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ABSTRACT
To reduce the problem of premature convergence we define
a new attribute of an individual, its age, and propose the
Age-Layered Population Structure (ALPS), in which age is
used to restrict competition and breeding between members
of the population. ALPS differs from a typical EA by segre-
gating individuals into different age-layers by their “age” –
a measure of how long the genetic material has been in the
population – and by regularly replacing all individuals in
the bottom layer with randomly generated ones. The intro-
duction of new, randomly generated individuals at regular
intervals results in an EA that is never completely converged
and is always looking at new parts of the fitness landscape.
By using age to restrict competition and breeding search is
able to develop promising young individuals without them
being dominated by older ones. We demonstrate the effec-
tiveness of the ALPS algorithm on an antenna design prob-
lem in which evolution with ALPS produces antennas more
than twice as good as does evolution with two other types
of EAs. Further analysis shows that the ALPS model does
allow the offspring of newly generated individuals to move
the population out of mediocre local-optima to better parts
of the fitness landscape.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: General

General Terms
Algorithms, Design
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Computer-Automated Design, Design, Evolutionary Algo-
rithms, Evolutionary Design, Open-ended design
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1. INTRODUCTION
A common problem experienced by practitioners of evolu-

tionary computation (EC) is that they run their evolution-
ary algorithm (EA) and after a while the fitness of the best
solution levels off at some mediocre value and no further
improvements are made. What has happened is that the
existing genetic material in the population has converged
such that with the current individuals in the population the
variation operators cannot produce new individuals that will
move the population into a better basin of attraction. This
has been called the premature convergence problem [3, 6,
13, 8].

Perhaps the easiest ways of slowing convergence are to
increase the mutation size/rate or the population size. In-
creasing the mutation rate will keep diversity high and keep
the population from converging quickly but it is just as likely
to replace good alleles and building blocks as bad ones. Also,
if the mutation size is too large then the mutation operator
will not create offspring near its parent and be unable to
explore narrow fitness peaks. Using a larger population in-
creases the number of generations before it converges but the
problem then becomes picking a population size. Too large
a population on a simple problem results in search taking
much longer than necessary, and on difficult problems the
necessary size of the population may not be feasible.

More involved approaches of maintaining the genotypic
diversity of the population consist of modifying other parts
of the evolutionary algorithm and, over the years, different
such methods have been tried. Diversity of the population
can be maintained by modifying the replacement strategy,
such as with preselection [5], crowding [6], and determinis-
tic crowding [14]. Another approach is the use of sharing
functions, which modify the fitness of individuals based on
their genotypic similarity [7]. Or the population structure
can be modified, such as with spatially structured popula-
tions in which individuals have a location and are restricted
to interacting with their neighbors [17]. While these differ-
ent methods can work to different degrees, drawbacks are
that methods which work through genotypic comparisons
are better suited to bit strings then genetic programs and,
ultimately, all such methods are limited to discovering solu-
tions that are within the basin(s) of attraction of the initial
population.

Breaking out of the basin of attraction of the initial start-
ing population can only be achieved by introducing new,



randomly generated individuals into the population. Im-
plicitly, this method of getting around the premature con-
vergence problem is a fairly common practice that is done by
running the EA multiple times with different random num-
ber seeds. While restarting the EA increases the chances of
eventually finding the global optima – at the very least, if
the random individual generator can produce every point in
the fitness landscape then eventually the global optima will
be found in one of the initial populations – deciding how
long to run the EA before restarting becomes a challenge. If
few generations are used, then the population may not have
enough time to climb the fitness peak of the global optima,
if a large number of generations are used then much time
will be wasted while the population has converged on top of
a mediocre fitness peak before the next run is started.

Rather than restarting the EA from scratch with an en-
tirely new population, the alternative is to continuously in-
troduce into the population new, randomly generated indi-
viduals. Hu and Goodman proposed such an algorithm and
called it the Hierarchical Fair Competition (HFC) model
[10]. To protect new individuals and their offspring from
competition with the high-fitness, pre-existing individuals,
HFC separates the population into different fitness-layers
with selection and replacement occurring only within a fitness-
layer, similar to the Fitness Uniform Selection (FUSS) EA
[12]. The idea behind this is to allow individuals, and their
offspring, to develop much like how sports players are brought
up through various school and minor league systems before
playing in the top tier. Yet HFC has the problem that indi-
viduals that have converged to a local optima near the top of
a fitness layer prevent newer individuals in different basins
of attraction from climbing through that fitness-layer. Vari-
ations on the HFC paradigm – Adaptive Hierarchical Fair
Competition (AHFC) [11] and Continuous Hierarchical Fair
Competition (CHFC) [1] – have been made but these have
not been shown to be significantly better than regular HFC.

To better integrate new, randomly generated individu-
als we define a new attribute of an individual, its age, and
propose the Age-Layered Population Structure (ALPS), in
which age is used as attribute to restrict competition and
breeding between members of the population. An individ-
ual’s age is a measure how long its genetic material has been
evolving. Randomly created individuals starting with an age
of 0, with its is age increased by one for each generation in
which it is used to produce an offspring, and individuals cre-
ated through mutation or recombination start with an age
of 1 plus the age of its oldest parent(s). The population is
then separated into multiple layers, with each layer having
a maximum allowable age for individuals to be in it, and se-
lection, breeding, and replacement is restricted to adjacent
layers. By structuring the population so that individuals
only compete against other individuals of similar ages, in-
dividuals will only cluster about a local optima as long as
it has the best fitness for similarly aged individuals thereby
allowing other newly-discovered basins of attraction to be
explored.

To demonstrate the effectiveness of ALPS it is compared
against HFC and a standard EA on an antenna design prob-
lem. The results show that ALPS significantly outperforms
both a standard EA and HFC by a large margin and also
that by using age to restrict competition and breeding the
genetic material of newly generated random individuals is
able to evolve up new fitness peaks and move the popula-

tion to new and better parts of the fitness landscape.
The rest of this paper is organized as follows. First, a def-

inition of age and the ALPS paradigm is described in detail.
The next section is a description of the experimental setup
for comparing ALPS against a canonical EA and against a
variant of HFC. This is followed by the results of the ex-
periments and then a discussion analyzing the behavior of
the ALPS algorithm in comparison with the other two. Fi-
nally, we close with a short section on combining ALPS with
other diversity maintenance techniques and then summarize
the conclusions of this work.

2. THE ALPS PARADIGM
As with HFC, the Age-Layered Population Structure dif-

fers from traditional evolutionary algorithms by regularly
introducing new, randomly generated individuals in the pop-
ulation and by segregating individuals in the population and
restricting which other individuals they compete and mate
with. The difference between ALPS and HFC is that ALPS
uses age as the attribute on which the competition and mat-
ing restrictions are based whereas HFC uses fitness. We de-
fine an individual’s age as a count of how long its genetic
material has been evolving inside the population, as mea-
sured by the number of generations in which it has been
used as a parent. Thus with ALPS, the population consists
of a sequence of layers, with an increasing upper-limit on the
maximum age of individuals which that layer can contain.
Evolution of individuals proceeds much like a typical EA,
except two exceptions. First, individuals are restricted to
only breeding with individuals in their own layer or from the
layer immediately before them. Second, the bottom layer is
replaced with randomly generated individuals at regular in-
tervals. We now describe this algorithm in more detail.

The age-measure that we define for the ALPS-EA is a
count of how many generations in which the individual’s
genotypic material has been evolving inside the population.
New individuals, that are randomly generated, start with
an initial age of 0 since their genetic material has just been
introduced into the population. Individuals that are created
through variation, such as by mutation or recombination,
take the age value of their oldest parent plus 1 since their
genetic material comes from their parents and has now been
in the population for one more generation than their parents.
Each generation in which an individual is used as a parent to
create an offspring its age is increases by 1 since its genetic
material has been used in evolution in another generation.
Even if an individual is selected to reproduce multiple times
in one generation its age is still only increased by 1 so that
good individuals that reproduce a lot are not penalized for
being more fit than similarly aged individuals.

To restrict competition and breeding among individuals
the population keeps individuals in a number of age-layers,
somewhat similar to the island-model EA [17]. Each age-
layer in the population has a maximum age limit for indi-
viduals in it, except for the last layer which can have indi-
viduals of any age. Different systems can be used for setting
these values, such as by using linearly, polynomialy or expo-
nentially increasing limits (see table 1). To keep the size of
the population and number of layers manageable, and since
there is generally little need to segregate individuals which
are within a few “generations” of each other, these values
are then multiplied by an age-gap parameter. Thus with a
polynomial aging scheme and an age-gap of 20 the maximum



Table 1: Different systems for setting the age-limits
for each age-layer.

Max age in layer
Aging-scheme 0 1 2 3 4 5 6
Linear 1 2 3 4 5 6 7
Fibonacci 1 2 3 5 8 13 21
Polynomial (n2) 1 2 4 9 16 25 49
Exponential (2n) 1 2 4 8 16 32 64

.

ages for the layers are: 20, 40, 80, 180, 320, . . . . This allows
some generations of evolutionary search to occur in the first
layer with the randomly generated individuals, allowing the
population can find and move into basins of attraction, be-
fore being pushed into the next layer and results in a good
separation in age-limits between subsequent layers. Alter-
natively, an ALPS-EA can be run with an infinite number
of age-layers, with new layers created as needed, with the
expectation that the user will halt evolution before memory
is exhausted.

With these age-layers, evolution with the ALPS model
is similar to a canonical EA with a few exceptions. First,
individuals can breed only with individuals from their own
layer or from the previous one. Thus for layer 0, parents are
selected from individuals only in layer 0; for layer 1 parents
are selected from individuals in layers 0 and 1; for layer 2
parents are selected from individuals in layers 1 and 2; and
for layer n, parents are selected from layers n − 1 and n.
By selecting parents individuals from both the current layer
and the previous layer, offspring of individuals are able to
pass from one layer to the next in a smooth way. Second,
at regular intervals all individuals in the first layer, layer
0, are replaced with randomly generated individuals. This
happens at every AGE-GAP generations. Thus with an age-
gap value of 7, new individuals are created in the first layer
at generations 0, 7, 14, 21, . . . . Finally, individuals are only
present in a layer when evolution has proceeded for as many
generations as the age limit of the previous layer. For exam-
ple, with an age-gap value of 10 and an exponential aging
system, only layer 0 is active for the first 10 generations at
which point layer 1 is then used, layer 2 is used starting
at generation 20, layer 3 is used starting at generation 40,
layer 4 is used starting at generation 90, and so on. When a
generation becomes open for use, its individuals are created
through offspring from parents selected from the previous
layer.

By increasing an individual’s age each generation in which
it is used as a parent, it will eventually age its way up the
layers and, likely, out of the population so that, unlike with
HFC, an individual will not stay in a layer forever. Except
for the last layer in which case an individual is only guaran-
teed to stay forever if it is the global optimum, otherwise it
will eventually be replaced as better individuals are evolved.

3. EXPERIMENTAL SETUP
To determine the effectiveness of the ALPS paradigm, ex-

periments are performed using it as well as a canonical EA
and HFC. A canonical EA is used so that a performance
comparison can be made between it and the ALPS-EA to
show how well ALPS performs against the style of EA used

by the majority of practitioners in the field of evolutionary
computation. Runs with HFC provide a useful comparison
because it also regularly generates new, randomly generated
individuals in its first layer and by comparing ALPS against
HFC the relative advantage of using age, versus fitness, to
segregate and manage individuals in different layers can be
inferred. The details of the three different EAs will now be
described.

3.1 Configuration of the Different EAs
The particular ALPS implementation that is used for these

experiments is as follows. The population is made up of 10
age-layers with each layer having 100 individuals, resulting
in a total population size of 1000 individuals. A polynomial
aging scheme is used with an age-gap parameter of 20 gen-
erations. Tournament selection is used with a tournament
size of 7 and an elitism of 3 in each layer (and an overall
elitism of 30). New individuals are created with an equal
probability of mutation or recombination.

The canonical EA is a generational EA with a population
size of 1000 individuals and uses tournament selection with
a tournament size of 7 and elitism of 30. New individuals
are created with an equal probability of mutation or recom-
bination.

The HFC model that is used is adaptive HFC (AHFC), in
which the fitness thresholds for each layer are adjusted ev-
ery fixed number of generations. Our implementation uses
10 fitness-layers, with 100 individuals in each layer for a to-
tal population size of 1000 individuals. Parents are selected
using tournament selection, with a tournament size of 7. In
addition, an elitism of 3 is used to copy the best individu-
als of each layer from one generation to the next. Fitness
thresholds are adjusted every 20 generation.

3.2 Representation
As will be described in the following section, the problem

domain in which the experiments will be performed is that
of antenna design. Antennas are encoded with an open-
ended representation with which the nodes of the genotype
are antenna-construction operators that specify how to con-
struct the antenna. Constructing an antenna begins with
a feedwire of length 1mm coming up out of the ground-
plane and operators are executed starting with the root
node down to the leaf node. In constructing an antenna
the current state (location and orientation) is maintained
and operators add wires or change the current state. The
operators are as follows: forward(length), add a wire with
the given length and extending from the current location
and then change the current state location to the end of
the new wire; rotate-x(angle), change the orientation by
rotating it by the specified amount (in radians) about the x-
axis; rotate-y(angle), change the orientation by rotating
it by the specified amount (in radians) about the y-axis; and
rotate-z(angle), change the orientation by rotating it by
the specified amount (in radians) about the z-axis. Since we
constrained antennas to a single, bent wire with no branch-
ing each node in the genotype has at most one child.

For example, in executing the program rotate-z(0.5236)

forward(1.0), the rotate-z() operator causes the the cur-
rent orientation to rotate 0.5236 radians (30◦) about the Z
axis. The forward() operator adds a wire of length 1.0 cm
in the current forward direction.



4. EXPERIMENTS
To test the hypothesis that the ALPS method of man-

aging individuals in the population is better at producing
high quality solutions we compare it to HFC and a regular
EA on an antenna design optimization problem. Researchers
have been investigating evolutionary antenna design and op-
timization since the early 1990s [15, 9, 2, 16], and the field
has grown in recent years as computer speed has increased
and electromagnetics simulators have improved. The goal
of this antenna problem is to produce an omni-directional
monopole antenna operating at 50Ω with a gain pattern of
≥0 dBic from 0◦ - 80◦ from zenith for both transmit (2288
MHz) and receive frequencies (2106 MHz), a voltage stand-
ing wave ratio (VSWR) of under 1.5 at both frequencies,
and fit inside a cylinder of height 6cm and radius of 5cm.1

The configuration for all three EAs uses the same total
population size, the same tournament size, the same overall
elitism size, and all three use the same representation with
the same variation operators. The only differences between
the canonical EA and the other two is that both ALPS and
AHFC regularly introduce new, randomly generated indi-
viduals the population and both manage their populations
differently from the canonical EA. Thus performance and
behavioral differences between the canonical EA and both
ALPS and AHFC must be a consequence of whether or not
the algorithm introduces new individuals into the popula-
tion and/or the differences in how they manage the popula-
tion. As for ALPS and AHFC, both replace the initial layer
with a new group of randomly generated individuals at the
same rate – every 20 generations – but they differ in using
age versus fitness to segregate individuals and restrict mat-
ing and competition, thus this will be cause of performance
differences between these two algorithms. In this way the ex-
periments allow us to determine which algorithmic features
are important and advantageous.

4.1 Antenna Optimization Problem
The fitness function used to evaluate antennas is a func-

tion of the VSWR and gain values on the transmit and
receive frequencies. The VSWR component of the fitness
function is constructed to put strong pressure toward evolv-
ing antennas with receive and transmit VSWR values below
the required amounts of 1.2 and 1.5, reduced pressure at a
value below these requirements (1.15 and 1.25) and then no
pressure to go below 1.1:

vr = VSWR at receive frequency

v′r =





vr + 2.0(vr − 1.25) if vr > 1.25
vr if 1.25 > vr > 1.1
1.1 if vr < 1.1

vt = VSWR at transmit frequency

v′t =





vt + 2.0(vt − 1.15) if vt > 1.15
vt if 1.15 > vt > 1.1
1.1 if vt < 1.1

vswr = v′rv
′
t

The gain-penalty component of the fitness function uses
the gain (in dBic) in 5◦ increments about the angles of in-
terest: from 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 360◦. For each an-

1VSWR is a way to quantify reflected-wave interference, and
thus the amount of impedance mismatch at the junction.

gle, the calculated gain score from simulation is compared
against the target gain for that elevation and the outlier
gain, which is the minimum gain value beyond which lower
gain values receive a greater penalty. Gain penalty values
are further adjusted based on the importance of the eleva-
tion:

gain penalty (i, j):
gain = calculated gain at θ = 5◦i , φ = 5◦j;
if (gain ≥ target[i]) {

penalty := 0.0;
} else if ((target[i] > gain) and (gain ≥ outlier[i])) {

penalty := (target[i] - gain);
} else { /* outlier[i] > gain */

penalty := (target[i]-outlier[i]) +
3.0 * (outlier[i] - gain));

}
return penalty * weight[i];

Target gain values at a given elevation are stored in the array
target[] and are 2.0 dBic for i equal from 0 to 16 and are
-3.0 dBic for i equal to 17 and 18. Outlier gain values for
each elevation are stored in the array outlier[] and are
0.0 dBic for i equal from 0 to 16 and are -5.0 dBic for i
equal to 17 and 18. Each gain penalty is scaled by values
scored in the array weight[]. For the low band the values
of weight[] are 0.1 for i equal to 0 through 7; values 1.0
for i equal to 8 through 16; and 0.05 for i equal to 17 and
18. For the high band the values of weight[] are 0.4 for i
equal to 0 through 7; values 3.0 for i equal to 8 through 12;
3.5 for i equal to 13; 4.0 for i equal to 14; 3.5 for i equal to
15; 3.0 for i equal to 16; and 0.2 for i equal to 17 and 18.
The final gain component of the fitness score of an antenna
is the sum of gain penalties for all angles.

To put evolutionary pressure on producing antennas with
smooth gain patterns around each elevation, the third com-
ponent in scoring an antenna is based on the standard de-
viation of gain values. This score is a weighted sum of the
standard deviation of the gain values for each elevation θ.
The weight value used for a given elevation is the same as
is used in calculating the gain penalty.

These three components are multiplied together to pro-
duce the overall fitness score of an antenna design:

F = vswr × gain× standard deviation
Since the objective of the EA is to produce antenna designs
that minimize F , this function is actually a cost function
rather than a fitness function.

The Numerical Electromagnetics Code, Version 4 (NEC4) [4]
was used to evaluate all antenna designs. Antenna designs
were analyzed on top of a 4” ground-plane that was approx-
imated with a wire-mesh, for which each antenna simulation
took a several seconds of wall-clock time to run

4.2 Results
A total of 15 trials were performed with each of the three

EAs described in the previous section, with each trial run
for 2 million evaluations. The averaged results of these
trials are (mean±s.e.): standard EA, 150.3±20.3; AHFC,
152.8± 30.6; and ALPS, 61.1±39.4. Using a two-tailed
Mann-Whitney test the difference between both ALPS and
the standard EA as well as ALPS and AHFC is highly sig-
nificant, with P < 0.001. In contrast, using a two-tailed
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Figure 1: A plot of the best individual in the pop-
ulation for the three different EAs averaged over 15
trials each.

Mann-Whitney test, the performance difference between the
standard EA and AHFC is not significantly different with P
≥ 0.05.

That the ALPS model significantly outperformed the canon-
ical EA, and by a large margin, tells us that continuously
introducing new, randomly-generated individuals into the
population and restricting breeding and competition by an
individual’s age can be a better evolutionary algorithm. Since
the performance difference between AHFC and a canonical
EA is neither large nor statistically significant, these results
also show that just introducing new individuals into the pop-
ulation is not sufficient to produce a better EA and that age
is a better attribute to control individuals than is fitness.

5. DISCUSSION
An intuitive understanding of why evolution with the ALPS

paradigm works so well can be gained by examining the fit-
ness and age values of the best individual in each layer over
the course of evolution. The two graphs in figure 2 show
one of the trials with the ALPS paradigm, with the graph
in figure 2.a consisting of a plot of the fitness of the best
individual in each layer of the population and the graph in
figure 2.b consisting of a plot the age of these individuals.
Since the bottom layer, L-0, of the population is replaced
by a new group of randomly generated individuals every 20
generations (which is 20000 evaluations once all layers are
populated) it can be seen to oscillate rapidly in both graphs:
in figure 2.a it starts with a very high fitness, descends to
a fitness value centered around 250 over 20 generations and
then starts afresh at something higher then 500; and in fig-
ure 2.b the plot of the age of the best individual in layer L-0
shows the age of this individual starts at 0 and then increases
to 20 over the course of 20 twenty generations, hand-in-hand
with improvements in fitness, and then is reset to 0 as this
layer is replaced with new, randomly generated individuals.
Similarly, the other layers in these two graphs can be seen
to oscillate with a polynomially increasing gap between “re-
sets”. Since the best individual in a layer generally takes
over a layer with its offspring, all individuals in a layer tend
to have a similar age-level. Consequently, when the best
individual in a layer is aged out of a layer the rest of the
individuals in the layer that are genotypically similar are

 0

 100

 200

 300

 400

 500

 0  1e+06  2e+06

fit
ne

ss

evaluations

L-0
L-1
L-2
L-3
L-4
L-5
L-6
L-7
L-8
L-9

(a)

 1

 10

 100

 1000

 0  1e+06  2e+06

ag
e

evaluations

L-9
L-8
L-7
L-6
L-5
L-4
L-3
L-2
L-1
L-0

(b)

Figure 2: A plot of the fitnesses of the best indi-
viduals in layers 0, 1, 2 and 9 of an EA run using
ALPS.

also in the process of being aged-out of the layer. At this
point the layer is reset with new genetic material from the
best individuals of the previous layer, hence the connecting
arcs showing a continuous development of fitness and age of
a genetic line progressing through multiple layers.

To help understand why evolution with the ALPS paradigm
is better able to continue finding new and better solutions,
even when run for a very large number of generations, we
examine a close-up of the evolutionary run shown in figure 2.
The plot of the best fitness of each layer shown in the graph
of figure 3.a starts after 1.6 million evaluations have taken
place, and just below it in the graph in figure 3.b is a plot
of the age of these individuals. These two graphs show the
conjoined oscillation in fitness and age of the best individ-
ual in the bottom layer, L-0, every 20 generations. These
two graphs also show, by the smooth connection between the
lines from adjacent layers, the transfer of genotypic material
from one layer to the next. It can be seen that the offspring
of individual that was randomly generated sometime around
1.7 evaluations quickly progress up the layers from L-0, to
L-1, all the way to L-5, after several thousand evaluations
(which is several generations since there are 1000 individu-
als in the populations). About when this genetic material
reaches layer L-5, it is aged out of layer L-0, which then



starts evolving a new bunch of randomly generated individ-
uals. Several generations later it also ages out of L-1, and
this layer then starts evolving individuals that have moved
up to it from L-0. Eventually the genetic material reaches
the top layer, L-9, and a new global optima is found. These
two graphs show that by using age to restrict competition
and breeding between individuals, the ALPS paradigm is
able to regularly generate new individuals whose offspring
are able to evolve and move the population out of a mediocre
local-optima.

Interestingly, from looking at the plot of ages in figure 3,
it shows that the ages of the best individuals from layers
L-5, L-7 and L-9 (ages for layers L-4, L-6, and L-8 are not
plotted) does not drop down to that from L-2 which sug-
gests that the genetic material that evolved down from L-0
recombined with an older individual from an intermediate
layer and the resulting offspring used the age of the older
parent. That the new best individual contains some geno-
typic material acquired through recombination with descen-
dants from the individuals recently created can be shown
by plotting the ages of individuals in each generation with
a second age-measure. Instead of assigning the age of the
oldest parent to offspring created through recombination,
with this second age measure individuals are given the age
of their youngest parent. The graph in figure 3.c is a plot of
the age of the best individual in each layer of the same run
as the graphs in figure 3.a and b. This graph shows that
at the time the fitness of the best individual in the popu-
lation starts dropping to a new local-optima the age of the
best individual in the top age-layer has an age of 31, using
this second age measure. This means that new best indi-
vidual is a descendant of an the individual that randomly
generated some 31 generations previous. In fact, using this
second age-measure, the maximum age of the best individ-
uals in any of the age-layers seldom goes higher than 100
which means that the genetic material of th new, randomly
generated individuals is being transferred to the rest of the
population in the other age-layers.

The behavioral difference between ALPS and HFC can
be seen from examining the same fitness and age graphs
from a run with the HFC algorithm, figure 4, and compar-
ing them with similar graphs for ALPS. The first graph,
figure 4.a, shows the sequential layering of fitness values for
each fitness-layer in the population, just as would be ex-
pected with the HFC model. Also, since Adaptive HFC
(AHFC) was the variant used for these experiments a reg-
ular resetting of fitness values can be seen. Both the se-
quential layering of fitness and the resetting of fitness values
are similar to behaviors observed with ALPS. The second
graph, figure 4.b, plots the ages of the best individual in
each fitness layer. Similar to ALPS, the age of individuals
in the bottom layer oscillates from 0, although with AHFC
it climbs much higher since there are no age-limits with this
system. Unlike ALPS, the age of the best individual in every
other layer is the same and comes from the initial popula-
tion. This second graph shows that AHFC does not enable
the movement of the new, randomly generated individuals
up the layers.

For completeness we include plots of an example run with
the canonical EA in figure 5. The graph in figure 5.a plots
the fitness of the best individual in the population, and
it shows that the fitness of the best individual in popula-
tion rapidly increases for several thousand evaluations and
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Figure 3: Graphs of part of the ALPS run of fig-
ure 2 with the lines of some age-layers left out to
improve clarity: (a) a plot of the fitness of the best
individual in selected layers; (b) a plot of the age of
the best individual in selected layers; and (c) a plot
of age of the best individual in selected layers using
a different measure of age.
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Figure 4: A plot of the fitnesses of the best indi-
viduals in layers 0, 1, 2 and 9 of an EA run using
ALPS.

then very quickly levels off with only minor improvements
made over the remaining 1.95 million evaluations. The cor-
responding ages of these individuals is plotted in the graph
in figure 5.b, and it shows that the best individual in pop-
ulation increases in age by roughly 1 for every generation,
as expected for a traditional, generational EA. Interestingly,
the plots in these two graphs virtually match the correspond-
ing plots of AHFC – except for the plot of the bottom layer,
L-0, of AHFC which is replaced with new, randomly gener-
ated individuals every 20 generations. Again, this strongly
suggests that AHFC is not successful in developing individ-
uals that are generated at random.

To summarize, the graphs presented in this section show
that with the ALPS paradigm new genetic material is con-
tinually introduced into the population at regular intervals
and is segregated from older individuals by age, thereby al-
lowing it time to evolve to its potential. This segregation
and development of individuals up the age-layers allows evo-
lution to continue finding new and better solutions even
when it is run for a very large number of generations. That
this is not happening the AHFC demonstrates that age is the
better attribute to restrict competition and breeding than
is fitness.
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Figure 5: A plot of the fitnesses of the best indi-
viduals in layers 0, 1, 2 and 9 of an EA run using
ALPS.

6. COMBINING ALPS WITH OTHER TECH-
NIQUES

While ALPS is good at using age to shepherd the devel-
opment of new, randomly-generated individuals, it may be
that some problems better control of the individuals inside
each population. To address cases in which neither ALPS
nor a diversity maintenance scheme are sufficient these two
techniques can be combined to achieve better results.

From past work on evolving antennas for other problems
an EA using deterministic crowding (DC) had been found to
work best [reference omitted]. While evolution using ALPS
as described in section 2 resulted in antenna designs that
were better then had been produced previously, the result-
ing designs were still inadequate. Combining ALPS with DC
resulted in a system that, based on a few initial results, pro-
duces far superior results than evolution with either system
alone. The graphs in figure 6 show the performance of one
run of an ALPS-DC EA for 7.5 million evaluations. With
this system the best antenna that was evolved has a fitness
of 12.4, which is better than that of any antenna evolved
with the EAs described in section 3.

7. CONCLUSION
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Figure 6: An example of a run of ALPS using de-
terministic crowding inside each layer.

In this paper we have defined a measure of age of individ-
uals and with this measure have proposed the Age-Layered
Population Structure (ALPS) as a system to reduce the
problem of premature convergence. Unlike canonical EAs,
ALPS continues to explore new parts of the fitness landscape
by continuously creating a new sub-population of randomly
generated individuals in its bottom layer. By segregating
individuals into different layers by their age, and using this
to restrict competition and breeding, promising new individ-
uals are able to develop without being dominated by older
ones.

To determine the effectiveness of ALPS, it was compared
against a canonical EA and the Hierarchical Fair Compe-
tition (HFC) model, an EA which also continuously intro-
duces random individuals into the population but uses fit-
ness as the attribute to restrict competition and breeding.
ALPS significantly outperformed the other two EAs by a
large margin, thereby demonstrating the advantages of using
age to restrict breeding and competition. Further improve-
ments in performance where then demonstrated by combin-
ing ALPS with deterministic crowding. It is hoped that
using age as a means to control the population will provide
even better ways to prevent premature convergence in future
variants of the ALPS algorithm.
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