
Computational Fluid Dynamics
for Propulsion Technology:
Final Report

Geometric Grid Visualization in

CFD-Based Propulsion Technology Research

Contract Number: NAS8-36955/DO 85

Report Number: CCFD-92-01

March 17, 1992

Prepared by:

John Ziebarth and Doug Meyer

Department of Computer Science
University of Alabama - Huntsville
Huntsville, AL 35899

Submitted to:

CFD Branch (ED32)
NASA Marshall Space Flight Center
Huntsville, AL 35812

(_A-_A-C_-JC#/I32"7) CeMPUTAT[n_AL FLuIo
OY_AM[CS FO_ P_PULSlO_ _CH_ULOGY:
GEOMETRIC 6RIO VI_UALIZA'r[QN IN CFO-BASEO

PPUPULSION TECHNOLOGY RESEARCH Final Report

No. l], ZO qec. [qgO- _. Apr. 1992 (Alabama GIll4

N92-2 3566

Primary Project Overview

In the early stages of the contract effort, several meetings were held with
members of the computational fluid dynamics branch at NASA's Marshall Space

Flight Center. It was the intended purpose of these meetings to discuss what
research activities in the area of scientific visualization would be most beneficial in

light of both current and long-term activities. The three primary contacts: Kevin
Tucker of the Combustion Devices Technology Team, Robert Garcia of the Pump

Technology Team, and lisa Griffin of the Turbine Stage Technology Team, all
expressed the opinion that this was a fairly new undertaking within the organization.
As such, a cohesive approach for the integration of this type of technology into

existing branch systems and procedures had not been formulated. It was mutually
agreed that several immediate visualization needs existed from which it would
perhaps be possible to extrapolate longer term development goals. To that end, three

projects were identified for immediate investigation.

The first project, initially conceived by Robert Garcia, dealt with the development
of a software system for performing interactive geometry visualization of the shuttle's
main engine fuel pump impeller. Currently under great scrutiny within the branch, the
impeller geometry was already defined numerically through its associated
computational grids. No software existed, however, which allowed the structure of
these grids to be viewed in a photo-realistic fashion. In addition to viewing the
geometry of the impeller itself, Garcia noted that eventually it would be necessary to
visually interpret data generated from simulations applied against these grids. To that
end, he thought consideration should be given to including within the software the
capability of overlaying numerical values with the visual depiction of the grid

geometry.

The second project, initiated by Kevin Tucker, dealt with the development of a
comparable visualization facility for use on the shuttle's film/convective dump cooled
nozzle. Here too, the geometry of the nozzle was defined inasmuch as the

computational grids had been constructed and were being utilized by several
contracting agencies. The capability of visually depicting the structure of the nozzle
components in a realistic fashion, however, did not exist. Tucker also expressed that
eventually his group would have need of visually interpreting simulation data and that
the overlaying of simulation and geometry data in a common graphical format would
be ideal for their purposes. A number of independent contractors were in the process

of performing simulations utilizing a number of distinct simulation codes. As such, it
was considered a necessity to have available just such a standardized display
mechanism so that comparisons between the results could be made and trends more

easily identified between the distinct data sets.

Lastly, a third project was outlined by Lisa Griffin. In this instance, the
development of a software system with capabilities comparable to those discussed
by Garcia and Tucker was requested. The system, however, would necessarily
require tailoring to permit the visualization of several distinct types of turbines
currently under study within her group.

Design Considerations

Although distinct shuttle main engine components were being considered in each
of the three projects mentioned, the similarity of the visualization requirements

among the three was significant. It was therefore decided that an attempt would be
made to develop a common environment which would be robust enough to address
the collective geometric visualization needs of the three projects. Although it was
considered an attainable goal from the start, several design issues required further

investigation prior to development.

Common Data Format

One of the initial problems to be overcome in the development of the proposed
visualization environment was one of data management. Given the distinct methods

and procedures of the various groups involved, no single, unified format existed for
the storage of grid and simulation information. In the long term, this would clearly
seem to be an inhibiting factor to the free exchange for data between NASA and its
contracting agencies. Attempting to develop a common format for the encapsulation
of such data, albeit necessary, proved to be a formidable task.

In the visualization of CFD simulations, two related, but distinct sets of information
must exist in order for rendering to take place. The most obvious is perhaps the
numeric results from the simulations themselves. These values, whether they be

scalar or vector, represent such metrics as temperature, pressure, or velocity ancl as

such implicitly carry both meaning and dimension. In CFD simulations, however,
where a bounded region of an n-dimensional space is being investigated, the
simulation results by themselves are not sufficient for visualization. What is required

is the specification of a spatial reference over which the data is associated; an explicit
or implicit enumeration of the location of each data point in the appropriately
dimensioned space. Only with this is the specification of the information complete,

with the triplet of value, unit, and location specified for each data point.

In most current implementations, the spatial reference is explicitly imbedded
within the data, with coordinates usually encoded as separate fields within the same
file or database element. Although this is a simple and straightforward strategy, it

ignores the fact that the two are actually distinct pieces of information. As a result,
several benefits that can be derived from their separate treatment are hidden.

The first benefit of segregating the data from the specification of a spatial
reference is in the flexibility of mappings it encourages within the visualization

process. In a system supporting this distinction, data can be visualized in whatever
coordinate frame or grid geometry best supports the interrogation effort at hand, even
though it may be entirely different from that under which it was originally generated.
For example, one class of CFD-generated dataset often used in the visualization
process represents simulated surface characteristics of various blade assemblies,
with the assembly grids being represented as two-dimensional mesh objects defined
in three dimensional space. Although the visualization of these values using the

actual grid geometry produces a visually realistic image, such as that shown in Figure
1, the physical characteristics of the object can actually hide details from the

2

Figure 1. The hiding of information areas due to geometric constraints.

researcher. Such is the case in Figure 1, where the curve of the blades obscure

portions of the data. Under situations such as this, it would be beneficial to be able to
remap the data onto a flat cartesian grid of equal dimension and size. In a system
capable of differentiating between spatial reference and data, such remapping would
be a simple procedure.

In order to coordinate the two sets of information, a visualization system such as
that described above would need to transparently handle the selective utilization of
different coordinate frames as well as the remapping of data between them. It would

allow a logical binding to be constructed at the time the visualization takes place
between the data and the desired spatial reference. The sole basis of this binding
would be a correlation between the number and extent of the data's original grid
dimensions and that of the target grid. In the example at hand, since the original

surface grids were two dimensional, mapping to a flat, 2D cartesian grid of equal size
would be a straightforward. Equally simple would be mappings to any two-
dimensional coordinate frame, such as polar or geocentric, or any two-dimensional

subset of a higher order space

Another advantage to the scheme suggested above is in the efficient application

3

o

of rendering techniques during the visualization process. In the field of computer
graphics, difficult problems are often solved by transforming them into simpler
problems with either identical or sufficiently similar solutions. The remapping of
complex grid geometries to simpler grids of equal dimension for the sake of rendering
can be viewed as another application of this approach. Take, for example, a CFD
simulation wherein pressure values are calculated for the 3D region between the
blades of the assembly shown in Figure 1. The grid for this region, although
fundamentally cartesian in nature, would be distorted to conform to the
characteristics of the bounding surfaces. Compensating for such distortions would

severely impact the computational effort required to render an image of the
associated data. This same data, however, remapped onto a regular 3D cartesian
grid with sides in alignment with the XYZ axes would be relatively simple to render
using any one of a number of existing volume visualization algorithms. Trends and
anomalies of interest to the researcher would still be present, although their shape
and location would be somewhat distorted due to the remapping. Such distortions

may or may not be significant to the effort at hand, but the potential performance
improvement of such remapping requires that it at least be offered as a capability of
the system.

Finally, in what is purely an implementation concern, the ability to handle spatial
references as separate entities promotes the idea of sharing such information
internally. In the case of large computational grids, the amount of information required
to fully specify the location of each data point can consume large quantities of
storage. If properly managed by the visualization system, this information can be
stored in a shareable form such that only one copy need be maintained, regardless of
how many individual datasets are being visualized with it.

Based on these observations, a storage methodology was adopted for eventual
use within the proposed CFD visualization environment wherein spatial reference and
simulation data are treated as separate entities. The model for the storage of data will
contain the following information:

1.) Dimension of original spatial reference.
2.) Number of data values along each dimension.
3.) Data values, sorted spatially based on dimension.

In addition, spatial references will be specified on the basis of the following
information:

1.) Coordinate frame (cartesian, spherical, cylindrical, etc.)
2.) Dimensions (if not implied by the coordinate frame).
3.) Data locations, specified in one of the following forms:

a.) Minimum/maximum values and data counts for each dimension.
b.) Explicit enumeration of data locations for each axis.
c.) Explicit coordinates for each data location.

A more complete description of the data structure developed for spatial
references developed during the final phases of this project can be found in Appendix
A.

4

Development Platform

Another issue investigated during the contract period was the possibility of

implementing the planned CFD visualization system on a variety of computing
platforms. Although most users of the proposed environment would likely be utilizing
Silicon Graphics workstations, it was considered good design methodology to at least
consider implementation on a wider hardware base for the sake of portability. Three
graphical environments were investigated: a Silicon Graphics Personal Iris utilizing
the GL graphics interface, a generic UNIX platform using the standard MIT X-Window
environment, and a high-end IBM PC compatible with floating point hardware utilizing
a direct, custom interface to the graphics adapter. Clearly, significant differences
existed between the platforms, including such issues as screen resolution, color

capability, and storage (primary and secondary). For the most part, it was thought
that a majority of these differences could be compensated for in a graceful manner by
the visualization system. One issue, however, defied any type of compensation and
quickly lead investigations to cease on all but the Silicon Graphics platform. This
issue was polygon rendering speed. Of the set of platforms surveyed, only the Silicon
Graphics system provided hardware-based rendering assistance; all others relied
solely on software implementations. This lead to rendering speed difference of over
three orders of magnitude between the fastest software-based system, rendering at
5-10 polygons a second, and the Silicon Graphics system rendering at 5,000-10,000
polygons a second. Given that some of the objects to be rendered would potentially
contain as many as a quarter of a million polygons, the only method of compensating
between the systems would be to reduce the accuracy and detail of the rendered
image on the slower systems. While this reduction might be feasible for the geometry

visualization portion of the project, compensating for the reduction when attempting
to map numeric simulation data onto the surfaces would be difficult.

Due to the limited polygon rendering speed, further software development

focused solely on the Silicon Graphics family of workstations. By utilizing the SGI GL
graphics library, portability was at least obtained throughout the SGI family. Although
no additional development took place on the remaining systems, it was considered
that at some point in the future another effort be made to gauge their viability in a
distributed version of the visualization environment. In such an endeavor, most of the

time-consuming rendered would take place remotely and the resulting images
downloaded and displayed on the less capable systems. Pursuit of this type of
enhancement to the overall system structure, however, was considered best delayed
until the actually visualization environment had been developed and had time to
mature.

Visualization System Software

Based on the design issue detailed above, development began on a software
system which ultimately came to be known as tview. Short for "Turbine View", this
name reflected the system's initial goal which was to provide visual depictions of
turbine geometry. As development proceeded, this name became somewhat of a
misnomer since the software ultimately evolved into a form capable of visualizing not

only turbines, but impellers, nozzles, and general surfaces-of-revolution.

As an overview, tview is a software tool for creating photo-realistic, three-

dimensional graphics displays of computational grids for turbines, impellers, and
nozzles. Not only does the system perform hidden surface removal on the rendered

objects, but simulates lighting and shading on them as well. The grids to be displayed
could represent individual portions of a much larger assembly on which the user
wishes to focus. Conversely, they could be physically separate grids which the user
wishes to see simultaneously on a single display. Either way, once loaded into tview,

the grids can be displayed and manipulated interactively by the user in real time
through the use of the system's mouse and "dial box." Provided is the capability of
rotating the object about any of the three axes, as well as the ability of zoom in to and
out of the object.

Contained in Appendix B is the complete user's manual for the tview system. This
documentation was presented to those branch personnel who assisted in the testing
of the system software and has undergone several revisions based on suggestions
made. It provides an in-depth discussion of both the capabilities of tview and the

procedures for its operation. Also contained in Appendix C is a complete source code
listing of the tview system. This software was written in the C programming language
and utilizes function calls to the Silicon Graphic GL graphics libraries for all screen

and rendering operations.

Conclusions

The tview software has been in use within the branch's three project groups for
several months. In that time, it has undergone several revisions based on

suggestions of the users and has been ported to several different SGI platforms. In all
cases, the software has performed as intended and has played a useful role in the

operation of the branch. As was intended from its earliest stages, the development
and use of the system has produced a number of ideas for potential enhancements to
its capabilities as well as methods for integrating visualization technology more and

more into the daily operations of the branch.

Future Work

In the course of performing simulations which utilize the techniques of

computational fluid dynamics, the shear volume of information produced poses two
formidable problems. The first involves the issue of data interpretation. In order to

address truly complex issues, CFD simulations must track and produce enormous
quantities of data. As the volume of information from such a simulation grows, the
probability of detecting the more subtle trends and patterns embedded within is
reduced proportionally. This is unfortunate since the primary purpose of such
simulations is generally to identify these very trends and patterns.

The second issue to be addressed is one of data management. The data supplied

to and created by a CFD simulation constitute valuable commodities, with value

6

potentially being measured using any of several metrics. The value of a given dataset
could be calculated in terms of the manpower and computation time required to
generate it. Value could also be assessed as a function of the monetary and
intellectual significance of the information the dataset contains. Regardless of how it
is measured, the fact that the data does indeed have value requires that steps be
taken to organize and protect it, while still maintaining the necessary level of
accessibility within the data's user community. As a means of addressing these
requirements, significant research has been performed in the area of high-volume
database design. Encompassing both the hardware and the software aspects of
building systems capable of dealing with information sized in the terabyte range, the
results of this research could certainly be applied in the solution for this particular
situation.

The two problems cited above are in no way independent to one another with
respect to the current efforts within the CFD branch. Instead they collectively
represent a single problem which is in need of a single, cohesive solution.

In developing a data management facility for use within CFD research, it is a
necessity that it be capable of concurrently managing three distinct resource types.
First are the CFD codes themselves. Given the requirements for a given project or
simulation, the effort involved with determining the proper code to utilize can be

significant. A well structured management system should not only have the ability to
store and retrieve a broad array of codes, but should also provide access and

analysis capabilities in an easy-to-use manner. Codes should be characterized and
organized by such well-defined analytical features as equation types, grids,
chemistries, applications, schemes, solvers, and turbulence models. Once organized
by these criteria, characteristics could be presented to the user in an interactive
selection format. This would allow a user without complete knowledge of the
characteristics of the various codes to access and utilize the available technology.

The ideal data management facility should also provide for the efficient storage
and access of an organization's computational grids, as well as the results of
simulations that have been performed against them. Given that considerable effort is
expended in the creation of these datasets, both in terms of manpower and compute
time, it should be apparent that protective mechanisms for controlling access to them
are necessary. Based on the broad base of users requiring access, however, this
protection mechanism should be scaled appropriately so as not to impede valid
research efforts.

Of foremost concem in a database of the type proposed, where three distinct but

related data types are being maintained, is consistency and maintenance of all
interdependence relationships. For example, a dataset containing the results of a
CFD simulation is of little or no use without the spatial reference supplied by the
associated computation grid. Likewise, a set of simulation results combined with the
associated computation grid may be of limited utility without knowledge of the specific
CFD code used to generate them and any limitations it may possess. It is therefore
necessary for the data management system to create and maintain a complex
network of bindings between the individual member datasets, creating tangible links
which represent the logical relationships between the different classes of information.

7

Appendix A: Spatial Reference Data Structure Definition

A-1

NAME

Spatialreference grid file format
DESCRIPTION

This document details the file format used to externally store spatial reference grids.

FILE LAYOUT (C-STYLE FORMAT):

unsigned char Magic_Number[5];

unsigned char Format_Version[5];

unslgned char Creator_Name[];

unslgned char Creator_Dept[] ;

unsxgned char Creator_Org[] ;

unsxgned char Creator_Email[];

unsigned char Creation_Month;

unslgned char Creation_Day;

unsxgned char Creation_Year;

unslgned char Creation_Hour;

unslgned char Creation_Minute;

unsxgned char Description[];

unslgned char Grid_Type;

unslgned char Coord__Frame;

unsxgned short Axisl_Dimension;

unsxgned short Axis2_Dimension;

unslgned short Axis3_Dimension;

union Point_Specification

{struct Regular

{float Axisl MinValue;
m

float Axis2_MinValue;

float Axis3__MinValue;

float Axisl MaxValue;

float Axis2 MaxValue;

float Axis3 MaxValue;};

struct Axis-explicit

[float Axisl_Coord[];

float Axis2_Coord[];

float Axis3_Coord[];};

struct Point-explicit

[float Coordinate[] [3];};

};

/* UNIX magic number = "CFDGF" */

/* Format version number = "01.00" */

/* Variable-length, null-terminated */

/* Variable-length, null-terminated _/

/* Variable-length, null-terminated */

/* Variable-length, null-terminated _/

/* Positive integer value ranged 1-12 */

/* Positive integer value ranged 1-31 */

/* Positive integer value ranged 0-255 */

/* Positive integer value ranged 0-23 */

/* Positive integer value ranged 0-59 */

/* Variable-length, null-terminated */

/* Reg./Axis-explicit/Point-explicit */

/* Cartesian/Cylindrical/Spherical */

/* Positive integer ranged 1-65535 */

/* Positive integer ranged 1-65535 */

/* Positive integer ranged 1-65535 _/

/*
/*
/*

One UNION member, based on Grid_Type */

Point spec. for regular grid */

Min. values for each of the 3 axes */

/* Max. values for each of the 3 axes */

/* Point spec. for axis-explicit grid */

/* AXisl coordinates of grid points */

/* Axis2 coordinates of grid points */

/* Axis3 coordinates of grid points */

/* Point spec. for point-explicit grid _/

/* 3D coordinates of grid points */

FIELD NAME

Magic_Number

Format Version

Creator Name

Creator_Dept

DESCRIPTION

This sequence of five ASCII characters is used to identify the file as containing a grid

specification encoded using the UAH format scheme as outlined in this document.

This sequence of five ASCII characters represent the version number of the format

specification used to encode the file's contents. If the grid format were to change in the

future, this field could be used to identify all the files which needed updating to the new

format.

This field contains a null-terminated ASCII string representing the name of the

individual responsible for the creation of the grid. The field itself is variable in length

and may contain control characters such as TAB's and NEWLINE's.

This field contains a null-terminated ASCII string representing the name of the

department responsible for the creation of the grid. The field itself is variable in Icr_ _th

and may contain control characters such as TAB's and NEWLINE's.

A-2

NOTES

Axis2 MaxValue

Axis3 MaxValue

Axis-explicit

Axisl Coord

Axis2 Coord

Axis3 Coord

Point-explicit

Coordinate

dimension (i.e. Axisl_Dimension=l), this value can be ignored by an application.

This scalar, floating point value (IEEE-754 encoding) represents the maximum

coordinate on the grid's lust dimension axis. If the grid is topologically planar in this

dimension (i.e. Axis2_Dimension= 1), this value can be ignored by an application.

This scalar, floating point value 0EEE-754 encoding) represents the maximum

coordinate on the grid's fast dimension axis. If the grid is topologically planar in this

dimension (i.e. Axis3_Dimension=l), this value can be ignored by an application.

In an axis-explicit grid, the dimension axes of the grid are topologically parallel to the
axes of the coordinate frame in which they are defined. Grid point locations are

expressed explicitly for each of the utilized dimension axes.

This field contains a list of scalar floating point values (IEEE-754 encoding)

representing the locations of grid points along the first dimension axis. Thc numbcr of
values in this list is equal to the value of the Axisl_Dimension field.

This field contains a list of scalar floating point values (IEEE-754 encoding)

representing the locations of grid points along the second dimension axis. The number
of values in this list is equal to the value of the Axis2_Dimension field.

This field contains a list of scalar floating point values (IEEE-754 encoding)
representing the locations of grid points along the third dimension axis. The number of

values in this list is equal to the value of the Axis3_Dimension field.

In a point-explicit grid, the dimension axes of the grid are not restrictcd to bcing

topologically parallel to the axes of the coordinate frame in which they are defined.

Grid point locations are represented explicitly by the specification of a complete 3D
coordinate for each.

This field contains a list of three-element floating point vectors (IEEE-754 encoding)

representing the locations of the grid points in the base coordinate frame as defined by

the value of Coord_Frame. The total number of vectors contained in this list is equal
to product of the Axisl_Dimension, Axis2 Dimension, and Axis3_Dimension fields.

In order to retain the connectivity relationship between these locations, the vectors are

stored in Axisl-major order.

For both Regular and Axis-explicit grids, a one-to-one relationship exists between the three dimension axes of the

grid and the three axes of the coordinate from in which the grid is defined. For each supported coordinate frame,

that relationship is as follows:

For COOrd_Frame--CARTESIAN COORD:

For Coord_Frame=SPHERICAL_COORD:

For Coord_Frame---CYLINDRICAL_COORD:

Axisl = X-Axis

Axis2 = Y-Axis

Axis3 = Z-Axis

Axisl = Angle from +Z-Axis

Axis2 = Angle from +X-Axis to the

projection of the radius onto
the XY-Plane

Axis3 = Radial distance from origin

Axisl = Angle from +X-Axis to the

projection of the radius onto
the XY-Plane

Axis2 = Radial distance from Z-Axis

Axis3 = Distance from XY-Plane

All references to 3D Cartesian coordinate frames assume a right-handed coordinate system. All angle values are
measured in radians and increase in a counter-clockwise direction.

A-4

Appendix B: TVIEW User's Manual

B-1

TVIEW Version 1.01 User's Manual

Software for CFD Grid Visualization

Table of Contents

Section 1. Documentation convention ... B-3
Section 2. Introduction to tview ... B-3

Section 3. Getting Started ... B-3
Section 3.1 Running the tview ... B-4
Section 3.2 Using the dial box ... B-4
Section 3.3 Moving the display window ... B-4
Section 3.4 Exiting tview .. B-5

Section 4. Configuration and Geometry files ... B-5
Section 4.1 Configuration file specification .. B-5
Section 4.2 Geometry file description .. B-9
Section 4.3 Sample configuration and geometry files B-10

Section 5. Error messages .. B-14

B-2

Section 1: Documentation Conventions

This section briefly explains the symbol conventions used throughout

this documentation. There are three basic symbols used in this
document:

.°.]

<...>

I

Indicates an optional parameter or value.

Indicates a necessary parameter or value.

Separates several alternative choices.

For instance, the syntax:

Title: [Title of display]

Indicates that the parameter for the keyword "Title:" is optional. There

could be default value, if user does not specify one explicitly.

Section 2: Introduction to tview

Tview is a tool for creating realistic, three-dimensional graphics displays

of computational grids for turbines, impellers, and nozzles. The grids are

defined within the system through the use of configuration and data files,
the formats of which are described in detail in Section 4. In addition to

data points defining the geometry of the grid, other parameters

necessary to the rendering of a realistic image, such as color and
surface texture, are also specified via configuration files.

The grids to be displayed with tview could represent portions of a much

larger assembly on which the user wishes to focus. Conversely, they

could be individually separate grids that the user wishes to see

simultaneously on a single display. Once loaded, the displayed grids can

be manipulated interactively through the use of the dial box (See Section

3.2 "Using the Dial Box").

The ability to realistically display and interactively manipulate a wide

variety of grid geometries makes tview a powerful tool for a number of
CFD design and analysis applications.

Section 3: Getting Started

Before invoking tview, the user must have available the definition of the

grids to be displayed as well as the configuration data indicating how

they will be combined and rendered on the display. Information on the
structure of the configuration and data files will be provided in Section 4.

B-3

Section 3.1: Running tview

The syntax for the tview command is:

tview [config_file]

The specification of the configuration file name "config_file" is optional.

If not specified, the file "input.cfg" in the current directory is used.

Tview parses and reads the contents of the configuration file as well as

any data files specified within it. Upon completion of this processing, a

standard SGI "window placement" icon is displayed on the screen with

the cursor anchored firmly inside it. Through the mouse, the user is able

to drag this icon to the screen location where the tview display is to be

placed. Once there, by holding down the left mouse button and dragging
the cursor across the display, the window can be swept out to the

desired size.

Once the tview display window has been established, the system will

render an image of the loaded objects. The user is then free to rotate the

displayed objects about any of the X, Y, or Z axes, as well as zoom in

and out of the object through the use of the system's dial box.

Section 3.2: Using the dial box

The dial box is a peripheral which allows the easy manipulation of the

displayed objects without the burden of keyboard intervention. The four
bottom dials of the dial box are used by tview for the following purposes:

Rotate object(s) about the Y axis.

The view is zoomed in by rotating
counterclockwise and zoomed out

by rotating clockwise.

Rotate object(s) about the X axis.

-- Rotate object(s) about the Z axis.

Section 3.3: Moving and resizing the display window

The display window can be repositioned and resized, using the normal

window reposition and resize operations. After such modifications to

window take place, however, the displayed object could take a little time
to recompute and redraw itself.

B-4

Section 3.4: Exiting tview

Upon completion of the viewing session, tview can be exited by simply
placing the mouse cursor anywhere within the display window and
pressing the "ESC" key. This removes the display window from the
screen and terminates the tview application.

Section 4: Configuration and Geometry files

The type and content of the visual display is completely defined by the
configuration and geometry files provided to tview when it is invoked.

The configuration file defines the basic configuration of the objects to be
viewed as well as the graphical characteristics of each (color, surface
texture, etc.) to be used in the rendering process. The geometry files
define the actual geometry of each object to be viewed.

Section 4.1: Configuration file specification

The configuration file is used to define the basic configuration of the
display, which includes the objects to be displayed along with their
associated parameters. The specific types of information that can be
specified in this file are:

o

2.
3.

The title for the display.
The axis of rotation for revolute object definitions.
The object specification for each of the objects to be

displayed. This specification includes the following
parameters:
a. The name of the object to be displayed.
b. The name of the data file containing the geometry of

the object to be displayed.
c. The color in which for the object is to be displayed.
d. The type of the object, whether "rotated" or "sor".

(surface of revolution)
e. The specification of rotation parameters for revolute

objects, which includes the total angle of rotation, and the
number of steps for complete rotation. (Which indirectly
specifies the angle of increment to be used for each rotation
step)

In order to identify the various parameters within the configuration file,
certain keywords are used. The details of these keywords, their usage,
syntax, and meaning are explained below. It should be noted that the
colons (":") specified at the end of most of the keywords are considered
part of the keyword and must be used.

B-5

Configuration Keyword Title:

Syntax:
Title : [User defined title for display]

Description:
The keyword Title: is used to specify the title of the current
display. The text string provided immediately after the keyword is
placed within the title bar of the display window.

Valid Parameter Values:

A string of characters, to be used as title for the display, not
exceeding 79 characters.

Default Parameter Values:
TurbineView

Comments and examples:
Title: STME Two-Stage Fuel pump impeller.

Configuration Keyword AxisOfRotation :

Syntax:
AxisOfRotation: [X I Y I Z]

Description:
The keyword AxisOfRotation: defines the centedine axis about

which revolute objects will be swept. The system supports two types
of revolute definitions: "rotated" and "surface-of-revolution". These

are explained in greater detail later in this section.

Valid Parameter Values:

x, y, z, X, Y, Z

Default Parameter Values:
z

Comments and examples:
AxisOfRotat ion : X

k

Configuration Keyword Object :

Syntax:
Object : <User defined name of the object>

Description:
This keyword is used to mark the beginning of an object definition
within the tview environment. Its parameter allows the user to assign
a meaningful symbolic name to the associated object. The keywords
that follow immediately after are used to specify the remaining
attributes of the object. These subordinate keywords are explained
below.

ORiGIhiAL PAGE 15
OF POOR QUALITY

B-6

Valid Parameter Values:
A stringof characters, defining the userspecified name of the object,
not more than 79 characters in length.

Default Parameter Values:
None.

Comments and examples:
Object: Full Blade - Suction side

Object SubKeyword Geometry:

Syntax:
Geometry : <Geometry data file name>

Description:
The Geometry: keyword specifies the name of the file containing
the geometry data for the object. The format of this file is detailed in
Section 4.2.

Valid Parameter Values:

A string of characters, defining a valid file name, not exceeding 255
characters in length.

Default Parameter Values:
None.

Comments and examples:
Geometry: ./sufull.dat

This specifies that the geometry data for the corresponding object is
in the file "sufull.dat" within the current directory.

Object SubKeyword Type:

Syntax:
Type: < Rotatedl SOR>

Description:
The Type : keyword specifies the type of the corresponding object.

Valid Parameter Values:

Rotated, ROTATED, rotated, Sot, SOR, sot

Default Parameter Values:
None.

Comments and examples:

Type: Rotated

This specifies that the object is of type rotated.

B-7

Object SubKeyword Color:

Syntax:
Color : <Red> <Green> <Blue>

Description:
The Color : keyword specifies the color in which the corresponding
object is to be displayed. In this situation, color is specified in terms
of fractional portions of each of the three additive primary colors: red,
green, and blue.

Valid Parameter Values:

Fractions ranging between 0.0 and 1.0, where 0.0 represent no
occurrence of the particular primary in the composite color, and 1.0
indicated full intensity of the associated primary.

Default Parameter Values:

Red = 0.4, Green = 0.4, Blue = 0.4

Comments and examples:
Color: 1.0 0.0 0.0

This would display the corresponding object in a bright red color.

Object SubKeyword Rotation:

Syntax:
ROt a t i o n : < motalRotationAngle> <NumberOfSteps>

Description:
For revolute objects, this keyword specified both the number of times
the object is to be replicated about its centerline and the angular
region over which these duplications will take place. The Rot at i on •
keyword specifies two parameters:

1. The total angle (in degrees) of rotation for the object.
2. The number of steps in which this total angle of rotation is to be

achieved. This indirectly defines the angle of increment for each

step of rotation.

Valid Parameter Values:

TotalRotationAngle: Any valid signed, floating-point value.
NumberOfSteps: Any positive integer value.

Default Parameter Values:

TotalRotationAngle: 0.0
NumberOfSteps: 1

Comments and examples:
Rotation: 360 I0

This specifies that the object should be rotated 360 degrees in 10

steps, effectively rotating in increments of 36 degrees for each step.

B-8

Object SubKeyword ToggleNormal

Syntax:
ToggleNormal

Description:
The presence of this keyword causes the system to generate surface
normals for the associated object which are 180 degrees different
from the default. These normals are utilized by the rending system to
create a realistic image of the object grid. If the system's default

assumption of their direction is incorrect, shading and other visual
highlights will also appear incorrect. Reversing the normals in such
cases will solve this problem.

Valid Parameter Values:

No parameters required.

Comments and examples:

ToggleNormal

Section 4.2: Geometry file specification

The geometry data file (specified by the Geometry : keyword described
above) contains both the size and geometry information for an object to
be displayed. The geometry data is essentially the x, y, and z
coordinates of the various grid or contour points. The specification of
size, as well as the method by which the grid points will be
interconnected in the final mesh, is dictated by the type of object being

defined. Currently, two distinct types of objects can be displayed by
tview: rotated objects and surfaces of revolution.

Rotated obiects:

Geometry files defining rotated objects begin with a specification of the
size of the surface mesh. The mesh is assumed to be comprised of a set
of "streamlines", which are each defined by an equal number of discrete

3D coordinate points taken along the length. To construct a complete
surface mesh, tview automatically connects the coordinate points of

adjacent streamlines to form a set of solid, rectangular patches.

The first two values in this type of geometry file are integers indicating
the number of coordinate points defining each streamline and the total
number of streamlines in the surface. After these values, the program
expects to find triplets of floating point values representing the x, y, and
z coordinates of the grid points. These triplets are assumed to be
organized in streamline order, such that the first N triplets define the first
streamline, the second N triplets represent the second streamline, and

so on. A sample geometry file for a rotated type object is shown in the
following section.

B-9

The reasoningbehind the name "rotated" for this type of object becomes
apparent when the effect of the Rotation: keyword is examined. If
present,this keyword causes tview to automatically duplicate this single
surfacedefinition multiple times about a centerline axis. Visually, each of
the duplicates appears to be a separate surface, although internally
tview is only storing the geometry for a single instance. This translates
into substantial savings in terms of both system memory requirements
and overall rendering expense.

Surfaces of revolution:

In several ways, the geometry specification for a surface of revolution is

a simplification of that used for the rotated object. In this case, the object
is specified by just a single contour or "streamline". To define the
complete surface, a continuous sweep of this contour about some
centerline axis is required.

The first numeric value contained in a geometry file for this type of object
is an integer indicating how many 3D coordinate points are used to
specify the surface contour line. After this value, tview expects to find
triplets of floating point values representing the x, y, and z coordinates of
the contour points.A sample geometry file for a surface of revolution is
shown in the following section.

The definition of a surface of revolution requires the use of the

Rotation: keyword parameter. For these types of objects, the
operands of this parameter indicate both the extent and the granularity
of the sweep used to define the complete object.

Section 4.3: Sample configuration and geometry files

This section contains examples of valid configuration and geometry files.

Example 1: Rotated oblect definition

Configuration File: exl. cfg

Title: Test tview

AxisOfRotation: Z

Object: object 1

Geometry: objectl.dat

Type: Rotated

Rotation: 360 8

Color: 0.4 0.7 0.6

Geometry File: objectl, dat

10 2
1.000 -0.0111 2.346

B-10

1.234 -0.0236 2.357

1.245 -0.0321 2.378

1.259 -0.0423 2.421

1.301 -0.0457 2.478

1.324 -0.0534 2.589

1.378 -0.0654 2.603

1.410 -0.0894 2.698

1.489 -0.1984 2.890

1.543 -0.3245 3.587

1.654 -0.4565 3.678

1.756 -0.5432 3.654

1.843 0.4323 3.765

1.932 0.5432 3.876

1.987 0.6548 4.023

1.543 0.8765 4.098

1.675 0.9854 4.124

1.876 1.0987 4.234

1.965 1.0432 4.298

2.098 1.1245 4.324

By using the configuration and geometry files above, the following
object would be displayed by the command tview exl. cfg

B-11

Example 2: Surface of revolution definition

Configuration File: ex2. cfg

Title: Test tview

AxisOfRotation: Z

Object: object 2

Geometry: object2.dat

Type: SOR

Rotation: 360 90

Color: 0.4 0.8 0.4

Geometry File: object2.dat

I0

1.000

1.245

i 301

1 378

1 489

1 654

1 843

1 987

I 675

1.965

-0 0111 2.346

-0 0321 2.378

-0 0457 2.478

-0 0654 2.603

-0 1984 2.890

-0 4565 3.678

0.4323 3.765

0.6548 4.023

0.9854 4.124

1.0432 4.298

By using the configuration and geometry files above, the following

object would be displayed by the command tview e×2. cfg

B-12

Example 3: Composite object definition

Configur_ionfile:composite.cfg

Title: Test tview

AxisOfRotation: Z

Object: object 1

Geometry: objectl.dat

Type: Rotated

Rotation: 360 8

Color: 0.4 0.7 0.6

Object: object 2

Geometry: object2.dat

Type: SOR

Rotation: 360 90

Color: 0.4 0.8 0.4

Geometry Files: The geometry files used in this configuration file are

those used separately in the preceding two examples:

object l. dat and object2, dat.

By using the files above, the following object would be displayed by
the command tview composite, cfg

B-13

Section 5" Error messages.

The following describes the various error messages issued by tview:

1. Error encountered during configuration file processing.
Indicates that an error was encountered during processing of the

configuration file. Additional messages will be printed indicating more
closely the nature of the problem.

2. Error encountered during geometry file processing.
Indicates that an was error encountered during processing of the
geometry file. Could be due to inability to read the geometry file.

3. Error encountered during surface normal generation.
Indicates that an error was encountered during the automatic

generation of surface normals, often due to memory allocation
failure.

4. Unable to access configuration file.
Indicates that the configuration file could not be opened for reading.

5. Line <#>: Invalid axis of rotation specified.
Indicates that an invalid axis-of-rotation was specified. The valid
values for axis-of-rotation are either x, y, z, X, Y, or Z.

6. Insufficient memory for dynamic allocation.
Indicates that not enough memory was available for the various
system data structures used during processing.

7. Line <#>: Invalid object type specification.
Indicates that an invalid object type was specified. Valid object types
are either "rotated" or "SOR". The line number indicates where in the

configuration file the error occurred.

8. Line <#>: Invalid color specification.
Indicates the line number in the configuration file where an invalid
color specification was encountered. Valid color values range from
0.0 to 1.0 for each of the red, green, and blue components.

9. Line <#>: Invalid rotation specification.
Indicates the line number in the configuration file where an invalid
rotation specification was encountered. A valid rotation specification
consists of one floating point value representing the total rotational
angle, and one integer value representing the number of steps taken
during traversal of the rotation.

lO.Line <#>: Invalid keyword in configuration file: <keyword>
Indicates that an invalid keyword was specified in the configuration
file at the given line number.

B-14

11. No geometry file for object <objectname>.

Indicates that no geometry file was specified
<objectname>.

for the object

12. Unable to read geometry file <filename> for <objectname>.
Indicates that the system was unable to open the specified geometry
file for reading.

13. Unable to determine size of geometry file <filename>.
Indicates that the geometry file did not have the data size specified

correctly at the beginning of the file. In the case of type "rotated"
objects, the first line of the geometry file should have two integer
numbers representing the size of the grid in each dimension. For type
"SOR" objects, a single integer representing the number of points on
the contour line should be present.

14. No configuration file name specified.
Indicates no name was specified on
configuration file.

the command line for the

15. Premature EOF for geometry file <filename>.
Indicates that during the processing of the geometry file, the number
of data entries found was less than the number specified at the
beginning of the geometry file.

B-15

Appendix C: TVIEW Source Code Listing

G-1

TVIEW Source Listing

#include <stdio.h>

#include <sys/fcntl.h>
#include <math.h>

#include <gl/gl.h>

#include <gl/device.h>

#define VERSION "I.01
#define OK 0

#define ERROR -i

#define MAXLINE 80

#define MAXOBJNAME 80

#define MAXFILENAME 256

#define UNDEFINED 0

#define ROTATED 1

#define SOR 2

#define VIEWDIST i0

#define X 0

#define Y 1

#define Z 2

#define R 0

#define G 1

#define B 2

#define WIREFRAME 0

#define SURFACE 1

(10/15/91)"

struct ObjDef {char ObjName[MAXOBJNAME];
char GeoFile[MAXFILENAME];

char Type;
float Color[3];

float RotAngle;
float RotIncr;

int RotSteps;
int NumPoints;

int NumLines;

int NormMult;

float *Data;

float *Norm;

struct ObjDef *Next;

};

struct ObjDef *ListHead = NULL;

struct ObjDef *ListTail = NULL;
char Title[MAXLINE];

int NoAxes;

char AxisOfRotation;

static Matrix Identity = {{i.0, 0.0, 0.0, 0.0},
{0.0, 1.0, 0.0, 0.0},

{0.0, 0.0, Io0, 0.0},

{0.0, 0.0, 0.0, 1.0}};

= {DIFFUSE, 0.400,

SPECULAR, 1.000,

AMBIENT, 0.100,

SHININESS, i00.000,

LMNULL};

static float MaterialDef[]

= {LCOLOR, 1.000,

POSITION, 2.000,

LMNULL};

static float LightingDef0[]

static float LightingDefl[] = {LCOLOR,
POSITION,

1.000,
-5.000,

0.400,

1.000,

0.i00,

1.000,

2.000,

1.000,
0.000,

0.400,

1.000,

0.i00,

1.000,

5.000,

l.C]0,
5.000,

O.OSS,

O.C{',

C-2

LMNULL } ;

static float LightingMod[] = {AMBIENT, 0.400,

LOCALVIEWER, i,

LMNULL};

0.400, 0.400,

main(argc, argv)

int argc;

char **argv;

{char *config_file = NULL;

strcpy(Title, "TurbineView");

NoAxes = FALSE;

AxisOfRotation = 'z';

printf("-

printf(" TVIEW Version %sin", VERSION);

printf(" Department of Computer Sciencein");

printf(" The University of Alabama in Huntsvillein");

printf(.......

if (argc == i) config_file = "./input.cfg";

else config_file = argv[l];

in") ;

in") ;

/* Try to get all the object data into memory first. Die on failure. *

W -- *

printf("Object configuration file: %sin", config_file);

if (ReadCfgFile(config_file) == ERROR)

{printf("Error encountered during config file processing.in");

FreeObjStructs() ;

exit (ERROR) ;

)
if (ReadGeomFiles() == ERROR)

{printf("Error encountered during geometry file processing.in");

FreeObjStructs () ;

exit (ERROR) ;

}
if (GenerateNormals() == ERROR)

{printf("Error encountered during surface normal generation.in");

FreeObjStructs() ;

exit (ERROR) ;

}
GraphicInit() ;

ViewingCycle () ;

GraphicTerm() ;

FreeObjStructs () ;

}

/* READCFGFILE - Read the configuration file.

int ReadCfgFile(CfgFileName)

char *CfgFileName;

{FILE *CfgFile, *fopen();

char InputLine[MAXLINE], Temp[MAXLINE];

char *FgetsStat;

char Field[MAXLINE];

int LineCount;

/* ,/

/* Make sure we weren't handed a null config file name.

/* ,/

if (CfgFileName == NULL)

{printf("ERROR: No configuration file name specified.in");

return(ERROR);

C-3

}
,

/* Make sure the file actually exists and can be read.

/*
if ((CfgFile = fopen(CfgFileName, "r")) == NULL)

{printf("ERROR: Unable to access configuration file.\n") ;

return(ERROR);

}

FgetsStat = fgets(InputLine, MAXLINE, CfgFile);

LineCount = i;

NormalizeString(InputLine);

sscanf(InputLine, "%s", Field) ;

*

/* Loop until EOF is encountered in config file.

/*

.......... */

*/
.... */

*/
........ */

while (FgetsStat != NULL)

(I*-- */

/* Check if current line is a title specification. There should */

/* only be one, but if there are several it will take the last. *

if (!strcmp(Field, "TITLE:") I I

!strcmp(Field, "Title:")] i

!strcmp(Field, "title:"))

(strcpy(Title, & (InputLine[strlen(Field)+l])) ;

FgetsStat = fgets(InputLine, MAXLINE, CfgFile);

if (FgetsStat != NULL)

{LineCount++;

NormalizeString(InputLine);

sscanf(InputLine, "%s", Field) ;

)
}

*

/* Specification of Axis-of-Rotation encountered.

/*-

else if (!strcmp(Field, "AXISOFROTATION:") I [

!strcmp(Field, "AxisOfRotation:") It

!strcmp(Field, "axisofrotation:"))

{sscanf(&(InputLine[strlen(Field)+l]), "%s", Temp);

if ((Temp[0] == 'x') [i (Temp[0] == 'X'))

AxisOfRotation z 'x';

else if ((Temp[0] == 'y') t] (Temp[0] == 'Y'))

AxisOfRotation = 'y';

else if ((Temp[0] == 'z') I i (Temp[0] == 'Z'))

AxisOfRotation = 'z';

else

{printf("Line %d: Invalid axis of rotation specified.kn",

LineCount);

return(ERROR);

)
FgetsStat = fgets(InputLine, MAXLINE, CfgFile) ;

if (FgetsStat != NULL)

{LineCount++;

NormalizeString(InputLine);

sscanf(InputLine, "%s", Field);

)
)

/./
/* If they don't want axes, they don't get no stinking axes. */

/.......................... /
else if (!strcmp(Field, "NOAXES") I I

!strcmp(Field, "NoAxes") 11

!strcmp(Field, "hoaxes"))

{NoAxes = TRUE;

C-4

FgetsStat = fgets(InputLine, MAXLINE, CfgFile);

if (FgetsStat != NULL)

{LineCount++;
NormalizeString(InputLine);

sscanf(InputLine, "%s", Field) ;

}
)

/* ------*/

/* Check if current line is an object specification.

*

else if (!strcmp(Field, "OBJECT:") J J

!strcmp(Field, "Object:") J i
!strcmp(Field, "object:"))

{if (ListTail == NULL)

/* ------*/

ListTail->Type
ListTail->Color[R]
ListTail->Color[G]

ListTail->Color[B]

ListTail->RotAngle

ListTail->RotSteps
ListTail->NumPoints

ListTail->NumLines

ListTail->NormMult

ListTail->Data

ListTail->Next

/*

/* First object. Allocate block and set head/tail pointers.*/

I, *I
{ListTail = (struct ObjDef *)malloc(sizeof(struct ObjDef));

if (ListTail == NULL)

{printf("ERROR: Insufficient memory for dynamic allocation.\n");

return(ERROR);

}
ListHead = ListTail;

)
else

/*.... -.......... ./
/* Not first object. Allocate block and tag onto the end. */

I*.... "....... *I
{ListTail->Next = (struct ObjDef *)malloc(sizeof(struct ObjDef));

if (ListTail->Next == NULL)

{printf("ERROR: Insufficient memory for dynamic allocation.\n");
return(ERROR);

)
ListTail = ListTail->Next;

)
i..... -........... ./
/* Initialize ObjDef structure fields. */

strcpy(ListTail->ObjName, &(InputLine[strlen(Field)+l]));

printf("Creating object [%s]\n", ListTail->ObjName);
ListTail->GeoFile[0] = '\0';

= UNDEFINED;

= 0.4;

= 0.4;

= 0.4;

= 0.0;
= O;
= O;

= O;
= 1;
= NULL;

= NULL;

/* Starting reading lines of associated object information *

/* until either EOF or another OBJECT line is encountered. *

FgetsStat = fgets(InputLine, MAXLINE, CfgFile);

if (FgetsStat != NULL)
{LineCount++;

NormalizeSt ring (InputLine) ;

sscanf(InputLine, "%s", Field);

}
while ((FgetsStat != NULL) &&

(strcmp(Field, "OBJECT:") &&

C-5

{/*----

strcmp(Field, "Object:") &&

strcmp(Field, "object:")))

/* GEOMETRY specification encountered.

/*

........ */

*/
----*/

if (!strcmp(Field, "GEOMETRY:") i i

!strcmp(Field, "Geometry:") i I

!strcmp(Field, "geometry: "))
{sscanf(&(InputLine[strlen(Field)+l]), "%s", ListTail->GeoFile) ;

FgetsStat = fgets(InputLine, MAXLINE, CfgFile) ;

if (FgetsStat != NULL)
{LineCount++;

NormalizeString (InputLine) ;

sscanf (InputLine, "%s", Field) ;

)
}

I*.............. *I
/* TYPE specification encountered. */

/.___ -........... ./
else if (!strcmp(Field, "TYPE:") I I

!strcmp(Field, "Type:") I I

!strcmp(Field, "type:"))
{sscanf(&(InputLine[strlen(Field)+l]), "%s", Temp);

if (!strcmp(Temp, "ROTATED") i I

!strcmp(Temp, "Rotated") I i

!strcmp(Temp, "rotated"))

ListTail->Type = ROTATED;

else if (!strcmp(Temp, "SOR") J l

!strcmp(Temp, "sot"))

ListTail->Type = SOR;

else

{printf("Line %d: Invalid object type specification.\n",
LineCount) ;

return (ERROR) ;

}
FgetsStat = fgets(InputLine, MAXLINE, CfgFile);

if (FgetsStat != NULL)
{LineCount ++;

NormalizeString (InputLine) ;

sscanf(InputLine, "%s", Field) ;

)
)

/....... -................. /
/* COLOR specification encountered. */
I*...... -.... *I
else if (!strcmp(Field, "COLOR:") II

!strcmp(Field, "Color:") I I

!strcmp(Field, "color:"))
{if (sscanf(&(InputLine[strlen(Field)+1]), "%f%f%f",

& (ListTail->Color [R]),

& (ListTail->Color [G]) ,

&(ListTail->Color[B])) != 3)

{printf("Line %d: Invalid color specification.\n",
LineCount) ;

return (ERROR) ;

}
FgetsStat = fgets(InputLine, MAXLINE, CfgFile);

if (FgetsStat != NULL)
{LineCount ++;

NormalizeString (InputLine) ;

sscanf(InputLine, "%s", Field) ;

}
}

/. !

C-6

/* ROTATION specification encountered. _/

/*-- --*/

/*

else if (!strcmp(Field, "ROTATION:") II

!strcmp(Field, "Rotation:") II

!strcmp(Field, "rotation:"))

{if (sscanf(&(InputLine[strlen(Field)+l]), "%f%d",

&(ListTail->RotAngle), &(ListTail->RotSteps)) != 2)

(printf("Line %d: Invalid rotation specification.\n",

LineCount);

return(ERROR);

)
ListTail->RotIncr = ListTail->RotAngle / ListTail->RotSteps;

FgetsStat m fgets(InputLine, MAXLINE, CfgFile);

if (FgetsStat != NULL)

{LineCount++;

NormalizeString(InputLine);

sscanf(InputLine, "%s", Field) ;

}
)

/*

/* NORMTOGGLE switch encountered.

------*/

*/
---*/

else if (!strcmp(Field, "TOGGLENORMAL") II

!strcmp(Field, "ToggleNormal") I J

!strcmp(Field, "togglenormal"))

{ListTail->NormMult = -I;

FgetsStat = fgets(InputLine, MAXLINE, CfgFile);

if (FgetsStat != NULL)

{LineCount++;

NormalizeString(InputLine);

sscanf(InputLine, "%s", Field);

)
}

/* ---_/

/* Unknown OBJECT subfield specification encountered. "/

/. /
else

(printf("Line %d: Invalid keyword in configuration file. [%s]\n",

LineCount, Field);

return (ERROR) ;

)
}

----_/

/* Unknown keyword encountered.

/*
else

{printf("Line %d: Invalid keyword in configuration file. [%s]\n",

LineCount, Field);

return(ERROR);

}
)

fclose(CfgFile) ;

return (OK) ;

/* NORMALIZESTRING - Remove leading and trailing blanks from a string. •

/* Also gets rid of pesky newlines at the end, too.

/,

int NormalizeString(NormString)

char NormString[];

{int i, First, Last, Len;

C-7

First - 0;

while (NormString[First] =="' ') First++;

Last = strlen(NormString)-l;

while ((NormString[Last] == ' ') i I (NormString[Last] == ' \n')) Last--;

Len = Last-First+l;

strncpy(NormString, &(NormString[First]), Len) ;

NormString[Len] = '\0' ;

return (OK) ;

}

/* FREEOBJSTRUCTS - This routine frees all the dynamically-allocated *

/* structures used to hold the object definitions. *

/, *

int FreeObjStructs()

{struct ObjDef *NextObj;

while (ListHead != NULL)

{NextObj = ListHead->Next;

if (ListHead->Data != NULL)

free(ListHead->Data);

if (ListHead->Norm != NULL)

free(ListHead->Norm);

free(ListHead);

ListHead = NextObj;

}
ListTail = NULL;

return(OK);

}

/* READGEOMFILES - Scan list of objects created by ReadCfgFile and

/* read in the associated geometry file for each.

/*
int ReadGeomFiles()

{struct ObjDef *CurrentObj;

FILE *GeometryFile;

int MemSize, i, j, k, index, axis, span;

double SinVal, CosVal;

float Min = 1000000.0, Max = -1000000.0, Mid;

CurrentObj = ListHead;

/*-

/* Scan through the entire list of objects and load in geometry. *

while (CurrentObj != NULL)

/* Make sure that a geometry file has been defined and can be read.*

{if (CurrentObj->GeoFile[0] == '\0')

{printf("ERROR: No geometry file for object [%s].\n",

CurrentObj->ObjName);

return(ERROR);

}
if ((GeometryFile = fopen(CurrentObj->GeoFile, "r")) == NULL)

{printf("ERROR: Unable to read geometry file [%s] for object [%s] .\n",

CurrentObj->GeoFile, CurrentObj->ObjName);

return(ERROR);

}
/* */
/* Object is of type ROTATED. Allocate storage and read it in. */

/* */
if (CurrentObj->Type == ROTATED)

{if (fscanf(GeometryFile, "%d%d",

&(CurrentObj->NumPoints), &(Curren%Obj->NumLines)) != 2)

C-8

/*

{printf("ERROR: Unable to determine size of geometry file [%s].\n",

CurrentObj->GeoFile);

return(ERROR);

}
MemSize = (CurrentObj->NumPoints*CurrentObj->NumLines)*sizeof(float)*3;

if ((CurrentObj->Data = (float *)malloc(MemSize)) == NULL)

{printf("ERROR: Insufficient memory for dynamic allocation.ln");

return(ERROR);

)
index = 0;

for (i=0; i<CurrentObj->NumLines; i++)

for (j=0; j<CurrentObj->NumPoints; j++)

{if (fscanf(GeometryFile, "%f%f%f",

&(CurrentObj->Data[index]),

&(CurrentObj->Data[index+l]),

&(CurrentObj->Data[index+2])) != 3)

{printf("ERROR: Premature EOF for geometry file [%s].\n",

CurrentObj->GeoFile);

return(ERROR);

} ./

/* Figure Min and Max on axis of rotation so we can */

/* center about origin. */

/* *t
if (AxisOfRotation == 'x') axis = index;

else if (AxisOfRotation == 'y') axis = index+l;

else axis = index+2;

if (CurrentObj->Data[axis] < Min)

Min = CurrentObj->Data[axis];

if (CurrentObj->Data[axis] > Max)

Max = CurrentObj->Data[axis];

index += 3;

}
}

I* -....... *I
/* Object is of type SOR (Surface-of-Revolution). The structure */

/* allocated is actually twice as big as need be because we will */

/* convert it into patches. We do this by rotating the line one */

/* one step and creating another line. */

/*--- --*/
else if (CurrentObj->Type == SOR)

{fscanf(GeometryFile, "%d", &(CurrentObj->NumPoints));

CurrentObj->NumLines = 2;

MemSize = (CurrentObj->NumPoints)*2*sizeof(float)*3;

if ((CurrentObj->Data = (float *)malloc(MemSize)) == NULL)

{printf("ERROR: Insufficient memory for dynamic allocation. \n") ;

return (ERROR) ;

}
index = 0;

/*- */
/* Read the contents of the geometry file first.

for (i=0; i<CurrentObj->NumPoints; i++)

{if (fscanf(GeometryFile, "%f%f%f",

&(CurrentObj->Data[index]),

&(CurrentObj->Data[index+l]),

&(CurrentObj->Data[index+2])) != 3)

{printf("ERROR: Premature EOF for geometry file [%s] .\n",

CurrentObj->GeoFile);

return(ERROR);

} ,/

/* Figure Min and Max on axis of rotation so we can center */

/* about origin. */

C-9

if (AxisOfRotation == 'x') axis = index;

else if (AxisOfRotation == 'y') axis = index+l;

else axis - index+2;

if (CurrentObj->Data[axis] < Min)

Min = CurrentObj->Data[axis];

if (CurrentObj->Data[axis] > Max)
Max = CurrentObj->Data[axis];

index += 3;

!
* ---*/

/* Now rotate it one step and store result as a second line. */

I*......... *I

/*

CosVal = cos((double) ((CurrentObj->RotIncr/360.0)*2*M PI));

SinVal = sin((double) ((CurrentObj->RotIncr/360.0)*2*M--PI));

span = CurrentObj->NumPoints * 3;

for (i=0; i<CurrentObj->NumPoints; i++)
{if (AxisOfRotation == 'x')

{CurrentObj->Data[index] =

CurrentObj->Data[index-span];

CurrentObj->Data[index+l] =

CurrentObj->Data[index-span+l] * CosVal -

CurrentObj->Data[index-span+2] * SinVal;
CurrentObj->Data[index+2] =

CurrentObj->Data[index-span+l] * SinVal +

CurrentObj->Data[index-span+2] * CosVal;
)

else if (AxisOfRotation == 'y')
[CurrentObj->Datalindex] =

CurrentObj->Data[index-span] * CosVal +

CurrentObj->Data[index-span+2] * SinVal;

CurrentObj->Data[index+l] =

CurrentObj->Data[index-span+l];

CurrentObj->Data[index+2] =

CurrentObj->Data[index-span+2] * CosVal -

CurrentObj->Data[index-span] * SinVal;
)

else if (AxisOfRotation == 'z')

{CurrentObj->Data[index] =

CurrentObj->Data[index-span] * CosVal -

CurrentObj->Data[index-span+l] * SinVal;
CurrentObj->Data[index+l] =

CurrentObj->Data[index-span] * SinVal +
CurrentObj->Data[index-span+l] * CosVal;

CurrentObj->Data[index+2] =

CurrentObj->Data[index-span+2];
)

index+=3;

}

.............. */

/* Unknown or undefined object type encountered in list. */

/* */
else

{printf{"ERROR: Invalid type for object [%s]\n", CurrentObj->ObjName);
return(-l);

}
CurrentObj = CurrentObj->Next;
]

/.............................. !
/* Scan through object again, this time adjusting value on the axis */
/* of rotation to center the object. */

!*................. *!
Mid = (Min - Max)/2;

0-10

CurrentObj = ListHead;

while (CurrentObj !- NULL)

{index = 0;

for (i=0; i<CurrentObj->NumLines; i++)

for (j=0; j<CurrentObj->NumPoints; j++)

{if (AxisOfRotation == 'x') axis = index;

else if (AxisOfRotation == 'y') axis = index+l;

else axis = index+2;

CurrentObj->Data[axis] -= Mid;

index += 3;

)
CurrentObj = CurrentObj->Next;

i
return(0) ;

}

/.............. ,/
/* GENERATENORMALS - Generate surface normals for all objects in list */

/* and store them within the object structure. */

I*................. */
int GenerateNormals()

{struct ObjDef *CurrentObj;

int span, i, j, index;

float V013], Vl[3], mag;

CurrentObj = ListHead;

while (CurrentObj != NULL)

I*........... "1
/* Dynamically allocate a structure to hold the normals. */

l* *l
{CurrentObj->Norm = (float *)malloc((CurrentObj->NumLines-l)

* (CurrentObj->NumPoints) * sizeof(float) * 3);

if (CurrentObj->Norm == NULL)

{printf("ERROR: Insufficient memory for dynamic allocation.\n");

return(ERROR);

}
span = CurrentObj->NumPoints*3;

index = 0;

for (i=0; i<CurrentObj->NumLines-l; i++)

{for (j=0; j<CurrentObj->NumPoints-l; j++)

/* *l
/* This looks hairy, but its just a cross product between */

/* the bottom and left edges of each object patch. */

/*................. */
{V0[X] = CurrentObj->Data[index+span] - CurrentObj->Data[index];

V0[Y] = CurrentObj->Data[index+span+l] - CurrentObj->Data{index+l];

V0[Z] = CurrentObj->Data[index+span+2] - CurrentObj->Data[index+2];

VI[X] = CurrentObj->Data[index+3] - CurrentObj->Data[index];

VI[Y] = CurrentObj->Data[index+4] - CurrentObj->Data[index+l];

VI[Z] = CurrentObj->Data[index+5] - CurrentObj->Data[index+2];

CurrentObj->Norm[index] = (V0[Y]*VI[Z]) - (VI[Y]*V0[Z]);

CurrentObj->Norm[index+l] - (VI[X]*V0[Z]) - (V0[X]*VI[Z]);

CurrentObj->Norm[index+2] = (V0[X]*VI[Y]) - (VI[X]*V0[Y]);

/................................... *!
/* Make the normal unit length; a requirement of GL. */

/* *l
mag = sqrt(pow((double)CurrentObj->Norm[index], (double)2.0) +

pow((double)CurrentObj->Norm[index+l], (double)2.0) +

pow((double)CurrentObj->Norm[index+2], (double)2.0)) *

CurrentObj->NormMult;

CurrentObj->Norm[index] /= mag;

CurrentObj->Norm[index+l] /= mag;

CurrentObj->Norm[index+2] /= mag;

index += 3;

}

C-ll

/* For the vertices on the end of a strip, we use the normal */

/* of the preceding patch since we can't calculate one. */

I*........ -........ *I
CurrentObj->Norm[index] = CurrentObj->Norm[index-3];

CurrentObj->Norm[index+l] z CurrentObj->Norm[index-2];

CurrentObj->Norm[index+2] = CurrentObj->Norm[index-l];

index += 3;

}
CurrentObj = CurrentObj->Next;

* _

/* GRAPHICINIT - Perform graphic system initialization.

/*-

..... */

*/

int GraphicInit()

{keepaspect(3, 2);

winopen(....);

wintitle(Title);

doublebuffer();

RGBmode();

zbuffer(TRUE);

backface(TRUE);

gconfig();

mmode (MVIEWING) ;

/* perspective(900, 1.5, 0.i, 500.0); */

perspective(400, 1.5, 0.i, 500.0) ;

setvaluator(DIAL0, (short)0, (short)-l, (short)360) ;

setvaluator(DIALl, (short)0, (short)-l, (short)360);

setvaluator(DIAL2, (short)0, (short)-l, (short)360) ;

setvaluator(DIAL3, (short)VIEWDIST*I0, (short)0,

qdevice (DIAL0) ;

qdevice (DIAL1) ;

qdevice (DIAL2) ;

qdevice (DIAL3) ;

qdevice (ESCKEY) ;

Imdef(DEFMATERIAL, i, 0, MaterialDef);

Imdef(DEFLIGHT, i, 0, LightingDef0);

Imdef(DEFLIGHT, 2, 0, LightingDefl);

Imdef(DEFLMODEL, i, 0, LightingMod);

Imbind(MATERIAL, I);

imbind(LIGHT0, i);

imbind(LIGHTl, 2);

imbind(LMODEL, i);

czclear(0x000000, 0x7fffff);

swapbuffers();

czclear(0x000000, 0x7fffff);

swapbuffers();

qenter (DIAL3, (short) VIEWDIST* I0) ;

return(0) ;

)

(short) i0000) ;

-*/
/* GRAPHICTERM - Perform graphic system termination.

/.
*/

....... */

int GraphicTerm()

[gexit();

}

/*--
------*/

/* VIEWINGCYCLE - Query input from user, render new image. Loop. ,/

int ViewingCycle ()

C-12

{int i;

short IOdata;

Device IOdev;

static float zd = VIEWDIST;

float rx=0.0, ry=0.0, rz=0.0,

rxinc, ryinc, rzinc;

static Matrix Current = ({i.0, 0 0, 0.0, 0.0},

{0 0, 1 0, 0.0, 0.0},

{0 0, 0 0, 1.0, 0.0},

{0 0, 0 0, 0.0, 1.0}};

static float V0[] = {0.0, 0 0, 0 0},

Vx[] = {I.0, 0 0, 0 0},
vy[] = {0.0, i 0, 0.0},
Vz[] z {0.0, 0 0, 1.0);

* */

/* Loop until the user hits ESC. */

t* */
while ((IOdev=qread(&IOdata)) != ESCKEY)

(pushmat rix () ;
if (IOdev != DIAL3)

{if (IOdata =- -I) setvaluator(IOdev, (short) 359, (short)-l, (short) 360) ;

if (IOdata == 360) setvaluator(IOdev, (short)0, (short)-l, (short)360);
)

/.......... ./
/* Z axis rotation requested. */
I*........... "1
if (IOdev == DIAL0)

(rzinc = rz - ((float)IOdata*10);

UpdateCurrent('z', rzinc, Current);

rz -= rzinc;}

/* X axis rotation requested.
/*
else if (IOdev == DIAL1)

{rxinc = rx - ((float)IOdata*10);

UpdateCurrent('x', rxinc, Current);

rx -= rxinc;}
/*
/* Y axis rotation requested.
/*
else if (IOdev == DIAL2)

{ryinc = ry - ((float)IOdata*10);

UpdateCurrent('y', ryinc, Current);

ry -= ryinc;}
*

/* Zoom in/out requested.
t

else if (IOdev == DIAL3)
zd = ((float)IOdata/10);

else if (IOdev == REDRAW)

{reshapeviewport();
czclear(0x000000, 0x7fffff);

swapbuffers();
czclear(0x000000, 0x7fffff);

swapbuffers();
i

lookat(0.0, 0.0, zd, 0.0, 0.0, 0.0, 0);
multmatrix (Current) ;

czclear(0x000000, 0x7fffff);

*

/* Redraw objects. Use wireframe mode if more events are in the

/* queue, or hidden-surface mode if there are not.

*

-.1
*l

-*/

,/
*/
*/

C-13

if (qtest() == 0)

{sleep (2) ;

if (qtest() =-- 0)

DrawObjList (SURFACE) ;
else DrawObjList(WIREFRAME) ;

)
else DrawObjList(WIREFRAME) ;

popmatrix () ;
/*

/* Draw a set of tilting axes in the lower right of the screen. *

if (NoAxes == FALSE)

{imbind(LMODEL, 0) ;

pushmatrix () ;

ortho(-6, 6, -4, 4, 0.I, 500);

translate (4.5, -2.5, -5) ;

multmatrix (Current) ;

cpack(0xffff00) ;
bgnline() ; v3f(V0) ; v3f(Vx) ; endline() ;

bgnline() ; v3f(V0) ; v3f(Vy) ; endline() ;

bgnline() ; v3f(V0) ; v3f(Vz) ; endline() ;

cpack (0x00ffff) ;

cmov(l.2, 0.0, 0.0) ; charstr("X") ;

cmov(0.0, 1.2, 0.0) ; charstr("Y") ;

cmov(0.0, 0.0, 1.2) ; charstr("Z") ;

imbind(LMODEL, i) ;

popmatrix () ;

/* perspective(900, 1.5, 0.1, 500.0); */

perspective(400, 1.5, 0.i, 500.0) ;

}
swapbuffers() ;
}

return(0) ;

}

*

/* UPDATECURRENT - Postmultiply the current ModelView matrix by a

/* single axis rotation matrix.

*

UpdateCurrent(Axis, Angle, CMatrix)

char Axis;

float Angle;
Matrix CMatrix;

{pushmatrix();

loadmatrix(Identity);

rotate(Angle, Axis);
multmatrix(CMatrix);

getmatrix(CMatrix);

popmatrix();
}

,/

/* DRAWOBJLIST - Scan the list of object definitions and draw each *

/* in either wireframe or surface mode. *

DrawObjList (DrawType)

int DrawType;
{struct ObjDef *CurrentObj;

int i, j, k, index, span;

/* Render object with lighting model and hidden surface elimination. *
/* Because the polygons are being treated as a 3D object, each must *

/* be rendered twice (once facing each way) to get correct lighting. *

* - *

C-14

if (DrawType =- SURFACE)

{imbind(LMODEL, i);

CurrentObJ - ListHead;

while (CurrentObj !- NULL)

{MaterialDef[l] - CurrentObj->Color[R];

MaterialDef[2] = CurrentObj->Color[G];

MaterialDef[3] s CurrentObj->Color[B];

Imdef(DEFMATERIAL, i, 0, MaterialDef);

span = CurrentObj->NumPoints * 3;

for (i=0; i<CurrentObj->RotSteps; i++)

I*-- ---*I
/* Draw the surface facing one way. */

/,.... n__.!

{pushmatrix();

rotate((long) (CurrentObj->RotIncr*i*10), AxisOfRotation);

index = 0;

for (j=0; j<CurrentObj->NumLines-l; j++)

{bgntmesh();

for (k=0; k<CurrentObj->NumPoints; k++)

{n3f (& (CurrentObj->Norm[index])) ;

v3f (& (CurrentObj->Data [index])) ;

v3f (& (CurrentObj->Data [index+span])) ;

index += 3;

}
endtmesh();

}
popmatrix();

}
l*...... *I
/* Toggle the surface normals to face the other way. ./

./

index = 0;

for (j=0; j<CurrentObj->NumLines-l; j++)

for (k=0; k<CurrentObj->NumPoints; k++)

{CurrentObj->Norm[index] = -CurrentObj->Norm[index];

CurrentObj->Norm[index+l] = -CurrentObj->Norm[index+l];

CurrentObj->Norm[index+2] = -CurrentObj->Norm[index+2];

index += 3;

}
for (i=0; i<CurrentObj->RotSteps; i++)

/* -*/

/* Draw the surface facing the other way.

/*

./
-*/

{pushmatrix();

rotate((long) (CurrentObj->RotIncr*i*10), AxisOfRotation);

index = ((CurrentObj->NumLines-l)*(CurrentObj->NumPoints)*3)-3;

for (j=0; j<CurrentObj->NumLines-l; j++)

{bgntmesh();

for (k=0; k<CurrentObj->NumPoints; k++)

[n3f (& (CurrentObj->Norm[index])) ;

v3f (& (CurrentObj->Data [index])) ;

v3f (& (CurrentObj->Data [index+span])) ;

index -= 3;

}
endtmesh();

}
popmatrix();

]
/,___ ---*/
/* Toggle the surface normals to to the way they began. */

1.___ ---*/
index = 0;

for (j=0; j<CurrentObj->NumLines-l; j++)

for (k=0; k<CurrentObj->Num_oints; k++)

C-15

*

{CurrentObj->Norm[index] = -CurrentObj->Norm[index];

CurrentObj->Norm[index+l] = -CurrentObj->Norm[index+l];

CurrentObj->Norm[index+2] = -CurrentObj->Norm[index+2];

index +- 3;

}
CurrentObj - CurrentObj->Next;

!

./

/* Render object in a wireframe mode.
/*

*/
*/

else

{imbind(LMODEL, 0);

cpack(0xffffff);

CurrentObj = ListHead;

while (CurrentObj != NULL)

{for (i=0; i<CurrentObj->RotSteps; i++)

{pushmatrix();

rotate((long) (CurrentObj->RotIncr*i*10), AxisOfRotation);
index = 0;

for (j=0; j<CurrentObj->NumLines; j++)

{bgnline();
for (k=0; k<CurrentObj->NumPoints; k++)

{v3f(&(CurrentObj->Data[index]));

index += 3;

}
endline () ;

}
popmatrix();

}
CurrentObj = CurrentObj->Next;
}

}
return ;

}

C-16

,

1. RIpo_ NO.

13
4. Tit_ and Sub_

Repo,t Oocumentation

I 2. Government A¢cec_on No.

Computational Fluid Dynamics for

Propulsion Technology

P. Ziebarth

Do

12.

Pedo, m/ng Organ_on Name a_ A_

University of Alabama

Huntsville, AL 35899

in Huntsville

Sponso_r_g A_ncy Name a_ A_rem

Marshall Space Flight Center

National Aeronautics and Space

Washington, D.C. 20546-0001

Page L J

3, Rec_pklnt's Call#og No.

S. Report Date

3/17/92
6. Performing Organizalion Code

8. Perfom_ng Otgenizat_n Report No.

10. Work Unit NO.

11. Contract or Grant NO.

NAS8-36955/DO 85

13. Type of Report _ Period Covered

Administratiol

FINAL 12/20/90-4/I/9

14. Sponsodng Agency Code

1§. Supplementary Not_

16. Abstract

This work involves the coordination of necessary resources,
facilities and special personnel, to provide technical integration

activities in the area of computational fluid dynamics applied to
propulsion technology. Involved is the coordination of CFD activ-

ities between government, industry and universities. Current

geometry modelling, grid generation and graghical methods will

be established to use in the analysis of CFD design methodologies.

17. Kw Wor_lSuggest_ _Author(s))

Computational Fluid Dynamics
Numerical Grid Generation

Propulsion

19. Security ClasWf. (of th_ report)

Un

m_mmmmm,mlm

NASA FORM 182tl OCT N

18. Distribution Statement

Unclassified - Unlimited

21. No. of pages [22. Przol
43

20. Security Clas,_f. (of this page)

Un

ORIG/NAL PAGE IS

OF POOR QUALITY

