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ABSTRACT

The principal objective of this research is to develop, test, and
implement coarse-grained, parallel-processing strategies for nonlinear
dynamic simulations of practical structural problems. There are
contributions to four main areas: (a) finite element modelling and analysis
of rotational dynamics, (b) numerical algorithms for parallel nonlinear
solutions, (c) automatic partitioning techniques to effect load-balancing

among processors, and (d) an integrated parallel analysis system.

Two finite element approaches are implemented to account for
rotational nonlinearities involved in dynamic analysis of rotating bladed-
disk assemblies: the Consistent Mass (CM) and Lumped Mass (LM)
approaches. It has been found that the analysis results obtained using the
CM and LM approaches are in close agreement. In addition, for transient
analysis using explicit time integration, the LM approach has been found to

be significantly more efficient than the CM approach.

For explicit and implicit dynamic analyses, the present work
implements a parallel central difference method and a parallel Newmark
method, respectively. A parallel static solver is also implemented for
steady-state solutions of rotational dynamics. For the parallel central
difference method applied to specific test problems run on 6 processors,
parallel efficiencies of over 90% have been achieved. For the parallel
Newmark method and the parallel static solver, parallel efficiencies of more

than 80% have been obtained.



Two automatic spectral partitioning algorithms are developed to
effect load-balancing among processors. They are compared with several
automatic partitioning algorithms by previous researchers. It has been
found that the proposed RST partitioning algorithm with the
communication graph approach gives the best results in most examples
studied. In addition, interactive graphics tools are developed to allow for
manual partitioning and for examining and modifying results of automatic

partitioning.

A parallel analysis system is integrated to help evaluate the parallel
strategies investigated, verify the finite element approaches employed, and
demonstrate how advanced computer technologies can assist engineers in
parallel dynamics simulations. This system takes advantage of the
advanced computing environments, data structures, and interactive
computer graphics to provide a useful research software testbed for study of

nonlinear structural dynamics.
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Chapter 1

Introduction

In recent years the rapid development of novel computer hardware
environments with parallel processing capabilities has created new
opportunities for revolutionizing engineering computing. In computational
structural dynamics, the utilization of these powerful systems may lead to
increasingly complete and sophisticated simulations of advanced structural
systems. Through such simulations, better engineering understanding,
analysis, and design can then be achieved. The realization of advancing
engineering simulations in the novel computing environments, however,
often requires the difficult tasks of designing new computer codes or
adapting old ones. In addition, development of new solution strategies is-
often required to take full advantage of these new computers. This thesis
focuses on one aspect of advances in computational structural dynamics --
the development, testing, and evaluation of coarse-grained, parallel-
processing strategies for nonlinear dynamics simulations of large-scale
practical structural problems. The work also presents an integration of the
latest advanced computing environments, data structures, and interactive
computer graphics to facilitate more efficient and powerful simulations of

nonlinear structural dynamics.

Computing environments with parallel processing capabilities include
shared-memory supercomputers (e.g., Cray Y-MP and IBM 3090), shared-
memory intermediate-sized or personal supercomputers (e.g., Convex and

Alliant), distributed-memory parallel or multiprocessor computers (e.g.,



Intel iPSC and Connection Machine), and a network of high performance
workstations (e.g., Apollo/HP 9000 Series 700, IBM RS/6000, and
DECsystem 5000). The supercomputers are very powerful machines;
however, they are expensive and are not easily accessible in the same sense
as traditional batch-oriented mainframes. On the other hand, engineering
workstations which are not as powerful as supercomputers are more
affordable and cost-effective. With the growing availability of workstations
in the workplace, it is increasingly feasible for engineers to utilize networks
of workstations to achieve improved turnaround through parallel
computations for computationally intensive simulations such as nonlinear
dynamic analysis (Hajjar and Abel 1988, 1989a). This coarse-grained,
distributed-memory networked workstation environment is the principal

parallel processing environment considered in this thesis.

1.1 Background

The work reported in this thesis is a continuation of the research
conducted by Dr. Jerome F. Hajjar (1987, 1988) at Cornell University.
However, due to the rapid advance of computer technologies, there have
been several new developments in computational structural dynamics since
the time Hajjar finished his work in 1988. The exponential growth of
computer speed in the last few years has allowed engineers to conduct
increasingly complete dynamic analyses on more complicated engineering
problems. Recent progress in the area of high speed communication
networks (for example, FDDI as opposed to Ethernet) together with growing
body of software tools to support distributing computing, such as PICL
(Geist et al. 1991), Linda (Leler 1990), and ISIS (Birman et al. 1991), have

made network-based distributing systems a viable environment for



engineering computations. Advanced modelling and analysis tools based on
new software architecture, data structures, and computer graphics have
also been developed to aid engineers in all phases of dynamic simulations,
i.e., the data preparation, analysis monitoring, and result visualization.
The present work takes advantage of these new developments and further
addresses the parallel-processing strategies for nonlinear dynamics

simulations.

The major contribution of Hajjar's research to the present work is the
investigation and development of numerical time integration algorithms for
parallel processing. After re-evaluating these algorithms, this research
investigates and implements two parallel algorithms developed by Hajjar
for solutions of structural dynamics: the central difference algorithm (Hajjar
and Abel 1989a) and the domain decomposition algorithm (Hajjar and Abel
1988).

Using a prototypical environment consisting of one to four
VAXstation II's under the VAXELN operating system, Hajjar has shown the
feasibility of utilizing networked engineering workstations as a parallel
computer to achieve improved turnaround for computationally intensive
simulations of structural dynamics. However, the performance of the
prototypical configuration was limited by the low computational speed of the
VAXstation II (Iess than 1 Mips) and the lack of generality and portability of
the VAXELN operating system. With the advance of computer technology
of individual workstations, the present work implements and evaluates
parallel algorithms in a more generally applicable and powerful computing

environment.



The computer network interface used in this research is Ethernet,
which is the same one used by Hajjar. However, faster networks such as
FDDI (Fibér Distributed Data Interface) have recently become available.
The approximate communication speed of the FDDI is 100 Mbits per second,
which is one order of magnitude faster than Ethernet. Cornell's Program of
Computer Graphics (where the writer is carrying out this research) is also
in the process of installing the FDDI for its parallel processing environment

at the time of this writing (March 1993).

To take advantage of parallel processing in the finite element
analysis of structural dynamics, the finite element domain is usually
partitioned (or decomposed) into a number of subdomains which are
distributed among the processors and solved concurrently. The key problem
of this approach is how to partition the domain to achieve well-balanced
workload distribution among processors and to minimize the amount of
interprocess communication so that significant speed-up can be obtained in
the parallel analysis. Hajjar has addressed this problem by developing a set
of tools with interactive computer graphics to help manual partitioning of
the structural domain. However, even with the aid of interactive computer
graphics, manual partitioning may be difficult for large finite element
meshes with arbitrary geometries. The present work investigates and
improves techniques of automatic domain partitioning to effect load-
balancing among processors. Graphics tools are also provided for manual
partitioning and for examining and modifying results of automatic

partitioning.

The application problems of structural dynamics studied by Hajjar

focus on the analysis of three-dimensional steel frames subject to



earthquake loading. Beam-column elements, which are 1-D elements, were
used for modelling frames. Both geometric and material nonlinearities were
considered. In addition to beam-column elements, the present work uses a
2-D shell element to model floor flexibility in the dynamic analysis of steel
frames. However, only geometric nonlinearity is considered in the shell
elements. A new emphasis in the present work has been on application
problems dealing with finite element analysis of rotating turbine bladed-
disk assemblies experiencing tip rubs. Solid elements (3-D elements) are
used to represent the disks and blades. Both rotational and geometric
nonlinearities are included in the finite element formulation to derive the

governing equations of motion.
1.2 Objectives

The principal objective of this research is to develop, test, and
implement coarse-grained, parallel-processing strategies for nonlinear
dynamics simulations of practical structural problems. The parallel-
processing strategies addressed include (a) numerical algorithms for
parallel nonlinear solutions and (b) techniques to effect load-balancing

among processors.

The second objective of the research is the application of finite
element techniques for rotational dynamics. Emphasis is on the structural

dynamics of rotating turbine bladed-disk assemblies.

The use of advanced computing environments, data structures, and
interactive computer graphics for a more efficient and powerful simulation

of nonlinear structural dynamics is the third objective of this research.



1.3 Scope

The scope of the research reported in this thesis may be summarized
by the three main tasks involved, each paralleling one of the principal
objectives. The first and primary task addresses parallel-processing
strategies for finite element analysis of structural dynamics. The second
one focuses on finite element approaches for modelling and analyzing
problems of rotational as well as non-rotational dynamics although
emphasis is on the rotational dynamics. The third includes the
development of an integrated parallel analysis system. A more detailed

discussion of these tasks is provided in the following sub-sections.

1.3.1 Parallel Processing Strategies

The parallel-processing strategies addressed include numerical
algorithms for parallel nonlinear solutions of structural dynamics and
techniques to effect load-balancing among processors. Although these
strategies are suitable for a variety of machine environments sharing a few
common features, the major configuration investigated is a coarse-grained,
distributed-memory system in a message-passing environment, in
particular, networked engineering workstations, each with large memory

and one or more powerful processor.

For transient dynamic analyses, the numerical algorithms
investigated include both parallel explicit and implicit time integration
algorithms. As mentioned earlier, the present work investigates and
implements the parallel central difference and parallel domain
decomposition algorithms proposed by Hajjar and Abel (1989a, 1988) for

explicit and implicit dynamic analyses. For steady-state stress analyses of



rotating systems, a parallel static solution method is implemented using the

domain decomposition approach.

In this work, these parallel algorithms are implemented in a program
called ABREAST (Srivastav 1991; Aubert 1992), which is a batch finite
element analysis program for nonlinear structural dynamics. The
verification and evaluation of these algorithms are studied using a variety

of example problems.

To effect load-balancing among processors, the present research
focuses on the automatic domain partitioning techniques for parallel finite
element analysis of structural dynamics. The automatic partitioning
algorithms proposed by Farhat (1988), Malone (1988), Al-Nasra and Nguyen
(1991), and Simon (1991) are studied. Modified recursive spectral
partitioning algorithms are then proposed. In addition, interactive graphics
tools are developed to allow for manual partitioning and for examining and

modifying results of automatic partitioning.

These partitioning algorithms as well as graphics tools are
implemented in a program called PSAINT (Hsieh and Srivastav 1992), an
interactive program that performs domain partitioning on finite element
meshes. Comparative studies are conducted to evaluate and compare both

efficiency and effectiveness of these partitioning algorithms.

1.3.2 Finite Element Modelling and Analysis

The finite element method is employed to study structural dynamics
problems for the development, testing, and evaluation of parallel-processing

strategies addressed in this work. Two classes of structural dynamics



problems are investigated. The first one includes framed structures with
flexible floors subjected to seismic loading, and the second includes rotating

turbine bladed-disk assemblies experiencing tip rubs.

For modelling and analysis of framed structures with flexible floors,
the beam-column and shell elements already existing in the finite element
library of ABREAST are employed. Geometric nonlinear analysis is

conducted.

For modelling and analysis of rotating bladed-disk assemblies, a solid
element is implemented in ABREAST. Both rotational and geometric
nonlinearities are considered in the finite element formulation of equations
of motion. Two finite element approaches for handling rotational
nonlinearities are also implemented in ABREAST and compared through

numerical studies.

Both modal vibration and transient dynamic analyses of rotating
bladed-disk systems are investigated and discussed. In the modal vibration
analysis, a steady-state stress analysis is followed by an eigensolution. A
static solution capability, which was previously not provided by ABREAST,
is implemented in ABREAST for the steady-state analysis. In addition,
verification studies are conducted to evaluate the finite element rotational

dynamics and formulations implemented in ABREAST.

1.3.3 An Integrated Parallel Analysis System

An integrated parallel analysis system is developed to help (a)
evaluate the parallel strategies investigated, (b) verify the finite element

approaches employed, and (c) demonstrate how advanced computer



technologies can assist engineers in parallel dynamic simulations. The
system integrates four computer programs: BASYS (Srivastav and Abel
1990; Srivastav 1991) and FRANSYS (Wawrzynek et al. 1988; Martha 1989;
Wawrzynek 1991) for three-dimensional modelling and visualization;
PSAINT for finite element domain partitioning; and ABREAST for

nonlinear dynamic solutions.

BASYS is primarily designed for modelling and visualization of
buildings and other framed structures. FRANSYS was originally developed
to model general, 3-D fracture processes in arbitrarily shaped solids. It has
been extended to provide general tools for modelling and simulation of
complex 3-D solid models. Both BASYS and FRANSYS provide the analyst
an efficient way of modifying and manipulating the structural data through
the use of a radial edge data representation (Weiler 1986, 1988) and a
hierarchical modelling scheme. They also provide a convenient means of
displaying the structure model and visualizing the response of the structure
using interactive computer graphics. In the present work, graphics tools for

visualization of dynamics simulations are implemented in FRANSYS.

PSAINT serves as an interface between BASYS/FRANSYS and
ABREAST. Its primary job is to partition finite element domains for
parallel analysis. Both automatic and manual partitioning tools are

provided. It also collects the results of parallel analysis for simulation

playback in BASYS/FRANSYS.

ABREAST was originally developed for analyzing framed structures
consisting of either truss or beam-column elements and has been extended

to include a nine-node Lagrangian shell element for modelling floors, walls,
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or panels. It is capable of both geometric and material nonlinear transient
dynamic analyses. In the present research, a twenty-node brick solid
element is implemented in ABREAST for modelling rotating bladed-disk
systems. Parallel explicit and implicit time integration methods as well as
parallel steady-state (static) solution methods are also implemented using a
multiple-instruction, multiple-data (MIMD) algorithm.

1.4 Organization
The organization of this thesis is briefly described in this section.

Chapter 2 addresses the finite element approach used for modelling
and analysis of framed structures and rotating bladed-disk assemblies. The
selection of finite elements for modelling purposes is discussed. Equations
of motion for both rotational and non-rotational dynamics are formulated.
Two approaches are presented to account for rotational nonlinearities in
rotating bladed-disk systems. Numerical comparisons between these two
approaches are also conducted. Finite element analyses of both framed
structures and rotating bladed-disk assemblies are discussed. In addition,
verification studies are reported on both finite elements and analysis

algorithms implemented in ABREAST for this work.

Chapters 3 and 4 investigate parallel processing strategies which
include parallel nonlinear solution algorithms for structural dynamics and
domain partitioning techniques for load-balancing among processors. In
Chapter 3, the parallel computing environment used in the present work is
described first. Then, parallel solution algorithms for transient dynamics
analysis as well as steady-state analysis are evaluated. The algorithms

selected and implemented in this research are discussed and their
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effectiveness is studied using numerical examples. In Chapter 4, load-
balancing techniques based on domain partitioning are reviewed and
investigated. Algorithms both proposed by previous researchers and
developed in this work are studied and compared. The effectiveness of these

algorithms for parallel finite element dynamic analysis is also discussed.

A parallel analysis system integrated in this research is presented in
Chapter 5. An overview of the system is first described. The
implementation and application of the system for each phase of parallel
simulation are discussed. In addition, application examples that examine
and demonstrate the efficiency and flexibility of the parallel analysis system
and the parallel processing strategies developed in this research are

included.

Chapter 6 summarizes and concludes the work reported in this

thesis. Suggestions for future work are also provided.



Chapter 2

Finite Element Modelling and Analysis

Two classes of structural dynamics problems are studied for the
development, testing, and evaluation of parallel-processing strategies
addressed in this thesis. The first one includes framed structures with
flexible floors subjected to seismic loading, while the second one includes
rotating turbine bladed-disk assemblies experiencing tip rubs. This chapter
discusses the finite element approach employed in the present work to
model complex structural geometries and material properties, to account for
various nonlinearities, and to formulate the governing equations of motion

for these problems.

In this work, the finite element analysis capabilities of ABREAST,
which has been briefly discussed in Section 1.3, are extended to model and
analyze rotating turbine bladed-disk assemblies as well as other rotating or
nonrotating solid structures. The implementation and verification of these
new capabilities are discussed in this section. Another enhancement of the
analysis capability of ABREAST is the implementation of parallel analysis
algorithms, which is discussed in the next chapter.

2.1 Modelling of Framed Structures with Flexible Floors

The present work uses the pre-existing elements in the finite element
library of ABREAST to model framed structures with flexible floors. To
model beams and columns of steel frames, the beam-column element in

ABREAST is used. To model flexible floors in steel frames, the nine-noded

12
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Lagrangian shell finite element with 2x2 Gauss integration in ABREAST is

employed.

The beam-column element is a line element with twelve degrees-of-
freedom, consisting of three translations and three rotations at each end of
the element. Bernoulli-Euler beam theory (Ugural and Fenster 1981) is
employed in the formulation of the element stiffness with common
assumptions, such as homogeneous and isotropic material, plane sections
remain plane, doubly symmetric prismatic sections with no cross section
distortion, and small strain theory. In linear elastic analyses, the element
stiffness is a well known one (see, for example, McGuire and Gallagher
1979). For second order elastic analyses, geometric nonlinearities are
handled through the use of an updated Lagrangian formulation and a
geometric stiffness matrix (Argyris et al. 1979). For inelastic analyses,
material nonlinearities are included through the use of a concentrated
plasticity model based on the bounding surface approach and the plastic

hardening reduction matrix derived by Hilmy (1984; Hilmy and Abel 1985).

The nine-noded Lagrangian shell finite element was originally
developed for full nonlinear static analysis by White and Abel (1990) and
further developed for geometric nonlinear dynamic analysis by Srivastav
(1991). A projection operator is used to stabilize spurious zero energy modes
associated with reduced integration. In elastic analyses, a two-point Gauss
integration is performed through the thickness of the element for stiffness
computation. For second order elastic analyses, geometric nonlinearities
are handled through the use of an updated Lagrangian formulation and the
geometric stiffness matrix derived by White (1988). For dynamic analyses,
the diagonal element mass matrix formulated by Srivastav (1991) is used.
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The verification of the beam-column element for dynamic analysis
has been conducted by Hilmy (1984). The use of the nine-noded shell
element for dynamic analysis has been verified by Srivastav (1991).
Therefore, no further verification is conducted in this work for these two

elements.

2.2 Modelling of Bladed-disk Assemblies

To achieve high performance and efficiency, advanced turbine blades
have been designed to have complex geometry: thin, low aspect ratio,
cambered, twisted, and swept. Some of these geometric parameters have
been shown to have significant influence on the dynamic characteristics of
blades (for example, Petricone and Sisto 1971; Sreenivasamurthy and
Ramamurti 1981). Therefore, to obtain satisfactory results in the dynamic
analysis of turbine blades, it is important to model complex blade geometry

as accurately as possible.

Because of the ability to model complex structural geometry and
properties along with the advancement in computer technology, the finite
element method has been recognized as a promising and powerful technique
for the analysis of turbine bladed-disk assemblies as well as other
configurations. Therefore, it will be employed in this research to model the
turbine bladed-disk assemblies.

2.2.1 Review of Previous Research

Considerable research on finite element modelling of turbine bladed-
disk assemblies has been conducted. A brief review on some of these

research is given below. The turbine bladed-disk assemblies considered in
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this research consist of two major components: blades and disk. Different
modelling strategies for these components in some of the previous research

are reviewed.

2.2.1.1 Modelling of Blades

Turbine blades have been modelled using beam, plate, shell, and solid
finite elements. In this section, modelling of blades using these finite
elements are briefly reviewed. For detailed description and formulation of
these elements, standard textbooks (for example, Zienkiewicz and Taylor

1989; Bathe 1982; Cook et al. 1989) should be consulted.
Beam Finite Elements

Developments of beam finite elements for pretwisted blades have
been reviewed by Sisto and Chang (1984). They also developed a pretwisted
beam element for use in vibration analysis. Recently, Abbas et al. (1987)
developed a thick, tapered, pretwisted beam element to study blade

vibration with root flexibility effect.

For blade modelling, the use of beam elements is simpler and
requires fewer degrees of freedom than elements of other types. However,
beam elements are not suitable for modelling blades with low aspect ratio

and a wide range of configurations.
Plate Finite Elements

Some applications of plate elements to rotating blade problems have
been reperted in the literature. For example, Dokainish and Rawtani (1971)
used a triangular plate element with both in-plane and bending stiffness to
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determine the natural frequencies and the mode shapes of a rotating
cantilever plate. This plate element is a superposition of a plane-stress
element with linear displacement order and a plate-bending element with
an eight term, cubic polynomial displacement order. In addition, MacBain
(1975) used a quadrilateral plate bending element for vibration analysis of

twisted cantilever plates.

The aforementioned plate elements are simple to formulate, easy to
use, and require only a simple geometric description. However, several
shortcomings are present in the application of the plate element to model
blades with shell-like complex geometry (Gallagher 1976):

a) The element is unable to model the curved shell surfaces. This
may introduce spurious "discontinuity” bending moments at the
element juncture lines, and thus many elements may be needed to
adequately model shell surfaces.

b) The coupling of membrane and bending within the elements is not
included. This is departure from the true behavior.

¢) When all elements adjacent to a node are coplanar, special

treatment is needed to avoid a singular global stiffness matrix.
Shell Finite Elements

Some previous studies of rotating structures using shell finite
elements have been reviewed briefly by Sreenivasamurthy and Ramamurti
(1981). A three-noded triangular shell element has also been used by them
and later by Omprakash and Ramamurti (1989, 1990a, 1990b) for blade

modelling. Recently, a ten-noded triangular shell element has been used to
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model cambered and twisted fan blades in vibration analysis (Khader and

Abu-Farsakh 1990).

Employing standard tests proposed by MacNeal and Harder (1985),
McGee (1987) has compared the overall performance of all shell elements in
NASTRAN. Among other shell elements in NASTRAN, the three node
triangular (TRIA3) and the four node quadrilateral (QUAD4) shell elements

have then been recommended for practical blade applications.
Solid Finite Elements

Bossak and Zienkiewicz (1973) have proposed isoparametric solid
elements with reduced integration for modelling turbine and compressor
blades. Several tests have also been performed to demonstrate the
versatility of these elements to model both "thick” and "thin" blades in the
analysis of rotating machinery. The only limitation pointed out on the
aspect ratio of these elements is that the ill-conditioning is liable to occur
with a 48-bit word for length/thickness ratio larger than 100. Recently,
Kubiak et al. (1987) have used the eight node solid element for the stress

analysis of the blades.

Employing standard tests proposed by MacNeal and Harder (1985),
McGee (1987) has compared the overall performance of all solid elements in
NASTRAN. Among other solid elements in NASTRAN, the twenty node
isoparametric brick element with reduced integration has been highly

recommended for analysis of thin and moderately thick blades.
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2.2.1.2 Modelling of Disks

The assumption of rigid disks is commonly used in the analysis of
turbine bladed-disk systems. In modern turbine engines designed for
aerospace vehicles, however, blades are usually attached to a relatively
flexible disk to meet stringent weight requirements. Considerable coupling
between blades and the disk may arise and the validity of rigid disk
assumption is questionable. Mota Soares et al. (1976) has pointed out the
considerable effect of disk flexibility on the dynamic characteristics of
turbine blades. Recent research conducted by Leissa et al. (1984) and Ernst
and Lawrence (1987) has also shown that the flexibility of the blade
attachment to the disk has significant effect on the dynamic characteristics
of the bladed disk.

Four types of finite elements, annular, sector, shell, and solid
elements, have been developed to take into account the flexibility of turbine
disks. In this section, modelling of turbine disks using these finite elements

is briefly reviewed.
Annular Finite Elements

An extensive literature survey of the development of annular finite
elements for disk modelling has been presented by Mota Soares and Petyt
(1978a). Annular elements are semi-analytical elements. In their
formulation, trigonometric functions expressed by Fourier series are used to
represent the displacements in the angular direction, while polynomial
functions are used to approximate displacements in the radial direction. By

employing the thick plate theory, one may consider the effects of shear
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deformation and rotary inertia. The element thickness may be constant,
linear, or parabolic in the radial direction, but only constant in the angular

direction.

The use of the annular element has the advantage of reducing
considerably the number of degrees of freedom in the analysis and leads to
computational efficiency. However, its application to bladed disk analysis is
limited due to the difficulties involved in coupling annular elements with

turbine blades modelled by other finite elements.
Sector Finite Elements

Previous research on development of sector finite elements for disk
modelling has been reviewed by Mota Soares and Petyt (1978a). Unlike
annular elements, the displacements of sector elements are approximated
by two-dimensional functions. Although a larger number of degrees of
freedom is used in disk modelled by sector elements than in a corresponding
disk modelled by annular elements, the sector element models offer more
flexibility in coupling to blades modelled by other finite elements in bladed

disk analysis.
Shell Finite Elements

Omprakash and Ramamurti (1989, 1990a, 1990b) have used a three
node triangular shell element to model disk for a variety of bladed disk
analyses. This shell element has six degrees of freedom per node. The disks
modelled by Omprakash and Ramamurti are thin disks in which the ratio of
disk thickness to disk radius ranges from 0.02 to 0.05. Therefore, further
research may be needed to justify the use of this element for thick disks. In
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addition, special treatments are usually required for coupling this element
with turbine blades modelled by not only other finite elements but also the

same element if the angle of attack of the blade is not zero.
Solid Finite Elements

Hinton and Benson (1976) have developed an isoparametric parabolic
solid element to study the vibrations of disks. Recently, Midturi et al.
(1987) have used the standard eight node isoparametric solid brick elements
(HEXS8 in NASTRAN) to model disks in analysis of flexible bladed disk
assemblies. Solid elements are easy to use and flexible enough to model
disks of various configurations. They can be used to model the whole
turbine bladed-disk assemblies and require no special treatments at the
blade-disk junction (and at the disk-shaft junction if the shaft is also
modelled).

2.2.1.3 Modelling of Bladed Disk

Various modelling approaches have been proposed to account for the
coupling between blades and disk. Mota Soares and Petyt (1978b) have
used the sector element and the eight node superparametric thick shell
element to model disk and blades, respectively. Midturi et al. (1987) have
modelled the blades using the plate element and the disk using the eight
node solid element. In the above two approaches, the compatibility between
blades and disk is achieved by means of multi-node constraints. Recently, A
three node triangular shell element has been employed by Omprakash and
Ramamurti (1989, 1990a, 1990b) for modelling both blades and disk. The
blade and disk attachment is established by a set of constraint equations

obtained by the Love-Kirchhoff hypothesis.
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2.2.2 Present Approach

As discussed in previous section, the beam and plate elements are not
capable of modelling a wide range of blade configurations. The annular
elements are difficult to couple with other finite elements for modelling
practical bladed disks. In addition, both annular and sector elements are
special-purpose elements. The limited applications of these elements in
modelling only disk-like structures do not serve well the purpose of
development of the general-purpose finite element system targeted in this

research.

Therefore, shell and solid elements are the two candidates for
modelling bladed disks in this research. For shell elements, the robust and
versatile nine-noded Lagrangian element already existing in the finite
element library of ABREAST has been the leading candidate. This element
was originally developed by White and Abel (1990) for nonlinear static
analysis of structural steel sub-assemblages. The accuracy and robustness
of this element has been demonstrated by White and Abel (1989). Recently,
this element has been further developed and used in nonlinear dynamic
analysis to study the effects of floor flexibility on seismic response of
buildings (Srivastav 1991). For solid elements, the twenty node
isoparametric brick element with reduced integration recommended by

McGee (1987) has been considered.

With the consideration of shell and solid elements as possible choices
for modelling purposes, three possible modelling approaches are considered
in this research. They are (1) the use of shell elements for blade modelling

and solid elements for disk modelling, (2) the use of shell elements for both



22

blade and disk modelling, and (3) the use of solid elements for both blade
and disk modelling.

The first approach requires the use of two different types of elements
and special treatment in the region of blade and disk attachment. The
second and third ones both provide a unified modelling approach while the
use of constraint equations to establish the compatibility between blades
and disk is required in the second one. In addition to the simplicity of the
third approach, the solid elements are less complicated than shell elements
and easy to use. They have been shown to be capable of reproducing plate
and shell behavior accurately and economically in analysis of several blade
structures (Bossak and Zienkiewicz 1973). A thorough evaluation of
available published results for the static and dynamic benchmark tests
(especially the free vibration tests) of shells and solids also led to the choice
of solid elements. Moreover, the wide range of applications of the solid
element in finite element analysis serves very well the purpose of
development of the general-purpose structural dynamics simulator targeted

in this research.

As a result of the above consideration, the twenty node isoparametric
brick element with reduced integration is selected to model all components
of turbine bladed-disks studied in the present work. The element is then
implemented in the finite element library of ABREAST.

2.2.3 Verification Studies

Three example problems are used to verify the implementation of the
twenty node isoparametric brick element in ABREAST for modelling

turbine bladed-disks. They are free vibration analyses of a cantilever beam,
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an annular plate, and twisted cantilever parallelepipeds. The numerical
results from ABREAST are compared with those reported by previous
researchers. All analyses performed in the present research use a) twenty-
node brick elements with reduced integration, b) a lumped mass matrix
formulated using the HRZ lumping scheme with full integration (Cook et al.
1989), and c) a subspace iteration method (Lin 1980) for frequency

computations.
Free Vibration of a Cantilever Beam

The natural frequencies of a cantilever beam were calculated by Petyt
(1990) using twenty-node solid finite elements. Figure 2.1 shows the
dimensions and properties of the beam. Thirty-six elements were used in a
2 x 3 x 6 mesh. (Note that 1 x m x n denotes the number of elements in the
X, y, and z directions, respectively.) A consistent mass matrix was employed
in the vibration analysis. The computed natural frequencies of the beam
were compared with results based on slender beam theory (Johnson and

Field 1973).

AY

,x 10.61 m

z 0.30 m
>~
< 3.66 m P
E = 2.068 x 10" N/m?
v=0.3
p=8058 Kg/m3

Figure 2.1 A cantilever beam used for vibration analysis
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In the present research, three vibration analyses with different
meshes are performed. As shown in Table 2.1, the results obtained by the
present approach are in good agreement with those reported by Johnson
and Field, and Petyt. The slight differences between the present results

and those of Petyt are mainly due to the different mass matrices used.

Table 2.1 Comparison of natural frequencies (Hz) of a cantilever beam
obtained by the present approach with those reported by Johnson and Field
(1973), and Petyt (1990)

mode mode Johnson | Petyt present analyses
no. description & Field 2x3x6 | 2x3x8 | 2x3x12
first bending
1 in 18.6 18.6 18.3 18.3 18.4
_XC direction
first bending
2 in 37.3 36.5 36.4 36.5 36.6
y direction
second bending
3 in 116.8 114.3 109.1 110.2 110.9
x direction

Free Vibration of an Annular Plate

Figure 2.2 shows an annular plate which is clamped at the inner edge
while free at the outer edge. Petyt (1990) computed its natural frequencies
using a two-dimensional finite element analysis with four Q8 elements. The
results were compared with those reported by Rao and Prasad (1975) using
plate theory. Irie et al. (1982) pointed out that Rao and Prasad's results
were "incorrect, because there are probably some mistakes in analytical and
computational process”. They then presented their results based on the

Mindlin plate theory.
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The present research uses two different meshes, as shown in Fig. 2.3,
in the vibration analysis. (Note that 1 x m x n denotes the number of
elements in the radial, circular, and thickness directions, respectively.) The
present results and those reported by Rao and Prasad, Petyt, and Irie et al.
are compared in Table 2.2. It can be seen that the results agree closely.

However, the present results are closer to the results of Irie et al. than to

those of Rao and Prasad.

inner radius = 0.3 m
outer radius = 1.0 m
thickness = 0.2 m
clamped at the inner edge
free at the outer edge

E =196x 10° N/i?
v=03
p = 7800 Kg/nf

Figure 2.2 A free-clamped annular plate used for vibration analysis

(a) 4x 12 x 1 mesh (b) 4 x 24 x 1 mesh

Figure 2.3 Finite element meshes used in vibration analysis of an annular

plate
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Table 2.2 Comparison of natural frequencies (Hz) of a free-clamped annular

plate obtained by the present approach with those reported by Rao and

Prasad (1975), Petyt (1990), and Irie et al. (1982)

nodal nodal Rao & Petyt Irie present analyses
circles | diameters | Prasad | (2D FEM)| et al. 4x12x1 4x24x1
0 0 312 305 296 302 299
0 1 276 290 280 286 283
0 2 323 341 333 332 329

Free Vibration of Twisted Cantilever Parallelepipeds

The natural frequencies of twisted cantilever parallelepipeds, such as

the one shown in Fig. 2.4, have been a great interest of many researchers.

Recently, after giving an extensive review of previous research, McGee

e
b \/ b
ab=1.0
o =30° .
E =196 x 10" N/m?
v =0.3
p = 7800 Kg/m®

Figure 2.4 Twisted cantilevered parallelepipeds used in vibration analysis
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(1992) used the 3-D Ritz method to determine the natural frequencies of a
number of twisted cantilever parallelepipeds. The Ritz results were then
compared with experimental results and those obtained by various 3-D

finite element analyses.

In the present study, the twisted cantilever parallelepipeds shown in
Fig. 2.4 are analyzed using 3-D twenty-node solid elements with 6 x 6 x 1
and 10 x 10 x 1 meshes. (Note that 1 x m x n denotes the number of
elements in the spanwise, chordwise, and thickness directions, respectively.)
In Table 2.3, the present results are compared with four sets of results,
which are listed as cases A-D. Results obtained in the present study are
listed as cases E and F. The thickness-independent frequency parameters,
wb(p/E)/2, are compared. (Note that  is the circular frequency of vibration.)
for thick and thin cantilevered parallelepipeds (b/h = 5 and b/h = 20,
respectively.) Case A lists experimental results reported by MacBain et al.
(1985). In case B, 3-D Ritz method were employed using 6 x 4 x 4
polynomials in the x, y, and z directions, respectively McGee (1992).
Standard eight- and sixteen-node isoparametric solid elements were
employed in cases C and D, respectively (Kielb et al. 1985; Leissa et al.
1984). In case C, a 10 x 10 x 1 mesh and a lumped mass matrix were used.
while a 14-point integration rule on a 24 x 12 x 1 mesh and a consistent

mass matrix were used in case D.

For most of the modes calculated, the present results agree with the
3-D Ritz results closer than the finite element results of cases C and D
although they all agree closely. The present results are also in good
agreement with the experimental results (case A) for the thin (b/h = 20)

twisted parallelepiped model. However, for thicker model, the present
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results as well as results of cases B-D do not agree closely with the
experimental results. As pointed out by McGee (1992), this is mainly due to

imperfect clamping of the specimen during testing.

Table 2.3 Comparison of thickness-independent frequency parameters,
wb(p/E)¥2 of cantilevered parallelepipeds obtained by the present approach
with those reported by previous researchers (a/b=1, ¢ = 30%

0.695

b/h = 20 0.888

0.968

0.847

m g | |w |» (& =@ |0 |a|=@ (>

£ |
o
o
q
S

0.212] 0.271 | 0.398 | 0.505 | 0.688 | 0.797 | 0.864

A = experimental results (MacBain et al. 1985)

B = 3-D Ritz method (McGee 1992)

C = 3-D finite elements - 8-node solid (Kielb et al. 1985; Leissa et al. 1984)
D = 3-D finite elements - 16-node solid (Kielb et al. 1985; Leissa et al. 1984)
E = present 20-node solid elements (6 x 6 x 1 mesh)

F = present 20-node solid elements (10 x 10 x 1 mesh)
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2.3 Formulation of Equations of Motion

The finite element formulation of equations of motion for dynamic
analysis of both nonrotating and rotating systems is presented and
discussed in this section. Since the dynamics of nonrotating objects is just a
special case of that of rotating objects, the formulation presented here
targets the dynamic analysis of rotating systems, in particular, rotating

bladed-disks experiencing tip rubs.

For the clarity of derivation and the convenience of discussion, the
equations of motion are first derived for an elastic analysis which accounts
for only nonlinearity associated with kinetic energy of the rotating system.
Then, by using the updated Lagrangian approach, the analysis is extended
to take into account large displacements (but small strains) of flexible
turbine blades, which is the geometric nonlinearity associated with

potential energy of the system.

2.3.1 Coordinate Systems

Figure 2.5 shows two Cartesian coordinate systems used in the
formulation, an inertial coordinate system (X-Y-Z) which is absolutely fixed
in space and a undeformed body-fixed coordinate system (x-y-z) which is
fixed to and rotating with the undeformed structure. The origin of x-y-z
system is denoted as O'. For the rotating bladed-disk system studied in this
work, it represents the center of the disk. Point i is the undeformed position
of a typical material point in a finite element of the model, while point i' is
the deformed position of the material point. Vectors Pj and R are position
vectors of points i and O, respectively, observed from the X-Y-Z system, and

vectors r; and W; are position and displacement vectors, respectively, of
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point i observed from the x-y-z system. Vectors ® and O are the rotational
velocity and acceleration, respectively, of the x-y-z system with respect to
the X-Y-Z system. It should be noted that all vectors used in the following

formulation are referred to the rotating x-y-z system.

2.3.2 Assumptions

The following assumptions are used in the derivation of equations of
motion for the rotating bladed-disk system considered in the present work:
(1) there is no translational motions of the disk center of the bladed-
disk system (i.e., rigid shaft and bearings are assumed and vector
R in Fig. 2.5 is a constant vector), and
(2) the structure may undergo large deformations but strains remain

small and the material remains elastic.

z e
4 7,\':
P;
FE. ()
wX &¢/r
y
R o
>Y
o x}

X-Y-Z: Inertial coordinates
X x-y-zz Undeformed body-fixed coordinates

Figure 2.5 Coordinate systems used in finite element formulation
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2.3.3 Rotational Nonlinearities

Nonlinearities due to rotational effects, such as centrifugal and
Coriolis effects, are considered in this section for an elastic dynamic
analysis. Two approaches are presented in this thesis to incorporate this
nonlinearity into equations of motions of the rotating system. They are
called by the writer consistent mass and lumped mass approaches. The
consistent mass approach treats the structure as a continuum with mass
points uniformly distributed in the structure, while the lumped mass treats

the structure as a collection of discrete concentrated mass points.

It should be noted that the consistent mass approach presented here
is general for all types of finite elements. The lumped mass approach
presented here, however, is only applicable directly to finite elements with
merely translational degrees of freedom, such as truss and solid elements.
The extension of the lumped mass approach for finite elements with both
translational and rotational degrees of freedom is briefly discussed in

Section 2.3.3.2.

2.3.3.1 Consistent Mass Approach

In the displacement-based finite element approximation, the

displacement field of an element is assumed as
{u} = [Nl{q} 2.1)

in which [N] is the shape function for displacements and {q} is the nodal
displacement vector of the element, while the element geometry field is

assumed as
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{r} = [N']{c} (2.2)

in which [N'] is the shape function for coordinates and {c} contains the nodal
coordinates of the element. For isoparametric finite elements, [N'] and [N]

are identical. The strain-displacement relationship is expressed as

{€} = [Bliq} (2.3)

in which [B] is the strain-displacement matrix. The stress-strain

relationship is expressed as
{0} =[C){E) (2.4)
in which [C] is the material stiffness matrix.

As shown in Fig. 2.5, the instantaneous position vector of a material

point in the element is
{P} =R} + {r} + {u) (2.5)

and the corresponding absolute velocity vector is

vl =) + {0} x ({r} + {u} ) = {u} + [Q] ({r} + {u}) (2.6)
in which
0 -0, 0y ']
[Q] =|- (l)z 0 -(Dx_l
-0, @y 0

Note that {R) = 0 due to the first assumption, and the components in {®} as

well as in [Q] are function of time.
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The kinetic energy of the element is
1 T
T=3 [p & (v devoD @7
Vo

in which p is the density of the material. From Egs. (2.6) and (2.7), the

expression of the kinetic energy becomes
1 AT 1 T2
T = 5 | p @) @) diveD) +3 {p () [Q°]r}d(vol)
Vo Vo

{p w Q% uidvol) + J:p T Qi d(vol)
Yo YO

-!\')IH

+ {p Q% wd(vol) + Ip (@ [Qlud(vol) (2.8)

VO

in which [Q2] = [Q]'[Q). After substituting Eqgs. (2.1) and (2.2) into Eq.
(2.8), one has

T= % _[P (@I IN(@) d(voD) +% J;p ) 1Q21rid(vol)

N)IH

{p (@ TN TN (g} d(vol) +

vo

J: o {4} INTT[Q)ir}d(vol)

vo

+ { o (r) Q2 NI (g)d(voD) +

YO

lp (@ NI [QIINT(g}d(voD) (2.9)

YO

The potential energy of the element is

1

l\’Jl

f(e} (O} d(vol) 2.10)

vol
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From Egs. (2.3), (2.4), and (2.10), the expression of the (geometrically linear)

potential energy becomes
U= [ @' E"CIBIa) deval

Applying the Lagrange equation

—_ e A ext

d /9T \ aT aU
(aq)

one obtains the equations of motion for the element
[m}{d) + [cc)@) + ( kel + [kql - kel Q) + {£e) = (£

in which

[m] = element mass matrix = { p [N]T[N] d(vol)

A4

[cc] = element Coriolis damping matrix = 2 '[ p [N]T[Q][N] d(vol)
VO

[ke] = element elastic stiffness matrix = { [B]T[C][B] d(vol)

vo

(2.11)

(2.12)

(2.13)

[ka] = element centripetal stiffness matrix = { p [N]T[A][NJ d(vol)

Vo

[k;] = element centrifugal stiffness matrix = '[ p [N]T[Qzl[N] d(vol)
Vo

{fe} = element rotational force vector

= {p [NT"TAIIN')(c) d(vol) -

YO

{p INITIQIIN'){c} d(vol)

Vo

{f ™%} = element external load vector
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and

0 -a, ay'l
[Al=[Q]=] &, 0 -0y
l_'ay ax 0 _]

If additional damping of the structural system is to be considered, it is

frequently modelled by an element equivalent viscous damping matrix, [cy],

which is added to the coefficient of the velocity term {q}.

After assembly, the final global equations of motion will be of the

form
[MJ(Q} + ([Cyv] + [C HQ + ([Kel + [Kal - K] Q) + (Fe} = {F™  (2.14)

It should be noted that the formulation presented above is similar to
the one reported by Omprakash and Ramamurti (1989) except that the
assumption of constant ® (rotational velocity vector) is not used in the
present formulation. The formulation is different from the one presented by
Davis (1989). In his approach, the system model is first discretized into
finite elements with either concentrated masses described by a lumped
mass matrix or distributed masses specified by a consistent mass matrix.
Using the generalized Newton's second law, Davis then derived the kinetic
equations of motion based on the already discretized finite element model
without the use of shape functions of the finite element for interpolating
fields within the element. However, the lumped mass approach presented
below is similar to his approach with a lumped mass matrix except that the
present formulation mainly considers finite elements with merely

translational degrees of freedom.
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2.3.3.2 Lumped Mass Approach

Consider the finite element shown in Fig. 2.5 with masses already
lumped at its nodes. With the first assumption applied, the nodal

instantaneous position vector of the element is

P, = (c+iqg (2.15)

and the corresponding absolute nodal velocity vector is
tv) =) +{o}x({c+{q))= {a} + ([Q]) ({c}+{q}) (2.16)

in which ([Q]) is a block diagonal matrix with [Q]'s on the diagonal.

The kinetic energy of the element is

T =3 tv) lmyJiv,) .17

in which [m] is the lumped element mass matrix. From Egs. (2.16) and

(2.17), the kinetic energy is expressed as
T = 2@ ) + 3 o7 (@) my (el
+ 2@ (@) my ()@ + @ m{el) e
+laT ([Q])T[m,_,] ((Q])a) + (@ tm () (2.18)

The potential energy of the element is

U= 3 [t B CUBlq dwvob (2.19)
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Applying the Lagrange equation (Eq. 2.12) and taking into account
equivalent viscous damping of the element, one has the equations of motion

for the element
[y 4@) + (Lev] + [edd Xah + ( [ked + [kal - (ki) Mg} + {fe} = £ (2.20)
in which
[cy] = element equivalent viscous damping matrix
[c] = element Coriolis damping matrix = [m I{[2]) - {(2]) m,]
= (m {[2]) + {(2])my)

[ke] = element elastic stiffness matrix = J; [B]T[C][B] d(vol)

Yo

[ka] = element centripetal stiffness matrix = [m; ] ([A])
[ky] = element centrifugal stiffness matrix =([Q]) [m; 1{[@])
{fe} = element rotational force vector
= tmy] ([A]) (@ - ([} Tm)([]) o
{f ™"} = element external load vector

and

((a]) = {[2])

After assembly, the final global equations of motion will be of the form

[M 1Q) + ([Cy] + [CI HQ) + ([Kel + [Kal - (K] )Q) + (Fel = {F™Y (2.21)



38

By assuming that the lumped masses have no rotational inertia (i.e.,
the mass associated with any rotational degrees of freedom is zero), the
above formulation can be easily extended for finite elements with both

translational and rotational degrees of freedom.

It can be seen that the lumped mass approach is computationally
more efficient than the consistent one. However, since the mass coupling
between element nodes is neglected in the formulation, this approach is not
expected to be as accurate as the consistent one. Later in this chapter,
numerical comparison between the lumped mass and consistent mass
approaches will be conducted to examine the questions of accuracy and

applicability of the lumped mass approach.

2.3.4 Geometric Stiffness Effects

As indicated by Lawrence and Kielb (1984), and Simo and Vu-Quoc
(1987), a geometric nonlinear analysis is usually required for accurately
predicting dynamic behavior of rotating blades. The present research
adopts the formulation presented by Bathe (1982) with slight modification
to account for geometric nonlinearity in the analysis using the updated

Lagrangian approach.

Figure 2.6 shows the motion of a typical body in the undeformed
body-fixed coordinate system (x-y-z). Configuration 0 (Co) represents the
original undeformed state; configuration 1 (Cy) represents the current

(known) deformed state; and configuration 2 (C2) represents the desired
(unknown) deformed state.
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Similar to the tensor notation used by Bathe (1982), both left
subscripts and superscripts on a symbol are used to denote the three
configurations shown in Fig. 2.6. A left superscript denotes in which

configuration the quantity occurs. The absence of such a superscript

indicates that the quantity is an increment between C; and Cgz. A left

subscript denotes in which configuration the quantity is measured. In the

notation adopted, a comma denotes differentiation with respect to the
02u.
coordinate following; thus, for example, fui i 31;]-
j

z,X,

Configuration 2
(*x,'%,, '%,)

Configuration 1

Configuration 0

o_ o 0
(°x"x,,°%,)

» v, x,

X,X, O

Figure 2.6 Motion of body in body-fixed undeformed coordinate system

The principle of virtual displacements gives the equilibrium of the

body expressed in the deformed configuration Cg being sought

2
Jz 2T, 5,€; 24V = 3R | (2.22)
v
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in which 2‘15iLi is the Cauchy stress tensor, Szeij is the variation of an

infinitesimal strain tensor, and gR is the external virtual work, with
2 _ 2.b 2 2cs 2

in which 2f }’ and 2f is are the components of the externally applied body and

surface force vectors, respectively, and 52ui is the variation of the

displacement component.

In the updated Lagrangian formulation, Eq. (2.22) can be
transformed to (Bathe 1982)

2 1 2
J s 8,8 v = 1R (2.24)
\4

in which %Sij is the 2nd Piola-Kirchhoff stress tensor and Sleij is the

variation of the Green-Lagrange strain tensor. The incremental

decomposition of stress tensor is expressed as

2 1
18;= T+ 1S; (2.25)

and the strain increments can be decomposed into

in which leij and 1nij are the linear and nonlinear components of the

Green-Lagrange incremental strain tensor, respectively. Using the

linearized constitutive relationship between stress and strain increments,
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155 = 1G4 1€k 2.27)

and substituting Eqgs. (2.25) and (2.26) into Eq. (2.24), one obtains the

incremental equilibrium equation

1 1 1
\4 A%

2 1
= ’r.- J Ty 8,8y tav (2.28)
\'

After applying finite element approximation, one has the matrix form of the

incremental equilibrium equation (Bathe 1982)
1 1 2 1
(MK + MK HAQ = 2R - 1) (2.29)

in which

1

1(K.] = elastic stiffness matrix = J %[BL]T 1[C] 1[BL] 1dv
\

1

i[Kg] = geometric stiffness matrix = J i[BNL]T T 1Bl 1V
\%

1

i{F} = internal force vector = J %[BL]T YTy 1av
A4

and i[BL] and i[Bm_,] are linear and nonlinear strain-displacement

transformation matrices, respectively.
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Incorporating Eq. (2.29) into Eq. (2.14) for dynamic analysis, one then

has the equations of motion for geometric nonlinear analysis:
1 P24 + (0] + HCeD Y2HQ) + (TKe) + HKg] + iTKal - (TKDAQY

= PO - AFY - HFe) - (K] - (KD Q) (2.30)

for implicit time integration, and

M1 5@ + (1G] + HCeD) HQ) = HF*™ - {F) - {{Fe) - (TKal - {K:D %Q)
(2.31)
for explicit time integration, in which [M] is the time-independent mass
matrix and the symbols t+At and t denotes the configurations at time t+At
and t, respectively. The right superscript in the implicit scheme indicates
the iteration number with respect to which the quantity is evaluated in the

iterative procedure.

In addition, for steady state stress analysis, the equilibrium

equations are expressed as

(1K + TKg) - TR, HAQY = *A4F) - {IAUFY ™ - Fe) + (K] Q)
(2.32)
For undamped vibration analysis and with the Coriolis matrix neglected,

the equations of motion have the form of
MHQ} + ( [Kel + [Kg] - [K1)Q) = (0) (2.33)

which is employed for vibration analysis after the determination of the

static stresses from Eq. (2.32).

It should be noted that Egs. (2.30), (2.31) and (2.32) assume the use of
initial undeformed coordinates to evaluate E{Fe}. If the updated coordinates
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are used (this is usually the case in the updated Lagrangian approach), the
term ([Ka] - TKHQ) in both Egs. (2.30) and (2.31), and the term (K Q)
in Eq. (2.32) are automatically taken into account in E’{Fe} through the

process of coordinate update. In this case, however, it should be also noted

that the shape function in :{Fe} is different from the shape function in both
t[Ka] and :[K,-] if the consistent mass approach is employed and the finite

element used is not isoparametric.

For nonrotating systems (i.e., {w} = {0} in Eq. 2.6), the formulation

reverts to the standard forms, i.e., the equations of motions are
M) HA4G) + S0 TAMQ) + (TR + K AQY

= t+At{Fext} - t:ﬁ:{F}i-l (2.34)

for implicit time integration, and

M1 B + HCY) Q) = SF - LF) (2.35)
for explicit time integration, while for undamped vibration analyses, the

equations of motion have the form of
[IMHQ) + ([K¢] + [Kg) )Q} = {0} (2.36)
2.4 Analysis of Framed Structures

The present work takes advantage of the capabilities already
provided in ABREAST for dynamic analysis of framed structures. These
capabilities include eigensolvers for undamped vibration analysis governed
by Eq. (2.36) and direct time integration solvers for transient analysis
governed by Egs. (2.34) and (2.35). They are briefly discussed in this

section. More detailed descriptions have been provided by Srivastav (1991)



44

and Aubert (1992). The enhancement of the time integration algorithms for
parallel transient analysis in this work is discussed in Section 3.2.1.

For free vibration analyses, Eq. (2.36) is usually transformed into an

eigenproblem of the form (Bathe 1982)

KD} = w2 [M){D} (2.37)

in which [K] and [M] are the stiffness and mass matrices of the system, and
o and {®} are the eigenvalue and eigenvector corresponding to the angular
vibration frequency and mode shape of a mode. In ABREAST, two
eigensolvers are provided for solving Eq. (2.37). The first solver uses a
rational QL method (Wilkinson and Reinsch 1971) to solve the full set of
eigenvalues and eigenvectors of the system. The second one uses a subspace
iteration algorithm (Lin 1980) to extract only a desired number of low
modes of vibration. In the present work, the subspace iteration solver is

used due to its feasibility and efficiency for large structural problems.

Both explicit and implicit integration methods are available in
ABREAST for transient dynamic analysis. The explicit time integration
uses the central difference method to solve the equations of motion given by
Eq. (2.35). The central difference method approximates velocity and

acceleration with second-order accuracy by
Q= (*NQ - Q1) 7 @at (2.38)
Q) = (*YMQ - 24Q) + TNQ) 7 (A (2.39)

in which At is the constant time step size. Substitution of Egs. (2.38) and
(2.39) into Eq. (2.35) yields
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(UA)IM] + (1/(2A1)) TTCD) t+44Q) = “F™) - H(F) +
(/A2M] HQ) - (VADIM] - (/24 e 24%Q)  (2.40)

in which the damping matrix [C,] is assumed to be the linear combination of
the mass and stiffness matrices (Rayleigh damping). With the use of
lumped masses and either no damping or mass proportional damping, Eq.
(2.40) is a set of uncoupled equations and its solution can proceed on a
degree-of-freedom level without assembly of the global stiffness matrix and
solution of simultaneous equation. In the case of nondiagonal damping (i.e., |
the stiffness-proportional damping is included), Eq. (2.38) is replaced by a

first-order accurate approximation for the velocity
YQ = (M - TMQ) )/ at (2.41)
Substitution of Egs. (2.41) and (2.39) into Eq. (2.35) yields

(UAE2)IM] 44Q) = HF™) - YF) + (/AtDIM] - (1/At) ICyD) HQ)
- (UADIM] - (VA f1eyd) 24Q) (2.42)

With the use of lumped masses, solution of Eq. (2.42) can also proceed on a
degree-of-freedom level. Since the explicit central difference method is only
conditionally stable, the stability conditions for Eq. (2.40) and (2.42) are
At € 2/®Wmax and At < (2/0)max)(\]1—+—§_2-- £), respectively, where ®Wmax is the
highest undamped natural frequency of the system and § is the fraction of

critical damping at the highest natural frequency, ®max (Cook et al. 1989).

The implicit integration in ABREAST uses the Newmark family of
schemes to solve the equations of motion given by Eq. (2.34). The Newmark

method relates displacements, velocities, and accelerations by (Bathe 1982)
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Bt = HQ) + (- 8 HE) + 5NN At (2.43)

At o) = YQ) + HQIAL + (12 - o) HQ) + o FAHQIAE2 (2.44)

The present work uses the constant average acceleration scheme, in which

5 = 1/2 and a = 1/4, because it is unconditionally stable and second-order
accurate. Substitution of Eqs. (2.43) and (2.44) into Eq. (2.34) and

rearrangement of terms result in the incremental equilibrium equation of

the form

K] (aQ) = AR (2.45)
in which

K] = (LAaAt2)IM] + (F0At) TC] + K. + K] (2.46)
and

t+At{R} - t+At{Fext} ) t:gg{F}i-l‘

IMIC (/(eAtD)CEH2HQP L HQ)) - (W(eat) Q) - (12 - oo ) -
VI (e AHQIL HQ)) - (3o + DYQ) - (3a + DALYG) (2.47)

A modified-Newton iterative solution scheme is used to obtain the

equilibrium solution of Eq. (2.47).

The implementation of the above analysis capabilities in ABREAST
has been verified by Srivastav (1991) and Aubert (1992). Therefore, no

further verification is conducted in this work.

2.5 Analysis of Rotating Bladed-disk Assemblies

In recent years the trend for turbine bladed-disk assemblies to have

higher efficiency, performance, and reliability has significantly increased
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complexities and difficulties in the structural analysis and design of
rotating turbine bladed-disk assemblies. To achieve better understanding
and prediction of behavior of turbine bladed-disk assemblies, considerable
research has been conducted to study the steady-state responses and modal
vibrations of rotating turbine bladed-disk systems. However, little research
has been conducted to investigate the transient responses of rotating
bladed-disk assemblies during a unsteady motion induced by events such as
the start-up, blade tip rubbing, speed or load changes, and passing through
resonant frequencies. The reason for this is usually the lack of both capable
analysis tools and adequate computing power to carry out this type of
analysis due to the complexity and nonlinearity involved in the analysis and

the large size of the problem.

This section discusses the analysis approaches used in this work and
the enhancement of analysis tools in ABREAST for both modal vibration
and transient dynamic analyses of rotating bladed-disks modelled by solid
finite elements. Verification studies of the current implementation are also
provided. The use of parallel processing in a network of powerful
workstations to provide the considerable computing power needed in the
analysis is investigated in Chapters 3 and 4. In addition, the use of
interactive computer graphics to facilitate the modelling and visualization

of the dynamic simulation is presented in Chapter 5.

Due to the attempt in modern design of turbine bladed-disk
assemblies to minimize the clearance between blades and housing for
efficiency and performance optimization, the probability of blade tip rubbing
has been greatly increased. The present work emphasizes the transient

dynamic analysis of rotating bladed-disk assemblies experiencing tip rubs.
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However, the modal vibration analysis of rotating bladed-disk systems
studied in this work plays an important role in verifying the present
approach and implementation. The present study also contributes
additional sets of data of 3-D finite element vibration analyses of rotating

turbine blades and annular disks.

In the following subsections, a brief review of previous research is
given first. The approach used in the present work is then discussed.
Results obtained using the present approach are compared with those
obtained by previous researchers to assess the accuracy of the present
approach. Furthermore, results obtained using the lumped mass approach
are compared with those obtained using the consistent mass approach in the

same verification studies.

2.5.1 Review of Previous Research

Previous research on both modal vibration and transient dynamic

characteristics of rotating turbine bladed-disk assemblies is brief reviewed

as follows.
Modal Vibration Analysis

Free vibration characteristics of rotating turbine blades have been
studied by many researchers. Earlier research on the anaiysis of rotating
blades has been reviewed by Ramamurti and Balasubramanian (1984) and
Rao (1987). In most previous research, beam theory was used in the
vibration analysis of blades often idealized as cantilever beams. Although
many effects such as pre-twist, hub radius, setting angle, hub flexibility,

and tip mass were investigated in the analysis, the effects of shear
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deformation and rotary inertia were often neglected. Recently, Yokoyama
(1988) used the finite element method to determine the bending frequencies
of a rotating uniform Timoshenko beam. Khulief and Bazoune (1992)
calculated the first three frequencies of rotating tapered Timoshenko beams
with different boundary conditions. However, it has been recognized that
the use of beam theory is not sufficient for modelling blades with low aspect
ratio and complex configurations. Some previous applications of plate and
shell theories to study frequencies of rotating blades were briefly reviewed
by Sreenivasamurthy and Ramamurti (1981). More recent examples are

studies conducted by Omprakash and Ramamurti (1989, 1990a, 1990b).

Some research has been reported on the vibration analysis of rotating
disks. A review has been given by Omprakash and Ramamurti (1988). In
the previous work, Kirchhoff-Love thin-plate theory is often used. The
theory neglects the shear deformation and rotary inertia effects and,
therefore, is limited to modelling thin disks. A recent study conducted by
Sinha (1987) has used the Mindlin's plate theory to account for both effects

in the analysis.

It has been recognized that the dynamic behavior of a bladed-disk
system can not be predicted accurately without considering the coupling
effect between the blades and the disk. Although a few studies have been
conducted on the vibration analysis of nonrotating bladed-disks, little
research has been reported on the vibration analysis of rotating bladed-
disks. Recently, after reviewing previous research, Omprakash and
Ramamurti (1990a) studied the coupled vibration characteristics of rotating
bladed-disk systems.



50
Transient Dynamic Analysis

Although transient dynamic analysis is important in predicting the
responses of rotating bladed-disk assemblies during events such as start-up,
blade tip rubbing, speed changes, and traversing through system critical
speeds, it has received little attention. Using an extended beam theory,
Irretier (1985) performed a spectral analysis to simulate the run-up of a
turbine blade subjected to partial admission. Davis (1989) implemented
analysis tools in an existing finite element program to address nonlinear
transient analysis of rotating bladed-disk-shaft systems subjected to blade
rubbing. Due to the large amount of computation involved, only bladed-disk

models with coarse meshes were studied in the sample analyses.

Recently, the transient characteristics of a bladed-disk during run-up
were studied by Omprakash and Ramamurti (1990b) in a spectral analysis
using the finite element method. A three-noded triangular shell element
was used to model the bladed-disk. The cyclic symmetry and modal
superposition approaches were used to reduce computational burden. The
spectral analysis employed the lowest three frequencies that are
interpolated quadratically at each time step from the frequencies computed

by actual eigensolution at selected rotational speeds.

2.5.2 Present Approach

As discussed in Section 2.2, the present work uses twenty-node brick
finite elements with reduced integration to model bladed-disk systems
(although both eight- and twenty-node brick finite elements with either full
or reduced integration have been implemented in ABREAST). The
quadratic displacement model provided by the element goes beyond those
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provided by Mindlin/Timoshenko theory and implicitly takes into account
effects of shear deformation and rotary inertia. However, it should be noted
that numerical ill-conditioning may occur if the aspect ratio of the element
is too large, e.g., exceeding about 50. Such ill-conditioning has been
encountered by the writer in cases where coarse meshes are used to model

very thin blades or disks.

The finite element formulation presented in Section 2.3 has been
implemented in all analysis modules of ABREAST for the brick finite
elements. For rotational dynamics, the current implementation uses the
rotating x-y-z coordinate system shown in Fig. 2.5 as the global coordinate
system. The current implementation also assumes that the time-varying
rotational-velocity vector {®} is the multiplication of a time-varying scalar
and a time-independent reference vector, i.e., the rotational acceleration
vector is colinear with the rotational velocity vector. The user is allowed to
specify in the analysis input file a) the type of formulation for accounting for
rotational nonlinearity (i.e., consistent- or lumped-mass), b) the reference
vector of rotational velocity in terms of three components in the global
coordinates (with the assumption that the vector passes through the origin
of the global coordinate system), and ¢) the name of the history file in which
the time history of the scalar of rotational velocity is defined.

Modal Vibration Analysis

A two-stage analysis is employed in the present work to carry out
modal vibration analyses of rotating bladed-disk systems. The first stage
involves a nonlinear static analysis to obtain a steady-state solution serving

as the initial condition for the second-stage eigenvalue analysis.
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For the steady-state solution, a static analysis capability, which did
not previously exist in ABREAST, has been implemented. The solution
schemes implemented include simple incremental, Newton-Raphson
iterative incremental, and Modified-Newton iterative incremental schemes.
Both Gauss elimination and preconditioned conjugate gradient equation
solvers are available. Since the steady-state solution of a rotating bladed-
disk system involves both rotational and geometric nonlinearities (as shown
in Eq. 2.32), the present work uses either the Newton-Raphson or the
Modified-Newton iterative incremental scheme to ensure the satisfaction of
equilibrium. In addition, the load vector (i.e., the right hand side of Eq.
2.32) is nonlinear and displacement-dependent. The current approach
updates the load vector at the end of each load increment after equilibrium
iteration is completed. At the end of the final increment, a recursive
procedure that updates the load vector and then performs equilibrium
iterations is used until the update of the load vector no longer affects the
equilibrium. Upon completion of the analysis, an initial condition file,
which contains the results for the steady-state nonlinear analysis, is created

for the second-stage vibration analysis.

The second-stage vibration analysis requires the solution of Eq.
(2.33). The system stiffness is computed based on the final equilibrium
state of the system obtained from the first-stage analysis. The present
research uses the subspace iteration algorithm in ABREAST to solve for a

desired number of low modes of vibration.
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Transient Dynamic Analysis

Both the explicit central difference and implicit Newmark integration
methods in ABREAST have been extended to account for rotational
dynamics for the brick elements. In the present central difference analysis
for rotational dynamics, since the Coriolis damping matrix, [(], in Eq.
(2.31) is nondiagonal but skew-symmetric, the velocity and acceleration are
approximated by Eq. (2.41) and Eq. (2.39), respectively. Substitution of Egs.
(2.41) and (2.39) into Eq. (2.31) results in

(UARIM] H24HQ) = YF™) - YF) - HFe) - (HKal - K:D HQ)
+ ((/AR)M] - (VABICY] + {IC) Q)
- ((VAE2M] - (VAL) (ICy] + JIC1 ) "2MQ) (2.48)

The diagonal mass matrix is used to avoid solution of simultaneous
equations. In the present research, the explicit central difference method is
used for dynamic analysis of rotating bladed-disk assemblies experiencing
tip rubs, which is a short-duration dynamic problem. In this case, similar to
the modal vibration analysis discussed earlier, a two-stage analysis is
employed to save computational time. In the first stage, a nonlinear static
analysis is performed to obtain a steady-state solution of the system at a
given rotational speed. This solution then serves as the initial condition for
the second-stage transient analysis which computes system responses

during tip rubbing.

In the implicit Newmark analysis for rotational dynamics, the use of
the constant average acceleration scheme results in the incremental

equilibrium equation of the same form as Eq. (2.45)
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YR (AQ) = TAUR)
in which
HK] = ((oAt2)M] + (§0at) TC + K (2.49)

ALY = BN Eerty _ BAt Rl Yo (MK - KD HQ)
- IMIC (UAeAt2)EAHQIL YQ)) - ((oAt) Q) - (U2 - aYolid))
- 101 Bhaat) QL HQD - (3o + DYQ - (3o + 1ALYHQ)) (2.50)

¥Cl = FCy] + HCd (2.51)
K] = {[Kel + {Kg] + {[Kal - {Ks] (2.52)

A
Since :[Cc] and {[Ka] are skew-symmetric, the effective stiffness matrix YK
is no longer symmetric, resulting in a significant increase of storage

A
requirement for t"[K]. To avoid this problem, the current implementation

replaces Eq. (2.49) by

'K = (UaAt2)M] + (8(aab) 1Cy] + TKel + Kl - 1K/ 2.53)

Since the current approach uses a modified-Newton iterative solution
scheme, the use of Eq. (2.53) does not change the final equilibrium solution
although the convergence rate may be affected. The implicit Newmark
method is suited to long-duration dynamic problems such as dynamic

analyses of the run-up of rotating bladed-disk systems.

2.5.8 Verification and Comparative Studies

As discussed earlier, very little research on transient dynamic

analysis of rotating bladed-disk assemblies has been conducted using direct
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time integration solution methods. None of the numerical results of which
the writer is aware provides sufficient information whiéh can be used in the
present implementation to reproduce the results adequately. Therefore, the
present research relies mainly on using some modal vibration results of
rotating beams and plates published in the literature to verify the
implementation in ABREAST for analysis of rotating turbine bladed-disk
assemblies. Both steady-state and vibration analysis capabilities
implemented are directly verified. The transient dynamic analysis
capabilities implemented are verified indirectly and partially because many
portions of them share the same routines with the steady-state or vibration
analysis modules (for example, routines for mass matrix formation and
assembly, stiffness matrix formation and assembly, and stress recovery). In
addition to verification studies, numerical comparisons are conducted
between the consistent mass approach and the lumped mass approach for

accounting for rotational nonlinearities.

Five example problems are used here for verification and comparative
studies. They are (a) the in-plane vibration of a rotating cantilever beam,
(b) the out-of-plane vibration of a rotating cantilever beam, (c) the vibration
of a rotating tapered cantilever beam, (d) the vibration of a rotating annular
plate, and (e) the transient response of a rotating cantilever beam subjected
to an impact load (for comparative study only). The numerical results from
ABREAST are compared with those published in the literature. All
analyses performed in the present research use (i) twenty-node brick
elements with reduced integration, (ii) a lumped mass matrix formulated
using the HRZ lumping scheme with full integration (Cook et al. 1989), and
(iii) a Newton-Raphson iterative method for steady-state solutions, followed
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by either a subspace iteration method (Lin 1980) for frequency computations
or a central difference method for time integration of transient responses.
The present results obtained using the consistent mass approach for taking
into account rotational nonlinearities are denoted as Present-CM, while

those obtained using the lumped mass approach are denoted as Present-LM.
In-plane Vibration of a Rotating Cantilever Beam

The in-plane vibrations of the rotating cantilever beam shown in Fig.
2.7 are studied in the present research over a wide range of rotational
speeds. An 1 x 2 x 8 mesh is used in the study. (Note that 1 x m x n denotes
the number of elements in the x, y, and z directions, respectively.) In Table

2.4, the present results are compared with those obtained by Putter and

Q¥3mm |
2 28/{ 2
l4— L =328 mm —pP° "

E=217x10 'N/m? =7850 kgm® v =03

Q

Figure 2.7 A rotating cantilever beam for in-plane vibration analysis

Manor (1978) and Yokoyama (1988). Putter and Manor used five beam
elements with a fifth-order displacement function and considered effects of
shearing force and rotary inertia, while Yokoyama used eight Euler-
Bernoulli beams with a cubic displacement function. The first and second

normalized frequencies, a(pAL4/ED)V2, of vibrations in the x-z plane are

compared for different values of normalized rotational speeds,
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Q(pAL4/EI)V2, (Note that w is the circular frequency of vibration; p is the

mass density; A is the area of cross-section; L is the length; E is the Young's

modulus of elasticity; I is the moment of inertia; and Q is the rotational

speed.)

Table 2.4 Comparison of in-plane normalized frequencies, o(pALY/EDY2 of

a rotating cantilever beam obtained by the present study with those

reported by Putter and Manor (1978) and Yokoyama (1988)

2.0
[809]

Putter and Manorf| 3.61

| Present-LM
Present-CM 3.68 22.59 4.45 23.31
22.53 4.40 23.28

Present-LM .

| Present-CM 4.16 24.94 7.46 28.78
(2,0221 [Putter andManor|| 4.07 | 2495 | 741 [ 28.92
| Yokoyama 71 407 | 2495 | 741 | 2893
Present-LM 522 | 3203 | 13.34 | 42.89
10.0 Present-CM 522 | 3192 | 1332 | 4267
(4,044] |Putter and Manor| 505 | 3212 | 13.26 | 43.23
Yokoyama
Present-LM 717 | 5101 | 25.43 [ 72.08
20.0 Present-CM 717 | 5066 | 25.39 | 72.68
[8,088] Putter and Manor|| 6.78 51.35 25.29 76.59
| jama | 6.7 51.37 | 25.32 | 76.66
Present-LM | 12.32 | 115.25 | 62.47 | 179.65
| Present-CM | 12.44 | 113.83 | 6250 | 176.39
[20,220] | Putter and Manor| 1048 | 11620 | 61.64 | 181.94
|  Yokoyama | 1090 | 11642 | 61.88 | 182.39
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Both Present-CM and Present-LM results agree well with those of
Putter and Manor and of Yokoyama except the first frequencies when R/L =
0 and Q(pALYEDV2 = 20, 50. It is believed that the disagreements are
mainly due to the different approaches used for taking into account
centrifugal forces between the present work and those of Putter and
Yokoyama. Both Putter and Yokoyama compute the centrifugal forces
based on the undeformed beam configuration while the present research
accounts for the deformed beam configuration. As a result, the differences
become more significant as the rotational speed increases (i.e., deformation
of the beam increases). It can be seen that all of the present first-mode
results are higher than those of Putter and Manor, and Yokoyama. Another
observation is that in all but two cases, the results of Present-LM are either

equal to or slightly higher than those of Present-CM.
Out-of-plane Vibration of Rotating Cantilever Beams

The second example studied is the out-of-plane vibrations of the

rotating cantilever beam shown in Fig. 2.8 over a range of rotational speeds.

Y

3 mm

2'{ z
- 328 mm —pppr 20 0

E=217x10'Nm? p =7850 kgm® v =03

Figure 2.8 A rotating cantilever beam for out-of-plane vibration analysis



59

This is the same beam used in the previous example (Fig. 2.7) but with a
different rotational axis. An 1 x 2 x 8 mesh is used in the study. (Note that
1 x m x n denotes the number of elements in the x, y, and z directions,
respectively.) In Table 2.5, the present results are compared with those
obtained by Yokoyama (1988) using eight Euler-Bernoulli beam elements
with a cubic displacement function. The first and second normalized
frequencies, w(pAL4/EI)V2, of vibrations in the x-z plane are compared for
different values of normalized rotational speeds, Q(PAL4/ED)V2. (Note that

notations used here are the same as those in the previous example.)

Table 2.5 Comparison of out-of-plane normalized frequencies, o(pALYET)V2
of a rotating cantilever beam obtained by the present' study with those

reported by Yokoyama (1988)

[Qin rpm] 2
Present-LM
2.0 Present-CM 418 | 2267 | 487 | 2340
[809] Yokoyama 414 | 2262 | 483 | 23.37
Present-LM 5.64 24.31 7.52 26.93
4.0 Present-CM | 563 | 2428 | 751 [ 26.87
[1,618] Yokoyama 559 | 2428 | 748 | 26.96
Present-LM 7.42 26.81 10.50 31.91
6.0 Present-CM | 740 | 2674 | 1047 | 31.79
[2,427) Yokoyama 736 | 2681 | 1044 | 32.03
Present-LM 9.33 29.96 13.57 37.73

80 | Present-CM | 930 | 2984 | 1354 | 37.55
[3,236) | Yokoyama | 9.26 | 30.00 | 1351 | 37.96 |

Present-LM | 11.28 | 3356 | 16.67 | 44.04
10.0 Present-CM | 11.25 | 33.39 | 1664 | 43.77
(4,044] | Yokoyama | 11.20 | 33.64 | 1661 | 44.38
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Both Present-CM and Present-LM results agree closely with those of
Yokoyama. It is observed again that the results of Present-LM are slightly
higher than those of Present-CM in all cases.

Vibration of a Rotating Tapered Cantilever Beam

The frequencies of rotating tapered beams with different taper ratios,
boundary conditions, and rotational speeds were studied by Khulief and
Bazoune (1992) using a tapered Timoshenko beam element. In the present
research, the bending frequencies of the particular rotating tapered beam
shown in Fig. 2.9 are computed. An 8 x 2 x 2 mesh is used in the analysis.
(Note that 1 x m x n denotes the number of elements in the x, y, and z
directions, respectively.) In Table 2.6, the present results are then
compared with those obtained by Khulief and Bazoune using sixteen
tapered Timoshenko beam elements. The first and second normalized
frequencies, 0(pA,L4/El,)V2, of vibrations in the x-y plane are compared for

different values of normalized rotational speeds, Q(pA,L4/Ely)V2. (Note

Az E =20 x 10 N/'m?
Q
\-/‘ p = 8000 kg/m®
\ vV = 0.3
MG IS
0.6 m i >x
i 0.3m

N
mzm—bf

Figure 2.9 A rotating tapered beam for vibration analysis
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that o is the circular frequency of vibration; p is the mass density; A, is the

area of cross-section at x = 0; L is the length; E is the Young's modulus of

elasticity; I, is the moment of inertia at x = 0; and Q s the rotational speed.)

It can be seen that both Present-CM and Present-LM results are in
good agreement with those of Khulief and Bazoune. The results of Present-
LM are either equal to or slightly lower than those of Present-CM for the

first mode while the trend is reversed for the second mode.

Table 2.6 Comparison of normalized frequencies, m(pAoL4/EIo)1’2 of a
rotating tapered beam obtained by the present study with those reported by
Khulief and Bazoune (1992)

1 3 5
| 12,9241 | (87721 | [14,619]

Present-CM ‘

Present-LM 4.40 4.68 5.23

4.43 483 | 555

Present-CM 15.52 16.46 18.35
Present-LM 15.41 15.52 16.48 18.37

| Khulief & Bazoune || 15.98 16.04 16.48 17.34

Vibration of a Rotating Annular Plate

Figure 2.10 shows a rotating annular plate which is clamped at the
inner edge while free at the outer edge. The frequencies of the rotating
plate are computed in the present research using 3-D twenty-node brick
elements with a 4 x 12 x 1 mesh as shown in Fig. 2.3(a). In Table 2.7, the
present results are compared with those obtained by Sinha (1987) who used
Mindlin's plate theory and a modified Rayleigh-Ritz method with a
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numerical trial function. The nondimensional frequencies, w(phr,4/D)V2,
are compared for different values of nondimensional angular velocities of
rotation, Q(phr4/8D)V2. (Note that o is the circular frequency of vibration;
is the mass density; h is the plate thickness; r, is the inner radius; Q is the
angular velocity of rotation; and D = (Eh3)/[12(1-v2)] where E and v are

Young's modulus of elasticity and Poisson's ratio, respectively.)

Q inner radius = 0.25 m

outer radius = 1.0 m
thickness = 0.2 m
clamped at the inner edge
free at the outer edge

E = 196 x 10 ? N/m?
v=0.3
p = 7800 Kg/m®

Figure 2.10 A rotating annular plate for vibration analysis

Again, both Present-CM and Present-LM results agree well with
those of Sinha. The results of Present-LM are either equal to or slightly
higher than those of Present-CM for all three modes.

Transient Response of a Rotating Cantilever Beam Subjected to an
Impact Load

The transient responses of the rotating cantilever beam shown in Fig.
2.7 (in this example, R = 0 and Q = 4,000 rpm) subjected to an impact load
are studied for comparison of the consistent mass and lumped mass
approaches for a transient dynamic problem. The impact load is a uniform
traction in the -x direction applied on the face at the free end of the beam

and has the history shown in Fig. 2.11. The mesh used in the study is
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shown in Fig. 2.12. The transient responses are computed for a duration of

0.0039 sec. and a time step of 0.0000001 sec. is used. The results are output
every 0.000005 sec.

Table 2.7 Comparison of nondimensional frequencies, w(phr,4/D)V2 of a
rotating annular plate obtained by the present study with those reported by
Sinha (1987)

2 4
[16,387] | [32,773]

nodal

circles

Q(phry4/D)V2
[Qin rpm]
Present-CM
Present-LM

Present-CM
Present-LM

Present-LM
Sinha

6.30 10.25 17.13

50T

Traction (KN/m )

; 1§ 4’
0.0 10 2.0 Time(x1.0E-4sec.)

Figure 2.11 History of the impact load applied to the rotating cantilever
beam of Fig. 2.7
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Figure 2.12 Finite element mesh used in the transient analysis of the

rotating cantilever beam of Fig. 2.7

The transient displacements at two different locations of the rotating
beam are monitored in the present study (see positions A and B in Fig.
2.12). In Figs. 2.13 - 2.18, the Present-LM results are plotted against the
Present-CM results. It can be seen that the Present-LM results agree
closely with the Present-CM results in Figs. 2.13 and 2.16. In Figs. 2.14,
2.15, and 2.18, the differences between the Present-LM results and the
Present-CM results mainly come from different displacements obtained at
the end of the steady-state analysis between the Present-LM and the
Present-CM approaches, despite the fact that the same tolerance (11{10'8 in
this example) is used for Newton-Raphson equilibrium iterations in both
cases. The transient characteristics of the Present-LM results are in good

agreement with those of the Present-CM results. In Fig. 2.17, it should be
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noted that the displacements are so small that the differences between the
Present-LM results and the Present-CM results may be neglected.

2.5.4 Closure

Although the lumped mass approach for taking into account
rotational nonlinearities is not expected to be as accurate as the consistent
mass approach due to its neglect of mass coupling, the modal vibration
results obtained using the lumped mass approach in all of the examples
studied in Section 2.5.3 are in close agreement with those obtained using
the consistent mass approach. In most cases, the frequency results from the
lumped mass approach are slightly higher than those from the consistent
mass approach. In addition, the transient displacements predicted using
the lumped mass approach in the example st