
RFS: Efficient and Flexible Remote File Access for MPI-IO

Jonghyun Lee∗‡ Xiaosong Ma†§ Robert Ross∗ Rajeev Thakur∗ Marianne Winslett‡
∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

†Department of Computer Science, North Carolina State University, Raleigh, NC 27695, U.S.A.
‡Department of Computer Science, University of Illinois, Urbana, IL 61801, U.S.A.

§Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37381, U.S.A.

{jlee, rross, thakur}@mcs.anl.gov, ma@csc.ncsu.edu, winslett@cs.uiuc.edu

Abstract

Scientific applications often need to access remote file
systems. Because of slow networks and large data size,
however, remote I/O can become an even more serious per-
formance bottleneck than local I/O performance. In this
work, we present RFS, a high-performance remote I/O fa-
cility for ROMIO, which is a well-known MPI-IO imple-
mentation. Our simple, portable, and flexible design elim-
inates the shortcomings of previous remote I/O efforts. In
particular, RFS improves the remote I/O performance by
adopting active buffering with threads (ABT), which hides
I/O cost by aggressively buffering the output data using
available memory and performing background I/O using
threads while computation is taking place. Our experimen-
tal results show that RFS with ABT can significantly reduce
the remote I/O visible cost, achieving up to 92% of the
theoretical peak throughput. The computation slowdown
caused by concurrent I/O activities was 0.2–6.2%, which
is dwarfed by the overall performance improvement in ap-
plication turnaround time.

1 Introduction

The emergence of fast processors and high-bandwidth,
low-latency interconnects has made high-performance
commodity-based clusters widely available. These clusters
are gaining popularity as an affordable, yet powerful, paral-
lel platform compared to commercial supercomputers, be-
cause of the clusters’ excellent cost-performance ratio. For
many computational scientists, clusters are an attractiveop-
tion for running parallel scientific codes that require a large
number of computing resources.

Scientific applications are typically I/O intensive. For
example, most simulation codes periodically write out the
intermediate simulation data to local secondary storage as
snapshotsfor future time-dependent visualization or analy-
sis. Checkpointfiles also need to be written in case of sys-

tem crash or application failure. Many visualization tools
read large amounts of data from disks into memory for vi-
sualization. Despite recent improvements in disk perfor-
mance, local I/O performance is still a serious performance
bottleneck for these data-intensive applications. Many re-
search efforts have addressed this slow I/O problem through
utilizing I/O parallelism [5, 11, 12, 17, 20].

In addition to their local I/O needs, scientific simulations
and visualization codes often need to store or retrieve data
at a remote file system that might be geographically sep-
arated from where the codes are running. For example, a
scientist at North Carolina State University chooses to run
her simulation code on a parallel platform at Argonne Na-
tional Laboratory, yet she needs to visualize and analyze
the simulation data on her local machine, which is equipped
with advanced graphics facilities. She also wants to visual-
ize other people’s data stored on a remote file archive. For
applications that run in such distributed setups, remote I/O
performance becomes an even bigger concern than local I/O
performance, because the network bandwidth between two
platforms is usually much lower than the aggregate disk
bandwidth of the local file systems. This situation, along
with the emergence of Grid computing [8], motivated re-
searchers to develop efficient and convenient access to re-
mote data for scientific applications [3, 4, 9, 12, 18].

The traditional approach to address the remote I/O prob-
lem is to manually stage either data or application from one
platform to the other, so that data can be accessed locally.
However, staging imposes several potential problems. Data
staging requires enough storage space on the local machine
to hold all the remote files, and such space may not al-
ways be available. Data staging can also result in excessive
data transfer and consistency problems. Application stag-
ing seems useful when the amount of data to be accessed
is large, but the application must be ported to the other ma-
chine, which may have a totally different architecture and
software base. Further, the results of visualization or analy-
sis may have to be transferred back to the original machine.

Moreover, staging is typically performed either before or af-
ter the application run, preventing possible overlap between
them and lengthening turnaround time. Lastly, manual stag-
ing is cumbersome and inefficient.

To overcome such shortcomings, we seek to provide ef-
ficient remote data access functionality in a parallel I/O li-
brary for scientific applications. Our approach enables au-
tomatic data migration between two machines, minimizing
user intervention and unnecessary data transfer. Hints can
be provided by the user to tune behavior if necessary. We
focus on optimizing remote write performance because a
large fraction of scientific codes, especially simulations, are
write intensive and do very few reads. For the testbed im-
plementation of this work, we chose ROMIO [20], a popular
implementation of the MPI-IO specification in the MPI-2
standard [15]. The MPI-IO interface is the de facto paral-
lel I/O interface standard, used both directly by applications
and by high-level libraries such as Parallel NetCDF [13] and
HDF5 [1]. Supporting remote I/O through MPI-IO thus en-
ables many applications to perform remote I/O without code
changes.

The main contributions of this work are as follows. First,
we propose a simple, portable, and flexible design of a re-
mote I/O facility called RFS (Remote File System), which
eliminates the shortcomings of previous remote I/O ef-
forts, and describe its implementation with ROMIO. Sec-
ond, as an optimization for remote writes, we integrate ac-
tive buffering with threads (ABT) [14] with RFS, to hide the
cost of remote I/O by overlapping it with the application’s
computation. A previous study [14] showed that ABT is
especially useful for slower file systems and hence is an ex-
cellent choice for use in I/O to remote file systems. We also
optimize RFS performance with ABT through two schemes
for temporary local staging during the application’s run.
Lastly, we provide efficient support for noncontiguous I/O
in RFS through portable decoding of recursive datatypes us-
ing MPI-2 features.

The rest of this paper is organized as follows. Section
2 reviews previous remote I/O efforts and ABT. Section 3
describes the design and implementation of RFS in detail.
Section 4 presents the experimental results obtained with
the RFS implementation. Section 5 discusses optimization
of reads and failure handling. Section 6 concludes the paper.

2 Related Work

2.1 Remote I/O Support for Scientific Workloads

Traditional wide-area distributed file systems such as
Network File System (NFS) [2] and the Andrew File Sys-
tem (AFS) [16] provide convenient and often transparent
interfaces for access to remotely located file systems. How-
ever, these file systems were originally designed and imple-

mented as general-purpose distributed file systems whose
main purpose is efficient sharing of files in distributed sys-
tems, and thus their performance is not optimized for large-
scale scientific workloads.

For high-performance transfer of large-scale data, sev-
eral specialized tools have been designed [3, 4, 9, 12, 18,
21]. Among them, RIO (Remote I/O) [9] was an early effort
that provided a preliminary design and proof-of-concept im-
plementation of remote file access in ROMIO. RIO’s client-
server architecture ensured implementation portability by
exploiting the intermediate ADIO (Abstract Device I/O)
[19] layer in ROMIO, which hides the details of different
file system implementations. RFS is also implemented at
the ADIO layer and eliminates several limitations of RIO.
For example, RIO used dedicated “forwarder nodes” for
message aggregation and asynchronous I/O. Extra proces-
sors, however, are not always available or convenient to
use [14]. Thus, RFS removes such a requirement. Also,
RIO seriously restricts the relationship between the num-
bers of client and server processes, while RFS can work
with any number of processes on both sides. Finally, RFS
removes RIO’s dependency on the Globus Toolkit [8] and
allows users to choose their own communication protocol.
These points are discussed further in Section 3.

As another effort to support remote I/O in an I/O library,
active buffering was integrated with compressed data mi-
gration in the Panda parallel I/O library [12]. A variant of
nondedicated I/O processors was used for data reorganiza-
tion and client-side compression, and dedicated migration
processors were used for active buffering and migration.
With a typical parallel execution setup, this approach re-
duces both visible I/O time and migration time significantly.
But like RIO, dedicated processors are required.

GASS (Global Access to Secondary Storage) [4] pro-
vides remote file access services that are optimized accord-
ing to several I/O patterns common in high-performance
Grid computation. Examples of these I/O patterns include
multiple readers reading a common file concurrently and
multiple writers writing to a file in an append only manner
(i.e. a log file). Our work, instead, addresses more gen-
eral workloads, with the focus on optimizing write-intensive
workloads through latency hiding. Although RFS is ex-
pected to work well with most of I/O patterns addressed
by GASS, some of them can be further optimized through
prefetching and caching. Section 5 discusses these issues.

GridFTP [3] is a high-performance, secure, robust data
transfer service in the Data Grid [6] infrastructure. GridFTP
extends conventional FTP to meet high-performance data
transfer requirements in Grid computing [8]. The enhanced
features of GridFTP include parallel and striped transfer,
partial file transfer, secure channels, and TCP buffer size
control. Although not an I/O library, GridFTP offers the
APIs required to build client and server codes and can be

used as a means of data transfer for RFS.
Kangaroo [18] is a wide-area data movement system,

designed to provide data transfer services with high avail-
ability and reliability. Both RFS and Kangaroo optimize
remote output operations by staging the data locally and
transferring them in the background. However, our work
differs from Kangaroo in that we view the remote I/O prob-
lem from the MPI-IO perspective and thus address collec-
tive I/O, noncontiguous I/O, and MPI-IO consistency issues
in the remote I/O domain, while Kangaroo focuses on the
more basic and lower level remote I/O solutions. Also,
Kangaroo relies on disk staging only, while RFS performs
hybrid staging that uses both disks and available memory
through ABT. Kangaroo adopts a chainable architecture,
consisting of servers that receive data and disk-stage them
locally and movers that read the staged data and send them
to another server. This is especially useful if links between
the two end points are slow or down. Like GridFTP, Kan-
garoo can be used to transfer data for RFS.

2.2 Active Buffering with Threads

Active buffering [14] reduces apparent I/O cost by ag-
gressively caching output data using a hierarchy of buffers
allocated from the available memory of the processors par-
ticipating in a run and writing the cached data in the back-
ground after computation resumes. Traditional buffering
aggregates small or noncontiguous writes into long, sequen-
tial writes, to speed them, but active buffering tries instead
to completely hide the cost of writing. Active buffering
has no hard buffer space requirement; it buffers the data
whenever possible with whatever memory available. This
scheme is particularly attractive for applications with pe-
riodic writes because in-core simulations do not normally
reread their output in the same run. Thus, once output data
are buffered in memory, computation can resume before
the data actually reach the file system. Also, computation
phases are often long enough to hide the cost of writing
all the buffered output to disk. Unlike asynchronous writes
provided by the file system, active buffering is transparent
to users and allows user code to safely rewrite the output
buffers right after a write call. Active buffering can also
help when asynchronous I/O is not available.

Active buffering originally used dedicated processors for
buffering and background I/O [12]. Later, active buffering
with threads [14] was proposed for I/O architectures that
do not use dedicated I/O processors, such as ROMIO. In
ABT, data are still buffered using available memory, but
the background I/O is performed by a thread spawned on
each processor. Local I/O performance obtained from the
ABT-enabled ROMIO shows that even without dedicated
I/O processors, active buffering efficiently hides the costof
periodic output, with only a small slowdown from concur-

rent computation and I/O [14].

3 Design

As mentioned earlier, RFS exploits the intermediate
ADIO layer in ROMIO for portability. ADIO defines a
set of basic I/O interfaces that are used to implement more
complex, higher-level I/O interfaces such as MPI-IO. For
each supported file system, ADIO requires a separate im-
plementation (called a “module”) of its I/O interfaces. A
generic implementation is also provided for a subset of
ADIO functions. When both implementations exist, either
the generic function is called first, and it may in turn call
the file system-specific function, or the file system-specific
function is directly called.

RFS has two components, a client-side RFS ADIO mod-
ule and a server-side request handler. On the client where
the application is running, remote I/O routines are placed
in a new ADIO module also called RFS. When called, RFS
functions communicate with the request handler located at
the remote server to carry out the requested I/O operation.
On the server where the remote file system resides, the re-
quest handler is implemented on top of ADIO. When it re-
ceives I/O requests from the client, the server calls the ap-
propriate ADIO call for the local file system at the server.
Figure 1 illustrates this architecture.

More detail on the design and implementation of RFS is
presented below.

3.1 RFS ADIO Module

The goal of the RFS project is to provide a simple and
flexible implementation of remote file access that minimizes
data transfer, hides data transfer costs through asynchronous
operation, and supports the MPI-IO consistency semantics.
To this end, we implemented the following basic RFS ADIO
functions:

• RFS Open1, RFS Close - open and close a remote
file.

• RFS WriteContig, RFS ReadContig - write
and read a contiguous portion of an open file.

• RFS WriteNoncontig,
RFS ReadNoncontig - write and read a non-
contiguous portion of an open file.

These RFS functions take the same arguments as do the
corresponding ADIO functions for other file system mod-
ules. One requirement forRFS Open is that the file name
contain the host name where the remote file system resides

1The prefixRFS denotes an RFS-specific function. Generic ADIO
functions start with the prefixADIO.

ABT UFS RFS

Application

MPI−IO

ADIO
ADIO

ABT UFS

RFS request handler

......
....

Client Server

local cache file

remote storage

Figure 1. RFS architecture. The bold arrows show the data flow for an ABT-enabled RFS operation
that writes the data to the Unix file system on the remote serve r.

and the host port number where the server request handler
listens. For example, if we need to access the file system
on elephant.cs.uiuc.edu through port 12345, we use the pre-
fix “rfs:elephant.cs.uiuc.edu:12345:” before
the file name.2

The RFS implementation of the remaining func-
tions required for an ADIO module can be divided into
three categories. First, some ADIO functions have a
generic implementation that callsADIO WriteContig,
ADIO WriteNoncontig, ADIO ReadContig, or
ADIO ReadNoncontig. With the RFS implementation
of those functions, the ADIO functions that have a generic
implementation can still be used without any changes.
For example, ADIO WriteColl, an ADIO function
for collective writes, can use the RFS implementation
of ADIO WriteContig or ADIO WriteNoncontig
for all data transfer. Second, like theseek operation in
ordinary file systems, some ADIO function calls have no
discernible effect until a subsequent call is made. In order
to reduce network traffic, these ADIO function calls can be
deferred and piggybacked onto later messages. For such
functions, RFS provides a simple client-side implementa-
tion that checks for errors and returns control immediately
to the application. For example, whenADIO Set view is
called at the client byMPI File set view to determine
how data will be stored in a file, the client implementation
first checks for errors and returns. Then RFS waits until the
next read or write operation on that file and sends the view
information to the server together with the I/O operation.
The appropriate implementation ofADIO Set view is
chosen by the server based on its local file system. The
user can also choose to deferRFS Open until the first read
or write operation on the file by passing a hint, and can

2ROMIO’s file naming convention is to use the prefix “<file sys-
tem name>:” to specify the file system to be used.

defer RFS Close until all the buffered write operations
are completed. Third, the ADIO functions that cannot
be implemented in the previous two ways have their own
implementation in RFS (e.g.,ADIO Delete to delete files
with a given file name).

Providing specialized noncontiguous I/O support is key
in local I/O but is even more important in the remote I/O
domain because latencies are higher. For noncontiguous
file access, ROMIO usesdata sieving[20] to avoid non-
contiguous small I/O requests when support for noncon-
tiguous I/O is not available from the ADIO implementa-
tion. For noncontiguous reads, ROMIO first reads the en-
tire extent of the requested data and then selects the appro-
priate pieces of data. For writes, ROMIO reads the whole
extent into a buffer, updates the buffer with pieces of out-
put data, and writes the whole buffer again. This approach
makes sense in the local I/O environment where the cost of
moving additional data is relatively low. However, in the
network-constrained environment of remote I/O, reducing
the amount of data to be moved is just as important as re-
ducing the number of operations.

RFS’s specialized implementation can significantly re-
duce the amount of data transferred in read and write cases.
This is especially useful in the write case because for a non-
contiguous write, we would be required to read this large
region from across the network, modify it, and write it back.
The RFS server can use data sieving locally to the server to
optimize local data access.

For noncontiguous writes, RFS packs the data to be
written usingMPI Pack and sends the packed data as the
MPI PACKED datatype to the server, to reduce the amount
of data transferred. Similarly, for noncontiguous reads, data
are first read into contiguous buffer space on the server, sent
back to the client, and unpacked by the client using the user-
specified datatype. In both cases, the datatype that describes
how the data should be stored in memory (called the “buffer

RFS handle RFS Make connection(char *host, int port);
int RFS Writen(RFS handle handle, char *buf, int count);
int RFS Readn(RFS handle handle, char *buf, int count);
int RFS Close connection(RFS handle handle);

Figure 2. C-style communication interface prototypes used in RFS.

datatype”) need not be transferred between the client and
server. For example, it is not important for noncontiguous
write operations whether or not the data are in packed form,
as long as they have the correct number of bytes to write.
However, file view information must be sent to the remote
server, to describe how data should be stored on disks on the
server. The file view information contains a datatype (called
the “filetype”), which can be a recursively defined derived
datatype. To portably pass a complex recursive datatype
to the remote server, we useMPI Type get envelope
andMPI Type get contents in MPI-2 for datatype de-
coding. Using these two functions, we perform a pre-
order traversal of the given recursive datatype and pack
the results into a buffer string, which is sent to the remote
server. The server reads the buffer string and recursively
recreates the original derived datatype. The file view in-
formation is sent once whenever there is an update (e.g.,
MPI File set view is called). Ching et al. [7] took a
similar approach to pass datatypes between client and server
in the Parallel Virtual File System (PVFS) [5] on a single
site, but we believe that this is its first use in remote I/O.

As briefly mentioned in Section 2, RFS requires no spe-
cific communication protocol for data transfer. Instead,
RFS defines four primitive communication interface func-
tions (Figure 2) that implement simple connection-oriented
streams, and allows users to choose a communication proto-
col for which an implementation of the four interface func-
tions is available. For example, users can pick GridFTP for
its secure data transfer or can use a hybrid protocol of TCP
and UDP, such as Reliable Blast UDP [10], for better trans-
fer rates. The current implementation uses TCP/IP.

3.2 Integration with the ABT Module

ABT is implemented as an ADIO module that can be
enabled in conjunction with any file system-specific ADIO
module (Figure 1). For example, when ABT is enabled with
the module for a particular file system, read and write re-
quests to ADIO are intercepted by the ABT module, which
buffers the data along with the description of the ADIO call
and then returns control to the application.3 In parallel, the
background thread performs I/O on the buffered data us-

3Instead of allocating a monolithic buffer space at the beginning of an
application run, ABT uses a set of small buffers, dynamically allocated
as needed. Each buffer has the same size, preset according tofile system
performance characteristics. If the data to be buffered arelarger than this
buffer size, they are further divided and stored in multiplebuffers.

ing the appropriate ADIO file system module functions. At
the user’s request, ABT can intercept and defer file close
operations until the buffered writes for that file are com-
pleted. Thanks to the stackable ABT module, the integra-
tion of ABT and RFS required few code changes.

To optimize RFS performance with ABT, we augmented
ABT with two temporary local disk staging schemes. First,
when there is not enough memory to buffer the data for an
I/O operation, ABT does not wait until a buffer is released,
because that may be very slow with RFS. Instead, ABT
immediately writes the data into a local “cache” file cre-
ated in the fastest file system available on the client (“fore-
ground staging”). The description of the I/O operation is
still buffered in memory, along with the size and the offset
of the data in the cache file. For each data buffer that is
ready to write out, the background I/O thread first checks
the location of the data. If the data are on disk, the thread
allocates enough memory for the staged data and reads the
data from the cache file. Once the data are in memory, the
requested I/O operation is performed.

Second, to reduce the visible I/O cost even more, dur-
ing each computation phase, we write some of the memory-
buffered data to the cache file in the background, to procure
enough memory space for the next set of output requests
(“background staging”). For that purpose, it is helpful to
know how much time we have before the next output re-
quest is issued and how much data will be written during
the next set of output requests. RFS can obtain such infor-
mation by observing the application, or users can provide
it as hints. This scheme is especially well suited for typ-
ical simulation codes that write the same amount of data
at regular intervals. If the amount of data or the interval
between two consecutive output phases changes over time,
we can still use the average values as estimates. However,
we want to avoid unnecessary background staging, because
staged data will have to be read back into memory before
being sent to the server, thus possibly increasing the overall
execution time.

We use a simple performance model to determine how
much data to stage in the background before the next output
phase begins. Suppose that the maximum available buffer
size isABSmax bytes, the currently available buffer size
is ABSnow bytes, the remaining time till the next output
is I seconds, and the expected size of the next output is
N bytes. If ABSnow is smaller thanmin(ABSmax, N),
which is the amount of buffer space needed, we perform

data reorganization and buffering

data reorganization and buffering

I/O phase 1

computation

phase 1

I/O phase 2

computation

computation

phase 2

phase 3

ti
m

e

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

processor 0 processor n−1

computation

remote write

local disk staging

Figure 3. Sample execution timeline of an application run at the client, when using RFS with ABT.
Both foreground and background staging are being performed . The foreground staging is visible to
the application, while the background staging is hidden by t he concurrent computation.

background staging. If we writex bytes to the cache file be-
fore the next output phase begins, it will take an estimated

x

Bw

seconds, whereBw is the write bandwidth of the cho-
sen file system. Also, forI −

x

Bw

seconds, remote writes
will transfer Bx(I −

x

Bw

) bytes of data, whereBx is the
remote write bandwidth that also considers the write time
at the server and the response time. Therefore, with this
scheme, the available buffer sizeI seconds from now will
beABSnow + x + Bx(I −

x

Bw

), and this value should be
equal to or greater thanmin(ABSmax, N). Solving this
equation forx, we get

x ≥
min(ABSmax, n) − ABSnow − I · Bx

1 −
Bx

Bw

(1)

This is a rough estimate; for example, it assumes that all
the data to be transferred are buffered in memory and does
not consider the read cost for the data buffered in the local
cache file. The current implementation spreads the staging
of x bytes over the current computation phase (i.e., staging
a fraction ofx bytes before writing each buffer remotely),
adjustingx if Bx changes over time. Figure 3 depicts a
sample execution timeline of an application using RFS with
ABT at the client, with these optimizations in place.

3.3 RFS Request Handler on the Server

An RFS request handler on a server is an MPI code
that can run on multiple processors and whose functional-
ity is relatively simple compared with that of the client RFS
module. The server receives the I/O requests from client
processes, performs them locally, and transfers back to the
client an error code and the data requested (for reads). Cur-
rently clients are mapped to server processes in a round-
robin manner. If a single server process needs to handle

multiple clients, it spawns a thread for each client that it
has to serve, and handles the I/O requests concurrently. Al-
though concurrent I/O operations on a common file could
be requested on a server process, it need not be concerned
about the file consistency semantics, as MPI by default re-
quires the user to be responsible for consistency when hav-
ing multiple writers on a common file.

4 Experimental Results

Our experiments used Chiba City, a Linux cluster at
Argonne National Laboratory, for the client-side platform.
Chiba has 256 compute nodes, each with two 500 MHz
Pentium III processors, 512 MB of RAM, and 9 GB of lo-
cal disk space. All the compute nodes are connected via
switched fast ethernet. For the servers, we used two Linux
PCs at different locations. Elephant is at the University of
Illinois, with a 1.4 GHz Pentium 4 processor and 512 MB of
RAM. Tallis is at Argonne, with a 1 GHz Pentium III pro-
cessor and 256 MB of RAM. The MPICH2 implementation
of MPI is used on all the platforms.

Table 1 shows the network and disk bandwidth mea-
sured between Chiba and each server with concurrent
senders/writers. Both network and disk throughput are
fairly stable and do not vary much as the number of
senders/writers increases. As in a typical remote I/O setup,
the network between Chiba and Elephant is slower than Ele-
phant’s local disk. However, Tallis has a very slow disk,
even slower than the network connection to Chiba, thus sim-
ulating an environment with a high-performance backbone
network.

We first measured the apparent I/O throughput with dif-
ferent file system configurations. The goal was to show how

Table 1. Aggregate network and disk bandwidth with each serv er. The numbers in parentheses show
the 95% confidence interval.

No. Procs 4 8 12 16

Elephant network 11.7325 (± 0.035) MB/s 11.75 (± 0.018) MB/s 11.74 (± 0.025) MB/s 11.69 (± 0.10) MB/s
disk 15.49 (± 0.16) MB/s 15.46 (± 0.29) MB/s 15.31 (± 0.13) MB/s 15.07 (± 0.18) MB/s

Tallis network 11.75 (± 0.010) MB/s 11.75 (± 0.020) MB/s 11.77 (± 0.020) MB/s 11.77 (± 0.0049) MB/s
disk 1.95 (± 0.0092) MB/s 1.95 (± 0.0046) MB/s 1.95 (± 0.0060) MB/s 1.95 (± 0.0068) MB/s

close the RFS throughput can be to the performance of the
bottleneck in the remote I/O path and also how efficiently
RFS with ABT can hide the visible cost of remote writes by
overlapping them with the subsequent computation. For an
application that writes periodically, we used a 3-D parallel
Jacobi relaxation code. Jacobi is iterative; in each itera-
tion, it updates the values of cells in a grid with the average
value of their neighbors from the previous iteration. The
code writes its intermediate “snapshot” to disk after a user-
controllable number of iterations have passed since the last
output.

The 3-D global array for the Jacobi code is distributed
across the processors using an HPF-style(BLOCK,
BLOCK, BLOCK) distribution, and for each snapshot, this
array is collectively written to a common file in row-major
order by ROMIO.4 Because of this “nonconforming” dis-
tribution, each collective write involves data reorganization
between processors. We used 4, 8, 12, and 16 proces-
sors, and the number of partitions in each dimension of the
global array was determined byMPI Dims create. We
fixed the amount of data on each processor at 32 MB (a
128 × 128 × 256 double array). For example, with 16 pro-
cessors, the number of partitions in each dimension is [4,
2, 2], and thus the global array is a512 × 256 × 512 dou-
ble array. All the participating processors write to the com-
mon file (except for one configuration), each responsible for
writing 32 MB of data per snapshot.5

We used six file system configurations:

• PEAK: local write without actually writing the data to
disks, simulating infinitely fast disks (using ROMIO’s
TESTFS ADIO module). The visible write cost in-
cludes only the communication for data reorganiza-
tion, and we used this as the theoretical peak perfor-

4In collective I/O, all the processors cooperatively participate to carry
out an efficient I/O. Global data layouts in memory and on diskare used to
optimize the I/O requests, forming fewer, larger sequential accesses instead
of having many small I/O requests.

5Although we used the same number of writers as the number of pro-
cessors for test purposes, the number of RFS writers should be carefully se-
lected, considering the aggregate network and disk performance with con-
current senders/writers, because too many writers can hurtperformance.
ROMIO allows users to control the number of writers (called “aggrega-
tors”).

mance.

• LOCAL: local file system write.6

• RFS: RFS write without ABT. The entire data transfer
cost is visible here.

• RFS+ABT-large-long: RFS write with ABT. The to-
tal buffer size on each processor is equal to or larger
than the amount of a single output operation that the
processor is responsible for (“large”). The length of a
computation phase is long enough to hide an entire re-
mote write operation (“long”). Thus, no local staging
(either foreground or background) happens. Here we
set the buffer size to 32 MB.

• RFS+ABT-large-short: The same configuration as the
previous one, but the length of a computation phase
is shorter than the time required to transfer one snap-
shot. This situation may trigger background staging to
obtain enough buffer space for the next snapshot. We
controlled the length of each computation phase so that
45–75 % of each snapshot could be transferred.

• RFS+ABT-small-long: The same as RFS+ABT-large-
long, except that the total buffer size is not big enough
to hold a single snapshot. This will trigger foreground
staging, whose cost is visible. We set the buffer to 16
MB.

Figure 4 shows the aggregate application-visible I/O
throughput (data size divided by the response time for the
I/O calls) measured with the two remote I/O setups and the
file system configurations described above. The visible I/O
cost for “LOCAL” and “RFS” includes the time for the out-
put data to reach the destination file system (without an ex-
plicit “sync”) and the time to receive an error code for the
write operation from the server. For the configurations with
ABT, the visible I/O cost is the cost of local memory buffer-
ing and foreground staging, if performed. For each run, we

6Since a shared file system on Chiba was not available at the time of
these experiments, we simulated a shared file system by having one aggre-
gator gather and reorganize all the data and write to its local disk. Many
clusters use NFS-mounted shared file systems, whose performance is often
much lower than that of our simulated shared file system.

(a) Between Chiba and Elephant (b) Between Chiba and Tallis

Figure 4. Aggregate application-visible write bandwidth w ith different file system configurations.

executed the Jacobi code with five iterations, writing up to
2.5 GB of data remotely; the numbers in the graph were av-
eraged over five or more runs. The error bars show the 95%
confidence interval.

The “PEAK” I/O throughput increases as the number of
processors and the amount of data grow, reaching 160.2
MB/s with 16 processors, although it does not scale up well.
Since this configuration does not involve disk operations,
the performance is limited by the message passing perfor-
mance on Chiba done via the fast ethernet. The “LOCAL”
I/O throughput is up to 9.8 MB/s and does not scale up be-
cause we used only one writer.

Between Chiba and Elephant, the network is the main
performance-limiting factor for remote I/O. Thus, as shown
in Figure 4(a), the RFS throughput reaches 10.1 MB/s with
16 processors, about 86% of the network bandwidth be-
tween the two platforms. The gap between the RFS and
network throughput occurs because RFS writes also in-
clude the response time for disk writes at the server and
the time to transfer the error code back to the client. Our
tests with RFS reads yielded similar results. As the number
of writers increases, the aggregate RFS throughput also in-
creases slightly, because the data reorganization throughput
increases, too. In this setup, RFS performance is compara-
ble to or even higher than the local I/O performance.

With ABT in place, however, the visible write through-
put increases significantly because ABT efficiently hides
the remote I/O cost. In “RFS+ABT-large-long,” where we
have enough buffer space and long computation phases, the
visible I/O throughput reaches 146.7 MB/s with 16 proces-
sors, about 92% of the theoretical peak, a factor of 14.5 im-
provement over the RFS performance and a factor of 17.7
improvement over the local I/O performance. The gap be-
tween the peak and the RFS performance is due mainly to
the cost of copying data to the active buffers and the slow-

down caused by concurrent foreground buffering and back-
ground remote I/O.

When the computation phase is not long enough to
hide an entire remote output operation (“RFS+ABT-large-
short”), the visible I/O throughput is still comparable to the
throughput obtained with long computation phases. In our
experiments, the difference in throughput does not exceed
4% of the long computation phase throughput, proving that
background staging with our performance model can pro-
cure enough buffer space for the next snapshot.

When the total buffer space is smaller than the size of
a snapshot (“RFS+ABT-small-long”), RFS has to perform
foreground staging, whose cost is completely visible. For
our tests, we usedfsync to immediately flush the staged
data to disk, because we wished to see the effect of local
staging of larger data: if the amount of data to be staged is
small, as in our experiments, the staged data can fit in the
file cache, producing a very small local staging cost. Even
with fsync, RFS with ABT can still improve the remote
write performance significantly, reaching 103.1 MB/s with
16 processors, an improvement of a factor of 10.2 over RFS
alone and a factor of 12.4 over local write performance.
Without fsync, we obtained performance very close to
that with 32 MB of buffer.

Figure 4(b) shows the I/O bandwidth obtained between
Chiba and Tallis. Here, the very slow disk on Tallis is the
performance bottleneck, limiting the RFS performance to
less than 2 MB/s. We obtained up to 1.7 MB/s of RFS
write throughput, roughly 87.1% of the disk bandwidth
on Tallis. Read tests produced similar results. Neverthe-
less, the performance of RFS with ABT between Chiba
and Tallis is close to the performance between Chiba and
Elephant, making the performance improvement even more
dramatic. For example, the aggregate visible I/O through-
put with RFS+ABT-large-long reaches 145.0 MB/s with

Table 2. The amount of data staged at the client in RFS+ABT-la rge-short.

No. Procs 4 8 12 16

Chiba to foreground 0.0 MB (0.0%) 0.0 MB (0.0%) 0.8 MB (0.05%) 1.6 MB (0.08%)
Elephant background 168.0 MB (32.8%) 322.4 MB (31.5%) 571.2 MB (37.2%) 798.4 MB (39.0%)

Chiba to foreground 12.0 MB (2.3%) 26.0 MB (2.5%) 46.4 MB (3.0%) 71.0 MB (3.5%)
Tallis background 317.0 MB (61.9%) 614.0 MB (60.0%) 961.6 MB (62.6%) 1320.0 MB (64.5%)

16 processors, about 86.8 times higher than the RFS write
throughput and about 8.3 times higher than the local write
throughput. With a 16 MB buffer, 103.0 MB/s throughput
was achieved with 16 processors andfsync, a factor of
61.6 improvement over RFS writes and a factor of 12.4 im-
provement over local writes. The reason we could still ob-
tain excellent visible I/O performance with this slow remote
file system is that the client buffers data, and thus, with the
help from background staging, the buffering cost does not
vary much with different servers.

We cannot easily compare the performance of RFS di-
rectly with that of RIO. RIO was a one-time development
effort, so today RIO depends on a legacy communication
library, making it impractical to run RIO in our current en-
vironment. Also, the experiments presented in the origi-
nal RIO paper [9] were conducted in asimulatedwide-area
environment, where the RIO authors partitioned a parallel
platform into two parts and performed TCP/IP communica-
tion between them, instead of using a real wide-area envi-
ronment as we have. Moreover, the RIO authors measured
the sustained remote I/O bandwidth with aparallelfile sys-
tem at the server for blocking and nonblocking I/O (equiva-
lent to our I/O operations without and with ABT), while we
measured the visible I/O bandwidth with asequentialUnix
file system at the server.

However, we can still speculate on the difference in re-
mote I/O performance with RFS and with RIO. According
to the RIO authors, RIO can achieve blocking remote I/O
performance close to the peak TCP/IP performance with
large messages. Our experiments show that remote I/O
without ABT can achieve almost 90% of the peak TCP/IP
bandwidth even with a sequential file system at the other
end. With smaller messages, however, RIO’s blocking I/O
performance dropped significantly, because of the commu-
nication overhead with RIO’s dedicated forwarders. Since
all remote I/O traffic with RIO goes through the forwarders,
a single I/O operation between a client and a server pro-
cess involves four more messages than with RFS, two out-
bound and incoming messages between the client process
and the client-side forwarder and two between the server
process and the server-side forwarder. These can cause sig-
nificant overhead for an application with many small writes
that uses RIO. RFS, on the other hand, does not use interme-

diate forwarders and let clients directly communicate with
servers, effectively reducing the message traffic compared
to RIO. For this reason, we expect RFS to be more efficient
than RIO in many situations.

To test the performance model with the background stag-
ing, we measured the amount of data staged both in the
foreground and the background at the client in RFS+ABT-
large-short (Table 2). The numbers were averaged over five
or more runs; the numbers in parentheses are the percentage
of staged data out of the total data in four snapshots.7 If our
performance model accurately predicts the amount of data
that should be staged, then there should be no foreground
staging, because the total buffer size is same as the size of
a snapshot. The numbers obtained confirm this claim. In
both setups, less than 4% of the output data are staged in
the foreground.

Also, an accurate model should minimize the amount
of data staged in the background; otherwise, unnecessary
staging will make the overall transfer longer. However,
it is difficult to measure the exact amount of unnecessar-
ily staged data because the amount of data transferred dur-
ing each computation phase can vary as a result of net-
work fluctuation and slowdown from multithreading. In
“RFS+ABT-large-short,” we roughly estimated the length
of each computation phase to be long enough to transfer
over the network about 70–75% of a snapshot for the Chiba-
Elephant setup and 45–50% of a snapshot for the Chiba-
Tallis setup. Thus, in theory, 25–30% of a snapshot for
the Chiba-Elephant setup and 50–55% of a snapshot for the
Chiba-Tallis setup should be staged in the background, to
minimize the visible write cost for the next snapshot. When
background staging is in place, however, smaller amounts
of data than estimated above may be transferred during a
computation phase, because background staging takes time.
Also, since the unit of staging is an entire buffer, often
we cannot stage the exact amount of data calculated by
the model. Thus, the amount of data staged in the back-
ground for each snapshot should be larger than the portion
of a snapshot that cannot be transferred during a computa-
tion phase with RFS alone. Our performance numbers show

7Among the five snapshots in each run, the first cannot be stagedin
the foreground, and the last cannot be staged in the background in this
configuration.

Table 3. The computation slowdown caused by concurrent remo te I/O activities.

No. Procs 4 8 12 16

Chiba to RFS+ABT-large-long 2.33% 0.68% 0.53% 1.41%
Elephant RFS+ABT-large-short 6.24% 3.62% 1.97% 2.46%

Chiba to RFS+ABT-large-long 5.67% 5.25% 5.35% 2.11%
Tallis RFS+ABT-large-short 0.90% 1.17% 0.45% 0.24%

that 31–39% of the output for the Chiba-Elephant setup
and 60–65% of the output for the Chiba-Tallis setup were
staged in the background, slightly more than the estimated
numbers above. Based on these arguments and our perfor-
mance numbers, we conclude that the amount of unneces-
sarily staged data by RFS is minimal.

Finally, we measured how much these background re-
mote I/O activities slow the concurrent execution of the
Jacobi code through their computation and inter-processor
communication. Table 3 shows the average slowdown of
the computation phases with various configurations when
the 32 MB buffer was used. All the measured slowdown
was less than 7%, which is dwarfed by the performance gain
from hiding remote I/O cost.

5 Discussion

5.1 Optimizing Remote Read Performance

This work focuses on optimizing remote write perfor-
mance through ABT for write-intensive scientific applica-
tions. Reads are typically not a big concern for such appli-
cations, because they often read a small amount of initial
data and do not reread their output snapshots during their
execution. A restart operation after a system or application
failure may read large amounts of checkpointed output, but
restarts rarely occur. The current implementation of ABT
requires one to flush the buffered data to the destination file
system before reading a file for which ABT has buffered
write operations.

However, applications such as remote visualization tools
may read large remote data. The traditional approaches to
hide read latency are to prefetch the data to be read and
to cache the data for repetitive reads, and we are adding
such extensions to ABT, using local disks as a cache. More
specifically, we are providing a flexible prefetching inter-
face through the use of hints, so that background threads
can start prefetching a remote file right after an open call on
that file. When a read operation on a file for which prefetch-
ing is requested is issued, RFS checks the prefetching sta-
tus and reads the portion already prefetched locally, and the
portion not yet prefetched remotely. Cached files can be
read similarly, performing remote reads for the portions that

are not cached locally. GASS [4] has facilities for prefetch-
ing and caching of remote files for reads. GASS transfers
only entire files, however, an approach that can cause ex-
cessive data transfer for partial file access (e.g., visualizing
only a portion of a snapshot). We instead aim to provide
finer-grained prefetching and caching that use byte ranges
to specify the data regions to be prefetched and cached.
Our extensions will comply with the MPI-IO consistency
semantics.

5.2 Handling Failures

Through ABT and hints, the current RFS implementa-
tion allows the user to defer file open, write, and close calls
to reduce the network traffic and response time. The origi-
nal call to such functions returns immediately with a success
value, and if an error occurs during a deferred operation, the
user will be notified after the error. Thus, the user needs to
be aware of the possibility of delayed error message as the
cost of this performance improvement. If timely error noti-
fication is important, the user should avoid these options.

A failed remote open notification will be received when
the following I/O operation on the specified remote file fails.
A failed write notification can be delayed until a sync or
close operation is called on the file. The MPI-IO standard
says thatMPI File sync causes all previous writes to the
file by the calling process to be transferred to the storage
device (MPI File close has the same effect), so delay-
ing write error notification until a sync or close operation
does not violate the standard. If the user chooses to defer
a file close, too, and a write error occurs after the original
close operation returns, then the error can be delayed until
MPI Finalize.

Some RFS operations that are deferred by default, such
as setting the file view and file seeks, can be checked for er-
rors at the client and the user can be notified about such er-
rors, if any, before the operations are executed at the server.
Thus, they do not need separate failure handling.

6 Conclusions

We have presented an effective solution for direct remote
I/O for applications using MPI-IO. The RFS remote file

access component has a simple and flexible I/O architec-
ture that supports efficient contiguous and noncontiguous
remote accesses. Coupling this with ABT provides aggres-
sive buffering for output data and low-overhead overlapping
of computation and I/O. Our local data staging augmenta-
tion to ABT further enhances ABT’s ability to hide true I/O
latencies. Our experimental results show that the write per-
formance of RFS without ABT is close to the throughput
of the slowest component in the path to the remote file sys-
tem. However, RFS with ABT can significantly reduce the
remote I/O visible cost, with throughput up to 92% of the
theoretical peak (determined by local interconnect through-
put) with sufficient buffer space. With short computation
phases, RFS still reduces visible I/O cost by performing a
small amount of background staging to free up sufficient
buffer space for the next I/O operation. The computation
slowdown caused by concurrent remote I/O activities is un-
der 7% in our experiments and is dwarfed by the improve-
ments in turnaround time.

As discussed in the previous section, we are currently en-
hancing ABT for RFS reads, by introducing prefetching and
caching. Future work includes experiments with alternative
communication protocols and parallel server platforms.

Acknowledgments

This work was supported in part by the Mathematical,
Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38. This research was also sup-
ported through faculty start-up funds from North Carolina
State University and a joint faculty appointment from Oak
Ridge National Laboratory.

References

[1] NCSA HDF home page. http://hdf.ncsa.uiuc.edu.
[2] NFS: Network File System protocol specification. RFC

1094.
[3] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-

ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal, and
S. Tuecke. Data management and transfer in high perfor-
mance computational grid environments.Parallel Comput-
ing Journal, 28(5):749–771, 2002.

[4] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A data movement and access service for wide area
computing systems. InProceedings of the Workshop on In-
put/Output in Parallel and Distributed Systems, 1999.

[5] P. Carns, W. L. III, R. Ross, and R. Thakur. PVFS: A parallel
file system for Linux clusters. InProceedings of the Annual
Linux Showcase and Conference, 2000.

[6] A. Chervenak, I. Foster, C. Kesselman, S. Salisbury, and
S. Tuecke. The Data Grid: Towards an architecture for

the distributed management and analysis of large scientific
datasets.Journal of Network and Computer Applications,
23:187–200, 2001.

[7] A. Ching, A. Choudhary, W.-K. Liao, R. Ross, and
W. Gropp. Efficient structured access in parallel file sys-
tems. InProceedings of the International Conference on
Cluster Computing, 2003.

[8] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit.International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[9] I. Foster, D. Kohr, Jr., R. Krishnaiyer, and J. Mogill. Re-
mote I/O: Fast access to distant storage. InProceedings of
the Workshop on Input/Output in Parallel and Distributed
Systems, 1997.

[10] E. He, J. Leigh, O. Yu, and T. DeFanti. Reliable Blast UDP:
Predictable high performance bulk data transfer. InProceed-
ings of the International Conference on Cluster Computing,
2002.

[11] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In
Proceedings of the Symposium on Operating Systems Design
and Implementation, 1994.

[12] J. Lee, X. Ma, M. Winslett, and S. Yu. Active buffering
plus compressed migration: An integrated solution to paral-
lel simulations’ data transport needs. InProceedings of the
International Conference on Supercomputing, 2002.

[13] J. Li, W.-K. Liao, R. Ross, R. Thakur, W. Gropp, R. Latham,
A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF:
A high-performance scientific I/O interface. InProceedings
of SC2003, 2003.

[14] X. Ma, M. Winslett, J. Lee, and S. Yu. Improving MPI-
IO output performance with active buffering plus threads.
In Proceedings of the International Parallel and Distributed
Processing Symposium, 2003.

[15] Message Passing Interface Forum.MPI-2: Extensions to the
Message-Passing Standard. 1997.

[16] J. Morris, M. Satyanarayanan, M. Conner, J. Howard,
D. Rosenthal, and F. Smith. Andrew: A distributed per-
sonal computing environment.Communications of ACM,
29(3):184–201, 1986.

[17] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. InProceedings of the Confer-
ence on File and Storage Technologies, 2002.

[18] D. Thain, J. Basney, S.-C. Son, and M. Livny. The Kangaroo
approach to data movement on the Grid. InProceedings of
the Symposium on High Performance Distributed Comput-
ing, 2001.

[19] R. Thakur, W. Gropp, and E. Lusk. An abstract-device in-
terface for implementing portable parallel-I/O interfaces. In
Proceedings of the Symposium on the Frontiers of Massively
Parallel Computation, 1996.

[20] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collec-
tive I/O in ROMIO. InProceedings of the Symposium on the
Frontiers of Massively Parallel Computation, 1999.

[21] J. Weissman. Smart file objects: A remote file access
paradigm. InProceedings of the Workshop on Input/Output
in Parallel and Distributed Systems, 1999.

