
spectrum is similar to an interferogram, the two types being
related via Fourier and Inverse Fourier transforms. A Focal
Plane is a collection of 16 interferograms, plus additional
attributes. Finally, a Scan is a set of 4 focal planes, plus
spacecraft position and pointing information, etc. A draft
class hierarchy for these objects is shown in figure 8.

It is highly likely that additional types will be required as

science algorithm development and scientific data analysis
proceeds during pre-launch and operational phases.
Therefore, the architecture must provide an easily extensible
model. Logical data objects are based on the Composite
design pattern.

Naturally, there must be some sort of methodology for
reading and writing data to and from the aforementioned file
objects. In order to accomplish this, the Framework
provides that every logical data object has an associated
layout This layout specifies how a data object's readlwrite
calls are to be interpreted by the file component, thus in
effect providing a map from the logical structure to physical
structure. The layout for a specific data object is provided
by a Chain of Responsibility pattern-based object, which
uses a Factory pattern-based object to actually construct the
layout for a given file type and data object. These
relationships are shown in Figure 9.

Parameter Handling

The Framework must be able to handle a virtually unlimited
number of parameters that may be specified as inputs to any
given algorithm (See Figure 10 for a simplified diagram of
the parameter handling model). These parameters are
defined in a separate parameter definition file for each level,
as well as in coded default types for some parameters that
may used in more than one algorithm. After parsing the
definitions of all the specified parameters, the actual values
may be declared in any number of places. The TAI
instantiates a singleton object which contains a parameter
block capable of parsing these values from the variety of

...

TES Data Physical
. ,,~

u / ,
............................ i ~

1
. .1 i

~ HDF TES Data I : Binary TES Data
. .

I-
. . ._._____" i

Layout
.,,~,,,

I ,

i .\

r- "___. .

!

H D F4x

ScanHdf4Layou ~ i
~ IfgmHdf4Layou i

......................... . . i
"7:: i
,

"
" ._ " i

"" -
...

i LayoutFactor :

Figure 9. Relationship between Layout Classes and Physical File

Parameter , ,

. \

...........

_____..

',., i

............. ...: :Y,..........

i ParameterFile
\ 2 /

.....,
I

Figure 10. Parameter Handling Object

locales in which they may be set. These parameter values
can be in a parameter file, as part of the operating system
environment, specified on the command line or set as default
values by the code itself. The parameters may be of
virtually any type, including compound types. The
parameter class which provides access to these data based on
the Singleton pattern.

The requirement to support future, as-yet-undetermined data
types seems to indicate that templates be used as a means of
incorporating these types. One difficulty that arises as a
result of this decision is the non-standard implementation of
templates by various compilers. This issue is still under
consideration by the development team.

Metadata Support

There are three types of metadata that must be supported by
the Framework. Two of these types, inventory and archive
metadata, are supported by the EOSDIS Core System (ECS)
Product Generation System (PGS) Toolkit, supplied to all
EOS projects by NASA. The Framework must provide a
wrapper class for the Toolkit's metadata functions in order
to simplify the task of application developers.

Inventory metadata include instrument identification, date
and time of data acquisition, geographical location, product
type and level, and data quality metrics. These data are
stored in a relational database within the ECS. and are used

to support user search and order functions. Archive metadata
comprise a broader set of attributes that are stored within the
data product files. These data are not stored in the ECS
database, and thus are not available to search tools.

The third type of metadata supported by the Framework is
instrument team-defined metadata. These data are not
supported by the PGS Toolkit. Attributes defined by the
instrument team are considerably more complex in structure
than inventory and archive metadata. The latter are defined
using the object description language (ODL), which is based
on a "parameter = value" model. Instrument team metadata
include such objects as error covariance matrices, residual
vectors and references to supporting data or publications.
These objects may themselves have associated metadata,
introducing a recursive structure into the data organization.

Another important distinction between Toolkit-supported
and instrument team-defined metadata is the level of
configuration control applied. Toolkit-supported metadata
are documented in ODL which is included in an interface
control document between the TES project and the Langley
DAAC. This is necessary since the ingest functions at the
DAAC must be tailored to meet the TES metadata structure.
Unilateral changes to the structure would break the
automated ingest system, causing a significant disruption in
the flow of data. Instrument team-defined metadata is not
subject to these constraints, and thus may be changed more

freely. Framework components supporting inventory and
archive metadata can be designed and implemented once,
whereas components supporting instrument team-defined
metadata are subject to change as science team requirements
evolve.

Log and Error Files

During the normal course of scientific data analysis, an
investigator may wish to evaluate the validity andor
appropriateness of the sequence of steps that led to a
particular data item. For this reason, it is necessary to
maintain a complete production history of all data
processing steps in some form of log file or files. These
files are archived along with the data, and some form of
linkage between the data and the logs must be maintained.
These logfiles are a special case of the file-handling model,
with additional requirements imposed on them. They must
be nearly global in scope to any algorithm, and must contain
sufficient information about the process as to be able to
recreate the circumstances of the process. This information
includes but is not limited to: operating system information,
processing times, parameter information, input and output
data files, return and status codes, etc. For this reason, the
Framework will include a special set of objects devoted to
handling logfile and error file output information. Again, as
with the logical data objects, there is slightly more coupling
between these objects and the file manipulation objects than
is normal for the bulk of the SDPS system, in order to hide
the implementation of log file routines from the algorithm
developers.

Status and Error Codes

Of the many items that may go into these log and error files,
one standard type immediately emerges. Status codes are
being implemented as an object hierarchy in their own right,
in order to encapsulate error and return codes, severity
levels, information output routines, and even the possibility
of means of restarting failed processes with different
parameters or control flow. Status code objects then also
provide for a uniform means of dealing with exception
handling, and a clean interface between the algorithms and
the log or error files. Some possible difficulties, however,
are the overhead involved in throwing and catching a
somewhat more complex object, throwing such an object out
of a routine, or returning a status code instead of a simple
integer value. Since several data processing algorithms are
exceptionally CPU-bound, any increase in processing time is
to be stringently avoided. For this reason, we have no
requirement on science algorithms that they use such an
object within their own routines, but instead recommend a
careful evaluation of the impact on their subsystem. Further,
in order to simplify its use, we derive status code objects
that encapsulate the normal process routine value of OK,
and allow for simple tests for equality in such a case.

Process Control

The initial releases of the Framework are required only to
support some form of multithreading support. Full
multiprocessing (such as distributed processing,
parallelization, etc.) is not initially required of the system.
However, it is an express goal of the Framework design to
be extensible enough to easily incorporate these
requirements at a later date. For the first several iterations,
however, all that is required is that the Framework provides
an encapsulation of environment- and operating system-
specific multithreading support. To that end, we anticipate a
separate class hierarchy specifically designed to provide a
simple interface to the underlying thread control methods.
The terminal object(s) in this hierarchy may then be
included in either the abstract base class Algorithm or a
level-specific derived algorithm object thus providing thread
control support to the derived algorithm objects.

Memory management

Due to the extremely complex, CPU-bound character of
many of the processing elements, it is vital that memory be
carefully managed. Some processing elements currently
take tens of hours of CPU time on today’s machines. In
order to avoid the disastrous consequences of even the
smallest memory leak on such highly computation-intensive
subsystems, memory management is a crucial component. It
is likely that the Framework will incorporate numerous
memory management objects, including so-called “smart”
pointers, local and remote memory pools, and so forth. The
exact composition of the memory management objects is
under review at this time.

However, as mentioned earlier, there is at least one concrete
component that is likely to fall under the category of
memory management: the SOOGBs of absorption
coefficients. This table will require a very sophisticated
memory/file mapping scheme, possibly including multi-level
random access, its own caching routines, or perhaps the
equivalent of a data tiling or mipmap scheme, in order to
provide extremely fast retrieval of the coefficients.

Foundation Objects

Finally, there are several major components of the data
processing algorithms that utilize previously developed
code, either specific to EOS data processing, or commercial
off-the-shelf software. For example, there are toolkits for
dealing with HDF-EOS files that we will incorporate into
our file-handling objects using wrappers around those
portions which the team specifies as required. Also, the high
emphasis on mathematical precision in many of the
processing steps implies that there will be one or more well-
developed mathematical and statistical packages that will
need to be incorporated. Many of these items fall into what
we term the Foundation. This consists of a suite of wrapper
classes for many of these libraries, where possible, or simply
the interface definitions for the libraries where it is not. This
allows us to hide implementation details and isolate the
developers from changes in these libraries. Nothing in the

requirements prevents, where appropriate, direct access to
these libraries by developers; however, such use is
discouraged without good reason. Debugging and testing
support is also planned to be included in this category
(assertions, test scaffolding, 3‘d-party test tools, etc.).

5. ISSUES
As mentioned earlier, there are risks, both technical and
programmatic, which arose as a result of our decision to
develop a framework. The broader deployment of a
technique from the academic environment in which it was
born is a complex process involving cultural, financial, as
well as technical considerations. We discuss some of these
issues in the specific context of the TES project below.

Framework Acceptance

Framework success will be determined at least in part on its
level of acceptance among TES application developers. Not
only must the Framework meet their requirements, its use
must be seen as making their jobs easier. There are two main
components to our strategy for Framework acceptance: team
integration and documentation. As mentioned in section 3,
we plan to involve members of the applications development
teams directly in the Framework development. This should
increase the level of “ownership” felt in the applications
teams, as well as their understanding of what the Framework
does and how it should be used.

The second component is good, clear and developer-friendly
documentation. The documentation will provide an overview
of the Framework design, a detailed description of the API,
sample programs, and instructions for building a science
application from the Framework classes.

Pe$ormance and Reliability

Since the Framework is to be used throughout the TES
SDPS, there are naturally some rather stringent requirements
on it in terms of performance and reliability. In general, the
system requirements levy a set of requirements on the
Framework which mandate error recovery and logging
procedures. It is apparent from the intended use, however,
that the Framework’s requirements are considerably more
strict, in that the Framework itself should rarely, if ever,
terminate or abort, but should rather attempt recovery or
throw an exception to the calling routine. That is, the
Framework is not usually cognizant enough of its intended
use to determine if it can fail gracefully. Components of
Framework themselves must be highly reliable and robust.
In nearly all cases, a Framework-based object or component
should never fail catastrophically, but should raise an
exception, attempt to recover, and (failing recovery) pass the
exception to the appropriate subsystem for handling.

At this time, no strict performance requirements have been
placed on the Framework. It is not anticipated that the
Framework will be the bottleneck in most circumstances,

given the high computational aspects of most processing,
and the fact that the Framework generally deals with non-
numerical components. The only items that may impact
performance, according to initial evaluations, are the data
layout objects and the logical data objects. Alternative
designs are being evaluated for risk mitigation at this time.

Stafing

Our ability to attract and retain qualified staff is the most
important non-technical risk factor associated with the
Framework development. Staffing the Framework lead
position proved to be particularly problematic, requiring
over a year’s time and one false start before a satisfactory
candidate was put in place.

The TES Framework development must support a relatively
large system over a long period of time. Thus, in addition to
needing strong object-oriented analysis and design (OOA/D)
and C++ skills, a successful lead engineer candidate also had
to have strong system thinking skills as well.

The pool of potential candidates is not large relative to the
demand. Further complicating our search is the presence of
an increasingly IT-driven entertainment industry, and a
growing number of high tech startups in Southern California.
These competitors can offer earning potential that a
federally funded research and development center like JPL
cannot match.

Training

Domain experience is a critical element of success on
science software projects. This kind of experience is not
common, and individuals meeting our domain experience
requirements typically have a background in C or Fortran
programming. Training in OOA/D and C++ are therefore
necessary to complete the skills base of the workforce.

We have found that finding or developing effective training
programs is difficult and time-consuming. Additionally, the
process of knowledge absorption and deployment into day-
to-day work processes is a long-term rather than a short turn-
around process. We have trained all staff in UML basics, but
for those unfamiliar with modeling techniques, there are
conceptual obstacles to achieving proficiency rapidly.

Similar problems obtain relative to our efforts to introduce
OOA/D techniques. Making the transition from procedural
to object-oriented thinking requires a paradigm shift that
cannot be taught, but must instead be acquired over a period
of time.

Virtually all team members have gone through an in-house
three-day OOA/D training course specifically tailored to
TES. This course was well received by participants, but was
costly in terms of preparation time. It is not easily repeated
for new team members who arrived after the course was
taught. Many team members have attended a 5-day follow-

.

on 00 course that was also found to be of value. The fact
that some team members have found it necessary to repeat
this and other courses underscores the fact that 00 training
is not a one-shot affair.

An additional obstacle to realizing the full benefit from
training courses is the matter of timeliness. Budget and
schedule instability, and a lack of control over when courses
are taught, has made is virtually impossible to provide “just-
in-time” training. Unfortunately, the longer the delay
between training and utilization on the job the more likely
the material is to be forgotten.

Resource Limitations

Ongoing pressure on the Federal government to reduce
spending has affected the TES project since its inception in
1988, and is expected to continue for the foreseeable future.
Particularly troublesome, given the long baseline for system
development and operation, are the annual, and sometimes
semi-annual changes to the current and future year budgets.
These fluctuations have contributed substantially to a series
of delays in staffing the Framework development., which
have frustrated the efforts of the development team to
sustain progress on the Framework task.

Framework Scope

Establishing the scope of Framework responsibilities has
proven to be one of the most important technical challenges.
Contributing factors are the lack of a pre-existing code base
for the Framework, uncertainty in requirements, and lack of
familiarity with the Framework concept on the part of users.

File management and data object support have proven to be
particularly troublesome. Uncertainty in the requirements for
multi-format support has at times driven the design team to
solve problems that were later determined to be unnecessary.
At other times requirements uncertainty has lead designers
to make simplifying assumptions that were invalid.

Grappling with a large support system that is available only
as a set of high-level abstractions has posed problems to
users. There have been several cases where the Framework
team and users proceeded down parallel paths with very
different assumptions about what the Framework would
provide. Budget-related staffing problems exacerbated this
situation by making it difficult to support a sustained effort
to clearly define the Framework responsibilities. The recent
publication of a draft Framework API has helped resolve the
majority of these types of issues.

Still unresolved is the issue of how much wrapping to
provide third-party software. Viewpoints range from none to
comprehensive. The underlying technical questions are
related to the feasibility and desirability of complete
isolation from these packages. How much is really needed?
What is it worth? Will it be possible to provide a truly
generic interface, say, to a linear algebra package that will

allow the base package to be replaced at a later date without
affecting application code? The data requirements and API
structure of libraries are not always commensurate. Unless a
comprehensive analysis of the APIs of all potential base
libraries is carried out, there remains a chance that our
encapsulation will fail.

6. SUMMARY

The TES project is currently at the end of the analysis and
architectural design phase of the development of a science
software applications framework. Detailed design and
implementation of the first increment are now underway.

When the Framework decision was made over a year ago,
many of the obstacles discussed in section 5 above were
foreseen. While there have been some surprises, we have
been fortunate that none have been significant enough to
cause serious problems with the development process.

After a longer than expected search for the lead engineer, we
have been able to produce a viable Framework architecture
and high level design. Initial experience with the detailed
design phase has so far been positive. Some concern about
budget and staffing remains, and will remain until the first
release of the Framework is successfully delivered in
November of 2000. However, we currently have an adequate
workforce and skills base to predict that this effort will be
successful.

It will be a year before we will be able to report on whether
the initial strategic decision to build a Framework from the
ground up was the right one. However, presuming a
successful implementation of release one, we feel confident
that our architecture will fulfill our expectations for reuse
and rapid application development in the future.

7. ACKNOWLEDGEMENTS

The authors would like to acknowledge the valuable
comments provided in the preparation of this work by Ken
Scott and Akbar Thobhani.

The research described in this paper was carried .out
by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

8. REFERENCES

[13 http://eospso.gsfc.nasa.gov/eospso-homepage.html
[2] HDF-EOS Library User’s Guide, Volumes 1 & 2, NASA
Goddard Space Flight Center document # 170-TP-500-001,
Greenbelt, MD: NASA GSFC, 1999. Also available at
http://edhsl .gsfc.nasa.gov/waisdata/sdp/pdf/t~17050001 .pdf
and
http://edhs I .~sfc.nasa.gov/waisdata/sd~/pdS/tp1705010 I .mif
[3] Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides, Design Patterns, Reading, MA: Addison-Wesley,

http://eospso.gsfc.nasa.gov/eospso-homepage.html
http://edhsl
http://edhs

1995.
[4] Gregory Rogers, Framework-based Software
Development in C++, Englewood Cliffs, NJ: Prentice-Hall,
1997.
[5] Proceedings of A NASA Focus on Sofnyare Reuse,
Washington, DC: National Aeronautics and Space
Administration, 1996.
[6] See Draft Cooperative Agreement Notice at
http://esdcd.gsfc.nasa.gov/ESS/CAN2000/CAN.html
[7] See the HPCC Home page at http://hpcc.arc.nasa.gov/
[8] Frederick Brooks, The Mythical Man-Month, Reading, MA
Addison-Wesley, 1995.
[9] Don Batory, Intelligent Components and Sofnyare
Generators, paper available at
http://www/cs/utexas.edu/users/schwartzlpub.htd.

9. BIOGRAPHY

Steve Larson is a software project manager at the Jet
Propulsion Laboratory. He currently manages the TES
ground system development. He has been involved in the
development of science data processing systems for several
NASA Earth remote-sensing projects. Prior to joining JPL,
he worked as a research assistant in the areas of plasma
physics and low-energy nuclear physics. He has an
Bachelor’s degree in Art from Occidental College, and a
Master of Science in Physics from California State
University, Northridge.

Stephen H. Watson is a Senior Engineer at the Jet
Propulsion Laboratory (JPL), and is currently the Cognizant
Design Engineer for the Tropospheric Emission
Spectrometer (TES) Science Data Processing System
Framework. Prior to joining the TES team, he worked at
Magellan Corporation developing Global Positioning
System receiver and post-processing software, and was
responsible for managing a multinational software team. He
was previously employed at JPL as a software engineer
specializing in scientific data visualization, supporting a
variety of planetary and earth science missions. Mr. Watson
received a Bachelor of Science in Mathematics and a Master
of Science in Computer Science from Arizona State
University.

Kalyani Rengarajan is a Principal Engineer at Raytheon
ITSS, Pasadena. She is currently working on TES under a
contract with JPL. Before joining Raytheon, she worked at
JPL on advanced prototyping projects in distributive
collaborative engineering, and Earth Science and deep space
mission projects. She has a Masters in Computer Science
and Masters in Mathematics from Indian Institute of
Technology, Madras, India.

http://esdcd.gsfc.nasa.gov/ESS/CAN2000/CAN.html
http://hpcc.arc.nasa.gov
http://www/cs/utexas.edu/users/schwartzlpub.htd

